
22nd International Conference
on Rewriting Techniques and
Applications

RTA’11, May 30–June 1, 2011, Novi Sad, Serbia

Edited by

Manfred Schmidt-Schauß

LIPIcs – Vo l . 10 – RTA’11 www.dagstuh l .de/ l ip i c s

Editor
Manfred Schmidt-Schauß
Institut für Informatik
FB Informatik und Mathematik (12)
Johann Wolfgang Goethe-Universität
Postfach 11 19 32
60054 Frankfurt am Main, Germany
schauss@ki.informatik.uni-frankfurt.de

ACM Classification 1998
D.1 Programming Techniques, D.2 Software Engineering, D.3 Programming Languages, F.1 Computation
by Abstract Devices, F.2 Analysis of Algorithms and Problem Complexity, F.3. Logics and Meanings of
Programs, F.4 Mathematical Logic and Formal Languages, I.1 Symbolic and Algebraic Manipulation, I.2
Artificial Intelligence

ISBN 978-3-939897-30-9

Published online and open access by
Schloss Dagstuhl – Leibniz-Center for Informatics GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-30-9.

Publication date
May, 2011

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
license: http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/10.4230/LIPIcs.RTA.2011.i

ISBN 978-3-939897-30-9 ISSN 1868-8969 www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-30-9
http://www.dagstuhl.de/dagpub/978-3-939897-30-9
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.i
http://www.dagstuhl.de/dagpub/978-3-939897-30-9
http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (Humboldt University Berlin)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Wolfgang Thomas (RWTH Aachen)
Vinay V. (Chennai Mathematical Institute)
Pascal Weil (Chair, University Bordeaux)
Reinhard Wilhelm (Saarland University, Schloss Dagstuhl)

ISSN 1868-8969

www.dagstuhl.de/lipics

RTA’11

http://www.dagstuhl.de/lipics

Contents

Preface
Manfred Schmidt-Schauß . i

Invited Talks

Tree Automata, (Dis-)Equality Constraints and Term Rewriting: What’s New?
Sophie Tison . 1

Rewriting in Practice
Ashish Tiwari . 3

Combining Proofs and Programs
Stephanie Weirich . 9

System Descriptions

FAST: An Efficient Decision Procedure for Deduction and Static Equivalence
Bruno Conchinha, David A. Basin, and Carlos Caleiro . 11

Automated Certified Proofs with CiME3
Évelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and
Xavier Urbain . 21

Variants, Unification, Narrowing, and Symbolic Reachability in Maude 2.6
Francisco Durán, Steven Eker, Santiago Escobar, José Meseguer, and
Carolyn Talcott . 31

Termination Analysis of C Programs Using Compiler Intermediate Languages
Stephan Falke, Deepak Kapur, and Carsten Sinz . 41

First-Order Unification on Compressed Terms
Adrià Gascón, Sebastian Maneth, and Lander Ramos . 51

Anagopos: A Reduction Graph Visualizer for Term Rewriting and Lambda Calculus
Niels Bjørn Bugge Grathwohl, Jeroen Ketema, Jens Duelund Pallesen, and
Jakob Grue Simonsen . 61

Maximal Completion
Dominik Klein and Nao Hirokawa . 71

CRSX—Combinatory Reduction Systems with Extensions
Kristoffer H. Rose . 81

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: Manfred Schmidt-Schauß

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

vi Contents

Regular Papers

A Reduction-Preserving Completion for Proving Confluence of Non-Terminating Term
Rewriting Systems

Takahito Aoto and Yoshihito Toyama . 91

Natural Inductive Theorems for Higher-Order Rewriting
Takahito Aoto, Toshiyuki Yamada, and Yuki Chiba . 107

A Path Order for Rewrite Systems that Compute Exponential Time Functions
Martin Avanzini, Naohi Eguchi, and Georg Moser . 123

Modes of Convergence for Term Graph Rewriting
Patrick Bahr . 139

Modular Termination Proofs of Recursive Java Bytecode Programs by Term Rewriting
Marc Brockschmidt, Carsten Otto, and Jürgen Giesl . 155

Rewriting-based Quantifier-free Interpolation for a Theory of Arrays
Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise . 171

Improved Functional Flow and Reachability Analyses Using Indexed Linear Tree
Grammars

Jonathan Kochems and Luke Ong . 187

Higher Order Dependency Pairs for Algebraic Functional Systems
Cynthia Kop and Femke van Raamsdonk . 203

Anti-Unification for Unranked Terms and Hedges
Temur Kutsia, Jordi Levy, and Mateu Villaret . 219

Termination Proofs in the Dependency Pair Framework May Induce Multiple Recursive
Derivational Complexity

Georg Moser and Andreas Schnabl . 235

Revisiting Matrix Interpretations for Proving Termination of Term Rewriting
Friedrich Neurauterand Aart Middeldorp . 251

Soundness of Unravelings for Deterministic Conditional Term Rewriting Systems via
Ultra-Properties Related to Linearity

Naoki Nishida, Masahiko Sakai, and Toshiki Sakabe . 267

Program Inversion for Tail Recursive Functions
Naoki Nishida and Germán Vidal . 283

Refinement Types as Higher-Order Dependency Pairs
Cody Roux . 299

Weakening the Axiom of Overlap in Infinitary Lambda Calculus
Paula Severi and Fer-Jan de Vries . 313

Modular and Certified Semantic Labeling and Unlabeling
Christian Sternagel and René Thiemann . 329

Type Preservation as a Confluence Problem
Aaron Stump, Garrin Kimmell, and Roba El Haj Omar . 345

Contents vii

Left-linear Bounded TRSs are Inverse Recognizability Preserving
Irène Durand and Marc Sylvestre . 361

Labelings for Decreasing Diagrams
Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp . 377

Proving Equality of Streams Automatically
Hans Zantema and Jörg Endrullis . 393

RTA’11

RTA 2011 Conference Organization

RTA 2011 Conference Chair
Silvia Ghilezan Novi Sad, Serbia

Program Chair
Manfred Schmidt-Schauß Frankfurt am Main, Germany

Program Committee
Franz Baader TU Dresden, Germany
Frédéric Blanqui Inria, China
Véronique Cortier CNRS, Loria, France
Dan Dougherty Worcester Polytechnic Institute, United States
Maribel Fernández King’s College London, United Kingdom
Jürgen Giesl RWTH Aachen, Germany
Florent Jacquemard INRIA Saclay – LSV (CNRS/ENS Cachan), France
Fairouz Kamareddine Heriot-Watt University, United Kingdom
Salvador Lucas Universidad Politécnica de Valencia, Spain
Narciso Marti-Oliet Universidad Complutense de Madrid, Spain
Aart Middeldorp University of Innsbruck, Austria
Georg Moser University of Innsbruck, Austria
Paliath Narendran University at Albany – SUNY, United States
Joachim Niehren INRIA Lille, France
Hitoshi Ohsaki AIST Osaka, Japan
Vincent van Oostrom Universiteit Utrecht, The Netherlands
Femke van Raamsdonk Vrije Universiteit Amsterdam, The Netherlands
Grigore Rosu University of Illinois at Urbana-Champaign, USA
Aleksy Schubert The University of Warsaw, Poland
Jakob Grue Simonsen University of Copenhagen, Denmark
René Thiemann University of Innsbruck, Austria
Christian Urban TU München, Germany
Johannes Waldmann HTWK Leipzig, Germany
Hans Zantema Technische Universiteit Eindhoven, The Netherlands
Florent Jacquemard INRIA Saclay, France

RTA Steering Committee
Johannes Waldmann (Chair) Leipzig, Germany
Ian Mackie Palaiseau, France
Joachim Niehren Lille, France
Frederic Blanqui INRIA, China
Salvador Lucas Valencia, Spain
Masahiko Sakai (Publicity Chair) Nagoya, Japan

RTA Web Page
rewriting.loria.fr/rta/

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: Manfred Schmidt-Schauß

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://rewriting.loria.fr/rta/
http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

External Reviewers

Abel, Andreas
Anantharaman, Siva
Anis, Altug
Aoto, Takahito
Avanzini, Martin
Bahr, Patrick
Bongaerts, Jochem
Burghardt, Jochen
Bursuc, Sergiu
Chlipala, Adam
Chrzaszcz, Jacek
De Moura, Flavio L C
De Vrijer, Roel
Drewes, Frank
Duran, Francisco
Emmes, Fabian
Endrullis, Joerg
Erbatur, Serdar
Felgenhauer, Bertram
Fuhs, Carsten
Gadducci, Fabio
Genaim, Samir
Goel, Amit
Gramlich, Bernhard
Guiraud, Yves
Gutiérrez, Raúl
Heam, Pierre-Cyrille
Heindel, Tobias
Hirokawa, Nao
Kahrs, Stefan
Kesner, Delia
Ketema, Jeroen
König, Barbara
Kuan, George
Kusakari, Keiichirou
Küsters, Ralf

Lafourcade, Pascal
Lippi, Sylvain
Lohrey, Markus
Lucanu, Dorel
Machkasova, Elena
Maniotis, Andreas
Manzonetto, Giulio
Marion, Jean-Yves
Marshall, Andrew
Mcbride, Conor
Mesnard, Fred
Mogensen, Torben
Mulligan, Dominic
Noschinski, Lars
Ould Biha, Sidi
Oyamaguchi, Michio
Pena, Ricardo
Pinaud, Bruno
Polonsky, Andrew
Popescu, Andrei
Raffelsieper, Matthias
Rety, Pierre
Rothe, Jörg
Sabel, David
Sakai, Masahiko
Schnabl, Andreas
Serbanuta, Traian
Sternagel, Christian
Stump, Aaron
Sznuk, Tadeusz
Urbain, Xavier
Verdejo, Alberto
Villaret, Mateu
Voigtländer, Janis
Winkler, Sarah
Zankl, Harald

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: Manfred Schmidt-Schauß

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Author Index

Aoto, Takahito . 91, 107
Avanzini, Martin . 123
Bahr, Patrick . 139
Basin, David . 11
Brockschmidt, Marc 155
Bruttomesso, Roberto171
Caleiro, Carlos . 11
Chiba, Yuki .107
Conchinha, Bruno .11
Contejean, Évelyne . 21
Courtieu, Pierre .21
de Vries, Fer-Jan .313
Durán, Francisco .31
Durand, Irène .361
Eguchi, Naohi . 123
Eker, Steven . 31
El Haj Omar, Roba . 345
Endrullis, Jörg . 393
Escobar, Santiago . 31
Falke, Stephan . 41
Felgenhauer, Bertram 377
Forest, Julien . 21
Gascón, Adrià . 51
Ghilardi, Silvio . 171
Giesl, Jürgen . 155
Grathwohl, Niels Bjørn Bugge61
Hirokawa, Nao . 71
Kapur, Deepak .41
Ketema, Jeroen . 61
Kimmell, Garrin . 345
Klein, Dominik . 71
Kochems, Jonathan . 187
Kop, Cynthia . 203
Kutsia, Temur . 219
Levy, Jordi . 219
Maneth, Sebastian . 51

Meseguer, José . 31
Middeldorp, Aart 251, 377
Moser, Georg . 123, 235
Neurauter, Friedrich 251
Nishida, Naoki . 267, 283
Ong, Luke . 187
Otto, Carsten . 155
Pallesen, Jens Duelund61
Pons, Olivier . 21
Ramos, Lander . 51
Ranise, Silvio . 171
Rose, Kristoffer H. 81
Roux, Cody . 299
Sakabe, Toshiki . 267
Sakai, Masahiko . 267
Schnabl, Andreas . 235
Severi, Paula . 313
Simonsen, Jakob Grue 61
Sinz, Carsten . 41
Sternagel, Christian .329
Stump, Aaron . 345
Sylvestre, Marc . 361
Talcott, Carolyn . 31
Thiemann, René . 329
Tison, Sophie . 1
Tiwari, Ashish . 3
Toyama, Yoshihito . 91
Urbain, Xavier . 21
van Raamsdonk, Femke 203
Vidal, Germán . 283
Villaret, Mateu . 219
Weirich, Stephanie . 9
Yamada, Toshiyuki . 107
Zankl Harald . 377
Zantema, Hans . 393

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: Manfred Schmidt-Schauß

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Preface

This volume contains the papers presented at the 22nd International Conference on Rewriting
Techniques and Applications (RTA 2011) which was held from May 30 to June 1, 2011, in
Novi Sad, Serbia as part of the RDP 2011 Federated Conference on Rewriting, Deduction,
and Programming, together with the 10th Typed Lambda Calculi and Applications (TLCA
2011). Workshops associated with RTA 2011 were the Workshop on Compilers by Rewriting,
Automated (COBRA 2011), the Annual Meeting of the IFIP Working Group 1.6 on Term
Rewriting, the workshop “Two Faces of Complexity” (2FC 2011), the 10th International
Workshop on Reduction Strategies in Rewriting and Programming (WRS 2011), and the
workshop on Theory and Practice of Delimited Continuations (TPDC 2011).

RTA is the major forum for the presentation of research on all aspects of rewriting.
Previous RTA conferences were held in Dijon (1985), Bordeaux (1987), Chapel Hill (1989),
Como (1991), Montreal (1993), Kaiserslautern (1995), Rutgers (1996), Sitges (1997), Tsukuba
(1998), Trento (1999), Norwich (2000), Utrecht (2001), Copenhagen (2002), Valencia (2003),
Aachen (2004), Nara (2005), Seattle (2006), Paris (2007), Hagenberg (2008), Brasilia (2009),
and Edinburgh (2010). For RTA 2011, 20 regular research papers and eight system descriptions
were accepted out of 46 submissions. Each paper was reviewed by at least three members of
the Program Committee, with the help of 72 external reviewers, and an electronic meeting
of the Program Committee was held using Andrei Voronkov’s EasyChair system, which was
invaluable in the reviewing process, the electronic Program Committee meeting, and the
preparation of the conference schedule, and for gathering the papers for this proceedings.

The Program Committee gave the award for the Best Contribution to RTA 2011 to Aaron
Stump, Garrin Kimmell and Roba El-Haj Omar for their paper “Type Preservation as a
Confluence Problem”. In addition to the contributed papers, the RTA program contained
an invited talk by Sophie Tison with title “Tree Automata, (Dis-)Equality Constraints and
Term Rewriting: What’s New?”, by Ashish Tiwari on “Rewriting in Practice”, and also
the common invited talk of RDP, given by Stephanie Weirich on “Combining Proofs and
Programs”.

Many people helped to make RTA 2011 as part of RDP 2011 a success. Thanks to all of
them: the Members of the Organizing Committee of RDP are: Siniša Crvenković (University
of Novi Sad), Ilija Ćosić (University of Novi Sad), Kosta Došen (Mathematical Institute,
Belgrade), Silvia Ghilezan (University of Novi Sad), Predrag Janičić (University of Belgrade),
Zoran Marković (Mathematical Institute, Belgrade), Zoran Ognjanović (Mathematical In-
stitute, Belgrade), Jovanka Pantović (University of Novi Sad), Zoran Petrić (Mathematical
Institute, Belgrade), Miroslav Popović (University of Novi Sad), Nataša Sladoje (Univer-
sity of Novi Sad), Miroslav Vesković (University of Novi Sad); and the Local Organizers:
Sandra Buhmiler, Biljana Carić, Jelena Čolić, Ksenija Doroslovački, Tatjana Grbić, Gabrijela
Grujić, Vladimir Ilić, Jelena Ivetić, Svetlana Jakšić, Tibor Lukić, Petar Maksimović, Bojan
Marinković, Biljana Mihailović, Aleksandar Nikolić, Zoran Ovcin, Dragiša Žunić.

For their kind help in preparing the proceedings and supporting me in questions concerning
LaTeX thanks go the David Sabel and Conrad Rau. I would like to thank Marc Herbstritt
from Schloss Dagstuhl, Leibniz Center for Informatics, for his very helpful and always prompt
support during production of the LIPIcs proceedings.

RDP was hosted by the Faculty of Technical Sciences and the Mathematical Institute
SASA at the University of Novi Sad, Serbia. Support by the conference sponsors: – Provincial
Secretariat of Science and Technological Development, Province of Vojvodina, the Ministry of
22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: Manfred Schmidt-Schauß

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xvi Preface

Education and Science, Republic of Serbia, the City of Novi Sad (http://www.novisad.rs/en),
RT-RK Computer Based Systems, FIMEK, Faculty of Economy and Engineering Manage-
ment, Telvent DMS LLC Novi Sad, Embassy of France in Serbia and Embassy of the USA in
Serbia – is gratefully acknowledged.

April 2011 Manfred Schmidt-Schauß

http://www.novisad.rs/en

Tree Automata, (Dis-)Equality Constraints and
Term Rewriting: What’s New?
Sophie Tison

University Lille 1, Mostrare project, INRIA Lille Nord-Europe & LIFL

Abstract
Connections between Tree Automata and Term Rewriting are now well known. Whereas tree
automata can be viewed as a subclass of ground rewrite systems, tree automata are successfully
used as decision tools in rewriting theory. Furthermore, applications, including rewriting theory,
have influenced the definition of new classes of tree automata. In this talk, we will first present
a short and not exhaustive reminder of some fruitful applications of tree automata in rewrit-
ing theory. Then, we will focus on extensions of tree automata, specially tree automata with
local or/and global (dis-)equality constraints: we will emphasize new results, compare different
extensions, and sketch some applications.

This talk will be strongly inspired by recent works of several researchers, specially but not ex-
clusively: Emmanuel Filiot, Guillem Godoy, Florent Jacquemard, Jean-Marc Talbot, Camille
Vacher.

1998 ACM Subject Classification F.4.2.

Keywords and phrases Tree Automata, Constraints, Term Rewriting

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.1

Category Invited Talk

Tree automata can be used in numerous ways as decision tools in rewriting theory. An ideal
way is to encode the reducibility relation by a recognizable relation. Of course, recognizability
of the reducibility relation is a very strong requirement which limits this approach to very
restricted subclasses of term rewriting systems. A weaker requirement is that the rewrite
relation preserves recognizability. This approach is a key point in reachability analysis and
tree regular model checking. More generally, encoding set of descendants of terms and possibly
sets of normal forms by tree automata provide canonical techniques to obtain decidability
results and a lot of work has been done to characterize subclasses of term rewriting systems
having "good recognizability properties". Even powerful, these methods remain restricted.
To enhance their power, numerous works have been developed, e.g. in reachability analysis,
by using abstract interpretation or over-approximations. Other works have recently focused
on using rewrite strategies. An other approach is the use of extended tree automata. E.g.,
equational tree automata have been proposed to handle equational theories and several
extensions have been defined to take into account associativity. This talk will focus on new
results about extensions of tree automata with equality and disequality constraints.

From Local Constraints . . .
A typical example of language which is not recognized by a finite tree automaton is the
set of ground instances of a non-linear term. This implies of course that the set of ground
normal forms of a t.r.s. is not necessarily recognizable. An other point is that images by a

© Sophie Tison;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 1–3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Tree Automata, (Dis-)Equality Constraints and Term Rewriting: What’s New?

non-linear morphism of a recognizable tree language are not necessarily recognizable. E.g. if
a morphism associates h(x) with f(x, x) and a with b, the image by this morphism of h∗(a)
is the non-recognizable set of well-balanced terms over {f, b}. So, extending tree automata
to handle non-linearity is very natural and in the early 80’s, M. Dauchet and J. Mongy
have proposed a new class for this purpose, by enriching tree automata rules by equality
constraints. E.g. if a rule is associated with the constraint 1.1 = 1.2, it can be applied at
position p in t only if the subterms at positions p.1.1 and p.1.2 are equal. A more general
class can be defined by allowing also disequality constraints. Unfortunately, emptiness is
undecidable even when only equality constraints are allowed. Several restrictions of this
class have so been studied (see e.g. a survey in [2]). Let us remind two of them, which are
of special interest for term rewriting. The first one, the class of automata with constraints
between brothers, restricts equality and disequality tests to sibling positions. This class has
good decidability and closure properties. E.g., this class allows to represent normal forms
for left-shallow t.r.s. -but not for general ones - and it helped recently for providing new
decidability results for normalization. The second one, the class of reduction automata,
bounds, roughly speaking, the number of equality constraints. This class has provided the
decidability of the reducibility theory and as a corollary a (new) way of deciding ground
reducibility. Recently, a strong work by Godoy & alt. [4] has given some new emphasis
on these classes. Indeed, it defines some new subclasses having good properties. This
enables them to decide whether the homomorphic image of a tree recognizable language is
recognizable. As a corollary, they get a new simple proof of decidability of recognizability of
the set of normal forms of a t.r.s..

. . . to Global Ones
A new approach has been recently proposed : adding constraints to perform (dis-)equality
tests, but globally. The idea is to enrich the automaton by two relations, =, 6=, over the
states. Roughly speaking, the run will be correct if the subterms associated with two "equal"
(resp. "not equal") states are equal (resp. different). E.g. this approach enables to check that
all the subterms rooted by a f are equal or to encode that every identifier is different. This
approach has led to (almost) simultaneous definitions of classes by different researchers to
different purposes: rigid tree automata [5], tree automata with global equality and disequality
tests (TAGED) [3], tree automata with global constraints [1]. The second part of this talk
will give an overview of these classes and sketch their links with other classes.

References – A very incomplete list of references the talk will rely upon

1 Luis Barguñó, Carles Creus, Guillem Godoy, Florent Jacquemard, and Camille Vacher.
The emptiness problem for tree automata with global constraints. In Proceedings of the
25th Annual IEEE Symposium on Logic in Computer Science, LICS, pages 263–272. IEEE
Computer Society, 2010.

2 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available at: http://www.
grappa.univ-lille3.fr/tata, 2007. Release October 12th, 2007.

3 Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Tree automata with global con-
straints. Int. J. Found. Comput. Sci., 21(4):571–596, 2010.

4 Guillem Godoy, Omer Giménez, Lander Ramos, and Carme Àlvarez. The hom problem
is decidable. In Leonard J. Schulman (ed.), Proceedings of the 42nd ACM Symposium on
Theory of Computing, STOC 2010, pages 485–494.

5 Florent Jacquemard, Francis Klay, and Camille Vacher. Rigid tree automata and applica-
tions. Inf. Comput., 209(3):486–512, 2011.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

Rewriting in Practice∗

Ashish Tiwari1

1 SRI International
Menlo Park, CA 94025
tiwari@csl.sri.com

Abstract
We discuss applications of rewriting in three different areas: design and analysis of algorithms,
theorem proving and term rewriting, and modeling and analysis of biological processes.

1998 ACM Subject Classification F.4.2 [Mathematical Logic and Formal Languages] Gram-
mars and Other Rewriting Systems–Decision problems; I.6.5 [Simulation and Modeling] Model
Development–Modeling Methodologies; I.1.2 [Symbolic and Algebraic Manipulation] Algorithms–
Algebraic Algorithms

Keywords and phrases Rewriting, Polynomial constraints, Biochemical reaction networks

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.3

Category Invited Talk

1 Introduction

The field of rewriting has contributed some fundamental results within the computer science
discipline. Here, we explore a few impactful applications of rewriting. Any article that
describes applications of a field has to be necessarily incomplete. We limit our focus on the
use of rewriting technology in the following three areas.
1. Design of algorithms
2. Formal modeling and analysis
3. Term rewriting and theorem proving
We discuss the influence of the theory of rewriting in the above areas by identifying specific
concrete instances of algorithms, tools, or techniques that have, or can, be impacted by
rewriting.

The field of rewriting is broadly concerned with manipulating representations of objects
so that we go from a larger representation to a smaller representation. Clearly, rewriting is
concerned with three important entities: objects, representations, and orderings. We give a
few examples below.

In term rewriting, the objects are equivalence classes of terms, representations of these
objects are the terms themselves, and orderings are certain binary relations on terms.
In polynomial rings, objects are polynomials and representations are algebraic expressions
constructed using the arithmetic (ring) operators.
In theorem proving, objects are proofs and orderings are proof orderings on some repres-
entation of the proofs.

A significant part of the theory of rewriting abstracts away from the objects and/or their
representations, and just studies properties of binary relations.

∗ Research supported in part by the National Science Foundation under grant CSR-EHCS-0834810 and
CSR-0917398.

© Ashish Tiwari;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 3–8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.3
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4 Rewriting in Practice

2 Rewriting in the design of algorithms

The theory of rewriting can be used as a basis to study the design and analysis of algorithms.
There are at least two distinct ways in which rewriting helps in algorithmic development.

2.1 Rewrite-based Descriptions
An algorithm can often be viewed as a set of rewrite rules. This rewrite-based description
cleanly separates the logical part of an algorithm from its implementation details. Rewrite-
based views of algorithms can be very helpful especially from an educational perspective.

Consider, for example, the problem of sorting a sequence of numbers, which is one of the
most commonly studied problems in a first course in Algorithms. A description of a sorting
procedure can be given by a single rewrite rule

X, a, Y, b, Z → X, b, Y, a, Z if a > b

where , is an associative operator. This rewrite rule simply says that we can swap two
elements in the current list if they are not in order. This rewrite rule describes a whole class
of comparison-based sorting algorithms: different concrete sorting algorithms, such as bubble
sort, are obtained by applying (specific instances of) the above rewrite rule using different
strategies. The correctness – soundness, completeness, and termination – of comparison-based
sorting algorithms just depends on properties of the rewrite system containing the above rule.
The strategy (and the data structures used to represent the terms) is only an implementation
detail (although an important detail since it determines the final time and space complexity).
Graph algorithms can be similarly presented abstractly using rewrite rules.

2.2 General Paradigm
Rewriting provides a general paradigm for the design of algorithms. The (abstract) critical-
pair completion algorithm is a generic procedure that can be instantiated in different domains
to yield very important algorithms, such as,

the algorithms implementing the union-find data structure [9],
congruence closure [24, 8] and associate-commutative congruence closure [6],
Gröbner basis algorithm [11, 3, 7], and
Simplex algorithm for satisfiability of linear constraints [14, 15].

The completion-based rewriting view of these algorithms yield simpler proofs of correctness
of these complex algorithms.

There is, however, an additional benefit of taking the completion-based view. It becomes
possible to inherit certain optimizations. Consider the Gröbner basis algorithm. It involves
adding equations arising from critical overlap of polynomial equations. If we have the
following two equations in the current set of equations

x2 (1)→ p xy
(2)→ q

where x2 is the maximal monomial in the polynomial x2−p and xy is the maximal monomial
in the polynomial xy − q (assume some ordering, say a total degree lexicographic ordering
with precedence x � y), then the procedure for computing Gröbner basis adds the new
equation py (3)= qx (arising from the cricial pair between the two rules above) to the current
set of polynomial equations. Efficiency of Gröbner basis algorithms is determined by the
number of such critical equations generated. Hence, deletion is important: if we can delete an
equation or rule, we compute fewer inferences subsequently. In the above example, we note

A. Tiwari 5

that we cannot delete any of the two original rules. However, we can delete the instances
x2yX → pyX of the first equation, where X is an arbitrary power product. The reason why
we can delete these instances is that they all have a proof that does not use the first rule

x2yX
(2)→ qxX

(3)= pyX

Moreover, in a suitably defined proof ordering, this new proof of x2yX = pyX can be
shown to be smaller than the old proof that uses Rule (1). Thus, in the new optimized
Gröbner basis procedure, rules are associated with a list of monomials called forbidden,
with the interpretation that instances of a rule obtained by multiplying that rule with a
monomial in the ideal generated by forbidden are assumed to have been deleted. This
optimization has been mentioned before [1, 33], and it appears to be related to some of the
new signature-based algorithms for Gröbner basis [16]. An exciting future work would be to
study the signature-based algorithms using the rewriting framework.

3 Rewriting in Term Rewriting and Theorem Proving

The essence of the theory of rewriting, and in particular of the critical-pair completion
procedure, can be described as
1. add facts that make proofs of provable facts smaller and
2. delete facts that already have smaller proofs
Here, by facts we mean equations, or clauses, or formulas (ground or non-ground), or any
representation of the known object of interest. This more general view of completion inspires
the design of several other algorithms; most notably the algorithms used in saturation-based
theorem proving [4].

In equational reasoning, proofs have a certain nice structure that enables one to define
interesting proof orderings, which leads to algorithms such as standard and ordered comple-
tion [2]. When considering non-equational theories, proofs do not necessarily have a very
nice structure. So, complexity of a proof is often just the complexity of the facts used in the
proof. Consider the resolution inference rule, where given the two (propositional) clauses

x ∨ C1 ¬x ∨ C2

the resolution inference rule adds the new clause C1 ∨ C2 to the set of clauses. Inspired by
the theory of rewriting, if we restrict addition of facts to only those facts that make proofs of
provable facts smaller, then C1 ∨ C2 must be smaller than the two facts that were used to
derive it. Restricting resolution inference in this way leads to the ordered resolution calculus.

Note that a set of facts is unsatisfiable if the empty clause, ⊥, is provable. The ordering
on facts is defined such that ⊥ is the minimal element in the ordering. Since proof calculi
inspired by rewriting are designed to generate all “small” facts, then if ⊥ is provable, then
it is explicitly generated. If it is not explicitly generated, then the set of generated (small)
facts can be used to construct a model for the facts. This argument can be used to prove
refutational completeness of ordered resolution. Several first-order proof calculi are designed,
and proved refutationally complete, based on this same principle [5].

The theory of rewriting can be seen as a paradigm for saturating a set of facts with new
facts, guided by an ordering on the universe of facts, such that certain minimal facts (such as
⊥) are generated. This view is very helpful when developing heuristics for searching the space
of (provable) facts for a particular one. As remarked above, the field of theorem proving
is concerned with deriving ⊥ to obtain a refutation. Now, as a second example, consider
the problem of deciding if a conjunction of polynomial equality and inequality constraints is

RTA’11

6 Rewriting in Practice

satisfiable in the theory of reals. First, consider the case when there are only linear equations
and nonnegativity constraints on certain slack variables,

A

[
~x

~u

]
= ~b, ~u > 0

where A is a l × (m+ n) matrix, ~x is a m × 1 vector, ~u is a n × 1 vector, and ~b is a l × 1
vector. We can prove that the above constraint is unsatisfiable over the reals if (and only if)
we can find a linear expression ~cT~u such that
(i) ~cT~u can be written as a linear combination of the l linear expressions A[~x; ~u], and
(ii) ~c ≥ ~0 and ~c 6= ~0.
Such a linear expression can be thought of as the witness for unsatisfiability of the original
set of constraints. If we find an ordering in which the witness, ~cT~u, is a minimal element
in the set of all expressions that can be written as a linear combination of the l linear
expressions A[~x; ~u], then a rewriting-based saturation procedure will explicitly generate this
linear expression. This is the idea behind the Simplex algorithm for linear constraints [15].

When the constraints are not necessarily linear, then there again exists a witness for
unsatisfiability. This is stated by the Positivstellensatz [26, 31, 10]. Specifically, let P , Q,
and R be sets of polynomials over Q[~x]. The constraint

{p = 0 : p ∈ P} ∪ {q ≥ 0 : q ∈ Q} ∪ {r 6= 0 : r ∈ R}

is unsatisfiable iff there exist polynomials p, q, and r such that p+ q + r2 = 0 where
p ∈ Ideal(P)
r ∈ [R] := {Πi∈I ri : ri ∈ R for all i ∈ I}
q ∈ Cone[Q] := {Σi∈I p2i qi : qi ∈ [Q], pi ∈ Q[~x] for all i ∈ I}

If we find an ordering in which the witness, p, which is equal to −q− r2, is a minimal element
in the set of all elements in the ideal generated by P , then a rewriting-based saturation
procedure will explicitly generate this witness. This is the idea behind the procedure for
unsatisfiability checking based on Gröbner basis computation [34].

A crucial aspect in the above applications is the flexibility provided by the choice of
ordering. The choice of ordering decides which facts are generated, and hence it determines
if we will ever find a particular desired fact. This observation can be used to generate
(equational) invariants of a continuous dynamical system. Consider the differential equations
for circular motion: dxdt = y, dydt = −x. A constant-of-motion, or an equational invariant, for
this system would be a polynomial p over variables x, y such that dp/dt = 0. Let us order
the above two equations backwards and write them as
y → d(x) x→ −d(y)

We also have (infinite) rewrite rules that come from the definition of the derivative operator
d. Consider the following two rules
yd(y)→ d(y2)/2 xd(x)→ d(x2)/2

Doing a critical-pair completion and computing a Gröbner basis for this system will yield an
equation d(x2) + d(y2) = 0, which is the equational invariant for circular motion.

The rewriting philosophy is also used extensively in proving results about rewrite systems.
Several decidable criterion have been recently developed for checking confluence of restricted
classes of term rewriting systems [19, 21, 22, 20]. The characterizations of confluence are
proved correct by showing that (a) if there is a counter-example to the characterization, then
there will be a smaller counter-example and (b) all minimal counter-examples are explicitly
checked.

A. Tiwari 7

4 Rewriting in Formal Modeling and Analysis

Rewriting provides both a language for formal modeling of systems, as well as a tool for
simulating and analyzing the formal models.

The system Maude [12] is an example of a modeling and analysis tool based on rewriting
logic. Maude is being extensively used to formally represent knowledge about biological
processes. This knowledge is captured in the form of a Petrinet (represented in Maude).
A Petrinet is a set of ground rewrite rules over a signature containing an associative and
commutative (AC) symbol. A biochemical reaction is naturally a Petrinet transition [13, 23,
32]. Elaborate models of cell signaling pathways have been formalized in the Pathway Logic
tool [32] that is built over Maude.

The rewrite-rule based models of biological processes pose several interesting analysis
questions. Apart from questions about reachability, one is also interested in characterizing
certain kinds of steady state behaviors. A steady state behavior is a rewrite derivation with
certain properties. Flux balance analysis (FBA) is a commonly used technique for finding
such steady state behaviors of Petrinets [29, 28]; see also [35] for an adaptation of FBA.

Biology also motivates a study of probabilistic rewrite systems. Again, a special case of
(timed) stochastic Petrinets has been extensively studied [17, 18] and the same ideas can be
possibly applied to stochastic extensions of general rewriting systems too.

The biology domain is an extremely rich source of challenging problems and extensions
for the theory of rewriting. One such challenge is learning rewrite rules or models from
available data on rewrite derivations. One could use it to learn models of disease propagation
in humans and develop therapeutics based on the learned model.

5 Conclusion

The theory of rewriting is an important part of the foundation of computer science. It provides
an important paradigm for algorithmic design and correctness and a uniform high-level view
of several intricate algorithms and techniques. It also provides a useful modeling language,
especially for the emerging discipline of Systems Biology [25, 27, 30].

References
1 W.W. Adams and P. Loustaunau. An Introduction to Gröbner Bases, volume 3 of Graduate

Studies in Mathematics. American Mathematical Society, 1994.
2 L. Bachmair. Canonical Equational Proofs. Birkhäuser, Boston, 1991.
3 L. Bachmair and H. Ganzinger. Buchberger’s algorithm: A constraint-based completion

procedure. In CCL, volume 845 of LNCS. Springer, 1994.
4 L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection

and simplification. J. of Logic and Computation, 4:217–247, 1994.
5 L. Bachmair and H. Ganzinger. Resolution theorem proving. In Handbook of Automated

Reasoning. Elsevier, 2001.
6 L. Bachmair, I.V. Ramakrishnan, A. Tiwari, and L. Vigneron. Congruence closure modulo

AC. In Proc. FroCoS, volume 1794 of LNAI, pages 245–259. Springer, 2000.
7 L. Bachmair and A. Tiwari. D-bases for polynomial ideals over commutative noetherian

rings. In RTA, volume 1103 of LNCS, pages 113–127. Springer, 1997.
8 L. Bachmair and A. Tiwari. Abstract congruence closure and specializations. In Conf. on

Automated Deduction, CADE 2000, volume 1831 of LNAI, pages 64–78. Springer, 2000.
9 L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. J. of Automated

Reasoning, 31(2):129–168, 2003.

RTA’11

8 Rewriting in Practice

10 J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer, 1998.
11 B. Buchberger. A critical-pair completion algorithm for finitely generated ideals in rings.

In Proc. Logic and Machines: Decision Problems and Complexity, volume 171 of LNCS,
pages 137–161, 1983.

12 M. Clavel et al. Maude: Specification and Programming in Rewriting Logic. http://maude.-
csl.sri.com/manual/, SRI International, Menlo Park, CA, 1999.

13 V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based modelling of
cellular signalling. In Proc. CONCUR, volume 4703 of LNCS, pages 17–41, 2007.

14 D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking.
J. of the ACM, 52(3):365–473, 2005.

15 B. Dutertre and L. de Moura. A fast linear-arithmetic solver for DPLL(T). In CAV 2006,
volume 4144 of LNCS, pages 81–94, 2006.

16 C. Eder and J. Perry. Signature-based algorithms to compute Groebner bases. In ISSAC,
2011. arXiv:1101.3589v2.

17 D. T. Gillespie. A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. J. Comp. Physics, 22:403–434, 1976.

18 D. T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting sys-
tems. J. of Chemical Physics, 115(4):1716–1733, 2001.

19 G. Godoy, R. Nieuwenhuis, and A. Tiwari. Classes of Term Rewrite Systems with Polyno-
mial Confluence Problems. ACM Trans. on Comp. Logic (TOCL), 5(2):321–331, 2004.

20 G. Godoy and A. Tiwari. Confluence of shallow right-linear rewrite systems. In CSL 2005,
volume 3634 of LNCS, pages 541–556. Springer, 2005.

21 G. Godoy, A. Tiwari, and R. Verma. On the confluence of linear shallow term rewrite
systems. In STACS 2003, volume 2607 of LNCS, pages 85–96. Springer, 2003.

22 G. Godoy, A. Tiwari, and R. Verma. Characterizing confluence by rewrite closure and right
ground term rewrite systems. AAECC, 15(1):13–36, June 2004.

23 W. S. Hlavacek et al. Rules for modeling signal-transduction systems. Sci STKE, 344, 2006.
PMID: 16849649.

24 D. Kapur. Shostak’s congruence closure as completion. In Rewriting Techniques and Ap-
plications, RTA 1997, volume 1103 of LNCS, pages 23–37, 1997.

25 H. Kitano. Systems biology: A brief overview. Science, 295:1662–1664, 2002.
26 J. L. Krivine. Anneaux preordonnes. J. Anal. Math., 12:307–326, 1964.
27 P. Lincoln and A. Tiwari. Symbolic systems biology: Hybrid modeling and analysis of

biological networks. In HSCC, volume 2993 of LNCS, pages 660–672, 2004.
28 J.D. Orth, I. Thiele, and B.O. Palsson. What is flux balance analysis? Nature Biotechnology,

28:245–248, 2010.
29 B.O. Palsson. Systems Biology: Properties of Reconstructed Networks. Cambridge Univer-

sity Press, 2006.
30 C. Priami. Algorithmic systems biology. CACM, 52(5):80–88, 2009.
31 G. Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math.

Ann., 207, 1974.
32 C. L. Talcott. Pathway logic. In Formal Meth. for Comp. Sys. Bio., SFM, volume 5016 of

LNCS, pages 21–53, 2008. http://pl.csl.sri.com.
33 A. Tiwari. Decision procedures in automated deduction. PhD thesis, State University of

New York at Stony Brook, 2000.
34 A. Tiwari. An algebraic approach for the unsatisfiability of nonlinear constraints. In CSL

2005, volume 3634 of LNCS, pages 248–262. Springer, 2005.
35 A. Tiwari, C. Talcott, M. Knapp, P. Lincoln, and K. Laderoute. Analyzing pathways using

SAT-based approaches. In AB, volume 4545 of LNCS. Springer, 2007.

http://pl.csl.sri.com

Combining Proofs and Programs∗

Stephanie Weirich1

1 Department of Computer and Information Science, University of Pennsylvania
Philadelphia, USA
sweirich@cis.upenn.edu

Abstract
Programming languages based on dependent type theory promise two great advances: flexibility
and security. With the type-level computation afforded by dependent types, algorithms can
be more generic, as the type system can express flexible interfaces via programming. Likewise,
type-level computation can also express data structure invariants, so that programs can be proved
correct through type checking. Furthermore, despite these extensions, programmers already know
everything. Via the Curry-Howard isomorphism, the language of type-level computation and the
verification logic is the programming language itself.

There are two current approaches to the design of dependently-typed languages: Coq, Epi-
gram, Agda, which grew out of the logics of proof assistants, require that all expressions terminate.
These languages provide decidable type checking and strong correctness guarantees. In contrast,
functional programming languages, like Haskell and Ωmega, have adapted the features dependent
type theories, but retain a strict division between types and programs. These languages trade
termination obligations for more limited correctness assurances.

In this talk, I present a work-in-progress overview of the Trellys project. Trellys is new
core language, designed to provide a smooth path from functional programming to dependently-
typed programming. Unlike traditional dependent type theories and functional languages,
Trellys allows programmers to work with total and partial functions uniformly. The language
itself is composed of two fragments that share a common syntax and overlapping semantics: a
simple logical language that guarantees total correctness and an expressive call-by-value program-
ming language that guarantees types safety but not termination.

Importantly, these two fragments interact. The logical fragment may soundly reason about
effectful, partial functions. Program values may be used as evidence by the logic. We call this
principle freedom of speech: whereas proofs themselves must terminate, they must be allowed to
reason about any function a programmer might write. To retain consistency, the Trellys type
system keeps track of where potentially non-terminating computations may appear, so that it
can prevent them from being used as proofs.

1998 ACM Subject Classification F.3.3 Studies of Program Constructs (Type structure)

Keywords and phrases Dependent types, functional programming

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.9

Category Invited Talk

Acknowledgements Trellys is a collaborative project between the University of Pennsyl-
vania, the University of Iowa and Portland State University. This talk is based on joint work
with Aaron Stump, Tim Sheard, Chris Casinghino, Vilhelm Sjöberg, Brent Yorgey, Harley D.
Eades III, Garrin Kimmel, and Nathan Collins.

∗ This work was supported by the National Science Foundation (award 0910510)

© Stephanie Weirich;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 9–9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.9
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

FAST: An Efficient Decision Procedure for
Deduction and Static Equivalence
Bruno Conchinha1, David A. Basin2, and Carlos Caleiro3

1 Information Security Group,
ETH Zürich, Zürich, Switzerland
bruno.conchinha@inf.ethz.ch

2 Information Security Group,
ETH Zürich, Zürich, Switzerland
basin@inf.ethz.ch

3 SQIG - Instituto de Telecomunicações, Department of Mathematics,
IST, TU Lisbon, Portugal
ccal@math.ist.utl.pt

Abstract
Message deducibility and static equivalence are central problems in symbolic security protocol
analysis. We present Fast, an efficient decision procedure for these problems under subterm-
convergent equational theories. Fast is a C++ implementation of an improved version of the
algorithm presented in our previous work [10]. This algorithm has a better asymptotic complexity
than other algorithms implemented by existing tools for the same task, and Fast’s optimizations
further improve these complexity results.

We describe here the main ideas of our implementation and compare its performance with
competing tools. The results show that our implementation is significantly faster: for many
examples, Fast terminates in under a second, whereas other tools take several minutes.

Keywords and phrases Efficient algorithms, Equational theories, Deducibility, Static equivalence,
Security protocols

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.11

Category System Description

1 Introduction

Cryptographic protocols are widely used to provide secure network communication. It is
therefore important that such protocols are proven correct. Automated tools for this task
rely on symbolic protocol models, in which cryptographic primitives are modeled as function
symbols and messages exchanged over the network are represented by terms in a term algebra.
Properties of cryptographic primitives are represented as equational theories relating terms
in the term algebra.

Message deducibility and static equivalence are two important problems in the analysis
of security protocols. The deducibility problem consists of deciding whether an attacker can
use a set of messages (for instance, the messages exchanged over a network) to compute a
secret message. The knowledge of an attacker is often expressed in terms of deducibility,
i.e., the set of messages he can deduce, and most automated methods for protocol analysis
rely on this notion [5, 4]. Static equivalence is used to model the notion that an attacker
cannot distinguish between two sequences of messages [3]. It has been used to model several
indistinguishability related security properties, including security against off-line guessing
attacks [12, 6, 2] and anonymity in e-voting protocols [13].

© B. Conchinha, D. A. Basin and C. Caleiro;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 11–20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.11
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12 FAST: An Efficient Decision Procedure for Deduction and Static Equivalence

We present an implementation of the algorithm proposed in [10] for efficiently deciding
deduction and static equivalence. Although existing tools [7, 9] solve these problems for more
general equational theories, our algorithm has significantly better asymptotic complexity for
the class of subterm-convergent equational theories. This class is general enough to model
many equational theories relevant in practice. Fast implements several optimizations to
the algorithm presented in [10], further improving our asymptotic complexity results. We
have analyzed its performance using as benchmarks different practically relevant examples of
subterm-convergent theories. As expected, the results show that Fast is significantly faster
than other algorithms for the equational theories it handles.

In Section 2 we formally introduce the notions of message deducibility and static equiv-
alence. In Section 3 we describe our implementation and the improvements we made to
the algorithm given in [10]. In Section 4 we present our benchmark tests and compare the
performance of Fast with existing tools. We draw conclusions in Section 5.

2 Background and decision problems

We consider signatures Σ =
⊎
n∈N Σn consisting of finitely many function symbols, where Σi

contains the functions symbols of arity i. We also fix countably infinite, disjoint sets Var and
Name of variables and names.

Given a set X, T (Σ, X) is the set of Σ-terms over X, i.e., the smallest set such that
X ⊆ T (Σ, X) and f(t1, . . . , tn) ∈ T (Σ, X) for all t1, . . . , tn ∈ T (Σ, X) and all f ∈ Σn. Given
t ∈ T (Σ, X), we define the set sub(t) of subterms of t as usual: if t ∈ X, then sub(t) = {t}; if
t = f(t1, . . . , tn) for some f ∈ Σn and t1, . . . , tn ∈ T (Σ, X), then sub(t) = {t} ∪

⋃n
i=1 sub(ti).

We denote by vars(t) = sub(t)∩Var the set of variables occurring in t. The size |t| of a term
t ∈ T (Σ, X) is given by |t| = 1 if t ∈ X and |t| = 1 +

∑n
i=1 |ti| if t = f(t1, . . . , tn).

We use the standard notion of substitution as a partial function σ : Var 9 T (Σ, X) with
a finite domain. We abuse notation by using the same symbol σ for a substitution and its
natural (homomorphic) extension to T (Σ, X), where dom(σ) ⊆ X. We write tσ instead of
σ(t).

A frame is a pair (ñ, σ), written υñ.σ, where ñ ⊆ Name is a finite set of names and
σ : Var 9 T (Σ,Name) is a substitution with a finite domain. The size |φ| of a frame φ is given
by |φ| =

∑
x∈dom(σ) |xσ|. Given a frame φ = υñ.σ, we define Tφ = T (Σ, (Name\ ñ)∪dom(σ)).

We say that terms in Tφ are φ-recipes. A term t can be constructed from φ if there is a
φ-recipe t′ such that tσ = t′ (syntactically). Frames are used to represent an attacker’s
knowledge: the names in ñ represent randomly generated nonces unknown to the attacker,
and the terms in σ’s range represent the messages learned by the attacker, for instance, the
messages exchanged over a network.

A rewrite rule is a pair (l, r), written as l→ r, where l, r ∈ T (Σ,Var). A rewriting system
R over Σ is a set of rewrite rules. We always assume that rewrite systems are finite. Given a
rewriting system R, we define the relation →R ⊆ T (Σ,Name)× T (Σ,Name) as the smallest
relation such that:

if (l→ r) ∈ R and σ : vars(l)→ T (Σ,Name) is a substitution, then lσ →R rσ, and
if t1, . . . , tn, t′i ∈ T (Σ,Name), ti →R t′i, and f ∈ Σn, then f(t1, . . . , ti, . . . , tn) →R

f(t1, . . . , t′i, . . . , tn).

If the rewriting system →R is convergent, then each term t has a unique normal form
t↓R ∈ T (Σ,Name). In this case, we define ≈R ⊆ T (Σ,Name)× T (Σ,Name) as the equational
theory such that t ≈R t′ if and only if t↓R= t′↓R. As usual, we write t ≈R t′ instead of
(t, t′)∈ ≈R.

B. Conchinha, D. A. Basin and C. Caleiro 13

A rewriting system R is subterm convergent if→R is convergent and, for each (l→ r) ∈ R,
r ∈ sub(l). It is weakly subterm convergent if, for each (l → r) ∈ R, either r ∈ sub(l) or
r ∈ T (Σ, ∅) is in normal form.

Deducibility and static equivalence

I Definition 2.1. Given a frame φ = υñ.σ, a term t ∈ T (Σ,Name), and a rewriting system
R, we say that t is deducible from φ under R, and write φ `R t, if there is a φ-recipe t′ such
that t′σ ≈R t.

I Definition 2.2. Given two frames φ = υñ.σ and φ′ = υñ′.σ′ and a rewriting system R,
we say that φ and φ′ are statically equivalent under R, and write φ ≈sR φ′, if Tφ = Tφ′ (i.e.,
ñ = ñ′ and dom(σ) = dom(σ′)) and, for all t, t′ ∈ Tφ, tσ ≈R t′σ if and only if tσ′ ≈R t′σ′.

The message deducibility problem is concerned with whether an attacker who has learned
the messages represented by the terms in the range of σ can use those messages to compute
(deduce) a secret message t without using the (secret) names in ñ. Static equivalence
formalizes that two sequences of messages are indistinguishable from an attacker’s point of
view. This is modeled as the condition that there are no two recipes that yield (equationally)
equal terms under the substitution σ but not under σ′ (or vice-versa). This is useful, for
instance, in modeling off-line guessing attacks [12, 10].

3 Fast algorithm

Fast is a C++ implementation of the algorithm described in [10]. It solves the message
deducibility and static equivalence problems for weakly subterm-convergent rewriting systems.
Such rewriting systems are sufficiently expressive to represent a standard Dolev-Yao equational
theory with one-way functions, pairing, projections and symmetric and asymmetric encryption
and decryption. They can also model idempotent functions and signature schemes, among
others.

Other existing tools for solving these two decision problem are Yapa [7], Kiss [9], and
ProVerif [8]. However, ProVerif is designed for solving the harder problem of protocol security
under active adversaries. Therefore, it is not surprising that it performs significantly slower
for these two problems. Moreover, ProVerif is not guaranteed to terminate even under
subterm-convergent equational theories, and Yapa claims a performance between one and
two orders of magnitude faster than ProVerif [7]. We thus compare our algorithm with Yapa
and Kiss.

Compared to Yapa and Kiss, Fast has a better asymptotic complexity, but a narrower
application scope. For instance, Yapa and Kiss can handle rewriting systems representing
blind signatures and homomorphic encryption. Kiss can also handle trapdoor committments.
Fast cannot handle these rewriting systems. We believe, however, that many of the techniques
and results that allow Fast to achieve a better asymptotic complexity do not depend on the
subterm-convergent hypothesis (cf. Section 5).

3.1 Procedures and complexity
Data structures

Fast represents terms as DAGs (Directed Acyclic Graphs). Each term is represented by a
C++ object which we call a term vertex. Term vertices contain as a class member a C++
object representing a recipe, which we will call a recipe vertex. Furthermore, each recipe

RTA’11

14 FAST: An Efficient Decision Procedure for Deduction and Static Equivalence

vertex contains as a class member an array of term vertices. These term vertices represent
the normal forms of the terms corresponding to the recipe in each of the input frames. These
normal forms are computed whenever a recipe vertex is created. Whenever a recipe is added
to a vertex v, all the parent vertices of v are checked; if all children of a parent vertex pv
have recipes, then a new recipe is computed and added to pv.

Saturation procedure

Similar to Yapa and Kiss, Fast relies on a frame saturation procedure. However, Fast’s
saturation procedure generates less terms and is therefore more efficient than these other
procedures. Namely, Fast only adds to the saturated frame those terms that are instances
of right-hand sides of rules (rather than all deducible subterms). Furthermore, Fast only
instantiates a rule if there is some subterm of the left-hand side that is mapped to a term
already in the frame and each variable is mapped to either a subterm of a term in the original
frame or a fresh nonce. A more detailed description of the saturation procedure, as well as a
comparison with the procedures used in other tools, is given in [11].

Given a frame φ = υñ.σ, Fast’s saturation procedure computes two sets Γs and Γl of
term vertices. Γs represents a set of subterms in the range of σ that are deducible from
φ. Γl represents the set of instantiations lσl of left-hand sides l of rewrite rules such that
σl : vars(l) → sub(ran(σ)) ∪ Υ, where Υ is a finite set of fresh nonces computed from the
rewrite system, and there is some s ∈ sub(l) such that sσl ∈ Γs.

Γs is initialized as ran(σ). Recipes are added to each vertex representing a term in ran(σ)
and to each leaf vertex. The program then tries to create instances lσl of left-hand sides
of rules which verify the conditions above. To do this, for each t ∈ Γs, each rewrite rule
l→ r, and each s ∈ sub(l), Fast checks whether t and s can be unified, and then attempts
to extend the substitution unifying these terms to all the variables in l.

Whenever such an instance is found, the term vertices needed to represent that instance
are created, and the term vertex representing lσl is added to Γl. When a recipe ζ is added
to a term vertex in Γl representing one such instance lσl, if rσl does not have a recipe yet,
then the recipe ζ is added to rσl, and rσl is added to Γs. rσl can then be used to find more
instances of left-hand sides of rules.

Deducibility and static equivalence

After obtaining the saturated frame φs, deciding whether a term is deducible from φ amounts
to deciding whether it can be constructed from the terms represented by term vertices in Γs.
From Γs and Γl one also obtains a finite set Eqφ of equations between φ-recipes satisfied by
φ and such that, if another frame φ′ with Tφ = Tφ′ satisfies all equations in Eqφ, then φ′
satisfies all equations satisfied by φ. These sets of equations are the same as those tested
by the algorithm described in [10]. Therefore, given frames φ and φ′ such that Tφ = Tφ′ ,
one can decide whether φ ≈sR φ′ by building the corresponding saturated frames, obtaining
the sets of equations Eqφ and Eqφ′ described above, and then testing whether φ satisfies all
equations in Eqφ′ and vice-versa.

Improvements over [10]

Our implementation improves the algorithm described in [10] in several ways. The most
relevant improvement is that Fast only considers instances lσl of left-hand sides of rules
if there is some s ∈ sub(l) such that sσl is in the range of σs. This makes the saturation
procedure faster and also reduces the number of equations that the algorithm must check

B. Conchinha, D. A. Basin and C. Caleiro 15

to decide static equivalence. Another important improvement is that recipes are computed
at most once for each vertex. Furthermore, whenever a new recipe t ∈ Tφ is added, the
implementation creates a recipe object containing pointers to the vertices (tσ)↓ and (tσ′)↓.
The proof of correctness of the algorithm presented in [10] shows that one must only consider
instances lσl of left-hand sides of rules if rσl is in normal form; therefore, this only requires
matching the term resulting from the recipe with each left-hand side of a rule, discarding it
if the term obtained after one step of rewriting is not in normal form. This can be done in
constant time.

3.2 Asymptotic complexity
The above improvements reduce the asymptotic complexity of the algorithm for some
equational theories. For instance, consider the rewriting system

DYasym =
{
π1(〈x, y〉)→ x, π2(〈x, y〉)→ y,

{
{x}y

}−1

y
→ x,

{
{x}ypub

}−1

ypriv
→ x

}
used in [10] for comparing the asymptotic complexity of the algorithm introduced there
with Yapa and Kiss. The asymptotic complexity of Kiss is estimated in [10] to be O(|φ|7)
under DYasym. For this rewrite system, Yapa has exponential complexity in the worst case
scenario, since it does not implement DAG representation of terms. Even if DAGs were
implemented, the asymptotic complexity of Yapa’s saturation procedure is estimated (again
in [10]) to be O(|φ|7). The asymptotic complexity of the algorithm presented in [10] for this
rewrite system is estimated to be O((|φ|+ |φ′|)3 log2(|φ|+ |φ′|) for static equivalence. Given
that each recipe is associated with the normal forms of the terms represented by the recipe
in each frame (thus eliminating the overhead of computing normal forms), Fast’s complexity
for static equivalence under DYasym is only O((|t|+ |φ|)2 log2(|t|+ |φ|)). A detailed analysis
of Fast’s asymptotic complexity is given in [11].

4 Performance analysis

We have considered several families of interesting and practically relevant examples to
compare the performance of our algorithm with Yapa and Kiss. The results show great
disparities in the performance of the three algorithms. Neither Kiss nor Yapa show a
clear advantage over the other: depending on the example, either algorithm may perform
significantly faster than the other. As expected from the complexity results, Fast generally
performs much better than either of these algorithms, particularly for static equivalence.
Even for artificial equational theories designed to produce worst case performance for our
algorithm, Fast is still more efficient for static equivalence, sometimes significantly so. For
message deducibility under such equational theories, Fast performs better in most examples;
however, in a few, it appears to be slower by a small constant.

All our tests were performed on a computer with an Intel Core 2 Duo processor running
at 2.53GHz and with 4Gb memory. In all our static equivalence tests, we consider two equal
frames. Similarly, in all our deduction tests, the input term is a secret that does not occur in
the range of the substitution of the input frame. Therefore, the result is positive in all static
equivalence tests and negative in all deducibility tests. This does not affect the algorithm’s
performance significantly, as both frames still have to be saturated in all implementations —
that is, deducible subterms must still be added to the saturation, and the sets of equations
which must be tested to check for static equivalence must still be generated (cf. Section 3).
Static equivalence takes a slightly longer time in this case because all equations must be

RTA’11

16 FAST: An Efficient Decision Procedure for Deduction and Static Equivalence

checked rather than stopping as soon as a counter-example is found. However, the difference
is minor. We present here an illustrative sample of the tests performed. For a more complete
report on our results, see [1].

4.1 Chained keys
This family of tests uses the signature ΣDY , with ΣDY1 = {π1, π2} and ΣDY = {{·}· , {·}

−1
· ,

〈·, ·〉}, and a rewriting system representing a standard Dolev-Yao intruder without asymmetric
encryption, specified by the set of rewrite rules

DY =
{
π1(〈x, y〉)→ x, π2(〈x, y〉)→ y,

{
{x}y

}−1

y
→ x

}
.

For n ∈ N, we define the frame φck
n = υñck

n .σ
ck
n , where ñck

n = {k, k0, . . . , kn} and σ ={
x1 7→ {k0}k1

, . . . , xn 7→ {kn−1}kn
, xn+1 7→ kn

}
. For each parameter n, the deduction prob-

lem is to decide whether φck
n `DY k, and the static equivalence problem is to decide whether

φck
n ≈sDY φck

n .
Fast has a much better performance than both Yapa and Kiss for these examples. Yapa

also performs much better than Kiss. Tables 1 and 2 illustrate these relationships.

Table 1 Performance on chained keys for deduction (time in ms)

Parameter 50 100 200 500 1000 2000 5000
Fast 11 20 40 143 224 474 1526
Kiss 259 1730 12655 288606 > 300000 > 300000 > 300000
Yapa 31 108 415 4624 11297 62457 > 300000

Table 2 Performance on chained keys for static equivalence (time in ms)

Parameter 50 100 200 500 750 1500 2500
Fast 20 41 88 247 424 1020 1546
Kiss 1341 12185 127828 > 300000 > 300000 > 300000 > 300000
Yapa 143 744 5516 18467 44451 197648 > 300000

4.2 Composed keys
This family of examples uses the same signature ΣDY and the same rewriting system DY
used in Section 4.1.

For n, s, i ∈ N, define tin,s recursively by

t0n,s = {〈k2s−1, k2s−2〉}〈k2s,ks2+1〉 ,

tin,s =
{
〈ti−1
n,s 〈k2s+1+2i(n−1), k2s+2i(n−1)〉,

〉
}〈k2s+2+2i(n−1),k2s+3+2i(n−1)〉.

For k > 0, the frame φc
k = υñc

n.σ
c
n is such that ñc

n = {k, k0, . . . , k2n2+1} and σc
n ={

x1 7→ tn−1
n,1 , . . . , xn 7→ tn−1

n,n , xn+1 7→ k2n2 , xn+2 7→ k2n2+1
}
. The deduction problem corre-

sponding to parameter n considered in our tests is to decide whether φc
n `DY k. The static

equivalence problem corresponding to parameter n is to decide whether φc
n ≈sDY φc

n.
This family of examples is particularly challenging because the decryption keys are pairs

of secrets. At each point of the algorithm’s execution, decrypting the right message yields

B. Conchinha, D. A. Basin and C. Caleiro 17

a pair of previously unknown secrets. This pair may then be used to compose the next
decryption key by exchanging the order of the terms in the pair. As illustrated in Tables 3
and 4, the difference in Fast’s performance is particularly marked in this example. Kiss
also performs much better than Yapa.

Table 3 Performance on composed for deduction (time in ms)

Parameter 3 4 5 7 9 10 20
Fast 7 11 17 34 61 126 945
Kiss 138 867 3760 46369 245207 > 300000 > 300000
Yapa 158 34118 > 300000 > 300000 > 300000 > 300000 > 300000

Table 4 Performance on composed for static equivalence (time in ms)

Parameter 3 4 5 6 8 10 20
Fast 12 21 28 48 92 148 1635
Kiss 469 2625 10428 252000 > 300000 > 300000 > 300000
Yapa 936 157358 > 300000 > 300000 > 300000 > 300000 > 300000

4.3 Denning-Sacco shared key protocol
The Denning-Sacco symmetric key protocol [14] is used to establish session keys in a network
with a single server and multiple agents. Each agent shares a (secret) symmetric key with
the server, but there are no shared keys between agents. In Alice&Bob notation, the protocol
is as follows.

1. A → S : A, B
2. S → A : {A, KA,B, T, {KA,B, A, T }KS,B }KS,A

3. A → B : {KA,B, A, T }KS,B

Here, A and B are two participants, and S is the server. A requests from the server a session
key to communicate with B. The server generates a new session key, KA,B, and sends it
to A, encrypted with the (symmetric) key shared between A and S. This message also
contains a timestamp T , used to determine the validity of the new session key, and the ticket
{KA,B,A, T}KS,B . A then forwards this ticket to B, who can decrypt it using the key KS,B
shared between B and S, to obtain the new session key KA,B, the name A of the intended
communication partner, and the time T of the request.

This example uses the result of executing multiple sessions of the Denning-Sacco protocol.
For the parameter n we assume a network with 3n participants, each of which initiates one
session with each other participant. We assume that one third of the shared keys between
the server and the agents are compromised, i.e., available to the attacker.

We will once again use the signature ΣDY and the rewriting system DY from Section 4.1.
For parameter n, we thus use the frame φds

n = ñds
n .σ

ds
n , with σds

n = σ1
n ∪ σ2

n ∪ σ3
n ∪ σ4

n, where
σ1
n =

{
x1
i 7→ KS,i | i ∈ {1, . . . , n}

}
;

σ2
n =

{
x2
i,j 7→ 〈Ai,Aj〉 | i, j ∈ {1, . . . , 3n} , i 6= j

}
;

σ3
n =

{
x3
i,j 7→

{
〈Aj , 〈Ki,j , 〈Ti,j , {〈Ki,j , 〈Ai, Ti,j〉〉}KS,j

〉〉〉
}
KS,i

| i, j ∈ {1, . . . , 3n} , i 6= j

}
;

σ4
n =

{
x4
i,j 7→ {〈Ki,j , 〈Ai, Ti,j〉〉}KS,j

| i, j ∈ {1, . . . , 3n} , i 6= j
}
,

RTA’11

18 FAST: An Efficient Decision Procedure for Deduction and Static Equivalence

and ñds
n = {Ki,j , Ti,j ,KS,i | i, j ∈ {1, . . . , 3n}}.

Here, σ1
n represents the keys compromised by the attacker and σ2

n, σ3
n, and σ4

n represent
the messages exchanged as part of the execution of the first, second, and third steps of the
protocol, respectively. The deduction problem is to decide whether φds

n `DY KS,3n and the
static equivalence problem is to decide whether φds

n ≈sDY φds
n .

Yapa performs noticeably better than Kiss in this example. Fast, as before, is signifi-
cantly faster than both. The results are shown in Tables 5 and 6.

Table 5 Performance on Denning-Sacco for deduction (time in ms)

Parameter 5 7 9 11 12 14 24
Fast 337 768 1336 2588 2239 5083 20073
Kiss 6637 30195 91743 232093 > 300000 > 300000 > 300000
Yapa 2409 10320 30732 68845 74298 172249 > 300000

Table 6 Performance on Denning-Sacco for static equivalence (time in ms)

Parameter 3 5 7 9 11 13 20
Fast 181 585 1281 2300 6598 7507 24614
Kiss 1219 8543 34726 158717 > 300000 > 300000 > 300000
Yapa 446 2836 12300 52506 134391 269781 > 300000

4.4 Fast worst case

In this family of examples, for the parameter n, we use the signature Σwc, where Σwc
1 = {f}

and Σwc
n = {h}. The rewriting system is given by the set wcn = {h(f(x1), . . . , f(xn))→ x1}.

We define the frame φwc
n = ñwc

n .σwc
n , where ñwc

n = {k, k1, . . . , kn} and σwc
n = {x1 7→ f(k1),

. . . , xn 7→ f(kn)}. The deduction problem is to decide whether φwc
n `wcn k and the static

equivalence problem is to decide whether φwc
n ≈swcn

φwc
n .

This example is challenging because, to saturate this frame, Fast must instantiate each
element of the tuple with each of the secret names. Therefore, the asymptotic complexity of
Fast for this family is O(nn). Note that this does not contradict the fact that, for a given
rewriting system, Fast has polynomial-time complexity; the exponential complexity results
from the fact that the size of the rewriting system itself increases with the parameter n.

Table 7 Performance on worst case for deduction (time in ms)

Parameter 3 4 5 6
Fast 9 72 1192 32487
Kiss 10 47 866 21446
Yapa 11 161 6607 > 300000

None of the existing algorithms perform well on this example: Fast’s performance is
comparable to that of Kiss and Yapa performs significantly worse. This is illustrated in
Tables 7 and 8.

B. Conchinha, D. A. Basin and C. Caleiro 19

Table 8 Performance on worst case for static equivalence (time in ms)

Parameter 3 4 5 6
Fast 15 142 2199 56312
Kiss 16 146 2125 69533
Yapa 16 297 8862 > 300000

Nonlinear terms

It is interesting to note that Fast’s complexity depends chiefly on the number of different vari-
ables in the rewriting system. Therefore, it’s performance is not significantly affected if the left-
hand sides of rewrite rules are non-linear. This is not the case for the other algorithms, whose
performance degrades when the complexity of the terms in the rewriting system increases,
even when the number of variables remains the same. Tables 9 and 10 illustrate this point.
Here, the rewriting system considered is wc2n = {h(f(x1), f(x1), . . . , f(xn), f(xn))→ x1}.
The frames and problems considered here are the same as above.

Table 9 Performance on worst case 2 for deduction (time in ms)

Parameter 2 3 4 5 6
Fast 7 9 148 1567 43282
Kiss 9 99 4381 183236 > 300000
Yapa 45 > 300000 > 300000 > 300000 > 300000

Table 10 Performance on worst case 2 for static equivalence (time in ms)

Parameter 2 3 4 5 6
Fast 4 17 396 6197 47937
Kiss 10 292 16135 > 300000 > 300000
Yapa 56 > 300000 > 300000 > 300000 > 300000

5 Discussion and future work

Fast is an efficient algorithm for deciding deduction and static equivalence under weakly
subterm-convergent rewriting systems. The implementation and our benchmarks are available
for download at [1]. Fast’s scope is narrower than that of other existing tools for these
problems, but is broad enough to represent many practically relevant theories. As expected
from the results in [10], Fast is significantly faster than both Yapa and Kiss in almost
all our tests. Even for the articial examples designed to degrade its performance, Fast
still compares favorably to other algorithms: it is either faster, or slower by only a small
constant. This constitutes a significant advantage since the problematic cases for Yapa and
Kiss degrade these algorithms’ performances dramatically.

We believe that many of the ideas and results that allow Fast to achieve better asymptotic
results may still be valid with weaker hypotheses on the rewriting system. Therefore, extending
the algorithm to handle more general equational theories without significantly degrading its
performance is an important research goal.

RTA’11

20 FAST: An Efficient Decision Procedure for Deduction and Static Equivalence

Acknowledgements This work was partly supported by FCT and EU FEDER, namely
via the project PTDC/EIA-CCO/113033/2009 ComFormCrypt of SQIG-IT and the project
UTAustin/MAT/0057/2008 AMDSC of IST. The first author acknowledges the support
of FCT via the PhD grant SFRH/BD/44204/2008 and the National Competence Center
in Research on Mobile Information and Communication Systems (NCCR-MICS), a center
supported by the Swiss National Science Foundation. We would also like to thank Mohammad
Torabi Dashti and Benedikt Schmidt for their helpful comments on this paper.

References
1 http://www.infsec.ethz.ch/people/brunoco, 2011.
2 Martin Abadi, Mathieu Baudet, and Bogdan Warinschi. Guessing attacks and the com-

putational soundness of static equivalence. Journal of Computer Security, pages 909–968,
December 2010.

3 Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communication.
SIGPLAN Not., 36:104–115, January 2001.

4 Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier, Luca Compagna,
Jorge Cuellar, Paul Hankes Drielsma, Pierre-Cyrille Heám, Jacopo Mantovani, Sebastian
Mödersheim, David von Oheimb, Michaël Rusinowitch, Judson Santiago, Mathieu Turuani,
Luca Viganò, and Laurent Vigneron. The AVISPA Tool for the Automated Validation of
Internet Security Protocols and Applications. In Kousha Etessami and Sriram K. Rajamani,
editors, Proceedings of the 17th International Conference on Computer Aided Verification
(CAV’05), volume 3576 of LNCS. Springer, 2005.

5 Charu Arora and Mathieu Turuani. Validating Integrity for the Ephemerizer’s Protocol
with CL-Atse. In Formal to Practical Security: Papers Issued from the 2005-2008 French-
Japanese Collaboration, volume 5458 of LNCS, pages 21–32. Springer, 2009.

6 Mathieu Baudet. Deciding security of protocols against off-line guessing attacks. In Pro-
ceedings of the 12th ACM conference on Computer and communications security, CCS ’05,
pages 16–25, New York, NY, USA, 2005. ACM.

7 Mathieu Baudet, Véronique Cortier, and Stéphanie Delaune. YAPA: A generic tool for
computing intruder knowledge. In Ralf Treinen, editor, RTA, volume 5595 of Lecture Notes
in Computer Science, pages 148–163. Springer, 2009.

8 Bruno Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In
Proceedings of the 14th IEEE workshop on Computer Security Foundations, CSFW ’01,
pages 82–96, Washington, DC, USA, 2001. IEEE Computer Society.

9 Stefan Ciobâca, Stéphanie Delaune, and Steve Kremer. Computing knowledge in security
protocols under convergent equational theories. In CADE, pages 355–370, 2009.

10 Bruno Conchinha, David Basin, and Carlos Caleiro. Efficient algorithms for deciding de-
duction and static equivalence. In Proc. 7th Int. Workshop on Formal Aspects of Security
and Trust (FAST’10), 2010.

11 Bruno Conchinha, David Basin, and Carlos Caleiro. Efficient algorithms for deciding deduc-
tion and static equivalence. volume 680 of ETH Technical Reports. ETH Zürich, Information
Security Group D-INFK, September 2010.

12 Ricardo Corin, Jeroen Doumen, and Sandro Etalle. Analysing password protocol secu-
rity against off-line dictionary attacks. Electron. Notes Theor. Comput. Sci., 121:47–63,
February 2005.

13 Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type properties of
electronic voting protocols. J. Comput. Secur., 17:435–487, December 2009.

14 Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in key distribution protocols.
Commun. ACM, 24:533–536, August 1981.

Automated Certified Proofs with CiME3∗

Évelyne Contejean1, Pierre Courtieu2, Julien Forest3,
Olivier Pons2, and Xavier Urbain4

1 CNRS, LRI, UMR 8623, Orsay, F-91405
Univ Paris-Sud 11, Orsay, F-91405, France
INRIA Saclay - Île-de-France, ProVal, Orsay, F-91893, France
evelyne.contejean@lri.fr

2 CNAM, Lab. Cédric, Paris, F-75141, France
{pierre.courtieu,olivier.pons}@cnam.fr

3 ENSIIE, Évry, F-91025
Lab. Cédric, Paris, F-75141, France
julien.forest@ensiie.fr

4 ENSIIE, Évry, F-91025
INRIA Saclay - Île-de-France, ProVal, Orsay, F-91893, France
LRI, Univ Paris-Sud 11, CNRS, Orsay, F-91405, France
xavier.urbain@ensiie.fr

Abstract
We present the rewriting toolkit CiME3. Amongst other original features, this version enjoys
two kinds of engines: to handle and discover proofs of various properties of rewriting systems,
and to generate Coq scripts from proof traces given in certification problem format in order to
certify them with a sceptical proof assistant like Coq. Thus, these features open the way for
using CiME3 to add automation to proofs of termination or confluence in a formal development
in the Coq proof assistant.

Keywords and phrases Rewriting, formal proof, proof automation, proof assistant

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.21

Category System Description

1 Introduction

Automated tools based on complex mathematical arguments have become widely used in
various domains of computer science. Cryptographic systems, proof assistants or systems
analysing programs involve highly intricate deduction procedures that are indeed beyond
human capabilities. However, this situation raises a real issue as the downside of such
deductive power is the difficulty to trust a result that no human can check.

Regarding rewriting, and in particular automated termination proof, there have been
many new tools since the introduction of the dependency pair approach [1] at the end of the
90’s: CiME2, AProVE [13], TTT2 [17], Jambox,1 etc., to cite a few of them.

However, all these tools exhibited incorrect behaviour at some point, in particular dur-
ing the Termination Competition [20] or its preparatory rounds. Several approaches to
certify the results of automated provers with skeptical proof assistants have been developed:
A3PAT [5, 4] and CoLoR/Rainbow [2] for Coq, CeTA [22] for Isabelle/HOL.

∗ This work was partially supported by the french ANR project A3PAT (ANR-05-BLAN-0146).
1 http://joerg.endrullis.de/jambox.html

© Évelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, Xavier Urbain;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 21–30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://joerg.endrullis.de/jambox.html
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22 CiME3

As a new member of the CiME family (http://cime.lri.fr), CiME3 is a toolbox
dedicated to the handling and analysis of rewriting programs. It allows one to define term
algebras, rewriting systems, etc., and to perform a range of treatments over them: compu-
tation, normalisation, matching and unification (modulo equational theories), completion
(Knuth-Bendix) and proofs of equality (both modulo equational theories), etc. An import-
ant part of CiME3 is dedicated to proofs of termination (including solving of ordering con-
straints), local confluence and convergence. CiME3 enjoys a top level mode for interactive
development of rewrite programs; it can also be used in batch mode with full automation.

CiME3 has been developed within the A3PAT project for certification of automated
proofs, and automation for proof assistants (http://a3pat.ensiie.fr). In comparison
to its ancestors, CiME3 features, in addition to its various proof engines, a certification
mechanism which issues proof traces and certificates, and which allows one to check that the
results are correct. To be certified, a proof trace can be translated into a script checked by
a trusted tool: a skeptical proof assistant like Coq, or it can be given directly to a certified
dedicated tool like CeTA. A unique feature of CiME3 is in particular the (discovery and)
certification of proofs of convergence.

The present article is organised as follows. In Section 2 we present some of the proof
engines at work in CiME3, for termination in Sections 2.1.2 and 2.1.3, and local confluence,
Knuth-Bendix completion and convergence in Section 2.2. Some criteria allow for parallel
solving, this is presented in Section 2.1.4. The certification engine is then described in
Section 3, along with its input, output, and the general structure of emitted Coq scripts.
Section 3.3 sketches the use of CiME3 in batch mode. We conclude with a list of resources
and companion tools, and with future work regarding the current implementation.

Problem

termination,
confluence,

constraints...

CiME 3

Proof
engine

Proof

Certif.
engine

Alternate
prover Proof trace(CPF)

Termination

Coq

Coccinelle

Certification

.vo

User

.v

Figure 1 Global CiME 3 architecture.

2 Proof Engines

2.1 Core Language, Termination
CiME3 can be used in interactive or batch mode. We hereafter describe some of the basic
commands for the interactive mode. Note that the batch mode can accept additional files
in various formats (like TRS or SRS formats from the Termination Competition, or in CPF2

(an XML format widely accepted by the certified rewriting community), developed by the
CeTA group and our team), however the commands described here can be used in both
modes. See Section 3.3 for batch specific command line options.

2 The Certification Problem Format, http://cl-informatik.uibk.ac.at/software/cpf/

http://cime.lri.fr
http://a3pat.ensiie.fr
http://cl-informatik.uibk.ac.at/software/cpf/

Contejean et al. 23

The core top level language of CiME3 is a simple language which allows the user to
type in expressions terminated by a semicolon. Simple expressions consist of booleans,
integers, strings, and basic operations on them. As in previous versions of CiME the nominal
language is powerful enough to define functions (polymorphic higher-order, allowing partial
application, functions as arguments) with a let fun construct. Application is denoted by
juxtaposition of the function and its arguments, as in LISP or other functional languages
based on the λ-calculus. A short manual is available online on the A3PAT web page. We
focus here on the new syntax and features of CiME3 for rewrite systems and constraints.

2.1.1 Declarations
The user can define and name objects, algebras, and systems in the CiME input language
akin to the definitions found in the literature: sets of variables, signatures (symbols with
arities), term algebras, rewrite systems, term ordering constraints. . .

A let construct introduces global declarations. Listing 1 declares successively the global
set X of variables, a signature F for Peano numbers and addition, and the corresponding term
algebra T. One can then easily declare terms, rewrite systems, and even ordering constraints
(built from conjunctions /\ and disjunctions \/ of atomic constraints).

Listing 1 A few simple declarations.

let X = variables "x,y";
let F = signature "plus : binary; O:constant; S:unary;";
let T = algebra F;
let t1 = term T "S(O)";
let R = trs T " plus(O,x) -> x; plus(S x, y) -> S(plus(x,y)); ";
let c = order_constraints T "O < S(O) /\ S(plus(x,y)) < plus(S(x),y)";

2.1.2 Ordering Parameters
CiME3 features a proof engine dedicated to the discovery of (well-founded) term orderings
that fulfil a set of (ordering) constraints. These constraints may come from a direct declara-
tion by the user (see Listing 1), or may appear as the result of operations like the application
of termination criteria on a termination problem, i.e. from termination constraints. As soon
as the ordering constraints are provided, one can try to discover a relevant well-suited or-
dering pair (�, <) using the command ordering_solve or ordering_solve_strict depending
on the expected monotonicity of the ordering, that is depending on whether only �, or both
� and <, respectively, are supposed to be monotonic.

Listing 2 Ordering constraints solving commands.

ordering_solve c; (* Search for weakly monotonic well-founded ordering fulfilling c *)
ordering_solve_strict c; (* Search for strictly monotonic well-founded ordering *)

CiME3 can search for different kinds of orderings, all of which being parameterised by
the user. The presently implemented orderings range from full RPO [10], with or without
argument filterings (AFS) [1], to various polynomial [19, 18, 7] and matrix [11, 9] interpret-
ations. Note that the certification engine can accept traces from other provers, and, thus,
can handle more orderings than those that are currently searched for by the termination
proof engine.

The parameters for the search are provided using the grammar in Figure 2. Ordering
specifications (Ordering_param) are of the generic form n1 ord_kind n2 n3 n4 . . . where

RTA’11

24 CiME3

Ordering_param ::= linear n | simple n | quadratic n | rpo | matrix n n n+
Solver_params ::= n Ordering_param (; Solver_params)?
Criterion ::= manna_ness | lex_manna_ness | DP | DPM | DPG | ST | RMVx | RMC
Heuristic ::= Criterion {Solver_params}? | id {Solver_params}?
| Then [Heuristic_l] | Do n Heuristic | Repeat Heuristic | Solve [Heuristic_l]

Heuristic_l ::= Heuristic (; Heuristic_l)?

Figure 2 Grammar for heuristics and ordering parameters.

ord_kind specifies the kind of ordering for which to search, n1 is the (optional) timeout of
the solver in seconds, n2 (only for polynomial and matrix interpretations) specifies the upper
bound of the (non-negative integral) coefficients in polynomials or matrices, n3 (matrices
only) specifies the size of the matrix coefficients, and n4 and following parameters are the
list of allowed sizes of strict sub-matrices as defined in [9]. For example, matrix 1 3 1 2
specifies a search for matrix interpretations, with matrix coefficients less or equal to 1,
3× 3 matrices, and strict sub-matrices of size either 1 or 2. As the optional timeout is not
provided, the default will be used (no timeout). Similarly, 30 linear 3 specifies a search for
linear polynomials with coefficients less or equal to 3, and a search timeout after 30s.

The user can declare several ordering parameters for different situations. This is il-
lustrated in Listing 3 where two different ordering parameter sequences op1 and op2 are
declared, in order to be used later in heuristics (see Listing 4).

Listing 3 Ordering parameters.

let op1 = params "30 linear 3; 30 simple 2; 30 rpo; 30 matrix 2 2 1; 30 matrix 1 3 1 2";
let op2 = params "linear 3; simple 2; rpo; matrix 2 2 1; matrix 1 3 1";

Ordering parameters are interpreted sequentially, unless a parallel search is enabled.
In the latter case, several orderings are searched for at the same time, depending on the
computer architecture and the specific parameters given by the user, see Section 2.1.4.

2.1.3 Criteria and Heuristics
Termination criteria are commonly seen as transformations of termination problems into
sets of other termination problems (possibly empty); they can be represented as inference
rules [5, 8] or processors [14]. The strategy of application of termination criteria is specified
in CiME3 with the help of heuristics. Intuitively, a successful heuristic must describe a
cover of a closed termination proof tree.

CiME comes with a simple heuristic description language which contains built-in cri-
teria and criteria combinators. Heuristics are specified following the grammar described in
Figure 2 where: id is a previously declared heuristic, manna_ness stands for the well-known
Manna and Ness criterion [19], and lex_manna_ness for rule removal using lexicographic
combination of orderings; DP and DPM stand respectively for unmarked and marked depend-
ency pair criteria [1], DPG for the graph refinement (estimation EDG) of dependency pairs [1]
(DPG returns the set of strongly connected components); ST denotes the extension [4] of
the original subterm criterion [16]; RMVx denotes vertex removal in dependency graphs com-
ponents [14, 15], and RMC stands for its variant removing all vertices of the component.

A heuristic x applies to a problem and returns the set of generated sub-problems. The
following constructs allow one to combine heuristics. Then[x;y . . .] applies heuristic x on
a problem and then, if it succeeds, heuristic y on each generated sub-problem. It fails if

Contejean et al. 25

either x or y fails. Repeat x calls x on a problem and, if x succeeds, applies Repeat x again
recursively on sub-problems. It never fails. Do n x is similar to Repeat but uses a limit n
for recursion depth. Finally Solve [x;y . . .] tries to apply x, and in the case x does not
succeed tries to apply y, etc., it fails if all heuristics failed. When all recursive calls have
ended, the proof is successful if all sub-problems are empty.

Listing 4 provides two examples. Heuristic h2 first tries to apply repeatedly rule removal
by lexicographic combination (using strictly monotonic orderings) until it fails to do so. It
transforms then the remaining TRS termination problem into a marked dependency pairs
termination problem and repeats recursively the previously declared h1. Heuristic h1 first
splits the given (DP) problem into sub-problems corresponding to the strongly connected
components of the dependency graph, and then tries on each component: firstly the extended
subterm criterion, and then, if it failed, vertex removal with a weakly monotonic ordering.

Some criteria may be parameterised specifically, for instance the number of rewrite steps
allowed in the extended subterm criterion may be set to n using command subtermparams n.

Listing 4 Heuristics declarations and commands.

let h1 = heuristic " Repeat Then [DPG ; Solve [ST ; RMVx {op2}]] ";
let h2 = heuristic " Then [Repeat lex_manna_ness {op1} ; DPM ; h1] ";
set_heuristic "h2"; (* Sets the termination heuristic. *)

When relevant parameters are set, proof search may be launched using commands
termination, confluence. . . , which print answers and possibly store traces.

Listing 5 Proof search.

termination R;
local_confluence R;
convergence R;
complete o R; (* Completion of R using term ordering o *)
prove_goal o R t1 t2; (* Ordered completion of R, stops when t1 and t2 are found equal*)
unify (term T "plus(O,x)") (term T "plus(y,O)");

2.1.4 External Solvers, Parallel Search for Orderings
External Solvers Ordering constraints are nowadays usually translated into SAT problems.
Thus, the main solving parts are delegated to a SAT solver [12, 21] or an SMT solver [17].
This scheme is implemented in CiME3, and the discovery of interpretations, RPO and AFS,
and application of the extended subterm criterion amount to solving SAT problems.

The directive #Set_sat_solver invoc_name allows one to specify the invocation name of
the external SAT solver, which must fulfil the requirements of the SAT format for input and
output, and the invocation of which must be of the form: invoc_name in_file out_file.

Note that polynomial interpretations and LPO+AFS may still be found without the help
of any external solver, using the internal Diophantine constraint solver of CiME [7].

Parallel Search Ordering solvers may be used in parallel. When ordering constraints are
generated during termination analysis, CiME3 forks one solver process by ordering con-
straints set and ordering parameter (Listing 3), thus searching for different orderings in par-
allel. Note that solving of different ordering constraints is thus also parallelised. The max-
imum number of processes that can be launched in parallel may be set using the #Set_nb_proc
directive. If this limit is reached, new forks are put in a queue and wait for previous ones
to stop before they can be activated. Default behaviour is sequential computation.

RTA’11

26 CiME3

2.2 Local Confluence, Completion and Convergence
A noticeable feature of CiME3 is its ability to check and moreover certify local confluence.
Combining this with its possibility to prove and certify termination, one can easily obtain
proof and certification of convergence. To date and to our knowledge CiME3 is the only
tool that can prove and certify convergence of rewrite systems. The proof search of local
confluence (and hence of convergence) is obtained by checking joinability of critical pairs.
When proving local confluence, CiME3 stores a trace in order to be able to certify it later.

Since critical pairs computation is the core of the standard Knuth-Bendix completion,
our implementation of Knuth-Bendix completion (commands complete or prove_goal) also
benefits from the trace production: given two terms which are found equal thanks to ordered
completion, CiME3 yields a trace of equality between these terms, and can also produce a
Coq certificate [3]. Completion modulo AC, also a part of CiME3, is not instrumented yet.

Certification of convergence proofs is obtained by an application of Newman’s lemma,
either using a known proof of termination, or assuming termination of the considered system.
Convergence is then proved by showing that in particular each critical pair is joinable: we
try to normalise each member of the pair and to show that both reduce to the same term.

3 Certification Engine

As proof engines perform proof search, various verbosity levels allow one to control the
process. Once a proof is discovered, its description is printed on the standard output. Gen-
eration of a CPF trace,3 or directly of the corresponding Coq script (for termination, local
confluence and convergence), is enabled by command or through batch mode (Section 3.3).

The purpose of the certification engine is to take a proof trace as an input, and to
output a Coq script for this trace’s certification. Traces may come from proofs discovered
with CiME3, or with other provers (AProVE, TTT2. . .) provided they come as CPF files3.

3.1 Input, Output
The normal input trace format for termination proofs is CPF. CiME3 is not yet able to
certify all criteria supported by the CPF format, but may generate scripts for all criteria
it uses in proof discovery. For properties other than termination (including termination for
convenience), one can take as an input a problem instead of a proof trace. In this case all
the problem formats described in Section 2.1 are supported, CiME will search the proof by
itself and will generate the script, without any intermediate trace. See Listing 7.

The techniques for the generation of Coq scripts for certification have been described in
previous works [4, 6, 8]. The compilation of those scripts relies on the Coccinelle library,
which allows for deep and shallow embeddings of the theory of rewriting. Relying on a deep
embedding to reuse generic theorems instead of reproving them for each instances is usually
faster. However it is interesting to notice that CiME does use both embeddings depending
on the proofs performed. We claim in particular that avoiding an actual deep representation
of the dependency graph is very efficient from a computational point of view, as presented
in [8]. Listing 6 illustrates the fact that the formalisation is partly shallow: on the one
hand, symbols and rewriting rules are defined by new inductive types (symb and R_rules),
on the other hand, term structure and rewriting relations rely on generic deep definitions

3 As CPF is not yet extended to handle confluence proofs, hence confluence and convergence proofs
output Coq scripts instead of CPF.

Contejean et al. 27

Listing 6 Coq script structure (notations are simplified).

1 Require Import equational_theory... (* Preamble: require coccinelle files. *)
2 Module algebra.
3 Module F <:term_spec.Signature. (* Signature definition *)
4 Inductive symb:Set := plus: symb | S: symb | O: symb. (* Symbols *)
5 ...
6 End F.
7 Module Alg := term.Make(F)(IntVars) (* Algebra by functor instantiation *)
8 End Algebra.
9

10 Inductive R_rules: term → term → Prop := (* Definition of the TRS *)
11 |R_rule0: R_rules (Var 1) (Term plus [Term O [];Var 1]) (* plus(O,x)→x *)
12 |R_rule1: R_rules (Term S [Term plus [Var 1;Var 2]]) (* plus(S(x),y)→S(plus(x,y)) *)
13 (Term plus [Term S [Var 1];Var 2]).
14
15 Module WF_R.
16 ... (* Criteria application proofs *)
17 Lemma wf: well_founded (one_step R_rules). (* Main termination lemma *)
18 ...
19 Qed.
20 End WF_R.
21 Module Confluence := Newman.Confluence(...).
22 ...
23 Lemma confluence: ∀ x, Newman.confluence _ (one_step R_rules) x.
24 ... (* Joinability of critical pairs. *)
25 Qed.

(Term, Var and one_step). However, depending on the content of the proof, a deep version
of R_rules, automatically proved equivalent, is defined when needed.

3.2 Structure of a Proof

Listing 6 presents an excerpt of the proof of convergence for the example in Listing 1.
It displays in particular the general structure of a proof script for certification using the
A3PAT approach. Symbols (line 4) and algebra (line 7) are defined at the beginning of
the file, followed by the definition of the system itself (line 10).4 The main lemma for
termination is at the end of the last termination related module: WF_R. The proofs related to
the instances of the different criteria mentioned in the input trace are formalised and proved
in a (nested) sequence of modules (from line 16), thus mirroring roughly the structure of
proof tree described in [4].

Eventually, the confluence proof may be generated with or without an actual proof of
termination (in the latter case, the confluence is proved on the assumption that the system
terminates). As termination is shown in our example, there is no assumption in Listing 6.

To compile the script, and thus to ensure its validity, one must have the Coccinelle
library installed, and a shell variable COCCINELLE set to its root directory. The last lines of
the generated Coq file contains the coqc command line to run.

4 Notice that R_rules t u means that u rewrites to t.

RTA’11

28 CiME3

3.3 Batch Mode Command Line Options
In batch mode CiME takes an input file in a specified format, and returns a result file in a
specified output format. The whole process may include proof searches and/or generation
of Coq scripts. Options -term/-noterm and -confl/-noconfl specify which properties
must be considered or not. Input options include: -itrs (-isrs) for TRS (SRS) (non XML)
formats, -itptp for TPTP format,5 -icime for CiME language, and -icpf for CPF format.
Similarly, output options include: -ocpf, -ocoq, and -ocime (outputs the global environ-
ment in CiME format).

Listing 7 Sample command lines.

1 cime -itrs foo.trs -term -ocpf foo.cpf
2 cime -icpf foo.cpf -ocoq foo.v
3 cime -itrs foo.trs -term -ocoq foo.v
4 cime -itrs foo.trs -term -confl -ocoq foo.v
5 cime -icime preamble.cim3 -itrs foo.trs -term -confl -ocoq foo.v
6 cime -icime preamble.cim3 -noterm -confl -itrs foo.trs -ocoq foo.v

Line 1 asks for a termination proof for the system in file foo.trs and then generates its
CPF trace into foo.cpf. Line 2 generates the Coq script foo.v to certify CPF trace
foo.cpf. Line 3 is equivalent to line 1 followed by line 2 (no CPF file is generated). Line 4
additionally generates the Coq proof of confluence. Line 5 is similar to 4 but loads a
preamble in CiME format before proof search, this is a usual way to set parameters in
batch mode. Line 6 produces a Coq confluence proof parameterised by a proof of ter-
mination (not discovered). All these options may finally be chained in one command line:
cime -noconfl -itrs foo1.trs -ocpf foo1Term.cpf -confl -ocoq foo1TermConf.v\

-icpf foo2.cpf -ocoq foo2Term.v -noterm -ocoq foo2Conf.v
This asks for a termination proof for the system in foo1.trs, generates the corresponding
CPF file foo1Term.cpf, then produces (without any new search) a termination and conflu-
ence Coq proof foo1TermConf.v. It then generates the Coq script foo2Term.v to certify
the CPF trace foo2.cpf, and build script foo2Conf.v to certify the confluence of the TRS
in foo2.cpf. The last proof is parameterised by a proof of termination (not computed).

3.4 Experiments
The following tables present some experiments run on a 24GB machine equipped with 12
cores and running Linux. The base for termination is the category TRS (taken raw) of
the TPDB 5.0 consisting of 2506 problems;6 11 simultaneous processes are allowed. Local
confluence and convergence tests are run on the 1155 problems that are proved terminating
within the global time limit, set to 180s. The version of Coq is the 8.3 release.

The vast majority of termination proofs are discovered within 10s, and 30% within 1
10 s.

Regarding certification, the compilation of Coq script is slow compared to certification by
extracted tools like CeTA. However, 730 termination proofs are certified within 180s, of
which 78% within a minute. The only failures observed (out of this run) are due to time or
memory limitations. Regarding local confluence and convergence, 310 proofs of convergence
are discovered, 306 of which are certified within the time limit. The average compile time for

5 www.tptp.org up to version 4.
6 In particular strategies are not taken into account.

www.tptp.org

Contejean et al. 29

convergence is less than 17s. Over 53% of the convergence proofs are certified within 10s.

Discovery < 0.1s < 1s < 10s
Term. 1155 354 730 1012
Confl. 310 287 310 —

Certification < 5s < 10s < 30s < 60s
Term. 730 200 293 481 573
Confl. 306 157 234 287 299
Conv. 306 53 164 271 293

It is difficult to compare certifiers from the result of the certified termination competition.
Firstly, CiME was the only certifier targeted to Coq participating in 2010. Secondly, the
number of proofs that certifiers have validated essentially reflects the certifiers accordance
to the provers’ proving strategy, as they formalise criteria/orderings that are distinct.

4 Resources and Perspectives

CiME3 is an open source piece of software; it is available under the CeCiLL-C licence on the
resources page of the A3PAT project: http://a3pat.ensiie.fr/pub. The web site provides
ELF executables for 64 bit architectures, a tarball of the sources and installation instructions,
as well as a short user-manual (http://a3pat.ensiie.fr/pub/manual-cime3.html), and
a script tool to ease benches and tests over databases of problems. Note that it is also
possible to give CiME3 a try online through a dedicated web interface with a limited choice
of options at http://a3pat.ensiie.fr/online. The companion library Coccinelle is
also available from this page, and requires version 8.3 of the Coq proof assistant.

Perspectives regards proof and certification engines. Some proof discovery techniques im-
plemented in CiME 2 have not been transferred yet, notably termination modulo equational
theories and modular techniques, including usable rules refinements.

Regarding certification techniques for termination, a short term perspective is the hand-
ling of arctic matrices, min/max polynomials, usable rules, and proofs under strategies, as
all the formal material is ready in Coccinelle.

Acknowledgements The authors would like to thank the anonymous referees for their
fruitful comments and their help in improving the presentation of this article.

References
1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236:133–178, 2000.
2 F. Blanqui, S. Coupet-Grimal, W. Delobel, S. Hinderer, and A. Koprowski. Color, a coq

library on rewriting and termination. In A. Geser and H. Sondergaard, ed., Extended
Abstracts of the 8th Int. Workshop on Termination, WST’06, Aug. 2006.

3 É. Contejean and P. Corbineau. Reflecting proofs in first-order logic with equality. In
20th Int. Conf. on Automated Deduction, vol. 3632 of LNAI, pp. 7–22, Tallinn, Estonia,
July 2005. Springer.

4 É. Contejean, P. Courtieu, J. Forest, A. Paskevich, O. Pons, and X. Urbain. A3PAT, an
Approach for Certified Automated Termination Proofs. In ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, pp. 63–72. ACM, 2010.

5 É. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Certification of Automated
Termination Proofs. In B. Konev and F. Wolter, ed., 6th Int. Symp. on Frontiers of
Combining Systems, vol. 4720 of LNAI, pp. 148–162, Liverpool, UK, Sept. 2007. Springer.

6 E. Contejean, J. Forest, and X. Urbain. Deep-Embedded Unification. Technical Report
1547, Cédric lab., CNAM Paris, France, 2008.

RTA’11

http://a3pat.ensiie.fr/pub
http://a3pat.ensiie.fr/pub/manual-cime3.html
http://a3pat.ensiie.fr/online

30 CiME3

7 É. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically proving termination
using polynomial interpretations. Journal of Automated Reasoning, 34(4):325–363, 2005.

8 P. Courtieu, J. Forest, and X. Urbain. Certifying a Termination Criterion Based on Graphs,
Without Graphs. In C. Muñoz and O. Ait Mohamed, ed., 21st Int. Conf. on Theorem Prov-
ing in Higher Order Logics, vol. 5170 of LNCS, pp. 183–198, Montréal, Canada, Aug. 2008.
Springer.

9 P. Courtieu, G. Gbedo, and O. Pons. Improved Matrix Interpretation. In J. van Leeuwen,
A. Muscholl, D. Peleg, J. Pokorný, and B. Rumpe, ed., 36th Conf. on Current Trends
in Theory and Practice of Computer Science, vol. 5901 of LNCS, pp. 283–295, Špind-
lerův Mlýn, Czech Republic, Jan. 2010. Springer.

10 N. Dershowitz. Orderings for term rewriting systems. Theoretical Computer Science,
17(3):279–301, Mar. 1982.

11 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination
of term rewriting. Journal of Automated Reasoning, 40(2-3):195–220, 2008.

12 C. Fuhs, A. Middeldorp, P. Schneider-Kamp, and H. Zankl. SAT Solving for Termination
Analysis with Polynomial Interpretations. In SAT 07, vol. 4501 of LNCS, pp. 340–354,
May 2007. Springer.

13 J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic Termination
Proofs in the Dependency Pair Framework. In U. Furbach and N. Shankar, ed., 3rd Int.
Joint Conf. on Automated Reasoning, vol. 4130 of LNCS, pp. 281–286, Seattle, USA,
Aug. 2006. Springer.

14 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and Improving
Dependency Pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

15 N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Information
and Computation, 199(1-2):172–199, 2005.

16 N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and Features.
Information and Computation, 205(4):474–511, 2007.

17 M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2. In
R. Treinen, ed., 20th Int. Conf. on Rewriting Techniques and Applications, vol. 5595 of
LNCS, pp. 295–304, Brasília, Brazil, July 2009. Springer.

18 D. S. Lankford. On proving term rewriting systems are Noetherian. Technical Report
MTP-3, Mathematics Department, Louisiana Tech. Univ., 1979.

19 Z. Manna and S. Ness. On the termination of Markov algorithms. In 3rd Hawaii Int. Conf.
on Systems Sciences, pp. 789–792, Honolulu, USA, 1970.

20 C. Marché and H. Zantema. The Termination Competition. In F. Baader, ed., 18th Int.
Conf. on Rewriting Techniques and Applications, vol. 4533 of LNCS, pp. 303–313, Paris,
France, June 2007. Springer.

21 P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving Termination
Using Recursive Path Orders and SAT Solving. In B. Konev and F. Wolter, ed., 6th Int.
Symp. on Frontiers of Combining Systems, vol. 4720 of LNAI, pp. 267–282, Liverpool, UK,
Sept. 2007. Springer.

22 R. Thiemann and C. Sternagel. Certification of Termination Proofs using CeTA. In T. Nip-
kow and C. Urban, ed., 22nd Int. Conf. on Theorem Proving in Higher Order Logics,
vol. 5674 of LNCS, pp. 452–468, Munich, Germany, Aug. 2009. Springer.

Variants, Unification, Narrowing, and Symbolic
Reachability in Maude 2.6∗

Francisco Durán1, Steven Eker2, Santiago Escobar3, José Meseguer4, and
Carolyn Talcott2

1 Universidad de Málaga, Spain. duran@lcc.uma.es
2 SRI International, CA, USA. eker@csl.sri.com,clt@cs.stanford.edu
3 Universidad Politécnica de Valencia, Spain. sescobar@dsic.upv.es
4 University of Illinois at Urbana-Champaign, IL, USA. meseguer@illinois.edu

Abstract

This paper introduces some novel features of Maude 2.6 focusing on the variants of a term. Given an
equational theory (Σ,Ax∪E), the E,Ax-variants of a term t are understood as the set of all pairs consist-
ing of a substitution σ and the E,Ax-canonical form of tσ . The equational theory (Ax∪E) has the finite
variant property iff there is a finite set of most general variants. We have added support in Maude 2.6 for:
(i) order-sorted unification modulo associativity, commutativity and identity, (ii) variant generation, (iii)
order-sorted unification modulo finite variant theories, and (iv) narrowing-based symbolic reachability
modulo finite variant theories. We also explain how these features have a number of interesting appli-
cations in areas such as unification theory, cryptographic protocol verification, business processes, and
proofs of termination, confluence and coherence.

1998 ACM Subject Classification D.2.4 [Software Engineering]: Software/Program Verification, D.3.2
[Programming Languages]: Language Classifications, F.3.1 [Logics and Meanings of Programs]: Speci-
fying and Verifying and Reasoning about Programs

Keywords and phrases Rewriting logic, narrowing, unification, variants

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.31

Category System Description

1 Introduction

In [4] the Maude 2.4 features for order-sorted unification modulo axioms Ax, including commuta-
tivity (C) and associativity commutativity (AC), and for narrowing-based reachability analysis of
rewrite theories modulo such axioms Ax were described. In this paper we present the new features
of variant-generation, variant-based unification, and symbolic reachability analysis modulo a theory
with the finite variant property supported by Maude 2.6. The key distinction, now supported for
the first time in Maude, is one between dedicated unification algorithms for a limited set of axioms
Ax, and generic unification algorithms such as variant-based unification which can be applied to a
much wider range of user-definable theories. As explained in Section 6, this opens up many ap-
plications, including: (i) unification-related applications; (ii) cryptographic protocol analysis; (iii)
symbolic reachability analysis of concurrent systems; and (iv) formal reasoning capabilities such as

∗ S. Escobar has been supported by MICINN grant TIN 2010-21062-C02-02. J. Meseguer has been supported by
NSF grant CCF 09-05584. C. Talcott and S. Eker have been supported by NSF grant 09-05607. F. Durán was
supported by MICINN grant TIN2008-03107 and JA grant P07-TIC-03184.

© F. Durán, S.Eker, S.Escobar, J. Meseguer, C. Talcott;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 31–40

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.31
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32 Variants, Unification, Narrowing, and Symbolic Reachability in Maude 2.6

termination proofs, and proofs of local confluence and coherence that can now be performed modulo
a much wider set of equational theories thanks to the use of variants.

Comon-Lundh and Delaune’s notion of variant [7] characterizes the instances of a term w.r.t.
an equational theory E ∪Ax such that the equations E are covergent and coherent modulo axioms
Ax. The E,Ax-variants of a term t are pairs (t ′,θ), with θ a substitution and t ′ the E,Ax-canonical
form of tθ . A preorder relation of generalization that holds between such pairs provides a notion
of most general variants and also of completeness of a set of variants. An equational theory E ∪Ax
has the finite variant property iff there is a finite complete set of most general variants for each term.
This property also ensures the existence of a generic finitary E ∪Ax-unification algorithm based on
computing variants. Such generic unification algorithm involves performing Ax-unification using a
dedicated algorithm and computing the E,Ax-variants.

As we explain in Section 2, the base of axioms now supported by Maude with a dedicated unifi-
cation algorithm has been extended to include associative-commutative with identity (ACU) function
symbols, in combination with the previously supported C, AC, and free (/0) function symbols. On
this extended axiom base, Full Maude 2.6, an extension of Maude written in Maude itself by tak-
ing advantage of its reflective capabilities, now offers the following new features for user-definable
order-sorted theories E ∪ Ax with the finite variant property and satisfying some simple require-
ments: (i) variant generation, that is, computing the most general E,Ax-variants of a term (Section
3); (ii) variant-based order-sorted unification modulo E ∪Ax (Section 4); and (iii) narrowing-based
symbolic reachability analysis of a concurrent system whose equational subtheory satisfies the finite
variant property (Section 5). There are several programming languages based on narrowing but none
supporting narrowing modulo finite variant theories.

2 Implementation of Order-Sorted ACU Unification

The addition of ACU to the theories handled by the dedicated unification algorithm in Maude re-
quired substantial changes to the unification infrastructure implemented in previous versions of
Maude for C and AC theories because of the problems associated with collapse theories. In this
section we give an overview of the techniques used and highlight a novel algorithm for selecting sets
of Diophantine basis elements during the computation of ACU unifiers.

Combining Unification Algorithms. The basic approach to solving unification problems where
function symbols are drawn from more than one theory is variable abstraction where alien subterms,
i.e., subterms headed by a symbol from a theory different from that of the top symbol of the parent
term, are replaced by fresh variables to form pure unification subproblems which only involve vari-
ables and functions symbols from a single theory and which can be passed to a unification algorithm
for such a theory. Proving termination of combinations of algorithms is nontrivial, as variables are
necessarily shared between theories and the unification of variables in one theory can create new
unification subproblems in another theory, potentially ad infinitum. Stickel’s algorithm [22], which
combined the AC and free theories, required an elaborate termination proof by Fages [15]. Boudet et
al. [2] proposed a much simpler approach where all unification subproblems and variable bindings
in a given theory are solved (and re-solved if another subproblem in that theory is created) simul-
taneously. This method requires a simultaneous E-unification algorithm for each theory E and was
the method implemented in Maude for C, AC, and /0 prior to the addition of ACU.

Collapse theories add two major complications to the combination of unification algorithms.
Firstly, theory clashes where two terms with top symbols from different theories are required to
unify, can no longer be treated as a failure, since if one or other top symbol belongs to a collapse
theory, a collapse may occur, yielding solutions. Secondly, compound cycles, that is, problems of the
form x1 =? t1(. . . ,x2, . . .),x2 =? t2(. . . ,x3, . . .), . . . ,xn =? tn(. . . ,x1, . . .) where the terms ti are pure in

Durán, Eker, Escobar, Meseguer, and Talcott 33

different theories, can no longer be treated as failure, since solutions may be possible via collapse.
Several authors have proposed combination schemes that can handle collapse theories. We use a

simplified version of an algorithm due to Boudet [1]. The original algorithm also handles nonregular
theories but we omit that capability to simplify the implementation. The key idea is that each theory
E needs a restricted simultaneous E-unification algorithm which solves the simultaneous unification
problem for pure equations that are pure in E but where certain variables may be marked as only
being allowed to unify with other variables. A theory clash subproblem f (. . .) =? g(. . .), is split into
a disjunction of two subproblems each of which is a conjunction x =? f (. . .)∧ x =? g(. . .) where x
is a fresh variable. In one subproblem x is marked in the f equation and in the other subproblem x
is marked in the g equation; either or both branches of the search may return solutions. Restricted
unification is also used to break compound cycles. Because we do not handle nonregular theories,
Boudet-style variable-elimination algorithms are unnecessary.

Boudet’s algorithm assumes that theories are disjoint; i.e., that they do not share function sym-
bols. Because in Maude this is not quite true – identities can contain symbols from other theories –
we need to handle a special kind of variable elimination. We illustrate the issue with the following
example:

fmod CYCLE is sort S . vars X Y : S . ops a b c d : -> S .
op f : S S -> S [assoc comm id: g(c, d)] .
op g : S S -> S [assoc comm id: f(a, b)] .

endfm
Maude> unify X =? f(Y, a, b) /\ Y =? g(X, c, d) .

Here the unification problem would already be in solved form but for the compound cycle formed
by the X and Y variables. Restricted unification cannot break this cycle, since neither of the right-
hand sides can collapse out of their theory. However, putting Y = g(c,d) eliminates Y from the
first equation yielding X = f (a,b) which eliminates X from the second equation, yielding a solu-
tion. This situation is somewhat pathological in Maude programs, and we do not really care about
performance in its handling. Maude handles it by looking for this kind of cyclic dependency be-
tween theories when the signature is preprocessed and setting a flag so that a brute force variable
elimination algorithm will be used to try and break compound cycles at unification time.

Diophantine Basis Element Selection. We solve restricted simultaneous ACU unification using an
extension of the simultaneous AC unification algorithm in [2]. For an ACU function symbol f we are
presented with a set of flattened pure equations that take the form f (xp1

1 , . . . ,xpn
n) =? f (yq1

1 , . . . ,yqm
m)

or x1 =? f (yq1
1 , . . . ,yqm

m). Each f -equation yields a Diophantine equation p1X1 + · · ·+ pnXn = q1Y1 +
· · ·+qmYm or respectively, X1 = q1Y1 + · · ·+qmYm where the Xi’s and Yi’s are non-negative Diophan-
tine variables. If an original variable is marked in some equation, the corresponding Diophantine
variable receives an upper-bound of 1. Also, we may be able to obtain an upper-bound from order-
sorting information, using the signature analysis technique in [12].

The general solution to a set of non-negative Diophantine equations is a set of basis elements
from which all solutions can be obtained by linear combination. Upper-bound information may
trivially eliminate some basis elements from consideration and can be used by the Diophantine
solver to terminate the search for basis elements early.

A fresh variable zk is allocated for each basis element αk and unifiers are formed by finding sets
of basis elements that satisfy certain properties and constructing assignments xi ← f (. . . ,z

αk,i
k , . . .)

where k ranges over the indices of the selected basis elements and αk,i is the value of Xi in the basis
element αk.

The criteria for choosing the sets of basis elements is the key difference between AC unification,
ACU unification, and restricted ACU unification. With AC unification, every selection of basis
elements whose sum yields a nonzero value for each Xi and Yi must be considered. With ACU
unification that requirement is lifted because of the availability of an identity element. The identity

RTA’11

34 Variants, Unification, Narrowing, and Symbolic Reachability in Maude 2.6

element also means that any assignment including basis element αk generalizes the same assignment
with αk removed by assigning the identity element to zk and thus there is a single most general
solution, formed by selecting all the basis elements.

In the case of restricted ACU unification, we may have upper-bounds on variables because they
are marked. In Maude, order-sorted considerations may place upper-bounds on variables, and may
also place a lower-bound of 1 on variables where the corresponding original variable has a sort that
cannot take the identity element. In order to find a complete set of unifiers we need to find all
maximal sets of basis elements whose sum satisfies the upper and lower-bounds on the variables.

Several explicit schemes for searching the subsets of basis elements were tried but the search
was typically the dominant cost for ACU unification, often rendering the solution of quite modest
unification problems impractical. In the current implementation this search is performed symbol-
ically using a Binary Decision Diagram (BDD) [3] based algorithm. A BDD variable is allocated
for each basis element, whose value, true or false, denotes whether the basis element is included in
the subset. A BDD, called legal, is constructed, which evaluates to true on exactly those valuations
that correspond to selections of basis elements that satisfy the upper- and lower-bound constraints
on each Diophantine variable. Enforcement of the upper-bounds on the sum is done using dynamic
programming and the BDD ite operation. Using the BDD legal, a second BDD, called maximal, is
constructed which is true on exactly those valuations where legal is true, and changing a false into a
true makes legal false. These valuations of the BDD variables and thus the subsets of basis elements
they encode are then recovered by tracing the paths from the root to the true terminal in maximal.
This method yielded a dramatic speed up (from hours to milliseconds) on problems of useful size.

Admissible Equational Theories. Maude 2.6 currently provides a built-in order-sorted Ax-unifica-
tion algorithm for all order-sorted theories (Σ,Ax) such that:

the order-sorted signature Σ is preregular modulo Ax (see [5, Section 3.8]);
the axioms Ax associated to function symbols are as follows:

there can be arbitrary function symbols and constants with no equational attributes;
the iter equational attribute1 can be declared for some unary symbols;
the comm or assoc comm or assoc comm id: attributes2 can be declared for some binary
function symbols, but then no other equational attributes must be given for such symbols.

Explicitly excluded are theories with binary function symbols having any combination of: (i) the
idem attribute3; (ii) the id:, left id:, or right id: attributes without assoc comm; or (iii) the
assoc attribute without comm.

3 Variants and Variant Generation

Variant generation for an equational theory (Σ,E ∪Ax) is defined modulo Ax using the order-sorted
Ax-unification procedure described in Section 2.

The equational theories that are admissible for variant generation are as follows. Let fmod
(Σ,Ax∪E) endfm be an order-sorted functional module where E is a set of equations specified with
the eq keyword, and Ax is a set of axioms such that (Σ,Ax) satisfies the restrictions of Section 2.
Furthermore, the equations E must satisfy the following extra conditions:

The equations E are unconditional and convergent, sort-decreasing and coherent modulo Ax.
An equation’s left-hand side cannot be a variable, and the owise feature is not allowed.

1 Maude provides a built-in mechanism called the iter (short for iterated operator) theory whose goal is to permit
the efficient input, output, and manipulation of very large stacks of a unary operator. See [6] for additional details.

2 The operator attribute assoc stands for associativity, comm for commutativity and id: for identity.
3 The operator attribute idem stands for idempotency.

Durán, Eker, Escobar, Meseguer, and Talcott 35

All equations must be variant-preserving [14], i.e., if two left-hand sides of E (possibly renamed)
overlap — i.e., there is a substitution θ s.t. (l1θ)|p =Ax l2θ , where p can be a variable or non-
variable position of l1 — then either:
1. l1θ does not have a pattern modulo Ax, i.e., for every term u s.t. u =Ax l1θ , u is reducible in

E modulo Ax below the root position, or
2. l1θ has a pattern modulo Ax, i.e., there is a term u s.t. u =Ax l1θ and u is reducible in E

modulo Ax only at the root position, but then the matching substitution is E,Ax-irreducible.
Variant-preservingness is necessary for an eager generation of variants; see [5] for details.
An equation’s right-hand side must be a strongly irreducible term, i.e., for any E,Ax-normalized
substitution σ , the term tσ is E,Ax-irreducible. A term containing only variables and non-
defined (constructor) symbols is strongly irreducible.

The above conditions ensure that (Σ,E ∪Ax) has the finite variant property. We refer the reader to
[14] for a detail explanation of variants and variant generation as well as for automated methods for
ensuring the finite variant property. Any rewrite theory mod (Σ,Ax∪E ∪G,R) endm where G is an
additional set of equations is also considered admissible for variant generation if the equational part
(Σ,Ax∪E) satisfies the conditions described above. Note that when an equational theory (Σ,Ax∪
E ∪G) is provided to Full Maude, each equation in E (used for variant computation) must include
the variant attribute.

Given a module ModId, Full Maude provides a variant generation command of the form:
(get variants [in ModId :] t .)

ACU-Coherence Completion. The convergence and sort-decreasingness of equational Maude spec-
ifications can be checked using Maude’s Church-Rosser Checker (CRC) [10] and Termination
Checker (MTT) [8]. For theories Ax that are combinations of associativity, commutativity, and
identity axioms, we can make any specification Ax-coherent by using a procedure which adds Ax-
extensions and always terminates (see [20], and [6, Section 4.8] for a more informal explanation).

The user modules are automatically completed for Ax-coherence when used for variant genera-
tion and variant-based unification (Section 4) and narrowing (Section 5). The user can access these
automatically completed user modules by invoking the command

(acu coherence completion [<module-expr.>] .)
where <module-expr.> is any module expression. If no module expression is given the default cur-
rent module is completed.

A corresponding acuCohComplete function is available at the metalevel of Maude.
op acuCohComplete : Module -> Module .

If no module expression is given, the default current module is used.

A Motivating Example. Consider, for example, the following Petri-net-like specification of a vend-
ing machine to buy apples (a) or cakes (c) with dollars ($) and/or quaters (q):

(mod VENDING-MACHINE is
sorts Coin Item Marking Money State . subsort Money Item < Marking .
op empty : -> Money . op <_> : Marking -> State . subsort Coin < Money .
op __ : Money Money -> Money [assoc comm id: empty] .
op __ : Marking Marking -> Marking [assoc comm id: empty] .
ops $ q : -> Coin . ops a c : -> Item . var M : Marking .
rl [buy-c] : < M $ > => < M c > .
rl [buy-a] : < M $ > => < M a q > .
eq [change]: q q q q = $ [variant] .

endm)

The equational theory underlying this rewrite theory contains two subsort-overloaded ACU symbols
and an equation q q q q = $ (for variant computation). Note that the module is not ACU-coherent.
It is automatically completed for coherence modulo ACU by replacing the change equation by the

RTA’11

36 Variants, Unification, Narrowing, and Symbolic Reachability in Maude 2.6

equation “eq [change-Ext]: M q q q q = M $ [variant] .". Note also that this equation
satisfies all the conditions above for admissible theories, especially strongly right irreducibility and
variant preservingness. We can get variants of a term as follows.

Maude> (get variants in VENDING-MACHINE : < $ q q X:Marking > .)
Variant 1
< $ q q X:Marking >, empty substitution
Variant 2
< $ $ #5:Marking >, X:Marking --> q q #5:Marking

These two variants represent a finite, complete, and maximal set of variants for the given term.
For instance, the variant

{< $ $ q q Y:Marking >, X:Marking --> q q q q Y:Marking}
is an instance of the first variant above, i.e., the canonical form < $ $ q q Y:Marking > is an
instance of the normal form < $ q q X:Marking > of the first variant, and the (normalized ver-
sion) of the instantiating substitution (X:Marking --> $ Y:Marking) is an instance of the empty
substitution of the first variant. Note that this variant is not an instance of the second variant above
because the substitution X:Marking --> q q q q Y:Marking is normalized before comparing it
with the substitution X:Marking --> q q #5:Marking of the second variant above.

The procedure for variant generation is also available at the metalevel of Maude thanks to the
getVariants function.

op getVariants : Module Term -> VariantFourSet .

Handling of Other Axioms. Variant generation and variant-based unification (Section 4) and nar-
rowing (Section 5) have also been extended to deal with any combination of associativity and/or
commutativity and/or identity axioms except associativity without commutativity. The general idea,
borrowed from [9], is to replace a specification (Σ,(Ax∪ Id)∪E) where Ax contains C, AC, or ACU
axioms and Id : maude− rta11.tex,v1.52011/04/0512 : 19 : 20schaussExp contains all other iden-
tity axioms, by a semantically equivalent specification (Σ,Ax∪ (~Id ∪ Ê)), where the Id : maude−
rta11.tex,v1.52011/04/0512 : 19 : 20schaussExp axioms have been oriented as rules, and the equa-
tions Ê are the ~Id,Ax-variants of the original equations E.

A command is available in Full Maude of the form:
(remove id attributes [<module-expr.>] .)

It shows the specified module with the identity attributes (id, right id, and left id) transformed
into rules and the equations Ê obtained using ~Id,Ax-variants.

A corresponding function removeIds is available at the metalevel of Maude.
op removeIds : Module -> Module .

If no module expression is given, the default current module is used.

4 Variant-based Equational Order-Sorted Unification

The intimate connection between E,Ax-variants and E ∪Ax-unification is as follows. Suppose that
we extend the equational theory (Σ,E ∪Ax) to (Σ̂, Ê ∪Ax) by adding to Σ a new sort Truth, not
related to any sort in Σ, with a constant tt, and for each top sort [s] of each connected component s,
an operator eq : [s] × [s]→ Truth; and where Ê extendes E by adding for each top sort [s] and x of
sort [s] an extra rule eq(x,x)→ tt. Then, given any two terms t, t ′, if θ is a (E,Ax)-unifier of t and t ′,
then the E,Ax-canonical forms of tθ and t ′θ must be Ax-equal and therefore the pair (tt,θ) must be
a variant of the term eq(t, t ′), i.e., eq(t, t ′)θ →! tt. Furthermore, if the term eq(t, t ′) has a finite set of
most general variants, then we are guaranteed that the set of most general (E,Ax)-unifiers of t and
t ′ is finite and subsumes (tt,θ).

Given a module ModId of the general form mod (Σ,Ax∪E ∪G,R) endm where (Σ,Ax∪E) satis-
fies the requirements of Section 3, Full Maude provides a command for E∪Ax-equational unification

Durán, Eker, Escobar, Meseguer, and Talcott 37

based on variant generation of the form:
(variant unify [in ModId :] t =? t ′ .)

Consider again the vending machine. We can ask whether there is an E ∪Ax-equational unifier
of two configurations, one containing a dollar and two quarters and another containing two quarters:

Maude> (variant unify in VENDING-MACHINE : < q q X:Marking > =? < $ Y:Marking > .)
Solution 1
X:Marking --> q q Y:Marking
Solution 2
X:Marking --> $ #12:Marking ; Y:Marking --> q q #12:Marking

There are no more general unifiers. For instance, X:Marking --> q q, Y:Marking --> empty is an
instance of the first solution by using the identity property of the operator for markings.

The procedure for variant-based equational unification is also available at the metalevel thanks
to the metaVariantUnify function.

op metaVariantUnify : Module Term Term -> SubstitutionSet .
A useful special case of the variant-based equational unification feature is that of Ax′-unification

for theories (Σ,Ax′) where: (i) Ax′ = Ax∪ Ids, (ii) (Σ,Ax) satisfies the requirements in Section 3,
and (iii) Ids is a collection of id:, left id:, right id: axioms. This case is handled by invoking
the variant unify command directly on (Σ,Ax′), since Full Maude first invokes the remove id
attributes transformation command described in Section 3.

5 Narrowing-based Symbolic Reachability Analysis

Narrowing [16] generalizes term rewriting by allowing free variables in terms and by performing
unification instead of matching. Likewise, narrowing modulo Ax∪E [18] generalizes rewriting with
rules R modulo Ax∪E. Given an order-sorted rewrite theory (Σ,Ax∪E,R), where R is a set of
unconditional rewrite rules such that the lefthand sides are non-variable terms and the rules are
explicitly Ax∪E-coherent [19], and (Σ,Ax∪E) is an equational theory such that a finitary Ax∪E-
unification procedure is available, the (R,Ax∪E)-narrowing relation is defined as t ;σ ,p,R,Ax∪E t ′

iff there is a non-variable position p of t, a (possibly renamed) rule l → r in R, and a unifier σ ∈
Unif Ax∪E(t|p, l) such that t ′ = σ(t[r]p).

The classical application of (R,Ax∪E)-narrowing is to perform R∪Ax∪E-unification when the
rules R are understood as equations. Indeed the variant-based equational order-sorted unification al-
gorithm of Section 4 is based on an E,Ax-narrowing strategy, called folding variant narrowing [14],
that terminates when E ∪Ax has the finite variant property [7], even though full E,Ax-narrowing
typically does not terminate when Ax contains AC axioms (see [7, 14]).

Instead, when the rules R are understood as transition rules, a completely different application
of R,Ax∪ E-narrowing is that of symbolic reachability analysis [19]. Specifically, we consider
transition systems specified by order-sorted rewrite theories of the form mod (Σ,Ax∪E,R) endm
where: (i) E ∪Ax satisfies the requirements of Section 3, and (ii) the transition rules R are E ∪Ax-
coherent and topmost (so that rewriting is always done at the top of the term). Then, narrowing
modulo E ∪Ax is a complete deductive method [19] for symbolic reachability analysis, that is, for
solving existential queries of the form ∃x : t(x)→∗ t ′(x) in the sense that the formula holds for
(Σ,Ax∪E,R) iff there is a narrowing sequence t ;∗R,E∪Ax u such that u and t ′ have a E ∪Ax-unifier.

This symbolic reachability analysis is supported by Full Maude’s search command, which has
the form:

(search [[n,m]] [in ModId :] t1 SearchArrow t2 .)
where: n and m are optional arguments providing, respectively, a bound on the number of desired
solutions and the maximum depth of the search; ModId is the module where the search takes place;
t1 is the starting non-variable term, which may contain variables; t2 is the term specifying the pattern

RTA’11

38 Variants, Unification, Narrowing, and Symbolic Reachability in Maude 2.6

that has to be reached, with variables, some of which possibly shared with t1; and SearchArrow is an
arrow indicating the form of the narrowing proof from t1 until t2, where ~>1 indicates a narrowing
proof consisting of exactly one step; ~>+ indicates a proof of one or more steps; ~>* indicates a proof
of none, one, or more steps; and ~>! indicates that the reached term cannot be further narrowed. This
narrowing-based search command was already introduced in [4] but now can be performed modulo
theories with the finite variant property.

Consider again the vending machine of Section 3. We can use the narrowing search command
to answer the question: Is there any combination of one or more coins that returns exactly an apple
and a cake? This can be done by searching for states that are reachable from a term < M:Money >
and match the desired pattern at the end.

Maude> (search [1] in VENDING-MACHINE : < M:Money > ~>* < a c > .)
Solution 1
M:Money --> $ q q q

Note that we must restrict the search to just one solution, because narrowing does not terminate for
this reachability problem even though the above solution is indeed the only solution.

Narrowing-based reachability analysis is also available at the metalevel by using the following
metaNarrowSearch function.

op metaNarrowSearch :
Module Term Term Substitution Qid Bound Bound Bound -> ResultTripleSet .

If a non-identity substitution is provided in the fourth argument, then any computed substitution must
be an instance of the provided one, i.e., we can restrict the computed narrowing sequences to some
concrete shape. The Qid metarepresents the appropriate search arrow, similar to the metaSearch
command (see [5, Section 11.4.6]). For the bounds, the first one is the number of computed solutions,
the second one is the maximum length of the narrowing sequences, i.e., the depth of the narrowing
tree, and the third one is the chosen solution (in order to provide all solutions in a sequential way, as
many meta-level commands in Maude do).

Full Maude’s search command also supports a more general form of symbolic reachability
analysis that uses narrowing with simplification. We can allow more general rewrite theories of the
form mod (Σ,Ax∪E∪G,R) endm where: (i) E∪Ax satisfies the requirements of Section 3, (ii) G is an
additional set of equations, and (iii) the rules R are E∪Ax∪G-coherent and topmost. The remaining
equations G are now used in the combined relation ;R,E∪Ax;→!

E∪G,Ax. Note that this combined
relation may be incomplete, i.e., given a reachability problem of the form ∃x : t(x)→∗ t ′(x) and a
solution σ (i.e., σ(t)→∗R,E∪Ax∪G σ(t ′)), the relation ;R,E∪Ax;→!

E∪G,Ax may not be able to find a
solution more general than σ .

6 Applications

The key usefulness of the new variant unify feature is to greatly extend the range of theories
for which a unification algorithm can be provided by Maude. The key distinction is one between
dedicated algorithms for a given theory, and generic algorithms such as folding variant narrowing
which can be applied to a wide range of user-defined theories. As explained in this paper, Maude 2.6
has a dedicated algorithm supporting order-sorted unification modulo axioms Ax which may contain
C, AC, and ACU axioms. The variant unify feature then allows us to automatically derive a
finitary unification algorithm for any theory E ∪Ax such that satisfies the requirements in Section 3
and therefore enjoys the finite variant property. In particular, as shown in [7], a good number of
cryptographic theories of practical interest satisfy the finite variant property modulo axioms such as
AC or /0.

Support for variant-based unification can therefore be exploited by cryptographic protocol anal-
ysis tools performing symbolic reachability analysis. Such protocols can be modeled as rewrite

Durán, Eker, Escobar, Meseguer, and Talcott 39

theories (Σ,E ∪Ax,R), where the algebraic properties of the cryptographic functions are specified
by equations E ∪Ax, and the protocol’s transition rules are specified by the rewrite rules R. Thus the
narrowing search feature modulo a theory E ∪Ax satisfying the finite variant property is a feature
which, by being available also at the metalevel, can be the basis of a protocol analysis tool perform-
ing reachability analysis for protocol verification. This is exactly the approach that has been followed
for analyzing cryptographic protocols modulo algebraic properties in the Maude-NPA tool [13, 21],
which has been able to analyze a substantial collection of cryptographic protocols modulo their alge-
braic properties. With the metaNarrowSearch operator, this same functionality becomes now avail-
able to other protocol analysis tools. As an example, business processes can be similarly analyzed
to check for violations. The Document Logic Analysis tool [17] represents document processing
protocols as theories in rewriting logic and uses symbolic reachability analysis in Maude to look for
forgeries and invalid signatures.

The usefulness of variants and variant generation goes beyond the availability of finitary uni-
fication algorithms and symbolic reachability analysis for cryptographic protocols and for other
concurrent systems. As demonstrated by its recent applications to termination algorithms modulo
axioms in [9], and to algorithms for checking confluence and coherence of rewrite theories modulo
axioms, such as those used in the most recent Maude CRC and ChC tools [10, 11], computing the
E,Ax-variants of a term may be just as important as computing E ∪Ax-unifiers. The key idea is the
following. Suppose that R is a collection of rewrite rules modulo axioms Ax for which we want to
prove, say, termination, or confluence. We may not have any tools for checking such properties that
can work modulo the given set of axioms Ax. However, we can decompose Ax as a disjoint union
E ∪Ax′, where E is convergent, sort-decreasing and coherent modulo Ax′, and where we have meth-
ods to prove, e.g., termination or confluence modulo Ax′. As shown in [9], we can transform R,Ax
into a semantically equivalent theory R̂∪E,Ax′, where R̂ specializes each rule in R to the family of
E,Ax′-variants of their lefthand sides. If E ∪Ax′ has the finite variant property, we are sure that R̂
will be a finite set; but in practice R̂ can often be finite without such a property. For example, Ax
can be the theory A of associativity, for which unification is not even finitary, yet in an order-sorted
setting A can often be added as a rule so that R̂ is finite in practice. We refer to [9, 10, 11] for details.

Acknowledgements. We are very thankful to the other members of the Maude team, namely,
Manuel Clavel, Patrick Lincoln, and Narciso Martí-Oliet, with whom we have designed and built
the Maude language and system.

References

1 A. Boudet. Unification in a combination of equational theories: an efficient algorithm. In Pro-
ceedings of the tenth international conference on Automated deduction, CADE-10, pages 292–307.
Springer-Verlag, 1990.

2 A. Boudet, E. Contejean, and H. Devie. A new AC-unification algorithm with a new algorithm for
solving Diophantine equations. In Proceedings of the 5th IEEE Symposium on Logic in Computer
Science, pages 289–299. IEEE Computer Society Press, 1990.

3 R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on
Computers, 35:677–691, 1986.

4 M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. L. Tal-
cott. Unification and narrowing in Maude 2.4. In R. Treinen, editor, Rewriting Techniques and
Applications, 20th International Conference, RTA 2009, Brasília, Brazil, June 29 - July 1, 2009,
Proceedings, volume 5595 of Lecture Notes in Computer Science, pages 380–390. Springer, 2009.

5 M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott. Maude
Manual (Version 2.6). March 2011, http://maude.cs.uiuc.edu.

RTA’11

http://maude.cs.uiuc.edu

40 Variants, Unification, Narrowing, and Symbolic Reachability in Maude 2.6

6 M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Talcott. All About
Maude - A High-Performance Logical Framework: How to Specify, Program, and Verify Systems
in Rewriting Logic, volume 4350 of Lecture Notes in Computer Science. Springer, 2007.

7 H. Comon-Lundh and S. Delaune. The finite variant property: How to get rid of some algebraic
properties. In J. Giesl, editor, Term Rewriting and Applications, 16th International Conference, RTA
2005, Nara, Japan, April 19-21, 2005, Proceedings, volume 3467 of Lecture Notes in Computer
Science, pages 294–307. Springer, 2005.

8 F. Durán, S. Lucas, and J. Meseguer. MTT: The Maude termination tool (system description).
In A. Armando, P. Baumgartner, and G. Dowek, editors, Automated Reasoning 4th International
Joint Conference, IJCAR 2008 Sydney, Australia, August 12-15, 2008 Proceedings, volume 5195
of Lecture Notes in Computer Science, pages 313–319. Springer, 2008.

9 F. Durán, S. Lucas, and J. Meseguer. Termination modulo combinations of equational theories. In
S. Ghilardi and R. Sebastiani, editors, Frontiers of Combining Systems, 7th International Sympo-
sium, FroCoS 2009, Trento, Italy, September 16-18, 2009. Proceedings, volume 5749 of Lecture
Notes in Computer Science, pages 246–262. Springer, 2009.

10 F. Durán and J. Meseguer. A Church-Rosser checker tool for conditional order-sorted equational
Maude specifications. In P. C. Ölveczky, editor, 8th International Workshop on Rewriting Logic
and its Applications, 2010.

11 F. Durán and J. Meseguer. A Maude coherence checker tool for conditional order-sorted rewrite
theories. In P. C. Ölveczky, editor, 8th International Workshop on Rewriting Logic and its Applica-
tions, 2010.

12 S. Eker. Fast matching in combinations of regular equational theories. In J. Meseguer, editor,
Proceedings of the First International Workshop on Rewriting Logic and its Applications, volume 4
of Electronic Notes in Theoretical Computer Science. Elsevier, 1996.

13 S. Escobar, C. Meadows, and J. Meseguer. Maude-NPA: Cryptographic protocol analysis modulo
equational properties. In Foundations of Security Analysis and Design V, FOSAD 2007/2008/2009
Tutorial Lectures, volume 5705 of Lecture Notes in Computer Science, pages 1–50. Springer, 2009.

14 S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and optimal variant termination.
The Journal of Logic and Algebraic Programming, 2011. In Press.

15 F. Fages. Associative-commutative unification. J. of Symbolic Computation, 3:257–275, 1987.
16 J.-M. Hullot. Canonical forms and unification. In W. Bibel and R. A. Kowalski, editors, CADE,

volume 87 of Lecture Notes in Computer Science, pages 318–334. Springer, 1980.
17 S. Iida, G. Denker, and C. Talcott. Document logic: Risk analysis of business processes through

document authenticity. In Second International Workshop on Dynamic and Declarative Business
Processes (DDBP). IEEE Digital Library, 2009. Extended version to appear in Journal of Research
and Practice in Information Technology, 2011.

18 J.-P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental construction of unification algorithms
in equational theories. In J. Díaz, editor, ICALP, volume 154 of Lecture Notes in Computer Science,
pages 361–373. Springer, 1983.

19 J. Meseguer and P. Thati. Symbolic reachability analysis using narrowing and its application to
verification of cryptographic protocols. Higher-Order and Symbolic Computation, 20(1-2):123–
160, 2007.

20 G. Peterson and M. Stickel. Complete sets of reductions for some equational theories. Journal of
ACM, 28(2):233–264, 1981.

21 R. Sasse, S. Escobar, C. Meadows, and J. Meseguer. Protocol analysis modulo a combination
of theories: A case study in Maude-NPA. In 6th International Workshop on Security and Trust
Management (STM’10), Lecture Notes in Computer Science. Springer, 2010. To appear.

22 M. E. Stickel. A complete unification algorithm for associative-commutative functions. In Pro-
ceedings of the 4th international joint conference on Artificial intelligence - Volume 1, pages 71–76.
Morgan Kaufmann Publishers Inc., 1975.

Termination Analysis of C Programs Using
Compiler Intermediate Languages
Stephan Falke1, Deepak Kapur2, and Carsten Sinz1

1 Institute for Theoretical Computer Science
Karlsruhe Institute of Technology (KIT), Germany
{stephan.falke, carsten.sinz}@kit.edu

2 Department of Computer Science
University of New Mexico, Albuquerque, NM, USA
kapur@cs.unm.edu

Abstract
Modeling the semantics of programming languages like C for the automated termination analysis
of programs is a challenge if complete coverage of all language features should be achieved. On the
other hand, low-level intermediate languages that occur during the compilation of C programs
to machine code have a much simpler semantics since most of the intricacies of C are taken
care of by the compiler frontend. It is thus a promising approach to use these intermediate
languages for the automated termination analysis of C programs. In this paper we present the
tool KITTeL based on this approach. For this, programs in the compiler intermediate language are
translated into term rewrite systems (TRSs), and the termination proof itself is then performed
on the automatically generated TRS. An evaluation on a large collection of C programs shows
the effectiveness and practicality of KITTeL on “typical” examples.

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.41

Category System Description

1 Introduction

Methods for automatically proving termination of imperative programs operating on integers
have received increased attention recently. The most commonly used automatic method for
this is based on linear ranking functions which linearly combine the values of the program
variables in a given state [5, 6, 19, 20]. More recently, the combination of abstraction
refinement and linear ranking functions has been considered [8, 9]. Based on this idea, the
tool Terminator [10] has reportedly been used for showing termination of device drivers.

Developing a tool that can handle all intricacies of C is a challenge since C employs a
complex syntax and semantics. It is not clear to what extent the implementations of the
aforementioned methods can handle real-life C programs since the papers are typically based
on idealized transition systems and the implementations are not publicly available.

We advocate to perform the termination analysis of C programs not on the source code
level but rather on the level of a compiler intermediate representation (IR). This approach
has the following advantages:
1. The IR is considerably simpler than C. This makes it relatively easy to accept any C

program as an input. Features of the IR that are not (yet) supported by the termination
analysis techniques can easily be abstracted automatically.

This work was supported in part by the “Concept for the Future” of Karlsruhe Institute of Technology
within the framework of the German Excellence Initiative.

© Stephan Falke, Deepak Kapur, and Carsten Sinz;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 41–50

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.41
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42 Termination Analysis of C Programs Using Compiler Intermediate Languages

2. The program that is analyzed is much closer to the program that is actually executed on
the computer since ambiguities of C’s semantics have already been resolved.

3. In producing the IR, compilers already use program optimizations that might simplify
the termination analysis significantly.

For similar reasons, termination analysis of Java programs is often performed on the bytecode
level and not on the source code [1, 22, 18, 4].

In this paper, we focus on the LLVM compiler framework and its intermediate language
LLVM-IR [17]. The method itself is independent of the concrete IR, however. Since there are
compilers for various programming languages built atop of LLVM, the methods presented
in this paper can be used for the termination analysis of programs written in C, C++,
Objective-C, and further programming languages.

Termination analysis of LLVM-IR programs is then performed by generating a term
rewrite system (TRS) from the LLVM-IR program. Termination analysis of TRSs has been
investigated extensively in the past (see [24] for a survey). In this paper, TRSs with
constraints over the integers (int-based TRSs) are used, where the constraints are relations
on the variables expressed as quantifier-free formulas from non-linear arithmetic. Similarly
to what was proposed in [12, 15], well-known methods from the term rewriting literature can
be adapted for the termination analysis of int-based TRSs.

I Example 1. Consider the C program on the left-hand side:

int power(int x, int y) {
int r = 1;
while (y > 0) {

r = r ∗ x;
y = y − 1;

}
return r;

}

statestart(vx, vy, vy.0, vr.0)→ stateentryin (vx, vy, vy.0, vr.0)
stateentryin (vx, vy, vy.0, vr.0)→ statebb1in (vx, vy, vy, 1)
statebb1in (vx, vy, vy.0, vr.0)→ statebbin (vx, vy, vy.0, vr.0) Jvy.0 > 0K

statebb1in (vx, vy, vy.0, vr.0)→ statereturnin (vx, vy, vy.0, vr.0) Jvy.0 ≤ 0K

statebbin (vx, vy, vy.0, vr.0)→ statebb1in (vx, vy, vy.0 − 1, vr.0 ∗ vx)
statereturnin (vx, vy, vy.0, vr.0)→ statestop(vx, vy, vy.0, vr.0)

Using the methods presented in this paper, the int-based TRS shown on the right-hand side
is automatically obtained from the LLVM-IR of the C program. Intuitively, the variables vx
and vy represent the inputs to the function, whereas the variables vy.0 and vr.0 correspond
to the (changing) program variables y and r used inside the loop of the function (why the
program variable y gives rise to vy and vy.0 is explained in Section 3). The function symbols
used in the int-based TRS intuitively correspond to a program counter. J

The approach has been implemented in the publicly available termination tool KITTeL.
An empirical evaluation on a large collection of examples taken from various sources clearly
shows the effectiveness and practicality of our method.

2 int-Based TRSs

In order to model integers, the function symbols from Fint = FZ ∪ {+, ∗,−} with FZ =
{n | n ∈ Z} and types +, ∗ : int × int → int, and − : int → int are used. Terms built
from these function symbols and a disjoint set V of variables are called int-terms. We use
a simplified notation for int-terms, e.g., the int-term (x + (−(y ∗ y))) + 3 is written as
x− y2 + 3. A linear int-term is an int-term that does not contain any occurrence of “∗”.
Fint is extended by finitely many function symbols f with types int× . . .× int→ univ,

where univ is a type distinct from int. The set containing these additional function symbols

Stephan Falke, Deepak Kapur, and Carsten Sinz 43

is denoted by F and T (F ,Fint,V) denotes the set of terms of the form f(s1, . . . , sn) where
f ∈ F and s1, . . . , sn are int-terms. A substitution is a mapping from variables to int-terms.

int-constraints are quantifier-free formulas from (non-linear) integer arithmetic. An
atomic int-constraint has the form s ' t, s ≥ t, or s > t for int-terms s, t and the set of
int-constraints is the closure of atomic int-constraints under > (truth), ¬ (negation), and ∧
(conjunction). The Boolean connectives ⊥, ∨,⇒, and⇔ are defined as usual. int-constraints
have the expected semantics regarding int-validity and int-satisfiability. These properties
are in general only decidable for linear or variable-free int-constraints.

The rewrite rules of int-based TRSs are equipped with int-constraints. These constraints
are used in order to restrict the applicability of the rewrite rules, see Definition 3. The rules
generalize the PA-based rewrite rules from [12]. Alternatively, they can be interpreted as a
restricted form of the rewrite rules considered in [15] which allow nested function symbols.

I Definition 2. An int-based rewrite rule has the form l→ rJϕK such that l = f(x1, . . . , xn)
where x1, . . . , xn are pairwise distinct variables, r ∈ T (F ,Fint,V), and ϕ is an int-constraint.

Notice that r and ϕ may contain variables that are not occurring in l. The restriction that
the arguments on the left-hand side are pairwise distinct variables simplifies the definition
of the rewrite relation of an int-based TRS since matching becomes trivial. Notice that
equality between the arguments xi and xj can be enforced by adding the int-constraint
xi ' xj . The constraint > is omitted in an int-based rewrite rule l→ rJ>K. An int-based
term rewrite system (int-based TRS) R is a finite set of int-based rewrite rules.

I Definition 3. For an int-based TRS R, the relation s →int\R t for terms s, t of the
form f(n1, . . . , nk) with n1, . . . , nk ∈ FZ holds iff there exist l→ rJϕK ∈ R and an FZ-based
substitution σ such that 1. s = lσ, 2. ϕσ is int-valid, and 3. t = norm(rσ). Here, a
substitution σ is FZ-based iff σ(x) ∈ FZ for all variables x and norm(rσ) evaluates according
to the usual semantics of “+”, “∗”, and “−” on variable-free terms.

Termination of int-based TRSs can be shown by using an extension of the methods
presented in [12] which are motivated by the dependency pair method [2, 16, 11] and are
based on the notion of chains. For an int-based TRS R, a (possibly infinite) sequence of
int-based rewrite rules l1 → r1Jϕ1K, l2 → r2Jϕ2K, . . . from R is an R-chain iff there exists
an FZ-based substitution σ such that norm(riσ) = li+1σ and ϕiσ is int-valid for all i ≥ 1.

Chains provide a precise characterization of termination in the sense that an int-based
TRS R is terminating if and only if there are no infinite R-chains. This characterization
of termination is utilized by introducing sound processors which are used to transform an
int-based TRS into a set of int-based TRSs such the input TRS is terminating if all output
TRSs are terminating. The following are the two most important processors for int-based
TRSs (details on these processors and their implementation can be found in [13]):
• SCC decomposition: Here, it is approximated which rules may follow each other in chains.

Then, R is decomposed into the non-trivial SCCs of the thus obtained graph.
• Polynomial interpretations: A polynomial interpretation maps each n-ary f ∈ F to a

polynomial Pol(f) ∈ Z[x1, . . . , xn]. This mapping extends to terms from T (F ,Fint,V) by
letting [f(t1, . . . , tn)]Pol = Pol(f)(t1, . . . , tn). Then, terms are compared (in the context of
a constraint) by comparing polynomials, and all strictly decreasing rules may be deleted.

3 Translating LLVM-IR Programs into int-Based TRSs

Converting programs from a real-life programming language such as C into int-based TRSs
is non-trivial. C has a complex syntax and semantics, resulting in many cases that need to

RTA’11

44 Termination Analysis of C Programs Using Compiler Intermediate Languages

be considered. An alternative to operating on the source code level is the use of compiler
intermediate languages. These intermediate languages typically have a simple syntax and
semantics, thus simplifying the translation into int-based TRSs significantly.

In this paper, we consider LLVM and its intermediate language LLVM-IR [17]. An LLVM-
IR program is an assembly program for a register machine with an unbounded number
of registers. A program consists of type definitions, global variable declarations, and the
program itself, given in the form of one or more functions. Each function is represented as a
graph of basic blocks (see Example 4 for an LLVM-IR program), where each basic block is a
list of instructions, and execution of a function starts at the basic block named entry. For
our purpose, LLVM-IR instructions can be categorized into six classes:
• Three-address code (TAC) instructions such as %2 = mul i32 %r.0, %x.
• Control flow instructions: Branch (br), return (ret), phi (phi).
• Function calls using call instructions.
• Memory access instructions, namely load and store.
• Address calculations using getelementptr instructions.
• Auxiliary instructions like type casts or bit-level instructions.
Branches and return instructions are only allowed as the last instruction of a basic block and
each basic block is terminated by one of these instructions.

LLVM-IR programs are in static single assignment (SSA) form, i.e., each register (variable)
is assigned exactly once in the static LLVM-IR program. Due to this, it becomes necessary
to introduce the phi-instruction phi, which is used to select one of several values whenever
the control flow in a program converges again (e.g., after an if-then-else statement). For
example, the meaning of %r.0 = phi i32 [1, %entry], [%1, %bb] contained in the
basic block bb1 in Example 4 is that the register %r.0 is assigned the value 1 if the control
flow passed from entry to bb1. If control passed from bb to bb1, then %r.0 is assigned the
value contained in %1. Phi-instructions only occur at the beginning of basic blocks.

All variables in LLVM-IR are typed. Available types include a void type, integer types like
i32 (where the bit-width is given explicitly), floating-point types, and derived types (such as
pointer, array and structure types). The integer type i1 is used as a dedicated Boolean type.
Aggregate types (structures and arrays) are accessed using memory load/store operations
and offset calculations using the getelementptr instruction.
I Assumption 1. All LLVM-IR integer types ik with k > 1 are identified with Z.

3.1 Single Non-Recursive Function Operating on Integers
First, it is assumed that the LLVM-IR program operates only on integer types. Furthermore,
it is assumed that there is exactly one function, and that this function does not contain any
call instruction. It thus only contains arithmetical instructions (add, sub, mul, signed and
unsigned div and rem), comparison instructions (equality eq, disequality neq, (un)signed
greater-than (u|s)gt, greater-or-equal (u|s)ge, less-than (u|s)lt, and less-or-equal (u|s)le),
control flow instructions, and type cast instructions.

I Example 4. For the C program from Example 1, the LLVM-IR program shown in Figure 1
is obtained using the LLVM compiler frontend llvm-gcc. Here, the basic blocks bb1 and bb
correspond to the while-loop in the C program. J

An LLVM-IR program is now translated into an int-based TRS as follows. Each integer-
typed function argument, each register defined by an integer-typed TAC instruction, and
each register defined by an integer-typed phi-instruction is mapped to a variable in the TRS.

Stephan Falke, Deepak Kapur, and Carsten Sinz 45

define i32 @power(i32 %x, i32 %y) {
entry:

br label %bb1

bb1:
%y.0 = phi i32 [%y, %entry], [%2, %bb]
%r.0 = phi i32 [1, %entry], [%1, %bb]
%0 = icmp sgt i32 %y.0, 0
br i1 %0, label %bb, label %return

bb:
%1 = mul i32 %r.0, %x
%2 = sub i32 %y.0, 1
br label %bb1

return:
ret i32 %r.0

}

Figure 1 LLVM-IR program for the C program from Example 1.

Then, each integer-typed TAC instruction I is assigned two function symbols stateIin and
stateIout and gives rise to a rewrite rule stateIin(. . .)→ stateIout(. . .)JϕK that mimics the effect
of I. Here, division and remainder instructions are handled by introducing fresh variables on
the right-hand side and adding appropriate constraints on that variable.

The control flow of the LLVM-IR program is mimicked as follows. The function symbols
statestart and statestop are introduced, denoting starting and stopping states, respectively.
Next, each basic block bb is assigned two function symbols statebbin and statebbout . These
function symbols correspond to the points after the final phi-instruction in bb and before the
branch or return instruction of bb, respectively. If bb contains the (possibly empty) sequence
Ω = 〈I1, . . . , In〉 of integer-typed TAC instructions, then, for two consecutive instructions
Ik and Ik+1, the function symbols stateIkout

and stateIk+1in
are identified. Furthermore,

rules statebbin(. . .) → stateI1in
(. . .) and stateInout

(. . .) → statebbout(. . .) (if Ω is non-empty) or
statebbin(. . .)→ statebbout(. . .) (if Ω is empty) is added. If bb is terminated by a return instruc-
tion, then the rule statebbout(. . .)→ statestop(. . .) is added. Otherwise, bb is terminated by a
branch instruction. For an unconditional branch to bb′, a rule statebbout(. . .)→ statebb′in(. . .)
is added, where the variables on the right-hand side that correspond to phi-instructions are
instantiated according to their value in the case where control flow passes from bb to bb′. A
conditional branch is treated similarly, but now the rules are equipped with the (possibly
negated) branch condition as a constraint.
I Example 5. Consider the C program from Example 1 and its LLVM-IR from Example 4.
Using the translation outlined above, the int-based TRS

statestart(vx, vy, vy.0, vr.0, v1, v2)→ stateentryin (vx, vy, vy.0, vr.0, v1, v2)
stateentryin (vx, vy, vy.0, vr.0, v1, v2)→ stateentryout (vx, vy, vy.0, vr.0, v1, v2)

stateentryout (vx, vy, vy.0, vr.0, v1, v2)→ statebb1in (vx, vy, vy, 1, v1, v2)
statebb1in (vx, vy, vy.0, vr.0, v1, v2)→ statebb1out (vx, vy, vy.0, vr.0, v1, v2)

statebb1out (vx, vy, vy.0, vr.0, v1, v2)→ statebbin (vx, vy, vy.0, vr.0, v1, v2) Jvy.0 > 0K

statebb1out (vx, vy, vy.0, vr.0, v1, v2)→ statereturnin (vx, vy, vy.0, vr.0, v1, v2) Jvy.0 ≤ 0K

statebbin (vx, vy, vy.0, vr.0, v1, v2)→ state1(vx, vy, vy.0, vr.0, v1, v2)
state1(vx, vy, vy.0, vr.0, v1, v2)→ state2(vx, vy, vy.0, vr.0, vr.0 ∗ vx, v2)
state2(vx, vy, vy.0, vr.0, v1, v2)→ state3(vx, vy, vy.0, vr.0, v1, vy.0 − 1)
state3(vx, vy, vy.0, vr.0, v1, v2)→ statebbout (vx, vy, vy.0, vr.0, v1, v2)

statebbout (vx, vy, vy.0, vr.0, v1, v2)→ statebb1in (vx, vy, v2, v1, v1, v2)
statereturnin (vx, vy, vy.0, vr.0, v1, v2)→ statereturnout (vx, vy, vy.0, vr.0, v1, v2)

statereturnout (vx, vy, vy.0, vr.0, v1, v2)→ statestop(vx, vy, vy.0, vr.0, v1, v2)

is obtained. Here, simplified names have been used for the function symbols. J

RTA’11

46 Termination Analysis of C Programs Using Compiler Intermediate Languages

Now an LLVM-IR program is terminating if the int-based TRS RP is terminating, but
RP might be non-terminating even if P is terminating (see Section 3.5 for a partial remedy).

3.2 Simplification of int-Based Rewrite Rules
The translation given above produces a large number of int-based rewrite rules since each
integer-typed TAC instruction and each transition between basic blocks gives rise to one
or more rules. In order to decrease the number of int-based rewrite rules, it is possible to
combine several rules into a single one. Intuitively, this corresponds to the composition of
the effect of several integer-typed TAC instructions into a single state change.

For int-based TRSs obtained from LLVM-IR, the set of control points C consists of the
function symbols statestart, statestop, and statebbin for each basic block bb of the program. It is
then possible to eliminate int-based rewrite rules that contain a function symbol not occurring
in C by combining an int-based rewrite rule statei(x1, . . . , xn)→ statej(e1, . . . , en)JϕK, where
statei ∈ C and statej 6∈ C, with a rule statej(x1, . . . , xn) → statek(e′1, . . . , e′n)JψK, resulting
in statei(x1, . . . , xn) → statek(e′1ω, . . . , e′nω)Jϕ ∧ ψωK where ω = {x1 7→ e1, . . . , xn 7→ en}.
This chaining needs to be done for all possible rules that have statej on their left-hand side.
The old rules are replaced by the new rules and the process is iterated until all rules with a
function symbol from C on the left-hand side also have a function symbol from C on their
right-hand side.
I Example 6. Continuing Example 5, the control points are statestart, statestop, stateentryin ,
statebb1in , statebbin , and statereturnin . Combining rules w.r.t. these control points produces

statestart(vx, vy, vy.0, vr.0, v1, v2)→ stateentryin (vx, vy, vy.0, vr.0, v1, v2)
stateentryin (vx, vy, vy.0, vr.0, v1, v2)→ statebb1in (vx, vy, vy, 1, v1, v2)
statebb1in (vx, vy, vy.0, vr.0, v1, v2)→ statebbin (vx, vy, vy.0, vr.0, v1, v2) Jvy.0 > 0K

statebb1in (vx, vy, vy.0, vr.0, v1, v2)→ statereturnin (vx, vy, vy.0, vr.0, v1, v2) Jvy.0 ≤ 0K

statebbin (vx, vy, vy.0, vr.0, v1, v2)→ statebb1in (vx, vy, vy.0−1, vr.0 ∗ vx, v1, vy.0−1)
statereturnin (vx, vy, vy.0, vr.0, v1, v2)→ statestop(vx, vy, vy.0, vr.0, v1, v2)

as a new int-based TRS. J

After the combination of int-based rewrite rules, it is possible to remove some arguments
from the function symbols. Notice that the effect of instructions that are only used in the
same basic block where they are defined or in phi-instructions has been propagated by the
combination of rules. Thus, the corresponding variables can be removed as arguments from
the function symbols. On the syntactic level of rewrite rules, an argument position i is
unneeded if, for all rewrite rules l→ rJϕK, the variable occurring in position i of l does not
occur in ϕ and only in argument position i of r.
I Example 7. After removing the unneeded arguments in Example 6,

statestart(vx, vy, vy.0, vr.0)→ stateentryin (vx, vy, vy.0, vr.0)
stateentryin (vx, vy, vy.0, vr.0)→ statebb1in (vx, vy, vy, 1)
statebb1in (vx, vy, vy.0, vr.0)→ statebbin (vx, vy, vy.0, vr.0) Jvy.0 > 0K

statebb1in (vx, vy, vy.0, vr.0)→ statereturnin (vx, vy, vy.0, vr.0) Jvy.0 ≤ 0K

statebbin (vx, vy, vy.0, vr.0)→ statebb1in (vx, vy, vy.0 − 1, vr.0 ∗ vx)
statereturnin (vx, vy, vy.0, vr.0)→ statestop(vx, vy, vy.0, vr.0)

is obtained since arguments 5 and 6 are not needed. The methods outlined in Section 2 can
easily prove termination of this TRS. J

Stephan Falke, Deepak Kapur, and Carsten Sinz 47

3.3 Several Functions Operating on Integers
In this section it is discussed how the translation from LLVM-IR programs into int-based
TRSs can be extended to the case of several functions. For this, the user first specifies which
function should be the starting function for the termination analysis (often, this is the main
function). It is then necessary to include all functions that are (transitively) called by this
starting function in the termination analysis.

A given LLVM-IR program might not contain implementations of all functions being called.
Instead, some functions may only be given as prototype declarations (e.g., library functions).
I Assumption 2. All functions that are only declared as prototypes are terminating. Further-
more, these functions do not call functions defined in the program.

If the user-defined functions have a function call hierarchy with arbitrary recursion, then
it needs to be ensured that the sequence of recursive calls is terminating. For this, each call
instruction to a function with non-void type gives rise to two rewrite rules. One rewrite rule
introduces a fresh variable on the right-hand side which abstracts the return value of the
called function.1 This rule has the form statei(. . .) → statej(. . . , z, . . .), where z is a fresh
variable. The second rewrite rule has the form statei(. . .)→ statefstart(. . .), where statefstart is
the called function’s start symbol. A call to a function with void type is handled similarly,
but no fresh variable is introduced on the right-hand side.

I Example 8. The C and LLVM-IR programs in Figure 2 compute Ackermann’s function.
Termination of the generated TRS can easily be shown using the methods from Section 2. J

3.4 Programs Containing Pointers and Floating Point Numbers
int-based TRSs (currently) do not support pointers or floating point numbers. Thus, all
instructions of these types are ignored in the translation. In order to have a non-termination
preserving translation, instructions that take a pointer or a floating point number and return
an integer (such as load or fptosi) are abstracted to an unspecified value which corresponds
to a fresh variable on the right-hand side of the generated rule. Similarly, comparisons of
floating point numbers are abstracted to return arbitrary results.

3.5 Utilizing Static Analysis Methods
Notice that the translation from LLVM-IR programs into int-based TRSs does not propagate
information about the initial state of the program. Thus, the int-based TRS RP might
be non-terminating even if the program P is terminating since reductions w.r.t. RP are
not restricted to reductions that are reachable from the initial state. It is thus desirable
to make information about the initial state explicit throughout the program. Furthermore,
a successful automatic termination proof might require simple invariants on the program
variables (such as “a variable is always non-negative”). This kind of information can be
obtained automatically using static analysis tools such as Aspic/C2fsm [14]. The obtained
information can be added to the C program in the form of calls to an assume function
with a built-in semantics. In the translation, these calls are converted into constraints that
correspond to the invariants. We are planning to integrate a static analysis tool into the
translation process so that these annotations do not need to be added manually.

1 This simple abstraction is already sufficient in many cases. It is of course also possible to add constraints
on the return value. Non-recursive functions can also be inlined on the LLVM-IR level, thus precisely
tracking their return value.

RTA’11

48 Termination Analysis of C Programs Using Compiler Intermediate Languages

int ack(int m, int n) {
if (m <= 0)

return n + 1;
else if (n <= 0)

return ack(m − 1, 1);
else

return ack(m − 1, ack(m, n − 1));
}

statestart(vm, vn)→ stateentryin (vm, vn)
stateentryin (vm, vn)→ statebbin (vm, vn) Jvm ≤ 0K

stateentryin (vm, vn)→ statebb1in (vm, vn) Jvm > 0K

statebbin (vm, vn)→ statestop(vm, vn)
statebb1in (vm, vn)→ statebb2in (vm, vn) Jvn ≤ 0K

statebb1in (vm, vn)→ statebb3in (vm, vn) Jvn > 0K

statebb2in (vm, vn)→ statestart(vm − 1, 1)
statebb2in (vm, vn)→ statestop(vm, vn)
statebb3in (vm, vn)→ statestart(vm, vn − 1)
statebb3in (vm, vn)→ statestart(vm − 1, z)
statebb3in (vm, vn)→ statestop(vm, vn)

define i32 @ack(i32 %m, i32 %n) {
entry:

%0 = icmp sle i32 %m, 0
br i1 %0, label %bb, label %bb1

bb:
%1 = add nsw i32 %n, 1
ret i32 %1

bb1:
%2 = icmp sle i32 %n, 0
br i1 %2, label %bb2, label %bb3

bb2:
%3 = sub nsw i32 %m, 1
%4 = call i32 @ack(i32 %3, i32 1)
ret i32 %4

bb3:
%5 = sub nsw i32 %n, 1
%6 = call i32 @ack(i32 %m, i32 %5)
%7 = sub nsw i32 %m, 1
%8 = call i32 @ack(i32 %7, i32 %6)
ret i32 %8

}

Figure 2 Ackermann’s function in C, LLVM-IR, and as an int-based TRS.

4 Evaluation

In order to show the effectiveness and practicality of the proposed approach, it has been
implemented in the tool KITTeL (KIT int-based TRS Termination Laboratory). Like its
predecessor pasta [12], KITTeL consists of about 2400 lines of OCaml code. The input to
KITTeL is an int-based TRS, the translation from LLVM-IR into int-based TRSs has been
implemented in the separate tool llvm2kittel using about 3800 lines of C++ code.

The implementation in KITTeL/llvm2kittel has been evaluated on a collection of
174 examples that were taken from various places, including several recent papers on the
termination of imperative programs [3, 5, 6, 8, 9, 19, 20], the textbook [21], and the zlib
compression library. Furthermore, 31 examples were taken from TPDB’s Java category
[23] and converted to C. The collection of examples includes “classical” algorithms such
as searching and sorting algorithms, cyclic redundancy check and hash code algorithms,
encryption/decryption algorithms, image processing algorithms, and numerical algorithms.
14 out of these 174 examples require simple invariants on the program variables (such as “a
variable is always non-negative”) for a successful termination proof. This kind of information
can be obtained automatically using static program analysis tools such as Aspic/C2fsm [14].

KITTeL/llvm2kittel has been able to show termination of all2 examples fully automati-
cally, on average taking less than 0.3 seconds (on a 2.4 GHz Intel® Core™2 Duo processor
with 4 GB main memory) for each example, with the longest time being slightly more than 3
seconds. These times include the compilation from C into LLVM-IR, the translation from

2 If the invariants are omitted from the aforementioned 14 examples, then termination cannot be shown.

Stephan Falke, Deepak Kapur, and Carsten Sinz 49

LLVM-IR into a TRS, and the termination analysis of the obtained TRS. The following table
contains details for some of the examples. Here, “LOC” gives the number of code lines in
the C program and “RR” gives the number of rewrite rules that are generated.

C program LOC RR Time / s C program LOC RR Time / s
allroots 200 77 0.861 fft 99 30 0.342
almabench 390 42 0.370 hash 241 80 0.566
barr-crc16 265 45 0.398 jfdctint 366 15 0.374
barr-crc32 265 45 0.402 lpbench 419 134 1.155
barr-crc-ccitt 265 35 0.318 mergesort-recursive 42 50 0.634
bellman-ford 75 39 0.369 n-body 141 35 0,287
blit 98 28 0.311 prim 83 44 0.487
blowfish 476 43 0.389 sort 138 90 0.757
bmpfile 749 254 3.050 spectral-norm 52 39 0.312
bresenham 36 9 0.106 sphere 157 68 0.617
c-aes 236 64 0.385 spiral 176 80 0.722
c-des 399 64 0.477 zlib-adler32 124 34 0.891
cube 146 68 0.616 zlib-crc32-BYFOUR 335 41 1.182
dijkstra 78 58 0.693 zlib-crc32 333 13 0.170

Notice that an empirical comparison with the methods from [5, 6, 8, 9, 19, 20] is not
possible since implementations of these methods are not publicly available. The 31 Java
programs from TPDB were also analyzed using the web interfaces of the Java termination
tools COSTA [1] and AProVE [18, 4] using the default settings.

Successful proofs Unsuccessful attempts Timeouts (60s) Average time / s

KITTeL 31 – – 0.133
COSTA 22 9 – 0.265

AProVE 28 – 3 13.265

Thus, KITTeL clearly shows the practicality and effectiveness of the proposed approach
on a collection of “typical” examples. The examples, detailed results, an a link to a web
interface of KITTeL are available at http://baldur.iti.kit.edu/~falke/kittel/.

5 Conclusions

We have presented a method for showing termination of C programs that is based on compiler
intermediate languages and term rewriting techniques. For this, a C program is translated
into an intermediate language by the compiler frontend and the obtained intermediate
representation is then translated into a term rewrite system. Finally, termination of the
obtained TRS is shown using term rewriting techniques.

In this paper, all integer types of the intermediate language are identified with Z. Notice,
however, that this abstraction might alter the termination behavior of the program under
investigation. The methods from [5, 6, 8, 9, 19, 20] also exhibit this problem, and only
[7] investigates the generation of ranking functions for bitvectors. In future work, we are
planning to investigate how to model the bitvector behavior more precisely. While the
translation into TRSs does not need to be modified substantially, proving termination of a
TRS operating on bitvectors has not been investigated thus far. A further topic for future
work is to suitably model the memory content (stack, heap, and global variables).

RTA’11

http://baldur.iti.kit.edu/~falke/kittel/

50 Termination Analysis of C Programs Using Compiler Intermediate Languages

References
1 Elvira Albert, Puri Arenas, Michael Codish, Samir Genaim, Germán Puebla, and Damiano

Zanardini. Termination analysis of Java bytecode. In FMOODS ’08, pages 2–18, 2008.
2 Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs.

TCS, 236(1–2):133–178, 2000.
3 Aaron Bradley, Zohar Manna, and Henny Sipma. Linear ranking with reachability. In

CAV ’05, pages 491–504, 2005.
4 Marc Brockschmidt, Carsten Otto, and Jürgen Giesl. Modular termination proofs of recur-

sive Java bytecode programs by term rewriting. In RTA ’11, 2011.
5 Michael Colón and Henny Sipma. Synthesis of linear ranking functions. In TACAS ’01,

pages 67–81, 2001.
6 Michael Colón and Henny Sipma. Practical methods for proving program termination. In

CAV ’02, pages 442–454, 2002.
7 Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M. Wintersteiger. Ranking

function synthesis for bit-vector relations. In TACAS ’10, pages 236–250, 2010.
8 Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Abstraction refinement for ter-

mination. In SAS ’05, pages 87–101, 2005.
9 Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for systems

code. In PLDI ’06, pages 415–426, 2006.
10 Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator: Beyond safety. In

CAV ’06, pages 415–418, 2006.
11 Stephan Falke and Deepak Kapur. Dependency pairs for rewriting with built-in numbers

and semantic data structures. In RTA ’08, pages 94–109, 2008.
12 Stephan Falke and Deepak Kapur. A term rewriting approach to the automated termination

analysis of imperative programs. In CADE ’09, pages 277–293, 2009.
13 Stephan Falke, Deepak Kapur, and Carsten Sinz. Termination analysis of C programs using

compiler intermediate languages. Technical Report 2011-6, Department of Informatics,
Karlsruhe Institute of Technology, Germany, 2011. Available at http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000021789.

14 Paul Feautrier and Laure Gonnord. Accelerated invariant generation for C programs with
Aspic and C2fsm. ENTCS, 267(2):3–13, 2010.

15 Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and Stephan Falke.
Proving termination of integer term rewriting. In RTA ’09, pages 32–47, 2009.

16 Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The dependency pair framework.
In LPAR ’04, pages 301–331, 2005.

17 Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO ’04, pages 75–88, 2004.

18 Carsten Otto, Marc Brockschmidt, Christian von Essen, and Jürgen Giesl. Automated
termination analysis of Java bytecode by term rewriting. In RTA ’10, pages 259–276, 2010.

19 Andreas Podelski and Andrey Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VMCAI ’04, pages 239–251, 2004.

20 Andreas Podelski and Andrey Rybalchenko. Transition invariants. In LICS ’04, pages
32–41, 2004.

21 Robert Sedgewick. Algorithms in C. Addison-Wesley, 1990.
22 Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for Java bytecode

based on path-length. ACM TOPLAS, 32(3):8:1–8:70, 2010.
23 TPDB. Termination problem data base 7.0.2, 2010. Available from http://termcomp.

uibk.ac.at/2010/downloads/.
24 Hans Zantema. Termination. In TeReSe, editor, Term Rewriting Systems, chapter 6. Cam-

bridge University Press, 2003.

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000021789
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000021789
http://termcomp.uibk.ac.at/2010/downloads/
http://termcomp.uibk.ac.at/2010/downloads/

First-Order Unification on Compressed Terms
Adrià Gascón1, Sebastian Maneth2, and Lander Ramos1

1 Universitat Politèctica de Catalunya
Jordi Girona 1-3 08034 Barcelona, Spain
adriagascon@gmail.com, landertxu@gmail.com

2 NICTA and University of New South Wales
Sydney, Australia
sebastian.maneth@nicta.com.au

Abstract
Singleton Tree Grammars (STGs) have recently drawn considerable attention. They generalize
the sharing of subtrees known from DAGs to sharing of connected subgraphs. This allows to
obtain smaller in-memory representations of trees than with DAGs. In the past years some
important tree algorithms were proved to perform efficiently (without decompression) over STGs;
e.g., type checking, equivalence checking, and unification. We present a tool that implements
an extension of the unification algorithm for STGs. This algorithm makes extensive use of
equivalence checking. For the latter we implemented two variants, the classical exact one and a
recent randomized one. Our experiments show that the randomized algorithm performs better.
The running times are also compared to those of unification over uncompressed trees.

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.51

Category System Description

1 Introduction

Trees are a basic and very common data structure in computer science. In many applications,
trees are stored in memory for fast processing. Some recent applications deal with very
large trees. For instance, the nowadays ubiquitous data exchange format XML stores
data in the form of unranked trees; typically, each data item is accompanied by several
XML tree nodes describing its structure. This results in huge trees, often consisting of
many millions of nodes. The problem arises that such trees do not fit into main memory,
especially if stored as conventional (machine) pointer data structure. Therefore, compressed
in-memory representations have been developed; for instance, succinct trees (see, e.g., [20]),
or grammar-compressed trees [4, 17].

Here we deal with grammar-compressed trees. Grammar compression was invented for
strings in the 1990s, see [19] for a survey. The idea is to find a small grammar that generates
only the given string. It is a form of dictionary compression where grammar nonterminals
represent repeated substrings. For instance, a smallest context-free (cf) grammar that
generates a given string can be (at most) exponentially smaller than the given string.
Finding a minimal cf grammar is NP-complete, but several well-behaved approximation
algorithms exist [5]. While in general algorithms run slower when executed over a compressed
representation, there are certain special algorithms which can execute in one pass (without
decompression) through the grammar. This induces a speed-up that is proportional to the
compression. For instance, testing whether two cf grammars generate the same string can be
performed in cubic time with respect to the sizes of the grammars [13].

The idea of grammar-compression was generalized from strings to trees in [4], where they
present an approximation algorithm that finds a small cf tree grammar. We call a cf tree

© Adrià Gascón, Sebastian Maneth, and Lander Ramos;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 51–60

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.51
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

52 First-Order Unification on Compressed Terms

grammar that generates only one tree, a Singleton Tree Grammar (STG). Note that the
classical idea of representing a tree by its minimal unique DAG is an instance of grammar
compression: the DAG is equivalent to the minimal regular tree grammar of the tree. For
typical XML documents, DAGs allow to shrink their tree structures to about 12% of the
original number of edges [3]. The algorithm of [4] finds STGs that contain only 4% of the
original edges. The new grammar compressor “TreeRePair” [15] compresses even further
(< 3%) and runs almost as fast as building a minimal DAG.

Examples of algorithms that run efficiently (without decompression) over STGs are tree
automata evaluation [14], XPath query processing [17], and equivalence testing [4, 21]. STGs
have also been used for complexity analysis of unification algorithms [12]. Recently, first-order
unification was shown to be solvable in polynomial time over STGs [9, 10]. Note that an
application domain for which unification over compressed terms can be useful are logic-
programming languages for XML. Examples of such languages are Xcerpt [2] (it uses a form
of asymmetric unification called “simulation) and Xcentric [6] (it uses the unification studied
in [11]). Here, we present an implementation of the unification and matching algorithms
of [10]. The algorithms run a variant of Robinson’s standard unification algorithm [18] over
two given STGs; it builds string grammars for the preorder traversals of the grammars, and
then applies equivalence checking for singleton cf string grammars, while instantiating the
encountered variables. For the equivalence check we implemented two competing algorithms:
(1) the exact algorithm due to Lifshits [13], and (2) the recent randomized algorithms by
Schmidt-Schauß and Schnitger [21]. Our tool is integrated with TreeRePair: it takes as
input two terms represented in XML syntax and runs TreeRePair to build STGs. It then
runs the unification algorithm. Through experiments we evaluate the performance of the
resulting three unification algorithms and compare them to an implementation of a classical
unification algorithm over uncompressed terms. Roughly speaking, unification over STGs
is more efficient than over uncompressed terms, whenever the terms are well-compressible
and larger than 100,000 nodes. At www.lsi.upc.edu/~agascon/unif-stg our system can
be tested online. All our code is open source and will be available over the same web page.

2 Preliminaries

A ranked alphabet is a set F together with a function ar : F → N. Members of F are called
function symbols, and ar(f) is called the arity of the function symbol f . Function symbols
of arity 0 are called constants. Let X be a set disjoint from F whose elements have arity
0. The elements of X are called first-order variables. The set T (F ∪ X) of terms over F
and X , also denoted T (F ,X), is defined to be the smallest set having the property that
α(t1, . . . , tm) ∈ T (F ∪ X) whenever α ∈ (F ∪ X), m = ar(α) and t1, . . . , tm ∈ T (F ∪ X).
A substitution is a mapping σ : X → T (F ,X) relating first-order variables to terms.
Substitutions can also be applied to arbitrary terms by homomorphically extending them by
σ(f(t1, . . . , tm)) = f(σ(t1), . . . , σ(tm)).

The size |t| of a term t is the number of occurrences of variables and function symbols
in t. The height of a term t, denoted height(t), is 0 if t is a constant or a first-order
variable, and 1 + max{height(t1), . . . ,height(tm)} if t = α(t1, . . . , tm), with m ≥ 1. The
set Pos(t) of positions of t is defined by Pos(t) = {λ} if t is a constant or a variable, and
Pos(t) = {λ} ∪ {1 · p | p ∈ Pos(t1)} ∪ . . . ∪ {m · p | p ∈ Pos(tm)} if t = α(t1, . . . , tm), where
m ≥ 1, λ denotes the empty sequence and p · q, or simply pq, denotes the concatenation of
p and q. If t is a term and p a position, then t|p is the subterm of t at position p. More
formally defined, t|λ = t and α(t1, . . . , tm)|i·p = ti|p. We denote by Pre(t) the preorder

Adrià Gascón, Sebastian Maneth, and Lander Ramos 53

traversal (as a word) of a term t. It is recursively defined as Pre(t) = t, if t has arity 0, and
Pre(t) = α · Pre(t1) · . . . · Pre(tm), if t = α(t1, . . . , tm).

I Definition 2.1. A Singleton (String) Grammar (SG) G is a tuple 〈N ,Σ, R〉, where N is a
finite set of non-terminals, Σ is a finite set of symbols (a signature), and R is a finite set of
rules of the form N → α where N ∈ N and α ∈ (N ∪Σ)∗. The sets N and Σ must be disjoint,
and each non-terminal X appears as a left-hand side of just one rule of R. Let N1 >G N2
for two non-terminals N1, N2, iff (N1 → α) ∈ R, and N2 occurs in α. The SG must be
non-recursive, i.e. the transitive closure >+

G must be terminating. The word generated by
a non-terminal N of G, denoted by wG,N or wN when G is clear from the context, is the
word in Σ∗ reached from N by successive applications of the rules of G. SGs are also called
Straight Line Programs.

With SG words of exponential length can be represented in linear space.

I Example 2.2. Let G be an SG with set of rules {A0 → a,A1 → A0A0, . . . , An →
An−1An−1}. Then, wAn = a2n .

Let us fix a countable set Y = {y1, y2, . . .} whose elements are function symbols of arity
0 called parameters. Given a ranked alphabet F , we assume that Y and F are disjoint and
define T (F ∪ Y) analogously to how T (F ∪ X) was defined in the preliminaries. We call the
elements of T (F ∪ Y) term patterns.

I Definition 2.3. A Singleton Tree Grammar (STG) G is a 4-tuple 〈N ,Σ, R, S〉, where
N is a ranked alphabet whose elements are called non-terminals.
Σ is a ranked alphabet called signature.
R is a finite set of rules of the form N → t where N ∈ N , t ∈ T (F ∪N ∪{y1, . . . , yar(N)}),
t 6∈ Y, and each of the parameters {y1, . . . , yar(N)} appears in t.
S is the initial non-terminal of rank 0.

The sets N and Σ must be disjoint, each non-terminal N appears as a left-hand side of
just one rule of R. Let N1 >G N2 for two non-terminals N1, N2, iff (N1 → α) ∈ R, and
N2 occurs in α. The STG must be non-recursive, i.e., the transitive closure >+

G must
be terminating. The depth of G is the maximal length of a chain in >+

G. We define the
derivation relation⇒G on T (F ∪N ∪Y) as follows: t⇒G t′ iff there exists (A→ s) ∈ R with
ar(A) = n, t = C(A(t1, . . . , tn)) and t′ = C(σ(s)), where σ = {y1 → t1, . . . , yn → tn} and C
is a context, i.e. a term in T (F ∪N ∪ Y ∪ •) such that • appears only once in the positions
of C, and C(A) is simply the replacement of • by A in C. The term pattern generated by a
non-terminal N of G, denoted by tG,N or tN when G is clear from the context, is the term
pattern in T (F ∪ Y) such that N ⇒∗G tN .

Note that the rules of our grammars will always have ≤ 2 occurrences of non-parameter
symbols in their right-hand sides. This is not a loss of generality since every STG can be
efficiently normalized to satisfy this constraint (see [16]). Hence, we define the size of an
STG/SG G, denoted |G|, as its number of nonterminals. An STG is linear if, for every rule
(N → t), the term t is linear in Y. An STG is called k-bounded if every non-terminal has
arity ≤ k. Finally, an STG is called monadic if it is 1-bounded. As shown by the next
examples, STGs can represent terms of exponential height.

I Example 2.4. Let G be a monadic (and linear) STG with the following set of rules.
{Aa → a,A0(y1) → f(y1), A1(y1) → A0(A0(y1)), A2(y1) → A1(A1(y1)) . . . , An(y1) →
An−1(An−1(y1)), S → An(Aa)}. Then tS generates a monadic tree f(f(. . . (a) . . .)) of size
2n + 1.

RTA’11

54 First-Order Unification on Compressed Terms

It is not difficult to prove that, for any linear STG G = (N ,Σ, R, S), it holds that |tS | ≤
2O(|G|). STGs can be considered as a generalization of directed acyclic graphs in which not
only repeated subterms are shared but also repeated term patterns. In fact, DAGs can be
seen as 0-bounded STGs.

In this work, STGs are used in the context of first-order unification. Hence, we want
to represent terms containing first-order variables. From the point of view of the grammar,
every first-order variable X initially is just a terminal symbol. As will be explained in the
next section, they will be transformed in non-terminals as soon as they get instantiated due
to the unification process by adding a rule of the form X → A, where A is a non-terminal of
rank 0. We call this kind of rules λ rules.

3 First-order unification and matching

Consider a ranked alphabet F and a set of first-order variables X . The first-order unification
problem consists of, given two terms s, t ∈ T (F ∪X), finding a substitution σ such that σ(s)
and σ(t) are syntactically equal. The first-order matching problem is a particular case of
first-order unification in which only one of the terms given as input may contain variables.
Both first-order unification and matching are common problems in areas like functional and
logic programming, automated deduction, deductive databases, and compiler design.

Our tool Unif-STG offers three algorithms for solving first-order unification where the
input terms s, t are represented compressed using STGs. Moreover, as a yardstick for
comparison we implemented a variant of Corbin-Bidoit [7] that uses directed acyclic graphs
for term representation. All four algorithms correspond, essentially, to the schema presented
in Figure 1. Note that in this schema we consider indexes in the preorder traversal words
of terms instead of just positions. This is not relevant for the algorithm that works on
uncompressed terms but will make a difference in the compressed case. Note that two
arbitrary different trees may have the same preorder traversal, but when they represent
terms over a fixed signature where the arity of every function symbol is fixed, the preorder
traversal is unique for every term. Thus, we can recursively define the mapping iPos(t, i)→
Pos(t) relating positions in a term with indexes in its preorder traversal word as follows:
iPos(α(t1, . . . , tm), 1+ |t1|+ . . .+ |ti−1|+k) = i.iPos(ti, k) for 1 ≤ k ≤ |ti| and iPos(ti, 1) = λ.
This observation was crucial in [10] to improve the algorithm of first-order unification with
STGs since positions of a term represented with an STG G may have exponential size w.r.t.
|G| and need to be compressed which makes the computation of subterms inefficient. On
the other hand, computing a subterm t|iPos(t,i) given the index i can be done in a much
more efficient way. It is important to remark that XML trees are unranked in general and
hence two different trees may have the same preorder traversal. Hence, it is important to
transform XML trees to ranked trees (terms) to apply the approach mentioned above. Note
that the basic operations in that schema are to decide equality between two terms, apply a
substitution, compute the preorder traversal word of a term, compute a subterm of a term
given an index of its preorder traversal word, find the first different positions of two words,
and check whether a certain symbol occurs within a term. In the setting of Unif-STG, the
input terms s, t are represented using STGs. Since STGs can represent terms of exponential
size, the difficulty of applying that schema to compressed terms relies on being able to solve
all these subproblems in polynomial time with respect to the size of the input STG. In [9],
this problem was solved in time O(|V |(m + |V |n)4), where m represents the size of the
input STG, n represents its depth, and V represents the set of different first-order variables
occurring in the input terms. Then this result was improved in [10] to O(|V |(m+ |V |n)3).

Adrià Gascón, Sebastian Maneth, and Lander Ramos 55

Unify(s : term, t : term):
σ: substitution
σ := ∅
While (σ(s) 6= σ(t)):

Look for the first position k such that Pre(σ(s))[k] 6= Pre(σ(t))[k].
If both Pre(σ(s))[k] and Pre(σ(t))[k] are function symbols, Then

Return false (clash)
// Assume w.l.g that Pre(σ(s))[k], is a variable x.
If x occurs in σ(t)|p, where p = iPos(σ(t), k), Then

Return false (occur-check)
σ := σ ∪ {x 7→ σ(t)|p}

EndWhile
Return true

Figure 1 General schema for first-order unification

From [10], we know that the following problems can be solved in linear time:
Given a SG/STG G, compute the number |tN |/|wN | for every non-terminal N of G.
Given a STG G and a non-terminal N , construct an SG of linear size for Pre(tG,N).
Given an STG G, a non-terminal N of G, and an integer k, compute an extension G′ of
G such that G′ generates tG,N |iPos(tG,N ,k).

Also from [10], we know that, given two words compressed with SGs, we can find the first
position in which they differ in linear time using a data structure computed by Lifshit’s
algorithms for checking equality. This problem can also be solved probabilistically in linear
time as sketched in the following subsection. Moreover, an application of a substitution
{X → t} is simulated by transforming X from a terminal to a non-terminal of the grammar
and adding the rule X → N , where the non-terminal N generates t. In this way, the
grammar may be extended with at most n new non-terminals after each variable assignment
as proved in [10]. Hence, the final size of the grammar is bounded by m+ |V |n. Thus, the
resulting running time corresponds to decide equality for STGs |V | times on a grammar of
size O(m+ |V |n). In [10], the problem of deciding equality between two terms represented
by STGs is reduced to equality between words represented by SGs. Lifshits’ algorithm [13]
is, with respect to big-O complexity, the most efficient known exact algorithm for checking
equality between two words represented by SGs. It is cubic with respect to the sizes of the
input SGs. Our three implementations of first-order unification with STGs correspond to
different algorithms for solving this subproblem. Unif-STG allows the user to choose among
Lifshits’ algorithm and two of the recent randomized algorithms by Schmidt-Schauß and
Schnitger [21]. Since our implementation of the randomized algorithms runs in linear time,
the cost of first-order unification is O(|V |(m+ |V |n)) when they are used. See below where
we describe these equality testing algorithms.

With respect to first-order matching with STGs, an algorithm with cost O((m+ |V |n)3)
was presented also in [10]. The improvement with respect to the unification case relies in the
fact that, in contrast to unification schema presented in Figure 1, in the matching case we
just need to look for the index of first occurrence of a variable in Pre(s) instead of looking
for the index of the first difference between Pre(s) and Pre(t) and do the corresponding
assignment until every variable is replaced. At the end we just perform equivalence testing
once. For the details of that algorithm we refer the reader to [10]. Using the randomized
algorithms of [21] first-order matching can be solved in O(m+ |V |n).

Note that in [9] and [10] only monadic grammars were considered. This is not a loss of
generality since every linear STG can be transformed in polynomial time into a monadic (and
linear) one [16]. However, their algorithm is rather involved and difficult to implement. We

RTA’11

56 First-Order Unification on Compressed Terms

therefore extended the unification algorithm of [10] to unbounded grammars. This mainly
consists of generalizing the construction for the computation of a subterm to unbounded
grammars. The solutions implemented in Unif-STG for the rest of the subproblems are
straightforward adaptations of those in [10] and are not further discussed here.

Equality testing. Given an SG G = (N ,Σ, R) and two non-terminals A, B, equality
testing consists of deciding whether wA = wB. Let us assume that |wA| = |wB | since
otherwise inequality is easily stated in linear time. As commented above, the fastest known
exact algorithm for equality testing for SGs is Lifshits’ algorithm [13]. In Unif-STG we
implemented, in addition to Lifshits’ algorithm, two new algorithms of [21]. These algorithms
run faster than Lifshits’ by using a randomized approach. They work by considering an
SG to generate a natural number, in addition to a word. The number coded by wA = w′a,
where w′ ∈ Σ∗ and a ∈ Σ, is defined in terms of a fixed mapping f : Σ→ {0, . . . , |Σ| − 1}, as
code(wA) = code(w′) ∗ |Σ|+ f(a). The main idea of the algorithm is very simple. If we want
to check whether A and B represent the same word, we choose a natural number m satisfying
certain properties, and compute α = code(wA) mod m and β = code(wB) mod m. If α 6= β

then the words are obviously different. Otherwise, it is possible that wA 6= wB, but α = β.
In this case we do not detect inequality. In [21], two upper bounds for the choice of the
m that guarantee that we detect inequality with a probability ≥ 1

2 for any pair of words
are given: either m ≤ |wA|2 ∗ c or m ≤ |wA| ∗ c if m is prime, for a certain constant c. We
implemented both options in Unif-STG. By repeating the test k times the probability of not
detecting inequality is < 1

2k . In Unif-STG the value of k is set to 10 by default.
In order to assure that the chosen m is prime we implement a simple algorithm: generate

a random number, and test primality. If the number is not prime, then generate another
number, and so on. We test primality with the Fermat primality test, checking if ap−1 ≡ 1
mod p for a ∈ {2, 3, 5, 7}. Due to the Prime number theorem, the average number of times
we generate a number until getting a prime is the logarithm of m, and hence linear in |G|,
and the Fermat primality test is also performed in logarithmic time.

We also need an algorithm to compute if wA is a prefix of wB , in order to find the first
difference between two words represented with SGs (see Figure 1). This problem can be
reduced to computing code(wB[1 . . . |wA|]) and applying the probabilistic algorithm. To
perform this task in linear time it is enough to precompute, for each non-terminal A of the
grammar, the numbers code(wA) and |wA|, and to compute code(wB [1 . . . |wA|]) recursively.

Finally, it is important to remark a certain peculiarity of the version of the probabilistic
algorithms implemented in Unif-STG. They run in linear time thanks to the fact that |wA|
is limited by default to

√
L where L = 264, the maximum value for a long long int, in the

case of the algorithm using primes; and to 4
√
L, in the algorithm using natural numbers.

Otherwise, computing code(wA) modulo m is not guaranteed to run in linear time. The
current implementation allows bigger values, but then does not guarantee an error probability
of less than 1

2 for every possible instance of the problem. In our experiments we never
encountered a false reply by the probabilistic algorithm.

Note that Unif-STG has been built to work with arbitrary arithmetic; the size limitation
has been added for efficiency reasons only and can be removed at any time.

4 Unif-STG

Unif-STG is written in C++ using the standard template library. The system implements
three algorithms for solving the equality testing with SGs: Lifshits’ exact algorithm, plus two
versions of the randomized algorithm by Schmidt-Schauß and Schnitger (one with integers and

Adrià Gascón, Sebastian Maneth, and Lander Ramos 57

one with primes). We refer to the corresponding three versions of the unification algorithm
for STG grammars by STG-exact, STG-rand, and STG-rand-prime. Our implementation
of unification over uncompressed terms is denoted “tUnif”. As commented before, this is a
variant of the Corbin-Bidoit algorithm. We refer the reader to Chapter 8, Section 2.3 of [1]
for the details of this algorithm. Note that Unif-STG outputs a compressed representation
of the solution (again compressed with STGs).

5 Experiments

Experimental Setup. All tests are executed on a machine with Intel Xeon Core 2 Duo,
3 Ghz processor, with 4GB of RAM. We use the Ubuntu Linux 9.10 distribution, with kernel
2.6.32 and 64 bits userland. Our implementation was compiled using g++ 4.4.1. We used
TreeRePair (build data 01-19-2011) which was kindly made available to us by Roy Mennicke.
It is essentially the version available at http://code.google.com/p/treerepair, with the
only difference that it allows to compress without prior applying a binary tree encoding. We
run TreeRePair with the switches “-multiary -bplex -c -nodag -optimize edges” and default
value (4) for maxbound. The latter means that only 4-bounded STGs are generated.

Protocol. Each test is executed three times, and the fastest time of the three runs is
reported. We only measure the pure unification time, i.e, we ignore loading time and setup
of basic data structures, etc.

Design of the Experiments. Instead of trying to find instances of unification problems
with large terms that are realistic and likely to appear in practice, we present results over
artificial examples. The idea behind these examples is to test the behaviour of our algorithms
in the different extreme corner cases. The main aspects that make up these cases are (a)
are the terms well-compressible by TreeRePair? (b) do they unify or not? (c) how many
variables? (d) is it only matching; how much copying of variables? For question (a) we
need to distinguish further: (a1) is the “top-matching part”, i.e., parts where both terms
do not have variables (and therefore must match exactly) well-compressible? And (a2) is
the “binding part”, that is, parts that will be bound to variables during unification well
compressible? We constructed a family of instances that allows to test many of these aspects.
First we show two simple examples which compress well.

Bin and Mon. For a natural number n, let fn(a, b) denote a full binary tree with leaf
sequence ababab Given a natural number n, Bin(n) consists of the pair of trees

Bin(n) = (g(g(fn(a, b), fn(a, b)), g(fn(a, b), fn(a, b))), g(g(X,X), g(X, fn(a, Y)))).

Similarly, fn(a) denotes a monadic tree of height n with internal nodes labeled f and leaf a.
The second example, called Mon(n) consists of this pair of trees

Mon(n) = (h(fn(X), fn(Y), Y), h(T,Z, T)).

Clearly, both Bin and Mon are unifiable for every n. Moreover, they are well compressible
with TreeRePair. To see this, consider the right part of Table 1 which shows the compression
time, the number of edges in the original tree and in the STG grammar, plus the file sizes of
the original tree (in XML format) and of the grammar (in text format). It also shows the
file size of the grammar in CNF in the special format that our unification program uses.

For both Bin and Mon, the TreeRePair algorithms achieves exponential compression
rates. As can be seen, for n > 20000, the STG-rand algorithm is the fastest. Interestingly,
for such small grammars we are punished for using prime numbers and STG-rand-prime is
slower than STG-rand. This is different for larger grammars as the later examples show.

RTA’11

58 First-Order Unification on Compressed Terms

Runtime (in ms) Input
STG- STG- STG- compr.

n/1000 tUnif randp rand exact edges time STG edges CNF file
5 2 8 8 24 10008 (69K) 55ms 38 (388B) 1K

10 5 10 8 28 20008 (137K) 62ms 40 (398B) 1.1K
20 11 11 9 30 40008 (157K) 140ms 42 (420B) 1.1K
50 44 11 9 30 100T (684K) 341ms 45 (434B) 1.2K
100 107 12 10 31 200T (1.4M) 681ms 47 (457B) 1.3K
200 232 13 10 32 400T (2.7M) 1387ms 49 (467B) 1.3K

Table 1 The example Mon(n)

Runtime (in ms) Input
randSize tUnif STG-rp STG-r STG-e edges STG edges CNF file

10 3 18 19 78 20484 (111K) 62 (578B) 1.9K
11 7 20 20 96 40964 (221K) 66 (596B) 2.1K
12 16 22 22 108 81924 (441K) 70 (638B) 2.2K
13 35 23 23 131 163844 (881K) 74 (656B) 2.3K
14 72 26 25 146 327684 (1.8M) 78 (698B) 2.4K
16 290 30 28 (*) 1310724 (6.9M) 86 (758B) 2.7K

(*) STG-exact ran out of (int) bounds.

Table 2 The example Bin(n)

Note that here the exact algorithm still shows reasonable performance. This will not be
the case for larger grammars. Note that, in terms of XML, Mon is actually quite relevant:
a long list of items usually becomes a long list of siblings in XML. Using the common
“first-child/next-sibling”-encoding of unranked into binary trees, such a list becomes a long
path, similar to Mon.

Bad Instances for STG-Unif. Here consider instances where the STG-based uni-
fication algorithm does not perform well. In general, this is the case when the terms are
not well compressible (see below). But, there are even simpler reasons for this to happen.
Consider unifying the trees f(t) and g(t′) for large (arbitrary) terms t and t′. The run time of
tree-based unification is only 0.005ms for this instance. While, even for highly compressible
t = t′, STG-Unif will take >15ms. This is due to the fact that STG-Unif always needs to
traverse the whole grammar to find the position of the first difference between f(t) and g(t′)
and tUnif traverses the input tree only until the position of the first difference is reached.

Meta. We now define a highly configurable example instance. Consider the pair of
trees (t1, t2), where both t1 and t2 are full binary trees (with internal nodes labeled f)
of height n. At the leaves of t1 and t2 appear monadic trees of random height h, with
minHeight ≤ h ≤ maxHeight. These monadic trees are identical in t1 and t2. Now,
t1 contains variables as leaves of the monadic trees, randomly chosen from a given set
Vars of variables. While t2 contains random trees at those leaf positions, chosen over a
given signature Σ, and maximal size of up to randSize. Moreover, a Boolean determines
whether at variable copies we force the random trees in t2 to be equal (which will guar-
antee that the instance is unifiable). Thus, the specification of an instance is as follows:
Meta(n,minHeight,maxHeight,Vars, randSize,Σ,Bool U).

Number of Variables. Using Meta, we experimented with the number of different
unification variables. The results were convoluted and no clear trends were observable;
both algorithms seemed similarly impacted by the number of variables. For instance,
for n = 4, maxHeight = minHeight = 1000, randSize = 1 and |Σ| = 3 we obtain, for
3 variables: 3ms/18ms (tUnif/STG-rand-prime), for 5 variables: 7ms/32ms, and for 10
variables: 10ms/44ms.

Incompressible Terms. An interesting case is if large incompressible terms appear

Adrià Gascón, Sebastian Maneth, and Lander Ramos 59

at positions that will instantiate variables. In terms of Meta, it suffices to take n = 1, and
to use large random trees. For the other parameters we use minHeight = maxHeight = 0,
Vars = {X,Y }, Σ = {g(2), f (1), a(0)}, and Boolean U set to true. As Table 3 shows, STG-Unif
is indeed about 100-times slower than tree-based unification. The difference in speed seems
to get slightly smaller for very large inputs. As comparison, if we add a larger binary tree
on top of t1, i.e., use a larger n, then the tree becomes more compressible and therefore
STG-based unification becomes efficient. This is shown in the right of Figure 2, where we
pick randSize = 20000, but now use monadic trees of size 0–1000.

Runtime (in ms) Input
randSize tUnif STG-rp STG-r STG-e edges STG edges CNF file

1000 0.1 21 34 222 981 (5.9K) 214 (1.5K) 6.6K
5000 0.6 78 116 2430 4778 (29K) 774 (15K) 25K

20000 2.4 405 598 43632 26114 (157K) 3308 (21K) 107K
50000 12 1396 2074 (*) 94280 (564K) 9975 (63K) 327K

200000 43 5464 8036 (*) 334586 (2M) 30740 (196K) 1.1M

Table 3 Incompressible Terms in Substitution Positions

With respect to unifiability, we observed that changing a few nodes to make the input
non-unifiable, causes STG-rand to take ca. twice the time given in Table 3, while tUnif gets
slightly faster.

There are also examples where the solution consists of deeper trees than the input. This
works well for the uncompressed algorithm too. But, we can see the effect of compression:
consider t1 = h(X,Y, Z) and t2 = h(s1, s2, s3), where s1 is a full binary tree (over f ’s) of
height n with all leaves labeled Y , s2 is a full binary tree (over f ’s) of height n with all leaves
labeled Z, and s3 the same but with leaves labeled X. Note that X will be assigned to s1.
Hence, all the X’s in s3 will be replaced by s1. Then, Y will be replaced by s2 everywhere
(also in s3). So finally t′ = Y → s2(X → s1(s3)) will be compared to Z. Note that t′ is the
complete tree of depth 3 ∗ 20 whose leaves are all labeled Z. Since Z occurs in t′ unification
fails. This example is called “3-Stack” and timings are shown in Figure 2.

n tUnif STG-rp STG-r STG-e
18 99 7 9 35
19 200 8 9 38
20 401 8 10 (*)

n tUnif STG-rp STG-r STG-e
7 369 1694 2130 (*)
8 688 1726 2149 (*)
9 1730 2391 2982 (*)

Figure 2 The example 3-Stack (left) and randSize=20000 of Table 3 (right)

6 Conclusion and Further Work

Besides the rather immediate application of our work to logic programming with XML
(mentioned in the Introduction), it might also be possible to apply compressed terms within
theorem provers. The latter do not usually store very large trees, but store many trees. Of
course, many small trees could be combined into one large tree, prior to grammar compression.
However, this might induce extra costs for referencing those trees. In future work it should
be studied how unification and matching (and other operations needed in theorem provers)
can be applied to a set of trees represented by a cf tree grammar. Moreover, efficient updates
need to be supported over such grammars. Updates on STGs have been considered in [8],
but have not been implemented in any large system yet.

RTA’11

60 First-Order Unification on Compressed Terms

Acknowledgments The authors would like to thank Miguel Florido for his help during this
work.

References
1 F. Baader and J.H. Siekmann. Unification theory. In D. M. Gabbay, C. J. Hogger, and

J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming,
Volume 2, pages 41–125. Oxford Univ. Press, 1994.

2 F. Bry and S. Schaffert. Towards a declarative query and transformation language for XML
and semistructured data: Simulation unification. In ICLP, pages 255–270, 2002.

3 P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In VLDB, pages
141–152, 2003.

4 G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document
trees. Inf. Syst., 33:456–474, 2008.

5 M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A. Shelat.
The smallest grammar problem. IEEE Transactions on Information Theory, 51(7):2554–
2576, 2005.

6 J. Coelho and M. Florido. XCentric: logic programming for XML processing. In WIDM,
pages 1–8, 2007.

7 J. Corbin and M. Bidoit. A rehabilitation of Robinson’s unification algorithm. In IFIP
Congress, pages 909–914, 1983.

8 D. K. Fisher and S. Maneth. Structural selectivity estimation for XML documents. In
ICDE, pages 626–635, 2007.

9 A. Gascón, G. Godoy, and M. Schmidt-Schauß. Unification with singleton tree grammars.
In RTA, pages 365–379, 2009.

10 A. Gascón, G. Godoy, and M. Schmidt-Schauß. Unification and matching on compressed
terms. CoRR, abs/1003.1632, 2010.

11 T. Kutsia. Unification with sequence variables and flexible arity symbols and its extension
with pattern-terms. In AISC, pages 290–304, 2002.

12 J. Levy, M. Schmidt-Schauß, and M. Villaret. The complexity of monadic second-order
unification. SIAM J. Comput., 38:1113–1140, 2008.

13 Y. Lifshits. Processing compressed texts: A tractability border. In CPM, pages 228–240,
2007.

14 M. Lohrey and S. Maneth. The complexity of tree automata and XPath on grammar-
compressed trees. Theor. Comput. Sci., 363(2):196–210, 2006.

15 M. Lohrey, S. Maneth, and R. Mennicke. Tree structure compression with RePair. CoRR,
abs/1007.5406, 2010. Short version to appear as paper in Proc. DCC’2011.

16 M. Lohrey, S. Maneth, and M. Schmidt-Schauß. Parameter reduction in grammar-
compressed trees. In FOSSACS, pages 212–226, 2009.

17 S. Maneth and T. Sebastian. Fast and tiny structural self-indexes for XML. CoRR,
abs/1012.5696, 2010.

18 J.A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12:23–
41, 1965.

19 W. Rytter. Grammar compression, LZ-encodings, and string algorithms with implicit input.
In Proc. ICALP, volume 3142 of LNCS, pages 15–27, 2004.

20 K. Sadakane and G. Navarro. Fully-functional succinct trees. In SODA, pages 134–149,
2010.

21 M. Schmidt-Schauß and G. Schnitger. Fast equality test for straight-line compressed strings.
unpublished manuscript, October 2010.

Anagopos: A Reduction Graph Visualizer for Term
Rewriting and Lambda Calculus
Niels Bjørn Bugge Grathwohl1, Jeroen Ketema2, Jens Duelund
Pallesen1, and Jakob Grue Simonsen1

1 Department of Computer Science, University of Copenhagen (DIKU)
Njalsgade 126–128, 2300 Copenhagen S, Denmark
{bugge,pallesen,simonsen}@diku.dk

2 Faculty EEMCS, University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands
j.ketema@ewi.utwente.nl

Abstract
We present Anagopos, an open source tool for visualizing reduction graphs of terms in lambda
calculus and term rewriting. Anagopos allows step-by-step generation of reduction graphs under
six different graph drawing algorithms. We provide ample examples of graphs drawn with the tool.

1998 ACM Subject Classification F.3.1, F.4.2, H.5.0, I.3.0

Keywords and phrases term rewriting, lambda calculus, reduction graphs, visualization

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.61

Category System Description

1 Introduction

Anagopos1 is a tool for visualizing reduction graphs (see, e.g., Figure 1). We created the
software with the following two goals in mind:

Figure 1 The sphere-like reduction graph
of (ttI)(ttI) with I = λx.x and t = λxy.~yxxy,
where ~y = yy · · · y︸ ︷︷ ︸

15

.

Automation Allow for the drawing of large num-
bers of reduction graphs, which is infeasible
by hand; this will hopefully allow researchers
to formulate new hypotheses regarding the
topological properties of reduction graphs.

Visualization Allow for the dynamics of rewrit-
ing to be shown more clearly to students. For
example, in the case of the Church-Rosser
Theorem, it is often hard for students to com-
prehend the dynamics when moving beyond
either single step reductions, or beyond the
tiling diagram usually drawn in the proof for
orthogonal systems.

Anagopos can draw reduction graphs of both
(untyped) lambda terms and terms from (first-
order) term rewriting. To provide immediate

1 Roughly a contraction of the Greek words anagogí (reduction) and tópos (place).

© N.B.B. Grathwohl and J. Ketema and J.D. Pallesen and J.G. Simonsen;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 61–70

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.61
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62 Anagopos: A Reduction Graph Visualizer

access to a large number of predefined term rewriting systems, the tool supports the XML-
format used by the Termination Problems Data Base (TPDB) from version 7 onwards2. As it
is a priori not clear what constitutes a good layout for a reduction graph, Anagopos supports
multiple algorithms for drawing graphs.

Anagopos is implemented in Python 2.6 [23] and available for download from:

http://code.google.com/p/anagopos/

Packages for Ubuntu and other Debian-based systems are provided, as well as a binary for
Mac OS X. The source code is available under the GNU General Public License (GPL).

Related software. The only other tool capable of drawing reduction graphs seems to be
the traces function from PLT Redex [21]; it appears to support only a hierarchical graph
drawing algorithm (displaying the initial term on the left and drawing successive reducts
further and further to the right). More common are tools that compute reductions: The user
specifies the starting term of a reduction and the subsequent redexes contracted are then
either selected by the user, or by the program following some pre-defined reduction strategy.
Roughly, these tools can be classified according to their presentation of terms, this either in
some textual form [27, 37], or in the form of a parse tree [20, 24, 33, 31, 5].

Although not a software tool, also worth mentioning in this context for its graphical
qualities is the Alligator Eggs puzzle game that teaches lambda calculus to children by
representing lambda abstractions as alligators and variables as their eggs [36].

Outline. The paper is structured as follows: In Section 2 we provide background on
reduction graphs. In Sections 3, 4, and 5 we describe, respectively, the interface, graph
drawing algorithms, and architecture of Anagopos. In Section 6 we conclude, mentioning
some directions in which Anagopos can potentially be extended, and suggesting a number of
open problems whose solutions could potentially be found with the help of Anagopos.

2 Reduction Graphs

Recall that an abstract rewrite system (ARS) consists of a set A and a set of binary relations
over A; throughout this paper, we consider only a single relation at a time, writing an ARS
as a pair (A,→). Also recall that the abstract reduction system induced by a term rewriting
system (TRS) is obtained by letting A be the set of terms and → be the rewrite relation
over the set of terms. The following is a slight adaptation of Definition 1.1.7 in [30]:

I Definition 2.1. Let (A,→) be an ARS and let a ∈ A. The reduction graph G(a) of a is
the directed graph (V,E) such that V is the set of reducts of a and (b, c) ∈ E iff b→ c.

The literature on reduction graphs for term rewriting systems is sparse, consisting of few
general results beyond the standard confluence and Church-Rosser diagrams. For lambda
calculus, many basic notions were defined, and conjectures posed, by Barendregt [2] and
Klop [16]. The first comprehensive study of reduction graphs appears to be by Venturini
Zilli [35, 34]. Subsequent studies by Hirokawa and Sekimoto, and Intrigila and Laurenzi
have disproved several early conjectures concerning reduction graphs [26, 11]. Intrigila and
Venturini Zilli have investigated representability of ordinals as reduction graphs of lambda
terms [12].

2 See http://www.termination-portal.org/ for the database and details on the XML-format.

http://code.google.com/p/anagopos/
http://www.termination-portal.org/

N.B.B. Grathwohl and J. Ketema and J.D. Pallesen and J.G. Simonsen 63

(a) G(k5) whose underlying undirected
graph is K5.

(b) G(c4) whose underlying undirected
graph is the 4-dimensional hypercube.

Figure 2 The reduction graphs of two of the lambda terms defined in Proposition 2.3. Both
graphs are drawn with the Neato drawing algorithm (see Section 4).

Very few general, positive results are known for reduction graphs; the following does hold:

I Proposition 2.2. For every connected digraph G with precisely one source node, there
exists a TRS R and a term t of that TRS such that G(t) = G. If G is finite, then R may be
chosen to have finitely many rules.

Proof. Let the signature of R have a distinct, nullary function symbol for each node of G,
and for any two function symbols a and b let there be a rule a→ b iff the node corresponding
to a has a directed edge to the node corresponding to b. Let t be the function symbol
corresponding to the source node of G. Then, G(t) = G. J

Clearly, by the above proposition, Anagopos requires general graph drawing algorithms
to draw reduction graphs.

For lambda calculus, we have:

I Proposition 2.3. The following (families of) graphs are realizable as the underlying
undirected versions of reduction graphs of lambda terms:

1. For every positive natural number n, the complete undirected graph Kn on n nodes.
2. For every positive natural number n, the underlying undirected graph of the n-dimensional

hypercube.

Proof. We give the families of terms explicitly (see also Figure 2):

1. Fix a variable y and define k1 = y, and kn+1 = (λx.y) kn for all n ≥ 1. Then, for any
n ≥ 1, a straightforward induction shows that for all 1 ≤ i ≤ n: kn+1 →β ki, whence the
result follows.

2. Fix a variable y and define s = (λx.x) y. Set s1 = s and sn = s sn−1 for n > 1.
Then the set of nodes of the reduction graph of sn are all of the form u1 · · ·un with
ui ∈ {s, y} for all 1 ≤ i ≤ n, and directed edges between all pairs u1 · · ·ui−1 s ui+1 · · ·un
and u1 · · ·ui−1 y ui+1 · · ·un. Clearly, the underlying undirected graph is (isomorphic) to
the n-dimensional hypercube. J

RTA’11

64 Anagopos: A Reduction Graph Visualizer

By the above, K5 may occur as the underlying undirected graphs of lambda terms. Thus, by
Kuratowski’s theorem, reduction graphs of lambda terms are not, in general, planar.

Not every digraph can occur as reduction graph in lambda calculus; an example is the
digraph • •oo // • , which cannot occur by the Church-Rosser theorem.

Figure 3 The graph of I((λy.Ix)z), as
drawn with Dot (see Section 4). The starting
term occurs at the bottom.

In addition to the above, observe that a re-
duction graph need not have a lattice structure,
even in case of orthogonal systems [4, 18]: Con-
sider, for example, the reduction graph of the
lambda term I((λy.Ix)z) in Figure 3, taken from
[19] and with I = λx.x, where the starting term
occurs at the bottom; note that the set consisting
of the two nodes with two successors each does
not have a least upper bound.

For lambda calculus and orthogonal term
rewriting systems, one can instead consider an-
other type of graph: The Hasse diagram of reduc-
tions with extension as ordering. As complete
developments in such systems satisfy the Cube
Lemma, the resulting graph is a complete lattice
[4, 18]. Anagopos currently does not support visualization of these reductions.

3 Anagopos—Interface and User’s Guide

The main interface of Anagopos is shown in Figure 4. On the right, the reduction graph of
the current term is shown (to improve aesthetic quality self-loops are omitted). The area on
the left is divided into three distinct parts:

At the top, see Figure 5(a), we can choose between visualization of either a lambda term
or a first-order term and input the term we are interested in. The syntax of the terms is
as expected, except that in lambda terms λ is replaced by \. A random term can also be
generated.
In the middle, see Figure 5(b), a number of buttons occur that influence the step-by-step
drawing of reduction graphs, as explained below.
At the bottom the term is displayed that corresponds to the last node from the reduction
graph selected by the user.

Graph drawing—the middle-left area. The middle-left area supports the step-by-step
drawing of reduction graphs. The Draw Graph button will display the nodes representing
the initial term and its immediate reducts. Successors of reducts are, respectively, added and
removed by pressing the Forward and Backward buttons, where the numbers indicate the
number of reducts that will be treated.

Of the remaining interface elements, the Redraw Graph button resets the positions of the
vertices and re-computes the layout of the reduction graph. The Optimize Graph button
instructs the force-directed graph drawing algorithms (see Section 4) to attempt to improve
the layout. Finally, the particular graph drawing algorithm can be selected under Select
Layout Algorithm and Show start and Show newest mark, respectively, the initial vertex of
the reduction graph and the last one whose immediate reducts were computed.

N.B.B. Grathwohl and J. Ketema and J.D. Pallesen and J.G. Simonsen 65

Figure 4 Anagopos displaying part of G((λx.xx(xx))(λx.xxy)) using Neato (see Section 4).

(a) The top-left area. (b) The middle-left area.

Figure 5 Close-ups of two parts of the user interface.

RTA’11

66 Anagopos: A Reduction Graph Visualizer

4 Anagopos—Graph Drawing Algorithms

Anagopos supports six general graph drawing algorithms, including three variations from
the class of so-called force-directed algorithms, the current de facto standard in general
graph drawing; all algorithms in this class draw graphs by employing minimization methods
involving mechanical attraction and repulsion of nodes. For background on these drawing
algorithms and others, including the ones mentioned below, we refer the reader to the relevant
survey literature [3, 10, 14].

The six supported graph drawing algorithms are as follows, where we refer the reader to
Figure 6 to get a taste of the drawings produced by each of the algorithms:
Neato and Neato Animated These are, respectively, the force-directed algorithm from

[13, 8] and a slight variation with an animation-like appearance, which also draws the
graph at intermediate stages of the minimization taking place.

Fdp This is an implementation of the force-directed graph drawing algorithm from [7].
Dot Constructs a hierarchical layout using Bézier curves for edges.
Circo and Twopi These are, respectively, an implementation of the algorithm from [28, 15],

placing nodes on a circle, and the algorithm from [38], placing nodes on several concentric
circles.

Implementation Details. Except for the Neato Animated algorithm, which we implemented
ourselves to allow for its animation-like appearance, we draw heavily on the GraphViz graph
visualization library [1], providing off-the-shelf implementations of all mentioned algorithms.
This too explains the choice of the drawing algorithms.

To facilitate the implementation of the Neato Animated algorithm, we also implemented
the highly efficient algorithm from [25] for solving the distance version of the all-pairs-
shortest-path problem. As many graph drawing algorithms (and also other graph related
tasks) depend on finding the graph-theoretical distance between all pairs of nodes, we expect
this algorithm will find further uses in future extensions of Anagopos.

Anagopos lends itself to easy addition of new graph drawing algorithms; one is only
required to implement a very simple interface DrawingAlgorithm through which (a) a graph
can be passed to the drawing algorithm, and through which (b) the algorithm can be told to
compute a layout for the given graph.

5 Anagopos—Architecture

Anagopos is implemented in Python 2.6 [23], making heavy use of the object-oriented features
of the language. The tool has a Model-View-Controller architecture [17], separating the
model (the reduction graph of a term) from the manipulation of the model (user input) and
the presentation of the model (display of the reduction graph).

The interface is implemented using wxWidgets [29], a cross-platform GUI library. The
various parsers of Anagopos (for parsing TRSs, first-order terms, and lambda terms), are
simple and implemented either by hand or using pyparsing [22]. The only exception is the
TPDB parser which is constructed around the Expat XML parser [6].

Internally, terms are represented as DAGs; bound variables of lambda terms are canonized
to ensure alpha equivalent terms have a unique representation (canonization retains informa-
tion on unbound variables within the term structure). Reduction graphs are represented as
instances of a custom-made Graph-class.

N.B.B. Grathwohl and J. Ketema and J.D. Pallesen and J.G. Simonsen 67

(a) Neato: Attempts to ensure that neighbor-
ing nodes are at equal distance from each other.

(b) Neato Animated: As Neato, but with op-
timizations animated. The picture shows the
graph at a stage where it is not fully optimized.

(c) Fdp: Produces a graph comparable to
Neato, but in this case reaches a local min-
imum with a loop-like quality.

(d) Dot: Attempts to create a hierarchy, which
proves difficult in this case due to the large
number of cycles in the reduction graph.

(e) Circo: Places all nodes of the reduction
graph on a circle.

(f) Twopi: Places the nodes on several concen-
tric circles.

Figure 6 A partial reduction graph of the lambda term HIH from [2, Exercise 3.5.5(i)], with
H = λxy.x(λz.yzy)x and I = λx.x, as drawn with each of the supported drawing algorithms.

RTA’11

68 Anagopos: A Reduction Graph Visualizer

(a) The reduction graph of the term
((λx.x)y)((λx.xxx)λy.y)((λx.xx)λy.y).

(b) G((ttI)c2) with t = λxy.yyyyxxy,
I = λx.x, and c2 as in Proposition 2.3.

Figure 7 The “poor man’s 3D-effect” visible in some of the reduction graphs drawn with Neato.

The reduction graphs are generated in a breadth-first fashion. Currently, Anagopos con-
tracts at most 106 redexes per graph; this value is easily changed, but GraphViz performance
becomes problematic for graphs of larger size.

6 Conclusion and Future Work

We have presented Anagopos, a tool for drawing reduction graphs of both lambda terms and
terms from term rewriting. While we regard Anagopos in its current incarnation mainly as
a tool for education and leisure, we believe that the tool may prove useful for hypothesis
formation and, possibly, the formulation of proofs of new results concerning reduction graphs.
As an appetizer, we mention the following problems:

The set of reduction graphs of the set of terms of a TRS with finite signature is recursively
enumerable. Which recursively enumerable classes of finite graphs are realizable as the set
of reduction graphs of a terminating TRS? And, if we drop the requirement that graphs
need to be finite, which classes of countable graphs are realizable as the set of reduction
graphs of a TRS?
Precisely which undirected graphs can be realized as the underlying undirected graphs of
lambda terms?

Anagopos is open source and easily extended. Based on our initial experimentation with
the tool, it would be obvious to include support for some general higher-order rewriting
format and to implement zooming, panning, and manual rearrangements of the nodes of
graphs. Furthermore, considering the tantalizing “poor man’s 3D-effect” of force-directed
algorithms such as Neato (see Figure 7), it seems natural to try to generate three-dimensional
representations of the graphs combined with rotation. Moreover, use could be made of
a general-purpose visualization framework like Tulip [32], which not only allows for easy
visualization of graphs, but also of meta-data concerning the graphs. Finally, while we
have considered only the most basic notion of a reduction graph, as induced by the “raw”
rewrite relation of lambda calculus and TRSs, the standard literature on rewriting also
considers equivalence relations over reductions (e.g., in orthogonal TRSs) [30, Chapter 8]; it
would be natural if Anagopos could also take an equivalence relation as input and generate

N.B.B. Grathwohl and J. Ketema and J.D. Pallesen and J.G. Simonsen 69

the resulting graphs. This could include equivalence relations designed specifically to give
insight into the global structure of reduction graphs; something which has already shown its
usefulness in the area of state space visualization [9].

Acknowledgments The authors thank Jan Willem Klop, Peter Sestoft, and the anonymous
referees for useful feedback.

References
1 AT&T Research. Graphviz – graph visualization software. Available from: http://www.

graphviz.org/. Accessed 31 December 2010.
2 H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier Science,

revised edition, 1984. First edition 1981.
3 G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing graphs: an

annotated bibliography. Computational Geometry: Theory and Applications, 4(5):235–282,
1994.

4 G. Berry and J.-J. Lévy. Minimal and optimal computations of recursive programs. Journal
of the ACM, 26:148–175, 1979.

5 J. Endrullis. Graphical lambda calculator. Available from: http://joerg.endrullis.de/
lambdaCalculator.html. Accessed 31 December 2010.

6 Expat maintainers. The Expat XML parser library. Available from: http://expat.
sourceforge.net/. Accessed 5 January 2011.

7 T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement.
Software – Practice and Experience, 21(11):1129–1164, 1991.

8 E. R. Gansner, Y. Koren, and S. North. Graph Drawing by Stress Majorization. In
J. Pach, editor, Proceedings of the 12th International Symposium on Graph Drawing (GD
2004), volume 3383 of Lecture Notes in Computer Science, pages 239–250, 2004.

9 J. F. Groote and F. van Ham. Interactive visualization of large state spaces. International
Journal on Software Tools for Technology Transfer, 8(1):77–91, 2006.

10 I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and navigation in
information visualization: a survey. IEEE Transactions on Visualization and Computer
Graphics, 6(10):24–43, 2000.

11 B. Intrigila and A. R. Laurenzi. Two problems on reduction graphs in lambda calculus.
Fundamenta Informaticae, 44(1-2):133–144, 2000.

12 B. Intrigila and M. Venturini Zilli. Orders, reduction graphs and spectra. Theoretical
Computer Science, 212(1-2):211–231, 1999.

13 T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Information
Processing Letters, 31(1):7–15, 1989.

14 M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and Models, volume 2025
of Lecture Notes in Computer Science. Springer-Verlag, 2001.

15 M. Kaufmann and R. Wiese. Maintaining the mental map for circular drawings. In S. G.
Kobourov and M. T. Goodrich, editors, Proceedings of the 10th International Symposium
on Graph Drawing (GD 2002), volume 2528 of Lecture Notes in Computer Science, pages
12–22, 2002.

16 J. W. Klop. Reduction cycles in combinatory logic. In J. Seldin and J. Hindley, editors,
To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages
193–214. Academic Press, 1980.

17 G. E. Krasner and S. T. Pope. A cookbook for using the model-view-controller user in-
terface paradigm in Smalltalk-80. Journal of Object Oriented Programming, 1:26–49, Au-
gust/September 1988.

RTA’11

http://www.graphviz.org/
http://www.graphviz.org/
http://joerg.endrullis.de/lambdaCalculator.html
http://joerg.endrullis.de/lambdaCalculator.html
http://expat.sourceforge.net/
http://expat.sourceforge.net/

70 Anagopos: A Reduction Graph Visualizer

18 J.-J. Lévy. Réductions correctes et optimales dans le lambda-calcul. PhD thesis, Université
de Paris VII, 1978.

19 J.-J. Lévy. Generalized finite developments. In Y. Bertot, G. Huet, J.-J. Lévy, and
G. Plotkin, editors, From Semantics to Computer Science: Essys in Honour of Gilles
Kahn, pages 185–204. Cambridge University Press, 2009.

20 S. Lippi. in2 : A graphical interpreter for interaction nets. In S. Tison, editor, Proceedings of
the 13th International Conference on Rewriting Techniques and Applications (RTA 2002),
volume 2378 of Lecture Notes in Computer Science, pages 380–386, 2002.

21 J. Matthews, R. B. Findler, M. Flatt, and M. Felleisen. A visual environment for developing
context-sensitive term rewriting systems. In V. van Oostrom, editor, Proceedings of the 15th
International Conference on Rewriting Techniques and Applications (RTA 2004), volume
3091 of Lecture Notes in Computer Science, pages 301–311, 2004.

22 P. McGuire. pyparsing. Available from: http://pyparsing.wikispaces.com/. Accessed
5 January 2011.

23 Python Software Foundation. Python programming language. Available from: http://
www.python.org/. Accessed 4 January 2011.

24 D. Ruiz and M. Villaret. TILC: The Interactive Lambda-Calculus Tracer. Electronic Notes
in Theoretical Computer Science, 248:173–183, 2009.

25 R. Seidel. On the all-pairs-shortest-path problem. In Proceedings of the 24th Annual ACM
Symposium on Theory of Computing (STOC’92), pages 745–749, 1992.

26 S. Sekimoto and S. Hirokawa. One-step recurrent terms in lambda-beta-calculus. Theoret-
ical Computer Science, 56:223–231, 1988.

27 P. Sestoft. Standard ML on the web server: Visualizing lambda calculus reduction. Tech-
nical report, Royal Veterinary and Agricultural University, Denmark, 1996.

28 J. M. Six and I. G. Tollis. A framework for circular drawings of networks. In J. Kratochvíl,
editor, Proceedings of the 7th International Symposium on Graph Drawing (GD’99), volume
1731 of Lecture Notes in Computer Science, pages 107–116, 1999.

29 J. Smart, R. Roebling, et al. wxWidgets – cross-platform GUI library. Available from:
http://www.wxwidgets.org/. Accessed 5 January 2011.

30 Terese, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

31 M. Thyer. Lambda Animator: animated reduction of the lambda calculus. Available from:
http://thyer.name/lambda-animator/. Accessed 31 December 2010.

32 University of Bordeaux I. Tulip: Data Visualization Software. Available from: http:
//www.tulip-software.org/. Accessed 28 March 2011.

33 D. van den Eijkel. Animated Lambda Calculus Evaluator (ALCE). Available from: http://
substitut-fuer-feinmotorik.net/projects/animated-lambda-calculus-evaluator.
Accessed 31 December 2010.

34 M. Venturini Zilli. Cofinality in reduction graphs. In G. Ausiello and M. Protasi, edi-
tors, Proceedings of the 8th Colloquium on Trees in Algebra and Programming (CAAP’83),
volume 159 of Lecture Notes in Computer Science, pages 405–416, 1983.

35 M. Venturini Zilli. Reduction graphs in the lambda calculus. Theoretical Computer Science,
29:251–275, 1984.

36 B. Victor. Alligator Eggs – a puzzle game. Available from: http://worrydream.com/
AlligatorEggs/. Accessed 31 December 2010.

37 F. Wiedijk. Untyped lambda calculus. Available from: http://www.cs.ru.nl/~freek/
notes/lambda.ml. Accessed 31 December 2010.

38 G. J. Wills. NicheWorks – interactive visualization of very large graphs. In G. D. Battista,
editor, Proceedings of the 5th International Symposium on Graph Drawing (GD’97), volume
1353 of Lecture Notes in Computer Science, pages 403–414, 1997.

http://pyparsing.wikispaces.com/
http://www.python.org/
http://www.python.org/
http://www.wxwidgets.org/
http://thyer.name/lambda-animator/
http://www.tulip-software.org/
http://www.tulip-software.org/
http://substitut-fuer-feinmotorik.net/projects/animated-lambda-calculus-evaluator
http://substitut-fuer-feinmotorik.net/projects/animated-lambda-calculus-evaluator
http://worrydream.com/AlligatorEggs/
http://worrydream.com/AlligatorEggs/
http://www.cs.ru.nl/~freek/notes/lambda.ml
http://www.cs.ru.nl/~freek/notes/lambda.ml

Maximal Completion∗

Dominik Klein1 and Nao Hirokawa1

1 School of Information Science
Japan Advanced Institute of Science and Technology
Nomi, Japan
{dominik.klein,hirokawa}@jaist.ac.jp

Abstract
Given an equational system, completion procedures compute an equivalent and complete (termi-
nating and confluent) term rewrite system. We present a very simple and efficient completion
procedure, which is based on MaxSAT solving. Experiments show that the procedure is compa-
rable to recent powerful completion tools.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases Term Rewriting, Knuth-Bendix Completion, Multi-completion

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.71

Category System Description

1 Introduction

Completion tries to construct from an equational system (ES) an equivalent complete
(confluent and terminating) term rewrite system (TRS). The standard completion procedure
by Knuth and Bendix [14] and Huet [12] takes not only a target ES but also a reduction
order as a parameter. This reduction order is used to ensure termination of a resulting
complete TRS. Because the choice of a reduction order is critical for getting a successful
run of the procedure, several attempts have been made to automatically find such an order.
Here we mention the pioneering work of Kurihara and Kondo [16] on running completion
using multiple orders in parallel and the approach by Wehrman et al. [23] to automatically
construct a reduction order using a termination tool on the fly. Very recently Sato et al. [21]
showed how both approaches can be combined.

We present a new completion procedure, dubbed maximal completion. This procedure
induces a set of (exponentially) many TRSs to find a desired complete TRS from the set.
Via a natural encoding into maximal satisfiability problems, the procedure can be easily
implemented by a MaxSAT (or MaxSMT) solver. Experiments by our completion tool
Maxcomp show that this approach performs comparable with the above approaches. The
tool Maxcomp is available at:

http://www.jaist.ac.jp/project/maxcomp/

This paper is concerned with constructing complete term rewriting systems only. But we
anticipate that our approach can be adapted for unfailing completion [6], which gives up the
aim of trying to construct a complete system. Instead it only aims to construct a ground

∗ The research described in this paper is supported by the Grant-in-Aid for Young Scientists (B) 22700009
of the Japan Society for the Promotion of Science.

© Dominik Klein and Nao Hirokawa;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 71–80

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.71
http://www.jaist.ac.jp/project/maxcomp/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

72 Maximal Completion

complete (ground terminating and ground confluent) system, which is effectively used in
first-order theorem proving.

The paper is structured as follows: In Section 2 we introduce maximal completion, and its
automation techniques are described in Section 3. Section 4 relates the procedure to existing
ones. Empirical results are reported in Section 5, where our tool Maxcomp is compared
with the state-of-art completion tools Slothrop [23] and mkbTT [25]. Finally, we conclude
the presentation in Section 6 by mentioning potential future work. Throughout the paper,
we assume familiarity with term rewriting in general, and most notions and notations are
borrowed from [3, 22].

2 Maximal Completion

A TRS is complete if it is terminating and confluent. We say that R is a complete TRS
for an ES E if R is a complete TRS with ↔∗R =↔∗E . The completion problem is to find a
complete TRS for a given E .

To derive a procedure for completion, we recall the definition of critical pairs. An overlap
(`1 → r1, p, `2 → r2)µ of a TRS R consists of variants `1 → r1 and `2 → r2 of rewrite rules
of R without common variables, a non-variable position p ∈ Pos(`2), and a most general
unifier µ of `1 and `2|p. If p = ε then we require that `1 → r1 and `2 → r2 are not variants
of the same rewrite rule. The induced critical pair is `2µ[r1µ]p ≈ r2µ, and the set of all such
pairs of R is written as CP(R). Note that pairs (s, t) of terms are denoted by s ≈ t or s→ t

depending on the contexts. Below, we write ↓R for the joinability relation →∗R · ∗R←.

I Lemma 1. R is a complete TRS for an ES E if and only if R is terminating, R ⊆ ↔∗E ,
and E ∪ CP(R) ⊆ ↓R.

Proof. For the “if”-direction, by Knuth and Bendix’ confluence criterion [14, 11], confluence
of R follows from CP(R) ⊆ ↓R and termination of R. Moreover, E ⊆ ↓R and R ⊆ ↔∗E yield
↔∗R =↔∗E . The “only if”-direction is immediate from ↔∗E ⊆ ↔∗R ⊆ ↓R. J

Lemma 1 yields a simple completion procedure. Let E be an ES. We assume that two
parameter functions R and S are given and the next two conditions hold for every ES C:
S(C) is a set of equalities in ↔∗E , and R(C) is a set of terminating TRSs R with R ⊆ ↔∗E .

I Definition 2. Given ESs E and C, the procedure ϕ is defined as

ϕ(C) =
{
R if E ∪ CP(R) ⊆ ↓R for some R ∈ R(C)
ϕ(C ∪ S(C)) otherwise

Note that ϕ(C) is neither unique nor defined in general.

I Theorem 3. ϕ(E) is a complete TRS for an ES E, if it is defined.

The procedure ϕ repeatedly expands C (initially E) by S(C) until R(C) contains a complete
TRS for E . For its success the choice of R(C) and S(C) is crucial. Let t↓R denote a fixed
normal form of t with respect to R. We say that a TRS R is over an ES C if R ⊆ C ∪ C−1.
The set of all terminating TRSs over C is denoted by T(C). We propose to use

R(C) = Max T(C)

S(C) =
⋃

R∈R(C)

{s↓R ≈ t↓R | s ≈ t ∈ E ∪ CP(R) and s↓R 6= t↓R}

Dominik Klein and Nao Hirokawa 73

Here Max computes all maximal sets of rewrite rules (called maximal TRSs) in its given
family of TRSs, and this is the reason that we call our method maximal completion. Part
(b) in the next lemma explains why non-maximal TRSs in T(R) can be ignored safely.

I Lemma 4. The following claims hold:

(a) Let R ⊆ R′ ⊆ ↔∗E and R′ terminating. R′ is complete for E if R is complete for E.
(b) E ∪ CP(R) ⊆ ↓R for some R ∈ T(C) iff E ∪ CP(R) ⊆ ↓R for some R ∈ R(C).

Proof. (a) Due to completeness of R, we have E ∪ CP(R′) ⊆ ↓R. The claim follows together
with →R ⊆ →R′ . (b) The ‘only if’-direction is straightforward from the first claim, and the
converse is trivial. J

We illustrate maximal completion with an example. In examples the inverse t ≈ s of an
indexed rule i : s ≈ t is denoted as i′.

I Example 5. Consider the ES E consisting of the equalities:

1: s(p(x)) ≈ x 2: p(s(x)) ≈ x 3: s(x) + y ≈ s(x+ y)

We compute ϕ(E) with the above S(C) and R(C).

(i) R(E) consists of two TRSs {1, 2, 3} and {1, 2, 3′}. Since the join-condition of ϕ does
not hold, we have ϕ(E) = ϕ(E ∪ S(E)). Here S(E) consists of two equalities:

4: x+ y ≈ s(p(x) + y) 5 : p(s(x) + y) ≈ x+ y

(ii) R({1, . . . , 5}) consists of the two TRSs {1, 2, 3, 4′, 5} and {1, 2, 3′, 4′, 5}. Again the
join-condition does not hold. Thus, ϕ({1, . . . , 5}) = ϕ({1, . . . , 9}), where

6: (x+ y) + z ≈ s((p(x) + y) + z) 7 : p((s(x) + y) + z) ≈ (x+ y) + z

8: p(x) + y ≈ p(x+ y) 9 : p((x+ y) + z) ≈ (p(x) + y) + z

(iii) R({1, . . . , 9}) consists of four TRSs including the TRS R of

{1, 2, 3, 4′, 5, 6′, 7, 8, 9′}

which satisfies the join-condition. Thus, ϕ({1, . . . , 9}) = R.
Hence, ϕ(E) = R and it is a complete TRS for E .

Very often a complete TRS resulting from maximal completion contains many superfluous
rules. It is known that this problem is resolved by computing reduced TRSs (cf. [12]). A
TRS R is reduced if ` ∈ NF(R \ {`→ r}) and r ∈ NF(R) for all rules `→ r ∈ R. We write
R̂ for the reduced TRS

{`→ r ∈ R̃ | ` ∈ NF(R̃ \ {`→ r})}

where R̃ = {`→ r↓R | `→ r ∈ R}. The TRS R̂ fulfills the desired property:

I Lemma 6. If a TRS R is complete for E, then R̂ is complete for E.

Proof. Using the fact that R̂ is complete and ↔∗R =↔∗
R̂

(see [19]). J

I Example 7 (continued from Example 5). The reduced version R̂ is {1, 2, 3, 8}.

As Example 5 illustrates, maximality dismisses undesirable complete TRSs like empty or
singletons in T(C). This is one major source of efficiency in maximal completion. We refer to
the subsequent two sections for further discussion on R(C) and S(C).

RTA’11

74 Maximal Completion

3 Automation

We describe how to automate the approach of Section 2.

3.1 Computing R(C)
Since termination is undecidable, for automation we compute maximal elements in the set of
TRSs over a given C, for which we can show termination with reduction orders automatically.
However, since there are exponentially many TRSs over C in general, it is impractical to
check termination of each of them to compute maximal elements. We present a solution
using MaxSAT solving.

In last years, SAT/SMT-encodings of termination conditions based on existing subclasses
of reduction orders have been extensively investigated, and today they are well-established.
Here we mention recursive path orders [17, 7], Knuth-Bendix orders [26] and orders based
on matrix interpretations [9]. Importantly, all of them can test the existence of a reduction
order > that satisfies arbitrary Boolean combinations of order constraints:

C ::= s > t | > | ⊥ | ¬ C | C ∨ C | C ∧ C

We exploit this fact to encode a maximal termination problem into a maximal satisfiability
problem. Even though NP-hard in general, nowadays solving can be efficiently done by SMT
solvers.

Computing maximal terminating TRSs is done iteratively: Given a set of equalities C,
assume we already found k maximal terminating TRSs R1, . . . ,Rk over C. We construct the
following optimization problem ψ:

Maximize
∨

s≈t∈C
(s > t) ⊕ (t > s) subject to

k∧
i=1

∨
`→r∈(C∪C−1)\Ri

` > r

where C1 ⊕ C2 stands for the exclusive-or (C1 ∧ (¬C2)) ∨ ((¬C1) ∧ C2). Since each ` > r

can be encoded w.r.t. a particular class of reduction orders to Boolean constraints, ψ can
be treated as an instance of MaxSAT/MaxSMT. A solution yields a maximal subset of
oriented equalities from C, that forms a terminating TRS Rk+1 and is different from all
R1, . . . ,Rk. If ψ is unsatisfiable, we found all maximal terminating TRSs over C (w.r.t.
the considered reduction order) and return {R1, . . . ,Rk}. Otherwise, we re-encode ψ w.r.t.
Rk+1 for another MaxSAT/MaxSMT-instance.

Finally, in our implementation we do not compute all maximal terminating TRSs. This
is because there still may be exponentially many maximal terminating TRSs. Instead, we fix
a number K to stop the enumeration of maximal terminating TRSs whenever the number
reaches K. This is motivated by the following observation: Assume that there exists a
complete TRS R ∈ R(C), but we fail to select it. Since R is a terminating TRS over C ∪S(C),
by Lemma 4 (a) there exists a maximal terminating, complete TRS R′ ∈ R(C ∪ S(C)) with
R ⊆ R′. Thus when missing the complete TRS R in one iteration, there is still a chance to
select R′ in the next one.

3.2 Filtering S(C)
Our implementation of the parameter function S(C) follows closely the proposed one of
Section 2 but adds a few small operations as described below.

When orienting equalities to rules, some equalities tend to generate a lot of critical pairs.
This is why Knuth-Bendix completion employs selection heuristics (cf. [3, 25, 23]) that select

Dominik Klein and Nao Hirokawa 75

only certain kinds of equalities. We also heuristically select equalities, since otherwise the
number of critical pairs grows too fast and our implementation fails to handle it. In order to
address it, we first normalize the equalities to filter out all those whose size exceeds a bound
d. Then, we select n smallest equalities. We formulate this filtering. For a set of equalities C,
we write C<d to denote all equalities s ≈ t of C with |s|+ |t| < d. Moreover we write C�n
for the set of the n smallest equalities in C. With these notations, S(C) can be described as
follows:

S(C) =
⋃

R∈R(C)

(
{s↓R ≈ t↓R | s ≈ t ∈ E ∪ CP(R) and s↓R 6= t↓R}<d�n

)

4 Related Work and Comparison

We relate our procedure ϕ to existing completion methods. Due to their algorithmic nature
precise simulations are difficult, but we capture their main features. We say that S is an
inter-reduced version of a terminating TRS R, if S is a terminating reduced TRS whose rules
are obtained by rewriting rules in R by R itself.

Knuth-Bendix Completion [14, 12]. Let > be a reduction order for the Knuth-Bendix
completion procedure and for the orientable part {`→ r ∈ C ∪ C−1 | ` > r} we write C>.
This procedure can be simulated by ϕ if one uses

R(C) = {C>} and S(C) = {s↓R′ ≈ t↓R′}

where, R′ is an inter-reduced version of C> and s ≈ t ∈ C ∪ CP(R′).

Multi-completion [16]. Multi-completion uses a class of reduction orders >1, . . . , >n
to run Knuth-Bendix completion in parallel. Typically, the class is the set of all possible
recursive path orders. Its run can be simulated in our method as follows:

R(C) = {C>1 , . . . , C>n} and S(C) = {s↓R′ ≈ t↓R′}

where, R′ is an inter-reduced version of C>i and s ≈ t ∈ C ∪ CP(R′). A naive imple-
mentation of this approach fails due to the large number of compatibility checks as well
as computations of normal forms. In order to gain efficiency Kondo and Kurihara [16]
provided a specialised data structure, so-called node for sharing these computations
among the orders.

Completion with termination tools [23]. This procedure does not require a reduction
order as an input parameter, because during its process a necessary reduction order is
constructed on the fly:

R(C) = {R} and S(C) = {s↓R′ ≈ t↓R′}

where, R is a TRS over C whose termination is shown by a termination tool, R′ is an
inter-reduced version of R, and s ≈ t ∈ C ∪ CP(R′). Unlike a fixed single reduction
order, a termination tool can find a number of terminating TRSs over C, which avoids
failure of Knuth-Bendix completion. But its drawback is a similar problem as with
multi-completion. In the paper [23] a heuristic for the best search strategy is suggested
to select one of the terminating TRSs. This approach significantly extends the power of
Knuth-Bendix completion, and has been adopted in their completion tool Slothrop.

RTA’11

76 Maximal Completion

Multi-completion with termination tools [21, 25]. The method replaces reduction
orders in multi-completion by a termination tool:

R(C) = {R1, . . . ,Rn} and S(C) = {s↓R′ ≈ t↓R′}

where, R1, . . . ,Rn are all TRS over C whose termination is shown by a termination tool,
R′ is an inter-reduced version of some R ∈ R(C), and s ≈ t ∈ C ∪ CP(R′). A variant of
the node data structure in multi-completion provides a compact representation of R(C)
as well as an efficient algorithm to compute it. This approach has been implemented in
the very effective completion tool mkbTT.

As described in the earlier sections, maximal completion only computes maximal termi-
nating TRSs, which are often much fewer than all terminating TRSs, but it does not miss a
complete TRS. This is the main idea of our approach. One drawback is the current limited
power of maximal termination provers. Theoretically, Brute force search allows using a
termination tool to compute maximal terminating TRSs. However, it is practically infeasible
due to exponentially many calls of the termination tool.

Another difference is the definition of S(C). Except for maximal completion, all procedures
use a singleton of an equality for S(C) and its selection is critical for successful runs. The
next example illustrates this.

I Example 8. Recall the ES E in Example 5:

1: s(p(x)) ≈ x 2: p(s(x)) ≈ x 3: s(x) + y ≈ s(x+ y)

We perform ϕ(E) as the simulated run of multi-completion, where the class of reduction
orders is all LPOs with total precedence. Assume that our selection strategy for S(C) prefers
an equality derived from the critical pair of rule 3 and the rule of the biggest possible index
for some TRS in R(C).

(i) R({1, 2, 3}) = {{1, 2, 3}, {1, 2, 3′}}, which both do not satisfy the join-condition of ϕ.
Thus, ϕ({1, 2, 3}) = ϕ({1, . . . , 4}), where 4 is the single equality in S({1, 2, 3}):

4: x+ y ≈ s(p(x) + y)

(ii) R({1, . . . , 4}) = {{1, 2, 3, 4′}, {1, 2, 3′, 4′}} and the join-condition does not hold again.
We continue the run with ϕ({1, . . . , 4}) = ϕ({1, . . . , 5}), where 5 in S({1, . . . , 4}) is

5: (x+ y) + z ≈ s((p(x) + y) + z)

(iii) Generally, R({1, . . . , n}) = {{1, 2, 3, 4′, . . . , n′}, {1, 2, 3′, 4′, . . . , n′}} and S({1, . . . , n})
is the singleton of

n+1: ((x1 + x2) + · · ·) + xn−1 ≈ s(((p(x1) + x2) + · · ·) + xn−1)

for n ≥ 3. Thus, the join-condition never holds and the procedure does not terminate.

Admittedly, for the above example it is easy to choose an appropriate selection strategy
that succeeds. In general however, it is difficult to know a suitable selection strategy a
priori. This is why mkbTT provides several selection strategies as a user parameter. Maximal
completion does not use a singleton but a set of equalities for S(C), which reduces the risk
to get stuck.

To conclude, we like to stress the simplicity of maximal completion, due to avoiding
a dedicated search algorithm like one in Slothrop, and a sophisticated but complex data
structure like that of multi-completion.

Dominik Klein and Nao Hirokawa 77

Table 1 Summary for all 115 equational systems

LPO KBO termination tool
mkbTT Maxcomp mkbTT Maxcomp mkbTT Slothrop

completed 70 86 67 69 81 71

failure 6 6 3 3 3 4

timeout 39 23 45 43 31 40

5 Experiments

We implemented maximal completion in the tool Maxcomp. The tool employs the SMT
solver Yices [8] to support LPO and KBO. Concerning parameter K for R(C) in Section 3,
at the beginning we use K = 2 to compute two maximal terminating TRSs. During the
recursion of ϕ, we increase K whenever S(C) ⊆ C. Moreover, we fix n = 7 and d = 20 for
S(C), simply motivated by the fact that our tool cannot process larger n and d due to the
number of equalities. If, at some point, no new equalities are generated and all maximal
terminating TRSs are computed (i.e. parameter K cannot be increased anymore), the tool
stops with failure.

We compare Maxcomp with the two existing completion tools Slothrop and mkbTT. Since
the latter two tools require termination provers, we used AProVE [10] for Slothrop, and for
mkbTT its internally supplied prover TTT2 [15]. The test-bed consists of 115 equational
systems from the distribution of mkbTT.1 The tests were single-threaded run on a system
equipped with an Intel Core Duo L7500 with 1.6 GHz and 2 GB of RAM using a timeout of
300 seconds.

Table 1 gives a summary of the overall results. Here we also included results, where
mkbTT’s termination proving power was limited to LPO and KBO2 (this is not possible for
Slothrop). Aside from this, all parameters of all tools were left as default. More detailed
results for a selected number of systems3 are depicted in Table 2, where we omitted systems
that could be solved by all tools with every termination method, or that could not be solved by
any tool. Moreover for the two scalable systems BGK.Dxx and BGK.Mxx, that are constructed
by using a natural number as an input parameter, only the largest ones considered, BGK.D16
and BGK.M14, are shown here. Numbers denote execution time in seconds, × denotes the
tool stopped with failure, and ∞ denotes timeout.

It should be noted that the complete systems found by using a termination tool are
mostly different from those found with LPO or KBO, since the reduction order constructed
using a termination tool is usually different from them. Also, for fairness it should be noted
that by choosing specific, suitable selection strategies for each equational system individually,
mkbTT can complete more systems than with its default selection strategy. To name one

1 http://cl-informatik.uibk.ac.at/software/mkbtt/
2 mkbtt -s lpo for LPO, and mkbtt -s kbo for KBO.
3 The complete list is available at http://www.jaist.ac.jp/project/maxcomp/.

RTA’11

http://cl-informatik.uibk.ac.at/software/mkbtt/
http://www.jaist.ac.jp/project/maxcomp/

78 Maximal Completion

Table 2 Experimental results

LPO KBO termination tool
problem mkbTT Maxcomp mkbTT Maxcomp mkbTT Slothrop

BGK94.D16 ∞ 37.48 ∞ ∞ 74.91 ∞
BGK94.M14 2.73 ∞ 5.73 ∞ 2.06 25.88
Chr89.A3 40.06 3.17 20.85 ∞ ∞ ∞
fib 0.87 100.32 ∞ ∞ 0.85 7.18
Les83.fib 0.10 0.01 ∞ ∞ 0.23 2.82
Les83.subset 0.22 0.01 ∞ ∞ 0.09 3.27
OKW95.dt1.theory 0.78 46.15 ∞ ∞ 0.91 6.22
rl.theory 2.36 0.17 ∞ 1.21 1.76 8.07
SK90.3.04 6.72 1.75 ∞ ∞ 99.98 ∞
SK90.3.05 1.58 0.35 1.07 0.33 3.46 ∞
SK90.3.06 4.22 0.90 ∞ ∞ ∞ ∞
SK90.3.07 ∞ 3.03 ∞ ∞ ∞ ∞
SK90.3.15 ∞ ∞ 0.12 0.02 0.08 1.39
SK90.3.18 0.15 0.01 ∞ ∞ 0.30 3.50
SK90.3.22 ∞ 4.03 ∞ 8.03 ∞ ∞
SK90.3.27 13.31 21.09 36.47 0.53 72.31 ∞
SK90.3.28 ∞ 20.23 53.58 ∞ ∞ 110.76
slothrop.ackermann 0.02 0.01 ∞ ∞ 0.03 0.68
slothrop.cge ∞ ∞ ∞ ∞ 173.03 ∞
slothrop.endo ∞ 0.62 ∞ 0.38 3.88 7.60
slothrop.equiv.proofs × × ∞ ∞ 2.52 262.32
slothrop.equiv.proofs.or × × ∞ ∞ 2.81 ∞
slothrop.groups 0.45 0.08 ∞ 0.08 0.54 2.22
TPDB.zantema.z115 ∞ 0.73 5.76 42.63 15.27 203.69
TPTP.COL060.1.theory × × 0.01 0.01 0.02 1.14
TPTP.GRP454.1.theory 17.13 2.65 49.63 0.14 109.87 ∞
TPTP.GRP457.1.theory 17.18 2.66 49.98 1.62 112.73 ∞
TPTP.GRP460.1.theory ∞ 0.89 17.74 2.91 16.99 ∞
TPTP.GRP463.1.theory ∞ 1.76 17.80 3.26 16.91 ∞
TPTP.GRP481.1.theory ∞ 2.40 ∞ 57.20 ∞ 69.56
TPTP.GRP484.1.theory ∞ 0.52 ∞ 13.52 ∞ ∞
TPTP.GRP487.1.theory ∞ 1.00 ∞ 7.05 ∞ ×
TPTP.GRP490.1.theory ∞ 0.84 168.93 13.21 ∞ ∞
TPTP.GRP493.1.theory ∞ 5.13 40.54 2.83 ∞ ∞
TPTP.GRP496.1.theory ∞ 0.90 ∞ 11.13 ∞ 241.10
WS06.proofreduction ∞ ∞ ∞ ∞ 162.66 ∞

Dominik Klein and Nao Hirokawa 79

example, mkbTT completes SK90.3.22 with LPO and selection strategy old [25] within
roughly 40 seconds, however times out after 300 seconds with all other predefined strategies
(max, slothrop, sum). While the chosen selection strategy vastly affects the outcome of
mkbTT, it is in general non-trivial to decide which selection strategy to choose in advance.
Lastly, concerning the timeout, with very few exceptions, a higher timeout seems not to
affect the results. For overall performance, whenever all tools succeeded, they usually (with
four exceptions) did so in less than 35 seconds. For the rest of systems, timing values do
not show a clear trend. The parameter K mostly remains unchanged at 2, and for the vast
majority of successful runs does not exceed 5, the maximum being 14.

6 Conclusion and future work

We have illustrated a very compact framework for (Knuth-Bendix) completion and demon-
strated how to effectively automate it by employing modern MaxSAT solvers. Despite relying
on (not very powerful) simplification orders to show termination in our implementation,
experimental results indicate practical viability and, within the test-scenario as indicated
here, competitiveness compared to all other known approaches. To conclude, we mention
potential future work:

Recapitulating termination techniques into maximal termination is crucial to extend
the capability of maximal completion. We plan to implement matrix interpretations [9],
which are a recently emerged very powerful class of reduction orders: For instance, a
lexicographic combination of matrix interpretations can prove termination of a complete
TRS for the system CGE2 [23]. Moreover, adaptation of the dependency pair method [2]
and semantic labeling [27] for maximal termination is an important challenge.
In order to achieve better scalability the growth of S(C) in the iteration of ϕ needs to
be limited. In Knuth-Bendix completion and its variants, inter-reduction is employed
as well as the application of various critical pair criteria ([4, 13]). We expect that these
techniques can be adapted in our framework.
Last but not least, application to theorem proving is an important direction. There are
variations of Knuth-Bendix completion including unfailing completion [5] and rewriting
induction [20, 1], which are very successfully employed in powerful theorem provers
like Waldmeister [18]. However, these variations require a fixed reduction order. Very
recently Winkler and Middeldorp [24] adapted multi-completion with termination tools
for unfailing completion to overcome this restriction. We anticipate that our approach
can be integrated in these settings.

Acknowledgements We thank Sarah Winkler and Aart Middeldorp for their valuable
comments.

References
1 T. Aoto. Dealing with non-orientable equations in rewriting induction. In RTA 2006,

volume 4098 of LNCS, pages 242–256, 2006.
2 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236(1-2):133–178, 2000.
3 F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.
4 L. Bachmair and N. Dershowitz. Critical pair criteria for completion. Journal of Symbolic

Computation, 6(1):1–18, 1988.

RTA’11

80 Maximal Completion

5 L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational proofs. In LICS,
pages 346–357. IEEE Computer Society, 1986.

6 L. Bachmair, N. Dershowitz, and D. A. Plaisted. Resolution of Equations in Algebraic
Structures: Completion without Failure, volume 2, pages 1–30. Academic Press, 1989.

7 M. Codish, V. Lagoon, and P. Stuckey. Solving partial order constraints for LPO termina-
tion. In RTA 2006, volume 4098 of LNCS, pages 4–18, 2006.

8 B. Dutertre and L. D. Moura. A fast linear-arithmetic solver for dpll(t). In CAV, pages
81–94, 2006.

9 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination
of term rewriting. Journal of Automated Reasoning, 40(2-3):195–220, 2008.

10 J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination
proofs in the dependency pair framework. In IJCAR 2006, volume 4130 of LNAI, pages
281–286, 2006.

11 G. Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. Journal of the ACM, 27(4):797–821, 1980.

12 G. Huet. A complete proof of correctness of the Knuth-Bendix completion algorithm.
Journal of Computer and System Sciences, 21(1):11–21, 1981.

13 D. Kapur, D. R. Musser, and P. Narendran. Only prime superpositions need be considered
in the Knuth-Bendix completion procedure. Journal of Symbolic Computation, 6(1):19–36,
1988.

14 D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297. 1970.

15 M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean termination tool 2. In RTA
2009, volume 5595 of LNCS, pages 295–304, 2009.

16 M. Kurihara and H. Kondo. Completion for multiple reduction orderings. Journal of
Automated Reasoning, 23(1):25–42, 1999.

17 M. Kurihara and H. Kondo. Efficient BDD encodings for partial order constraints with
application to expert systems in software verification. In IEA/AEI, volume 3029 of LNAI,
pages 827–837, 2004.

18 B. Löchner and T. Hillenbrand. A phytography of Waldmeister. AI Communications,
15(2–3):127–133, 2002.

19 Y. Métivier. About the rewriting systems produced by the Knuth-Bendix completion algo-
rithm. Information Processing Letters, 16(1):31–34, 1983.

20 U. S. Reddy. Term rewriting induction. In CADE 1990, volume 449 of LNCS, pages
162–177, 1990.

21 H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp. Multi-completion with termination
tools (system description). In IJCAR 2008, LNCS, pages 306–312, 2008.

22 TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

23 I. Wehrman, A. Stump, and E. M. Westbrook. Slothrop: Knuth-Bendix completion with a
modern termination checker. In RTA 2006, LNCS, pages 287–296, 2006.

24 S. Winkler and A. Middeldorp. Termination tools in ordered completion. In IJCAR 2010,
volume 6173 of LNAI, pages 518–532, 2010.

25 S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara. Optimizing mkbtt (system descrip-
tion). In RTA 2010, LIPIcs, 2010.

26 H. Zankl, N. Hirokawa, and A. Middeldorp. KBO orientability. Journal of Automated
Reasoning, 43(2):173–201, 2009.

27 H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informati-
cae, 24:89–105, 1995.

CRSX—Combinatory Reduction Systems with
Extensions
Kristoffer H. Rose

IBM Thomas J. Watson Research Center
P. O. Box 704, Yorktown Heights, NY 10598, USA
krisrose@us.ibm.com

Abstract
Combinatory Reduction Systems with Extensions (CRSX) is a system available from http://
crsx.sourceforge.net and characterized by the following properties:

Higher-order rewriting engine based on pure Combinatory Reduction Systems with full strong
reduction (but no specified reduction strategy).
Rule and term syntax based on λ-calculus and term rewriting conventions including Unicode
support.
Strict checking and declaration requirements to avoid idiosyncratic errors in rewrite rules.
Interpreter is implemented in Java 5 and usable stand-alone as well as from an Eclipse plugin
(under development).
Includes a custom parser generator (front-end to JavaCC parser generator) designed to ease
parsing directly into higher-order abstract syntax (as well as permitting the use of custom
syntax in rules files).
Experimental (and evolving) sort system to help rule management.
Compiler from (well-sorted deterministic subset of) CRSX to stand-alone C code.

1998 ACM Subject Classification F.4.2, F.4.3, F.3.3

Keywords and phrases Higher-Order Rewriting, Compilers

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.81

Category System Description

1 Introduction

CRSX is a project on SourceForge, specifically http://crsx.sourceforge.net, currently
at version 20 but under intense development. CRSX aims at providing a high quality rewrite
engine and development environment for experimenting with higher order rewriting in general
and higher order rewrite systems for compilers in particular, and has recently been rather
successful at the latter including being the basis for a large internal compiler project in IBM.

CRSX stands for Combinatory Reduction Systems (CRS) with “eXtensions,” which we
detail below. CRS were invented and studied in depth by Jan Willem Klop [2, 3], who in
turn credits the idea to Peter Aczel [1]. They are “combinatory” because every meta-variable
carries all the (locally bound) variables it depends on, which enables the use of higher order
terms and substitution.

In this paper we summarize what the CRSX system includes and is capable of in general
terms. We assume some familiarity with rewriting (even higher order rewriting) as well as a
general computer science background (such as an understanding of what a compiler and an
interpreter are, etc.).

© Kristoffer H. Rose;
licensed under Creative Commons License ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 81–90

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://crsx.sourceforge.net
http://crsx.sourceforge.net
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.81
http://crsx.sourceforge.net
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

82 CRSX

Components. CRSX consists of a number of pieces that work together.
Interpreter (CRSX). Executable that is used to load and “execute” rewrite systems. Loads

a “script,” which is itself a rewrite system using special internal “directive” terms to
bootstrap the system. The default script is setup to load a file with CRSX rewrite rules
and another with an input term, rewrite the term, and output the result in one of several
customizable forms. The interpreter is written in Java 5.

Parser Generator (PG). Tool for building parsers from source text directly to CRSX higher-
order terms such that input terms and rules can use custom syntax. Includes special
support for directly generating higher order abstract syntax (HOAS) [4] and configuring
scopes during parsing. Currently written as a JavaCC [8] script.

Eclipse Plugin. A helper to allow editing CRSX rules files with syntax highlighting and rule
outlines in Eclipse, and with ambitions for simple debugging and such. Available directly
from an Eclipse update site at http://crsx.sourceforge.net/eclipse-plugin/.

RulesCompiler. Tool for converting a rule system to a stand-alone C program. Written as a
CRSX script including a large rules file for generating C, however, does invoke various
experimental low-level directives programmed in Java.

In the following sections we briefly describe some of the special characteristics of these
components.

Contributors. Most of the code so far has been written by the author, except the Eclipse
plugin, which was written by Takahide Nogayama (IBM Tokyo Research Lab).

Availability. CRSX is available from the SourceForge archive http://sourceforge.net/
projects/crsx/ (click on “Code”). The code is Open Source and all CRSX documentation
is being managed using the SourceForge source control system.

2 CRSX Extensions

The notation of CRSX modifies the original base CRS formalism in several ways, described
briefly here (for a full description see the evolving system documentation [7]).
Symbols. All symbols can be used as constructor symbols. Unless the symbol has another

meaning, it can be used directly, otherwise it can be used in quotes, so although lower case
letters and words are normally variables, ’x’ is a constructor, and all symbols containing
a # are normally meta-variables but "Expr#" is a constructor. In addition, CRSX uses
Unicode, so many exotic characters are available.

Structure brackets. Basic term formation uses square brackets for subterms, and every
symbol not otherwise specified is a constructor symbol. So simple arithmetic terms can be
written, e.g., as +[*[1,2],3], where all of the symbols +, *, 1, 2, and 3, are constructors;
notice how we have omitted [] after the nullary constructors.

Subterm binder dot. Bound variables are specified with a “dot” prefix and are restricted
to construction subterms. A standard “let a = 1 × 2 in a + 3” binder construct can
for example correspond to the term Let[*[1,2], a.+[a,3]] where the term makes the
binder’s scope explicit.1

λ-calculus conventions. Two special conventions facilitate λ-calculus notation: prefixing
a constructor to some binders corresponds to nesting, e.g., λ x y z . x really means

1 The main effect of the subterm restriction for binders is that a fragment like x.x is not in itself a term.

http://crsx.sourceforge.net/eclipse-plugin/
http://sourceforge.net/projects/crsx/
http://sourceforge.net/projects/crsx/

Kristoffer H. Rose 83

λ[x.λ[y.λ[z.x]]], and juxtaposition and normal parenthesis correspond to left-associa-
tive use of a special application operator, e.g., x z (y z) really means @[@[x,z],@[y,z]].2

Meta-application #tags. Words with # in them are meta-variables used to form meta-
applications with brackets, e.g., Expr#1[x,Sub#Expr], where we can also omit [] for
ground meta-applications.

Free variables. Unlike standard CRS, CRSX permits free variables, i.e., x is a proper term.
(This turns out to be crucial when defining recursive compilation and analysis schemes as
these invariably have a case for free variables.)

Property lists. CRSX includes special syntax for constant properties and for properties
of variables, written as prefixes of the form { Constant : Term ;...; v: Term ;...; },
where a Constant is a constructor symbol, v a variable, and Term arbitrary terms. We
explain below how rules can match against the existence and value of properties.

Rules. Directives of the form Name [Options]: Pattern → Contraction are rules describing
how subterms that match the Pattern can be replaced by subterms built according to
the Contraction .3 As usual in CRS, the Pattern is restricted to constructions where
each contained meta-application must be applied to distinct bound variables, and the
arity of each meta-variable must be consistent throughout the rule. We shall discuss rules
in more details below, including the role and form of the Options .

Sorts. Directives of the form Sort ::=(Form ;...) and Form :: Sort declare algebraic
sorts of the included Form s. Each Sort is just a constant name,4 and each Form , in turn,
defines the shape of one construction by Constructor [B1Sort 1,...,BnSort n], which
specifies several constraints. First the Constructor can only occur where instances of
the defined Sort are permitted. Second, the i’th subterm of the constructor must have
the Sort i with precisely the binders described by Bi, which may be empty or have the
form ~xi.{xi1:Sort ik;...;xi1:Sort i1}, which combines the constraints that

there must be precisely k binders on the i’th subterm, and
each bound variable corresponding to binder xij must occur inside the subterm scope
with Sortij .

Sort declarations with ::= are called data sort declarations in that they enumerate forms
of a sort that can only be included as non-outermost constructions in patterns, whereas
::-declarations are called function sort declarations that (separately) enumerate forms of
a sort that can only be included in patterns as the outermost construction. (Constructors
that have not been included as part of a sort do not have any such restrictions.)

Evaluators. Rules can contain special evaluation terms of the form $[Constant,...], where
the Constant indicates what evaluation to perform in the pattern or contraction in
question. The evaluator $[Plus,#arg,1], for example has these properties:

if used in a contraction it first contracts #arg, and if the result is a constant that can
be interpreted as a number, then the contraction of the entire evaluator is the constant
representing the number obtained by adding one;
if used when matching a pattern then it first matches #arg against the redex subterm
and, if that succeeds for some Term , then it records that the valuation of #arg should
effectively be $[Minus,#arg,1] (with the obvious meaning).

The available evaluators are summarized in the documentation, including the functional
restrictions to prevent the need for backtracking.

2 We further follow the common convention that application binds tighter than other constructs.
3 The “→” in the directive is a the Unicode character U2192.
4 We are working on parametrically polymorphic sorts. . .

RTA’11

84 CRSX

Meta-rules. Special directives of the form $Meta[(Rule ;...)] permit rules that rewrite
the rewrite rules themselves.

Notice that CRSX does not specify a reduction strategy and has no special evaluation
strategy mechanism. Evaluation is only specified to always make progress and thus be weakly
normalizing, and indeed the interpreter and C implementations use quite different strategies
that we furthermore change over time. (Like all weakly normalizing strategies over higher
order terms both reduction strategies reduce terms under binders, of course.) To enforce
a particular reduction order it is necessary to insert control symbols that block unwanted
reductions.5

We present a simple example of how to enter and run a rewrite system here; a larger
example with properties and custom syntax will follow below.

I Example 1 (λ-calculus). Let us illustrate the use of the CRSX interpreter from the
command line on a simple example. Create a file beta-eta.crs with the following content:6

BetaEta[(
β[Copy[#X]] : ((λx.#[x]) #X) → #[#X] ; η[Weak[#]] : (λx. # x) → # ;
S → (λ x y z.x z (y z)) ; K → (λ x y.x) ; I → (λ x.x) ;

)]

Now copy the crsx.jar file from the CRSX release [7] and execute the following command
(using your proper Java 5 java command):

$ java -jar crsx.jar rules=beta-eta.crs term="S K I"
(λ z . z)

The rules use the λ-calculus conventions discussed above, and further illustrate several points:
A named group of rules (here BetaEta) is specified as a construction with a parenthesized
sequence of ;-terminated rules.
Each rule is named (here β and η).
After the rule name some options are needed whenever a rule does something beyond
straight linear term rewriting: here we have to declare that, in β, the argument to the
application may be copied (by the substitution), and, in η, the second argument under the
abstraction omits a free variable from the substitution parameter list (which corresponds
to the η-rule not permitting occurrences of that variable).
The name part of a rule can be omitted (then the rule will be named for the pattern
constructor).

To see the purpose of the options, removing them and running the same command would
give these errors:
Error: BetaEta-β rule contractum uses non-shared/duplicatable meta-variable in place that may be copied (#X).
Error: BetaEta-η rule pattern meta-application # omits bound variables yet is not declared Weak.
Errors prevent normalization.

I Example 2 (simply typed λ-calculus). To illustrate the use of environments, we include a
rule system for rewriting a simply typed λ-calculus to its type in Figure 1. The rule system
defines a T scheme and some helper schemes that together rewrite a simply typed λ-term to
its type, which can be used as follows:

5 We are experimenting with generating force/delay operators automatically from the sorts but this is
not available yet.

6 Use the Unicode coding for the Greek letters and encode with UTF-8.

Kristoffer H. Rose 85

BetaTypes[(
TYPE ::=(BASE; TYPE→TYPE; ERROR;);
TERM ::=(x; λ[TYPE, x.{x : TERM}TERM]; TERM TERM;);

T[TERM] :: TYPE ;
-[Free[x]] : {x : #α} T[x] → #α ;
-[Free[x]] : {¬x} T[x] → BASE ;
-[Fresh[v],Copy[#α]] : {#Γ} T[λ[#α, x.#[x]]] → (#α → {#Γ; v : #α} T[#[v]]) ;
{#Γ} T[#1 #2] → {#Γ} TA[{#Γ} T[#1], #2] ;

TA[TYPE, TERM] :: TYPE ;
-[Discard[#]] : TA[BASE, #] → ERROR ;
{#Γ} TA[#α → #β, #] → M[#α, {#Γ} T[#], #β] ;

M[TYPE, TYPE, TYPE] :: TYPE ;
M[BASE, BASE, #γ] → #γ ;
M[#α→#β, #α2→#β2, #γ] → M[#α2, #α, M[#β, #β2, #γ]] ;
-[Discard[#α2,#β2]] : M[BASE, #α2→#β2, #γ] → #γ ;
-[Discard[#γ]] : M[BASE, ERROR, #γ] → ERROR ;
-[Discard[#α,#β,#γ]] : M[#α→#β, BASE, #γ] → ERROR ;
-[Discard[#α,#β,#γ]] : M[#α→#β, ERROR, #γ] → ERROR ;

)]

Figure 1 samples/lambda/beta-type.crs: type analysis of simply typed λ-calculus.

$ java -jar crsx.jar check-sorts rules=beta-type.crs term="T[λ[BASE,x.x]]"
(BASE → BASE)

(the precise options used can be found in the system manual).
The system includes two sorts TYPE and TERM with terms describing simple types and

simply typed terms, respectively. Notice that TERM permits free variables as well as a typed
binder under λ; in addition to the λ-calculus conventions it makes use of the built-in parsing
of infix use of →.

The second block defines the sort and rules for the T scheme. The first two rules give cases
for T on free variables: one rule for variables that are defined in the type environment and
another for globally free variables. Both rules include a Free[x] option, which is required to
allow the free variable x, and both have a property constraint on the properties of the root T
(the first requiring it to be #α and the second requiring it to be absent).

The third rule constructs the function type of an abstraction, which involves replacing
the bound variable x with a fresh variable v, therefore declared Fresh[v] (in addition to
Copy[#α] for the copied substructure). It illustrates how the property list in the contraction
extends the matched properties with an additional binding.

The fourth and final T rule constructs the type of an application with a helper TA scheme
that in turn uses the M scheme for type matching of the formal and actual argument types;
the last two blocks define these. Notice the use of the Discard option, which is required
for rules to not contract specific matched subterms: this is the single most effective error
catching mechanism in the system.

RTA’11

86 CRSX

// Simple XQuery-like language.
grammar net.sf.crsx.samples.x.X : <P>, <E>, <S>, <Q>

meta[<E>] ::= "#<PRODUCTION_NAME>" i?, "[", "]" . // Meta-applications over AST.

skip ::= " " | "\r" | "\n" | "\t" . // White space.

<P> ::= {program} <E> . // Program.

<E> ::= <S>:#S ("," <E>:#E J"comma"[#S,#E]K | J#SK) . // Expression.

<S> ::= "(" (<E> | {empty}) ")" // Simple expression.
| "element"_{} <N> "{" <E> "}"
| {query} <Q>
| "if"_{} <S> "then" <S> "else" <S>
| {call} <N> "(" (<E> | {empty}) ")"
| v_?
| {literal} <L>
.

<Q> ::= "for"_{} v_x "in" <S> <Q>[x] // Query.
| "let"_{} v_x ":=" <S> <Q>[x]
| "where"_{} <S> <Q>
| "return"_{} <S>
.

<N> ::= n_{} . // Names.
<L> ::= l_{} . // Literals.

token l ::= i | "’" (¬[\’] | "’’")* "’" .
token i ::= [0-9]+ .
token n ::= [A-Za-z_] [A-Za-z0-9_-]* .
token v ::= "$" n .

Figure 2 samples/x/x.pg: sample nested loop language parser.

3 Parser Generator

The system includes the “PG” parser generator for generating custom parsers for higher order
terms. Figure 2 contains the input file to PG for a small “nested loop” query language like
XQuery [6]. The PG notation is designed to express common higher order term constructions.

The top “grammar” declaration declares the name of the grammar as well as the externally
available syntactic categories, with the first, <P>, being the default.
The meta declaration sets up the format for meta-variables in the language, in this case
using the same #-[-] notation as in CRSX itself.
The skip declaration just specifies the format for white space.
The <P> production states that a program will be represented as a program construction
(indicated by the {}s) with the contained <E> as a subterm.
The <E> production says that an <E> is an <S> followed either by a comma and a sub-<E>
or nothing. The :#S allows us to refer to the <S> as #S, and in the first case #E can be

Kristoffer H. Rose 87

used to reference the sub-<E>; in both cases the result term is specified in J...Ks.7
The <S> production has several choices; for each the generated term is specified either by
giving the constructor prefix in {}s, or by indicating with a _{} marker that an existing
token should itself be used as a constructor prefix, or (for the single variable token case)
with the marker _? that the token should be the name of an in-scope variable.
The <Q> production introduces binding constructs with the _x markers that indicate that
the v token should be interpreted as a variable and, in each case, the correponding [x]
marker indicates the (single) subterm that is the scope of the variable.
The <N> and <L> productions just use the tokens as constructors.
Finally, the four token kinds are defined using regular expressions.

In Java, the parser is then generated by first invoking PG to generate X.jj and then JavaCC [8]
to generate the appropriate Java classes which then permits parsing such as the following,
where we explicitly request the grammar name and syntax category to use:

$ java -jar crsx.jar "grammar=(’net.sf.crsx.samples.x.X’;)" category=P \
> term="for $x in child(doc()) for $y in child(doc()) where eq($x,$y) return plus($x,$y)"
"program"[
"query"[
"for"["call"["child", "call"["doc", "empty"]],
v"$x" . "for"[

"call"["child", "call"["doc", "empty"]],
v"$y" . "where"["call"["eq", "comma"[v"$x", v"$y"]],

"return"["call"["plus", "comma"[v"$x", v"$y"]]]]]]]]

Finally, the meta-declaration makes it possible to use rules files with embedded syntax, e.g.,
the samples/x/N.crs rules file contains a rule

-[Free[id],Fresh[f]] :
NQ[%QJ for $v in #S #Q[$v] K, id, t.#op[t]]
→ NQ[#Q[f], id, id3.MapConcat[

Dep[id2.Map[Dep[id1.Tuple[ACons[f id1, ANil]]], N[#S, id2]]],
#op[id3]]] ;

where the special %QJ...K notation invokes the parser described above to parse the for-
construct allowing for binders and embedded meta-variables of the appropriate sorts.

4 Eclipse Plugin

We include an Eclipse plugin for editing CRSX files (and, to some extent, PG grammar files).
Figure 3 shows a screen shot of the plugin running in Eclipse. The plugin follows the usual
Eclipse style of having a main editing pane for the rules and support panes with additional
navigation and status information. The views include:

Syntax highlighting in the editor view, including flagging of syntax errors.
A structured outline view for quick navigation to rules and rule components.
Simple stepping through an execution of a rewrite system with highlighting of the current
rule and a way to access the current state of the term.
A simple “observe rule” mechanism to allow very primitive break points; we hope to
extend this capability to a proper debugging facility.

At the time of writing, the plugin is still under heavy development thus should not be
expected to always work fully.

7 The double brackets are Unicode characters U27E6 and 7.

RTA’11

88 CRSX

Figure 3 Screen shot of Eclipse plugin.

5 RulesCompiler

In order for CRSX to be used as a compiler generator, it needs to generate code. We have
chosen to do this by translating the rules of the rewrite systems itself directly to C in the
following stages:
1. First make sure that the rewrite system is an orthogonal sorted constructor system (this

should be automated with a completion procedure but we do not have that yet): any
actual term should only match a single rule and all symbols should be sorted (which
implies that they are categorized cleanly as function or data symbols).

2. Assign sorts to all constructors of the rewrite system to make sure that it is precisely
understood what the possible constructors at every subterm are. Sort assignment is
currently a standard monomorphic algebraic type analysis (we hope to extend this to
permit polymorphic data constructors as these add convenience without complication).

3. The rewrite system is “dispatchified” by splitting all rules with nested patterns into a
separate rule per choice point (similarly to the way normal functional language pattern
matching is compiled).

4. For each constructor a C structure is created with the specifics of that construction,
notably the number of subterms and rank (binder count) for each subterm.

5. Code is generated for every rule where
a. pattern matching is translated to a switch on the root constructor of the investigated

subterm that generates the specific rule function symbol for that pattern case; the
switch has a case for “free variable” precisely when the sort of the subterm permits it;

Kristoffer H. Rose 89

// RULE: β : ((λ x . #[x]) #X) → #[#X]
int stepFunction_M__40(Sink sink_1, Term term_1)
{

DEBUGT(sink_1->context, "\n==========\nMATCH β \n==========\n", term_1);
Term sub_1 = FORCE(sink_1->context, SUB(term_1,0));
if (!IS_DATA(sub_1)) return 0;
Term m_M__23 = SUB(sub_1,0);
Variable mbind0_M__23 = BINDER(sub_1,0,0);
Term m_M__23X = SUB(term_1,1);
int mcount_M__23X = 0;
DEBUGF(sink_1->context, "%s","\n==========\nCONTRACT β\n==========\n");
PROPERTIES_RESET(sink_1);
{

Variable vars_1[1] = {mbind0_M__23};
Term subs_1[1];
{

Sink buf_1 = MAKE_BUFFER(sink_1->context);
COPY(buf_1, m_M__23X, mcount_M__23X++);
subs_1[0] = BUFFER_TERM(buf_1);
FREE_BUFFER(sink_1->context, buf_1);

}
struct _SubstitutionFrame substitution_1 = {NULL, 1, vars_1, subs_1};
SUBSTITUTE(sink_1, m_M__23, 0, &substitution_1);

}
DEBUGF(sink_1->context, "%s","\n==========\nEND β\n==========\n");
return 1;

}

Figure 4 Fragment of generated C “step” code.

b. rules drive evaluation of arguments that need to be pattern matched;
c. every component of each pattern is extracted, including binders;
d. the result term is constructed from left to right by combining new constructors and

binders with copies of existing terms, possibly subject to substitutions.
6. A top level normalization algorithm is applied that repeatedly attempts to reduce the

outermost functional subterm until there are none or reduction is stuck.
Figure 4 contains step function code generated for the β rule of the λ-calculus.

The sub_1 term is set to the value of the first argument after it has been “forced” to be
a value. If the value is then not a construction (so a free variable) then the step fails because
some rule in the context must perform the substitution. In pure λ calculus we then now know
that it must be a λ construction and thus we can merely extract the binder and subterm of
the λ construction. The contraction can then start: we create a substitution valuation for
replacing instances of the bound variable with copies of the application argument and process
the substitution sending the result to the buffer sink that the rewrite step is configured to
produce.

For general β reduction this is very naive, however, in practice compilers do few operations
as general as this: most rewrite steps are subject to optimizations. The most important
one is to eliminate copies and substitutions where possible. Specifically, many substitutions
replace a bound variable with another variable either bound or free. In most cases this can
be replaced with permuting and reusing the existing variables such that the substitution
itself is a copy. Similarly, most rules are linear in that they contract to use just a single copy

RTA’11

90 CRSX

of the matched subterms. The rules will reuse a pointer to the existing copy for the first use.

6 Conclusions

CRSX is the result of more than three years of development [5], and is beginning to mature.
It is definitely there and can be played with, even if the documentation is not scheduled
to be properly available until “later this year.” The author encourages anyone interested
in compilers and (especially) higher order rewriting to download and try CRSX; if you
furthermore wish to participate I will be thrilled!

Current work is rather focused on getting a proper understanding of the formal underpin-
nings of the extension that have seemed necessary to get CRSX to do what it does, and also
the cleanest way to allow rewrite systems themselves direct access to the “formal toolbox”
that is effectively embedded in the system.

In addition, CRSX is in full production use as a compiler generator framework, which
the author plans to keep pushing as far as it can because it is only getting more interesting
with time.

Acknowledgements. I am grateful to our “Compilers by Higher Order Rewriting” team
at IBM Research: Scott Boag, Takahide Nogoyama, Naoto Sato, Lionel Villard, and Bob
Schloss, for participating in the great adventure it is to build a compiler mostly from scratch
in this way (as well as serve as first line of defense against interesting if sometimes unintended
features), to Morris Matsa for believing that such compilers can eventually be effective, to
the anonymous referees for numerous helpful suggestions, and finally, thanks to SourceForge
for enabling the disseminiation of projects such as this.

References
1 Peter Aczel. A general Church-Rosser theorem. http://www.ens-lyon.fr/LIP/

REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf, July 1978. Corrections at http:
//www.ens-lyon.fr/LIP/REWRITING/MISC/AGRT_corrections.pdf.

2 Jan Willem Klop. Combinatory Reduction Systems. PhD thesis, University of Utrecht,
1980. Also available as Mathematical Centre Tracts 127.

3 Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Combinatory re-
duction systems: Introduction and survey. Theoretical Computer Science, 121:279–308,
1993.

4 Frank Pfenning and Conal Elliot. Higher-order abstract syntax. SIGPLAN Notices,
23(7):199–208, 1988.

5 Kristoffer Rose. CRSX – an open source platform for experimenting with higher order
rewriting. Presented in absentia at HOR 2007—http://kristoffer.rose.name/papers,
June 2007.

6 Kristoffer Rose. Higher-order rewriting for executable compiler specifications. In Eduardo
Bonelli, editor, Proceedings 5th International Workshop on Higher-Order Rewriting, vol-
ume 49 of EPTCS, pages 31–45, Edinburgh, Scotland, July 2010.

7 Kristoffer Rose. Combinatory reduction systems with extensions. http://crsx.
sourceforge.net, March 2011.

8 Sreeni Viswanadha, Sriram Sankar, et al. Java Compiler Compiler (JavaCC) - The Java
Parser Generator. Sun, 4.0 edition, January 2006.

http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGRT_corrections.pdf
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGRT_corrections.pdf
http://kristoffer.rose.name/papers
http://crsx.sourceforge.net
http://crsx.sourceforge.net

A Reduction-Preserving Completion for Proving
Confluence of Non-Terminating Term Rewriting
Systems
Takahito Aoto1 and Yoshihito Toyama1

1 RIEC, Tohoku University
2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
{aoto,toyama}@nue.riec.tohoku.ac.jp

Abstract
We give a method to prove confluence of term rewriting systems that contain non-terminating
rewrite rules such as commutativity and associativity. Usually, confluence of term rewriting
systems containing such rules is proved by treating them as equational term rewriting systems
and considering E-critical pairs and/or termination modulo E. In contrast, our method is based
solely on usual critical pairs and usual termination. We first present confluence criteria for term
rewriting systems whose rewrite rules can be partitioned into terminating part and possibly
non-terminating part. We then give a reduction-preserving completion procedure so that the
applicability of the criteria is enhanced. In contrast to the well-known Knuth-Bendix completion
procedure which preserves the equivalence relation of the system, our completion procedure
preserves the reduction relation of the system, by which confluence of the original system is
inferred from that of the completed system.

1998 ACM Subject Classification D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs; F.4.2 [Mathematical Logic and Formal Languages]: Grammars and Other Rewriting
Systems; I.2.2 [Artificial Intelligence]: Automatic Programming

Keywords and phrases Confluence, Completion, Equational Term Rewriting Systems, Conflu-
ence Modulo Equations

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.91

Category Regular Research Paper

1 Introduction

Confluence is one of the most important properties of term rewriting systems (TRSs for short)
and hence many efforts have been spent on developing techniques to prove this property
[3, 15]. One of the classes of TRSs for which many known confluence proving methods are
not effective is the class of TRSs containing associativity and commutativity rules (AC-rules).
Such TRSs are non-terminating by the existence of AC-rules (more precisely, commutativity
rules are self-looping and associativity rules are looping under the presence of commutativity
rules) and hence the Knuth-Bendix criterion does not apply. Furthermore, confluence criteria
regardless of termination based on critical pairs often do not apply either.

A well-known approach to deal with TRSs containing AC-rules is to deal them as
equational term rewriting systems [6, 7, 13]. In this approach, non-terminating rules such as
AC-rules are treated exceptionally as an equational subsystem E . Then the confluence of
equational term rewriting system 〈R, E〉 is obtained if R is terminating modulo E [6, 7, 13]

© Takahito Aoto and Yoshihito Toyama;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 91–106

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.91
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

92 A Reduction-Preserving Completion for Proving Confluence

and either E-critical pairs of R satisfy certain conditions [7, 13] or R is left-linear and
E/R-critical pairs satisfy a certain condition [6]. This approach, however, only works if R is
terminating modulo E . Furthermore, the computation of E-critical pairs requires a finite and
complete E-unification algorithm which depends on E .

In this paper, we give a method to prove confluence of TRSs that contain non-terminating
rewrite rules such as AC-rules. In contrast to the traditional approach described above, our
method is based solely on usual critical pairs and usual termination. Thus the implementation
of the method requires little special ingredients and the method is easily integrated into
confluence provers to combine with other confluence proving methods. We first present
confluence criteria for TRSs whose rewrite rules can be partitioned into terminating part and
possibly non-terminating part (Section 3). We then give a reduction-preserving completion
procedure so that the applicability of the criteria is enhanced (Section 4). In contrast to the
well-known Knuth-Bendix completion procedure which preserves the equivalence relation
of the system, our completion procedure preserves the reduction relation of the system, by
which confluence of the original system is inferred from that of the completed system. Finally
we report on our implementation and results of experiments (Section 5).

2 Preliminaries

This section fixes some notions and notations used in this paper. We refer to [3] for omitted
definitions.

Let→ be a relation on a set A. The reflexive closure (the symmetric closure, the transitive
closure, the reflexive and transitive closure, the equivalence closure) of → is denoted by =→
(↔, +→, ∗→ ∗↔, respectively). The union →i ∪→j of indexed relations →i and →j is written
as →i∪j . A symmetric relation is written as à. A relation → is well-founded if there exists
no infinite descending chain a0 → a1 → · · · . The composition of relations R,S is written as
R ◦ S. A relation → on a set A is confluent if ∗←◦ ∗→ ⊆ ∗→◦ ∗← holds.

Let F be a set of arity-fixed function symbols and V be the set of variables. The set
of terms over F and V is denoted by T(F ,V). The sets of function symbols and variables
occurring in a term t are denoted by F(t) and V(t), respectively. A linear term is a term in
which any variable occur at most once. Positions are finite sequences of positive integers.
The empty sequence is denoted by ε. The set of positions in a term t is denoted by Pos(t).
The concatenation of positions p, q is denoted by p.q. We use ≤ for prefix ordering on
positions, i.e. p ≤ q iff ∃o. p.o = q. For p, q such that p ≤ q, the position o satisfying p.o = q

is denoted by p\q. Positions p1, . . . , pn are parallel if pi 6≤ pj for any i 6= j. We write p ‖ q
if two positions p, q are parallel. If p is a position in a term t, then the symbol in t at the
position p is written as t(p), the subterm of t at the position p is written as t/p, and the
term obtained by replacing the subterm t/p by a term s is written as t[s]p. For X ⊆ F ∪ V,
we put PosX(t) = {p ∈ Pos(t) | t(p) ∈ X}. For parallel positions p1, . . . , pn in a term t, the
term obtained by replacing each subterm t/pi by a term si is written as t[s1, . . . , sn]p1,...,pn .
A map σ from V to T(F ,V) is a substitution if the domain dom(σ) of σ is finite where
dom(σ) = {x ∈ V | σ(x) 6= x}. As usual, we identify each substitution with its homomorphic
extension. For a substitution σ and a term t, σ(t) is also written as tσ. For a set E of
equations, we write E−1 = {r ≈ l | l ≈ r ∈ E}. A set E = {s1 ≈ t1, . . . , sn ≈ tn} of equations
is unifiable if there exists a substitution σ such that siσ = tiσ for all i; the substitution σ is
a unifier of E . A relation R on T(F ,V) is stable if for any terms s, t ∈ T(F ,V), s R t implies
sθ R tθ for any substitution θ; it is monotone if s R t implies f(. . . , s, . . .)R f(. . . , t, . . .) for
any f ∈ F . A relation R on T(F ,V) is a rewrite relation if it is stable and monotone.

Takahito Aoto and Yoshihito Toyama 93

An equation l ≈ r is a rewrite rule if it satisfies the conditions (1) l /∈ V and (2)
V(l) ⊆ V(r). A rewrite rule l ≈ r is written as l → r. Rewrite rules are identified modulo
renaming of variables. A rewrite rule l→ r is linear (left-linear) if l, r is linear (l is linear,
respectively); it is bidirectional if r ≈ l is a rewrite rule. A term rewriting system (TRS
for short) is a finite set of rewrite rules. A TRS is left-linear (linear, bidirectional) if so
are all its rewrite rules. If a TRS R is bidirectional then R−1 = {r → l | l → r ∈ R} is
a TRS. Let R be a TRS. If there exists a rewrite rule l → r ∈ R and a position p in a
term s and substitution θ such that s/p = lθ and t = s[rθ]p, we write s →p,R t. If not
necessary, s →p,R t is written as s →R t or s → t. We call s →R t a rewrite step; →R is
a rewrite relation and called the rewrite relation of R. A term s is normal if s →R t for
no term t. The set of normal terms is denoted by NF(R). A normal form (or R-normal
form) of a term s is a term t ∈ NF(R) such that s ∗→R t. A TRS R is terminating if
→R is well-founded; R is confluent if →R is confluent. The parallel extension →++R of the
rewrite relation →R and the parallel extension ↔++R of the symmetric closure ↔R of the
rewrite relation →R are defined like this: s→++ {p1,...,pn},R t (s↔++ {p1,...,pn},R t) iff p1, . . . , pn

are parallel positions in the term s and there exist rewrite rules l1 → r1, . . . , ln → rn ∈ R
(equations l1 ≈ r1, . . . , ln ≈ rn ∈ R ∪ R−1, respectively) and substitution θ1, . . . , θn such
that s/pi = liθi for each i and t = s[r1θ1, . . . , rnθn]p1,...,pn . If not necessary, s→++ {p1,...,pn},R t

(s↔++ {p1,...,pn},R t) is written as s→++R t or s→++ t (s↔++R t or s↔++ t, respectively). We call
s→++R t a parallel rewrite step. We note that →++R is a reflexive rewrite relation and ↔++R is a
reflexive symmetric rewrite relation. Note that ↔++R differs from the symmetric closure of
→++R in general and coincides with →++R∪R−1 if R is bidirectional.

Let s, t be terms whose variables are disjoint. The term s overlaps on t (at a position p)
when there exists a non-variable subterm u = t/p of t such that u and s are unifiable. Let
l1 → r1 and l2 → r2 be rewrite rules w.l.o.g. whose variables are disjoint. Suppose that l1
overlaps on l2 at a position p and σ is the most general unifier of l1 and l2/p. Then the term
l2[l1]pσ yields a critical pair 〈l2[r1]pσ, r2σ〉 obtained by the overlap of l1 → r1 on l2 → r2
at the position p. In the case of self-overlap (i.e. when l1 → r1 and l2 → r2 are identical
modulo renaming), we do not consider the case p = ε. We call the critical pair outer if
p = ε and inner if p > ε. The set of outer (inner) critical pairs obtained by the overlaps of a
rewrite rule from R1 on a rewrite rule from R2 is denoted by CPout(R1,R2) (CPin(R1,R2),
respectively). We put CP(R1,R2) = CPout(R1,R2)∪CPin(R1,R2). Critical pairs are often
regarded as equations.

3 Confluence criteria

In this section, we give new confluence criteria for term rewriting systems. We first present
an abstract confluence criterion that will be used as the basis of our confluence criteria.

I Lemma 3.1. Let à0,→1 be relations on a set A such that à0 is symmetric and →1
is well-founded. Let →0∪1 = à0 ∪ →1. Suppose (i) ←1 ◦ →1 ⊆

∗→1 ◦ à
=

0 ◦
∗←1 and (ii)

à0 ◦→1 ⊆
∗→1 ◦ à

=
0 ◦

∗←1. Then ∗↔0∪1 ⊆
∗→1 ◦ à

∗
0 ◦

∗←1.

Proof. Let the weight of a rewrite step a↔0∪1 b be given by the multiset w(a↔0∪1 b) defined
like this: w(a à0 b) = {a, b}, w(a →1 b) = {a} and w(a ←1 b) = {b}. For each rewrite
sequence a0 ↔0∪1 a1 ↔0∪1 · · · ↔0∪1 an let its weight be the multiset consisting of the weights
of the rewrite steps ai ↔0∪1 ai+1, i.e. {w(a0 ↔0∪1 a1), w(a1 ↔0∪1 a2), . . . , w(an−1 ↔0∪1

an)}. Let � be the multiset extension of the well-founded order +→1 and �mul the multiset
extension of �. We show by noetherian induction on the weight of the rewrite sequence

RTA’11

94 A Reduction-Preserving Completion for Proving Confluence

w.r.t. �mul that for any rewrite sequence a0
∗↔0∪1 an there exists a rewrite sequence

a0
∗→1 ◦ à

∗
0 ◦

∗←1 an.
1. Suppose there exists k such that ak−1 ←1 ak →1 ak+1. Then by assumption (i), there exist

b0, . . . , bm such that ak−1 = b0
∗→1 bl à

=
0 bl+1

∗←1 bm = ak+1. Thus we have a rewrite
sequence a0

∗↔0∪1 ak−1 = b0
∗→1 bl à

=
0 bl+1

∗←1 bm = ak+1
∗↔0∪1 an. We now show this

new rewrite sequence has less weight than the original rewrite sequence a0
∗↔0∪1 an. We

here only show the case of l 6= 0, l + 1 6= m and bl à0 bl+1. Then the weight decreases
as {. . . , {ak}, {ak}, . . .} �mul {. . . , {b0}, . . . , {bl−1}, {bl, bl+1}, {bl+2}, . . . , {bm}, . . .}. For
other cases, one can easily check that the weight of the rewrite sequence decreases in a
similar way. Thus, it follows that there exists a rewrite sequence a0

∗→1 ◦ à
∗

0 ◦
∗←1 an by

the induction hypothesis.
2. Suppose that there exists k such that ak−1 à0 ak →1 ak+1. Then by assumption (ii),

there exist b0, . . . , bm such that ak−1 = b0
∗→1 bl à

=
0 bl+1

∗←1 bm = ak+1. Thus we have
a rewrite sequence a0

∗↔0∪1 ak−1 = b0
∗→1 bl à

=
0 bl+1

∗←1 bm = ak+1
∗↔0∪1 an. In a way

similar to the first case, one can easily check that this new rewrite sequence has less weight
than the original rewrite sequence a0

∗↔0∪1 an. We here only show the case of l 6= 0,
l + 1 6= m and bl à0 bl+1. Then the weight decreases as {. . . , {b0, ak}, {ak}, . . .} �mul
{. . . , {b0}, . . . , {bl−1}, {bl, bl+1}, {bl+2}, . . . , {bm}, . . .}. Thus, it follows that there exists
a rewrite sequence a0

∗→1 ◦ à
∗

0 ◦
∗←1 an by the induction hypothesis.

3. Suppose that there exists k such that ak−1 ←1 ak à0 ak+1. Then one can show that
there exists a rewrite sequence a0

∗→1 ◦ à
∗

0 ◦
∗←1 an in the same way as the case (2).

4. It remains to show the case that (α) there exists no k such that ak−1 ←1 ak →1 ak+1,
(β) there exists no k such that ak−1 à0 ak →1 ak+1 and (γ) there exists no k such that
ak−1 ←1 ak à0 ak+1. We show by induction on the length of a0

∗↔0∪1 an that this
rewrite sequence has the form a0

∗→1 ◦ à
∗

0 ◦
∗←1 an. The case n = 0 is trivial. Suppose

a0 ↔0∪1 a1
∗↔0∪1 an. By induction hypothesis we have a1

∗→1 al à
∗

0 am
∗←1 an. We

distinguish three cases:
a. Case of a0 à0 a1. By (β), it follows that we have a0 à0 a1 = al à

∗
0 am

∗←1 an.
Hence the conclusion follows.

b. Case of a0 →1 a1. Since we have a0 →1 a1
∗→1 al à

∗
0 am

∗←1 an, the conclusion
follows.

c. Case of a0 ←1 a1. Then by (α), it follows that we have a0 ←1 a1 = al à
∗

0 am
∗←1 an.

Furthermore, by (γ), it follows that a0 ←1 a1 = al = am
∗←1 an. Hence the conclusion

follows.
J

I Remark. Let ∼ be an equivalence relation on a set A. Then a relation →1 on A is said to
be confluent modulo ∼ (CR∼) if ∗←1 ◦ ∼ ◦

∗→1 ⊆
∗→1 ◦ ∼ ◦

∗←1 holds; locally confluent modulo
∼ (LCR∼) if (i′) ←1 ◦ →1 ⊆

∗→1 ◦ ∼ ◦
∗←1 and (ii′) ∼ ◦→1 ⊆

∗→1 ◦ ∼ ◦
∗←1 hold [6]. It is

shown in [6] that CR∼ and LCR∼ coincide provided that →1 is well-founded. Suppose →1
is well-founded and ∼ = à∗ 0. Then the property CR∼ is equivalent to the conclusion of the
lemma, i.e. ∗↔0∪1 ⊆

∗→1 ◦ à
∗

0 ◦
∗←1; hence so are (i′) and (ii′). In our lemma, in contrast to

(i′) and (ii′), the condition part of (ii) are localized (i.e. we only assume à0 ◦ →1 rather
than à∗ 0 ◦→1) in price of requesting joinability sequences to have zero or one à0-step in
the conclusion part of (i) and (ii) (i.e. we need to guarantee ∗→1 ◦ à

=
0 ◦

∗←1 rather than
∗→1 ◦ à

∗
0 ◦

∗←1). A different localization given in [6] is that if →1 ◦ ∼ is well-founded then
(i′) ←1 ◦→1 ⊆

∗→1 ◦ ∼ ◦
∗←1 and (iii′) à0 ◦→1 ⊆

∗→1 ◦ ∼ ◦
∗←1 imply CR∼. Contrast to our

lemma, this localization allows an arbitrary number of à0-steps in the conclusion part of (i′)
and (iii′) in price of requesting (not only →1 but) →1 ◦ ∼ is well-founded. In [8] (see also

Takahito Aoto and Yoshihito Toyama 95

[9]), another localization is obtained: if →1 is well-founded then (i′) ←1 ◦→1 ⊆
∗→1 ◦∼ ◦

∗←1

and (iv′) à0 ◦ →1 ⊆
+→1 ◦ ∼ imply CR∼ (and that →1 ◦ ∼ is well-founded). Contrast to

our lemma, this localization allows an arbitrary number of à0-steps in the conclusion part
of (i′) and (iv′) in price of restricting the form of joinability sequences in the conclusion part
of (iv′).

I Theorem 3.2 (abstract confluence criterion). Let à0,→1 be relations on a set A such that
à0 is symmetric and →1 is well-founded. Let →0∪1 = à0 ∪→1. Suppose (i) ←1 ◦ →1 ⊆
∗→1 ◦ à

=
0 ◦

∗←1 and (ii) à0 ◦→1 ⊆
∗→1 ◦ à

=
0 ◦

∗←1. Then →0∪1 is confluent.

Proof. We prove ∗↔0∪1 ⊆
∗→0∪1 ◦

∗←0∪1. Suppose a ∗↔0∪1 b. Then a ∗→1 ◦ à
∗

0 ◦
∗←1 b by

Lemma 3.1. Hence a ∗→0∪1 ◦
∗←0∪1 b. J

For the rest of this section, we develop some confluence criteria for TRSs based on this
abstract confluence criterion.

I Lemma 3.3. Let S be a TRS and à be a symmetric rewrite relation. Suppose that
CP(S,S) ⊆ ∗→S ◦ à

= ◦ ∗←S . Then ←S ◦→S ⊆
∗→S ◦ à

= ◦ ∗←S .

Proof. Suppose t0 ←p,S s→q,S t1. We distinguish the cases by relative positions of p and q.
The case of p ‖ q is straightforward. Suppose q ≤ p. Let s/q = lσ and l→ r ∈ S. Then either
(1) q\p ∈ PosF (l) or (2) there exists qx ∈ PosV(l) such that l/qx = x ∈ V and q.qx ≤ p.
1. Then t0 = s[uρ]q and t1 = s[vρ]q for some 〈u, v〉 ∈ CP(S,S) and substitution ρ. Thus

by assumption u ∗→S u′ à
=
v′
∗←S v for some u′, v′. Then, since à= and →S are rewrite

relations, we have t0 = s[uρ]q
∗→S s[u′ρ]q à

=
s[v′ρ]q

∗←S s[vρ]q = t1.
2. Then t1 = s[rσ]q and s = s[lσ]q →p,S t0

∗→S s[lσ′]q for some substitution σ′ such that
σ(x)→(q.qx)\p,S σ

′(x) and σ′(y) = σ(y) for any y 6= x. Thus t0
∗→S s[lσ′]q →S s[rσ′]q

∗←S
s[rσ]q = t1. The claim follows since à= is reflexive.

The case of p ≤ q follows similarly to the case of q ≤ p, using the symmetry of à= . J

I Lemma 3.4. Let P,S be TRSs. Suppose that CP(S,S) ⊆ ∗→S ◦ ↔++P ◦
∗←S . Then

←S ◦→S ⊆
∗→S ◦↔++P ◦

∗←S .

Proof. Take à :=↔++P (hence à= =↔++P) in Lemma 3.3. J

I Lemma 3.5. Let P,S be TRSs such that S is left-linear and P is bidirectional. Suppose
(i) CPin(P ∪ P−1,S) = ∅ and (ii) CP(S,P ∪ P−1) ⊆ ∗→S ◦ ↔++P ◦

∗←S . Then ↔++P ◦ →S ⊆
∗→S ◦↔++P ◦

∗←S .

Proof. Suppose t0 ←++ U,P∪P−1 s→q,S t1. Let U = {p1, . . . , pn} where p1, . . . , pn are positions
from left to right, s/pi = liσi for li → ri ∈ P ∪ P−1 and substitutions σi (1 ≤ i ≤ n) and
s/q = l′ρ for l′ → r′ ∈ S and a substitution ρ. We distinguish two cases: (1) the case that
∃p ∈ U. p ≤ q and (2) the case that ∀p ∈ U. p 6≤ q.
1. Suppose pi ∈ U and pi ≤ q. Then either (a) pi\q ∈ PosF (li) or (b) there exists

px ∈ PosV(li) such that li/px = x ∈ V and pi.px ≤ q.
a. Then t0/pi = vρ and t1/pi = uρ for some 〈u, v〉 ∈ CP(S,P ∪ P−1) and substitution ρ.

Then, from our assumption (ii), we have u ∗→S u′ ↔++P v′
∗←S v for some u′, v′. Thus

t0/pi = vρ
∗→S v′ρ↔++P u′ρ

∗←S uρ = t1/pi. Hence we have

t0 = s[r1σ1, . . . , t0/pi, . . . , rnσn]p1,...,pi,...,pn
∗→S s[r1σ1, . . . , v

′ρ, . . . , rnσn]p1,...,pi,...,pn

↔++P s[l1σ1, . . . , u
′ρ, . . . , lnσn]p1,...,pi,...,pn

∗←S s[l1σ1, . . . , t1/pi, . . . , lnσn]p1,...,pi,...,pn
= t1.

RTA’11

96 A Reduction-Preserving Completion for Proving Confluence

b. Then t0/pi = riσi and t1/pi
∗→S liσ′i for some substitution σ′i such that σi(x)→(pi.px)\q,S

σ′i(x) and σ′i(y) = σi(y) for any y 6= x. Thus we have

t0 = C[r1σ1, . . . , riσi, . . . , rnσn]p1,...,pi,...,pn
∗→S C[r1σ1, . . . , riσ

′
i, . . . , rnσn]p1,...,pi,...,pn

↔++P C[l1σ1, . . . , liσ
′
i, . . . , lnσn]p1,...,pi,...,pn

∗←S C[l1σ1, . . . , t1/pi, . . . , lnσn]p1,...,pi,...,pn
= t1.

2. Suppose ∀p ∈ U. p 6≤ q. Let U ′ = {pi ∈ U | q < pi} = {pl, . . . , pk}, qi = q\pi for
l ≤ i ≤ k, and thus l′ρ = l′ρ[llσl, . . . , lkσk]ql,...,qk

. By our assumption (i), for each
pi ∈ U ′ there exists qx ∈ PosV(l′) such that l′/qx = x ∈ V and q.qx ≤ pi. Thus,
s/q = l′ρ = l′ρ[llσl, . . . , lkσk]ql,...,qk

→S r′ρ = r′ρ[lj1σj1 , . . . , ljm
σjm

]o1,...,om
= t1/q for

some positions o1, · · · , om and j1, . . . , jm ∈ {l, . . . , k}. Furthermore, by the left-linearity
of S, we have l′ρ[rlσl, . . . , rkσk]ql,...,qk

→S r′ρ[rj1σj1 , . . . , rjm
σjm

]o1,...,om
. Thus,

t0 = s[r1σ1, . . . , l
′ρ[rlσl, . . . , rkσk]ql,...,qk

, . . . , rnσn]p1,...,q,...,pn

→S s[r1σ1, . . . , r
′ρ[rj1σj1 , . . . , rjm

σjm
]o1,...,om

, . . . , rnσn]p1,...,q,...,pn

↔++P s[l1σ1, . . . , r
′ρ[lj1σj1 , . . . , ljm

σjm
]o1,...,om

, . . . , lnσn]p1,...,q,...,pn
= t1.

J

I Definition 3.6 (reversible relation). A relation → is said to be reversible if → ⊆ ∗←. A
TRS R is reversible if →R is reversible.

Note that, by the definition of rewrite rules, reversible TRSs are bidirectional.

I Theorem 3.7 (confluence criterion). Let P,S be TRSs such that S is left-linear and
terminating and P is reversible. Suppose (i) CP(S,S) ⊆ ∗→S ◦ ↔++P ◦

∗←S , (ii) CPin(P ∪
P−1,S) = ∅ (iii) CP(S,P ∪ P−1) ⊆ ∗→S ◦↔++P ◦

∗←S . Then S ∪ P is confluent.

Proof. By our assumption (i) and Lemma 3.4, we have (a) ←S ◦ →S ⊆
∗→S ◦ ↔++P ◦

∗←S .
From our assumptions (ii) and (iii), it follows that (b) ↔++P ◦ →S ⊆

∗→S ◦ ↔++P ◦
∗←S by

Lemma 3.5. Take à0 := ↔++P and →1 := →S . Then, by the termination of S, →1 is
well-founded. Hence by Theorem 3.2, ↔++P ∪ →S is confluent. Furthermore, since →P is
reversible, →P ⊆ ↔++P ⊆

∗→P . Hence →P∪S is confluent. J

We are now going to slightly weaken the condition (ii) CPin(P∪P−1,S) = ∅ of the theorem
using the notion of parallel critical pairs [5, 14]. Let s1, . . . , sn, t be terms whose variables are
disjoint. The terms s1, . . . , sn parallel-overlap on t (at parallel positions p1, . . . , pn) if t/pi /∈ V
for any 1 ≤ i ≤ n and {s1 ≈ t/p1, . . . , sn ≈ t/pn} is unifiable. Let l1 → r1, . . . , ln → rn and
l′ → r′ be rewrite rules w.l.o.g. whose variables are mutually disjoint. Suppose that l1, . . . , ln
parallel-overlap on l′ at parallel positions p1, . . . , pn and σ is the most general unifier of
{l1 ≈ l′/p1, . . . , ln ≈ l′/pn}. Then the term l′[l1, . . . , ln]p1,...,pnσ yields a parallel critical
pair 〈l′[r1, . . . , rn]p1,...,pn

σ, r′σ〉 obtained by the parallel-overlap of l1 → r1, . . . , ln → rn on
l′ → r′ at positions p1, . . . , pn. In the case of self-overlap (i.e. when n = 1 and l1 → r1
and l′ → r′ are identical modulo renaming), we do not consider the case p1 = ε. We write
〈l′[r1, . . . , rn]p1,...,pn

σ, r′σ〉X if X =
⋃

1≤i≤n V(l′σ/pi). We call the parallel critical pair outer
if n = 1 and p1 = ε, and inner if pi > ε for all i. The set of outer (inner) parallel critical pairs
obtained by the parallel-overlaps of rewrite rules from R1 on a rewrite rule from R2 is denoted
by PCPout(R1,R2) (PCPin(R1,R2), respectively). (Note, however, that PCPout(R1,R2) =
CPout(R1,R2).) We put PCP(R1,R2) = PCPout(R1,R2) ∪ PCPin(R1,R2).

Takahito Aoto and Yoshihito Toyama 97

I Lemma 3.8. Let P,S be TRSs such that S is left-linear and P is bidirectional. Suppose
that (i) for all 〈u, v〉X ∈ PCPin(P ∪ P−1,S), u ∗→S u′ ↔++ V,P v′

∗←S v for some u′, v′
and V satisfying

⋃
o∈V V(v′/o) ⊆ X, and (ii) CP(S,P ∪ P−1) ⊆ ∗→S ◦ ↔++P ◦

∗←S . Then
↔++P ◦→S ⊆

∗→S ◦↔++P ◦
∗←S .

Proof. Suppose t0 ←++ U,P∪P−1 s→q,S t1. Let U = {p1, . . . , pn} where p1, . . . , pn are positions
from left to right, s/pi = liσi for li → ri ∈ P ∪ P−1 and substitutions σi (1 ≤ i ≤ n) and
s/q = l′ρ for l′ → r′ ∈ S and substitution ρ. The same proof as in Lemma 3.5 applies other
than the case of ∀p ∈ U. p 6≤ q. Let {pk, . . . , pm} = {pi ∈ U | q ≤ pi}. For each pi (k ≤ i ≤ m)
either pi\q ∈ PosF (l′) or there exists qx ∈ PosV(l′) such that q.qx ≤ pi. W.l.o.g. let
{pk, . . . , pl} = {pi | pi\q ∈ PosF (l′)} and {pl+1, . . . , pm} = {pi | ∃qx ∈ PosV(l′). q.qx ≤ pi}.
Then there exists a parallel critical pair 〈u, v〉X obtained from overlaps of lk → rk, . . . , ll → rl

on l′ → r′ at pk\q, . . . , pl\q. Then, by our assumption u
∗→S u′ ↔++ V,P v′

∗←S v for some
u′, v′ satisfying

⋃
o∈V V(v′/o) ⊆ X. Let Y = V(l′σ) \ X. Then, since l′ is linear (and

V(l′),V(ll), . . . ,V(lm) are mutually disjoint), we have {l′(qx) | qx ∈ PosV(l′),∃i (q.qx ≤
pi)} ⊆ Y . Furthermore, t0/q = uθ′ and t1/q = vθ for some substitution θ, θ′ such that
θ(y) ∗→S θ′(y) for y ∈ Y and θ(z) = θ′(z) for z /∈ Y . Hence, by the left-linearity of S, we
have uθ′ ∗→S u′θ′. Now we claim that any position o1 ∈ PosY (v′) and o2 ∈ V are parallel.
Since Y ⊆ V, it suffices to show o2 6≤ o1. If o2 ≤ o1 then v′/o1 ∈ V(v′/o2) holds, and hence
V(v′/o2) ∩ Y 6= ∅. Then, by V(v′/o2) ⊆ X, X ∩ Y 6= ∅ holds. This is a contradiction. Hence
any position o1 ∈ PosY (u′) ∪ PosY (v′) and o2 ∈ V are parallel. Now, we have

t0 = s[r1σ1, . . . , uθ
′, . . . , rnσn]p1,...,q,...,pn

∗→S s[r1σ1, . . . , u
′θ′, . . . , rnσn]p1,...,q,...,pn

↔++ U ′,P s[l1σ1, . . . , v
′θ, . . . , lnσn]p1,...,q,...,pn

∗←S s[l1σ1, . . . , vθ, . . . , lnσn]p1,...,q,...,pn
= t1

where U ′ = {p1, . . . , pk−1} ∪ {pm+1, . . . , pn} ∪ {q.o | o ∈ V } ∪W where W is the set of
descendants of {ql+1, . . . , qm} in s along the rewrite steps s = s[l′θ]q →q,S t1 = s[vθ]q

∗→S
s[v′θ]q = s[l1σ1, . . . , v

′θ, . . . , lnσn]p1,...,q,...,pn
. Clearly, U ′ \W and U ′ \ {q.o | o ∈ V } are sets

of parallel positions. Thus it remains to show that positions from W are parallel to the
positions from {q.o | o ∈ V }. By the fact {l′(qx) | qx ∈ PosV(l′),∃i (q.qx ≤ pi)} ⊆ Y , for any
o1 ∈ W there exists oy ∈ PosY (v′) such that q.oy ≤ o1. Since any position oy ∈ PosY (v′)
and o2 ∈ V are parallel, any o1 ∈W and any q.o2 (o2 ∈ V) are parallel. J

I Theorem 3.9 (confluence criterion using parallel critical pairs). Let P,S be TRSs such that
S is left-linear and terminating and P is reversible. Suppose (i) CP(S,S) ⊆ ∗→S ◦↔++P ◦

∗←S ,
(ii) for all 〈u, v〉X ∈ PCPin(P ∪ P−1,S), u ∗→S u′ ↔++ V,P v′

∗←S v for some u′, v′ and V
satisfying

⋃
q∈V V(v′/q) ⊆ X and (iii) CP(S,P ∪ P−1) ⊆ ∗→S ◦ ↔++P ◦

∗←S . Then S ∪ P is
confluent.

Proof. Similar to proof of the Theorem 3.7, using Lemmas 3.4, 3.8. J

Since, by the definition of parallel critical pairs, CPin(P ∪ P−1,S) ⊆ PCPin(P ∪ P−1,S)
holds. Thus the condition (ii) of Theorem 3.7 is a particular case of condition (ii) of
Theorem 3.9. Hence Theorem 3.7 is subsumed by Theorem 3.9.

I Example 3.10. Let

R =

(a) +(0, y) → y (b) +(s(x), y) → s(+(x, y))
(c) +(x, 0) → x (d) +(x, s(y)) → s(+(x, y))
(e) +(x, y) → +(y, x) (f) +(+(x, y), z) → +(x,+(y, z))

 .

RTA’11

98 A Reduction-Preserving Completion for Proving Confluence

Put S = {(a), (b), (c), (d)} and P = {(e), (f)}. Then S is linear and terminating. We have
+(x,+(y, z)) →P +(+(y, z), x) →P +(+(z, y), x) →P +(z,+(y, x)) →P +(z,+(x, y)) →P
+(+(x, y), z). Thus P is reversible. We have CP(S,S) =

〈0, 0〉 ∈ ∗←S 〈s(y), s(+(0, y))〉 ∈ ←S
〈s(+(x, 0)), s(x)〉 ∈ →S 〈s(x), s(+(x, 0))〉 ∈ ←S
〈s(+(0, y)), s(y)〉 ∈ →S 〈s(+(x, s(y))), s(+(s(x), y))〉 ∈ →S ◦←S
〈s(+(s(x), y)), s(+(x, s(y)))〉 ∈ →S ◦←S

 ,

CPin(P ∪ P−1,S) = ∅ and CP(S,P ∪ P−1) =

〈y,+(y, 0)〉 ∈ ←S 〈+(y, z),+(0,+(y, z))〉 ∈ ←S
〈+(y, z),+(+(0, y), z)〉 ∈ ←S 〈+(x, z),+(+(x, 0), z)〉 ∈ ←S
〈s(+(x, y)),+(y, s(x))〉 ∈ ↔P ◦←S
〈+(s(+(x, y)), z),+(s(x),+(y, z))〉 ∈ →S ◦↔P ◦←S
〈s(+(x,+(y, z))),+(+(s(x), y), z)〉 ∈ ↔P ◦

∗←S
〈+(x, s(+(y, z))),+(+(x, s(y)), z)〉 ∈ →S ◦↔P ◦

∗←S
〈x,+(0, x)〉 ∈ ←S 〈+(x, y),+(x,+(y, 0))〉 ∈ ←S
〈+(y, z),+(y,+(0, z))〉 ∈ ←S 〈+(x, y),+(+(x, y), 0)〉 ∈ ←S
〈s(+(x, y)),+(s(y), x)〉 ∈ ↔P ◦←S
〈s(+(+(x, y), z)),+(x,+(y, s(z)))〉 ∈ ↔P ◦

∗←S
〈+(s(+(x, y)), z),+(x,+(s(y), z))〉 ∈ →S ◦↔P ◦

∗←S
〈+(x, s(+(y, z))),+(+(x, y), s(z))〉 ∈ →S ◦↔P ◦←S

.

Thus one can apply Theorem 3.9 (or Theorem 3.7) to obtain the confluence of R = S ∪ P.
For the case the terminating TRS S is linear, one can obtain another confluence criterion

from the abstract confluence criterion using à0 :=↔P instead of à0 :=↔++P .
I Lemma 3.11. Let P,S be TRSs. Suppose CP(S,S) ⊆ ∗→S ◦

=↔P ◦
∗←S . Then ←S ◦→S ⊆

∗→S ◦
=↔P ◦

∗←S .

Proof. Take à :=↔P in Lemma 3.3. J

I Lemma 3.12. Let P,S be TRSs such that S is linear and P is bidirectional. Suppose
CP(S,P ∪ P−1) ∪ CP(P ∪ P−1,S) ⊆ ∗→S ◦

=↔P ◦
∗←S . Then =↔P ◦→S ⊆

∗→S ◦
=↔P ◦

∗←S .

Proof. In a similar way to the proof of Lemma 3.5. J

I Theorem 3.13 (confluence criterion for linear S). Let P,S be TRSs such that S is linear and
terminating and P is reversible. Suppose (i) CP(S,S) ⊆ ∗→S◦

=↔P◦
∗←S , (ii) CP(P∪P−1,S) ⊆

∗→S ◦
=↔P ◦

∗←S and (iii) CP(S,P ∪ P−1) ⊆ ∗→S ◦
=↔P ◦

∗←S . Then S ∪ P is confluent.

Proof. Similar to proof of the Theorem 3.7, using Lemmas 3.11, 3.12. J

The next examples show that Theorem 3.13 and Theorems 3.7/3.9 are incomparable
(Figure 1).
I Example 3.14. Let R be the one given in Example 3.10. Consider a TRS R1 = R ∪
{dbl(x)→ +(x, x)}. One can easily confirm that the confluence of R1 is shown in the same
way as R using Theorem 3.7. Since R1 is not linear, however, Theorem 3.13 does not
apply. Consider a TRS R2 = R ∪ {s(x) → s(s(x)), s(s(x)) → s(x)}. By putting S2 = S
and P2 = P ∪ {s(x) → s(s(x)), s(s(x)) → s(x)}, one can show the confluence of R2 using
Theorem 3.13. On the other hand, 〈+(s(s(x)), y), s(+(x, y))〉{x} ∈ PCPin(P ∪ P−1,S) and
thus the condition of Theorem 3.9 is not satisfied. Theorem 3.9 does not apply to other
partitions of R2 either. Thus one can not show the confluence of R2 using Theorem 3.9.

Takahito Aoto and Yoshihito Toyama 99

• R1

Thm. 3.7

Thm. 3.9 Thm. 3.13

• R2

Figure 1 Relation of three confluence criterion

4 Reduction-preserving completion

There are cases where our confluence criteria can be applicable indirectly. The idea is to
construct a TRS suitable for applying our theorems by exchanging or adding rewrite rules
without changing the equivalence of the reduction so that the confluence of the transformed
TRS implies that of the original TRS. Using the reversibility of P , there are several flexibilities
on such transformations. The notion of reduction equivalence and following properties of
reduction equivalence are well-known in literature and the latter are easily proved.

I Definition 4.1 (reduction equivalence). Two relation →0 and →1 are said to be reduction
equivalent if ∗→0 = ∗→1. Two TRSs R and R′ are reduction equivalent if so are →R and
→R′ .

I Proposition 4.2 (properties of reduction equivalence). (i) If →R ⊆
∗→R′ and →R′ ⊆

∗→R
then R and R′ are reduction equivalent. (ii) If R and R′ are reduction equivalent then the
confluence of R and R′ coincide.

We now demonstrate how the confluence criteria in the previous section can be applied
indirectly using the notion of reduction equivalence.

I Example 4.3 (confluence by reduction equivalence). Let (a)–(f) be rewrite rules given
in Example 3.10. We show the confluence of R = {(a), (b), (e), (f)}. Theorems 3.9 and
3.13 can not be applied directly to prove this—for example, if we put S = {(a), (b)}
and P = {(e), (f)}, then we have 〈y,+(y, 0)〉 ∈ CP(S,P ∪ P−1) which is not joinable by
∗→S ◦ ↔++P ◦

∗←S . Let R′ = R ∪ {(c), (d)}. Then since we have +(x, 0) →P +(0, x) →S x
and +(x, s(y))→P +(s(y), x)→S s(+(y, x)→P s(+(x, y)), the inclusions→R ⊆ →R′ ⊆

∗→R
hold. Hence R and R′ are reduction equivalent by Proposition 4.2 (i). As we have shown in
Example 3.10, R′ is confluent. Thus by Proposition 4.2 (ii), R is confluent either.

In this example, two additional rewrite rules (c) and (d) are given by hand. But
in automated confluence proving procedures, one needs to find such new rewrite rules
automatically. We next present a completion-like procedure to automate such additions (or
more generally transformations) of rewrite rules. We first present an abstract version of the
procedure in the form of inference rules and prove its soundness w.r.t. the confluence proof.

I Definition 4.4 (abstract reduction-preserving completion procedure). Inference rules of an
abstract reduction-preserving completion procedure are listed in Figure 2. The inference rules
act on a pair of TRSs. One step derivation using any of inference rules (from upper to lower)
is denoted by ;. We also write ;p (;r,;a) for an inference step by the rule Partition
(Replacement, Addition, respectively).

RTA’11

100 A Reduction-Preserving Completion for Proving Confluence

Partition 〈S,P〉
〈S ′,P ′〉 S ∪ P = S ′ ∪ P ′, P ′: reversible

Replacement 〈S ∪ {l→ r},P〉
〈S ∪ {l→ r′},P〉 r

∗↔P r′

Addition 〈S,P〉
〈S ∪ {l→ r},P〉 l

∗↔P ◦
∗→S r

Figure 2 Inference rules of reduction-preserving completion

I Theorem 4.5 (soundness of the abstract reduction-preserving completion procedure). Let
〈R, ∅〉 = 〈S0,P0〉

∗
; 〈Sn,Pn〉 be a derivation of abstract reduction-preserving completion

procedure. Suppose that Sn,Pn satisfy the conditions of Theorem 3.9 or Theorem 3.13. Then
R is confluent.

Proof. We show, for any inference step 〈Si,Pi〉; 〈Si+1,Pi+1〉, that Si ∪Pi and Si+1 ∪Pi+1
are reduction equivalent and that Pi+1 is reversible whenever so is Pi.

Case 〈Si,Pi〉; 〈Si+1,Pi+1〉 by Partition. Then since Si ∪ Pi = Si+1 ∪ Pi+1 and Pi+1 is
reversible by the side condition, the claim follows immediately.
Case 〈Si,Pi〉 ; 〈Si+1,Pi+1〉 by Replacement. Then Si = S ′i ∪ {l → r}, r ∗↔Pi

r′ and
Si+1 = S ′i ∪ {l → r′} for some S ′i, l, r, r′ and Pi+1 = Pi. By the reversiblity of Pi, we
have l→Si

r
∗→Pi

r′ hence →Si+1∪Pi+1 ⊆
∗→Si∪Pi

. By the reversiblity of Pi, we also have
l→Si+1 r

′ ∗→Pi
r, hence →Si∪Pi

⊆ ∗→Si+1∪Pi+1 . Thus by Proposition 4.2 (i), Si ∪ Pi and
Si+1 ∪ Pi+1 are reduction equivalent. Hence, by Pi+1 = Pi, the claim follows.
Case 〈Si,Pi〉; 〈Si+1,Pi+1〉 by Addition. Then l

∗↔Pi
◦ ∗→Si

r and Si+1 = Si∪{l→ r} for
some l, r and and Pi+1 = Pi. Since Si∪Pi ⊆ Si+1∪Pi+1, we have→Si∪Pi ⊆

∗→Si+1∪Pi+1 .
By the reversiblity of Pi, l

∗→Pi
◦ ∗→Si

r′. Hence →Si+1∪Pi+1 ⊆
∗→Si∪Pi

. Thus by
Proposition 4.2 (i), Si∪Pi and Si+1∪Pi+1 are reduction equivalent. Hence, by Pi+1 = Pi,
the claim follows.

Thus by induction on n, it follows that R and Sn ∪ Pn are reduction equivalent. By
Theorem 3.9 or 3.13, Sn ∪ Pn is confluent, and hence R is confluent by Proposition 4.2
(ii). J

I Example 4.6 (derivations in abstract reduction-preserving completion procedure). The conflu-
ence proof of Example 4.3 is derived by the abstract reduction-preserving completion proced-
ure. Let rewrite rules (a)–(f) be those given in Example 3.10. Give R = {(a), (b), (e), (f)}
as the input to the procedure. Let us consider the following derivation.

〈S0,P0〉 = 〈{(a), (b), (e), (f)}, ∅〉 ;p 〈{(a), (b)}, {(e), (f)}〉 = 〈S1,P1〉
;a 〈{(a), (b), (c)}, {(e), (f)}〉 = 〈S2,P2〉
;a 〈{(a), (b), (c), (d′)}, {(e), (f)}〉 = 〈S3,P3〉
;r 〈{(a), (b), (c), (d)}, {(e), (f)}〉 = 〈S4,P4〉

where (d′) : +(x, s(y))→ s(+(y, x)). Then S4 = {(a), (b), (c), (d)} and P4 = {(e), (f)} satisfy
the conditions of Theorem 3.7. Thus, by Theorem 4.5, R is confluent.

Takahito Aoto and Yoshihito Toyama 101

Next we present a concrete reduction-preserving completion procedure that can be used as
the basis of an automated completion procedure. The procedure presented below is designed
so as to apply Theorem 3.7, but it is straightforward to modify the procedure suitable for
Theorem 3.9 and/or Theorem 3.13.

I Definition 4.7 (concrete reduction-preserving completion procedure).

Input: a TRS R
Output: Success or Failure (or may diverge)

Step 1. Put R0 := R and i := 0. Proceed to Step 2.
Step 2. Take a partition Si ∪ Pi = Ri such that Si is left-linear and terminating, Pi is
reversible and CPin(Pi ∪ Pi

−1,Si) = ∅. Proceed to Step 3. If there is no such a partition
then return Failure.

Step 3. Set U := ∅. For each 〈u, v〉 ∈ CP(Si,Pi ∪ Pi
−1), take Si-normal forms û, v̂ of u, v,

respectively and check whether û ↔++Pi
v̂. If not û ↔++Pi

v̂ then put U := U ∪ {v → û}.
Finally if U = ∅ then proceed to Step 4. Otherwise take some non-empty U ′ ⊆ U and put
Ri+1 := Ri ∪ U ′, i := i+ 1 and go to Step 2.

Step 4. Set U := ∅. For each 〈u, v〉 ∈ CP(Si,Si), take Si-normal forms û, v̂ of u, v,
respectively and check whether û ↔++Pi

v̂. If not û ↔++Pi
v̂ then put U := U ∪ {û ≈ v̂}.

Finally if U = ∅ then return Success. Otherwise take some set U ′ ⊆ (U ∪ U−1) ∩ ∗↔Pi
of

rewrite rules and put Ri+1 := Ri ∪ U ′, i := i+ 1 and go to Step 2.

During the step 2, one may perform the following additional steps.

Step 2a. If there exist l → r ∈ Si and r′ such that r ↔Pi r
′ and CPin(Pi ∪ Pi

−1, {l →
r}) 6= ∅, then put Ri+1 := (Ri \ {l→ r}) ∪ {l→ r′}, i := i+ 1.

Step 2b. Let 〈u, v〉 ∈ CPin(Pi ∪ Pi
−1,Si) and let v̂ be Si-normal form of v. Then put

Ri+1 := Ri ∪ {u→ v̂} and i := i+ 1.

Before moving from the step 3 to the step 2, one may perform the following additional step.

Step 3a. Set Si := Si−1,Pi := Pi−1. If there exist l → r ∈ Si and r′ such that r ↔Pi r
′

and there exists 〈u, v〉 ∈ CP({l→ r},Pi ∪ Pi
−1) such that û↔++Pi

v̂ does not hold where
û, v̂ are Si-normal forms of u, v, respectively, then put Ri+1 := (Ri \ {l→ r})∪ {l→ r′},
i := i+ 1.

Before moving from the step 4 to the step 2, one may perform the following additional step.

Step 4a. Set Si := Si−1,Pi := Pi−1. If there exist l → r ∈ Si and r′ such that r ↔Pi
r′

and there exists 〈u, v〉 ∈ CP({l→ r},Si) ∪ CP(Si, {l→ r}) such that û↔++Pi v̂ does not
hold where û, v̂ are Si-normal forms of u, v, respectively, then put Ri+1 := (Ri \ {l →
r}) ∪ {l→ r′}, i := i+ 1.

I Corollary 4.8 (soundness of the concrete reduction-preserving completion procedure). If the
procedure of Definition 4.7 succeeds for the input R, then R is confluent.

Proof. It suffices to show if the procedure succeeds then there exists a successful derivation
of the abstract reduction-preserving completion procedure. Step 1 corresponds to the
empty derivation. Step 2 corresponds to an inference step by Partition. For any 〈u, v〉 ∈
CP(Si,Pi ∪ Pi

−1), we have u ←Si
◦ ↔Pi

v, and hence v ↔Pi
◦ ∗→Si

û. Thus, Step 3 is
simulated by multiple inference steps by Addition. Similarly, Steps 4 and 2b are simulated
by multiple inference steps by Addition. Steps 2a, 3a, 4a are simulated by inference steps by
Replace. J

RTA’11

102 A Reduction-Preserving Completion for Proving Confluence

I Example 4.9. Let

R =
{

(a) +(0, y) → y (b) +(x, s(y)) → s(+(x, y))
(c) +(x, y) → +(y, x) (d) +(+(x, y), z) → +(x,+(y, z))

}
1. (Step 1) We put R0 := {(a), (b), (c), (d)}.
2. (Step 2) We take S0 = {(a), (b)} and P0 = {(c), (d)}. Then S0 is left-linear and

terminating, P0 is reversible and CPin(P0 ∪ P0
−1,S0) = ∅.

3. (Step 3) We have CP(S0,P0 ∪ P0
−1) =

(1) 〈+(y, z),+(0,+(y, z))〉 (5) 〈s(+(+(x, z), y)),+(x,+(z, s(y)))〉
(2) 〈+(y, z),+(+(0, y), z)〉 (6) 〈+(s(+(x, y)), z),+(x,+(s(y), z))〉
(3) 〈+(x, y),+(+(x, 0), y)〉 (7) 〈+(z, s(+(x, y))),+(+(z, x), s(y))〉
(4) 〈y,+(y, 0)〉 (8) 〈s(+(x, y)),+(s(y), x)〉

 .

Then for 〈u, v〉 ∈ {(3), (4), (6), (8)}, S0-normal forms of u, v are not joinable by a ↔++P0-
step. Put R1 := R0 ∪ U ′ =

R0 ∪
{

(e) +(y, 0)→ y (f) +(s(y), x)→ s(+(x, y))
}
.

and go to the step 2.
4. (Step 2) We take S1 = {(a), (b), (e), (f)} and P1 = {(c), (d)}. Then S1 is left-linear and

terminating, P1 is reversible, and CPin(P1 ∪ P1
−1,S1) = ∅.

5. (Step 3) There are four elements including (9) 〈+(s(+(x, y)), z),+(x,+(s(y), z))〉 in
CP(S1,P1 ∪ P1

−1) whose S1-normal forms are not joinable by a ↔++P1 -step. Here we put
U ′ := ∅, R2 := R1, i := 2 and proceed to Step 3a.

6. (Step 3a) Since (9) ∈ CP({(f)},P1 ∪ P1
−1) and s(+(x, y)) →P2 s(+(y, x)). Hence put

R3 := (R2 \ {(f)}) ∪
{

(g) +(s(y), x)→ s(+(y, x))
}
and i := 3 and go to Step 2.

7. (Step 2) We take S3 = {(a), (b), (e), (g)} and P3 = {(c), (d)}. Then S3 is left-linear and
terminating, P3 is reversible and CPin(P3 ∪ P3

−1,S3) = ∅. Thus proceed to Step 3.
8. (Step 3) For any 〈u, v〉 ∈ CP(S3,P3 ∪ P3

−1), S3-normal forms of u, v are joinable by a
↔++P3-step (Example 3.10). Hence proceed to Step 4.

9. (Step 4) For any 〈u, v〉 ∈ CP(S3,S3), S3-normal forms of u, v are joinable by a ↔++P3 -step
(Example 3.10). Thus Success is returned.

5 Implementation and experiments

All results of this paper have been implemented. The program is written in SML/NJ1 and is
built upon confluence prover ACP2 [1, 2, 21].

In Figure 3, we present a pseudo-code of main function of our implementation of reduction-
preserving completion procedure enough for describing some heuristics employed in the
implementation. A short description of functions involved in our pseudo-code and heuristics
employed follows.

(checkConfluence R) is the main function of the procedure. It simulates multiple runs
in the breadth-first strategy.

Let D = {l(ε) | l→ r ∈ R} and C = F \ C.

1 http://www.smlnj.org/
2 http://www.nue.riec.tohoku.ac.jp/tools/acp/

Takahito Aoto and Yoshihito Toyama 103

fun check (S,P,i) = if i = 0 then (apply Theorem 3.9)
else (apply Theorem 3.13)

fun checkConfluence R =
let fun step [] = Failure

| step ((S,P,i)::rest) = case check (S,P,i) of
NONE⇒ step rest

| SOME ([],[])⇒ Succeess
| SOME nj⇒ step (rest @

(mapAppend decompose (trans (S,P) nj)))
in step (decompose R) end

Figure 3 Pseudo-code of the main function

(decompose R) decomposes R into S ∪ P and duplicates S ∪ P. Hence a list of triples
(S,P, i) where S ∪ P = R and i ∈ {0, 1} are returned. Here, however, not all partitions
but only one partition of R are returned based on a heuristic, namely that P is the set
of the rules l → r satisfying either (1) r → l ∈ R or (1′) F(l) = F(r) ⊆ D and (2′)
l(ε), r(ε) ∈ D implies l(ε) = r(ε).
(check (S,P, i)) checks whether conditions of Theorem 3.9 (or Theorem 3.13) are satisfied.
If S is not left-linear or it fails to prove termination of S or reversibility of P, then
NONE is returned. Reversibility is tested by checking r

≤k→ l for some constant k (in
our implementation, we set k = 10). If all conditions other than the critical pairs
conditions are satisfied then non-joinable critical pairs and rewrite rules generating
such critical pairs are returned in the form SOME (U1, U2). For example, in the case
of i = 0, from CP(S,S) the list U1 =

⋃
l→r,l′→r′∈S{〈l → r, l′ → r′, u, v〉 | 〈u, v〉 ∈

CP({l → r}, {l′ → r′}) \ ∗→S ◦ ↔++P ◦
∗←S} is returned. Similarly U2 is obtained from

PCPin(P ∪P−1,S)∪CP(S,P ∪P−1). If both of these lists are empty then the conditions
of Theorem 3.9 (or Theorem 3.13) are satisfied and thus the procedure succeeds (Success
is returned).
(trans (S,P) (U1, U2)) returns a collection of transformed TRSs obtained by addition
and replacement of rewrite rules constructed from non-joinable critical pairs and rewrite
rules generating such critical pairs as described in the Definition 4.7. Here, the addition
of rewrite rules are restricted based on the following heuristic: l → r is added if (1)
l ∈ NF(S), (2) l(ε) = r(ε) ∈ D implies (F(l) ∪ F(r)) ∩ C = ∅ and (3) l(ε) 6= r(ε) and
l(ε), r(ε) ∈ D imply F(r) ∩ C = ∅.

Table 1 shows the summary of our experiments. We have tested various combinations
of our results: (1)–(4) are proofs by confluence criterion of Theorem 3.7, of Theorem 3.9,
of Theorem 3.13 and by the combination of those of Theorem 3.9 and Theorem 3.13. (5)–
(7) are proofs by the reduction-preserving completion without the Replacement rule, i.e.
without the Steps 2a, 3a, 4a of the concrete reduction-preserving completion (Definition 4.7).
(8)–(10) are proofs by the reduction-preserving completion with the Replacement rule. For
the experiments, we used a collection of 81 TRSs involving non-terminating rules such as
commutativity and associativity rules which have been developed in the course of experiments.
All experiments have been performed on a FreeBSD platform of a PC equipped with 1.2GHz
CPU and 1GB memory. We set the timout 60 sec. Total time is indicated in millisecond.

RTA’11

104 A Reduction-Preserving Completion for Proving Confluence

Table 1 Summary of experiments

success failure diverge timeout time(msec.)
(1)main (Theorem 3.7) 19 62 0 0 1308
(2) PCP (Theorem 3.9) 28 53 0 0 1318
(3) linear (Theorem 3.13) 27 54 0 0 901
(4) PCP&linear 29 52 0 0 1725
(5) completion (PCP) 50 31 0 0 2258
(6) completion (linear) 46 35 0 0 1451
(7) completion (PCP&linear) 51 30 0 0 2995
(8) completion (repl., PCP) 64 17 (3) 0 3773
(9) completion (repl., linear) 59 22 0 0 2146

(10) completion (repl., PCP&linear) 66 15 (2) 0 4885
ACP [1, 2, 21] 12 67 — 2 164943

The maximal steps of the completion procedure is limited to 20 steps; the columns below the
title “diverge” show the numbers of examples which exceed this limit, where these numbers
are included in those of “failure.”

The applicability of our incomparable confluent criteria (Theorem 3.9 and Theorem
3.13) does not have much differences. The applicability of Theorem 3.7, which is subsumed
by Theorem 3.9, is limited compared to these two criteria. There is a clear advantage
of using the completion procedure. The introducton of the Replacement inference rule
also makes clear difference. The increase of total time by the introduction of completion
procedure based on a confluence criterion are within 3 times of total time required in
proving confluence only by checking that confluence criterion. This is partly due to our
heuristics and the limitation on the number of limit of completion steps. The number of
successful examples, however, does not change in the case we increase that limit to 100 steps.
The collection of examples and all details of the experiments are available on the webpage
http://www.nue.riec.tohoku.ac.jp/tools/acp/experiments/rta11/all.html.

We have also tested the confluence prover ACP on our collection. ACP is an automated
confluence prover in which divide–and–conquer approach based on the persistent, layer-
preserving, commutative decompositions is employed and involving many confluence criteria
[4, 6, 10, 11, 14, 16, 17, 12, 19] as well as the decreasing diagram techniques [18, 20]. As
shown in the table, most of our examples are not coped with the confluence prover ACP.

We have also tested on the 71 examples containing associativity and commutativity rules
selected from the termination problem database 8.03 which have been developed to test
termination modulo AC or C. ACP succeeded at 30 examples among which 27 examples are
proved as non-confluent and 3 examples are proved as confluent. By our methods, 7 examples
have been proved as confluent. We have also tested on a collection of 106 examples from
[2, 1]. By enhancing ACP by our methods, confluence proving succeeded at 3 more examples.

6 Conclusion

We have presented a method for proving confluence of TRSs which can be applied even if the
TRSs contain non-terminating rules such as commutativity and associativity. We have given

3 http://www.termination-portal.org

Takahito Aoto and Yoshihito Toyama 105

confluence criteria for TRSs that can be partitioned into terminating part and reversible
part which may be non-terminating. Then we have given a reduction-preserving completion
procedure so that the criteria can be applied indirectly. In contrast to the well-known method
for proving confluence of equational TRSs [7], our method is based solely on usual critical
pairs and usual termination and hence easily integrated into confluence provers based on
other confluence proving methods for TRSs. We have implemented the proposed techniques
and reported experimental results. It turns out that our method is effective for TRSs for
which most of standards methods for proving confluence of TRSs are not effective.

The following examples show that our method and the methods of [6, 7] are incomparable.

I Example 6.1. Let

R =

+(x, 0) →x

+(x, s(y)) → s(+(x, y))
∗(x, 0) → 0
∗(x, s(y)) →+(∗(x, y), x)
∗(x,+(y, z))→+(∗(x, y), ∗(x, z))

 and E =

+(x, y) ↔+(y, x)
+(+(x, y), z)↔+(x,+(y, z))
∗(x, y) ↔∗(y, x)
∗(∗(x, y), z) ↔∗(x, ∗(y, z))

 .

It can be shown by the method of [7] that R is confluent modulo E and hence R ∪ E is
confluent. Our method, however, failed to prove this example. Let

R′ =
{
∗(+(x, y), z)→+(∗(x, z), ∗(y, z))

}
and E ′ =

{
+(x, y) ↔+(y, x)
+(+(x, y), z)↔+(x,+(y, z))

}
.

It can be shown by the method of [6] that R′ is confluent modulo E ′ and hence R′ ∪ E ′ is
confluent. Our method, however, failed to prove this example. Let

R′′ =
{

f(0, 0)→ f(0, 1)
f(1, 0)→ f(0, 0)

}
and E ′′ =

{
f(x, y)↔ f(y, x)

}
.

It can be shown by our method that R′′ ∪ E ′′ is confluent. Because R′′ is not terminating
modulo E ′′, the methods of [6, 7] fail to prove this example. We also note that the method
of [8] also fails to prove this example by the same reason.

Acknowledgment

Thanks are due to Junichi Mitimata for discussions and experiments on preliminary results
of this paper. The authors are grateful for Harald Zankl, Aart Middeldorp and anonymous
referees for pointers to related works and helpful comments. This work was partially supported
by grants from JSPS Nos. 20500002 and 22500002.

References
1 T. Aoto. Automated confluence proof by decreasing diagrams based on rule-labelling. In

Proc. of RTA 2010, volume 6 of LIPIcs, pages 7–16. Schloss Dagstuhl, 2010.
2 T. Aoto, Y. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems auto-

matically. In Proc. of RTA 2009, volume 5595 of LNCS, pages 93–102. Springer-Verlag,
2009.

3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

4 H. Gomi, M. Oyamaguchi, and Y. Ohta. On the Church-Rosser property of root-E-
overlapping and strongly depth-preserving term rewriting systems. Transactions of IPSJ,
39(4):992–1005, 1998.

RTA’11

106 A Reduction-Preserving Completion for Proving Confluence

5 B. Gramlich. Confluence without termination via parallel critical pairs. In Proc. of
CAAP’96, volume 1996 of LNCS, pages 211–225. Springer-Verlag, 2006.

6 G. Huet. Confluent reductions: abstract properties and applications to term rewriting
systems. Journal of the ACM, 27(4):797–821, 1980.

7 J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations.
SIAM Journal of Computing, 15(4):1155–1194, 1986.

8 J.-P. Jouannaud and M. Munoz. Termination of a set of rules modulo a set of equations.
In Proc. of CADE-7, volume 170 of LNCS, pages 175–193. Springer-Verlag, 1984.

9 E. Ohlebusch. Church-Rosser theorems for abstract reduction modulo an equivalence rela-
tion. In Proc. of RTA-98, volume 1379 of LNCS, pages 17–31. Springer-Verlag, 1998.

10 S. Okui. Simultaneous critical pairs and Church-Rosser property. In Proc. of RTA-98,
volume 1379 of LNCS, pages 2–16. Springer-Verlag, 1998.

11 M. Oyamaguchi and Y. Ohta. A new parallel closed condition for Church-Rosser of left-
linear TRS’s. In Proc. of RTA-97, volume 1232 of LNCS, pages 187–201. Springer-Verlag,
1997.

12 M. Oyamaguchi and Y. Ohta. On the open problems concerning Church-Rosser of left-
linear term rewriting systems. IEICE Trans. Information and Systems, E87-D(2):290–298,
2004.

13 G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational theories.
Journal of the ACM, 28(2):233–264, 1981.

14 Y. Toyama. On the Church-Rosser property of term rewriting systems. Technical Report
17672, NTT ECL, 1981. In Japanese.

15 Y. Toyama. Confluent term rewriting systems (invited talk). In Proc. of RTA
2005, volume 3467 of LNCS, page 1. Springer-Verlag, 2005. Slides are available from
http://www.nue.riec.tohoku.ac.jp/user/toyama/slides/toyama-RTA05.pdf.

16 Y. Toyama and M. Oyamaguchi. Church-Rosser property and unique normal form property
of non-duplicting term rewriting systems. In Proc. of CTRS-94, volume 968 of LNCS, pages
316–331. Springer-Verlag, 1994.

17 Y. Toyama and M. Oyamaguchi. Conditional linearization of non-duplicating term rewriting
systems. IEICE Trans. Information and Systems, E84-D(5):439–447, 2001.

18 V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer Science,
126(2):259–280, 1994.

19 V. van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181,
1997.

20 V. van Oostrom. Confluence by decreasing diagrams: converted. In Proc. of RTA 2008,
volume 5117 of LNCS, pages 306–320. Springer-Verlag, 2008.

21 J. Yoshida, T. Aoto, and Y. Toyama. Automating confluence check of term rewriting
systems. Computer Software, 26(2):76–92, 2009. In Japanese.

Natural Inductive Theorems for Higher-Order
Rewriting
Takahito Aoto1, Toshiyuki Yamada2, and Yuki Chiba3

1 RIEC, Tohoku University
2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
aoto@nue.riec.tohoku.ac.jp

2 Graduate School of Engineering, Mie University
1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
toshi@cs.info.mie-u.ac.jp

3 School of Information Science, Japan Advanced Institute of Science and
Technology
1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
chiba@jaist.ac.jp

Abstract
The notion of inductive theorems is well-established in first-order term rewriting. In higher-
order term rewriting, in contrast, it is not straightforward to extend this notion because of
extensionality (Meinke, 1992). When extending the term rewriting based program transformation
of Chiba et al. (2005) to higher-order term rewriting, we need extensibility, a property stating
that inductive theorems are preserved by adding new functions via macros. In this paper, we
propose and study a new notion of inductive theorems for higher-order rewriting, natural inductive
theorems. This allows to incorporate properties such as extensionality and extensibility, based
on simply typed S-expression rewriting (Yamada, 2001).

1998 ACM Subject Classification D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs; F.4.2 [Mathematical Logic and Formal Languages]: Grammars and Other Rewriting
Systems; I.2.2 [Artificial Intelligence]: Automatic Programming

Keywords and phrases Inductive Theorems, Higher-Order Equational Logic, Simply-Typed S-
Expression Rewriting Systems, Term Rewriting Systems

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.107

Category Regular Research Paper

1 Introduction

Properties of programs are often proved by induction on data structures such as natural
numbers or lists. In the case of first-order term rewriting, such properties are captured by
the notion of inductive theorems (e.g. [5]): an equation s ≈ t is said to be an inductive
theorem of a term rewriting system (TRS for short) R if all ground instances are equational
consequences, i.e. sθ ↔∗R tθ holds for any ground substitution θ. Inductive theorems form
the initial semantics of first-order equational theories. In the higher-order case, one often
expects extensionality, meaning that expressions denoting the same function are equivalent.
The proof system and semantics of higher-order equational theories as well as the initial
semantics of such theories based on extensional inductive theorems have been studied in
[16, 17, 18]. In the simply typed S-expression rewriting framework [1, 2, 3, 21], the notion

© Takahito Aoto, Toshiyuki Yamada and Yuki Chiba;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 107–121

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.107
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

108 Natural Inductive Theorems for Higher-Order Rewriting

of higher-order inductive theorems and inductionless induction [12, 14, 15, 19] for proving
higher-order inductive theorems automatically have been studied in [4].

Several transformations for optimizing functional programs have been developed [6, 10,
11, 13, 20]. One such framework is program transformation by templates, proposed by Huet
and Lang [13]. Chiba et al. [7, 8, 9] developed a framework of program transformation by
templates based on first-order term rewriting. In this framework, the correctness of the
transformation—the equivalence of input and output TRSs—is formalized based on inductive
equality. One of the ingredients for ensuring the correctness of this program transformation
is extensibility of inductive theorems, meaning that inductive theorems are preserved when a
new function by a macro (i.e. non-recursive function in terms of existing functions) is added.

In the case of higher-order term rewriting, in contrast, extensibility of extensional inductive
theorems is not guaranteed. Consider the following simply typed S-expression rewriting
system (STSRS for short):

R =

+ 0 y → y

+ (s x) y → s (+ x y)
zero s → 0

 .

Then + x y ≈ + y x is an extensional inductive theorem of R, that is, for any ground
substitution θ, (+ x y)θ ext↔∗R (+ y x)θ holds. Here ext↔∗R is an equivalence relation induced
by R where extensionality is taken into account. However, if we add a new constant f
and a rewrite rule f x → 0 to R, then this does not hold anymore. For, we do not have
+ (zero f) 0 ext↔∗R + 0 (zero f). Hence, the equation + x y ≈ + y x is not an inductive theorem
of R∪ {f x→ 0}.

To see why extensibility is needed, consider the following program transformation. The
recursive definition of rev, given by Rin, is transformed into the iterative definition, given by
Rout. Both TRSs are first-order and given by:

Rin = Rout =
rev([]) → []
rev(x :xs) → app(rev(xs), x : [])
app([], ys) → ys

app(x :xs, ys)→x : app(xs, ys)

 ⇒

rev(xs) → rev1(xs, [])
rev1([], ys) → ys

rev1(x :xs, ys)→ rev1(xs, x : ys)
app([], ys) → ys

app(x :xs, ys) →x : app(xs, ys)

 .

The correctness of the transformation is guaranteed by the fact that the equations app(xs, []) ≈
xs and app(app(xs, ys), zs) ≈ app(xs, app(ys, zs)) are inductively valid w.r.t. the input TRS
Rin. The transformation is carried out in three steps: Rin

∗⇒I RI
∗⇒A RA

∗⇒E Rout. In the
first step, the definition of a new function rev1 is introduced as rev1(xs, ys)→ app(rev(xs), ys).
Note that the definition of rev1 given here is defined in terms of the original rev and app
functions and is different from the final form occurring in Rout which is defined recurs-
ively. In the second step, new rewrite rules which are inductively valid are added. For
example, the rewrite rule rev1(x :xs, ys)→ app(rev(xs), x : ys) is added based on the induct-
ive equivalence rev1(x :xs, ys) ↔RI

app(rev(x :xs), ys) ↔RI
app(app(rev(xs), x : []), ys) ≈

app(rev(xs), app(x : [], ys)) ↔RI
app(rev(xs), x : app([], ys)) ↔RI

app(rev(xs), x : ys). Like-
wise, rev(xs) → rev1(xs, []) and rev1([], ys) → ys are added. In the last step, auxiliary
rewrite rules (typically original rules) are eliminated. By extensibility of first-order inductive
theorems, the inductive theorems of Rin are still inductively valid in RI , and thus one can
use inductive theorems safely in the second step RI

∗⇒A RA, after the introduction of rev1
in the first step.

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 109

extensional Thms

natural Ind. Thms

extensional Ind. Thms

Figure 1 Inclusion relation on the three notions of theorems

The lack of extensibility for higher-order inductive theorems prevents us from extending
the template based framework for program transformations of [7, 8, 9] to the higher-order
setting. To overcome this difficulty, we introduce in this paper a new notion of inductive
theorems—natural inductive theorems—for higher-order rewriting satisfying the following
properties: (1) these inductive theorems are extensional and extensible, (2) extensional
theorems are natural inductive theorems, and (3) natural inductive theorems are extensional
inductive theorems (see Figure 1). Once the notion of natural inductive theorems is obtained,
the higher-order extension of the framework is achieved in the following way. As in the
first-order case, we first establish some natural inductive theorems of the input STSRS Rin.
Then a transformation Rin

∗⇒I RI
∗⇒A RA

∗⇒E Rout is performed as before. By extensibility,
natural inductive theorems are preserved in the transformation ∗⇒I . This, together with the
property (2), allows to add new rules which are sound w.r.t. natural inductive validity. Hence
the equivalence of Rin and Rout is obtained w.r.t. natural inductive validity. By property (3)
this ensures the equivalence of input and output STSRSs w.r.t. extensional inductive validity.

The remainder of this paper is structured as follows. Having fixed the terminology and
notations used in this paper (Section 2), we review a semantics of simply typed equational
theories that captures extensionality (Section 3). In Section 4, we arrive at the restriction of
simply typed algebras to give a notion of natural inductive theorems. Then we show that the
set of natural inductive theorems covers that of extensional theorems and is covered by that
of extensional inductive theorems. We then show extensibility of natural inductive theorems
under certain conditions. In Section 5, we give a sufficient condition that partially allows to
check whether an equation is a natural inductive theorem. Section 6 concludes.

2 Preliminaries

In this section, we briefly recall the terminology and notations of simply typed S-expression
rewriting (simply typed term rewriting in [21]).

Let B be a set of base types. The set ST of simple types is defined inductively as: B ⊆ ST;
if τ0, . . . , τn ∈ ST then τ1 × · · · × τn → τ0 ∈ ST (n ≥ 1). Non-base types are called function
types. A set T ⊆ ST of simple types is a simple type structure if (1) B ⊆ T and (2) T is
closed under subtypes, i.e. τ1 × · · · × τn → τ0 ∈ T implies τ0, . . . , τn ∈ T . For any simple
type structure T , we put T f = T \B. Second-order simple types are defined inductively as
follows: (1) base types are second-order simple types, (2) if τ0 is a second-order simple type
and τ1, . . . , τn are base types then τ1 × · · · × τn → τ0 is a second-order simple type. Let Σ
be a set of constants and V the set of variables. Each constant or variable a is equiped with

RTA’11

110 Natural Inductive Theorems for Higher-Order Rewriting

a simple type (denoted by type(a)). We assume that there are countably infinite variables of
type τ for each τ ∈ ST. For any τ ∈ ST and U ⊆ Σ∪V , we put Uτ = {a ∈ U | type(a) = τ}.
Let T be a simple type structure. We say a ∈ Σ ∪ V (U ⊆ Σ ∪ V) is over T if type(a) ∈ T
(U ⊆

⋃
τ∈T U

τ , respectively). A simply typed constant is said to be second-order if its type
is second-order. We assume that the set Σ of constants is partitioned into two categories1:
the set Σd of defined constants and the set Σc of constructor constants. The set Σ is said to
be elementary if any constructor constant c ∈ Σc is second-order.

Let Σ be a set of constants over a simple type structure T and X be a set of variables
over T . The set S(Σ, X)τ of simply typed S-expressions of type τ ∈ T over Σ and X is
defined as follows: (1) Στ ∪Xτ ⊆ S(Σ, X)τ , (2) if t0 ∈ S(Σ, X)τ1×···×τn→τ and ti ∈ S(Σ, X)τi

for all i ∈ {1, . . . , n} then (t0 t1 · · · tn) ∈ S(Σ, X)τ . The outermost parentheses of an
S-expression can be omitted. The set of all simply typed S-expressions over Σ and X is
denoted by S(Σ, X). We often refer to simply typed S-expressions as S-expressions, for
brevity. The type of an S-expression t is denoted by type(t). For any set U ⊆ S(Σ, V), we
put Ub = {s ∈ U | type(s) ∈ B} and U f = {s ∈ U | type(s) /∈ B}. The set of variables in an
S-expression t (of base type, of function type) is denoted by V(t) (Vb(t), Vf(t), respectively).
An S-expression t is said to be ground if V(t) = ∅. The set of ground S-expressions is
denoted by S(Σ). An S-expression is linear if every variable occurs at most once in it. The
head symbol of an S-expression is defined recursively as follows: head(a) = a for a ∈ Σ ∪ V ;
head((t0 t1 · · · tn)) = head(t0). The set Args(s) of arguments of an S-expression s is defined
recursively as follows: Args(a) = ∅ for a ∈ Σ∪V ; Args((t0 t1 · · · tn)) = Args(t0)∪{t1, . . . , tn}.
A full expansion t↑ of an S-expression t is defined recursively as follows: (1) if type(t) ∈ B
then t↑ = t, (2) if type(t) = τ1 × · · · × τn → τ0 then t↑ = (t x1 · · ·xn)↑ where x1, . . . , xn are
fresh variables of type τ1, . . . , τn, respectively.

A simply typed context over Σ and X is a simply typed S-expression over Σ and X that
contains special symbols �τ , called the holes, prepared for each type τ ∈ T . Let C be a
context having a hole of type τ . The S-expression obtained by replacing the hole in C with
an S-expression t of the same type is denoted by C[t]. A context of the form �τ is said
to be empty. We omit the type of a hole when it is not important. An S-expression s is a
subexpression of an S-expression t (denoted by s E t) if C[s] = t for some context C[].

A simply typed substitution over Σ is a mapping σ : V → S(Σ, V) such that type(x) =
type(σ(x)) for all x ∈ V and dom(σ) = {x | σ(x) 6= x} is finite. The set dom(σ) is called the
domain of σ. The range of σ is given by ran(σ) = {σ(x) | x ∈ dom(σ)}. For a substitution σ,
we write σ : U →W if dom(σ) ⊆ U and ran(σ) ⊆W . As usual, we identify a substitution
with its homomorphic extension.

An instance of an S-expression t is written as tσ. When we write tσ for a substitution
σ : U →W , we assume that V(t)∩U ⊆ dom(σ). A substitution σ is ground if ran(σ) ⊆ S(Σ).
For a set Y ⊆ X and a substitution σ over Σ and X, σ�Y denotes a substitution given by
σ�Y (x) = σ(x) for x ∈ Y , σ�Y (x) = x otherwise.

Let Σ be a set of constants over T . A simply typed rewrite rule l→ r over Σ is a pair of
simply typed S-expressions over Σ and X =

⋃
τ∈T V

τ which satisfies the following conditions:
(1) type(l) = type(r), (2) head(l) ∈ Σ and (3) V(r) ⊆ V(l). A set R of rewrite rules over Σ
is called a simply typed S-expression rewriting system (STSRS for short) over Σ. Let Y be a
set of variables over T . For any s, t ∈ S(Σ, Y), we have s→R t if s = C[lσ] and t = C[rσ] for
some rewrite rule l→ r ∈ R, context C[] over Σ and Y , and substitution σ : X → S(Σ, Y).

1 We do not assume in this paper that Σd coincides with the set of head symbols of left-hand sides of the
rewrite rules, i.e. {head(l) | l → r ∈ R} = Σd.

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 111

The relation →R (over S(Σ, Y)) is called the rewrite relation induced by an STSRS R. An
STSRS R is left-linear if l is linear for any l → r ∈ R. The symmetric closure and the
reflexive transitive closure of a relation → is denoted by ↔ and →∗, respectively.

A simply typed equation over Σ and X is a pair 〈l, r〉 of simply typed S-expressions over
Σ and X such that type(l) = type(r). We write l ≈ r to denote that 〈l, r〉 is a simply typed
equation. The set of simply typed equations over Σ and X is denoted by Eqn(Σ, X). For any
s ≈ t ∈ Eqn(Σ, X) a full expansion s↑ ≈ t↑ of s ≈ t is defined similarly to the full expansion
of an S-expression by choosing the same variables in corresponding arguments in left-hand
sides (lhss) and right-hand sides (rhss) of the equation. Any E ⊆ Eqn(Σ, X) where Σ is a
set of constants over T and X is the set of variables over T is called a 〈T,Σ〉-theory. We
sometime refer to an STSRS R over Σ as a 〈T,Σ〉-theory given by {l ≈ r | l → r ∈ R}. A
〈T,Σ〉-theory is said to be elementary if Σ is elementary.

3 Extensional Semantics

In this section, we present a semantics for simply typed equational theories that captures
extensionality and recall some basic results that will be used in the next section. Most of the
material is incorporated from [17] into our framework.

I Definition 3.1 (typed algebras). Let Σ be a set of simply typed constants over a simple
type structure T . A T -typed Σ-algebra (〈T,Σ〉-algebra for short) is a triple

A = 〈(Aτ)τ∈T , (apτ)τ∈T f , (cA)c∈Σ〉

where (Aτ)τ∈T are mutually disjoint non-empty sets, apτ ∈ [Aτ ×Aτ1 × · · ·×Aτn → Aτ0] for
each τ = τ1×· · ·× τn → τ0 ∈ T f , and cA ∈ Atype(c) for each c ∈ Σ. Here, for sets A0, . . . , An,
[A1 × · · · ×An → A0] is the set of functions from A1 × · · · ×An to A0. The set

⋃
τ∈T A

τ is
called the carrier set of the algebra A and denoted by |A|.

We now incorporate standard notions on the validity and equational consequences for
our semantics. Let A = 〈(Aτ)τ∈T , (apτ)τ∈T f , (cA)c∈Σ〉 be a 〈T,Σ〉-algebra and X the set of
variables over T . A family of mappings ρ = (ρτ)τ∈T where ρτ ∈ [Xτ → Aτ] is called an
environment for A. We abbreviate ρτ (x) as ρ(x). For each S-expression s ∈ S(Σ, X) its
interpretation [[s]]ρ in A over the environment ρ is defined inductively like this: [[c]]ρ = cA

for each c ∈ Σ, [[x]]ρ = ρ(x) for each x ∈ X, [[(s0 s1 · · · sn)]]ρ = apτ ([[s0]]ρ, [[s1]]ρ, . . . , [[sn]]ρ)
where τ = type(s0). An equation l ≈ r ∈ Eqn(Σ, X) is valid on A (denoted by A |= l ≈ r)
if [[l]]ρ = [[r]]ρ for all environments ρ for A. A 〈T,Σ〉-theory E is said to be valid on A or
A is a model of E (denoted by A |= E) if all equations in E are valid on A. An equation
l ≈ r ∈ Eqn(Σ, X) is a theorem of E or equational consequence of E (denoted by E |= l ≈ r) if
l ≈ r is valid on every model of E. An equivalence relation ∼ on |A| is said to be a congruence
on A if (1) a ∼ b implies a, b ∈ Aτ for some τ ∈ T and (2) a0 ∼ b0, a1 ∼ b1, . . . , an ∼ bn
implies apτ (a0, a1, . . . , an) ∼ apτ (b0, b1, . . . , bn) for any a0, b0 ∈ Aτ , ai, bi ∈ Aτi (1 ≤ i ≤ n)
where τ = τ1 × · · · × τn → τ0. We denote the ∼-equivalence class containing a ∈ |A| by [a]
i.e. [a] = {b ∈ |A| | a ∼ b}. The quotient algebra A/∼ has the carrier set

⋃
τ (A/∼)τ where

(A/∼)τ = {[a] | a ∈ Aτ}, operations apτA/∼([a0], [a1], . . . , [an]) = [apτA(a0, a1, . . . , an)] and
cA/∼ = [cA] for each c ∈ Σ. It is readily checked that for a given 〈T,Σ〉-algebra A and a
congruence ∼ on A, the quotient algebra A/∼ is again a 〈T,Σ〉-algebra.

The following lemma will be used later.

RTA’11

112 Natural Inductive Theorems for Higher-Order Rewriting

l ≈ r ∈ E
l ≈ r ax.

s ≈ s refl.
t ≈ s
s ≈ t

sym.

s ≈ t t ≈ u
s ≈ u trans.

s0 ≈ t0 · · · sn ≈ tn
(s0 · · · sn) ≈ (t0 · · · tn)

cong.

s ≈ t
sθ ≈ tθ subst.

(s x1 · · ·xn) ≈ (t x1 · · ·xn)
s ≈ t

ext.
x1, . . . , xn /∈ V(s) ∪V(t)

Figure 2 Inference rules for E `ext

I Lemma 3.2. Let E be a 〈T,Σ〉-theory, A a 〈T,Σ〉-algebra and X the set of variables over
T . Then [[sθ]]ρ = [[s]]ρ/θ holds for any S-expression s ∈ S(Σ, X), environment ρ for A and
substitution θ : X → S(Σ, X). The environment ρ/θ is defined as: (ρ/θ)(x) = [[θ(x)]]ρ.

We next introduce a characterization of 〈T,Σ〉-algebras that incorporates extensionality
to the semantics.

I Definition 3.3 (extensional algebras and theorems). Let A = 〈(Aτ)τ∈T , (apτ)τ∈T f , (cA)c∈Σ〉
be a 〈T,Σ〉-algebra. Then A is said to be extensional if for all τ = τ1 × · · · × τn → τ0 ∈ T f

and a0, b0 ∈ Aτ , a0 = b0 holds whenever apτ (a0, a1, . . . , an) = apτ (b0, a1, . . . , an) for all
a1 ∈ Aτ1 , . . . , an ∈ Aτn . An equation l ≈ r ∈ Eqn(Σ, X) where X is the set of variables over
T is said to be an extensional theorem (written as E |=ext l ≈ r) if A |= E implies A |= l ≈ r
for every extensional 〈T,Σ〉-algebra A.

Let A be an extensional 〈T,Σ〉-algebra where A = 〈(Aτ)τ∈T , (apτ)τ∈T f , (cA)c∈Σ〉. A
congruence ∼ on A is said to be extensional if apτ (a0, a1, . . . , an) ∼ apτ (b0, a1, . . . , an) for
all a1 ∈ Aτ1 , . . . , an ∈ Aτn implies a0 ∼ b0, for all a0, b0 ∈ Aτ where τ = τ1 × · · · × τn → τ0.
It is straightforward to show that the quotient algebra A/∼ is an extensional 〈T,Σ〉-algebra
if ∼ is an extensional congruence on A.

The syntactic counterpart of extensional theorems is given as follows.

I Definition 3.4 (extensional equational deduction). Let E be a 〈T,Σ〉-theory and X the
set of variables over T . The inference rules of extensional equational deduction are given in
Figure 2. We write E `ext s ≈ t if s ≈ t ∈ Eqn(Σ, X) is derivable by extensional equational
deduction.

It is easy to see that E `ext s ≈ t if and only if E `ext s↑ ≈ t↑.
Our next aim is to develop the completeness theorem for extensional equational deduction

(w.r.t. extensional theorems). For this, we need a couple of preparations.
Let E be a 〈T,Σ〉-theory and X the set of variables over T . The extensional equivalence

relation ext↔∗E of E on S(Σ, X) is the smallest equivalence relation satisfying (1) l ≈ r ∈ E
implies lθ ext↔∗E rθ for all substitutions θ, (2) (s x1 · · ·xn) ext↔∗E (t x1 · · ·xn) implies s ext↔∗E t

where x1, . . . , xn /∈ V(s) ∪ V(t) and (3) si
ext↔∗E ti for all 0 ≤ i ≤ n implies (s0 · · · sn) ext↔∗E

(t0 · · · tn). It is easy to see that E `ext s ≈ t if and only if s ext↔∗E t. From here on, we assume2
that S(Σ)τ 6= ∅ for any τ ∈ T .

2 This assumption is required to guarantee the carrier sets of the term algebras satisfy the non-emptiness
condition.

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 113

Let E be a 〈T,Σ〉-theory, X the set of variables over T , and Y a set of variables such
that Y ⊆ X. A 〈T,Σ〉-algebra given by

TΣ(Y) = 〈(S(Σ, Y)τ)τ∈T , (apτ)τ∈T f , (cTΣ(Y))c∈Σ〉

where apτ and cTΣ(Y) are defined by apτ (s0, s1, . . . , sn) = (s0 s1 · · · sn) and cTΣ(Y) = c is
called a 〈T,Σ〉-term algebra (with the set Y of generators). Note that by our assumption
that S(Σ)τ 6= ∅ for any τ ∈ T , S(Σ, Y)τ 6= ∅ for any set Y ⊆ X and hence any 〈T,Σ〉-
term algebra is a 〈T,Σ〉-algebra. It is not difficult to show that ext↔∗E is an extensional
congruence on the 〈T,Σ〉-term algebra TΣ(X). If the set of generators is an arbitrary Y ⊆ X,
however, then ext↔∗E may not be an extensional congruence on TΣ(Y) and cannot be used
to define the initial extensional 〈T,Σ〉-algebra. To overcome this, Meinke [17] introduced
an ω-evaluation rule. Here we use the following equivalence relation ext↔∗E,ω. Let E be
a 〈T,Σ〉-theory and Y a set of variables over T . The ω-extensional equivalence relation
ext↔∗E,ω of E on S(Σ, Y) is obtained by replacing condition (2) in the definition of ext↔∗E by
(2′) (s u1 · · ·un) ext↔∗E,ω (t u1 · · ·un) for any u1 ∈ S(Σ, Y)τ1 , . . . , un ∈ S(Σ, Y)τn implies
s

ext↔∗E,ω t, where type(s) = type(t) = τ1 × · · · × τn → τ0. Then ext↔∗E,ω is an extensional
congruence on any 〈T,Σ〉-term algebra TΣ(Y). Hence we get an extensional 〈T,Σ〉-algebra
TE(Y) = TΣ(Y)/ext↔∗E,ω. It is easy to see that for any s↑ ≈ t↑ ∈ Eqn(Σ, Y), TE(Y) |= s ≈ t if
and only if TE(Y) |= s↑ ≈ t↑.

Using standard arguments [5], the soundness and completeness of extensional equational
deduction can be shown [17].

I Theorem 3.5 (soundness and completeness [17]). Let E be a 〈T,Σ〉-theory and X the set
of variables over T . For any l ≈ r ∈ Eqn(Σ, X), E `ext l ≈ r if and only if E |=ext l ≈ r.

Our extensional semantics naturally leads to the notion of extensional inductive theorems.

I Definition 3.6 (extensional inductive theorem [17]). Let E be a 〈T,Σ〉-theory and X the
set of variables over T . An equation s ≈ t ∈ Eqn(Σ, X) is said to be an extensional inductive
theorem of E (denoted by E |=eind s ≈ t) if TE(∅) |= s ≈ t.

The following characterization of extensional inductive theorems will be used later.

I Lemma 3.7. Let E be a 〈T,Σ〉-theory and X the set of variables over T . For any
s ≈ t ∈ Eqn(Σ, X), E |=eind s ≈ t if sθ ext↔∗E tθ (on S(Σ, X)) for any ground substitution
θ : X → S(Σ).

4 Natural Semantics and Natural Inductive Theorems

Extensional semantics developed in the previous section and the notion of extensional
inductive theorems introduced there seems to form a firm basis for simply typed equational
theories. However, the notion of extensional inductive theorems lacks a property of inductive
theorems in first-order term rewriting: extensibility, meaning that inductive theorems are
preserved when a new function by a macro is added.

I Example 4.1. Let T = {Nat, Nat → Nat, Nat × Nat → Nat, (Nat → Nat) → Nat},
Σ = {+Nat×Nat→Nat, 0Nat, sNat→Nat, zero(Nat→Nat)→Nat} and

E =

+ 0 y ≈ y

+ (s x) y ≈ s (+ x y)
zero s ≈ 0

 .

RTA’11

114 Natural Inductive Theorems for Higher-Order Rewriting

Then E |=eind zero F ≈ 0. (For, the only possible instantiation of F is s.) By introducing a
new constant idNat→Nat, define E′ = {id x ≈ x}∪E. Then we do not have E′ |=eind zero F ≈ 0
any more, since zero id ext↔∗E′,ω 0 does not hold.

From this example, it is observed that we may not conclude zero F ≈ 0 is an “inductive
theorem” since this fact depends on the limited possibility of instantiating the variable F of
function type. Hence this example suggests that the notion of extensional inductive theorems
may be too general if validity needs to be preserved under addition of new function definitions.
This motivates us to restrict extensional 〈T,Σ〉-algebras to natural 〈T,Σ〉-algebras.

I Definition 4.2 (natural algebras). A 〈T,Σ〉-algebra A = 〈(Aτ)τ∈T , (apτ)τ∈T f , (cA)c∈Σ〉 is
said to be natural if for any τ ∈ T f with τ = τ1 × · · · × τn → τ0, (1) Aτ = [Aτ1 × · · · ×
Aτn → Aτ0] and (2) apτ (f, a1, . . . , an) = f(a1, . . . , an). Henceforth, a natural 〈T,Σ〉-algebra
A = 〈(Aτ)τ∈T , (apτ)τ∈T f , (cA)c∈Σ〉 is specified as A = 〈(Aτ)τ∈B , (cA)c∈Σ〉. A natural 〈T,Σ〉-
algebra 〈(Aτ)τ∈B , (cA)c∈Σ〉 is a natural 〈T,Σ〉-term algebra (with the set X of generators) if
there exists Σ′ ⊆ Σ such that Aτ = S(Σ′, X)τ for each τ ∈ B.

I Example 4.3. Consider T,Σ, and E from Example 4.1 and let Σ′ = {0, s}. Let X be a
set of variables over T and put ANat = S(Σ′, X)Nat. Take Aτ = [Aτ1 × · · · × Aτn → Aτ0]
for τ = τ1 × · · · × τn → τ0 ∈ T f and any cA for each cτ ∈ {0, s,+, zero} such that cA ∈ Aτ .
Then 〈(Aτ)τ∈B , (cA)c∈Σ〉 is a natural 〈T,Σ〉-term algebra (with the set X of generators).

I Lemma 4.4. Any natural 〈T,Σ〉-algebra is extensional.

Proof. For any f, g ∈ [Aτ1 × · · · ×Aτn → Aτ0], f = g iff f(a1, . . . , an) = g(a1, . . . , an) holds
for any a1 ∈ Aτ1 , . . . , an ∈ Aτn . J

Extensional inductive theorems were defined (in Definition 3.6) based on the 〈T,Σ〉-term
algebra with the empty set of generators. Similarly, we will define a notion of natural
inductive theorems from natural 〈T,Σ〉-term algebras with the empty set of generators. It is,
however, not possible to directly relate the notion of natural inductive theorems to those of
extensional theorems and extensional inductive theorems; we further require consistency of
the natural 〈T,Σ〉-term algebras to connect these notions.

I Definition 4.5 (natural inductive theorems). Let E be a 〈T,Σ〉-theory and X be the set of
variables over T . Furthermore, assume that the set Σc of constructors is free, i.e. for any
s, t ∈ S(Σc, X) s ext↔∗E t implies s = t.

1. A natural 〈T,Σ〉-term algebra A = 〈(Aτ)τ∈B , (cA)c∈Σ〉 is said to be consistent with E if
(1) s ext↔∗E [[s]] holds for any s ∈ S(Σ)b and (2) A |= E. Here, note that ρ of [[s]]ρ can be
safely omitted because V(s) = ∅.

2. A natural 〈T,Σ〉-term algebra A = 〈(A)τ∈B , (cA)c∈Σ〉 is said to be a natural 〈T,Σ〉-term
algebra for E if Aτ = S(Σc)τ for each τ ∈ B and A is consistent with E, where Σc is the
set of constructors designated in E. E is said to be a natural 〈T,Σ〉-theory if there exists
a natural 〈T,Σ〉-term algebra A for E.

3. Suppose that E is a natural 〈T,Σ〉-theory. Then an equation l ≈ r ∈ Eqn(Σ, X) is said
to be a natural inductive theorem of E (denoted by E |=nind l ≈ r) if A |= l ≈ r for any
natural 〈T,Σ〉-term algebra A for E.

I Example 4.6. Consider T,Σ, and E from Example 4.1 and let Σc = {0, s}. Put ANat =
S(Σc)Nat and Aτ = [Aτ1 × · · · × Aτn → Aτ0] for τ = τ1 × · · · × τn → τ0 ∈ T f . Let 0A = 0,
sA(x) = (s x), +A(x, y) be the unique normal form of (+ x y) w.r.t. {l → r | l ≈ r ∈ E},

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 115

and zeroA(f) = 0. Then A = 〈(Aτ)τ∈B , (cA)c∈Σ〉 is a natural 〈T,Σ〉-term algebra for
E. For example, (+ (s 0) (s 0)) ext↔∗E (s (s 0)) = [[(+ (s 0) (s 0))]] holds for (1) and
[[(+ 0 y)]]ρ = ρ(y) = [[y]]ρ holds for any ρ for (2). One can also set zeroA(succ) = 0 for
succ ∈ [S(Σc)Nat → S(Σc)Nat] such that succ(x) = (s x); zeroA(f) = (s 0) otherwise, to
obtain a natural 〈T,Σ〉-term algebra for E. This implies that an equation (zero F) ≈ 0 is not
a natural inductive theorem of E. In contrast, interpretations sA and +A are common to all
natural 〈T,Σ〉-term algebras for E and hence it follows that an equation (+ x y) ≈ (+ y x)
is a natural inductive theorem of E.

Our first aim is to show the relation of natural inductive theorems to extensional theorems
and extensional inductive theorems.

I Lemma 4.7. Let E be a natural 〈T,Σ〉-theory. The set of natural inductive theorems of
E is closed under the inference rules of Figure 2.

Proof. This follows from the fact that for any extensional 〈T,Σ〉-algebra A for E, the set
Th(A) = {s ≈ t | A |= s ≈ t} is closed under the inference rules of Figure 2. J

It easily follows from this lemma that for any equation l ≈ r ∈ Eqn(Σ, X), E |=nind l ≈ r
iff E |=nind l↑ ≈ r↑.

I Lemma 4.8. Let A = 〈(Aτ)τ∈B , (cA)c∈Σ〉 be a natural 〈T,Σ〉-term algebra for E. For any
s, t ∈ S(Σ)b, s ext↔∗E t iff [[s]] = [[t]].

Proof. Let s, t ∈ S(Σ)b. By condition (1) of consistency, [[s]] ext↔∗E s and [[t]] ext↔∗E t. Hence,
s

ext↔∗E t iff [[s]] ext↔∗E [[t]]. Furthermore, since [[s]], [[t]] ∈ S(Σc), [[s]] ext↔∗E [[t]] iff [[s]] = [[t]] by our
assumption that Σc is free (Definition 4.5). J

We arrive at one of the main theorems of this section.

I Theorem 4.9. Let E be a natural 〈T,Σ〉-theory and X be the set of variables over T . For
any l ≈ r ∈ Eqn(Σ, X), (1) E |=ext l ≈ r implies E |=nind l ≈ r; (2) E |=nind l ≈ r implies
E |=eind l ≈ r.

Proof. (1) By Lemma 4.7. (2) Since E |=nind l ≈ r iff E |=nind l↑ ≈ r↑ holds and
E |=eind l ≈ r iff E |=eind l↑ ≈ r↑ holds, w.l.o.g. we assume that l, r have a base type. If
l ≈ r is a natural inductive theorem of E then so is lθ ≈ rθ for any ground substitution
θ by Lemma 4.7. Thus [[lθ]] = [[rθ]] for any natural 〈T,Σ〉-term algebra A for E. Then by
Lemma 4.8, lθ ext↔∗E rθ. Thus, by Lemma 3.7, E |=eind l ≈ r. J

Our next aim is to show extensibility of natural inductive theorems. We introduce two
new conditions for this.

I Definition 4.10 (constructor-based theories). A 〈T,Σ〉-theory E is said to be constructor-
based if for any f ∈ Σd and any substitution σ : Vb(f↑) → S(Σc), there exists t ∈
S(Σc,Vf(f↑)) such that (f↑)σ ext↔∗E t.

I Definition 4.11 (conservative extensions). Let E be a 〈T,Σ〉-theory and E′ a Σ′-theory
such that E ⊆ E′ and Σ ⊆ Σ′. Then E′ is said to be a conservative extension of E if (1)
Σc = Σ′c and (2) for all S-expressions s, t ∈ S(Σc), s ext↔∗E t iff s ext↔∗E′ t.

We introduce a saturated set for E to prove a property of elementary constructor-based
theories (Lemma 4.16).

RTA’11

116 Natural Inductive Theorems for Higher-Order Rewriting

I Definition 4.12 (saturated sets for E). Let E be a 〈T,Σ〉-theory. We define a set W τ for
each τ ∈ T like this: W τ = {s ∈ S(Σ)τ | ∃t ∈ S(Σc) s ext↔∗E t} for τ ∈ B; W τ = {s0 ∈ S(Σ)τ |
∀s1 ∈W τ1 · · · ∀sn ∈W τn (s0 s1 · · · sn) ∈W τ0} if τ = τ1× · · · × τn → τ0 ∈ T f . The saturated
set W for E is given by W =

⋃
τ∈T W

τ .

I Lemma 4.13. Let W be the saturated set for a 〈T,Σ〉-theory E. (1) For any S-expression
s ∈ S(Σ), s ∈ W iff (s↑)σ ∈ W for any substitution σ : V(s↑) → W . (2) If s ∈ W and
sg

ext↔∗E t then t ∈W .

Proof. (1) By definition. (2) By (1). J

I Lemma 4.14. Let E be an elementary 〈T,Σ〉-theory, X the set of variables over T and
W the saturated set for E. Then sθ ∈ W holds for any S-expression s ∈ S(Σc, X) and
substitution θ : X →W .

Proof. By induction on s. J

I Lemma 4.15. Let E be an elementary constructor-based 〈T,Σ〉-theory andW the saturated
set for E. Then S(Σ) = W .

Proof. Use Lemmas 4.13 and 4.14 to show that (s↑)σ ∈W for every substitution σ : V(s↑)→
W by induction on s ∈ S(Σ). J

The next lemma follows immediately from Lemma 4.15.

I Lemma 4.16. If E is an elementary constructor-based 〈T,Σ〉-theory then for any S-
expression s ∈ S(Σ)b there exists an S-expression t ∈ S(Σc)b such that s ext↔∗E t.

We arrive at the other main theorem of this section.

I Theorem 4.17 (extensibility of natural inductive theorems). Let E be an elementary
constructor-based natural 〈T,Σ〉-theory, X be the set of variables over T , f a new defined sym-
bol of second-order type τ such that f /∈ Σ and r ∈ S(Σ, {x1, . . . , xn}) where x1, . . . , xn ∈ Xb.
Let T ′ = T ∪ {τ}, Σ′ = Σ ∪ {f} and suppose E′ = E ∪ {f x1 · · ·xn ≈ r} is a conservative
extension of E. Then the following hold. (1) E′ is an elementary constructor-based natural
〈T ′,Σ′〉-theory. (2) For any s ≈ t ∈ Eqn(Σ, X), E |=nind s ≈ t iff E′ |=nind s ≈ t.

Proof. We first show (⇒) of (2). Suppose that there exists a natural 〈T ′,Σ′〉-term algebra
A′ = 〈(A′τ)τ∈B , (cA

′)c∈Σ′〉 for E′ such that s ≈ t does not hold. By just omitting fA′ (and
A′τ for τ ∈ T ′\T), we obtain a natural 〈T,Σ〉-term algebra A for E such that s ≈ t does not
hold. Next we show (1) and (⇐) of (2). Since E is elementary and Σc = Σ′c, E′ is elementary.
Let θ be a substitution such that θ : Xb → S(Σc). Then, (f↑)θ ext↔∗E′ (r↑)θ. Furthermore, by
Lemma 4.16, there exists t ∈ S(Σc) such that (r↑)θ ext↔∗E t. Thus (f↑)θ ext↔∗E′ t. Hence E′ is
constructor-based. It remains to show that E′ is natural. Since E is a natural 〈T,Σ〉-theory,
there exists a natural 〈T,Σ〉-term algebra A for E. Let A = 〈(Aτ)τ∈B , (cA)c∈Σ〉. Then, by
the definition, (1) for any s ∈ S(Σ)b, [[s]] ext↔∗E s holds, and (2) for any l ≈ r ∈ E and for
any environment ρ for A, [[l]]ρ = [[r]]ρ holds. We define a natural 〈T ′,Σ′〉-term algebra A′
by A′ = 〈(A′τ)τ∈B , (cA

′)c∈Σ′〉 where A′τ = Aτ for any τ ∈ B, cA′ = cA for all c ∈ Σ and
fA

′(a1, . . . , an) = [[r]]ρ where ρ = {xi 7→ ai | 1 ≤ i ≤ n}. We now show that A′ is a natural
〈T ′,Σ′〉-term algebra for E′.

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 117

[[s]] ext↔∗E′ s holds for any s ∈ S(Σ′)b: Let s ∈ S(Σ′)b. Then, since E′ is elementary
constructor-based, by Lemma 4.16 there exists an S-expression u ∈ S(Σc) such that
s

ext↔∗E′ u. Then [[s]] = [[u]] by Lemma 4.8. Furthermore, u = [[u]] by u ∈ S(Σc). Therefore,
[[s]] = [[u]] = ug

ext↔∗E′ s.
For any l ≈ r ∈ E′ and for any environment ρ for A′, [[l]]ρ = [[r]]ρ holds: this follows from
the assumption and the definition of fA′ .

Thus the proof of (1) has been completed. To show (⇐) of (2), suppose that s ≈ t does not
hold in A. Then, by construction, s ≈ t does not hold in A′ either. J

I Example 4.18. If we drop the condition that f has a second-order type, then E′ is
not constructor-based in general. Let T = {Nat,Nat → Nat,Nat × Nat → Nat}, Σd =
{+Nat×Nat→Nat}, Σc = {sNat→Nat, 0Nat} and

E =
{

+ 0 y ≈ y

+ (s x) y ≈ s (+ x y)

}
.

Then E is an elementary constructor-based 〈T,Σ〉-theory. Take E′ = E∪{g F x ≈ + (F x) x}.
Then there exists no t ∈ S(Σc, {F}) such that g F 0 ext↔∗E′ t.

5 Checking Natural Inductive Theorems

In this section, we present partial answers to the following questions:
1. When can one prove or check an equational theory is constructor-based?
2. When can one prove or check an equation is a natural inductive theorem?

We first answer the second question by giving a sufficient condition for natural inductive
theorems.

I Lemma 5.1. Let E be a natural 〈T,Σ〉-theory, X the set of variables over T and A
a natural 〈T,Σ〉-term algebra for E. Then for any environment ρ for A, there exists a
substitution σg : Xb → S(Σc) such that ρ = ρ�Xf/σ.

Proof. Take a substitution σ = {x 7→ ρ(x) | x ∈ Xb}. We now show ρ = (ρ�Xf)/σ. For
x ∈ Xb, we have ((ρ�Xf)/σ)(x) = [[σ(x)]]ρ�

Xf = [[ρ(x)]]ρ�
Xf = ρ(x). For F ∈ X f , we have

((ρ�Xf)/σ)(F) = [[σ(F)]]ρ�
Xf = [[F]]ρ�

Xf = ρ(F). J

I Theorem 5.2 (sufficient condition for natural inductive theorem). Let E be a natural
〈T,Σ〉-theory, X the set of variables over T and s ≈ t ∈ Eqn(Σ, X). If sσ ext↔∗E tσ for any
substitution σ : Xb → S(Σc), then s ≈ t is a natural inductive theorem of E.

Proof. Let A be a natural 〈T,Σ〉-term algebra for E and ρ an environment for A. By
Lemma 5.1, there exists σ : Xb → S(Σc) such that ρ = ρ�Xf/σ. By Lemma 3.2, Then
[[uσ]]ρ�

Xf = [[u]]ρ�
Xf /σ = [[u]]ρ for any u ∈ S(Σ, X). Thus [[s]]ρ = [[t]]ρ iff [[sσ]]ρ�

Xf = [[tσ]]ρ�
Xf .

By our assumption, sσ ext↔∗E tσ. By Proposition 3.5, E |=ext sσ ≈ tσ holds. By our
assumption, A |= E. Thus, since A is an extensional 〈T,Σ〉-algebra by Lemma 4.4, A |=
sσ ≈ tσ holds. Hence for any environment ρ′ for A, [[sσ]]ρ′ = [[tσ]]ρ′ and thus, in particular,
[[sσ]]ρ�

Xf = [[tσ]]ρ�
Xf . This concludes [[s]]ρ = [[t]]ρ. J

We next answer the first question by giving a sufficient condition of equational theories
(specified by STSRSs) to be constructor-based.

RTA’11

118 Natural Inductive Theorems for Higher-Order Rewriting

I Definition 5.3 (simple S-expressions). An S-expression s is said to be simple if for all
(u t1 · · · tn) E s, (1) if head(u) ∈ V then type(ti) ∈ B for i = 1, . . . , n and (2) if head(u) ∈ Σd
and type(ti) ∈ B then ti ∈ S(Σ) for i = 1, . . . , n.

I Lemma 5.4. Let f ∈ Σd. For any substitution θ : V b → S(Σ), (f↑)θ is simple.

Proof. Let (f↑)θ = ((· · · (f t11 · · · t1n1) · · ·) tm1 · · · tmnm). By our assumption, if type(tij) ∈
B then tij ∈ S(Σ) and if type(tij) /∈ B then tij ∈ V f . Thus for any (u s1 · · · sn) E tij ∈ S(Σ),
the condition (1) holds since head(u) /∈ V and the condition (2) holds since s1, . . . , sn ∈ S(Σ).
Furthermore, if tij ∈ V f then (u s1 · · · sn) E tij does not happen. Thus it remains to show
the conditions (1) and (2) hold for (u tk1 · · · tknk

) where head(u) = f and 1 ≤ k ≤ m.
The condition (1) holds since f /∈ V . The condition (2) holds since type(tki) ∈ B implies
tki ∈ S(Σ) for i = 1, . . . , nk. J

An S-expression s such that s →R t for no t is said to be normal; the set of normal
S-expressions of R is denoted by NF(R). An STSRS R is said to be higher-order quasi-
reducible (denoted by HQR(R)) if s /∈ NF(R) for any S-expression s ∈ S(Σ, V f)b such that
(i) head(s) ∈ Σd and (ii) for any u ∈ Args(s), if type(u) ∈ B then u ∈ S(Σc) and otherwise
u ∈ V f [4].

I Lemma 5.5. Let R be a left-linear elementary STSRS such that HQR(R) hold. Let
s ∈ S(Σ, V f)b ∩NF(R). If s is simple then s ∈ S(Σc, V

f).

Proof. Take a minimal (w.r.t. subexpression relation �) s ∈ S(Σ, V f)b ∩ NF(R) such
that s is simple and s /∈ S(Σc, V

f). Then there exists a subexpression u of s such that
head(u) = f ∈ Σd. Take a maximal (w.r.t. subexpression relation �) such subexpression u.
We first claim that type(u) ∈ B. Suppose type(u) /∈ B. Then since type(s) ∈ B, there exists
a subexpression (u0 · · ·u · · ·) of s. If head(u0) ∈ V then, since s is simple, type(u) ∈ B and
hence this contradicts our assumption. Otherwise by the maximality of u, head(u0) ∈ Σc.
Then, since R is elementary, it follows type(u) ∈ B. Hence this also contradicts our
assumption. Therefore type(u) ∈ B. Let u = ((· · · (f t11 · · · t1n1) · · ·) tm1 · · · tmnm

). Since s
is simple, if type(tij) ∈ B then tij ∈ S(Σ); furthermore, by tij � s, tij ∈ NF(R) and simple.
Thus by the minimality of s, type(tij) ∈ B implies tij ∈ S(Σc). Then, since R is left-linear
and higher-order quasi-reducible and type(u) ∈ B, u /∈ NF(R). This is a contradiction. J

I Definition 5.6 (GAV/quasi-simple/simplicity-preserving). 1. The set GAV(s) of ground-
augmenting variables of an S-expression s is defined like this: GAV(a) = ∅ for a ∈ Σ ∪ V ;
GAV((t0 t1 · · · tn)) = (

⋃
{GAV(ti) | 0 ≤ i ≤ n}) ∪ (

⋃
{V(ti) | type(ti) ∈ B, 1 ≤ i ≤

n,head(t0) ∈ Σd}).
2. An S-expression s is said to be quasi-simple w.r.t. a set X of variables if for any subex-

pression (u t1 · · · tn) of s, (1) if head(u) ∈ V then ti ∈ S(Σ, X)b, and (2) if head(u) ∈ Σd
and type(ti) ∈ B then ti ∈ S(Σ, X).

3. A rewrite rule l→ r of type τ is said to be simplicity-preserving if (1) head(r) ∈ V implies
τ is second-order, (2) head(r) /∈ Σ ∪ GAV(l) implies τ ∈ B and (3) r is quasi-simple
w.r.t. GAV(l). An STSRS R is simplicity-preserving if it consists of simplicity-preserving
rewrite rules.

Let l→ r be a rewrite rule. Suppose head(l) has the second-order type. Then GAV(l) =
V(l). Hence if moreover V(r) ⊆ V b then r is quasi-simple w.r.t. GAV(l). Therefore, if
moreover l→ r has a base type then l→ r is simplicity-preserving.

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 119

I Example 5.7. Let T = {Nat,Nat→ Nat,Nat×Nat→ Nat,List,Nat×List→ List,List×
List→ List, (Nat→ Nat)× List→ List}, Σc = {0Nat, sNat→Nat, []List

, :Nat×List→List}, Σd =
{+Nat×Nat→Nat, appList×List→List,map(Nat→Nat)×List→List} and

R =

(1) + 0 y → y

(2) + (s x) y → s (+ x y)
(3) app [] ys → ys

(4) app (: x xs) ys → : x (app xs ys)
(5) map F [] → []
(6) map F (: x xs) → : (F x) (map F xs)

.

By the remark above, rules (1)–(4) are simplicity-preserving. Let l = map F [] and r = [].
Then GAV(l) = ∅. r is quasi-simple because there is no subexpression of the form (u t1 · · · tn).
Hence, since l→ r has a base type, l→ r is simplicity-preserving. Let l = map F (: x xs) and
r = : (F x) (map F xs). The set GAV(l) = {x, xs}. Let X = {x, xs}. For (u t1) = (F x), we
have t1 = x ∈ S(Σ, X)b and for (u t1 t2) = (map F xs), we have t2 = xs ∈ S(Σ, X)b. Since
l→ r has a base type and r is quasi-simple w.r.t. GAV(l), l→ r is simplicity-preserving.

I Lemma 5.8. Let s be an S-expression and σ a substitution. If sσ is simple then θ(x) ∈ S(Σ)
for any x ∈ GAV(s).

Proof. By induction on s. J

I Lemma 5.9. Let R be a simplicity-preserving STSRS. If s is simple and s→R t then t is
simple.

Proof. Suppose s = C[lσ], t = C[rσ] and l→ r is simplicity-preserving. We first show r′σ

is simple for any r′ E r, by induction on r′. The case of r′ ∈ Σ ∪ V follows easily. Let
r′ = (r0 r1 · · · rn).
(1) Suppose head(r0σ) ∈ V . Then head(r0) ∈ V . Then type(ri) ∈ B for 1 ≤ i ≤ n by

quasi-simplicity of r. Thus type(riσ) ∈ B for 1 ≤ i ≤ n.
(2) Suppose head(r0σ) ∈ Σd. We distinguish two cases. Case head(r0) = head(r0σ). By the

quasi-simplicity of r w.r.t. GAV(l), type(ri) ∈ B implies ri ∈ S(Σ,GAV(l)) (1 ≤ i ≤ n).
Since lσ is simple, σ(x) ∈ S(Σ) for any x ∈ GAV(l) by Lemma 5.8. Hence type(riσ) ∈ B
implies riσ ∈ S(Σ). Case head(r0) ∈ V . Then, by the quasi-simplicity of r w.r.t. GAV(l),
ri ∈ S(Σ,GAV(l))b for 1 ≤ i ≤ n. Again, by Lemma 5.8, it follows that riσ ∈ S(Σ).

Hence we conclude that rσ is simple. Next, we show C ′[rσ] is simple by induction on C ′ E C
(B.S.) follows from the fact that rσ is simple. To show (I.S.), we distinguish two cases.

Case C ′ = (C ′′ w1 · · ·wn).
(1) Suppose head(C ′′[rσ]) ∈ V . Case of head(C ′′[lσ]) ∈ V is trivial. Suppose head(C ′′[lσ]) /∈

V . Then head(C ′′[rσ]) = head(rσ) and hence head(r) ∈ V . Thus, type(lσ) is second-
order and hence type(wi) ∈ B for all 1 ≤ i ≤ n.

(2) Suppose head(C ′′[rσ]) ∈ Σd. If head(C ′′[rσ]) = head(C ′′), then head(C ′′[lσ]) ∈ Σd
and hence type(wi) ∈ B implies wi ∈ S(Σ). If head(C ′′[rσ]) = head(rσ), then
head(C ′′[lσ]) ∈ Σd. Thus type(wi) ∈ B implies wi ∈ S(Σ).

Case C ′ = (w0 · · ·C ′′ · · ·). If head(w0) ∈ V then type(C ′′[lσ]) ∈ B and hence type(C ′′[rσ]) ∈
B. If head(w0) ∈ Σd and type(C ′′[rσ]) ∈ B then C ′′[lσ] ∈ S(Σ) and hence C ′′[rσ] ∈ S(Σ).

J

An STSRS R is weakly normalizing (denoted by WN(R)) if for any S-expression s there
exists an S-expression t ∈ NF(R) such that s→∗R t.

RTA’11

120 Natural Inductive Theorems for Higher-Order Rewriting

I Lemma 5.10. Let E be an elementary 〈T,Σ〉-theory and R be a left-linear simplicity-
preserving STSRS on the same signature satisfying →∗R ⊆

ext↔∗E , HQR(R) and WN(R). Then
E is constructor-based.

Proof. Let f ∈ Σd and σg be a substitution such that σg : V b → S(Σc). By WN(R),
there exists w ∈ NF(R) such that (f↑)σg →∗R w. Furthermore, since (f↑)σg ∈ S(Σ, V f),
w ∈ S(Σ, V f). By Lemma 5.4, (f↑)σg is simple. Since R is simplicity-preserving w is simple
by Lemma 5.9. Thus by Lemma 5.5 and our assumption that R is left-linear and elementary
and that HQR(R) holds, w ∈ S(Σc, V

f). By →∗R ⊆
ext↔∗E , it follows that for any f ∈ Σd and

substitution σg : V b → S(Σc), there exists w ∈ S(Σc, V
f) such that (f↑)σg

ext↔∗E w. Thus E is
constructor-based. J

I Theorem 5.11 (checking natural inductive theorems). Let R be a left-linear elementary
natural simplicity-preserving STSRS such that WN(R) and HQR(R) hold. If sθ ext↔∗R tθ for
any substitution θ : V b → S(Σc), then s ≈ t is a natural inductive theorem of R.

Proof. By Lemma 5.10, R is constructor-based. Then by Theorem 5.2 s ≈ t is a natural
inductive theorem of R. J

I Example 5.12. LetR be the STSRS given in Example 5.7. ThenR is left-linear, elementary,
simplicity-preserving and WN(R) and HQR(R) hold. To show that R is natural, we now
show that there exists a natural 〈T,Σ〉-term algebra A for R. Let 0A = 0, sA(x) = (s x),
[]A = [], :A(x, xs) = (: x xs), +A(x, y) be the unique normal form of (+ x y), appA(xs, ys)
be the unique normal form of (app xs ys) and mapA(f, xs) be defined inductively as:
mapA(f, []) = []; mapA(f, : x xs) = (: f(x) mapA(f, xs)). Then we have [[l]]ρ = [[r]]ρ for any
l→ r ∈ R. Furthermore, one easily shows s ext↔∗R [[s]] for any s ∈ S(Σ)Nat by induction on s.
Using this, it also follows that s ext↔∗R [[s]] for any s ∈ S(Σ)List by induction on s. Thus A is a
natural 〈T,Σ〉-term algebra for R. Let

l ≈ r = map F (app xs ys) ≈ app (map F xs) (map F ys).

Then for any substitution θ : V b → S(Σc), lθ
ext↔∗R rθ holds. Thus, by Theorem 5.11, l ≈ r

is a natural inductive theorem of R.

6 Conclusion

Extensibility of inductive theorems is indispensable to extend the framework of program
transformation by templates based on first-order term rewriting [7, 8, 9] to the higher-order
setting. We have studied a new notion of inductive theorems for higher-order rewriting,
natural inductive theorems, to incorporate properties such as extensionality and extensibility.
The class of this theorems is placed between extensional theorems and extensional inductive
theorems. We also have given sufficient conditions for natural inductive theorems which
enables us to prove simply typed equations to be natural inductive theorems.

Acknowledgments

Thanks are due to anonymous referees for detailed comments. This work was partially
supported by a grant from JSPS No. 20500002.

Takahito Aoto, Toshiyuki Yamada and Yuki Chiba 121

References
1 T. Aoto and T. Yamada. Termination of simply typed term rewriting systems by translation

and labelling. In Proc. of RTA 2003, volume 2706 of LNCS, pages 380–394. Springer-Verlag,
2003.

2 T. Aoto and T. Yamada. Dependency pairs for simply typed term rewriting. In Proc. of
RTA 2005, volume 3467 of LNCS, pages 120–134. Springer-Verlag, 2005.

3 T. Aoto and T. Yamada. Argument filterings and usable rules for simply typed dependency
pairs. In Proc. of FroCoS 2009, volume 5749 of LNAI, pages 117–132. Springer-Verlag, 2009.

4 T. Aoto, T. Yamada, and Y. Toyama. Inductive theorems for higher-order rewriting. In
Proc. of RTA 2004, volume 3091 of LNCS, pages 269–284. Springer-Verlag, 2004.

5 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

6 R. M. Burstall and J. Darlington. A transformation system for developing recursive pro-
grams. Journal of the ACM, 24(1):44–67, 1977.

7 Y. Chiba, T. Aoto, and Y. Toyama. Program transformation by templates based on term
rewriting. In Proc. of PPDP 2005, pages 59–69. ACM Press, 2005.

8 Y. Chiba, T. Aoto, and Y. Toyama. Program transformation by templates: A rewriting
framework. IPSJ Trans. on Programming, 47(SIG 16 (PRO 31)):52–65, 2006.

9 Y. Chiba, T. Aoto, and Y. Toyama. Program transformation templates for tupling based
on term rewriting. IEICE Trans. on Inf. & Sys., E93-D(5):963–973, 2010.

10 W. N. Chin. Towards an automated tupling strategy. In Proc. of PEPM’93, pages 119–132.
ACM Press, 1993.

11 A. Gill, J. Launchbury, and S. Peyton-Jones. A short cut to deforestation. In Proc. of
FPCA’93, pages 223–232. ACM Press, 1993.

12 G. Huet and J.-M. Hullot. Proof by induction in equational theories with constructors.
Journal of Computer and System Sciences, 25(2):239–266, 1982.

13 G. Huet and B. Lang. Proving and applying program transformations expressed with
second order patterns. Acta Informatica, 11:31–55, 1978.

14 J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories without
constructors. Information and Computation, 82:1–33, 1989.

15 D. Kapur, P. Narendran, and H. Zhang. Automating inductionless induction using test
sets. Journal of Symbolic Computation, 11(1–2):81–111, 1991.

16 K. Kusakari, M. Sakai, and T. Sakabe. Primitive inductive theorems bridge implicit induc-
tion methods and inductive theorems in higher-order rewriting. IEICE Trans. on Inf. &
Sys., E88–D(12):2715–2726, 2005.

17 K. Meinke. Universal algebra in higher types. Theoretical Computer Science, 100:385–417,
1992.

18 K. Meinke. Proof theory of higher-order equations: conservativity, normal forms and term
rewriting. Journal of Computer and System Sciences, 67:127–173, 2003.

19 Y. Toyama. How to prove equivalence of term rewriting systems without induction. The-
oretical Computer Science, 90(2):369–390, 1991.

20 P. Wadler. Deforestation: transforming programs to eliminate trees. Theoretical Computer
Science, 73:231–248, 1990.

21 T. Yamada. Confluence and termination of simply typed term rewriting systems. In Proc.
of RTA 2001, volume 2051 of LNCS, pages 338–352. Springer-Verlag, 2001.

RTA’11

A Path Order for Rewrite Systems that Compute
Exponential Time Functions∗

Martin Avanzini1, Naohi Eguchi2, and Georg Moser1

1 Institute of Computer Science,
University of Innsbruck, Austria
{martin.avanzini,georg.moser}@uibk.ac.at

2 School of Information Science,
Japan Advanced Institute of Science and Technology, Japan
n-eguchi@jaist.ac.jp

Abstract
In this paper we present a new path order for rewrite systems, the exponential path order EPO?.
Suppose a term rewrite system is compatible with EPO?, then the runtime complexity of this
rewrite system is bounded from above by an exponential function. Furthermore, the class of
function computed by a rewrite system compatible with EPO? equals the class of functions
computable in exponential time on a Turing machine.

1998 ACM Subject Classification F.2.2, F.4.1, F.4.2, D.2.4, D.2.8

Keywords and phrases Runtime Complexity, Exponential Time Functions, Implicit Computa-
tional Complexity

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.123

Category Regular Research Paper

1 Introduction

In this paper we are concerned with the complexity analysis of term rewrite systems (TRSs)
and the ramifications of such an analysis in implicit computational complexity (ICC for
short).

Several notions to assess the complexity of a terminating term rewrite system (TRS)
have been proposed in the literature, compare [12, 19, 13, 18]. The conceptually simplest
one was suggested by Hofbauer and Lautemann in [19]: the complexity of a given TRS is
measured as the maximal length of derivation sequences. More precisely, the derivational
complexity function with respect to a terminating TRS R relates the maximal derivation
height to the size of the initial term. A more fine-grained approach is introduced in [12]
(compare also [18]), where the derivational complexity function is refined so that in principle
only argument normalised (aka basic) terms are considered. This notion, in the following
referred to as the runtime complexity of TRSs, aims at capturing the complexity of the
functions computed by the analysed TRS (see [13]).

∗ The first and third author are partly supported by FWF (Austrian Science Fund) projects P20133-
N15. The second author is supported in part by the JSPS Institutional Program for Young Researcher
Overseas Visits.

© M. Avanzini and N. Eguchi and G. Moser;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 123–138

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.123
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

124 EPO?

In recent years the field of complexity analysis of rewrite systems matured and some
advances towards an automated complexity analysis of TRSs evolved (see [23] for an over-
view). The current focus of modern complexity analysis of rewrite systems is on techniques
that yield polynomial derivational or runtime complexity. In this paper we study a comple-
mentary view. We establish following results:
- We present a new path order for rewrite systems, the exponential path order EPO?.

Suppose a TRS R is compatible with EPO?. Then the runtime complexity of R is at
most exponential.

- EPO? is sound, that is, any function computed by a TRS compatible with EPO? is
computable on a Turing machine in exponential time.

- EPO? is complete, that is, any function computable in exponential time can be computed
by a TRS that is compatible with EPO?.

Note that the first and second result relate two different notions of the complexity of
a TRS R: the runtime complexity with respect to R and the complexity of the function
computed with R. Furthermore, we have implemented the order EPO? so that our research
yields a fully automatic complexity tool for exponential time functions. Our research is
motivated by earlier successful order-theoretic characterisations of complexity classes. We
mention the light multiset path order introduced by Marion [22]. Roughly speaking the
light multiset path order is a tamed version of the multiset path order, characterising the
functions computable in polytime (compare also [4]). In a similar spirt the here presented
path order EPO? characterises the functions computable in exptime.

The definition of EPO? makes use of tiering [8] and is strongly influenced by a recursion
theoretic characterisation N of the class of functions computable in exponential time by
Arai and the second author (see [1]) and a very recent term-rewriting characterisation of N
by the second author (see [15]). We motivate our study through the following example.

I Example 1.1. Consider the following TRS Rfib which is easily seen to represent the
computation of the nth Fibonacci number.

fib(x)→ dfib(x, 0) dfib(0, y)→ s(y)
dfib(s(0), y)→ s(y) dfib(s(s(x)), y)→ dfib(s(x), dfib(x, y))

Then all rules in the TRS Rfib can be oriented with EPO?, which allows us to (auto-
matically) deduce that the runtime complexity of this system is exponential. Using the
machinery of [5], exploiting graph rewriting, we can even show that any function computed
by a TRS compatible with EPO? is computable in exponential time on a Turing machine.
Conversely we show that any function f that can be computed in exponential time on a Tur-
ing machine can be computed by a TRS R(f) such that R(f) is compatible with EPO?. In
total, we obtain an alternative, syntactic characterisation of the exponential time functions.

Related Work. With respect to rewriting we mention [16], where it is shown that matrix
interpretations yield exponential derivational complexity, hence at most exponential runtime
complexity. Our work is also directly related to work in ICC (see [7] for an overview).
We want to mention [10, 21], were alternative characterisations of the class of functions
computable in exponential time are given. For less directly related work we cite [9], where
a complete characterisation of (imperative) programs that admit linear and polynomial
runtime complexity is established. As these characterisations are decidable, we obtain a
decision procedure for programs that admit a runtime complexity that is at most exponential.

The remainder of the paper is organised as follows. In Section 2 we recall definitions.
The order EPO? is presented in Section 3. In Section 4 we introduce an intermediate

M. Avanzini and N. Eguchi and G. Moser 125

order EPO critical for establishing our soundness result, and in Section 5 we prove that
EPO? induces exponentially bounded runtime complexity. In Section 6 we present the
aforementioned soundness and completeness result. Finally, we conclude in Section 7. Due
to space limitations we omit some proofs of auxiliary lemmas. Missing proofs are available
in a separate technical report [3].

2 Preliminaries

We assume familiarity with the basics of term rewriting, see [6, 25] and briefly review
definitions and notations used. Let V denote a countably infinite set of variables and let
F be a finite signature. The set of terms over F and V is written as T (F ,V). We denote
by ~s,~t, . . . sequences of terms, and for a set of terms T we write ~t ⊆ T to indicate that
for each ti appearing in ~t, ti ∈ T . We suppose that the signature F is partitioned into
defined symbols D and constructors C. The set of basic terms B ⊆ T (F ,V) is defined as
B := {f(t1, . . . , tn) | f ∈ D and ti ∈ T (C,V) for i ∈ {1, . . . , n}}.

We write E and D to denote the subterm and superterm relation, the strict part of E
(respectively D) is denoted by C (respectively B). We denote by |t| and dp(t) the size and
depth of the term t. The root symbol (denoted as rt(t)) of a term t is either t itself, if t ∈ V,
or the symbol f , if t = f(t1, . . . , tn).

A preorder is a reflexive and transitive binary relation. If & is a preorder, we write
∼ := & ∩ 4 and > := & \ ∼ to denote the equivalence and strict part of & respectively.
A quasi-precedence (or simply precedence) is a preorder & = >] ∼ on the signature F so
that the strict part > is well-founded. We lift the equivalence ∼ induced by the precedence
& to terms in the obvious way: s ∼ t if and only if (i) s = t, or (ii) s = f(s1, . . . , sn),
t = g(t1, . . . , tn), f ∼ g and si ∼ ti for all i ∈ {1, . . . , n}. The precedence & induces a rank
rk(f) for any f ∈ F as follows: rk(f) := max{1 + rk(g) | g ∈ F and f > g}.

Let R be a TRS over F . We write −→R for the induced rewrite relation. A term
s ∈ T (F ,V) is called a normal form if there is no t ∈ T (F ,V) such that s −→R t. We
use NF(R) to denote the set of normal-forms of R. With i−→R we denote the innermost
rewrite relation. We write s −→!

R t (respectively s i−→!
R t) if s −→∗R t (respectively s i−→∗R t)

and t ∈ NF(R). A TRS is a constructor TRS if left-hand sides are basic terms and it is
completely defined if each defined symbol is completely defined. Here a symbol is completely
defined if it does not occur in any normal form. A TRS R is called terminating if −→R is
well-founded, R is confluent if for all terms s, t1, t2 with s −→∗R t1 and s −→∗R t2, there exists
u such that t1 −→∗R u and t2 −→∗R u.

Let → be a finitely branching, well-founded binary relation on terms. The derivation
height of a term t with respect to→ is given by dh(t,→) := max{n | ∃u. t→n u}. Here→n

denotes the n-fold application of →. The (innermost) runtime complexity of a terminating
TRS R is defined as rc(i)R (n) := max{dh(t,→) | t ∈ B and |t| 6 n}, where → denotes −→R or
i−→R respectively. We say the (innermost) runtime complexity is exponential to assert the
existence of an exponential function that binds rc(i)R from above.

Furthermore, we assume (at least nodding) acquaintance with complexity theory, com-
pare [20]. We write N for the set of natural numbers. Let M be a Turing machine (TM for
short) with alphabet Σ, and let w ∈ Σ∗. We say that M computes v ∈ Σ∗ on input w, if M
accepts w and v is written on a dedicated output tape. Note that when M is nondetermin-
istic, then v computed on input w may not be unique. We say that M computes a binary
relation R ⊆ Σ∗ × Σ∗ if for all w, v ∈ Σ∗ with w R v, M computes v on input w. Note that
if M is deterministic then R induces a partial function fR : Σ∗ → Σ∗. In this case we say

RTA’11

126 EPO?

that M computes the function fR. Let S : N→ N denote a bounding function. We denote
by FTIME(S(n)) the class of functions computable by some TM M in time S(n). Then
FEXP :=

⋃
k∈N FTIME(2O(nk)) denotes the class of exponential-time computable functions.

3 Exponential Path Order EPO?

In this section we present the exponential path order (EPO? for short). Throughout the
following, we fix & to denote an admissible quasi-precedence on F . Here a precedence is
called admissible if constructors are minimal, i.e., for all defined symbols f we have f > c

for all constructors c.
In addition to the precedence &, an instance of EPO? is induced by a safe mapping

safe : F → 2N. This mapping associates with every n-ary function symbol f the set of
safe argument positions {i1, . . . , im} ⊆ {1, . . . , n}. Argument positions included in safe(f)
are called safe, those not included are called normal and collected in nrm(f). For n-ary
constructors c we require that all argument positions are safe, i.e., safe(c) = {1, . . . , n}. To
simplify the presentation, we write f(ti1 , . . . , tik ; tj1 , . . . , tjl) for the term f(t1, . . . , tn) with
nrm(f) = {i1, . . . , ik} and safe(f) = {j1, . . . , jl}.

We restrict term equivalence ∼ in the definition of s∼ below so that the separation of
arguments through safe is taken into account: We define s s∼ t if either (i) s = t, or (ii)
s = f(s1, . . . , sl ; sl+1, . . . , sl+m), t = g(t1, . . . , tl ; tl+1, . . . , tl+m) where f ∼ g and si

s∼ ti
for all i ∈ {1, . . . , l}. The definition of an instance >epo? of EPO? is split into the following
two definitions.

I Definition 3.1. Let s, t ∈ T (F ,V) such that s = f(s1, . . . , sl ; sl+1, . . . , sl+m). Then
s Aepo? t if si wepo? t for some i ∈ {1, . . . , l +m}. Further, if f ∈ D, then i ∈ nrm(f). Here
we set wepo? := Aepo? ∪ s∼.

I Definition 3.2. Let s, t ∈ T (F ,V) such that s = f(s1, . . . , sl ; sl+1, . . . , sl+m). Then
s >epo? t with respect to the admissible precedence & and safe mapping safe if either
1) si >epo? t for some i ∈ {1, . . . , l +m}, or
2) t = g(t1, . . . , tk ; tk+1, . . . , tk+n), f > g and

i) s Aepo? t1, . . . , s Aepo? tk, and
ii) s >epo? tk+1, . . . , s >epo? tk+n, or

3) t = g(t1, . . . , tk ; tk+1, . . . , tk+n), f ∼ g and for some i ∈ {1, . . . ,min(l, k)}
i) s1

s∼ t1, . . . , si−1
s∼ ti−1, si Aepo? ti, s Aepo? ti+1, . . . , s Aepo? tk, and

ii) s >epo? tk+1, . . . , s >epo? tk+n.
Here we set >epo? := >epo? ∪ s∼.

We write B/∼ for the superterm relation modulo term equivalence ∼, defined as follows:
f(s1, . . . , sn) B/∼ t if si B/∼ t or si ∼ t for some i ∈ {1, . . . ,m}. Further, we set Q/∼ :=
B/∼ ∪ ∼. As immediate consequence of the definitions we obtain the following lemma.

I Lemma 3.3. The inclusions Aepo? ⊆ B/∼ ⊆ >epo? hold and further, if s ∈ T (C,V) and
s >epo? t then t ∈ T (C,V).

Note that the last property holds due to the restrictions imposed on precedence and
safe mapping. The central theorem of this section states that EPO? induces exponential
innermost runtime complexity.

I Theorem 3.4. Suppose R is a constructor TRS compatible with >epo?, i.e., R ⊆ >epo?.
Then the innermost runtime complexity rci

R(n) is bounded by an exponential 2O(nk) for some
fixed k ∈ N.

M. Avanzini and N. Eguchi and G. Moser 127

The proof of this theorem needs further preparation: We introduce in Section 4 an auxiliary
order EPO, akin to the order presented in [1]. Although this auxiliary order is admittedly
technical, it is easier to reason about its induced complexity. In Section 5 we then use
this order to measure the derivation height of terms with respect to R ⊆ >epo?, proving
Theorem 3.4.

I Example 3.5. [Example 1.1 continued]. Let safe be the safe mapping such that safe(fib) =
∅ and safe(dfib) = {2}. Further, let & be the admissible precedence with fib > dfib > s ∼ 0.
It is easy to verify that Rfib ⊆ >epo? for the induced order >epo?. By Theorem 3.4 we
conclude that the innermost runtime complexity of Rfib is exponentially bounded.

We emphasise that Theorem 3.4 does not hold for full rewriting.

I Example 3.6. Consider the TRS Rd consisting of the rules

d(;x)→ c(;x, x) f(0; y)→ y f(s(;x); y)→ f(x; d(; f(x; y))) .

ThenRd ⊆ >epo? for the precedence f > d > c and safe mapping as indicated in the definition
of Rd. Theorem 3.4 proves that the innermost runtime complexity of Rd is exponentially
bounded.

On the other hand, the runtime complexity of Rd (with respect to full rewriting) grows
strictly faster than any exponential: Consider for arbitrary t ∈ T (F ,V) the term f(sn(0), t).
We verify, for n > 0, dh(f(sn(0), t),−→R) > 22n−1 · (1 + dh(t,−→R)) by induction on n.
For m ∈ N, set m := sm(0). Consider the base case n = 1. Observe that, unlike for
innermost rewriting, f(1, t) −→5

R c(t, t). Since dh(c(t, t),−→R) = 2 · dh(t,−→R), the claim
is easy to establish for this case. For the inductive step, consider a maximal derivation
f(n+ 1, t) −→R f(n, d(f(n, t))) −→R · · · . Applying induction hypothesis twice we obtain

dh(f(n+ 1, t),−→R) > dh(f(n, d(f(n, t))),−→R) > dh(f(n, f(n, t)),−→R)

> 22n−1
· (22n−1

· (1 + dh(t,−→R)))
= 22n · (1 + dh(t,−→R)) .

4 Exponential Path Order EPO

In this section we introduce the aforementioned order EPO that is used in the proof of
Theorem 3.4. We slightly extend the definitions and results originally presented by the
second author in [15].

The path order EPO is defined over sequences of terms from T (F ,V). To denote se-
quences, we use an auxiliary function symbol list 6∈ F . The function symbol list is variadic,
i.e., the arity of list is finite, but arbitrary. We write [t1 · · · tn] instead of list(t1, . . . , tn).
For sequences [s1 · · · sn] and [t1 · · · tm], we write [s1 · · · sn]a[t1 · · · tm] to denote the
concatenation [s1 · · · sn t1 · · · tm]. We write T ?(F ,V) for the set of finite sequences of
terms from T (F ,V), i.e. T ?(F ,V) := {[t1 · · · tn] | n ∈ N and t1, . . . , tn ∈ T (F ,V)}. Each
term t ∈ T (F ,V) is identified with the single list [t] = list(t) ∈ T ?(F ,V). This identification
ensures T (F ,V) ⊆ T ?(F ,V). We use a, b, c, . . . to denote elements of T ?(F ,V), possibly
extending them by subscripts.

I Definition 4.1. Let a, b ∈ T ?(F ,V), and let ` > 1. Below we assume f, g ∈ F . We define
a >`epo b with respect to the precedence & if either
1) a = f(s1, . . . , sm) and si >`epo b for some i ∈ {1, . . . ,m}, or

RTA’11

128 EPO?

2) a = f(s1, . . . , sm), b = [t1 · · · tn] with n = 0 or 2 6 n 6 `, f is a defined function
symbol, and a >`epo tj for all j ∈ {1, . . . , n}, or

3) a = f(s1, . . . , sm), b = g(t1, . . . , tn) with n 6 `, f is a defined function symbol with
f > g, and a is a strict superterm (modulo ∼) of all tj (j ∈ {1, . . . , n}), or

4) a = [s1 · · · sm], b = b1a · · ·abm, and for some j ∈ {1, . . . ,m},
- s1 ∼ b1, . . . , sj−1 ∼ bj−1,
- sj >

`
epo bj , and

- sj+1 >`epo bj+1, . . . , sm >`epo bm, or
5) a = f(s1, . . . , sm), b = g(t1, . . . , tn) with n 6 `, f and g are defined function symbols

with f ∼ g, and for some j ∈ {1, . . . ,min(m,n)},
- s1 ∼ t1, . . . , sj−1 ∼ tj−1,
- sj B/∼ tj , and
- a B/∼ tj+1, . . . , a B/∼ tn.

Here we set >`epo := >`epo ∪ ∼. Finally, we set >epo :=
⋃
k>1 >

`
epo and >epo :=

⋃
k>1 >

`
epo.

We note that, by Definition 4.1.2 with n = 0, we have f(s1, . . . , sm) >`epo [] for all ` > 1
if f is a defined function symbol. It is not difficult to see that l 6 k implies >lepo ⊆ >kepo.
Unfortunately EPO is not a restriction of lexicographic path orders, as the length of lists
is not bounded globally. However, the critical Clause 4 amounts to a lifting from terms to
sequences of terms in the sense of [17, Section 3]. Conclusively an application of the main
result of [17, Section 3] gives well-foundedness of >`epo.

I Lemma 4.2. Let a = a1a · · ·aaj−1aajaaj+1 · · ·aam. Suppose that aj >`epo b. Then
a >`epo a1a · · ·aaj−1abaaj+1 · · ·aam.

Following Arai and the second author [2] we define G` that measures the >`epo-descending
lengths:

I Definition 4.3. We define G` : T ?(F ,V)→ N as

G`(a) := max{G`(b) + 1 | b ∈ T ?(F ,V) and a >`epo b} .

I Lemma 4.4. For all ` > 1 we have
1) B/∼ ⊆ >`epo,
2) if t ∈ T (C,V) then G`(t) = dp(t), and
3) G`([t1 · · · tm]) =

∑m
i=1 G`(ti).

Proof. The Properties 1) and 2) can be shown by straight forward inductive arguments.
We prove Property 3) for the non-trivial case m > 2. It is not difficult to check that
G`([t1 · · · tm]) >

∑m
i=1 Gk(ti). We show that G`([t1 · · · tm]) 6

∑m
i=1 G`(ti) by induction

on G`([t1 · · · tm]).
Let a = [t1 · · · tm]. Then, it suffices to show that for any b ∈ T ?(F ,V), a >`epo b

implies G`(b) <
∑m
i=1 G`(ti). Fix b ∈ T ?(F ,V) and suppose that a >`epo b. Then, by

Definition 4.1.4, there exist some b1, . . . , bm ∈ T ?(F ,V) and j ∈ {1, . . . ,m} such that
b = b1a · · ·abm, ti >`epo bi for each i ∈ {1, . . .m}, and tj >

`
epo bj . By the definition of

G`, we have that G`(ti) > G`(bi) for each i ∈ {1, . . .m}, and G`(tj) > G`(bj). Thus∑m
i=1 G`(bi) <

∑m
i=1 G`(ti) follows. Let bi = [ui,1 · · ·ui,ni] for each i ∈ {1, . . . ,m}. Then,

since G`(b) < G`(a), induction hypothesis gives G`(b) 6
∑m
i=1
∑ni
j=1 G`(ui,j). Recalling

that
∑ni
j=1 G`(ui,j) 6 G`(bi) also holds for each i ∈ {1, . . . ,m}. Summing up, we obtain

that G`(b) 6
∑m
i=1
∑ni
j=1 G`(ui,j) 6

∑m
i=1 G`(bi) <

∑m
i=1 G`(ti). J

We finally arrive at the main theorem of this section.

M. Avanzini and N. Eguchi and G. Moser 129

I Theorem 4.5. Suppose that f ∈ F with arity n 6 ` and t1, . . . , tn ∈ T (F ,V). Let
N := max{G`(ti) | 1 6 i 6 n}+ 1. Then

G`(f(t1, . . . , tn)) 6 (`+ 1)N
`·rk(f)+

∑n

i=1
N`−iG`(ti) . (1)

Proof. Let t = f(t1, . . . , tn). We prove the inequality (1) by induction on G`(t). In the base
case, G`(t) = 0, and hence the inequality (1) trivially holds. In the case G`(t) > 0, it suffices
to show that for any b ∈ T ?(F ,V), t >`epo b implies G`(b) < (`+ 1)N

`·rk(f)+
∑n

i=1
N`−iG`(ti).

The induction case splits into four cases depending on which rule of Definition 4.1 concludes
t >`epo b. For the sake of convenience, we start with the case corresponding to Definition
4.1.2. Namely, we consider the case b = [s1 · · · sk] where 2 6 k 6 ` and t >`epo si for all
i ∈ {1, . . . , k}. We show that for all i ∈ {1, . . . , k},

G`(si) 6 (`+ 1)(N`·rk(f)+
∑n

i=1
N`−iG`(ti))−1 . (2)

We prove the inequality (2) by case analysis according to the last rule that concludes t >`epo
si. Fix some element u ∈ {si | i ∈ {1, . . . , k}}.
1) Case tj >`epo u for some j ∈ {1, . . . , n}: In this case we trivially see

G`(u) 6 G`(tj) 6 (`+ 1)(N`·rk(f)+
∑n

i=1
N`−iG`(ti))−1 . (3)

2) Case u = g(u1, . . . , um) where m 6 `, g is a defined symbol with f > g and for all
i ∈ {1, . . . ,m}, t is a strict superterm (modulo ∼) of ui: Let M := max{G`(ui) | 1 6
i 6 m}+ 1. Then, we have M 6 N since t is a strict superterm (modulo ∼) of every ui.
We claim

M ` · rk(g) +
m∑
i=1

M `−iG`(ui) < N ` · rk(f) +
n∑
i=1

N `−iG`(ti) .

To see this, conceive left- and right-hand side as numbers represented in base M and
respectively N of length ` (observe G`(ui) < M and G`(ti) < N). From rk(g) < rk(f)
and M 6 N the above inequality is obvious. This allows us to conclude

G`(u) 6 (`+ 1)M
`·rk(g)+

∑m

i=1
M`−iG`(ui)

6 (`+ 1)N
`·rk(f)+

∑n

i=1
N`−iG`(ti)−1 . (4)

Here the first inequality follows by induction hypothesis.
3) Case u = g(u1, . . . , um) where m 6 `, g is a defined symbol with f ∼ g and there

exists j ∈ {1, . . . ,min(n,m)} such that ti ∼ ui for all i < j, tj is a strict superterm
(modulo ∼) of uj , and t is a strict superterm (modulo ∼) of ui for all i > j: Let
M := max{G`(ui) | 1 6 i 6 m}+ 1 and consider the following claim:
I Claim 4.6.

∑m
i=1 M

`−iG`(ui) <
∑n
i=1 N

`−iG`(ti).
To prove this claim, observe that the assumptions give G`(ui) = G`(ti) for all i < j,
G`(uj) < G`(tj), and G`(ui) < N for all i > j: This implies that M 6 N and

m∑
i=1

M `−iG`(ui) 6
j−1∑
i=1

N `−iG`(ti) +N `−j(G`(tj)− 1) +
n∑

i=j+1
N `−i(N − 1)

<

n∑
i=1

N `−iG`(ti) .

As above, the claim together with induction hypothesis yields

G`(u) 6 (`+ 1)N
`·rk(f)+

∑n

i=1
N`−iG`(ti)−1 . (5)

RTA’11

130 EPO?

Summing up the inequality (3), (4) and (5) concludes inequality (2). Thus, having G`(b) =∑k
i=1 G`(si) by Lemma 4.4, and employing k 6 `, we see

G`(b) 6 ` · (`+ 1)(N`·rk(f)+
∑n

i=1
N`−iG`(ti))−1 (by the inequality (2))

< (`+ 1)N
`·rk(f)+

∑n

i=1
N`−iG`(ti) .

This completes the case for Definition 4.1.2. The cases for Definition 4.1.1, 4.1.3 and 4.1.5
follow respectively from the inequality (3), (4) and (5). J

5 Embedding EPO? in EPO

In this section we define predicative interpretations I that embed innermost rewrite steps
into >`epo, i.e., if s i−→R t, then I(s) >`epo I(t). The definition of I makes use of mapping
safe underlying the definition of >epo?, Based on this embedding we then use Theorem 4.5
to prove that EPO? induces exponential (innermost) runtime complexity (Theorem 3.4).

Before we define predicative interpretations, we start with a simple observation. Let R
be a TRS compatible with some instance >epo?, i.e., R ⊆ >epo?. For the moment, suppose
R is completely defined. We replace this restriction by constructor TRS later on. Since
R is completely defined, normal forms and constructor terms coincide, and thus s i−→R t if
s = C[lσ], t = C[rσ] for some rule l→ r ∈ R where additionally lσ ∈ B. Let t be obtained
by rewriting a basic term s. By the inclusion R ⊆ >epo?, every normal argument ti of t is
irreducible, i.e., ti ∈ T (C,V). We capture this observation in the definition of B→:

I Definition 5.1. The set B→ is the least set of terms such that
1) T (C,V) ⊆ B→, and
2) if f ∈ F , ~s ⊆ T (C,V) and ~t ⊆ B→ then f(~s ; ~t) ∈ B→.

Note that B ⊆ B→. The verification of the next Lemma is straight forward:

I Lemma 5.2. Let R be a completely defined TRS compatible with >epo?. If s ∈ B→ and
s i−→R t then t ∈ B→.

We define predicative interpretation I as follows. Since we are only interested in the length
of derivations starting from basic terms, Lemma 5.2 justifies that only terms from B→
are considered. For each defined symbol f , let fn be a fresh function symbol, and let
Fn = {fn | f ∈ D} ∪ C. Here the arity of fn is k where nrm(f) = {i1, . . . , ik}, moreover fn
is still considered a defined function symbol when applying Definition 4.1. We extend the
(admissible) precedence & to Fn in the obvious way: fn ∼ gn if f ∼ g and fn > gn if f > g.

I Definition 5.3. A predicative interpretation I is a mapping I : B→ → T ?(F ,V) defined
as follows:
1) I(t) = [] if t ∈ T (C,V), and otherwise
2) I(t) = [fn(t1, . . . , tk)]aI(tk+1)a · · ·aI(tk+n) where t = f(t1, . . . , tk ; tk+1, . . . , tk+n).

The next lemma provides the embedding of root steps for completely defined, compatible,
TRSs R. Here we could simply define I(t) = fn(t1, . . . , tk) in Case 2). The complete
definition becomes only essential when we look at closure under context in Lemma 5.5.

I Lemma 5.4. Let s ∈ B and let σ : V → T (C,V) be a substitution. If s >epo? t then
I(sσ) >|t|epo I(tσ).

M. Avanzini and N. Eguchi and G. Moser 131

Proof. Let f denote the (defined) root symbol of s, and let s1, . . . , sl denote the normal
arguments of s. Thus I(sσ) = [fn(s1σ, . . . , slσ)] = fn(s1σ, . . . , slσ). If t ∈ T (C,V) then the
lemma trivially follows as I(tσ) = []. Hence suppose t 6∈ T (C,V).

We continue by induction on the definition of >epo?. Let t = g(t1, . . . , tk ; tk+1, . . . , tk+n)
and so

I(tσ) = [gn(t1σ, . . . , tkσ)]aI(tk+1σ)a · · ·aI(tk+nσ) .

Observe that I(xσ) = [] for all variables x in t. Using this we see that the length of the list
I(tσ) is bound by |t|. Hence by Definition 4.1.2, it suffices to verify I(sσ) >|t|epo I(tiσ) for
all safe arguments ti (i ∈ {k + 1, . . . , k + n}), and further to show

fn(s1σ, . . . , slσ) >|t|epo gn(t1σ, . . . , tkσ) . (6)

Since s ∈ B but t 6∈ T (C,V), a consequence of Lemma 3.3 is that s >epo? t follows either by
Definition 3.2.2 or Definition 3.2.3. Let ti be a safe argument. Then by definition s >epo? ti

and induction hypothesis yields I(sσ) >|t|epo I(tiσ) (employing |ti| 6 |t|). It thus remains to
verify (6). We continue by case analysis.
1) Suppose f > g, i.e., Definition 3.2.2 applies. Then fn > gn by definition. By Defin-

ition 4.1.3 it suffices to prove fn(s1σ, . . . , slσ) B/∼ tiσ for all i ∈ {1, . . . , k}. Fix
i ∈ {1, . . . , k}. According to Definition 3.2.2 s Aepo? ti holds, and thus there exists
j ∈ {1, . . . , l} such that sj wepo? ti. Hence sj Q/∼ ti by Lemma 3.3, from which we
conclude fn(s1σ, . . . , slσ) B/∼ tiσ since we suppose σ : V → T (C,V).

2) Suppose f ∼ g, i.e., Definition 3.2.3 applies. Then fn ∼ gn. By Definition 4.1.5 it
suffices to prove (i) s1σ ∼ t1σ, . . . , s`−1σ ∼ t`−1σ, (ii) s`σ B/∼ t`σ, and further (iii)
fn(s1σ, . . . , slσ) B/∼ t`+1σ, . . . , fn(s1σ, . . . , slσ) B/∼ tkσ for some ` ∈ {1, . . . , k}. The
assumptions in Definition 3.2.3 yield s1

s∼ t1, . . . , s`−1
s∼ t`−1 from which we conclude

(i), further s` Aepo? t` from which we conclude (ii) with the help of Lemma 3.3 (using
s` ∈ T (C,V)), and finally s Aepo? t`+1, . . . , s Aepo? tk from which we obtain (iii) as in
the case above.

J

I Lemma 5.5. Let s, t ∈ B→ and let C be a context such that C[s] ∈ B→. If I(s) >`epo I(t)
then I(C[s]) >`epo I(C[t]).

Proof. We show the lemma by induction on C. It suffices to consider the step case. Observe
that by the assumption I(s) >`epo I(t), s 6∈ T (C,V) since otherwise I(s) = [] is>`epo-minimal.
By definition of B→ we can thus assume C = f(s1, . . . , sk ; sk+1, . . . , C

′[�], . . . sk+l) for some
context C ′. Thus, for each u ∈ {s, t},

I(C[u]) = [fn(s1, . . . , sk)]aI(sk+1)a · · ·aI(C ′[u])a · · ·aI(sk+l) .

By induction hypothesis I(C ′[s]) >`epo I(C ′[t]). We conclude using Lemma 4.2. J

Combining Lemma 5.4 and Lemma 5.5 completes the embedding.

I Lemma 5.6. Let R be a completely defined TRS compatible with >epo?. Set ` := max{|r| |
l→ r ∈ R}. If s ∈ B→ and s i−→R t then I(s) >`epo I(t).

Proof. Suppose s i−→R t. Hence there exists a context C, substitution σ and rule l→ r ∈ R
such that s = C[lσ] and t = C[rσ]. By the assumption that R is completely defined,
l ∈ B and σ : V → T (C,V). Since R ⊆ >epo?, we obtain I(lσ) >`epo I(rσ) by Lemma 5.4
(additionally employing >|r|epo ⊆ >`epo). Lemma 5.5 then establishes I(s) >`epo N (t). J J

RTA’11

132 EPO?

We obtain Theorem 3.4 formulated for completely defined TRSs.

I Theorem 5.7. Let R be a completely defined, possibly infinite, TRS compatible with >epo?.
Suppose max{|r| | l→ r ∈ R} is well-defined. There exists k ∈ N such that rci

R(n) 6 2O(nk).

Proof. Set ` := max{max{|r| | l→ r ∈ R},max{ar(f) | f ∈ F}}. Not that ` is well-
defined as F is finite and non-variadic. We prove the existence of c1, c2 ∈ N so that for any
s ∈ B, dh(s, i−→R) 6 2c1·|s|c2 . Consider a maximal derivation s = t0

i−→R t1
i−→R · · · i−→R tn

with s ∈ B. Let i ∈ {0, . . . , n − 1}. We observed ti ∈ B→ in Lemma 5.2, and thus
I(ti) >`epo I(ti+i) due to Lemma 5.6. So in particular dh(s, i−→R) 6 G`(I(s)). It remains
to estimate G`(I(s)) in terms of |s|: for this, suppose s = f(s1, . . . , sk ; sk+1, . . . , sk+l) for
some f ∈ D and si ∈ T (C,V) (i ∈ {1, . . . , k + l}). By definition I(s) = fn(s1, . . . , sk). Set
N := max{G`(si) | 1 6 i 6 k}+ 1, and verify

N 6 1 +
k∑
i=1

G`(si) 6 1 +
k∑
i=1

dp(si) 6 |s| . (7)

For the second inequality we employ Lemma 4.4, which gives G`(si) = dp(si) as si ∈
T (C,V) for all i ∈ {1, . . . , k}. Applying Theorem 4.5 we see

G`(I(s)) = G`(fn(s1, . . . , sk))

6 (`+ 1)N
`·rk(fn)+

∑k

i=1
N`−i·G`(si) (by Theorem 4.5, using k 6 `)

6 (`+ 1)|s|
`·rk(fn)+|s|`·

∑k

i=1
G`(si) (by Equation 7)

6 (`+ 1)|s|
`·rk(fn)+|s|`·|s| (by Equation 7)

6 (`+ 1)(rk(fn)+1)·|s|`+1
.

Since ` depends only on R and F , and rk(fn) is bounded by some constant depending
only on F , simple arithmetical reasoning gives the constants c1, c2 such that dh(s, i−→R) 6
G`(I(s)) 6 2c1·|s|c2 . This concludes the Theorem. J

We now lift the restriction that R is completely defined for constructor TRSs R. The
idea is to extend R with sufficiently many rules so that the resulting system is completely
defined and Theorem 5.7 applicable.

I Definition 5.8. Let ⊥ be a fresh constructor symbol. We define

S := {t→ ⊥ | t ∈ T (F ∪ {⊥},V) ∩NF(R) and the root symbol of t is defined} .

We extend the precedence & to F ∪ {⊥} so that ⊥ is minimal. Thus S ⊆ >epo? follows by
one application of Definition 3.2.2. Further, the completely defined TRS R ∪ S is able to
simulate i−→R derivations for constructor TRS R:

I Lemma 5.9. Suppose R is a constructor TRS. Then R∪S is completely defined. Further,
if s i−→`

R t then s i−→`′

R∪S t
′ for some t′ and `′ > `.

For the latter property we show that s i−→R t implies s′ i−→+
R∪S t

′ for s′ and t′ S-normal forms
of s and t. Here the key observation is that rewriting according to S does not interfere with
pattern matching with respect to R.

An immediate consequence of Lemma 5.9 is rci
R(n) 6 rci

R∪S(n), i.e., the innermost
runtime complexity of R can be analysed through R∪S. We arrive at the proof of our main
theorem:

M. Avanzini and N. Eguchi and G. Moser 133

Proof of Theorem 3.4. Suppose R is a constructor TRS compatible with >epo?. We verify
that rci

R(n) 6 2O(nk) for some fixed k ∈ N: let S be defined according to Definition 5.8.
By Lemma 5.9, R∪ S is completely defined, and moreover, rci

R(n) 6 rci
R∪S(n). Note that

max{|r| | l→ r ∈ R ∪ S} = max{|r| | l→ r ∈ R} is well-defined. Further (R∪ S) ⊆ >epo?
follows by assumption and definition of S. Hence all assumptions of Theorem 5.7 are fulfilled,
and we conclude rci

R(n) 6 rci
R∪S(n) 6 2O(nk) for some k ∈ N. J

6 Characterising Exponential Time Computation

In this section we present one application of EPO? in the context of implicit computational
complexity (ICC). Following [11, 5] we give semantics to TRS R as follows:

I Definition 6.1. Let Val := T (C,V) denote the set of values. Further, let P ⊆ Val be a
finite set of non-accepting patterns. We call a term t accepting (with respect to P) if there
exists no p ∈ P such that pσ = t for some substitution σ. We say that R computes the
relation R ⊆ Val×Val with respect to P if there exists f ∈ D such that for all s, t ∈ Val,

s R t ⇔ f(s) i−→!
R t and t is accepting .

On the other hand, we say that a relation R is computed by R if R is defined by the above
equations with respect to some set P of non-accepting patterns.

For the case that R is confluent we also say that R computes the (partial) function
induced by the relation R. Note that the restriction to binary relations is a non-essential
simplification. The assertion that for normal forms t, t is accepting aims to eliminate
by-products of the computation that should not be considered as part of the computed
relation R.

As a consequence of Theorem 3.4 we derive our soundness result. Following [14, 5] we
employ graph rewriting (c.f. [24]) to efficiently compute normal forms.

I Theorem 6.2 (Soundness). Suppose R is a constructor TRS compatible with >epo?. The
relations computed by R are computable in nondeterministic time 2O(nk) for some k ∈ N.
In particular, if R is confluent then f ∈ FEXP for each function f computed by R.

Proof. We sketch the implementation of the relation Rf (function f) on a Turing machine
Mf .

Single out the corresponding defined function symbol f, and consider some arbitrary
input v ∈ Val. First writing f(v) on a dedicated working tape, the machine Mf iteratively
rewrites f(v) to normal form in an innermost fashion. For non-confluent TRSs R, the choice
of the redex is performed nondeterministically, otherwise some innermost redex is computed
deterministically.

By the assumption R ⊆ >epo?, Theorem 3.4 provides an upper bound 2|f(v)|c1 on the
number of iterations for some c1 ∈ N, i.e., the machine performs at most exponentially many
iterations in the size of the input v. Thus the theorem follows if we can prove that each
iteration is computable in time exponential in |v|.

To investigate into the complexity of a single iteration, consider the i-th iteration with
ti written on the working tape (where f(v) −→i

R ti). We want to compute some ti+1 with
ti

i−→R ti+1. Observe that in the presence of duplicating rules, |ti| might be exponential in
i (and |v|). As we can only assume i 6 2|f(v)|c1 , we cannot hope to construct ti+1 from ti
in time exponential in |v| if we use a representation of terms that is linear in size in the
number of symbols.

RTA’11

134 EPO?

Instead, we employ the machinery of [5]. By taking sharing into account, [5] achieves
an encoding of ti that is bounded in size polynomially in |v| and i. Hence in particular ti
is encoded in size 2|s|c2 for some c2 ∈ N depending only on R. Further, a single step is
computable in polynomial time (in the encoding size). And so ti+1 is computable from ti in
time 2|s|c3 for some c3 ∈ N depending only on R. Overall, we conclude that normal forms
are computable in time 2|v|c1 · 2|v|c3 = 2O(|v|k) for some k ∈ N worst case.

After the final iteration, the machine Mf checks whether the computed normal form tl is
accepting and either accepts or rejects the computation. Using the machinery of [5] pattern
matching is polynomial the encoding size of tl, by the above bound on encoding sizes the
operation is exponential in |v|. As v was chosen arbitrarily and k depends only on R, we
conclude the theorem. J

I Example 6.3. [Example 6.3 continued]. Since Rfib ⊆ >epo?, Theorem 6.2 yields that the
function ffib : T ({0, s},V) → T ({0, s},V) computed by Rfib is computable in exponential
time.

In correspondence to Theorem 6.2, EPO? is also complete in the sense that every expo-
nential time function is computable by a TRS compatible with EPO?. To prove complete-
ness we use the characterisation of the exponential time computable functions N given by
Arai and the second author [1], or more precisely the resulting term rewriting characterisa-
tion RN presented in [15].

Similar to the definition of EPO?, the classN relies on a syntactic separation of argument
positions into normal and safe ones. To highlight this separation, we again write f(~x; ~y)
instead of f(~x, ~y) for normal arguments ~x and safe arguments ~y. The class N is defined as
the least class containing certain initial functions that is closed under the scheme of weak
safe composition (WSC for short) and safe nested recursion on notation (SNRN for short).
In [1] it has been shown that N coincides with the class of exponential time functions FEXP.
Below we give a brief definition of the above mentioned term rewriting characterisation of
N . Essentially, all the equations defining the functions from N are oriented from left to
right, resulting in an infinite set of rewrite rules RN .

For k, l ∈ N, the signature F underlying RN is partitioned into sets Fk,l, collecting
function symbols with k normal and l safe arguments. To express natural numbers, the
constructor 0 ∈ F0,0, and dyadic successors S1,S2 ∈ F0,1 are used. Terms formed from 0,S1
and S2 are called numerals. A numeral u encodes the natural number ū as follows: 0̄ := 0,
and ¯Si(;u) := 2 · ū+ i.

I Definition 6.4. The system RN contains the following rewrite rules, encoding the initial
functions of N :

Ok,l(~x; ~y)→ 0 for k, l ∈ N P(; 0)→ 0
Ik,lr (~x; ~y)→xr for k, l ∈ N and r ∈ {1, . . . , k} P(; Si(;x))→x for i ∈ {1, 2}
Ik,lr (~x; ~y)→ yr−k for k, l ∈ N and C(; 0, y1, y2)→ y1

r ∈ {k + 1, . . . , l + k} C(; Si(;x), y1, y2)→ yi for i ∈ {1, 2}

Here ~x = x1, . . . , xk and ~y = y1, . . . , yl are supposed to be distinct variables.

Suppose the mapping safe is defined according to the definition of the rules above. Then
each rule is oriented by an instance of EPO? regardless of the precedence used.

The scheme WSC is captured in the following definition.

M. Avanzini and N. Eguchi and G. Moser 135

I Definition 6.5. Suppose g ∈ Fm,n and ~h = h1, . . . , hn ∈ Fk,l. Then for each se-
quence of indices 1 6 i1, . . . , im 6 k, the signature contains a fresh function symbol
SUB[g, i1, . . . , im, h1, . . . , hn] ∈ Fk,l. This symbol denotes the composition of functions g
and ~h according to the rule

SUB[g, i1, . . . , im, h1, . . . , hn](~x; ~y)→ g(xi1 , . . . , xim ;~h(~x; ~y)) .

Here we use ~h(~x; ~y) to abbreviate h1(~x; ~y), . . . , hn(~x; ~y), and we use ~x = x1, . . . , xk and
~y = y1, . . . , yl for distinct variables.

Note that the above rule can be oriented by EPO?. For that we can employ any preced-
ence that complies with SUB[g, i1, . . . , im, h1, . . . , hn] > g,~h. The scheme reflects that the
class of exponential time functions is not closed under composition in general. However, we
are allowed to substitute function calls hi(~x; ~y) in safe argument positions of g.

It remains to define the rules for the scheme SNRN. For that we make use of the following
restriction of the lexicographic order.

I Definition 6.6. Let ~u = u1, . . . , un and ~v = v1, . . . , vn be vectors of (possibly non-ground)
numerals. We define ~u >nlex′ ~v if there exists k ∈ {1, . . . , n} such that i) u1, . . . , uk−1 =
v1, . . . , vk−1, ii) uk is a binary successor of vk (i.e., uk = Si(; vk) for some i ∈ {1, 2}), and
iii) for each j ∈ {k + 1, . . . , n} there exists i ∈ {1, . . . , n} such that ui = vj or ui is a binary
successor of vj .

Clearly the predecessor with respect to >nlex′ is not unique. To precisely explain the
relationship between arguments of the function and arguments replaced in recursive calls,
we introduce the notion of a >nlex′-function p.

The function p computes a suitable >nlex′ -predecessor of the normal arguments ~u. We
make use of the type τ(~u) of ~u, which is a ternary string over Σ := {0, 1, 2}: for single
numeral, we set τ(0) := 0, τ(S1(;u)) := 1 and τ(S2(;u)) := 2. We extend τ to sequences of
numerals τ(u1, . . . , un) := τ(u1) · · · τ(un).

Thus roughly, τ(~u) corresponds to the vector of most significant bits of ~u. Abusing
notation, let S0(;u) denote 0. Then ~u with type τ(~u) = w1 · · ·wn = w is expressible as
Sw1(; v1), . . . ,Swn(; vn), or short Sw(;~v), for some numerals ~v = v1, . . . , vn. The use of
>nlex′ -functions relies on the following projection-function: for n ∈ N and j ∈ {1, . . . , 2n}

Jnj (u1, . . . , un) :=
{
uj if 1 6 j 6 n, and
v if n+ 1 6 j 6 2n and uj−n = Si(; v) (i ∈ Σ) .

Further, consider a function p : {1, . . . , n} × Σn → {1, . . . , 2n}. Based on p we extend the
above function Jn, returning sequences of arguments as follows:

Jnp (u1, . . . , un) := Jnp(1,τ(~u))(u1, . . . , un), . . . , Jnp(n,τ(~u))(u1, . . . , un) .

Finally, the next definition provides the notion of a >nlex′-function p.

I Definition 6.7. A function p : {1, . . . , n} × Σn → {1, . . . , 2n} is called a >nlex′-function if
for all vectors of numerals u1, . . . , un 6= 0, . . . , 0 we have u1, . . . , un >lex′ J

n
p (u1, . . . , un).

We complete the definition of RN . We abbreviate Σk \ {0 · · · 0} as Σk0 .

I Definition 6.8. Suppose g ∈ Fk,l and rw, ~sw, ~tw ∈ Fk+k′,l+1 for each type w ∈ Σk0 . Then
for each triple ~p = p1, p2, p3 of >klex′ -functions, the signature contains a fresh function symbol

f = SNRN~p
[
g, [rw | w ∈ Σk0], [~sw | w ∈ Σk0], [~tw | w ∈ Σk0]

]
∈ Fk+k′,l ,

RTA’11

136 EPO?

or more briefly SNRN~p[g, rw, ~sw, ~tw(w ∈ Σk0)]. This symbol denotes the function defined by
SNRN according to the following set of rules (here the second rule is present for all w ∈ Σk0).

f(~0, ~x; ~y)→ g(~x; ~y)
f(Sw(;~z), ~x; ~y)→ rw(~v1, ~x; ~y, f(~v1, ~x;~sw(~v2, ~x; ~y, f(~v2, ~x;~tw(~v3, ~x; ~y, f(~v3, ~x; ~y))))))

Here, ~x, ~y and ~z are distinct variables and ~vi = Jkpi(~Sw(; z)) (i ∈ {1, 2, 3}) are the
predecessors of normal arguments as given by pi.

The system RN consists of all the rules mentioned in Definition 6.4, Definition 6.5
and Definition 6.8. It is not difficult to see that for each function f ∈ N , there is a
finite restriction R(f) ⊆ RN that computes the function f , c.f. [15]. Hence to prove our
completeness theorem, it suffices to orient each finite restriction of RN by an instance of
EPO?.

In the proof below, we use the following auxiliary function h : F → N that computes
the height of the definition tree of functions in N . For ~f = f1, . . . , fn, we write max{h(~f)}
instead of max{h(f1), . . . , h(fn)}.

h(f) :=

0 if f ∈ {Ok,l, Ik,lr ,P,C,S1,S2, 0},
1 + max{h(g),max{h(~h)}} if f = SUB[g, i1, . . . , im,~h],
1 + max

{
h(g), if f = SNRN~p[g, rw, ~sw, ~tw(w ∈ Σk0)].

max{h(rw),max{h(~sw)},max{h(~tw)} | w ∈ Σk0}
}

I Theorem 6.9 (Completeness). Suppose f ∈ FEXP. Then there exists a confluent, con-
structor TRS R(f) computing f that is compatible with some exponential path order >epo?.

Proof. Consider some arbitrary function f ∈ FEXP and the corresponding TRS R(f) ⊆ RN
computing f . Note that R(f) is a non-overlapping (hence confluent) constructor TRS. Let
F(f) be the (finite) signature consisting of function symbols appearing in R(f).

For function symbols g, h ∈ F(f), we define the (admissible) precedence > by setting
g > h if and only if h(g) > h(h). Furthermore, define the safe mapping safe as indicated by
the system RN . We verify R(f) ⊆ >epo? for >epo? induced by the precedence > and the
mapping safe. For brevity, we consider the most interesting case, the rules representing the
schema SNRN, cf. Definition 6.8.

Abbreviate SNRN~p[g, rw, ~sw, ~tw(w ∈ Σk0)] as f and fix some w ∈ Σk0 . Using Defini-
tion 3.2.2, employing f > g, it is easy to check that f(~0, ~x; ~y) >epo? g(~x; ~y) holds. We show

f(Sw(;~z), ~x; ~y) >epo? rw(~v1, ~x; ~y, f(~v1, ~x;~sw(~v2, ~x; ~y, f(~v2, ~x;~tw(~v3, ~x; ~y, f(~v3, ~x; ~y)))))) (8)

First, consider the recursion-parameters ~vi = Jkpi(Sw(;~z)) with i ∈ {1, 2, 3}. Let Sw(;~z) =
Sw1(; z1), . . . ,Swk(; zk) and let ~vi = vi,1, . . . , vi,k. According to Definition 6.7 we have
Sw(;~z) >klex′ ~vi. That is, there exists index m ∈ {1, . . . , k} such that Swj (; zj) = vi,j for
j ∈ {1, . . . ,m − 1}, Swm(; zm) is a binary successor of vi,m, and for j ∈ {m + 1, . . . , k}
there exists some n ∈ {1, . . . , k} with Swn(; zn) equal to or a binary successor of vi,j . This
immediately gives
1) Swj (; zj) s∼ vi,j for j ∈ {1, . . . ,m− 1},
2) Swm(; z1) Aepo? vi,m, and
3) f(Sw(;~z), ~x; ~y) Aepo? vi,j for all j ∈ {m+ 1, . . . , k}.

M. Avanzini and N. Eguchi and G. Moser 137

Clearly f(Sw(;~z), ~x; ~y) Aepo? xj for all xj ∈ ~x by Definition 3.1, and similar Defini-
tion 3.2.1 gives f(Sw(;~z), ~x; ~y) >epo? yj for yj ∈ ~y. Using (1) – (3) with respect to i = 3, we
conclude f(Sw(;~z), ~x; ~y) >epo? f(~v3, ~x; ~y) through an application of Definition 3.2.3.

Consider an arbitrary function symbol tw,j ∈ ~tw. By definition, f > tw,j in the preced-
ence. Note that the above observations (1) – (3) imply f(Sw(;~z), ~x; ~y) Aepo? v3,j for all v3,j ∈
~v3. Further, using f(Sw(;~z), ~x; ~y) >epo? yj (for all yj ∈ ~y) and the above established inequal-
ity f(Sw(;~z), ~x; ~y) >epo? f(~v3, ~x; ~y) we see that f(Sw(;~z), ~x; ~y) >epo? ~tw,j(~v3, ~x; ~y, f(~v3, ~x; ~y))
follows by Definition 3.2.2.

By instantiating observations (1) – (3) with i = 1, 2, and repeated application of Defini-
tion 3.2.3 and Definition 3.2.2 exactly as above, it is tedious but straight forward to prove
(8). J

7 Conclusion

In this paper we present the exponential path order EPO?. Suppose a term rewrite system
R is compatible with EPO?, then the runtime complexity of R is bounded from above by
an exponential function. Further, EPO? is sound and complete for the class of functions
computable in exponential time on a Turing machine. We have implemented EPO? in the
complexity tool TCT.1 TCT can automatically prove exponential runtime complexity of our
motivating example Rfib. Due to Theorem 6.2 we thus obtain through an automatic analysis
that the computation of the Fibonacci number is exponential.

Based on our characterisation of the class of exponential time function through the
order EPO?, it is a natural question whether this approach easily generalises to any super-
exponential function 2k, for k ∈ N. We studied the possiblity for such generalisations, for
instance to the class of double-exponential time functions to some extent. We soon realised
that any sound generalisation of EPO? to this class quickly becomes technically much more
involved, if possible at all.

References
1 T. Arai and N. Eguchi. A New Function Algebra of EXPTIME Functions by Safe Nested

Recursion. TOCL, 10(4):24:1–24:19, 2009.
2 T. Arai and G. Moser. Proofs of Termination of Rewrite Systems for Polytime Functions.

In Proc. of 15th FSTTCS, volume 3821 of LNCS, pages 529–540, 2005.
3 M. Avanzini, N. Eguchi, and G. Moser. A Path Order for Rewrite Systems that Compute

Exponential Time Functions. CoRR, cs/CC/1010.1128, 2010. Available at http://www.
arxiv.org/.

4 M. Avanzini and G. Moser. Complexity Analysis by Rewriting. In Proc. of 9th FLOPS,
volume 4989 of LNCS, pages 130–146, 2008.

5 M. Avanzini and G. Moser. Closing the Gap Between Runtime Complexity and Polytime
Computability. In Proc. of 21st RTA, volume 6 of LIPIcs, pages 33–48, 2010.

6 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

7 P. Baillot, J.-Y. Marion, and S. R. D. Rocca. Guest editorial: Special Issue on Implicit
Computational Complexity. TOCL, 10(4), 2009.

1 See http://cl-informatik.uibk.ac.at/software/tct/, the experimental data for our implementa-
tion is available here: http://cl-informatik.uibk.ac.at/software/tct/experiments/epostar.

RTA’11

http://www.arxiv.org/
http://www.arxiv.org/
http://cl-informatik.uibk.ac.at/software/tct/
http://cl-informatik.uibk.ac.at/software/tct/experiments/epostar

138 EPO?

8 S. Bellantoni and S. Cook. A new Recursion-Theoretic Characterization of the Polytime
Functions. CC, 2(2):97–110, 1992.

9 A. Ben-Amram, N. D. Jones, and L. Kristiansen. Linear, Polynomial or Exponential?
Complexity Inference in Polynomial Time. In Proc. of 4th CiE, volume 5028 of LNCS,
pages 67–76, 2008.

10 G. Bonfante, A. Cichon, J.-Y. Marion, and H. Touzet. Algorithms with Polynomial Inter-
pretation Termination Proof. JFP, 11(1):33–53, 2001.

11 G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. Quasi-interpretations: A Way to Control
Resources. TCS, 2009. To appear.

12 C. Choppy, S. Kaplan, and M. Soria. Complexity Analysis of Term-Rewriting Systems.
TCS, 67(2–3):261–282, 1989.

13 A. Cichon and P. Lescanne. Polynomial Interpretations and the Complexity of Algorithms.
In Proc. of 11th CADE, volume 607 of LNCS, pages 139–147, 1992.

14 U. Dal Lago and S. Martini. On Constructor Rewrite Systems and the Lambda-Calculus.
In Proc. of 36th ICALP, volume 5556 of LNCS, pages 163–174, 2009.

15 N. Eguchi. A Lexicographic Path Order with Slow Growing Derivation Bounds. MLQ,
55(2):212–224, 2009.

16 J. Endrullis, J. Waldmann, and H. Zantema. Matrix Interpretations for Proving Termina-
tion of Term Rewriting. JAR, 40(3):195–220, 2008.

17 M. F. Ferreira. Termination of Term Rewriting. Well-foundedness, Totality and Trans-
formations. PhD thesis, University of Utrecht, Faculty for Computer Science, 1995.

18 N. Hirokawa and G. Moser. Automated Complexity Analysis Based on the Dependency
Pair Method. In Proc. of 4th IJCAR, volume 5195 of LNAI, pages 364–380, 2008.

19 D. Hofbauer and C. Lautemann. Termination Proofs and the Length of Derivations. In
Proc. of 3rd RTA, volume 355 of LNCS, pages 167–177, 1989.

20 D. C. Kozen. Theory of Computation. Springer Verlag, first edition, 2006.
21 D. Leivant. Stratified functional programs and computational complexity. In Proc. of 20th

POPL, pages 325–333, 1993.
22 J.-Y. Marion. Analysing the implicit complexity of programs. IC, 183:2–18, 2003.
23 G. Moser. Proof Theory at Work: Complexity Analysis of Term Rewrite Systems. CoRR,

abs/0907.5527, 2009. Habilitation Thesis.
24 D. Plump. Essentials of Term Graph Rewriting. ENTCS, 51:277–289, 2001.
25 TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracks in Theoretical Computer

Science. Cambridge University Press, 2003.

Modes of Convergence for Term Graph Rewriting
Patrick Bahr

Department of Computer Science, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen, Denmark
paba@diku.dk

Abstract
Term graph rewriting provides a simple mechanism to finitely represent restricted forms of in-
finitary term rewriting. The correspondence between infinitary term rewriting and term graph
rewriting has been studied to some extent. However, this endeavour is impaired by the lack of
an appropriate counterpart of infinitary rewriting on the side of term graphs. We aim to fill
this gap by devising two modes of convergence based on a partial order resp. a metric on term
graphs. The thus obtained structures generalise corresponding modes of convergence that are
usually studied in infinitary term rewriting. We argue that this yields a common framework in
which both term rewriting and term graph rewriting can be studied. In order to substantiate
our claim, we compare convergence on term graphs and on terms. In particular, we show that
the resulting infinitary calculi of term graph rewriting exhibit the same correspondence as we
know it from term rewriting: Convergence via the partial order is a conservative extension of the
metric convergence.

1998 ACM Subject Classification F.4.2, F.1.1

Keywords and phrases term graphs, partial order, metric, infinitary rewriting, graph rewriting

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.139

Category Regular Research Paper

Introduction

Infinitary term rewriting [15] extends the theory of term rewriting by giving a meaning to
transfinite reductions instead of dismissing them as undesired and meaningless artifacts.
Term graphs, on the other hand, allow to explicitly represent and reason about sharing and
recursion [2] by dropping the restriction to a tree structure that we have for terms. Apart
from that, term graphs also provide a finite representation of certain infinite terms, viz.
rational terms. As Kennaway et al. [14, 16] have shown, this can be leveraged in order to
finitely represent restricted forms of infinitary term rewriting using term graph rewriting.

However, in order to benefit from this, we need to know for which class of term rewriting
systems the set of rational terms is closed under (normalising) reductions. One such class of
systems – a rather restrictive one – is the class of regular equation systems [9] which consist
of rules having only constants on their left-hand side. Having an understanding of infinite
reductions over term graphs could help to investigate closure properties of rational terms in
the setting of infinitary term rewriting.

By studying infinitary calculi of term graph rewriting, we can also expect to better un-
derstand calculi with explicit sharing and/or recursion. Due to the lack of finitary confluence
of these systems, Ariola and Blom [1] resort to a notion of skew confluence in order to be able
to define infinite normal forms. An appropriate infinitary calculus could provide a direct
approach to define infinite normal forms.

© Patrick Bahr;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 139–154

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.139
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

140 Modes of Convergence for Term Graph Rewriting

In this paper, we devise a partial order on term graphs generalising the partial order
that is employed to formalise convergence in infinitary term rewriting [6]. We show that
the partial order forms a complete semilattice on term graphs. Equipped with this, we shall
formalise an infinitary calculus of term graph rewriting.

Historically, the theory of infinitary term rewriting is, however, mostly based on the
metric space of terms [3]. Its notion of convergence captures “well-behaved” transfinite
reductions. In order to replicate this on term graphs, we derive from the partial order
a complete metric on term graphs generalising the metric on terms. Similar to the term
rewriting case [6], we show that the metric calculus of infinitary term graph rewriting is the
total fragment of the partial order calculus of infinitary term graph rewriting.

To our knowledge, this is the very first formalisation of infinitary term graph rewriting.
We illustrate the adequacy of our formalisation as well as its relation to rational term
rewriting on a number of examples. Due to space constraints not all proofs are given here.
Full proofs of all theorems in this paper can be found in the author’s master’s thesis [4].

1 Infinitary Term Rewriting

We assume the reader to be familiar with the basic theory of ordinal numbers, orders and
topological spaces [12], as well as term rewriting [18]. In the following, we give a brief outline
of infinitary rewriting on terms [15, 6].

Given two sequences S, T , we write S ·T to denote their concatenation and S ≤ T (resp.
S < T) if S is a (proper) prefix of T . For a set A, we write A∗ to denote the set of finite
sequences over A. For a finite sequence (ai)i<n ∈ A∗, we also write 〈a0, a1, . . . , an−1〉. In
particular, 〈〉 denotes the empty sequence.

We consider the set of (possibly infinite) terms T ∞(Σ,V) over a signature Σ and a set
of variables V. A signature Σ is a countable set of symbols. Each symbol f is associated
with its arity ar(f), and we write Σ(n) for the set of symbols in Σ which have arity n.

Kennaway [13] and Bahr [5] investigated abstract models of infinitary rewriting based on
metric spaces resp. partially ordered sets. Both models have been applied to term rewriting
[15, 6, 8]. In the following, we summarise the resulting theory of infinitary term rewriting.

The metric d on terms that is used in this setting is defined by d(s, t) = 0 if s = t

and d(s, t) = 2−k if s 6= t, where k is the minimal depth at witch s and t differ. The pair
(T ∞(Σ,V),d) is known to form a complete ultrametric space [3]. A metric d is called an
ultrametric if it satisfies the stronger triangle inequality d(x, z) ≤ max {d(x, y),d(y, z)}; it
is called complete if each of its non-empty Cauchy sequences converges.

A transfinite reduction in a term rewriting system R, i.e. a transfinite sequence (tι →R
tι+1)ι<α of rewriting steps in R, is said to m-converge to t iff the sequence of terms (tι)ι<α̂
is continuous, i.e. limι→λ tι = tλ for each limit ordinal λ < α, and (tι)ι<α̂ converges to t, i.e.
lim

ι→α̂ tι = t, where α̂ = α if α is a limit ordinal and α̂ = α+ 1 otherwise.

I Example 1.1. Consider the term rewriting system R containing the rule a :x → b : a :x,
where : is a binary symbol that we write infix and assume to associate to the right. That
is, the right-hand side of the rule is parenthesised as b : (a :x). Think of the : symbol as the
list constructor cons. In R, we have the infinite reduction sequence

S : a : c→ b : a : c→ b : b : a : c→ . . .

The position at which two consecutive terms differ moves deeper and deeper during the
reduction S. Hence, S m-converges to the infinite term s satisfying the equation s = b : s,
i.e. s = b : b : b :

Patrick Bahr 141

The partial order ≤⊥ is defined on partial terms, i.e. terms over signature Σ⊥ = Σ]{⊥},
with ⊥ a nullary symbol. It is characterised as follows: s ≤⊥ t iff t can be obtained from s

by replacing each occurrence of ⊥ by some partial term. The pair (T ∞(Σ⊥,V),≤⊥) forms
a complete semilattice [10]. A partially ordered set (A,≤) is called a complete partial order
(cpo) if it has a least element and every directed subset D of A has a least upper bound (lub)⊔
D in A. If, additionally, every non-empty subset B of A has a greatest lower bound (glb)d
B, then (A,≤) is called a complete semilattice. This means that for complete semilattices

the limit inferior lim infι→α aι =
⊔
β<α

(d
β≤ι<α aι

)
of a sequence (aι)ι<α is always defined.

In the partial order model of infinitary rewriting, convergence is modelled by the limit
inferior: A transfinite reduction (tι →R tι+1)ι<α of partial terms in R is said to p-converge
to t if it is continuous in the sense that lim infι<λ tι = tλ for each limit ordinal λ < α,
and lim inf

ι<α̂
tι = t. The distinguishing feature of this model is that, given a complete

semilattice, each continuous reduction also converges. This provides a conservative extension
tom-convergence that allows rewriting modulo meaningless terms [6] by essentially mapping
those parts of the reduction to ⊥ that are divergent according to the metric model.

Intuitively, p-convergence on terms describes an approximation process. To this end, the
partial order ≤⊥ captures a notion of information preservation, i.e. s ≤⊥ t iff t contains
at least the same information as s does but potentially more. A monotonic sequence of
terms t0 ≤⊥ t1 ≤⊥ . . . thus approximates the information contained in

⊔
i<ω ti. Given this

reading of ≤⊥, the glb
d
T of a set of terms T captures the common (non-contradicting)

information of the terms in T . Leveraging this, a sequence that is not necessarily mono-
tonic can be turned into a monotonic sequence tj =

d
j≤i<ω sj such that each tj contains

exactly the information that remains stable in (si)i<ω from j onwards. Hence, the limit
inferior lim infi→ω si =

⊔
j<ω

d
j≤i<ω si is the term that contains the accumulated informa-

tion that eventually remains stable in (si)i<ω. This is expressed as an approximation of the
monotonically increasing information that remains stable from some point on.

I Example 1.2. Reconsider the system from Example 1.1. The reduction S also p-converges
to s. Its sequence of stable information⊥ :⊥ ≤⊥ b :⊥ :⊥ ≤⊥ b : b :⊥ :⊥ ≤⊥ . . . approximates
s. Now consider the system with the additional rule b :x→ a : b :x. Starting with the same
term, but applying the two rules alternately at the root, we obtain the reduction sequence

T : a : c→ b : a : c→ a : b : a : c→ b : a : b : a : c→ . . .

Now the differences between two consecutive terms occur right below the root symbol “ : ”.
Hence, T does not m-converge. This, however, only affects the left argument of “ : ”. Fol-
lowing the right argument position, the bare list structure becomes eventually stable. The
sequence of stable information ⊥ :⊥ ≤⊥ ⊥ :⊥ :⊥ ≤⊥ ⊥ :⊥ :⊥ :⊥ ≤⊥ . . . approximates the
term t = ⊥ :⊥ :⊥ Hence, T p-converge to t.

The relation between m- and p-convergence illustrated in the examples above is char-
acteristic: p-convergence is a conservative extension of m-convergence [5]. A reduction
m-converges to a term t iff it totally p-converges to t, i.e. over terms without ⊥. The goal
of this paper is to generalise both the metric and the partial order on terms to term graphs
while maintaining the properties presented here in order to instantiate the abstract models
of infinitary rewriting and thereby obtain models for infinitary term graph rewriting.

2 Term Graphs

The notion of term graphs we are using is taken from Barendregt et al. [7]. Also our
generalised notion of homomorphisms, which is crucial for the definition of the partial order

RTA’11

142 Modes of Convergence for Term Graph Rewriting

on term graphs, follows the general idea of Barendregt et al.

I Definition 2.1. Let Σ be a signature. A Σ-graph (or simply graph) is a tuple g =
(N, lab, suc) consisting of a setN (of nodes), a labelling function lab : N → Σ, and a successor
function suc : N → N∗ such that |suc(n)| = ar(lab(n)) for each node n ∈ N , i.e. a node
labelled with a k-ary symbol has precisely k successors. If suc(n) = 〈n0, . . . , nk−1〉, then we
write suci(n) for ni. Moreover, we use the abbreviation arg(n) for the arity ar(lab(n)) of n.

I Definition 2.2. Let g = (N, lab, suc) be a Σ-graph and n, n′ ∈ N .

(i) A path in g from n to n′ is a finite sequence (pi)i<l in N such that either
n = n′ and (pi)i<l is empty, i.e. l = 0, or
0 ≤ p0 < arg(n) and the suffix (pi)1≤i<l is a path in g from sucp0(n) to n′.

(ii) If there exists a path from n to n′ in g, we say that n′ is reachable from n in g.

I Definition 2.3. Given a signature Σ, a term graph g over Σ is a tuple (N, lab, suc, r)
consisting of an underlying Σ-graph (N, lab, suc) whose nodes are all reachable from the root
node r ∈ N . The class of all term graphs over Σ is denoted G∞(Σ). We use the notation
Ng, labg, sucg and rg to refer to the respective components N ,lab, suc and r of g.

Paths in a graph are not absolute but relative to a starting node. In term graphs, however,
we have a distinguished root node from which each node is reachable. Paths relative to the
root node are central for dealing with term graphs:

I Definition 2.4. Let g ∈ G∞(Σ) and n ∈ N .

(i) An occurrence of n is a path in the underlying graph of g from rg to n. The set of all
occurrences in g is denoted P(g); the set of all occurrences of n in g is denoted Pg(n).1

(ii) The depth of n in g, denoted depthg(n), is the minimum of the lengths of the occurrences
of n in g, i.e. depthg(n) = min {|π| |π ∈ Pg(n)}.

(iii) Let ∆ ⊆ Σ. The ∆-depth of g, denoted ∆-depth(g), is the minimal depth of a ∆-node,
i.e., a node labelled with a symbol in ∆, or ∞ if no such node exists in g:

∆-depth(g) = min
{

depthg(n)
∣∣n ∈ N, labg(n) ∈ ∆

}
∪ {∞}

If ∆ is a singleton set {σ}, we also write σ-depth(g) instead of {σ}-depth(g).
(iv) For an occurrence π ∈ P(g), we write nodeg(π) for the unique node n ∈ Ng with

π ∈ Pg(n) and g(π) for its symbol labg(n).
(v) An occurrence π ∈ P(g) is called cyclic if there are paths π1 < π2 ≤ π with nodeg(π1) =

nodeg(π2). The non-empty path π′ with π1 ·π′ = π2 is then called a cycle of nodeg(π1).
An occurrence that is not cyclic is called acyclic.

(vi) The term graph g is called a term tree if each node in g has exactly one occurrence.

Note that the labelling function of graphs – and thus term graphs – is total. In con-
trast, Barendregt et al. [7] considered open (term) graphs with a partial labelling function
such that unlabelled nodes denote holes or variables. This is reflected in their notion of
homomorphisms in which the homomorphism condition is suspended for unlabelled nodes.

Instead of a partial labelling function, we chose a syntactic approach that is closer to the
representation in terms: Variables, holes and “bottoms” are represented as distinguished

1 The notion/notation of occurrences is borrowed from terms: Every occurrence π of a node n corresponds
to the subterm represented by n occurring at position π in the unravelling of the term graph to a term.

Patrick Bahr 143

syntactic entities. We achieve this on term graphs by making the notion of homomorph-
isms dependent on a distinguished set of constant symbols ∆ for which the homomorphism
condition is suspended:

I Definition 2.5. Let Σ be a signature, ∆ ⊆ Σ(0), and g, h ∈ G∞(Σ).

(i) A function φ : Ng → Nh is called homomorphic in n ∈ Ng if the following holds:

labg(n) = labh(φ(n)) (labelling)
φ(sucgi (n)) = suchi (φ(n)) for all 0 ≤ i < arg(n) (successor)

(ii) A ∆-homomorphism φ from g to h, denoted φ : g →∆ h, is a function φ : Ng → Nh

that is homomorphic in n for all n ∈ Ng with labg(n) 6∈ ∆ and satisfies φ(rg) = rh.

It should be obvious that we get the usual notion of homomorphisms on term graphs if
∆ = ∅. The ∆-nodes can be thought of as holes in the term graphs which can be filled with
other term graphs. For example, if we have a distinguished set of variable symbols V ⊆ Σ(0),
we can use V-homomorphisms to formalise the matching step of term graph rewriting which
requires the instantiation of variables.

I Proposition 2.6. The ∆-homomorphisms on G∞(Σ) form a category which is a preorder.
That is, there is at most one ∆-homomorphism from one term graph to another.

As a consequence, each ∆-homomorphism is both monic and epic, and whenever there
are two ∆-homomorphisms φ : g →∆ h and ψ : h→∆ g, they are inverses of each other, i.e.
∆-isomorphisms. If two term graphs are ∆-isomorphic, we write g ∼=∆ h.

Note that injectivity is in general different from both being monic and the existence
of left-inverses. The same holds for surjectivity and being epic resp. having right-inverses.
However, each ∆-homomorphism is a ∆-isomorphism iff it is bijective.

For the two special cases ∆ = ∅ and ∆ = {σ}, we write φ : g → h resp. φ : g →σ h instead
of φ : g →∆ h and call φ a homomorphism resp. σ-homomorphism. The same convention
applies to ∆-isomorphisms.

3 Canonical Term Graphs

In this section, we introduce a canonical representation of isomorphism classes of term
graphs. We use a well-known trick to achieve this [17]. As we shall see at the end of this
section, this will also enable us to construct term graphs modulo isomorphism very easily.

I Definition 3.1. A term graph g is called canonical if n = Pg(n) holds for each n ∈ Ng.
That is, each node is the set of its occurrences in the term graph. The set of all canonical
term graphs over Σ is denoted G∞C (Σ).

This structure allows a convenient characterisation of ∆-homomorphisms:

I Lemma 3.2. For g, h ∈ G∞C (Σ), a function φ : Ng → Nh is a ∆-homomorphism φ : g →∆
h iff the following holds for all n ∈ Ng:

(a) n ⊆ φ(n), and (b) labg(n) = labh(φ(n)) whenever labg(n) 6∈ ∆.

Proof. Straightforward. J

By Proposition 2.6, there is at most one ∆-homomorphism between two term graphs.
The lemma above uniquely defines this ∆-homomorphism: If there is a ∆-homomorphism
from g to h, it is defined by φ(n) = n′, where n′ is the unique node n′ ∈ Nh with n ⊆ n′.

RTA’11

144 Modes of Convergence for Term Graph Rewriting

I Remark 3.3. Note that the lemma above is also applicable to non-canonical term graphs.
It simply has to be rephrased such that instead of just referring to a node n, its set of
occurrences Pg(n) is referred to whenever the “inner structure” of n is used.

The set of nodes in a canonical term graph forms a partition of the set of occurrences.
Hence, it defines an equivalence relation on the set of occurrences. For a canonical term
graph g, we write ∼g for this equivalence relation on P(g). According to Remark 3.3,
we can extend this to arbitrary term graphs: π1 ∼g π2 iff nodeg(π1) = nodeg(π2). The
characterisation of ∆-homomorphisms can thus be recast to obtain the following lemma
that characterises the existence of ∆-homomorphisms:

I Lemma 3.4. Given g, h ∈ G∞(Σ), there is a ∆-homomorphism φ : g →∆ h iff, for all
π, π′ ∈ P(g), we have

(a) π ∼g π′ =⇒ π ∼h π′, and (b) g(π) = h(π) whenever g(π) 6∈ ∆.

Intuitively, (a) means that h has at least as much sharing of nodes as g has, whereas (b)
means that h has at least the same non-∆-symbols as g.

I Corollary 3.5. Given g, h ∈ G∞(Σ), the following holds:

(i) φ : Ng → Nh is a ∆-isomorphism iff for all n ∈ Ng

(a) Ph(φ(n)) = Pg(n), and (b) labg(n) = labh(φ(n)) or labg(n), labh(φ(n)) ∈ ∆.
(ii) g ∼=∆ h iff (a) ∼g = ∼h, and (b) g(π) = h(π) or g(π), h(π) ∈ ∆.

Proof. Immediate consequence of Lemma 3.2 resp. Lemma 3.4 and Proposition 2.6. J

From (ii) we immediately obtain the following equivalence:

I Corollary 3.6. Given g, h ∈ G∞(Σ) and σ ∈ Σ(0), we have g ∼= h iff g ∼=σ h.

Now we can revisit the notion of canonical term graphs using the above characterisation
of ∆-isomorphisms. We will define a function C(·) : G∞(Σ) → G∞C (Σ) that maps a term
graph to its canonical representation. To this end, let g = (N, lab, suc, r) be a term graph
and define C(g) = (N ′, lab′, suc′, r′) as follows:

N ′ = {Pg(n) |n ∈ N } r′ = Pg(r)
lab′(Pg(n)) = lab(n) suc′i(Pg(n)) = Pg(suci(n)) for all n ∈ N, 0 ≤ i < arg(n)

C(g) is obviously a well-defined canonical term graph. With this definition we indeed capture
the idea of a canonical representation of isomorphism classes:

I Proposition 3.7. Given g ∈ G∞(Σ), the term graph C(g) canonically represents the equi-
valence class [g]∼=. More precisely, it holds that

(i) [g]∼= = [C(g)]∼=, and (ii) [g]∼= = [h]∼= iff C(g) = C(h).

In particular, we have, for all canonical term graphs g, h, that g = h iff g ∼= h.

Proof. Straightforward consequence of Corollary 3.5. J

I Remark 3.8. ∆-homomorphisms can be naturally lifted to G∞(Σ)/∼=: We say that two
∆-homomorphisms φ : g →∆ h, φ′ : g′ →∆ h′, are isomorphic, written φ ∼= φ′ iff there
are isomorphisms ψ1 : g →̃ g′ and ψ2 : h′ →̃ h such that φ = ψ2 ◦ φ′ ◦ ψ1. Given a
∆-homomorphism φ : g →∆ h in G∞(Σ), [φ]∼= : [g]∼= →∆ [h]∼= is a ∆-homomorphism in
G∞(Σ)/∼=. These ∆-homomorphisms then form a category which can easily be show to be
isomorphic to the category of ∆-homomorphisms on G∞C (Σ) via the mapping [·]∼=.

Patrick Bahr 145

Corollary 3.5 has shown that term graphs can be characterised up to isomorphism by
only giving the equivalence ∼g and the labelling g(·) : π 7→ g(π). This observation gives rise
to the following definition:

I Definition 3.9. A labelled quotient tree over signature Σ is a triple (P, l,∼) consisting of
a non-empty set P ⊆ N∗, a function l : P → Σ, and an equivalence relation ∼ on P that
satisfies the following conditions for all π, π′ ∈ P and i ∈ N:

π · i ∈ P =⇒ π ∈ P and i < ar(l(π)) (reachability)

π ∼ π′ =⇒
{
l(π) = l(π′) and
π · j ∼ π′ · j for all j < ar(l(π))

(congruence)

The following lemma confirms that labelled quotient trees uniquely characterise any term
graph up to isomorphism:

I Lemma 3.10. Each term graph g ∈ G∞(Σ) induces a canonical labelled quotient tree
(P(g), g(·),∼g) over Σ. Vice versa, for each labelled quotient tree (P, l,∼) over Σ there is a
unique canonical term graph g ∈ G∞C (Σ) whose canonical labelled quotient tree is (P, l,∼),
i.e. P(g) = P , g(π) = l(π) for all π ∈ P , and ∼g = ∼.

Proof. The first part is trivial: (P(g), g(·),∼g) satisfies the conditions from Definition 3.9.
Let (P, l,∼) be a labelled quotient tree. Define the term graph g = (N, lab, suc, r) by

N = P/∼ lab(n) = f iff ∃π ∈ n. l(π) = f

r = n iff 〈〉 ∈ n suci(n) = n′ iff ∃π ∈ n. π · i ∈ n′

The functions lab and suc are well-defined due to the congruence condition satisfied by
(P, l,∼). Since P is non-empty and closed under prefixes, it contains 〈〉. Hence, r is well-
defined. Moreover, by the reachability condition, each node in N is reachable from the root
node. An easy induction proof shows that Pg(n) = n for each node n ∈ N . Thus, g is a well-
defined canonical term graph. The canonical labelled quotient tree of g is obviously (P, l,∼).
Whenever there are two canonical term graphs with labelled quotient tree (P, l,∼), they are
isomorphic due to Corollary 3.5 and, therefore, have to be identical by Proposition 3.7. J

Labelled quotient trees provide a valuable tool for constructing canonical term graphs.
Nevertheless, the original graph representation remains convenient for practical purposes
as it allows a straightforward formalisation of term graph rewriting and provides a finite
representation of finite cyclic term graphs which induce an infinite labelled quotient tree.

Before we continue, it is instructive to make the correspondence between terms and term
graphs clear. Note, that there is an obvious one-to-one correspondence between canonical
term trees and terms. For example, the term tree g depicted in Figure 1a corresponds to
the term f(c, c). We thus consider the set of terms T ∞(Σ) to be the subset of canonical
term trees of G∞C (Σ). The unravelling of a term graph g is the unique term t such that there
is a homomorphism φ : t → g. For example, g is the unravelling of h in Figure 1a. The
unravelling of cyclic term graphs yields infinite terms, e.g. in Figure 3 on page 152, the term
hω is the unravelling of the term graph g2.

4 Partial Order on Term Graphs

In this section, we want to develop a partial order suitable for formalising convergence of a
sequences of canonical term graphs similarly to p-convergence on terms.

RTA’11

146 Modes of Convergence for Term Graph Rewriting

f

c c

(g)

f

c

(h)

(a) Term graphs g ≤1
⊥ h.

f

g g

g n1

c

f

g g

g

g n2

c

f

g

gn3

c

g

⊥

f

g

⊥

g

g n4

⊥
n′4

(g1) (g2) (g3) (g4)

(b) Term graphs g1, g2 with maximal lower bounds g3, g4 w.r.t. ≤3
⊥.

Figure 1 Alternative partial orders on term graphs.

To get started, we use the correspondence between terms and canonical term trees, in
order to characterise the partial order ≤⊥ on T ∞(Σ⊥) via ⊥-homomorphisms: Given s, t ∈
T ∞(Σ⊥), we have s ≤⊥ t iff there is a ⊥-homomorphism φ : s→⊥ t. The ⊥-homomorphism
formalises the intuition that t can be obtained from s by replacing occurrences of ⊥ by terms.
Let us generalise this to canonical term graphs: Given g, h ∈ G∞C (Σ⊥), define g ≤1

⊥ h iff
there is a ⊥-homomorphism φ : g →⊥ h. This definition indeed yields a complete semilattice
(G∞C (Σ⊥),≤1

⊥). Yet, as we will explain below, ≤1
⊥ does not provide an adequate foundation

for p-convergence on term graphs.
Recall that p-convergence on terms is based on the ability of the partial order ≤⊥ to

capture information preservation between terms. The limit inferior – and thus p-convergence
– comprises the accumulated information that eventually remains stable. Following the
approach on terms, a partial order ≤G⊥ suitable as a basis for convergence for term graph
rewriting, has to capture an appropriate notion of information preservation as well. However,
term graphs encode an additional dimension of information through sharing of nodes, i.e.
nodes with multiple occurrences. This rules out the straightforward partial order ≤1

⊥ defined
above. At first glance, ⊥-homomorphisms capture information preservation as they allow to
replace ’⊥’s. Unfortunately, ⊥-homomorphisms also allow to introduce sharing by mapping
different nodes to the same target node: Considering the term graphs in Figure 1a, we have
g ≤1

⊥ h, even though g and h contain contradicting information. Moreover, we get the
counterintuitive situation that a total term graph such as g can be non-maximal w.r.t. ≤1

⊥.
In order to avoid the introduction of sharing, we need to consider ⊥-homomorphisms

that preserve the structure of term graphs. Recall that by Lemma 3.10, the structure of a
term graph is essentially given by the occurrences of nodes and their labelling. Labellings are
already taken into consideration by ⊥-homomorphisms. Thus, we can define a partial order
≤2
⊥ that preserves the structure of term graphs by: g ≤2

⊥ h iff there is a ⊥-homomorphism
φ : g →⊥ h with P(φ(n)) = P(n) for all n ∈ Ng with labg(n) 6= ⊥. While this would again
yield a complete semilattice, it is unfortunately too restrictive. For example, we would not
have g|2 ≤2

⊥ g for the term graphs depicted in Figure 2a. The problem of ≤2
⊥ is that it

also considers sharing that originates from below a node. The fact that the node n (as well
as r) has different occurrences in g and g|2 is solely caused by the edge from n to r that
comes from below and thus closes a cycle. Even though the edge occurs below n and r,
it affects their occurrences. Cutting off that edge, as in g|2, changes the sharing. As a

Patrick Bahr 147

consequence, in the complete semilattice (G∞C (Σ⊥),≤2
⊥), we do not obtain the intuitively

expected convergence behaviour depicted in Figure 3c.
This observation suggests that we should only consider the upward structure of each

node, ignoring the sharing that is caused by edges occurring bellow a node. By restricting
our attention to acyclic occurrences, we can obtain the desired properties for a partial order
on term graphs.

Recall that an occurrence π in a term graph g is called cyclic iff there are occurrences
π1, π2 with π1 < π2 ≤ π such that nodeg(π1) = nodeg(π2). Otherwise it is called acyclic.
We will use the notation Pa(g) for the set of all acyclic occurrences in g, and Pag (n) for the
set of all acyclic occurrences of a node n in g.

I Definition 4.1. Let Σ be a signature, ∆ ⊆ Σ(0) and g, h ∈ G∞(Σ) such that φ : g →∆ h.

(i) Given n ∈ Ng, φ is said to preserve the sharing of n if it satisfies the equation

Pag (n) = Pah(φ(n)) (preservation of sharing)

(ii) φ is called strong if it preserves the sharing of all n ∈ Ng with labg(n) 6∈ ∆.

I Proposition 4.2. The strong ∆-homomorphisms on G∞(Σ) form a subcategory of the cat-
egory of ∆-homomorphisms on G∞(Σ). Each ∆-isomorphism is a strong ∆-homomorphism.

Proof. Straightforward. J

It is obvious from its definition that Pag (n) is the set of minimal elements of Pg(n) w.r.t.
the prefix order. Strong ⊥-homomorphisms thus preserve the upward structure of each
non-⊥-node and, therefore, provide the desired structure for a partial order that captures
information preservation on term graphs:

I Definition 4.3. For every g, h ∈ G∞(Σ⊥), define g ≤G⊥ h iff there is a strong ⊥-
homomorphism φ : g →⊥ h.

I Proposition 4.4. The relation ≤G⊥ is a partial order on G∞C (Σ⊥).

Proof. Reflexivity and transitivity of ≤G⊥ follow immediately from Proposition 4.2. For
antisymmetry, assume g ≤G⊥ h and h ≤G⊥ g. By Proposition 2.6, this implies g ∼=⊥ h.
Corollary 3.6 then yields that g ∼= h. Hence, according to Proposition 3.7, g = h. J

Similarly to Lemma 3.4, we can characterise strong ∆-homomorphisms by looking only
at the occurrences’ equivalence and labelling:

I Lemma 4.5. Given g, h ∈ G∞(Σ), a ∆-homomorphism φ : g →∆ h is strong iff

π ∼h π′ =⇒ π ∼g π′ for all π ∈ P(g) with g(π) 6∈ ∆ and π′ ∈ Pa(h).

From this we can derive the following compact characterisation of ≤G⊥:

I Corollary 4.6. Let g, h ∈ G∞C (Σ⊥). Then g ≤G⊥ h iff the following conditions are met:

(a) π ∼g π′ =⇒ π ∼h π′ for all π, π′ ∈ P(g)
(b) π ∼h π′ =⇒ π ∼g π′ for all π ∈ P(g) with g(π) ∈ Σ and π′ ∈ Pa(h)
(c) g(π) = h(π) for all π ∈ P(g) with g(π) ∈ Σ.

Proof. This follows immediately from Lemma 3.4 and Lemma 4.5. J

RTA’11

148 Modes of Convergence for Term Graph Rewriting

Note that for term trees (b) is always true and (a) follows from (c). Hence, on term trees,
≤G⊥ can be characterised by (c). This shows that ≤G⊥ restricted to canonical term trees is
isomorphic to ≤⊥ on terms. That is, ≤G⊥ is indeed a generalisation of ≤⊥ and we can use
≤⊥ to refer to ≤G⊥ without ambiguity, which we will do from now on.

I Theorem 4.7. The pair (G∞C (Σ⊥),≤⊥) forms a cpo.

Proof (sketch). The least element of ≤⊥ is obviously ⊥. Assuming a directed subset G of
G∞C (Σ⊥), we define a canonical term graph g by giving a labelled quotient tree (P, l,∼) with

P =
⋃
g∈G
P(g) ∼ =

⋃
g∈G
∼g l(π) =

{
f if f ∈ Σ and ∃g ∈ G. g(π) = f

⊥ otherwise

From its construction it is easy to show that (P, l,∼) is a well-defined labelled quotient tree.
Using the characterisation of ≤⊥ provided by Corollary 4.6 one can then show that the thus
defined term graph g is indeed the lub of G. J

For showing that ≤⊥ is a complete semilattice, we use the following result from Kahn
and Plotkin [11]:

I Proposition 4.8. A cpo is a complete semilattice iff every pair of elements having an
upper bound also has a least upper bound.

This reduces the proof that ≤⊥ is a complete semilattice to the following lemma:

I Lemma 4.9. If {g1, g2} ⊆ G∞C (Σ⊥) has an upper bound, then it has a least upper bound.

Proof (sketch). Since {g1, g2} is not necessarily directed, its lub might have occurrences
that are neither in g1 or g2. Therefore, we have to employ a different construction here:
Following Remark 3.8 we can define an order ≤⊥ on G∞(Σ⊥)/∼= which is isomorphic to the
order ≤⊥ on G∞C (Σ⊥): [g]∼= ≤⊥ [h]∼= iff there is a strong ⊥-homomorphism φ : g →⊥ h. Since
the orders are isomorphic, showing the above property for the order on G∞(Σ⊥)/∼= suffices.
To this end, we will construct a term graph g such that [g]∼= is the lub of {[g1]∼=, [g2]∼=}.

Intuitively, g is constructed by forming the disjoint union of g1 and g2. For each occur-
rence π common to g1 and g2 the two nodes nodeg1(π) and nodeg2(π) are equated in g. For
the labelling of the resulting node, we prefer non-⊥-labels over ⊥-labels.

Let gj = (N j , sucj , labj , rj), j = 1, 2. As we are dealing with isomorphism classes, we can
assume w.l.o.g. that nodes in gj are of the form nj for j = 1, 2. That is, given M = N1∪N2

and nj ∈M , we have nj ∈ Nk iff j = k. Hence, we can define a relation ∼ on M as follows:

nj ∼ mk iff Pgj (nj) ∩ Pgk(mk) 6= ∅

∼ is clearly reflexive and symmetric. Hence, its transitive closure ∼+ is an equivalence
relation on M . Now define the term graph g = (N, lab, suc, r) as follows:

N = M/∼+ lab(N) =
{
f if f ∈ Σ,∃nj ∈ N. labj(nj) = f

⊥ otherwise

r = [r1]∼+ suci(N) = N ′ iff ∃nj ∈ N. sucji (nj) ∈ N ′

For the remainder of the proof it is crucial that {[g1]∼=, [g2]∼=} has an upper bound. That is,
there are two strong ⊥-homomorphisms φj : gj →⊥ ĝ, j = 1, 2, for some term graph ĝ.

It still remains to be shown that g is a well-defined term graph. Next it has to be shown
that [g1]∼=, [g2]∼= ≤⊥ [g]∼= by providing two strong ⊥-homomorphisms ψj : gj →⊥ g, j = 1, 2.
And finally, to show that [g]∼= is a lub, one has to construct a strong ⊥-homomorphism
ψ : g →⊥ ĝ′ for each pair of strong ⊥-homomorphisms φ′j : gj →⊥ ĝ′, j = 1, 2. J

Patrick Bahr 149

I Theorem 4.10. The pair (G∞C (Σ⊥),≤⊥) forms a complete semilattice.

Proof. This is, by Proposition 4.8, a consequence of Theorem 4.7 and Lemma 4.9. J

5 Metric on Term Graphs

In this section, we want to derive a metric on canonical term graphs using the partial order
≤⊥ introduced in the previous section. We will define this metric in a fashion similar to the
metric on terms. All we need is an appropriate measure for the minimal depth of differences
between two distinct term graphs. The partial order ≤⊥ provides a tool for that as the glb
g u⊥ h of two term graphs g, h tells us on which parts g and h agree. The minimal depth at
which g and h disagree is then simply the minimal depth of ⊥-nodes in g u⊥ h:

I Definition 5.1. Given g, h ∈ G∞C (Σ) and any fresh nullary symbol ⊥ 6∈ Σ, the similarity
sim(g, h) of g and h is the least depth of a ⊥-node in gu⊥ h, i.e. ⊥-depth(gu⊥ h). We define
the distance function d on G∞C (Σ) by d(g, h) = 2−sim(g,h), where we interpret 2−∞ as 0.

In order to show that d is a metric on G∞C (Σ), we use an idea similar to that of Arnold
and Nivat [3]: We define the truncation g|d of a term graph g at depth d, which removes
certain nodes from g of depth at least d and fills the resulting holes with fresh ⊥-nodes.
This will provide an alternative characterisation of the metric d on term graphs.

I Definition 5.2. Let g ∈ G∞(Σ⊥) and d ∈ N.

(i) Given n,m ∈ Ng, m is an acyclic predecessor of n in g if there is an acyclic occurrence
π · i ∈ Pag (n) with π ∈ Pg(m). The set of acyclic predecessors of n in g is denoted
Preag(n).

(ii) The set of retained nodes of g at d, denoted Ng
<d, is the least subsetM of Ng satisfying

the following conditions for all n ∈ Ng:

(T1) depthg(n) < d =⇒ n ∈M (T2) n ∈M =⇒ Preag(n) ⊆M

(iii) For each n ∈ Ng and i ∈ N, we use ni to denote a fresh node, i.e.
{
ni
∣∣n ∈ Ng, i ∈ N

}
is a set of pairwise distinct nodes not occurring in Ng. The set of fringe nodes of g at
d, denoted Ng

=d, is defined as the singleton set {rg} if d = 0, and otherwise as the set{
ni

∣∣∣∣∣ n ∈ N
g
<d, 0 ≤ i < arg(n) with sucgi (n) 6∈ Ng

<d

or depthg(n) ≥ d− 1, n 6∈ Preag(sucgi (n))

}

(iv) The truncation of g at d, denoted g|d, is the term graph defined by

Ng|d = Ng
<d]N

g
=d rg|d = rg

labg|d(n) =
{

labg(n) if n ∈ Ng
<d

⊥ if n ∈ Ng
=d

sucg|di (n) =
{

sucgi (n) if ni 6∈ Ng
=d

ni if ni ∈ Ng
=d

Additionally, we define g|∞ to be the term graph g itself.

Before discussing the intuition behind this definition of truncation, let us have a look at
the rôle of retained and fringe nodes: The set of retained nodes Ng

<d contains the nodes that
are preserved by the truncation. All other nodes in Ng \Ng

<d are cut off. The “holes” that
are thus created are filled by the fringe nodes in Ng

=d. This is expressed in the condition
sucgi (n) 6∈ Ng

<d which, if satisfied, yields a fringe node ni. That is, a fresh fringe node is
inserted for each successor of a retained node that is not a retained node itself.

RTA’11

150 Modes of Convergence for Term Graph Rewriting

h
r

hn

h
r

h
n

⊥
n0

(g) (g|2)
(a) Truncation of loops.

f

h

h

h

a

f

h

⊥

h

⊥

f

h

h

h

⊥
(g) (go2) (g|2)

(b) Comparison to strict truncation.

Figure 2 Examples of truncations.

But there is another circumstance that can give rise to a fringe node: If depthg(n) ≥ d−1
and n 6∈ Preag(sucgi (n)), we also get a fringe node ni. This condition is satisfied whenever an
outgoing edge from a retained node closes a cycle. The lower bound for the depth is chosen
such that a successor node of n is not necessarily retained node. An example is depicted
in Figure 2a. For depth d = 2, the node n in the term graph g is just above the fringe,
i.e. satisfies depthg(n) ≥ d − 1. Moreover, it has an edge to the node r that closes a cycle.
Hence, the truncation g|2 contains the fringe node n0 which is now the 0-th successor of n.

We chose this admittedly complicated notion of truncation in order to make it “compat-
ible” with the partial order ≤⊥ and thus the metric d: First of all, the truncation of a term
graph is supposed to yield a smaller term graph w.r.t. ≤⊥, viz. g|d ≤⊥ g. Hence, whenever
a node is kept as a retained node, also its acyclic occurrences have to be kept in order to
preserve its upward structure. To achieve this, with each node also its acyclic ancestors
have to be retained. The closure condition (T2) is enforced exactly for this purpose.

To see this, consider Figure 2b. It shows a term graph g and its truncation at depth 2,
once without the closure condition (T2), go2, and once including (T2), g|2. The grey area
highlights the nodes that are at depth smaller than 2, i.e. the nodes contained in Ng

<2 due to
(T1) only. The nodes within the area surrounded by a dashed line are all the nodes in Ng

<2.
One can observe that with the strict truncation god without (T2), we do not have go2 ≤⊥ g.

If the truncation construction is applied to term trees, then the result is also a term tree
and is equal to the truncation of terms employed by Arnold and Nivat [3].

The most important property of the truncation of term graphs is that it allows the
following alternative characterisation of similarity:

I Proposition 5.3. Let g, h ∈ G∞C (Σ). Then sim(g, h) = max {d ∈ N ∪ {∞} | g|d ∼= h|d}.

Apart from being indispensable in the subsequent proofs concerning the distance measure
d on term graphs, the above proposition also reveals the close relationship to the metric d
on terms which is essentially defined as characterised in the proposition above [3].

I Proposition 5.4. The pair (G∞C (Σ),d) constitutes an ultrametric space.

Proof. Using Proposition 5.3, the proof is the same as for the metric on terms [3]. J

Patrick Bahr 151

With the following proposition we will be able to derive completeness of the metric space
(G∞C (Σ),d) from the completeness of the semilattice (G∞C (Σ⊥),≤⊥):

I Proposition 5.5. Let Σ⊥ be a signature and (gι)ι<α a non-empty Cauchy sequence in the
metric space (G∞C (Σ),d). Then limι→α gι = lim infι→α gι.

Proof (sketch). The term graph g = lim infι→α gι is well-defined by Theorem 4.10. Since
(gι)ι<α is Cauchy, we obtain for each d ∈ N some β < α such that gβ |d ∼= gι|d for each
β ≤ ι < α. From this we then obtain that for each d ∈ N, there is some β < α such that
gβ |d ≤⊥ g. Hence, g is total, i.e. in G∞C (Σ). Moreover, gβ |d ≤⊥ g implies that gβ |d ∼= g|d.
Therefore, we find for each d ∈ N some β < α with sim(g, gβ) ≥ 0. Hence, we find for each
ε ∈ R+ some β < α with d(g, gβ) < ε. That is, (gι)ι<α converges to g. J

I Theorem 5.6. The metric space (G∞C (Σ),d) is complete.

Proof. Immediate consequence of Proposition 5.5 and Theorem 4.10. J

Additionally, we can obtain that the notion of convergence provided by the partial order
is a conservative extension of the one provided by the metric:

I Proposition 5.7. Let Σ⊥ be a signature, (gι)ι<α a non-empty sequence in G∞C (Σ), and
g = lim infι→α gι. If g ∈ G∞C (Σ), then limι→α gι = g.

Proof (sketch). This can be derived from Proposition 5.5 by showing that (gι)ι<α is Cauchy
whenever g ∈ G∞C (Σ): Assume that (gι)ι<α is not Cauchy. Then we find some d ∈ N such
that for each β < α there are β ≤ γ, ι < α with sim(gγ , gι) ≤ d, i.e. ⊥-depth(gγ u⊥ gι) ≤ d.
Let hβ =

d⊥
β≤ι<α gι. Since ⊥-depth(hβ) ≤ ⊥-depth(gγ u⊥ gι) for all β ≤ γ, ι < α, we find

some d ∈ N such that for each β < α there is some π ∈ P(hβ) with |π| ≤ d and hβ(π) = ⊥.
Because there are only finitely many relevant positions of length at most d, we thus obtain
some position π∗ such that for each β < α there is some β ≤ γ < α with hγ(π∗) = ⊥. Since
(hι)ι<α is a ≤⊥-chain, we know that hβ(π∗) = ⊥ for any β < α with π∗ ∈ P(hβ). But then
we obtain that g(π∗) = ⊥, which contradicts the assumption that g ∈ G∞C (Σ). J

6 Infinitary Term Graph Rewriting

Having obtained a complete semilattice and, from that, a complete metric, we can now
instantiate the abstract models of infinitary rewriting [5] for term graphs. To this end, we
adopt the term graph rewriting framework by Barendregt et al. [7].

Without going into the details, a term graph rewriting system (GRS) R is a pair (Σ, R)
consisting of a signature Σ and a set of rewrite rules R over Σ. A GRS R gives rise to a
notion of rewriting steps g →R h on canonical term graphs. Figure 3a illustrates two term
graph rules that both unravel to the term rule a : x → b : a : x from Example 1.1. A rule
consists of a graph with two root nodes that represent the left- resp. right-hand side of the
rule (indicated by l resp. r). The right-hand side can refer to variables on the left-hand
side only via sharing. This can occur as immediate sharing, i.e. by directly pointing to the
variable as in ρ1, or by mediate sharing as in ρ2.

The application of a rewrite rule ρ (with root nodes l and r) to a term graph g is
performed in four steps: At first a suitable sub-term graph of g rooted in some node n of g
is matched against the left-hand side of ρ. This amounts to finding a V-homomorphism φ

from the term graph rooted in l to the sub-term graph rooted in n, the redex. Here, V is a
set of variables. The V-homomorphism φ thus replaces variables with term graphs. In the

RTA’11

152 Modes of Convergence for Term Graph Rewriting

:l

a x

:r

b :

a

(ρ1)

:l

a x

:r

b

(ρ2)
(a) Term graph rules that unravel to a :x→ b : a :x.

:

a c

(g1)

:

b

(g2)

ρ2

(b) A single ρ2-step.

:

a

(h0)

:

b :

a

(h1)

:

b :

b :

a

(h2)

:

b :

b :

b

(hω)

ρ1 ρ1 ρ1

(c) An m-convergent term graph reduction over ρ1.

Figure 3 Term graph rules and their reductions.

second step, nodes and edges in ρ that are not reachable from l are copied into g, such that
edges pointing to nodes in the term graph rooted in l are redirected to the image under φ.
In the last two steps, all edges pointing to n are redirected to (the copy of) r and all nodes
not reachable from the root of (the modified version of) g are removed. Examples for term
graph rewriting steps are shown in Figure 3. We revisit them in more detail in Example 6.2
below.

I Definition 6.1. Let R be a GRS.

(i) A transfinite reduction in R is a sequence (gι →R gi+1)i<α of rewriting steps in R.
(ii) A transfinite reduction S = (gι →R gι+1)ι<α m-converges to g ∈ G∞C (Σ) in R, written

S : g0 ↪→m R g, if (gι)ι<α̂ is continuous and converges to g in the metric space.
(iii) Let R⊥ be the GRS (Σ⊥, R) over the extended signature Σ⊥. A transfinite reduction

S = (gι →R⊥ gι+1)ι<α p-converges to g ∈ G∞C (Σ⊥) in R, written S : g0 ↪→p R g, if
lim infι<λ gi = gλ for each limit ordinal λ < α, and lim inf

ι<α̂
gi = g.

Note that we have to extend the signature of R to Σ⊥ for the definition of p-convergence.
However, we can obtain the total fragment of p-convergence if we restrict ourselves to total
term graphs in G∞C (Σ): A transfinite reduction (gι →R⊥ gι+1)ι<α p-converging to g is called
total if g as well as each gι is total, i.e. an element of G∞C (Σ).

I Example 6.2. Consider the term graph rule ρ1 in Figure 3a that unravels to the term
rule a : x→ b : a : x from Example 1.1. Starting with the term tree a : c, depicted as g1 in
Figure 3b, we obtain the same transfinite reduction as in Example 1.1:

S : a : c→ρ1 b : a : c→ρ1 b : b : a : c→ρ1 . . . hω

Also in this setting, S both m- and p-converges to the term tree hω shown in Figure 3c.
Similarly, we can reproduce the p-converging but not m-converging reduction T from Ex-
ample 1.2. Notice that hω is a rational term tree as it can be obtained by unravelling the

Patrick Bahr 153

finite term graph g2 depicted in Figure 3b. In fact, if we use the rule ρ2, we can immediately
rewrite g1 to g2. In ρ2, not only the variable x is shared but the whole left-hand side of the
rule. This causes each redex of ρ2 to be captured by the right-hand side.

Figure 3c indicates a transfinite reduction starting with a cyclic term graph h0 that
unravels to the rational term t = a : t. This reduction both m- and p-converges to the
rational term tree hω as well. Again, by using ρ2 instead of ρ1, we can rewrite h0 to the
cyclic term graph g2 in one step.

The following theorem shows that the total fragment of p-converging reductions is in fact
equivalent to the m-converging reductions:

I Theorem 6.3. Let S be a transfinite reduction in a GRS R⊥. Then

S : g ↪→p R h is total iff S : g ↪→m R h.

Proof. Follows straightforwardly from Proposition 5.7. J

An analogous result was also shown for infinitary term rewriting [6, 4]. In the setting
of term rewriting, however, it also holds for the so-called strong convergence. The notion
of convergence considered here is the weak convergence and we do not know whether the
theorem above can be transferred to strong convergence as well.

7 Alternative Approaches and Future Work

While exhibiting the desired properties, the structures that we have investigated here seem
quite intricate. This concerns both the partial order and the notion of truncation that
provides an alternative characterisation for the metric. It is therefore advisable to further
scrutinise these structures as well as possible alternatives.

The two partial orders ≤1
⊥ and ≤2

⊥, which we briefly discussed in Section 4, are not
suited for formalising convergence as they capture too much sharing resp. too little. In-
stead, we took a middle ground, based on strong ⊥-homomorphisms, yielding the order ≤G⊥.
However, injective ⊥-homomorphisms provide a much more natural generalisation of strong
⊥-homomorphisms: A ⊥-homomorphism φ : g →⊥ h is injective if φ(n) = φ(m) implies
n = m for all non-⊥-nodes in g. Unfortunately, the thus obtained order ≤3

⊥ has a quirk: In
general, it does not even admit the glb of a finite number of term graphs. Figure 1b shows
two term graphs with two maximal lower bounds w.r.t. ≤3

⊥. Even though this means that
≤3
⊥ does not provide a complete semilattice, it might still be appealing for other purposes,

as it forms a cpo.
While we defined the metric d on term graphs using the glb induced by the partial

order ≤G⊥, we also provided a characterisation via the truncation g|d. We can take this as a
starting point to define a metric in the style of Proposition 5.3 but with a simpler notion of
truncation: Consider the strict truncation god, sketched in Figure 2b, that simply removes
all nodes at depth d or below. Conceptionally, the thus induced metric do is considerably
simpler. This is also manifested by its invariance under some minor changes to its definition:
In the definition of the truncation g|d, we had to be very careful in defining the fringe nodes
which have to have at most one predecessor and also have to be introduced for each edge at
sufficient depth that closes a cycle. Changing these intricate details of the definition change
the induced topology of the corresponding metric space. This is not the case for the metric
do. Regardless of how we deal with fringe nodes in the strict truncation, as long as they are
labelled with ⊥, the induced topology of the resulting metric space is the same. Moreover,

RTA’11

154 Modes of Convergence for Term Graph Rewriting

(G∞C (Σ),do) is also a complete ultrametric space. It is, however, unknown to us whether
there is a complete semilattice that is compatible with it in the sense of Proposition 5.7.

Acknowledgement

I would like to thank Bernhard Gramlich for his constant support during the work on my
master’s thesis which made this work possible. I am also indebted to the anonymous referees
whose comments and suggestions greatly helped to improve the presentation of this paper.

References
1 Z.M. Ariola and S. Blom. Skew confluence and the lambda calculus with letrec. Annals of

Pure and Applied Logic, 117(1-3):95–168, 2002.
2 Z.M. Ariola and J.W. Klop. Lambda calculus with explicit recursion,. Information and

Computation, 139(2):154 – 233, 1997.
3 A. Arnold and M. Nivat. The metric space of infinite trees. Algebraic and topological

properties. Fundamenta Informaticae, 3(4):445–476, 1980.
4 P. Bahr. Infinitary rewriting - theory and applications. Master’s thesis, Vienna University

of Technology, Vienna, 2009.
5 P. Bahr. Abstract models of transfinite reductions. In C. Lynch, editor, RTA 2010, volume 6

of LIPIcs, pages 49–66. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2010.
6 P. Bahr. Partial order infinitary term rewriting and böhm trees. In C. Lynch, editor, RTA

2010, volume 6 of LIPIcs, pages 67–84. Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2010.

7 H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, R. Kennaway, M.J. Plasmeijer,
and M.R. Sleep. Term graph rewriting. In Philip C. Treleaven Jaco de Bakker, A. J. Nijman,
editor, PARLE 1987, volume 259 of LNCS, pages 141–158. Springer, 1987.

8 S. Blom. An approximation based approach to infinitary lambda calculi. In Vincent van
Oostrom, editor, RTA 2004, volume 3091 of LNCS, pages 221–232. Springer, 2004.

9 B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science,
25(2):95–169, 1983.

10 J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Initial algebra semantics and
continuous algebras. Journal of the ACM, 24(1):68–95, 1977.

11 G. Kahn and G.D. Plotkin. Concrete domains. Theoretical Computer Science, 121(1-
2):187–277, 1993.

12 J.L. Kelley. General Topology, volume 27 of Graduate Texts in Mathematics. Springer-
Verlag, 1955.

13 R. Kennaway. On transfinite abstract reduction systems. Technical report, CWI (Centre
for Mathematics and Computer Science), Amsterdam, 1992.

14 R. Kennaway. Infinitary rewriting and cyclic graphs. Electronic Notes in Theoretical Com-
puter Science, 2:153–166, 1995. SEGRAGRA ’95.

15 R. Kennaway and F.-J. de Vries. Infinitary rewriting. In Terese [18], chapter 12, pages
668–711.

16 R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. On the adequacy of graph
rewriting for simulating term rewriting. ACM Transactions on Programming Languages
and Systems, 16(3):493–523, 1994.

17 D. Plump. Term graph rewriting. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski,
and Grzegorz Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph
Transformation, volume 2, pages 3–61. World Scientific Publishing Co., Inc., 1999.

18 Terese. Term Rewriting Systems. Cambridge University Press, 1st edition, 2003.

Modular Termination Proofs of Recursive Java
Bytecode Programs by Term Rewriting∗

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract
In [5, 15] we presented an approach to prove termination of non-recursive Java Bytecode (JBC) pro-
grams automatically. Here, JBC programs are first transformed to finite termination graphs which
represent all possible runs of the program. Afterwards, the termination graphs are translated to
term rewrite systems (TRSs) such that termination of the resulting TRSs implies termination
of the original JBC programs. So in this way, existing techniques and tools from term rewriting
can be used to prove termination of JBC automatically. In this paper, we improve this approach
substantially in two ways:
(1) We extend it in order to also analyze recursive JBC programs. To this end, one has to

represent call stacks of arbitrary size.
(2) To handle JBC programs with several methods, we modularize our approach in order to re-

use termination graphs and TRSs for the separate methods and to prove termination of the
resulting TRS in a modular way.

We implemented our approach in the tool AProVE. Our experiments show that the new contri-
butions increase the power of termination analysis for JBC significantly.

1998 ACM Subject Classification D.1.5 - Object-oriented Programming, D.2.4 - Software/Pro-
gram Verification, D.3.3 - Language Constructs and Features, F.3 - Logics and Meanings of
Programs, F.4.2 - Grammars and Other Rewriting Systems, I.2.2 - Automatic Programming

Keywords and phrases termination, Java Bytecode, term rewriting, recursion

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.155

Category Regular Research Paper

1 Introduction

While termination of TRSs and logic programs was studied for decades, recently there have
also been many results on termination of imperative programs (e.g., [3, 6, 7, 8]). However,
these methods do not re-use the many existing termination techniques for TRSs and declar-
ative languages. Therefore, in [5, 15] we presented the first rewriting-based approach for
proving termination of a real imperative object-oriented language, viz. Java Bytecode [14].

We only know of two other automated methods to analyze JBC termination, implemented
in the tools COSTA [2] and Julia [16]. They transform JBC into a constraint logic program
by abstracting objects of dynamic data types to integers denoting their path-length (e.g., list
objects are abstracted to their length). While this fixed mapping from objects to integers
leads to high efficiency, it also restricts the power of these methods.

In contrast, in [5, 15] we represent data objects not by integers, but by terms which express
as much information as possible about the objects. For example, list objects are represented
by terms of the form List(t1, List(t2, . . . List(tn, null) . . .)). In this way, we benefit from the fact

∗ Supported by the DFG grant GI 274/5-3 and the G.I.F. grant 966-116.6.

© M. Brockschmidt, C. Otto, J. Giesl;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 155–170

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.155
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

156 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

that rewrite techniques can automatically generate well-founded orders comparing arbitrary
forms of terms. Moreover, by using TRSs with built-in integers [9], our approach is not only
powerful for algorithms on user-defined data structures, but also for algorithms on pre-defined
data types like integers. To obtain TRSs that are suitable for termination analysis, our
approach first transforms a JBC program into a termination graph which represents all
possible runs of the program. These graphs handle all aspects of JBC that cannot easily be
expressed in term rewriting (e.g., side effects, cyclic data objects, object-orientation, etc.).
Afterwards, a TRS is generated from the termination graph. As proved in [5, 15], termination
of this TRS implies termination of the original JBC program.

We implemented this approach in our tool AProVE [10] and in the International Termin-
ation Competitions,1 AProVE achieved competitive results compared to Julia and COSTA.

However, a significant drawback was that (in contrast to techniques that abstract objects
to integers [2, 8, 16]), our approach in [5, 15] could not deal with recursion. The problem is
that for recursive methods, the size of the call stack usually depends on the input arguments.
Hence, to represent all possible runs, this would lead to termination graphs with infinitely
many states (since [5, 15] used no abstraction on call stacks). An abstraction of call stacks is
non-trivial due to possible aliasing between references in different stack frames.

In the current paper, we solve these problems. Instead of directly generating a termination
graph for the whole program as in [5, 15], in Sect. 2 we construct a separate termination
graph for each method. These graphs can be combined afterwards. Similarly, one can also
combine the TRSs resulting from these “method graphs” (Sect. 3). As demonstrated by our
implementation in AProVE (Sect. 4), our new approach has two main advantages over [5, 15]:

(1) We can now analyze recursive methods, since our new approach can deal with call stacks
that may grow unboundedly due to method calls.

(2) We obtain a modular approach, because one can re-use a method graph (and the rewrite
rules generated from it) whenever the method is called. So in contrast to [5, 15], now we
generate TRSs that are amenable to modular termination proofs.

See [4] for all proofs, and see [1] for experimental details and our previous papers [5, 15].

2 From Recursive JBC to Modular Termination Graphs

To analyze termination of a set of desired initial (concrete) program states, we represent this
set by a suitable abstract state which is the initial node of the termination graph. Then this
state is evaluated symbolically, which leads to its child nodes in the termination graph.

Our approach is restricted to verified2 sequential JBC programs. To simplify the present-
ation in this paper, we exclude arrays, static class fields, interfaces, and exceptions. We also
do not describe the annotations introduced in [5, 15] to handle complex sharing effects. With
such annotations one can for example also model “unknown” objects with arbitrary sharing
behavior as well as cyclic objects. Extending our approach to such constructs is easily possi-
ble and has been done for our implementation in the termination prover AProVE. However, cur-
rently our implementation has only minimal support for features like floating point arithmetic,
strings, static initialization of classes, instances of java.lang.Class, reflection, etc.

Sect. 2.1 presents our notion of states. Sect. 2.2 introduces termination graphs for one
method and Sect. 2.3 shows how to re-use these graphs for programs with many methods.

1 See http://www.termination-portal.org/wiki/Termination_Competition.
2 The bytecode verifier of the JVM [14] ensures certain properties of the code that are useful for our

analysis, e.g., that there is no overflow or underflow of the operand stack.

http://www.termination-portal.org/wiki/Termination_Competition

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 157

2.1 States
final class List {

List n;
public void appE(int i) {

if (n == null) {
if (i <= 0) return ;
n = new List ();
i--;

}
n.appE(i);

}}

00: aload_0 // load this to opstack
01: getfield n // load this.n to opstack
04: ifnonnull 26 // jump to 26 if n is not null
07: iload_1 // load i to opstack
08: ifgt 12 // jump to 12 if i > 0
11: return // return (without value)
12: aload_0 // load this to opstack
13: new List // create new List object
16: dup // duplicate top stack entry
17: invokespecial <init > // invoke constructor
20: putfield n // write new List to field n
23: iinc 1, -1 // decrement i by 1
26: aload_0 // load this to opstack
27: getfield n // load this.n to opstack
30: iload_1 // load i to opstack
31: invokevirtual appE // recursive call
34: return // return (without value)

Consider the recursive method
appE (presented in both Java and
JBC). We use a class List where
the field n points to the next list
element. For brevity, we omitted a field for the value of a list element. The method appE
recursively traverses the list to its end, where it attaches i fresh elements (if i > 0).

o1, i3 | 0 | t :o1,i : i3 | ε
o1:List(n=o2) i3:Z
o2:List(?)

Figure 1 State

Fig. 1 displays an abstract state of appE. A state consists of a
sequence of stack frames and the heap, i.e., States = SFrames∗

×Heap. The state in Fig. 1 has just a single stack frame “o1, i3 | 0 |
t :o1,i : i3 | ε” which consists of four components. Its first component
o1, i3 are the input arguments, i.e., those objects that are “visible” from outside the analyzed
method. This component is new compared to [5, 15] and it is needed to denote later on which
of these objects have been modified by side effects during the execution of the method. In
our example, appE has two input arguments, viz. the implicit formal parameter this (whose
value is o1) and the formal parameter i with value i3. In contrast to JBC, we also represent
integers by references and adapt the semantics of all instructions to handle this correctly. So
o1, i3 ∈ Refs, where Refs is an infinite set of names for addresses on the heap.

The second component 0 of the stack frame is the program position (from ProgPos),
i.e., the index of the next instruction. So 0 means that evaluation continues with aload_0.

The third component is the list of values of local variables, i.e., LocVar = Refs∗. To
ease readability, we do not only display the values, but also the variable names. For example,
the name of the first local variable this is shortened to t and its value is o1.

The fourth component is the operand stack to store temporary results, i.e., OpStack =
Refs∗. Here, ε is the empty stack and “o8, o1” denotes a stack with o8 on top.

So the set of all stack frames is SFrames=InpArgs×ProgPos×LocVar×OpStack.
As mentioned, the call stack of a state can consist of several stack frames. If a method calls
another method, then a new frame is put on top of the call stack.

In addition to the call stack, a state contains information on the heap. The heap is a partial
function mapping references to their value, i.e., Heap = Refs→ Integers∪ Instances∪
Unknown∪{null}.We depict a heap by pairs of a reference and a value, separated by “:”.

Integers are represented by intervals, i.e., Integers = {{x ∈ Z | a ≤ x ≤ b} | a ∈
Z∪ {−∞}, b ∈ Z∪ {∞}, a ≤ b}. We abbreviate (−∞,∞) by Z, [1,∞) by [> 0], etc. So “i3 :
Z” means that any integer can be at the address i3. Since current TRS tools cannot handle
32-bit int-numbers, we treat all numeric types like int as the infinite set of all integers.

To represent Instances (i.e., objects) of some class, we store their type and the values of
their fields, i.e., Instances = Classnames×(FieldIDs→ Refs). Classnames contains
the names of all classes. FieldIDs is the set of all field names. To prevent ambiguities, in
general the FieldIDs also include the respective class name. For all (cl, f) ∈ Instances,
the function f is defined for all fields of cl and of its superclasses. Thus, “o1 : List(n = o2)”
means that at the address o1, there is a List object whose field n has the value o2.

RTA’11

158 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

Unknown = Classnames×{?} represents null and all tree-shaped objects for which
we only have type information. In particular, Unknown objects are acyclic and do not
share parts of the heap with any objects at the other references in the state. For example,
“o2 : List(?)” means that o2 is null or an instance of List (or a subtype of List).

Every input argument has a boolean flag, where false indicates that it may have been
modified (as a side effect) by the current method. Moreover, we store which formal parameter
of the method corresponds to this input argument. So in Fig. 1, the full input arguments are
(o1, lv0,0, true) and (i3, lv0,1, true). Here, lvi,j is the position of the j-th local variable in
the i-th stack frame. When the top stack frame (i.e., frame 0) is at program position 0 of a
method, then its 0-th and 1-st local variables (at positions lv0,0 and lv0,1) correspond to
the first and second formal parameter of the method. Formally, InpArgs = 2Refs× SPos×B.

A state position π ∈ SPos(s) is a sequence starting with lvi,j , osi,j (for operand stack
entries), or ini,τ (for input arguments (r, τ, b) in the i-th stack frame), followed by a sequence
of FieldIDs. This sequence indicates how to access a particular object.

I Definition 2.1 (State Positions). Let s = (〈fr0, . . . , frn〉, h) ∈ States where fr i = (ini, ppi,
lvi, osi). Then SPos(s) is the smallest set containing all the following sequences π:

π = lvi,j where 0 ≤ i ≤ n, lvi = 〈l0, . . . , lm〉, 0 ≤ j ≤ m. Then s|π is lj .
π = osi,j where 0 ≤ i ≤ n, osi = 〈o0, . . . , ok〉, 0 ≤ j ≤ k. Then s|π is oj .
π = ini,τ where 0 ≤ i ≤ n and (r, τ, b) ∈ ini. Then s|π is r.
π = π′ v for some v ∈ FieldIDs and some π′ ∈ SPos(s) where h(s|π′) = (cl, f) ∈
Instances and where f(v) is defined. Then s|π is f(v).

The references in the state s are defined as Ref (s) = {s|π | π ∈ SPos(s)}.

So for the state s in Fig. 1, we have s|lv0,0 = s|in0,lv0,0
= o1, s|lv0,0 n = s|in0,lv0,0 n = o2, etc.

2.2 Termination Graphs for a Single Method
In Fig. 2, we construct the termination graph of appE. The state in Fig. 1 is its initial state
A, i.e., we analyze termination of appE for acyclic lists of arbitrary length and any integer.

In A, aload_0 loads the value of the 0-th local variable this on the operand stack. So
A is connected by an evaluation edge to a state with program position 1 (omitted from
Fig. 2 due to space reasons, i.e., dotted arrows abbreviate several steps). Then “getfield
n” replaces o1 on the operand stack by the value o2 of its field n, resulting in state B. The
value List(?) of o2 does not provide enough information to evaluate ifnonnull. Thus, we
perform an instance refinement [5, Def. 5] resulting in C and D, i.e., a case analysis whether
o2’s value is null. Refinement edges are denoted by dashed lines. In C, we assume that o2’s
value is not null. Thus, we replace o2 by a fresh3 reference o4, which points to List(n = o5).
Hence, we can now evaluate ifnonnull and jump to instruction 26 in state M .

In D, we assume that o2’s value is null , i.e., “o1 : List(n = o2)” and “o2 : null”. To
ease the presentation, in such states we simply replace all occurrences of o2 with null . After
evaluating the instruction “ifnonnull 26”, in the next state (which we omitted from Fig. 2
for space reasons), the instruction “iload_1” loads the value of i on the operand stack. This
results in state E. Now again we do not have enough information to evaluate ifgt. Thus,
we perform an integer refinement [5, Def. 1], leading to states F (if i <= 0) and H.

3 We rename references that are refined to ease the formal definition of the refinements, cf. [5].

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 159

o1, i3 | 0 | t :o1,i : i3 | ε
o1:List(n=o2) i3:Z
o2:List(?)

A

o1, i3 | 4 | t :o1,i : i3 | o2
o1:List(n=o2) i3:Z
o2:List(?)

B

o1, i3 | 4 | t :o1,i : i3 | o4
o1:List(n=o4) i3:Z
o4:List(n=o5) o5:List(?)

C
o1, i3 | 4 | t :o1,i : i3 | null
o1:List(n=null) i3:Z

D

o1, i3 | 8 | t :o1,i : i3 | i3
o1:List(n=null) i3:Z

E

o1, i6 | 8 | t :o1,i : i6 | i6
o1:List(n=null) i6: [≤ 0]

F

o1, i6 | 11 | t :o1,i : i6 | ε
o1:List(n=null) i6: [≤ 0] G

o1, i7 | 8 | t :o1,i : i7 | i7
o1:List(n=null) i7: [> 0]

H
o1, i7 | 12 | t :o1,i : i7 | ε
o1:List(n=null) i7: [> 0]

I

o1, i7 | 20 | t :o1,i : i7 | o8, o1
o1:List(n=null) i7: [> 0]
o8:List(n=null)

J

o1, i7 | 23 | t :o1,i : i7 | ε
o1:List(n=o8) i7: [> 0]
o8:List(n=null)

K

o1, i7 | 26 | t :o1,i : i8 | ε
o1:List(n=o8) i8: [≥ 0]
o8:List(n=null) i7: [> 0]

L

o1, i3 | 26 | t :o1,i : i3 | ε
o1:List(n=o4) i3:Z
o4:List(n=o5) o5:List(?)

M

o1, i9 | 26 | t :o1,i : i10 | ε
o1:List(n=o4) i9:Z i10:Z
o4:List(n=o5) o5:List(?)

N

o1, i9 | 31 | t :o1,i : i10 | i10,o4
o1:List(n=o4) i9:Z i10:Z
o4:List(n=o5) o5:List(?)

O

o4, i10 | 0 | t :o4,i : i10 | ε
o1, i9 | 34 | t :o1,i : i10 | ε
o1:List(n=o4) i9:Z i10:Z
o4:List(n=o5) o5:List(?)

Po4, i10 | 0 | t :o4,i : i10 | ε
o4:List(n=o5) i10:Z
o5:List(?)

Q

o11, i12 | 11 | t :o11,i : i12 | ε
o1, i9 | 34 | t :o1,i : i12 | ε
o1:List(n=o11) i9:Z
o11:List(n=null) i12: [≤0]

R

o1, i9 | 34 | t :o1,i : i12 | ε
o1:List(n=o11) i9:Z
o11:List(n=null) i12: [≤0]

S

o14, i13 | 34 | t :o14,i : i15 | ε
o1, i9 | 34 | t :o1,i : i13 | ε
o1:List(n=o14) i9:Z
o14:List(n=o16) i13:Z
o16:List(n=null) i15: [≤0]

T

o1, i9 | 34 | t :o1,i : i13 | ε
o1:List(n=o14) i9:Z
o14:List(n=o16) i13:Z
o16:List(n=null)

U

o1, i9 | 34 | t :o1,i : i13 | ε
o1:List(n=o14) i9:Z
o14:List(n=o16) i13:Z
o16:List(?)

V

o17, i19 | 34 | t :o17,i : i21 | ε
o1, i9 | 34 | t :o1,i : i19 | ε
o1:List(n=o17) i9:Z i21:Z
o17:List(n=o18) i19:Z
o18:List(n=o20) o20:List(?)

W o1, i9 | 34 | t :o1,i : i19 |ε
o1:List(n=o17) o20:List(?)
o17:List(n=o18) i19:Z
o18:List(n=o20) i9:Z

X

i6≤0

i7>0

i8 = i7 − 1

with P

with P

with P

Figure 2 Termination Graph of appE

In F , we evaluate ifgt, leading to G. We label the edge from F to G with the condition
i6 ≤ 0 of this case. This label will be used when generating a TRS from the termination
graph. States like G that have only a single stack frame which is at a return position are
called return states. Thus, we reach a program end, denoted by �. From H, we jump to
instruction 12 in I and label the edge with i7 > 0. In I, o1 is pushed on the operand stack.
Afterwards, we create another list element o8, where we skipped the constructor call in Fig. 2.
In K, o8 has been written to the field n of o1. This is a side effect on an object that is visible
from outside the method (since o1 is an input argument). Hence, in K we set the boolean
flag for o1 to false (depicted by crossing out the input argument o1).

In L, the value of the 1-st local variable i is decremented by 1. In contrast to JBC,
we represent primitive data types by references. Hence, we introduce a fresh reference i8,
pointing to the adapted value. Since i7’s value did not change, i7 is not crossed out.

State L is similar to the stateM we obtained from the other branch of our first refinement.
To simplify the graph, we create a generalized state N , which represents a superset of all
concrete states represented by L or M . N is almost like M (up to renaming of references)
and only differs in the information about input arguments, which is taken from L. We draw
instance edges (double arrows) from L and M to N and only consider N in the remainder.

In O, we have loaded this.n and i on the operand stack and invoke appE on these values.

RTA’11

160 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

So in P , a second stack frame is pushed on top of the previous one. States like P that contain
at least two frames where the top frame is at the start of a method are call states.

We now introduce a new approach to represent call stacks of arbitrary size by splitting up
call stacks. Otherwise, for recursive methods the call stack could grow unboundedly and we
would obtain an infinite termination graph. So P has a call edge (thick arrow) to Q which
only contains P ’s top stack frame. Since Q is identical to A (modulo renaming), we do not
have to analyze appE again, but simply draw an instance edge from Q to A.

Up to now A only represented concrete states where appE was called “directly”. However,
now A can also be reached from a “method call” in P . Hence, now A and the other abstract
states s of appE’s termination graph also represent states where appE was called “recursively”,
i.e., where below the stack frames of s, one has the stack frames of P (only P ’s top frame
is replaced by the frames of s).4 For each return state we now consider two cases: Either
there are no further frames below the top frame (then one reaches a leaf of the termination
graph) or else, there are further frames below the top (which result from the method call
in P). Hence, for every return state like G, we now create an additional successor state R
(the context concretization of G with P), connected by a context concretization edge (a thick
dotted arrow). R has the same stack frame as G (up to renaming), but below we add the
call stack of P (without P ’s top frame that corresponded to the method call).

In R, appE’s recursive call has just reached the return statement at index 11. Here, we
identified o1 and i6 from state G with o4 and i10 from P and renamed them to o11 and i12.
We now consider which information we have about R’s heap. According to state G, the input
arguments of appE’s recursive call were not modified during the execution of this recursive
call. Thus, for the input arguments o11 and i12 in R, we can use both the information on
o1 and i6 in G and on o4 and i10 in P . According to G, o1 is a list of length 1 and i6 ≤ 0.
According to P , o4 has at least length 1 and i10 is arbitrary. Hence, in R we can take the
intersection of this information and deduce that o11 has length 1 and i12 ≤ 0. (So in this
example, the intersection of G’s and P ’s information coincides with the information in G.)

When constructing termination graphs, context concretization is only needed for return
states. But to formulate Thm. 2.3 on the soundness of termination graphs later on, in Def. 2.2
we introduce context concretization for arbitrary states s = (〈fr0, . . . , frn〉, h). So s re-
sults from evaluating the method in the bottom frame frn (i.e., frn−1 was created by a call
in frn, frn−2 was created by a call in frn−1, etc.). Context concretization of s with a call
state s = (〈fr0, . . . , frm〉, h) means that we consider the case where frn results from a call in
fr1. Thus, the top frame fr0 of s is at the start of some method and the bottom frame frn of
s must be at an instruction of the same method. Moreover, for all input arguments (r, τ, b) in
fr0 there must be a corresponding input argument (r, τ, b) in frn.5 To ease the formalization,
let Ref (s) and Ref (s) be disjoint. For instance, if s is G and s is P , we can mark the
references by G and P to achieve disjointness (e.g., oG1 ∈ Ref (G) and oP1 ∈ Ref (P)).

Then we add the frames fr1, . . . , frm of the call state s below the call stack of s to obtain
a new state s̃ with the call stack 〈fr0σ, . . . , frnσ, fr1σ, . . . , frmσ〉. The identification substi-
tution σ identifies every input argument r of fr0 with the corresponding input argument r
of frn. If the boolean flag for the input argument r in s is false, then this object may have
changed during the evaluation of the method and in s̃, we should only use the information

4 For example, A now represents all states with call stacks 〈frA, frP1 , frP1 , . . . , frP1 〉 where frA is A’s stack
frame and frP1 , frP1 , . . . , frP1 are copies of P ’s bottom frame (in which references may have been renamed).
So A represents states where appE was called within an arbitrary high context of recursive calls.

5 This obviously holds for all input arguments corresponding to formal parameters of the method, but
Sect. 2.3 will illustrate that sometimes fr0 may have additional input arguments.

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 161

from s. But if the flag is true, then the object did not change. Then, both the information in
s and in s about this object is correct and for s̃, we take the intersection of this information.
In our example, σ(oG1) = σ(oP4) = oR11 and σ(iG6) = σ(iP10) = iR12. Since the flags of the input
arguments oG1 and iG6 are true, for oR11 and iR12, we intersect the information from G and P .

If we identify r and r, and both point to Instances, then we may also have to identify
the references in their fields. To this end, we define an equivalence relation ≡ ⊆ Refs×Refs
where “r ≡ r” means that r and r are identified. Let r ≡ r and let r be no input argument in
s with the flag false. If r points to (cl, f) in s and r points to (cl, f) in s, then all references
in the fields v of cl and its superclasses also have to be identified, i.e., f(v) ≡ f(v).

To illustrate this in our example, note that we abbreviated the information on G’s heap
in Fig. 2. In reality we have “oG1 : List(n = oG2)”, “oG2 : null”, and “iG6 : [≤ 0]”. Hence, we
do not only obtain iG6 ≡ iP10 and oG1 ≡ oP4 , but since oG1 ’s boolean flag is not false, we also
have to identify the references at the field n of the object, i.e., oG2 ≡ oP5 .

Let ρ be an injective function that maps each ≡-equivalence class to a fresh reference. We
define the identification substitution σ as σ(r) = ρ([r]≡) for all r ∈ Ref (s) ∪Ref (s). So we
map equivalent references to the same new reference and we map non-equivalent references to
different references. To construct s̃, if r ∈ Ref (s) points to an object which was not modified
by side effects during the execution of the called method (i.e., where the flag is not false),
we intersect all information in s and s on the references in [r]≡. For all other references in
Ref (s) resp. Ref (s), we only take the information from s resp. s and apply σ.

In our example, we have the equivalence classes {oG1 , oP4 }, {oG2 , oP5 }, {iG6 , iP10}, {oP1 },
and {iP9 }. For these classes we choose the new references oR11, oR2 , iR12, o

R
1 , i

R
9 , and obtain

σ = {oG1 /oR11, o
P
4 /o

R
11, o

G
2 /o

R
2 , o

P
5 /o

R
2 , i

G
6 /i

R
12, i

P
10/i

R
12, o

P
1 /o

R
1 , i

P
9 /i

R
9 }. The information for oR11,

oR2 , and iR12 is obtained by intersecting the respective information from G and P . The
information for oR1 and iR9 is taken over from P (by applying σ).

Def. 2.2 also introduces the concept of intersection formally. If r ∈ Refs(s), r ∈ Refs(s),
and h resp. h are the heaps of s resp. s, then intuitively, h(r) ∩ h(r) consists of those
values that are represented by both h(r) and h(r). For example, if h(r) = [≥ 0] = (−1,∞)
and h(r) = [≤ 0] = (−∞, 1), then the intersection is (−1, 1) = [0, 0]. Similarly, if h(r) or
h(r) is null, then their intersection is again null. If h(r), h(r) are Unknown instances of
classes cl1, cl2, then their intersection is an Unknown instance of the more special class
min(cl1, cl2). Here, min(cl1, cl2) = cl1 if cl1 is a (not necessarily proper) subtype of cl2 and
min(cl1, cl2) = cl2 if cl2 is a subtype of cl1. Otherwise, cl1 and cl2 are called orthogonal. If
h(r) ∈ Unknown and h(r) ∈ Instances, then their intersection is from Instances using
the more special type. Finally, if both h(r), h(r) ∈ Instances with the same type, then their
intersection is again from Instances. For the references in its fields, we use the identification
substitution σ that renames equivalent references to the same new reference.

Note that one may also have to identify different references in the same state. For
example, s could have the input arguments (r, τ1, b) and (r, τ2, b) with the corresponding
input arguments (r1, τ1, b1) and (r2, τ2, b2) in s. Then r ≡ r1 ≡ r2. Note that if r1 6= r2
are references from the same state where h(r1) ∈ Instances, then they point to different
objects (i.e., then h(r1) ∩ h(r2) is empty). Similarly, if h(r1), h(r2) ∈ Unknown, then they
also point to different objects or to null (i.e., then h(r1) ∩ h(r2) is null).

I Definition 2.2 (Context Concretization). Let s = (〈fr0, . . . , frn〉, h) and let s = (〈fr0, . . . ,

frm〉, h) be a call state where frn and fr0 correspond to the same method. (So fr0 is at the
start of the method and frn can be at any position of the method.) Let inn resp. in0 be the
input arguments of frn resp. fr0, and let Ref (s) ∩ Ref (s) = ∅. For every input argument
(r, τ, b) ∈ in0 there must be a corresponding input argument (r, τ, b) ∈ inn (i.e., with the same

RTA’11

162 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

position τ), otherwise there is no context concretization of s with s. Let ≡ ⊆ Refs×Refs
be the smallest equivalence relation which satisfies the following two conditions:

if (r, τ, b) ∈ in0 and (r, τ, b) ∈ inn, then r ≡ r.
if r ∈ Ref (s), r ∈ Ref (s), r ≡ r, and there is no (r, τ, false) ∈ inn, then h(r) = (cl, f) and
h(r) = (cl, f) implies that f(v) ≡ f(v) holds for all fields v of cl and its superclasses.

Let ρ : Refs /≡ → Refs be an injective mapping to fresh references /∈ Ref (s) ∪ Ref (s) and
let σ(r) = ρ([r]≡) for all r ∈ Ref (s) ∪ Ref (s). Then the context concretization of s with s is
the state s̃ = (〈fr0σ, . . . , frnσ, fr1σ, . . . , frmσ〉, h̃). Here, we define h̃(σ(r)) to be

h(r1)∩ . . .∩h(rk)∩h(r1)∩ . . .∩h(rd), if [r]≡∩Ref (s) = {r1, . . . , rk}, [r]≡∩Ref (s) = {r1,

. . . , rd}, and there is no input argument (ri, τ, false) ∈ inn
h(r1) ∩ . . . ∩ h(rk), if [r]≡ ∩ Ref (s) = {r1, . . . , rk}, and there is an (ri, τ, false) ∈ inn

If the intersection is empty, then there is no concretization of s with s. Moreover, whenever
there is an input argument (r, τ, b) ∈ in0 with corresponding input argument (r, τ, false) ∈ inn,
then for all input arguments (r′, τ ′, b′) in lower stack frames of s where r′ reaches6 r in h,
the flag b′ must be replaced by false when creating the context concretization s̃. In other
words, in the lower stack frame of s̃, we then have the input argument (r′σ, τ ′, false).

Finally, for all s1, . . . , sk ∈ {s, s} where hi is the heap of si, and for all pairwise different
references r1, . . . , rk with ri ∈ Ref (si) where r1 ≡ . . . ≡ rk, we define h1(r1)∩ . . .∩ hk(rk) to
be h1(r1)σ if k = 1. Otherwise, h1(r1) ∩ . . . ∩ hk(rk) is

(max(a1, . . . , ak),min(b1, . . . , bk)), if all hi(ri) = (ai, bi) ∈ Integers and max(a1, . . . ,

ak) + 1 < min(b1, . . . , bk)
null, if all hi(ri) ∈ Unknown∪{null} and at least one of them is null
null, if all hi(ri) ∈ Unknown and there are j 6= j′ with sj = sj′

null, if k = 2, h1(r1) = (cl1, ?), h2(r2) = (cl2, ?) and cl1, cl2 are orthogonal
(min(cl1, cl2), ?), if k = 2, s1 6= s2, h1(r1) = (cl1, ?), h2(r2) = (cl2, ?), and cl1, cl2 are not
orthogonal
(cl, f), if k = 2, s1 6= s2, h1(r1) = (cl, f1), h2(r2) = (cl, f2) ∈ Instances. Here,
f(v) = σ(f1(v)) = σ(f2(v)) for all fields v of cl and its superclasses.
(min(cl1, cl2), f), if k = 2, s1 6= s2, h1(r1) = (cl1, ?), h2(r2) = (cl2, f2), and cl1, cl2 are
not orthogonal. Here, f(v) = σ(f2(v)) for all fields v of cl2 and its superclasses. If cl1 is
a subtype of cl2, then for those fields v of cl1 and its superclasses where f2 is not defined,
f(v) returns a fresh reference rv where h̃(rv) = (−∞,∞) if the field v has an integer
type and h̃(rv) = (clv, ?) if the type of the field v is some class clv. The case where
h1(r1) ∈ Instances and h2(r2) ∈ Unknown is analogous.

In all other cases, h1(r1) ∩ . . . ∩ hk(rk) is empty.

We continue with constructing appE’s termination graph. When evaluating R, the top
frame is removed from the call stack and due to the lower stack frame, we now reach a
new return state S. As above, for every return state, we have to create a new context
concretization T which is like the call state P , but where P ’s top stack frame is replaced by
the stack frame of the return state S. We use an identification substitution σ which maps
oS1 and oP4 to oT14, iS9 and iP10 to iT13, iS12 to iT15, oS11 to oT16, oP1 to oT1 , and iP9 to iT9 . The value
of oT14 (i.e., oS1 and oP4) may have changed during the execution of the top frame (as oS1 is

6 We say that r′ reaches r in h iff there is a position π1 π2 ∈ SPos(s) such that s|π1 = r′ and s|π1 π2 = r.

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 163

crossed out). Hence, we only take the value from S, i.e., oT14 is a list of length 2. For iT13, we
intersect the information on iS9 and on iP10. The information on iT15 is taken from iS12 and the
information on oT1 resp. iT9 is taken from oP1 resp. iP9 (where σ is applied).

When evaluating T , the top frame is removed and we reach a new return state U . If we
continued in this way, we would perform context concretization on U again, etc. Then the
construction would not finish and we would get an infinite termination graph.

To obtain finite graphs, we use the heuristic to generalize all return states with the same
program position to one common state, i.e., only one of them may have no outgoing instance
edge. Then this generalized state can be used instead of the original ones. In S, this is a list
of length 2, whereas in U , this has length 3. Moreover, i ≤ 0 in S, whereas i is arbitrary in
U . Therefore, we generalize S and U to a new state V where this has length ≥ 2 and i is
arbitrary. Now T and U are not needed anymore and could be removed.

As V is a return state, we have to create a new successor W by context concretization,
which is like the call state P , but where P ’s top frame is replaced by V ’s frame (analogous
to the construction of T). Evaluating W leads to X, which is an instance of V . Thus, we
draw an instance edge from X to V and the termination graph construction is finished.

In general, a state s′ is an instance of a state s (denoted s′ v s) if all concrete states
represented by s′ are also represented by s. For a formal definition of “v”, we refer to [5,
Def. 3] and [15, Def. 2.3]. The only condition that has to be added to this definition is that
for every input argument (r′, τ, b′) in the i-th frame of s′, there must also be a corresponding
input argument (r, τ, b) in the i-th frame of s, where b′ = false implies b = false.

However in [5, 15], s′ v s only holds if s′ and s have the same call stack size. In contrast,
we now also allow larger call stacks in s′ and define s′ v s iff a state s̃ can be obtained by
repeated context concretization from s, where s′ and s̃ have the same call stack size and
s′ v s̃. For example, P v A, although P has two and A only has one stack frame, since
context concretization of A (with P) yields a state Ã which is a renaming of P (thus, P v Ã).

2.3 Termination Graphs for Several Methods

static void cappE (int j) {
List a = new List ();
if (j > 0) {

a.appE(j);
while (a.n == null) {}

}}

Termination graphs for a method can be re-used whenever
the method is called. To illustrate this, consider a method
cappE which calls appE. It constructs a new List a, checks
if the formal parameter j is > 0, and calls a.appE(j) to
append j elements to a. Then, if a.n is null, one enters a

non-terminating loop. But as j > 0, our analysis can detect that after the call a.appE(j),
the list a.n is not null. Hence, the loop is never executed and cappE is terminating.

i1 | 14 | j : i1,a :o2 | i1, o2
o2:List(n=null) i1: [>0]

A′

o2, i1 | 0 | t :o2,i : i1 | ε
i1 | 17 | j : i1,a :o2 | ε
o2:List(n=null) i1: [>0]

B′

appE

. . .
G

. . .
V

o4, i3 | 34 | t :o4,i : i7 | ε
i3 | 17 | j : i3,a :o4 | ε
o4:List(n=o5) i3: [>0]
o5:List(n=o6) o6:List(?)

C′

i1 > 0

with B′

In cappE’s termination graph, after constructing the new
List and checking j > 0, one reaches A′. The call of appE
leads to the call state B′, whose top frame is at position 0 of
appE. As in the step from P to Q in Fig. 2, we now split the
call stack. The resulting state (with only B′’s top frame) is con-
nected by an instance edge to the initial state A of appE’s
termination graph, i.e., we re-use the graph of Fig. 2. Recall
that for every call state s that calls appE and each return state s
in appE’s termination graph, we perform context concretization
of s with s. In fact, one can restrict this to return states s
without outgoing instance edges (i.e., to G and V).

Now we have another call state B′ which calls appE. G
has no context concretization with B′, as the second input

RTA’11

164 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

argument is ≤ 0 in G and > 0 in B′ (i.e., the intersection is empty). Context concretization
of V with B′ yields state C ′. Here, iC′3 results from intersecting iV9 and iB′1 , whereas oC′4 is
taken over from oV1 (thus in C ′, a.n is not null and hence, the while loop is not executed).7

To define termination graphs formally, in [5, Def. 6] we extended JBC-evaluation to
abstract states, i.e., “s SyEv−→ s′” means that s symbolically evaluates to s′. We now extend
[5, Def. 6] to handle input arguments. Input arguments remain unchanged by symbolic
evaluation, except when evaluating putfield or invoking a method. If evaluation of a
putfield instruction changes an object at a position ini,τ π, then we set the boolean flag b
of the input argument (r, τ, b) in the i-th stack frame to false (cf. J SyEv−→ K in Fig. 2).

Now we explain how to create the input arguments for new stack frames which are
generated when invoking a method. In general, one may need more input arguments than
the method’s formal parameters. To see this, consider a variant of cappE, where before the
call of appE, we add the instruction “List b = a.n = new List();”. Thus, now a is a list
of length 2 and b also points to a’s second element. Hence, in state A′ we now have the local
variables “j : i1, a :o2, b :o3” where “o2 : List(n = o3)” and “o3 : List(n = null)”. As before,
appE is called with the arguments o2 and i1 and its execution modifies the object at o2 as a
side effect. However, due to this, the object at o3 is modified as well. We have to take this
into account, because after the execution of appE, the object at o3 is still accessible via the
local variable b. So here the execution of a called method has a side effect on objects that
are visible from lower frames of the call stack.

Recall that the purpose of the input arguments is to describe which objects may have
changed (as a side effect) during the execution of the method. Therefore in B′, we now
have to add o3 as an additional input argument when calling appE. More precisely, the
three input arguments of B′ would be (o2, lv0,0, true), (i1, lv0,1, true), and (o3, lv0,0 n, true)
(corresponding to the field n of appE’s first formal parameter).

Consequently, we now have to re-process the termination graph of appE to obtain a
variant where the states have three input arguments. The stack frame of V would then be
“o1, i9, o14, | 34 | t :o1, i : i13 | ε”. Hence, in the context concretization of V with B′ (where
oV14 is identified with oB′3), the information on oB′3 is longer valid, but instead one has to use
oV14. Thus in C ′, the value of b is no longer “o3 : List(n = null)”, but “o5 : List(n = oC

′

6)”,
where oC′6 ’s value is a copy of V ’s value for oV16, i.e., List(?).

So for any call state8 s, if there is a number i and a τ ∈ FieldIDs∗ such that s|lv0,i τ = r,
then (r, lv0,i τ, true) should be included in the input arguments of the top stack frame. The
only exception are references r that are no top references and where all predecessors of r can
also be reached from some formal parameter s|lv0,j of the called method. The reason is that
then r is only reachable from other input arguments of s and hence, their flags suffice to
indicate whether the object at r has changed. Here, r is a top reference iff s|π = r holds for
some position π with |π| = 1 (i.e., π has the form lvi,j , osi,j , or ini,τ). A reference r′ is a
predecessor of r iff s|π = r′ and s|π v = r for some π ∈ SPos(s) and some v ∈ FieldIDs.

For P in Fig. 2, o4, i10, and o5 are at positions of the form lv0,i τ . However, only o4 and

7 When methods modify objects as a side effect, the exact result of this modification is often not expressible
if objects are abstracted to integers. Therefore tools like Julia and COSTA often do not try to express
such modifications and fail if this would have been crucial for the termination proof. Indeed, for cappE’s
termination, one needs information about the object a after it was modified by a.appE(j). Therefore,
while Julia and COSTA can prove termination of appE, they fail on cappE (although in this example, the
effect of the modification would even be expressible when using the path-length abstraction to integers).

8 In fact, this requirement also has to be imposed for initial states of method graphs, i.e., states with just
one stack frame and program position 0 (i.e., at the start of a method).

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 165

i10 must be input arguments (o5 is not at a top position and its only predecessor is o4).
Finally, we can explain how to construct termination graphs in general:

Each call state (〈fr0, . . . , frm〉, h) is connected to (〈fr0〉, h) by a call edge.
Each return state s = (〈fr〉, h) has an edge to the program end (ε, h) and context concreti-
zation edges to all context concretizations of s with call states of the termination graph.
For all other states s, if s SyEv−→ s′, then we connect s to s′ by an evaluation edge.
If evaluation is impossible, we use integer or instance refinement (using refinement edges).
To get finite graphs,9 we use a heuristic which sometimes introduces more general states
(e.g., when a program position is visited twice). If s′ v s, then s′ can be connected to s
by an instance edge. However, all cycles of the graph must contain an evaluation edge.
In a termination graph, all nodes except program ends must have outgoing edges.

In [5, Thm. 10] we proved that on concrete states, our notion of symbolic evaluation
SyEv−→ is equivalent to evaluation in JBC. Thm. 2.3 shows that symbolic evaluation of abstract
states correctly simulates the evaluation of concrete states (and hence, of JBC).

I Theorem 2.3 (Soundness of Termination Graphs). Let c, c′ be concrete states where c can
be evaluated to c′ (i.e., c SyEv−→ c′). If a termination graph contains an abstract state s which
represents c (i.e., c v s), then the graph has a path from s to a state s′ with c′ v s′.

Paths in the termination graph that correspond to repeated evaluations of concrete states
are called computation paths. Note that Thm. 2.3 can be used to prove the soundness of
our approach: Suppose there is an infinite JBC-computation, i.e., an infinite evaluation of
concrete states c1

SyEv−→ c2
SyEv−→ . . . If c1 is represented in the termination graph, then by

Thm. 2.3 there is an infinite computation path in the termination graph. In Thm. 3.3, we
will show that then the TRS resulting from the termination graph is not terminating.

3 From Modular Termination Graphs to Term Rewriting

We now transform termination graphs into integer term rewrite system (ITRSs) [9]. These are
conditional TRSs where the booleans, integers, standard arithmetic operations ArithOp like
+, −, ∗, /, . . . , and standard relations RelOp like >, <, . . . are pre-defined by an infinite set
of rules PD. For example, PD contains 4 + 2→ 6 and 2 < 3→ true. The rewrite relation
↪→R of an ITRS R is defined as the innermost rewrite relation of R∪PD, where all variables
(including extra variables in conditions or right-hand sides of rules) may only be instantiated by
normal forms. So if R contains “f(x)→ g(x, y) | x > 2”, then f(4 + 2) ↪→R f(6) ↪→R g(6, 23).
TRS termination techniques can easily be adapted to ITRSs as well [9].

As in [15, Def. 3.2], a reference r in a state s with heap h is transformed into a term by
the function tr(s, r). If h(r) ∈ Unknown or h(r) is an integer interval of several numbers,
then tr(s, r) is a variable with the name r. If h(r) is a concrete integer like [5, 5], then tr(s, r)
is the corresponding constant 5. If h(r) = null , then tr(s, r) is the constant null.

The main advantage of our rewrite-based approach becomes obvious when transforming
data objects into terms (i.e., when h(r) ∈ Instances). The reason is that such data objects
essentially are terms and hence, our transformation can keep their structure. We use the
class names as function symbols, and the arguments of these symbols represent the values of

9 Indeed, our implementation uses heuristics which guarantee that we automatically generate a finite
termination graph for any JBC program.

RTA’11

166 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

fields. So to represent objects of the class List, we use a unary function symbol List whose
argument corresponds to the value of the field n. Thus, o1 in P from Fig. 2 is transformed
into the term tr(P, o1) = List(List(o5)).10 However, references r pointing to cyclic objects
are transformed to a variable r in order to represent an “arbitrary unknown” object.

Now we show how to transform states into terms. In [5, 15], for each state s we used a
function symbol fs which had one argument for each top position in the state. In contrast,
to model the call and return of methods, we now encode each stack frame on its own. Then
a state is represented by nesting the terms for its stack frames.

To encode a stack frame (in, pp, lv, os) of s to a term, we use a function symbol fs,pp
whose arguments correspond to the top positions in this frame. To represent the call stack,
fs,pp gets an additional first argument, which contains the encoding of the frame above the
current one, or eos (for “end of stack”) if there is no such frame. So the top stack frame is
always at an innermost position of the form 1 1 . . . 1. Thus, state P is encoded as the term

ts(P) = fP,34(fP,0(eos, List(o5)︸ ︷︷ ︸
o4

, i10, List(o5)︸ ︷︷ ︸
o4

, i10), List(List(o5))︸ ︷︷ ︸
o1

, i9, List(List(o5))︸ ︷︷ ︸
o1

, i10)

In Def. 3.1, for any sequence 〈r1, ..., rk〉, “tr(s, 〈r1, ..., rk〉)” stands for “tr(s, r1), . . . , tr(s, rk)”.

I Definition 3.1 (Transforming States). Let s=(〈fr0, . . . , frn〉, h) with fr i = (ini, ppi, lvi, osi)
and ini = {(ri,0, τi,0, bi,0), . . . , (ri,ki , τi,ki , bi,ki)}, for all i. We define ts(s) = ts(s, n), where

ts(s, i) =
{

fs,ppi
(

ts(s, i− 1), tr(s, 〈ri,0 . . . ri,ki〉), tr(s, lvi), tr(s, osi)
)
, if i ≥ 0

eos, otherwise

As in [15], the instance relation on states is related to the matching relation on the
corresponding terms. If s′ v s and the call stack of s has size n, then ts(s) matches the
subterm of ts(s′) that encodes the upper n frames of the call stack. Hence, if one generates
rewrite rules to evaluate ts(s), then they can also be applied to ts(s′). Here, one of course
has to label the function symbols in ts(s) and ts(s′) in the same way. To this end, let tss(s′)
be a copy of ts(s′) where all symbols are labeled by s instead of s′. Consider Fig. 2, where
P v A and where the call stacks of P and A have size 2 and 1, respectively. Here, ts(A) =
fA,0(eos, List(o2), i3, List(o2), i3) matches tsA(P)|1 = fA,0(eos, List(o5), i10, List(o5), i10).

To ease presentation,11 we assume that frames of the same method refer to the “same”
input arguments. More precisely, let fr = (pp, in, lv, os) and fr ′ = (pp′, in′, lv′, os′) be frames
with pp and pp′ in the same method. If in = {(r1, τ1, b1), . . . , (rk, τk, bk)}, then we assume
that in′ = {(r′1, τ1, b

′
1), . . . , (r′k, τk, b′k)} for the same positions τ1, . . . , τk. When encoding fr

and fr ′ to terms t and t′ in Def. 3.1, we fix a total order on positions τ1, . . . , τk. Then the
argument positions that correspond to (ri, τi, bi) in t and to (r′i, τi, b′i) in t′ are the same.

I Lemma 3.2. Let s′ v s and let i = |s′|− |s| be the difference of their call stack sizes. Then
there is a substitution σ with ts(s)σ = tss(s′)|1i . Here, “1i” means “1 1 . . . 1” (i times).

Now we construct ITRSs whose termination implies termination of the original programs.
To this end, we transform the edges of the termination graph into rewrite rules.

10 In general, tr also takes the class hierarchy into account. To simplify the presentation, we refer to [15,
Def. 3.3] for details and use the above representation in the illustrating examples.

11Without this assumption, s′ v s would not imply that ts(s) matches a subterm of tss(s′). Instead,
one first would have to expand tss(s′) by the additional input arguments of s that are missing in
s′. The remaining construction and Thm. 3.3 are easily adapted accordingly (but it complicates the
presentation).

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 167

If there is an evaluation edge from s to s̃, then we generate the rule ts(s)→ ts(s̃) which
rewrites any instance of s to the corresponding instance of s̃. As in [15], if this edge is labeled
with o1 = o2 ◦ o3 where ◦ ∈ ArithOp, then in ts(s̃) we replace o1 by tr(s, o2) ◦ tr(s, o3). If
the edge is labeled by o1 ◦ o2 where ◦ ∈ RelOp, then we add the condition tr(s, o1) ◦ tr(s, o2)
to the generated rule. So the edge from H to I in Fig. 2 results in

fH,8(eos, List(null), i7, List(null), i7, i7) → fI,12(eos, List(null), i7, List(null), i7) | i7 > 0

If there is an instance edge from s to s̃, then in the resulting rule we keep all information
that we already have for the specialized state s and continue rewriting with the rules we
already created for s̃. So instead of ts(s)→ ts(s̃), we generate the rule ts(s)→ tss̃(s). For
example, for the instance edge from L to N , we generate the rule

fL,26(eos, List(List(null)), i7, List(List(null)), i8) → fN,26(eos, List(List(null)), i7, List(List(null)), i8)

Similarly, if there is a refinement edge from s to s̃, then s̃ is a specialized version of s.
These edges represent a case analysis and hence, some instances of s are also instances of s̃,
but others are no instances of s̃. By Lemma 3.2, we can use pattern matching to perform the
necessary case analysis. Thus, instead of ts(s)→ ts(s̃) we generate the rule tss(s̃)→ ts(s̃).
As an example, the instance refinement from B to D results in the rule

fB,4(eos, List(null), i3, List(null), i3, null) → fD,4(eos, List(null), i3, List(null), i3, null)

If there is a call edge from s to s̃, then s̃ only contains the top frame of the call stack of
s. Here, we also generate the rule tss(s̃)→ ts(s̃). So for the edge from P to Q, we get

fP,0(eos, List(o5), i10, List(o5), i10) → fQ,0(eos, List(o5), i10, List(o5), i10)

Now this rule and the other appE-rules can be applied in terms like fP,34(fP,0(eos, . . .), . . .) to
rewrite the underlined subterm that represents a recursive call of appE. By applying all rules
corresponding to the edges from Q up to P , one then obtains fP,34(fP,34(fP,0(eos, . . .), . . .), . . .).
So the rules resulting from a termination graph can create call stacks of arbitrary size.

For a context concretization edge from s to s̃ with the call-state s, the left-hand side of
the corresponding rule should essentially represent the state where the method in the top
frame of s has been called and its execution reached the return statement in s. So the
left-hand side should be like ts(s), but the subterm at position π = 1|s|−1 (which encodes
the top stack frame of s) is replaced by ts(s). Hence, we obtain ts(s)[ts(s)]π. Note that in
the new state s̃, we used the identification substitution σ for the references from s and s, cf.
Def. 2.2. Therefore, in the corresponding rewrite rule, we should use the new names of these
references not only on the right-hand side of the rule (which results from encoding s̃), but
also on the left-hand side. In other words, we create the rule (ts(s)[ts(s)]π)σ → ts(s̃).

As an example, let s be the return state V , s be the call state P , and s̃ be the context
concretization W . We abbreviate “List” by “L”. Then for the edge from V to W , we get

fP,34(fV,34(eos, L(L(oW20)), iW19 , L(L(oW20)), iW21), L(L(oW5)), iW9 , L(L(oW5)), iW19) →
fW,34(fW,34(eos, L(L(oW20)), iW19 , L(L(oW20)), iW21), L(L(L(oW20))), iW9 , L(L(L(oW20))), iW19)

Note that on the left-hand side of this rule, for the lower stack frames of P , we still have
the values before the execution of the method (then, o1 had the value L(L(o5)) in P). The
reason is that when simulating the evaluation of states via term rewriting, our rules only
modify the subterm corresponding to the top stack frame, until the method of the top frame

RTA’11

168 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

reaches a return. At that point, we perform all side effects that were caused by the executed
method and modify the objects in lower stack frames accordingly. Therefore, the above rule
performs the side effect of changing the object at o1 from L(L(o5)) to L(L(L(o20))).12

As explained in [15], to simplify the resulting TRS, one can often merge rules (where
essentially, a rule `→ r | b is used to narrow all right-hand sides where it is applicable and
afterwards, the rule is removed). In this way, the termination graph for appE of Fig. 2 is
transformed into the following ITRS. The rules correspond to the paths from state A via D
and F to G (rule (1)), from A via D, H, and P back to A (rule (2)), from A via C and P
back to A (rule (3)), from G to V (rule (4)), and from V via W back to V (rule (5)). To
ease readability, we omitted “eos” and the arguments for local variables and operand stack
entries from the rules. Moreover, we abbreviated “null” by “n”.

fA,0(L(n), i6)→ fG,11(L(n), i6) |i6 ≤ 0 (1)
fA,0(L(n), i7)→ fP,34(fA,0(L(n), i7 − 1), L(L(n)), i7) |i7 > 0 (2)

fA,0(L(L(o5)), i3)→ fP,34(fA,0(L(o5), i3), L(L(o5)), i3) (3)
fP,34(fG,11(L(n), i12), L(L(n)), i9)→ fV,34(L(L(n)), i9) (4)

fP,34(fV,34(L(L(o20)), i19), L(L(o5)), i9)→ fV,34(L(L(L(o20))), i9) (5)

These rules are a natural representation of the original JBC algorithm as a TRS. Rules (1)
and (2) handle the case where the length of the input list is 1 (i.e., n == null). If the integer
parameter i is <= 0, then we immediately return (rule (1)). Otherwise, in rule (2) a new
element is attached to the input list (i.e., now the input list is L(L(n)), and the algorithm
is called recursively with the tail of the list (i.e., again with L(n)) and with i - 1. In rule
(3), the input list has length ≥ 2. Here, the algorithm is called recursively with the tail of
the list, whereas the integer parameter is unchanged. Rules (4) and (5) state that after the
execution of the recursive call n.appE(i), the list that results from this recursive call (e.g.,
L(L(o20)) in rule (5)) is written to the field n of the current list as a side effect (e.g., in rule
(5), the subterm L(o5) in the current list L(L(o5)) is replaced by L(L(o20))).

Termination of this ITRS can easily be proved automatically. In the only recursive rules
(2) and (3), either the number in the second argument or the length of the list in the first
argument of fA,0 decreases. As mentioned before, termination of appE can also be proved
by Julia and COSTA, because here it suffices to compare arguments by their path-length.
However, if lists or other data objects have to be compared in a different way, tools like Julia
and COSTA fail, whereas rewrite techniques can compare arbitrary forms of terms, cf. Sect. 4.

Note that in [5, 15], JBC was transformed into TRSs where defined symbols (except
pre-defined operations on integers and booleans) only occur on root positions. So instead of
a term like fP,34(fA,0(L(n), i7 − 1), L(L(n)), i7) on the right-hand side of rule (2), we would
generate a term fPA(L(n), i7− 1, L(L(n)), i7) for a new symbol fPA. The disadvantage is that
then it is not possible to re-use TRSs and their termination proofs for auxiliary methods
that are called in the current method (i.e., one cannot prove termination in a modular way).

So for cappE from Sect. 2.3, with our new approach the rule for the call of appE is
fA′,14(. . .)→ fB′,17(fA,0(L(n), i1), . . .) and the rule for its return is fB′,17(fV,34(L(L(o6)), i3), . . .)

12So for objects that were changed during the execution of the method, the information from s̃ may
not be used on the left-hand side of the resulting rewrite rule. However, one could improve the
generation of the left-hand-sides by allowing to use the information from s̃ for those references which
were not changed by the method (i.e., where the information in s̃ results from the intersection of
the corresponding information in s and s). Then for the edge from G to R, one would obtain a rule
where instead of the left-hand side fP,34(fG,11(. . .), L(L(oR2)), iR9 , L(L(oR2)), iR12) one has the left-hand side
fP,34(fG,11(. . .), L(L(null)), iR9 , L(L(null)), iR12). We used this improvement in rule (4) above.

Marc Brockschmidt, Carsten Otto, and Jürgen Giesl 169

→ fC′,17(fC′,34(. . .), . . .). The rules for fA,0 and the other function symbols from appE remain
unchanged and can be re-used. Hence, their (innermost) termination proof can also be
re-used. Since the remaining rules for cappE have no recursion, termination of the cappE-TRS
trivially follows from termination of the appE-TRS. This illustrates the advantages of our
modular approach which leads to TRSs that form hierarchical combinations. Hence, one can
benefit from termination methods like the dependency pair technique that prove innermost
termination of hierarchical combinations in a modular way, cf. [11, 12, 13]. Note that while
COSTA and Julia can prove termination of appE, they fail on cappE.

Using Lemma 3.2, we can now prove that every computation path in a termination graph
can be simulated by a rewrite sequence with the corresponding ITRS.

I Theorem 3.3 (Soundness of ITRS Translation). If the ITRS corresponding to a termination
graph G is terminating, then G has no infinite computation path.

As explained at the end of Sect. 2.3, by combining Thm. 3.3 with Thm. 2.3, we obtain
that termination of the resulting ITRS implies termination of the original JBC program for
all concrete states represented in the termination graph. Of course, the converse does not
hold, i.e., our approach cannot be used to prove non-termination of JBC. Future work will
be concerned with using our termination graphs also for non-termination analysis, as well as
for other analyses like absence of null pointer exceptions and side effect freeness.

4 Experiments and Conclusion

We presented a new approach to prove termination of JBC programs automatically. In contrast
to our earlier work [5, 15], we introduced a technique (based on context concretizations)
that abstracts from the exact form of the call stack. In this way, we can now also analyze
recursive methods, which were excluded in [5, 15]. Moreover, we obtain a modular approach,
since one can now generate termination graphs for different methods separately and re-use
them whenever a method is called. In contrast to [5, 15], we now also synthesize TRSs from
the termination graphs whose termination can be proved in a modular way.

We implemented our new approach in the termination tool AProVE [10] and evaluated it
on a collection of 83 recursive and 133 non-recursive JBC programs. These examples contain
the 172 JBC programs from the Termination Problem Data Base (used in the International
Termination Competition)13 as well as a number of additional typical recursive programs.14
Below, we compare AProVE 2011 (which contains all contributions of this paper), AProVE 2010
(which implements [5, 15]),15 Julia [16], and COSTA [2]. We used a runtime of 2 minutes for

recursion no recursion
Y F T R Y F T R

AProVE 2011 67 0 16 30 108 0 25 27
AProVE 2010 15 3 65 96 103 13 17 23
Julia 57 26 0 3 96 37 0 2
COSTA 47 35 1 6 73 60 0 5

each example. “Yes” indicates
how many examples could be
proved, “Fail” states how often
the tool failed in less than 2
minutes, “T” indicates how many
examples led to a Time-out, and
“R” gives the average Runtime
in seconds for each example.

So due to our new modular approach, AProVE 2011 yields the most precise results for the

13We removed one controversial example whose termination depends on the handling of integer overflows.
14Of course, we also included appE and cappE, and AProVE 2011 easily proves termination of them.
15 In addition, whenever a recursive method is called with fixed inputs, AProVE 2010 tries to evaluate it.

But it cannot prove termination of recursive method for (infinite) sets of possible inputs.

RTA’11

170 Modular Termination Proofs of Recursive JBC Programs by Term Rewriting

recursive JBC programs in the collection. (However, there are also several examples where
Julia or COSTA succeed whereas AProVE fails.) On non-recursive programs, AProVE 2010 was
already powerful (but the modularity of our new approach helps in large examples). Of course,
Julia and COSTA are significantly faster than AProVE. This is because Julia and COSTA
use a fixed abstraction from objects to integers, whereas AProVE applies rewrite techniques
to generate (potentially different) suitable well-founded orders in every termination proof.
Nevertheless, the experiments clearly show that rewrite techniques are not only powerful,
but also efficient enough for termination of JBC. So a fruitful approach for the future could
be to couple the rewrite-based approach of AProVE with the technique of Julia and COSTA
to combine their respective advantages. To experiment with our implementation via a web
interface and for details on the experiments, we refer to [1].

Acknowledgement. We are grateful to F. Spoto and S. Genaim for help with the experiments and
to the referees for many helpful suggestions.

References
1 http://aprove.informatik.rwth-aachen.de/eval/JBC-Recursion/.
2 E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination

analysis of Java Bytecode. In Proc. FMOODS ’08, LNCS 5051, pages 2–18, 2008.
3 J. Berdine, B. Cook, D. Distefano, and P. O’Hearn. Automatic termination proofs for

programs with shape-shifting heaps. In Proc. CAV ’06, LNCS 4144, pages 386–400, 2006.
4 M. Brockschmidt, C. Otto, and J. Giesl. Modular termination proofs of recursive Java

Bytecode programs by term rewriting. Technical Report AIB 2011-02, RWTH Aachen,
2011. Available at [1] and at http://aib.informatik.rwth-aachen.de.

5 M. Brockschmidt, C. Otto, C. von Essen, and J. Giesl. Termination graphs for Java
Bytecode. In Verification, Induction, Termination Analysis, LNCS 6463, pages 17–37, 2010.
Extended version (with proofs) available at [1].

6 M. Colón and H. Sipma. Practical methods for proving program termination. In Proc.
CAV ’02, LNCS 2404, pages 442–454, 2002.

7 B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In Proc.
PLDI ’06, pages 415–426. ACM Press, 2006.

8 B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: No return!
Formal Methods in System Design, 35(3):369–387, 2009.

9 C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termination of
integer term rewriting. In Proc. RTA ’09, LNCS 5595, pages 32–47, 2009.

10 J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs
in the dependency pair framework. In Proc. IJCAR ’06, LNAI 4130, pages 281–286, 2006.

11 J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using de-
pendency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.

12 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

13 N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Information
and Computation, 199(1,2):172–199, 2005.

14 T. Lindholm and F. Yellin. Java Virtual Machine Specification. Prentice Hall, 1999.
15 C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated termination analysis

of Java Bytecode by term rewriting. In Proc. RTA ’10, LIPIcs 6, pages 259–276, 2010.
Extended version (with proofs) available at [1].

16 F. Spoto, F. Mesnard, and É. Payet. A termination analyser for Java Bytecode based on
path-length. ACM TOPLAS, 32(3), 2010.

http://aprove.informatik.rwth-aachen.de/eval/JBC-Recursion/
http://aib.informatik.rwth-aachen.de

Rewriting-based Quantifier-free Interpolation for a
Theory of Arrays
Roberto Bruttomesso1, Silvio Ghilardi2, and Silvio Ranise3

1 Università della Svizzera Italiana, Lugano, Switzerland
2 Università degli Studi di Milano, Milan, Italy
3 FBK (Fondazione Bruno Kessler), Trento, Italy

Abstract
The use of interpolants in model checking is becoming an enabling technology to allow fast and
robust verification of hardware and software. The application of encodings based on the theory of
arrays, however, is limited by the impossibility of deriving quantifier-free interpolants in general.
In this paper, we show that, with a minor extension to the theory of arrays, it is possible to
obtain quantifier-free interpolants. We prove this by designing an interpolating procedure, based
on solving equations between array updates. Rewriting techniques are used in the key steps of
the solver and its proof of correctness. To the best of our knowledge, this is the first successful
attempt of computing quantifier-free interpolants for a theory of arrays.

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.171

Category Regular Research Paper

1 Introduction

After the seminal work of McMillan (see, e.g., [20]), Craig’s interpolation [9] has become an
important technique in verification. For example, the importance of computing quantifier-
free interpolants to over-approximate the set of reachable states for model checking has been
observed. Unfortunately, Craig’s interpolation theorem does not guarantee that it is always
possible to compute quantifier-free interpolants. Even worse, for certain first-order theories,
it is known that quantifiers must occur in interpolants of quantifier-free formulae [15]. As a
consequence, a lot of effort has been put in designing efficient procedures for the computa-
tion of quantifier-free interpolants for first-order theories which are relevant for verification
(e.g., uninterpreted functions and fragments of Presburger arithmetics). Despite these ef-
forts, so far, only the negative result in [15] is available for the computation of interpolants
in the theory of arrays with extensionality, axiomatized by the following three sentences:
∀y, i, e.rd(wr(y, i, e), i) = e, ∀y, i, j, e.i 6= j ⇒ rd(wr(y, i, e), j) = rd(y, j), and

∀x, y.x 6= y ⇒ (∃i. rd(x, i) 6= rd(y, i)),

where rd and wr are the usual operations for reading and updating arrays, respectively.
This theory is important for both hardware and software verification, and a procedure for
computing quantifier-free interpolants “would extend the utility of interpolant extraction as
a tool in the verifier’s toolkit” [20]. Indeed, the endeavour of designing such a procedure
would be bound to fail (according to [15]) if we restrict ourselves to the original theory. To
circumvent the problem, we replace the third axiom above with its Skolemization, i.e.,

∀x, y.x 6= y ⇒ rd(x, diff(x, y)) 6= rd(y, diff(x, y))),

so that the Skolem function diff is supposed to return an index at which the elements stored
in two distinct arrays are different. This variant of the theory of arrays admits quantifier-
free interpolants for quantifier-free formulae. The main contribution of the paper is to prove

© R. Bruttomesso, S. Ghilardi, S. Ranise;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 171–186

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.171
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

172 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

this by designing an algorithm for the generation of quantifier-free interpolants
from finite sets (intended conjunctively) of literals in the theory of arrays with
diff. The algorithm uses as a sub-module a satisfiability procedure for sets of literals of
the theory, based on a sequence of syntactic transformations organized in several groups.
The most important group of such transformations is a Knuth-Bendix completion procedure
(see, e.g., [2]) extended to solve an equation a = wr(b, i, e) for b when this is required by the
ordering defined on terms. The goal of these transformations is to produce a “modularized”
constraint for which it is trivial to establish satisfiability. To compute interpolants, the
satisfiability procedure is invoked on two mutually unsatisfiable sets A and B of literals.
While running, the two instances of the procedure exchange literals on the common signature
of A and B (similarly to the Nelson and Oppen combination method, see, e.g., [21]) and
perform some additional operations. At the end of the computation, the execution trace is
examined and the desired interpolant is built by applying simple rules manipulating Boolean
combinations of literals in the common signature of A and B.

The paper is organized as follows. In §2, we recall some background notions and introduce
the notation. In §3, we give the notion of modularized constraint and state its key properties.
In §4, we describe the satisfiability solver for the theory of arrays with diff and extend it
to produce interpolants in §5. Finally, we discuss the related work and conclude in §6. All
proofs can be found in [5].

2 Background and Preliminaries

We assume the usual syntactic (e.g., signature, variable, term, atom, literal, formula, and
sentence) and semantic (e.g., structure, truth, satisfiability, and validity) notions of first-
order logic. The equality symbol “=” is included in all signatures considered below. For
clarity, we shall use “≡” in the meta-theory to express the syntactic identity between two
symbols or two strings of symbols.

A theory T is a pair (Σ, AxT), where Σ is a signature and AxT is a set of Σ-sentences,
called the axioms of T (we shall sometimes write directly T for AxT). The Σ-structures in
which all sentences from AxT are true are the models of T . A Σ-formula φ is T -satisfiable
if there exists a model M of T such that φ is true in M under a suitable assignment a
to the free variables of φ (in symbols, (M, a) |= φ); it is T -valid (in symbols, T ` ϕ) if
its negation is T -unsatisfiable or, equivalently, iff ϕ is provable from the axioms of T in a
complete calculus for first-order logic. A formula ϕ1 T -entails a formula ϕ2 if ϕ1 → ϕ2 is
T -valid; the notation used for such T -entailment is A `T B or simply A ` B, if T is clear
from the context. The satisfiability modulo the theory T (SMT (T)) problem amounts to
establishing the T -satisfiability of quantifier-free Σ-formulae.

Let T be a theory in a signature Σ; a T -constraint (or, simply, a constraint) A is a set of
ground literals in a signature Σ′ obtained from Σ by adding a set of free constants. Taking
conjunction, we can see a finite constraint A as a single formula; thus, when we say that a
constraint A is T -satisfiable (or just “satisfiable” if T is clear from the context), we mean
that the associated formula (also called A) is satisfiable in a Σ′-structure which is a model
of T . We have two notions of equivalence between constraints, which are summarized in the
next definition:

I Definition 2.1. Let A and B be finite constraints (or, more generally, first order sentences)
in an expanded signature. We say that A and B are logically equivalent (modulo T) iff T `
A↔ B; on the other hand, we say that they are ∃-equivalent (modulo T) iff T ` A∃ ↔ B∃,
where A∃ (and similarly B∃) is the formula obtained from A by replacing free constants

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 173

with variables and then existentially quantifying them out.

Logical equivalence means that the constraints have the same semantic content (modulo
T); ∃-equivalence is also useful because we are mainly interested in T -satisfiability of con-
straints and it is trivial to see that ∃-equivalence implies equi-satisfiability (again, modulo
T). As an example, if we take a constraint A, we replace all occurrences of a certain term t

in it by a fresh constant a and add the equality a = t, called the (explicit) definition (of t),
the constraint A′ we obtain in this way is ∃-equivalent to A. As another example, suppose
that A `T a = t, that a does not occur in t, and that A′ is obtained from A by replacing a
by t everywhere; then the following four constraints are ∃-equivalent

A, A ∪ {a = t}, A′ ∪ {a = t}, A′

(the first three are also pairwise logically equivalent). The above examples show how explicit
definitions can be introduced and removed from constraints while preserving ∃-equivalence.

Theories of Arrays. In this paper, we consider a variant of a three-sorted the-
ory of arrays defined as follows. The McCarthy theory of arrays AX [17] has three sorts
ARRAY, ELEM, INDEX (called “array”, “element”, and “index” sort, respectively) and two func-
tion symbols rd and wr of appropriate arities; its axioms are:

∀y, i, e. rd(wr(y, i, e), i) = e (1)
∀y, i, j, e. i 6= j ⇒ rd(wr(y, i, e), j) = rd(y, j). (2)

The theory of arrays with extensionality AX ext has the further axiom ∀x, y.x 6= y ⇒
(∃i. rd(x, i) 6= rd(y, i)) (called the ‘extensionality’ axiom). To build the theory of arrays
with diff AX diff, we need a further function symbol diff in the signature and we replace
the extensionality axiom by its Skolemization

∀x, y. x 6= y ⇒ rd(x, diff(x, y)) 6= rd(y, diff(x, y)). (3)

As it is evident from axiom (3), the new symbol diff is a binary function of sort INDEX
taking two arguments of sort ARRAY: its semantics is a function producing an index where
the input arguments differ (it has an arbitrary value in case the input arguments are equal).

We introduce here some notational conventions which are specific for constraints in our
theory AX diff. We use a, b, . . . to denote free constants of sort ARRAY, i, j, . . . for free
constants of sort INDEX, and d, e, . . . for free constants of sort ELEM; α, β, . . . stand for
free constants of any sort. Below, we shall introduce non-ground rewriting rules involving
(universally quantified) variables of sort ARRAY: for these variables, we shall use the symbols
x, y, z, We make use of the following abbreviations.

- [Nested write terms] By wr(a, I, E) we indicate a nested write on the array variable
a, where indexes are represented by the free constants list I ≡ i1, . . . , in and elements
by the free constants list E ≡ e1, . . . , en; more precisely, wr(a, I, E) abbreviates the
term wr(wr(· · ·wr(a, i1, e1) · · ·), in, en). Notice that, whenever the notation wr(a, I, E)
is used, the lists I and E must have the same length; for empty I, E, the term wr(a, I, E)
conventionally stands for a.

- [Multiple read literals] Let a be a constant of sort ARRAY, I ≡ i1, . . . , in and E ≡ e1, . . . , en

be lists of free constants of sort INDEX and ELEM, respectively; rd(a, I) = E abbreviates
the formula rd(a, i1) = e1 ∧ · · · ∧ rd(a, in) = en.

- [Multiple equalities] If L ≡ α1, . . . , αn and L′ ≡ α′1, . . . , α
′
n are lists of constants of the

same sort, by L = L′ we indicate the formula
∧n

i=1 αi = α′i.

RTA’11

174 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

Refl wr(a, I, E) = a↔ rd(a, I) = E

Proviso: Distinct(I)
Symm (wr(a, I, E) = b ∧ rd(a, I) = D)↔ (wr(b, I,D) = a ∧ rd(b, I) = E)

Proviso: Distinct(I)
Trans (a = wr(b, I, E) ∧ b = wr(c, J,D))↔ (a = wr(c, J · I,D · E) ∧ b = wr(c, J,D))
Confl b = wr(a, I · J,E ·D) ∧ b = wr(a, I ·H,E′ · F)↔

↔ (b = wr(a, I, E) ∧ E = E′ ∧ rd(a, J) = D ∧ rd(a,H) = F)
Proviso: Distinct(I · J ·H)

Red (a = wr(b, I, E) ∧ rd(b, ik) = ek)↔ (a = wr(b, I−k,E−k) ∧ rd(b, ik) = ek)
Proviso: Distinct(I)

Legenda: a and b are constants of sort ARRAY; I ≡ i1, . . . , in, J ≡ j1, . . . , jm and
H ≡ h1, . . . , hl are lists of constants of sort INDEX; E ≡ e1, . . . , en, E′ ≡ e′1, . . . , e

′
n,

D ≡ d1, . . . , dm, and F ≡ f1, . . . , fl are lists of constants of sort ELEM.

Figure 1 Key properties of write terms

- [Multiple distinctions] If L ≡ α1, . . . , αn is a list of constants of the same sort, by
Distinct(L) we abbreviate the formula

∧
i6=j αi 6= αj .

- [Juxtaposition and subtraction] If L ≡ α1, . . . , αn and L′ ≡ α′1, . . . , α
′
m are lists of

constants, by L · L′ we indicate the list α1, . . . , αn, α
′
1, . . . , α

′
m; for 1 ≤ k ≤ n, the list

L− k is the list α1, . . . , αk−1, αk+1, . . . , αn.
Some key properties of equalities involving write terms are stated in the following lemma
(see also Figure 1).

I Lemma 2.2 (Key properties of write terms). The formulae in Figure 1 are all AX diff-valid
under the assumption that their provisoes - if any - hold (when we say that a formula φ is
AX diff-valid under the proviso π, we just mean that π `AX diff φ).

A (ground) flat literal is a literal of the form a = wr(b, I, E), rd(a, i) = e, diff(a, b) = i, α =
β, α 6= β. Notice that replacing a sub-term t with a fresh constant α in a constraint A and
adding the corresponding defining equation α = t to A always produces an ∃-equivalent
constraint; by repeatedly applying this method, one can show that every constraint is ∃-
equivalent to a flat constraint, i.e., to one containing only flat literals. We split a flat
constraint A into two parts, the index part AI and the main part AM : AI contains the
literals of the form i = j, i 6= j, diff(a, b) = i, whereas AM contains the remaining literals,
i.e., those of the form a = wr(b, I, E), a 6= b, rd(a, i) = e, e = d, e 6= d (atoms a = b are
identified with literals a = wr(b, ∅, ∅)). We write A =< AI , AM > to indicate the two parts
of the constraint A.

3 Constraints combination

We shall need basic term rewriting system terminology and results: the reader is referred
to [2] for the required background. In the main part of a constraint, positive literals will be
treated as rewrite rules; to get a suitable orientation, we use a lexicographic path ordering
with a total precedence > such that a > wr > rd > diff > i > e, for all a, i, e of the
corresponding sorts. This choice orients equalities a = wr(b, I, E) from left to right when
a > b; equalities like a = wr(b, I, E) for a < b or a ≡ b will be called badly orientable
equalities. Our plan to derive a quantifier-free interpolation procedure for AX diff relies on

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 175

the notion of “modularized constraint”: after introducing such constraints, we show that
their satisfiability can be easily recognized (Lemma 3.2) and that they can be combined in
a modular way (Proposition 3.3).

I Definition 3.1. A constraint A =< AI , AM > is said to be modularized iff it is flat and
the following conditions are satisfied (we let Ĩ , Ẽ be the sets of free constants of sort INDEX
and ELEM occurring in A):
(o) no positive index literal i = j occurs in AI ;
(i) no negative array literal a 6= b occurs in AM ;
(ii) AM does not contain badly orientable equalities;
(iii) the rewriting system AR given by the oriented positive literals of AM joined with the

rewriting rules
rd(wr(x, i, e), j)→ rd(x, j) for i, j ∈ Ĩ, e ∈ Ẽ, i 6≡ j (4)

rd(wr(x, i, e), i)→ e for i ∈ Ĩ, e ∈ Ẽ (5)
wr(wr(x, i, e), j, d)→ wr(wr(x, j, d), i, e) for i, j ∈ Ĩ, e, d ∈ Ẽ, i > j (6)

wr(wr(x, i, e), i, d)→ wr(x, i, d). for i ∈ Ĩ, e, d ∈ Ẽ (7)
is confluent and ground irreducible;1

(iv) if a = wr(b, I, E) ∈ AM and i, e are in the same position in the lists I, E, respectively,
then rd(b, i) 6↓AR

e (we use ↓AR
for joinability of terms);

(v) {diff(a, b) = i, diff(a′, b′) = i′} ⊆ AI and a ↓AR
a′ and b ↓AR

b′ imply i ≡ i′;
(vi) diff(a, b) = i ∈ AI and rd(a, i) ↓AR

rd(b, i) imply a ↓AR
b.

I Remark. Condition (o) means that the index constants occurring in a modularized con-
straint are implicitly assumed to denote distinct objects. This is confirmed also by the proof
of Lemma 3.2 below: from which, it is evident that the addition of all the negative literals
i 6= j (for i, j ∈ Ĩ with i 6≡ j) does not compromise the satisfiability of a modularized
constraint, precisely because such negative literals are implicitly part of the constraint.

In Condition (i), negative array literals a 6= b are not allowed because they can be replaced
by suitable literals involving fresh constants and the diff operation (see axiom (3)).

Rules (4) and (5) mentioned in condition (iii) reduce read-over-writes and rules (6) and
(7) sort indexes in flat terms wr(a, I, E) in ascending order. In addition, condition (iv)
prevents further redundancies in our rules.

Conditions (v) and (vi) deal with diff: in particular, (v) says that diff is “well defined”
and (vi) is a “conditional” translation of the contraposition of axiom (3).

I Remark. The non-ground rules from Definition 3.1(iii) form a convergent rewrite system
(critical pairs are confluent): this can be checked manually (and can be confirmed also by
tools like SPASS or MAUDE). Ground rules from AR are of the form

a→ wr(b, I, E), (8)
rd(a, i)→ e, (9)
e→ d. (10)

Only rules of the form (10) can overlap with the non-ground rules (4)-(7), but the resulting
critical pairs are trivially confluent. Thus, in order to check confluence of AM , only overlaps

1The latter means that no rule can be used to reduce the left-hand or the right-hand side of another
ground rule. Notice that ground rules from AR are precisely the rules obtained by orienting an equality
from AM (rules (4)-(7) are not ground as they contain one variable, namely the array variable x).

RTA’11

176 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

between ground rules (8)-(10) need to be considered (this is the main advantage of our choice
to orient equalities a = wr(b, I, E) from left to right instead of right to left).

I Lemma 3.2. A modularized constraint A is AX diff-satisfiable iff for no negative element
equality e 6= d from AM , we have that e ↓AR

d.

Let A,B be two constraints in the signatures ΣA,ΣB obtained from the signature Σ by
adding some free constants and let ΣC := ΣA ∩ ΣB . Given a term, a literal or a formula ϕ
we call it:

AB-common iff it is defined over ΣC ;
A-local (resp. B-local) if it is defined over ΣA (resp. ΣB);
A-strict (resp. B-strict) iff it is A-local (resp. B-local) but not AB-common;
AB-mixed if it contains symbols in both (ΣA \ ΣC) and (ΣB \ ΣC);
AB-pure if it does not contain symbols in both (ΣA \ ΣC) and (ΣB \ ΣC).

(Notice that, sometimes in the literature about interpolation, “A-local” and “B-local”
are used to denote what we call here “A-strict” and “B-strict”). The following modularity
result is crucial for establishing interpolation in AX diff:

I Proposition 3.3. Let A = 〈AI , AM 〉 and B = 〈BI , BM 〉 be constraints in expanded signa-
tures ΣA,ΣB as above (here Σ is the signature of AX diff); let A,B be both consistent and
modularized. Then A∪B is consistent and modularized, in case all the following conditions
hold:
(O) an AB-common literal belongs to A iff it belongs to B;
(I) every rewrite rule in AM ∪ BM whose left-hand side is AB-common has also an AB-

common right-hand side;
(II) if a, b are both AB-common and diff(a, b) = i ∈ AI ∪BI , then i is AB-common too;
(III) if a rewrite rule of the kind a → wr(c, I, E) is in AM ∪ BM and the term wr(c, I, E)

is AB-common, so is the constant a.

4 A Solver for Arrays with diff

In this section we present a solver for the theory AX diff. The idea underlying our algorithm
is to separate the “index” part (to be treated by guessing) of a constraint from the “array”
and “elem” parts (to be treated with rewriting techniques). The problem is how, given a
finite constraint A, to determine whether it is satisfiable or not by transforming it into a
modularized ∃-equivalent constraint.

4.1 Preprocessing
In order to establish the satisfiability of a constraint A, we first need a pre-processing phase,
consisting of the following sequential steps:
Step 1 Flatten A, by replacing sub-terms with fresh constants and by adding the related

defining equalities.
Step 2 Replace array inequalities a 6= b by the following literals (i, e, d are fresh)

diff(a, b) = i, rd(b, i) = e, rd(a, i) = d, d 6= e.

Step 3 Guess a partition of index constants, i.e., for any pair of indexes i, j add either
i = j or i 6= j (but not both of them); then remove the positive literals i = j by replacing
i by j everywhere (if i > j according to the symbol precedence, otherwise replace j by

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 177

i); if an inconsistent literal i 6= i is produced, try with another guess (and if all guesses
fail, report unsat).

Step 4 For all a, i such that rd(a, i) = e does not occur in the constraint, add such a literal
rd(a, i) = e with fresh e.

At the end of the preprocessing phase, we get a finite set of flat constraints; the disjunction
of these constraints is ∃-equivalent to the original constraint. For each of these constraints,
go to the completion phase: if the transformations below can be exhaustively applied (without
failure) to at least one of the constraints, report sat, otherwise report unsat.

The reason for inserting Step 4 above is just to simplify Orientation and Gaussian com-
pletion below. Notice that, even if rules rd(a, i)→ e can be removed during completion, the
following invariant is maintained: terms rd(a, i) always reduce to constants of sort ELEM.

4.2 Completion
The completion phase consists in various transformations that should be non-determinis-
tically executed until no rule or a failure instruction applies. For clarity, we divide the
transformations into five groups.
(I) Orientation. This group contains a single instruction: get rid of badly orientable equal-
ities, by using the equivalences Reflexivity and Symmetry of Figure 1; a badly orientable
equality a = wr(b, I, E) (with a < b) is replaced by an equality of the kind b = wr(a, I,D)
and by the equalities rd(a, I) = E (all “read literals” required by the left-hand side of Symm
comes from the above invariant). A badly orientable equality a = wr(a, I, E) is removed
and replaced by read literals only (or by nothing if I, E are empty).
(II) Gaussian completion. We now take care of the confluence of AR (i.e., point (iii)
of Definition 3.1). To this end, we consider all the critical pairs that may arise among our
rewriting rules (8)-(10) (recall that, by Remark 3, there is no need to examine overlaps
involving the non ground rules (4)-(7)). To treat the relevant critical pairs, we combine
standard Knuth-Bendix completion for congruence closure with a specific method (“Gaussian
completion”) based on equivalences Symmetry, Transitivity and Conflict of Figure 1.2
The critical pairs are listed below. Two preliminary observations are in order. First, we
normalize a critical pair by using →∗ before recovering convergence by adding a suitably
oriented equality and removing the parent equalities (the symbol →∗ denotes the reflexive
and transitive closure of the rewrite relation→ induced by the rewrite rules AR∪{(4)−(7)}).
Second, the provisoes of all the equivalences in Figure 1 used below (i.e., Symm, Trans,
and Confl) are satisfied because of the pre-processing Step 3 above.

(C1) wr(b1, I1, E1) ∗← wr(b′1, I ′1, E′1)← a→ wr(b′2, I ′2, E′2)→∗ wr(b2, I2, E2)

with b1 > b2. We proceed in two steps. First, we use Symm (from right to left) to
replace the parent rule a→ wr(b′1, I ′1, E′1) with

wr(a, I1, F) = b1 ∧ rd(a, I1) = E1

for a suitable list F of constants of sort ELEM (notice that the equalities rd(b1, I1) = F ,
which are required to apply Symm, are already available because terms of the form
rd(b1, j) for j in I1 always reduce to constants of sort ELEM by the invariant resulting
from the application of Step 4 in the pre-processing phase). Then, we apply Trans to

2The name “Gaussian” is due to the analogy with Gaussian elimination in Linear Arithmetic (see [1,4]
for a generalization to the first-order context).

RTA’11

178 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

the previously derived equality b1 = wr(a, I1, F) and to the normalized second equality
of the critical pair (i.e., a = wr(b2, I2, E2)) and we derive

b1 = wr(b2, I2 · I1, E2 · F) ∧ a = wr(b2, I2, E2). (11)
Hence, we are entitled to replace b1 = wr(a, I1, F) with the rule b1 → wr(b2, J,D), where
J and D are lists obtained by normalizing the right-hand-side of the first equality of (11)
with respect to the non-ground rules (6) and (7). To summarize: the parent rules are
removed and replaced by the rules

b1 → wr(b2, J,D), a→ wr(b2, I2, E2)

and a bunch of new equalities of the form rd(a, i) = e, giving rise, in turn, to rules of
the form rd(b2, i) → e or to rewrite rules of the form (10) after normalization of their
left members.

(C2) wr(b, I1, E1) ∗← wr(b′1, I ′1, E′1)← a→ wr(b′2, I ′2, E′2)→∗ wr(b, I2, E2)
Since identities like wr(c,H,G) = wr(c, π(H), π(G)) are AX diff-valid for every permu-
tation π (under the proviso Distinct(H)), it is harmless to suppose that the set of index
variables I := I1 ∩ I2 coincides with the common prefix of the lists I1 and I2; hence we
have I1 ≡ I · J and I2 ≡ I ·H for suitable disjoint lists J and H. Then, let E and E′ be
the prefixes of E1 and E2, respectively, of length equal to that of I; and let E1 ≡ E ·D
and E2 ≡ E′ ·F for suitable lists D and F . At this point, we can apply Confl to replace
both parent rules forming the critical pair with

a = wr(b, I, E) ∧ E = E′ ∧ rd(b, J) = D ∧ rd(b,H) = F,

where the first equality is oriented from left to right (i.e., a→ wr(b, I, E)).

(III) Knuth-Bendix completion. The remaining critical pairs are treated by standard
completion methods for congruence closure.

(C3) d ∗← rd(wr(b, I, E), i)← rd(a, i)→ e′ →∗ e
Remove the parent rule rd(a, i)→ e′ and, depending on whether d > e, e > d, or d ≡ e,
add the rule d → e, e → d, or do nothing. (Notice that terms of the form rd(b, j) are
always reducible because of the invariant of Step 4 in the pre-processing phase; hence,
rd(wr(b, I, E), i) always reduces to some constant of sort ELEM.)

(C4) e ∗← e′ ← rd(a, i)→ d′ →∗ d
Orient the critical pair (if e and d are not identical), add it as a new rule and remove
one parent rule.

(C5) d ∗← d′ ← e→ d′1 →∗ d1

Orient the critical pair (if d and d1 are not identical), add it as a new rule and remove
one parent rule.

(IV) Reduction. The instructions in this group simplify the current rewrite rules.

(R1) If the right-hand side of a current ground rewrite rule can be reduced, reduce it as
much as possible, remove the old rule, and replace it with the newly obtained reduced
rule. Identical equations like t = t are also removed.

(R2) For every rule a→ wr(b, I, E) ∈ AM , exhaustively apply Reduction in Figure 1 from
left to right (this amounts to do the following: if there are i, e in the same position k in
the lists I, E such that rd(b, i) ↓AR

e, replace a = wr(b, I, E) with a = wr(b, I−k,E−k)).
(R3) If diff(a, b) = i ∈ AI , rd(a, i) ↓AR

rd(b, i) and a > b, add the rule a→ b; replace also
diff(a, b) = i by diff(b, b) = i (this is needed for termination, it prevents the rule for
being indefinitely applied).

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 179

(V) Failure. The instructions in this group aim at detecting inconsistency.

(U1) If for some negative literal e 6= d ∈ AM we have e ↓AR
d, report failure and

backtrack to Step 3 of the pre-processing phase.
(U2) If {diff(a, b) = i, diff(a′, b′) = i′} ⊆ AI and a ↓AR

a′ and b ↓AR
b′ for i 6≡ i′, report

failure and backtrack to Step 3 of the pre-processing phase.

Notice that the instructions in the last two groups may require a confluence test α ↓AR
β

that can be effectively performed in case the instructions from groups (II)-(III) have been
exhaustively applied, because then all critical pairs have been examined and the rewrite
system AR is confluent. If this is not the case, one may pragmatically compute and compare
any normal form of α and β, keeping in mind that the test has to be repeated when all
completion instructions (II)-(III) have been exhaustively applied.

I Theorem 4.1. The above procedure decides constraint satisfiability in AX diff.

5 The Interpolation Algorithm

In the literature one can roughly distinguish two approaches to the problem of computing
interpolants. In the former (see e.g. [3, 19]), an interpolating calculus is obtained from
a standard calculus by adding decorations so as to enable the recursive construction of
an interpolating formula from a proof; in the latter (see, e.g., [7, 11, 23]), the focus is on
how to extend an available decision procedure to return interpolants. Our methodology is
similar to the second approach, since we add the capability of computing interpolants to
the satisfiability procedure in Section 4. However, we do this by designing a flexible and
abstract framework, relying on the identification of basic operations that can be performed
independently from the method used by the underlying satisfiability procedure to derive a
refutation.

5.1 Interpolating Metarules
Let now A,B be constraints in signatures ΣA,ΣB expanded with free constants and ΣC :=
ΣA ∩ ΣB ; we shall refer to the definitions of AB-common, A-local, B-local, A-strict, B-
strict, AB-mixed, AB-pure terms, literals and formulae given in Section 3. Our goal is to
produce, in case A∧B is AX diff-unsatisfiable, a ground AB-common sentence φ such that
A `AX diff φ and φ ∧B is AX diff-unsatisfiable.

Let us examine some of the transformations to be applied to A,B. Suppose for instance
that the literal ψ is AB-common and such that A `AX diff ψ; then we can transform B into
B′ := B ∪ {ψ}. Suppose now that we got an interpolant φ for the pair A,B′: clearly, we
can derive an interpolant for the original pair A,B by taking φ ∧ ψ. The idea is to collect
some useful transformations of this kind. Notice that these transformations can also modify
the signatures ΣA,ΣB . For instance, suppose that t is an AB-common term and that c is
a fresh constant: then we can put A′ := A ∪ {c = t}, B′ := B ∪ {c = t}: in fact, if φ is an
interpolant for A′, B′, then φ(t/c) is an interpolant for A,B.3 The transformations we need
are called metarules and are listed in Table 1 below (in the Table and more generally in this
Subsection, we use the notation φ ` ψ for φ `AX diff ψ).

3Notice that the fresh constant c is now a shared symbol, because ΣA is enlarged to ΣA ∪ {c}, ΣB is
enlarged to ΣB ∪ {c} and hence (ΣA ∪ {c}) ∩ (ΣB ∪ {c}) = ΣC ∪ {c}.

RTA’11

180 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

An interpolating metarules refutation for A,B is a labeled tree having the following
properties: (i) nodes are labeled by pairs of finite sets of constraints; (ii) the root is labeled
by A,B; (iii) the leaves are labeled by a pair A,B such that ⊥ ∈ A ∪ B; (iv) each non-leaf
node is the conclusion of a rule from Table 1 and its successors are the premises of that rule.
The crucial properties of the metarules are summarized in the following two Propositions.

I Proposition 5.1. The unary metarules A | B
A′ | B′ from Table 1 have the property that A∧B

is ∃-equivalent to A′ ∧ B′; similarly, the n-ary metarules A1 | B1 ··· An | Bn

A | B from Table 1
have the property that A ∧B is ∃-equivalent to

∨n
k=1(Ak ∧Bk).

I Proposition 5.2. If there exists an interpolating metarules refutation for A,B then there
is a quantifier-free interpolant for A,B (namely there exists a quantifier-free AB-common
sentence φ such that A ` φ and B ∧ φ ` ⊥). The interpolant φ is recursively computed
applying the relevant interpolating instructions from Table 1.

5.2 The Interpolation Solver
The metarules are complete, i.e. if A ∧ B is AX diff-unsatisfiable, then (since we shall
prove that an interpolant exists) a single application of (Propagate1) and (Close2) gives
an interpolating metarules refutation. This observation shows that metarules are by no
means better than the brute force enumeration of formulae to find interpolants. However,
metarules are useful to design an algorithm manipulating pairs of constraints based on
transformation instructions. In fact, each of the transformation instructions can be justified
by a metarule (or by a sequence of metarules): in this way, if our instructions form a complete
and terminating algorithm, we can use Proposition 5.2 to get the desired interpolants. The
main advantage of using metarules as justifications is that we just need to take care of the
completeness and termination of the algorithm, and not about interpolants anymore. Here
“completeness” means that our transformations should be able to bring a pair (A,B) of
constraints into a pair (A′, B′) that either matches the requirements of Proposition 3.3 or
is explicitly inconsistent, in the sense that ⊥ ∈ A′ ∪ B′. The latter is obviously the case
whenever the original pair (A,B) is AX diff-unsatisfiable and it is precisely the case leading
to an interpolating metarules refutation.

The basic idea is that of invoking the algorithm of Section 4 on A and B separately and to
propagate equalities involving AB-common terms. We shall assume an ordering precedence
making AB-common constants smaller than A-strict or B-strict constants of the same sort.
However, this is not sufficient to prevent the algorithm of Section 4 from generating literals
and rules violating one or more of the hypotheses of Proposition 3.3: this is why the extra
correcting instructions of group (γ) below are needed. Our interpolating algorithm has a
pre-processing and a completion phase, like the algorithm from Section 4.
Pre-processing. In this phase the four Steps of Section 4.1 are performed both on A and
on B; to justify these steps we need metarules (Define0,1,2), (Redplus1,2), (Redminus1,2),
(Disjunction1,2), (ConstElim0,1,2), and (Propagate1,2) - the latter because if i, j are AB-
common, the guessing of i = j versus i 6= j in Step 3 can be done, say, in the A-component
and then propagated to the B-component. At the end of the preprocessing phase, the
following properties (to be maintained as invariants afterwards) hold:

(i1) A (resp. B) contains i 6= j for all A-local (resp. B-local) constants i, j of sort INDEX
occurring in A (resp. in B);
(i2) if a, i occur in A (resp. in B), then rd(a, i) reduces to an A-local (resp. B-local)
constant of sort ELEM.

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 181

Close1 Close2 Propagate1 Propagate2

A | B

Prv.: A is unsat.
Int.: φ′ ≡ ⊥.

A | B

Prv.: B is unsat.
Int.: φ′ ≡ >.

A | B ∪ {ψ}
A | B

Prv.: A ` ψ and
ψ is AB-common.

Int.: φ′ ≡ φ ∧ ψ.

A ∪ {ψ} | B
A | B

Prv.: B ` ψ and
ψ is AB-common.

Int.: φ′ ≡ ψ → φ.

Define0 Define1 Define2

A ∪ {a = t} | B ∪ {a = t}
A | B

Prv.: t is AB-common, a fresh.
Int.: φ′ ≡ φ(t/a).

A ∪ {a = t} | B
A | B

Prv.: t is A-local and a is fresh.
Int.: φ′ ≡ φ.

A | B ∪ {a = t}
A | B

Prv.: t is B-local and a is fresh.
Int.: φ′ ≡ φ.

Disjunction1 Disjunction2

· · · A ∪ {ψk} | B · · ·
A | B

Prv.:
∨n

k=1 ψk is A-local and A `
∨n

k=1 ψk.
Int.: φ′ ≡

∨n

k=1 φk.

· · · A | B ∪ {ψk} · · ·
A | B

Prv.:
∨n

k=1 ψk is B-local and B `
∨n

k=1 ψk.
Int.: φ′ ≡

∧n

k=1 φk.

Redplus1 Redplus2 Redminus1 Redminus2

A ∪ {ψ} | B
A | B

Prv.: A ` ψ and
ψ is A-local.

Int.: φ′ ≡ φ.

A | B ∪ {ψ}
A | B

Prv.: B ` ψ and
ψ is B-local.

Int.: φ′ ≡ φ.

A | B
A ∪ {ψ} | B

Prv.: A ` ψ and
ψ is A-local.

Int.: φ′ ≡ φ.

A | B
A | B ∪ {ψ}

Prv.: B ` ψ and
ψ is B-local.

Int.: φ′ ≡ φ.

ConstElim1 ConstElim2 ConstElim0

A | B
A ∪ {a = t} | B

Prv.: a is A-strict and
does not occur in A, t.

Int.: φ′ ≡ φ.

A | B
A | B ∪ {b = t}

Prv.: b is B-strict and
does not occur in B, t.

Int.: φ′ ≡ φ.

A | B
A ∪ {c = t} | B ∪ {c = t}

Prv.: c, t are AB-common,
c does not occur in A,B, t.

Int.: φ′ ≡ φ.

Table 1 Interpolating Metarules: each rule has a proviso Prv. and an instruction Int. for recursively
computing the new interpolant φ′ from the old one(s) φ, φ1, . . . , φk.

Completion. Some groups of instructions to be executed non-deterministically constitute
the completion phase. There is however an important difference here with respect to the
completion phase of Section 4.2: it may happen that we need some guessing also inside the
completion phase (only the instructions from group (γ) below may need such guessings).
Each instruction can be easily justified by suitable metarules (we omit the details for lack
of space). The groups of instructions are the following:

(α) Apply to A or to B any instruction from the completion phase of Section 4.2.
(β) If there is an AB-common literal that belongs to A but not to B (or vice versa),
copy it in B (resp. in A).
(γ) Replace undesired literals, i.e., those violating conditions (I)-(II)-(III) from Propo-
sition 3.3.

RTA’11

182 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

To avoid trivial infinite loops with the (β) instructions, rules in (α) deleting an AB-common
literal should be performed simultaneously in the A- and in the B-components (it can be
easily checked [5] that this is always possible, for instance if rules in (β) and (γ) are given
higher priority). Instructions (γ) need to be described in more details. Preliminarily, we
introduce a technique that we call Term Sharing. Suppose that the A-component contains
a literal α = t, where the term t is AB-common but the free constant α is only A-local.
Then it is possible to “make α AB-common” in the following way. First, introduce a fresh
AB-common constant α′ with the explicit definition α′ = t (to be inserted both in A and in
B, as justified by metarule (Define0)); then replace the literal α = t by α = α′ and replace
α by α′ everywhere else in A; finally, delete α = α′ too. The result is a pair (A,B) where
basically nothing has changed but α has been renamed to an AB-common constant α′.
Notice that the above transformations can be justified by metarules (Define0), (Redplus1),
(Redminus1), (ConstElim1). We are now ready to explain instructions (γ) in details. First,
consider undesired literals corresponding to the rewrite rules of the form

rd(c, i)→ d (12)

in which the left-hand side is AB-common and the right-hand side is, say, A-strict. If we
apply Term Sharing, we can solve the problem by renaming d to an AB-common fresh
constant d′. We can apply a similar procedure to the rewrite rules

a→ wr(c, I, E) (13)

in case the right-hand side is AB-common and the left-hand side is not; when we rename
a to some fresh AB-common constant c′, we must arrange the precedence so that c′ > c to
orient the renamed literal as c′ → wr(c, I, E). Then, consider the literals of the form

diff(a, b) = k (14)

in which the left-hand side is AB-common and the right-hand side is, say, A-strict. Again,
we can rename k to some AB-common constant k′ by Term Sharing. Notice that k′ is
AB-common, whereas k was only A-local: this implies that we might need to perform
some guessing to maintain the invariant (i1). Basically, we need to repeat Step 3 from
Section 4.1 till invariant (i1) is restored (k′ must be compared for equality with the other
B-local constants of sort INDEX). The last undesired literals to take care of are the rules of
the form4

c→ wr(c′, I, E) (15)

having an AB-common left-hand side but, say, only an A-local right-hand side. Notice
that from the fact that c is AB-common, it follows (by our choice of the precedence) that
c′ is AB-common too. We can freely suppose that I and E are split into sublists I1, I2
and E1, E2, respectively, such that I ≡ I1 · I2 and E ≡ E1 · E2, where I1, E1 are AB-
common, I2 ≡ i1, . . . , in, E2 ≡ e1, . . . , en and for each k = 1, . . . , n at least one from ik, ek

is not AB-common. This n (measuring essentially the number of non AB-common symbols
in (15)) is called the degree of the undesired literal (15): in the following, we shall see how
to eliminate (15) or to replace it with a smaller degree literal. We first make a guess (see
metarule (Disjunction1)) about the truth value of the literal c = wr(c′, I1, E1). In the first

4Literals d = e are automatically oriented in the right way by our choice of the precedence.

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 183

case, we add the positive literal to the current constraint; as a consequence, we get that
the literal (15) is equivalent to c = wr(c, I2, E2) and also to rd(c, I2) = E2 (see Red in
Figure 1). In conclusion, in this case, the literal (15) is replaced by the AB-common rewrite
rule c→ wr(c′, I1, E1) and by the literals rd(c, I2) = E2. In the second case, we guess that
the negative literal c 6= wr(c′, I1, E1) holds; we introduce a fresh AB-common constant c′′
together with the defining AB-common literal5

c′′ → wr(c′, I1, E1) (16)

(see metarule (Define0)). The literal (15) is replaced by the literal

c→ wr(c′′, I2, E2). (17)

We show how to make the degree of (17) smaller than n. In addition, we eliminate the
negative literal c 6= c′′ coming from our guessing (notice that, according to (16), c′′ renames
wr(c′, I1, E1)). This is done as follows: we introduce fresh AB-common constants i, d, d′′
together with the AB-common defining literals

diff(c, c′′) = i, rd(c, i)→ d, rd(c′′, i)→ d′′ (18)

(see metarule (Define0)). Now it is possible to replace c 6= c′′ by the literal d 6= d′′ (see
axiom (3)). Under the assumption Distinct(I2), the following statement is AX diff valid:

c = wr(c′′, I2, E2) ∧ rd(c′′, i) = d′′ ∧ rd(c, i) = d ∧ d 6= d′′ →
n∨

k=1
(i = ik ∧ d = ek).

Thus, we get n alternatives (see metarule (Disjunction1)). In the k-th alternative, we
can remove the constants ik, ek from the constraint, by replacing them with the AB-
common terms i, d respectively (see metarules (Redplus1), (Redplus2), (Redminus1), (Red-
minus2),(ConstElim1),(ConstElim0)); notice that it might be necessary to complete the
index partition. In this way, the degree of (17) is now smaller than n.

In conclusion, if we apply exhaustively Pre-Processing and Completion instructions
above, starting from an initial pair of constraints (A,B), we can produce a tree, whose
nodes are labelled by pairs of constraints (the successor nodes are labelled by pairs of con-
straints that are obtained by applying an instruction). We call such a tree an interpolating
tree for (A,B). The following result shows that we obtained an interpolation algorithm for
AX diff:

I Theorem 5.3. Any interpolation tree for (A,B) is finite; moreover, it is an interpolating
metarules refutation (from which an interpolant can be recursively computed according to
Proposition 5.2) precisely iff A ∧B is AX diff-unsatisfiable.

From the above Theorem it immediately follows that:

I Theorem 5.4. The theory AX diff admits quantifier-free interpolants (i.e., for every quan-
tifier free formulae φ, ψ such that ψ∧φ is AX diff-unsatisfiable, there exists a quantifier free
formula θ such that: (i) ψ `AX diff θ; (ii) θ ∧ φ is not AX diff-satisfiable: (iii) only variables
occurring both in ψ and in φ occur in θ).

In [5], we also give a direct (although non-constructive) proof of this theorem by using the
model-theoretic notion of amalgamation.

5We put c > c′′ > c′ in the precedence. Notice that invariant (i2) is maintained, because all terms
rd(c′′, h) normalize to an element constant. In case I1 is empty, one can directly take c′ as c′′.

RTA’11

184 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

5.3 An Example
To illustrate our method, we describe the computation of an interpolant for the mutually
unsatisfiable sets A ≡ {a = wr(b, i, d)}, B ≡ {rd(a, j) 6= rd(b, j), rd(a, k) 6= rd(b, k), j 6= k}.
Notice that i, d are A-strict constants, j, k are B-strict constants, and a, b are AB-common
constants with precedence a > b. We first apply Pre-Processing instructions to obtain
A ≡ {a = wr(b, i, d), rd(a, i) = e5, rd(b, i) = e6}, B ≡ {rd(a, j) = e1, rd(b, j) = e2, rd(a, k) =
e3, rd(b, k) = e4, e1 6= e2, e3 6= e4, j 6= k}. Since a = wr(b, i, d) is an undesired literal of
the kind (15), we generate the two subproblems Π1 ≡ (A ∪ {rd(b, i) = d, a = b}, B) and
Π2 ≡ (A ∪ {a 6= b}, B).6

Let us consider Π1 first. Notice that A ` a = b, and a = b is AB-common. Therefore we
send a = b to B, and we may derive the new equality e1 = e2 from the critical pair (C3) e1 ←
rd(a, j)→ rd(b, j)→ e2, thus obtaining A ≡ {a = b, rd(b, i) = d, rd(a, i) = e5, rd(b, i) = e6},
B ≡ {rd(b, j) = e2, rd(a, k) = e3, rd(b, k) = e4, e1 6= e2, e3 6= e4, j 6= k, a = b, e1 = e2}. Now
B is inconsistent. The interpolant for Π1 can be computed with the interpolating instructions
of the metarules (Close1,Propagate1,Redminus1,Redplus1) resulting in ϕ1 ≡ (> ∧ a = b) ≡
a = b.

Then, let us consider branch Π2. Recall that this branch originates from the attempt
of removing the undesired rule a → wr(b, i, d). We introduce the AB-common defin-
ing literals diff(a, b) = l, rd(a, l) = f1, rd(b, l) = f2, and f1 6= f2, in order to remove
a 6= b from A. These are immediately propagated to B: A ≡ {a = wr(b, i, d), rd(a, i) =
e5, rd(b, i) = e6, diff(a, b) = l, rd(a, l) = f1, rd(b, l) = f2, f1 6= f2}, B ≡ {rd(a, j) =
e1, rd(b, j) = e2, rd(a, k) = e3, rd(b, k) = e4, e1 6= e2, e3 6= e4, j 6= k, diff(a, b) = l, rd(a, l) =
f1, rd(b, l) = f2, f1 6= f2}. Since a = wr(b, i, d) contains only the index i, we do not
have a real case split. Therefore we replace i with l, and d with f1. At last, we prop-
agate the AB-common literal a = wr(b, l, f1) to B. After all these steps we obtain:
A ≡ {a = wr(b, l, f1), rd(a, l) = e5, rd(b, i) = e6, diff(a, b) = l, rd(a, l) = f1, rd(b, l) =
f2, f1 6= f2}, B ≡ {rd(a, j) = e1, rd(b, j) = e2, rd(a, k) = e3, rd(b, k) = e4, e1 6= e2, e3 6=
e4, j 6= k, diff(a, b) = l, rd(a, l) = f1, rd(b, l) = f2, f1 6= f2, a = wr(b, l, f1)}. Since we have
one more AB-common index constant l, we complete the current index constant partition,
namely {k} and {j}: we have three alternatives, to let l stay alone in a new class, or to add l
to one of the two existing classes. In the first alternative, because of the following critical pair
(C3) e1 ← rd(a, j)→ rd(wr(b, l, f1), j)→ e2, we add e1 = e2 to B, which becomes trivially
unsatisfiable. The other two alternatives yield similar outcomes. For each subproblem the in-
terpolant, reconstructed by reverse application of the interpolating instructions of (Define0)
and (Propagate1), is ϕ′2 ≡ {(a = wr(b, diff(a, b), rd(a, diff(a, b))) ∧ rd(a, diff(a, b)) 6=
rd(b, diff(a, b)))}. The interpolant ϕ2 for the branch Π2 has to be computed by combining
with (Disjunction2) three copies of ϕ′2, and so ϕ2 ≡ ϕ′2.

The final interpolant is computed by combining the interpolants for Π1 and Π2 by means
of (Disjunction1), yielding ϕ ≡ ϕ1 ∨ ϕ2 ≡ (a = b∨ (a = wr(b, diff(a, b), rd(a, diff(a, b)))∧
rd(a, diff(a, b)) 6= rd(b, diff(a, b)))), i.e. a = wr(b, diff(a, b), rd(a, diff(a, b))).

6 Related work and Conclusions

There is a series of papers devoted to building satisfiability procedures for the theory of
arrays with or without extensionality. The interested reader is pointed to, e.g., [10, 12] for

6Notice that this is precisely the case in which there is no need of an extra AB-common constant c′′.

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise 185

an overview. In the following, for lack of space, we discuss the papers more closely related
to interpolation for the theory of arrays.

After McMillan’s seminal work on interpolation for model checking [18,20], several papers
appeared whose aim was to design techniques for the efficient computation of interpolants
in first-order theories of interest for verification, mainly uninterpreted function symbols,
fragments of Linear Arithmetic, or their combination. An interpolating theorem prover is
described in [19], where a sequent-like calculus is used to derive interpolants from proofs
in propositional logic, equality with uninterpreted functions, linear rational arithmetic, and
their combinations. In [15], a method to compute interpolants in data structures theo-
ries, such as sets and arrays (with extensionality), by axiom instantiation and interpolant
computation in the theory of uninterpreted functions is described. It is also shown that
the theory of arrays with extensionality does not admit quantifier-free interpolation. The
“split” prover in [13] applies a sequent calculus for the synthesis of interpolants along the
lines of that in [19] and is tuned for predicate abstraction [22]. The “split” prover can handle
a combination of theories among which also the theory of arrays without extensionality is
considered. In [13], it is pointed out that the theory of arrays poses serious problems in de-
riving quantifier-free interpolants because it entails an infinite set of quantifier-free formulae,
which is indeed problematic when interpolants are to be used for predicate abstraction. To
overcome the problem, [13] suggests to constrain array valued terms to occur in equalities of
the form a = wr(a, I, E) in the notation of this paper. It is observed that this corresponds
to the way in which arrays are used in imperative programs. Further limitations are imposed
on the symbols in the equalities in order to obtain a complete predicate abstraction proce-
dure. In [14], the method described in [13] is specialized to apply CEGAR techniques [8]
for the verification of properties of programs manipulating arrays. The method of [13] is ex-
tended to cope with range predicates which allow one to describe unbounded array segments
which permit to formalize typical programming idioms of arrays, yielding property-sensitive
abstractions. In [16], a method to derive quantified invariants for programs manipulating
arrays and integer variables is described. A resolution-based prover is used to handle an
ad hoc axiomatization of arrays by using predicates. Neither McCarthy’s theory of arrays
nor one of its extensions are considered in [16]. The invariant synthesis method is based on
the computation of interpolants derived from the proofs of the resolution-based prover and
constraint solving techniques to handle the arithmetic part of the problem. The resulting
interpolants may contain even alternation of quantifiers.

To the best of our knowledge, the interpolation procedure presented in this paper is the
first to compute quantifier-free interpolants for a natural variant of the theory of arrays with
extensionality. In fact, the variant is obtained by replacing the extensionality axiom with its
Skolemization which should be sufficient when the procedure is used to detect unsatisfiability
of formulae as it is the case in standard model checking methods for infinite state systems.
Because our method is not based on a proof calculus, we can avoid the burden of generating
a large proof before being able to extract interpolants. The implementation of our procedure
is currently being developed in the SMT-solver OpenSMT [6] and preliminary experiments
are encouraging. An extensive experimental evaluation is planned for the immediate future.
Acknowledgements. We wish to thank an anonymuous referee for many useful criticisms
that helped improving the quality of the paper.

References
1 F. Baader, S. Ghilardi, and C. Tinelli. A new combination procedure for the word prob-

lem that generalizes fusion decidability results in modal logics. Inform. and Comput.,

RTA’11

186 Rewriting-based Quantifier-free Interpolation for a Theory of Arrays

204(10):1413–1452, 2006.
2 F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press,

Cambridge, 1998.
3 A. Brillout, D. Kroening, P. Rümmer, and W. Thomas. An Interpolating Sequent Calculus

for Quantifier-Free Presburger Arithmetic . In IJCAR, 2010.
4 R. Bruttomesso. Problemi di combinazione nella dimostrazione automatica e nella verifica

del software. Università degli Studi di Milano, 2004. Master Thesis.
5 R. Bruttomesso, S. Ghilardi, and S. Ranise. Rewriting-based Quantifier-free Interpolation

for a Theory of Arrays. Technical Report RI 334-10, Dip. Scienze dell’Informazione, Univ.
di Milano, 2010.

6 R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The OpenSMT Solver. In TACAS,
pages 150–153, 2010.

7 A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Interpolation Generation in Satisfia-
bility Modulo Theories. ACM Trans. Comput. Logic, 12:1–54, 2010.

8 E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Abstraction
Refinement. In CAV, pages 154–169, 2000.

9 W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. J. Symb. Log., pages 269–285, 1957.

10 L. de Moura and N. Bjørner. Generalized, Efficient Array Decision Procedures. In FMCAD,
pages 45–52, 2009.

11 A. Fuchs, A. Goel, J. Grundy, S. Krstić, and C. Tinelli. Ground Interpolation for the
Theory of Equality. In TACAS, pages 413–427, 2009.

12 S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Decision procedures for extensions of
the theory of arrays. Annals of Mathematics and Artificial Intelligence, 50:231–254, 2007.

13 R. Jhala and K. L. McMillan. A Practical and Complete Approach to Predicate Refinement.
In TACAS, pages 459–473, 2006.

14 R. Jhala and K. L. McMillan. Array Abstractions from Proofs. In CAV, pages 193–206,
2007.

15 D. Kapur, R. Majumdar, and C. Zarba. Interpolation for Data Structures. In
SIGSOFT’06/FSE-14, pages 105–116, 2006.

16 L. Kovács and A. Voronkov. Finding Loop Invariants for Programs over Arrays Using a
Theorem Prover. In FASE, pages 470–485, 2009.

17 J. McCarthy. Towards a Mathematical Science of Computation. In IFIP Congress, pages
21–28, 1962.

18 K. L. McMillan. Interpolation and SAT-Based Model Checking. In CAV, pages 1–13, 2003.
19 K. L. McMillan. An Interpolating Theorem Prover. Theor. Comput. Sci., 345(1):101–121,

2005.
20 K. L. McMillan. Applications of Craig Interpolation to Model Checking. In TACAS, pages

1–12, 2005.
21 S. Ranise, C. Ringeissen, and D. Tran. Nelson-Oppen, Shostak and the Extended Canonizer:

A Family Picture with a Newborn. In ICTAC, pages 372–386, 2004.
22 H. Saidi and S. Graf. Construction of abstract state graphs with PVS. In CAV, pages

72–83, 1997.
23 G. Yorsh and M. Musuvathi. A Combination Method for Generating Interpolants. In

CADE, pages 353–368, 2005.

Improved Functional Flow and Reachability
Analyses Using Indexed Linear Tree Grammars
Jonathan Kochems and Luke Ong

Oxford University Computing Laboratory

Abstract
The collecting semantics of a program defines the strongest static property of interest. We study
the analysis of the collecting semantics of higher-order functional programs, cast as left-linear
term rewriting systems. The analysis generalises functional flow analysis and the reachability
problem for term rewriting systems, which are both undecidable. We present an algorithm that
uses indexed linear tree grammars (ILTGs) both to describe the input set and compute the
set that approximates the collecting semantics. ILTGs are equi-expressive with pushdown tree
automata, and so, strictly more expressive than regular tree grammars. Our result can be seen
as a refinement of Jones and Andersen’s procedure, which uses regular tree grammars. The main
technical innovation of our algorithm is the use of indices to capture (sets of) substitutions, thus
enabling a more precise binding analysis than afforded by regular grammars. We give a simple
proof of termination and soundness, and demonstrate that our method is more accurate than
other approaches to functional flow and reachability analyses in the literature.

Keywords and phrases Flow analysis, reachability, collecting semantics, higher-order program,
term rewriting, indexed linear tree grammar

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.187

Category Regular Research Paper

1 Introduction

In program analysis, the collecting semantics of a program maps a given program point to
the collection of all states attainable by a run of the program when control reaches that point.
Thus the collecting semantics defines the strongest static property of interest [3]. A good
method of analysing the collecting semantics of programs is the basis of a useful generic
tool; it can be employed, a fortiori, to analyse such practically important computational
properties as reachability and control flow.

A higher-order functional program with pattern-matching algebraic data types may be
viewed1 as a (left-linear) term rewriting system, namely, a set P = { li → ri ∣ 1 ≤ i ≤ p} of
rewrite rules where each li and ri are elements of the term algebra of a given signature,
generated from a set of variables. The one-step rewrite relation, →P , is standard: if a
ground term t has a subterm u that matches the pattern li (i.e. t = C[u] for some context
C[-], and σ li = u for some ground substitution σ) then t = C[σ li] rewrites in one step to
C[σ ri], written C[σ li] →P C[σ ri]. What then is the collecting semantics of P? Following
Jones and Andersen [10], we take the program points of P to be the rewrite rules, and the

1 The idea goes back to Reynolds’ defunctionalization [20]. A higher-order lambda-term can be sys-
tematically “lambda-lifted” to an equivalent term rewriting system that has explicit binary application
operators, systematically replacing closed higher-order lambda-terms by named combinators; thus every
function is treated as “curried”. See, for example, Jones and Andersen’s account of the translation [10].

© Jonathan Kochems and Luke Ong;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 187–202

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.187
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

188 Functional Collecting Semantics and Indexed Linear Tree Grammars

states of P to be the ground substitutions. The collecting semantics of P over a set I of
input terms is then the tuple (Z0, Z1, . . . , Zp), where

Z0 ∶= { (Id, t) ∣ ∃s ∈ I . s→∗

P
t}

Zi ∶= { (σ, t) ∣ ∃s ∈ I . s→∗

P
C[σ li] ∧ σ ri →∗

P
t} for 1 ≤ i ≤ p

In words, Zi consists of all pairs (σ, t) where σ is a substitution that matches the LHS of rule
i in a P-computation which is reachable from I (we call σ an I-reachable substitution), and
t is a result term which is reachable from the RHS of rule i when instantiated by σ. (In a
functional computation, control flow is determined by a sequence of function calls, possibly
unknown at compile time. Thus, the flow analysis of P amounts to approximating the values
that may be substituted for the program variables of each rewrite rule during a run of P.
It follows that one can use collecting semantics to flow-analyse functional programs.) Since
a precise characterisation of the collecting semantics is uncomputable, our goal is to build
over-approximations of the Zis.

The key to our construction is a binding analysis that uses indices to explicitly model
(sets of) I-reachable substitutions in the setting of indexed linear tree grammars (ILTGs).
The rules of an ILTG rewrite term-trees in which leaf-nodes may be labelled by a non-
terminal annotated with a sequence of indices; indices propagate from the root to the leaves
of a term-tree. ILTGs are strictly more expressive than regular tree grammars; in fact, they
are equi-expressive with pushdown tree automata. We give an algorithm which takes three
input arguments (namely, a program P as before, a set of input terms defined by an ILTG
G0, and an accuracy parameter n ≥ 0) and constructs an ILTG Gn that approximates the
collecting semantics of P on input given by G0. Precisely, the ILTG Gn, which is equipped
with distinguished non-terminals

Ri (denoting the “results of the P-rule, li → ri”), for each 1 ≤ i ≤ p, and
X, for each program variable X,

over-approximates Zi (for each 0 ≤ i ≤ p) in the following sense:

local safety: for every (σ, t) ∈ Zi, there is (constructively) an index sequence δσ such
that Ri δσ →∗

Gn
t and X δσ →∗

Gn
σX for each variable X that occurs in ri

where σX denotes the term obtained by applying the substitution σ to the variable X, and
→Gn is the one-step rewrite relation of Gn. The superscript n of Gn controls the accuracy of
approximation: if n < n′ then the ILTG Gn′ offers at least as accurate an approximation as
Gn. Happily, the ILTG Gn is not prohibitively large: its size is polynomial in the number of
rules in P and G0, and exponential in n and the number2 of program variables in P.

As far as we know, our algorithm gives the first completion procedure for indexed linear
tree grammars (equivalently, pushdown tree automata). It extends Jones and Andersen’s
safe approximation of collecting semantics by admitting a strictly larger class of input sets.
Even when restricted to regular input sets, for each n ≥ 0, our algorithm builds an ILTG Gn
which is at least as accurate as the result of Jones and Andersen’s method.

Since the 2-projection of Z0 is the set ReachP(I) of terms that are reachable from the
input set I under rewriting by P, our analysis of collecting semantics may also be viewed
as a contribution to the reachability problem for left-linear term rewriting systems (TRS)
(i.e. given an input set I and a left-linear TRS R, construct a set that over-approximates
ReachR(I)) [9, 5, 2]. To the best of our knowledge, none of the over-approximation results
in the literature can admit an arbitrary pushdown tree language as the input set.

2 This can be improved to max1≤i≤p #vars(li) where #vars(li) is the number of variables in li.

Jonathan Kochems and Luke Ong 189

Outline In Section 2, after fixing notations we introduce indexed linear tree grammars
and the notion of minimally reachable match. The ILTG completion algorithm for over-
approximating the collecting semantics of a program on an input set is presented in Section 3.
The termination proof and soundness proof are given in Sections 4 and 5 respectively. In the
concluding section, we evaluate our result and set out a number of further directions. Note,
a long version of the paper is available [13] containing the proofs that are omitted from the
main text together with two complete worked examples which illustrate the workings of our
algorithm.

The work reported here is based on preliminary results first presented in the first author’s
MSc dissertation [12].

2 Preliminaries

Term Rewriting Systems and Programs Let Σ be a ranked alphabet equipped with a
function ar giving the arity of each symbol in Σ. We write Σn ∶= ar−1(n) and use letters
f, g, h, a and b to denote members of Σ. The free algebra over an arbitrary set X , written
TΣ(X), is the smallest set such that X ⊆ TΣ(X), and if f ∈ Σn and t1, . . . , tn ∈ TΣ(X) then
f(t1, . . . , tn) ∈ TΣ(X). Elements of TΣ(X) are called terms, denoted by letters s and t; and
we write TΣ ∶= TΣ(∅) for the set of ground terms.

Let V = {X,Y,Z,⋯} be a set of variables, and Σ = ∆ ⊍ Γ be a ranked alphabet that is
partitioned into disjoint sets ∆ and Γ. Symbols in ∆ and Γ are called defined operators and
constructors respectively. A call is a term of the form f(t1, . . . , tn) with f ∈ ∆; a pattern
is a call in which every variable occurs at most once. A term rewriting system (TRS) over
Σ is a finite set of rewrite rules P = {li → ri ∣ li, ri ∈ TΣ(V); 1 ≤ i ≤ p} such that for every i,
li is a call, and every variable that occurs in ri also occurs in li; further P is left-linear just
if for each i, li is a pattern. The (one-step) rewrite relation →P ⊆ (TΣ(X))2 of a TRS P is
defined as

C[σ l]→P C[σ r]

with C[-] ranging over one-hole contexts, σ ∶ V → TΣ ranging over substitutions, and l → r

ranging over rules in P. The n-step rewrite relation, →n
P
, and the reflexive, transitive closure,

→∗

P
, of →P are defined in the usual way.
Henceforth we fix a ranked alphabet Σ = ∆ ⊍ Γ. By a program we mean a pair (Σ,P)

where P is a left-linear TRS over Σ. (We can think of the defined operators and constructors
respectively as the non-terminals and terminals of the program.) An input of P is a set I ⊆ TΣ
of ground terms. We are interested in analysing (inter alia) the set ReachP(I) ∶= {t ∣ s ∈
I, s→∗

P
t} of P-reachable terms from I.

▸ Example 2.1 (Running Example). Consider the program P with ∆1 = {counter,genh,genk},
Γ0 = {0,a,b}, Γ1 = {S,h,k}, Γ2 = {f}, and rules as follows:

1 counter(x) → counter(S(x))
2 counter(x) → f(genh(x),genk(x))
3 genh(0) → a

4 genh(S(x)) → h(genh(x))
5 genk(0) → b
6 genk(S(x)) → k(genk(x))

Let I = { counter(0) }. The set of reachable constructor-terms from I, namely, ReachP(I) ∩
TΓ, is { f(hn(a),kn(b)) ∣ n ≥ 0}.3

3 There is a simpler program that gives the same set of reachable constructor terms, namely,

RTA’11

190 Functional Collecting Semantics and Indexed Linear Tree Grammars

Indexed Linear Tree Grammar (ILTG) Jones and Andersen’s algorithm constructs a reg-
ular tree grammar to over-approximate the collecting semantics of a given program P on
input I. Our refinement works in a similar fashion but builds an indexed linear tree grammar
instead. Let us introduce ILTG with an example.

▸ Example 2.2. Consider the grammar with non-terminal alphabet N = {S,S ’,A,B}, ter-
minal alphabet Σ = {f ,h,k,a,b} and index set F = {α,β}. The rewrite rules are as follows.

1 S → S’ β
2 S’→ S’α
3 S’→ f(A,B)

4 Aα → h(A)
5 Aβ → a
6 Bαα → k(k(B))

7 Bαβ → k(b)
8 Bβ → b

This ILTG rewrites terms in TΣ(NF∗). For example, the rule Bαα → k(k(B)) allows
us to replace the term Bααν1 ... νn by the term k(k(Bν1 ...νn)) where ν1...νn ∈ F∗ —note
the propagation of ν1 ... νn from the root of the term-tree k(k(B)) to its leaf. Similarly Rule
4 allows the term Aαβ to rewrite to h(Aβ). A possible rewrite using the above rules is

S’α β → S’α α β → f(Aαα β ,Bαα β) → f(Aαα β ,k(k(Bβ))).

In this ILTG, the set of reachable ground terms (in TΣ) from input {S } of the ILTG is
{f(hn(a),kn(b)) ∣ n ≥ 0} which is the same as that of the TRS in Example 2.1. Note that
the set is not regular; it follows that ILTGs are strictly more expressive than regular tree
grammars. Note also the similarities between the computation of this ILTG and that of the
TRS in Example 2.1.

We now give a formal definition of indexed linear tree grammars.

▸ Definition 2.3 (ILTG). An indexed linear tree grammar (ILTG) is a 5-tuple (Σ,N ,F , S,G)
(of finite objects) where

Σ is a ranked alphabet of terminal symbols (ranged over by f, g, a, b, etc.)
N is an alphabet of nullary non-terminal symbols (ranged over by A,B,C, etc.), and
S ∈ N is a distinguished start symbol
F is a set of index symbols (ranged over by α,β, etc.)
G a set of rewrite rules of the form Aγ →G t, where A ∈ N , γ ∈ F∗ and t ∈ TΣ(NF∗).

By abuse of notation, we shall refer to the ILTG as G. The (one-step) rewrite relation of G,
→G ⊆ (TΣ(NF∗))2, is defined as

C[Aγ δ]→G C[distδ(t)]

with C[-] ranging over (one-holed) contexts, δ over F∗ and Aγ →G t over rules in G, and
distδ(t) is defined as distδ(Aγ) ∶= Aγ δ and distδ(f(t1, . . . , tn)) ∶= f(distδ(t1), . . . ,distδ(tn)),
where n ≥ 0, and f,A and γ range over Σ,N and F∗ respectively. For example,

distα1α2(f(Aβ1, g(Bβ2β3, a))) = f(Aβ1α1α2, g(Bβ2β3α1α2, a)).

We denote the reflexive, transitive closure and the n-step rewrite relation of →G by →∗

G
and

→n
G
respectively.

gen(x,y) → gen(h(x),k(y)) | f(x,y) with input I = { gen(a, b)}.

Jonathan Kochems and Luke Ong 191

Take an ILTG (Σ,N ,F , S,G), and let I ⊆ TΣ(NF∗). We define ReachG(I) ∶= {t ∣
s ∈ I, s →∗

G
t}; for singleton sets we omit set braces e.g. ReachG(t) means ReachG({t}); and

if S is G’s start symbol we write ReachG for ReachG(S). If ReachG is well-defined we write
ReachP(G) ∶= ReachP(ReachG) and set Reacho

G
(I) ∶= ReachG(I)∩TΣ. Note that elements of

TΣ(NF∗) are term-trees: they can be viewed as (finite) ranked trees, whose internal nodes
are labelled by symbols in Σ (of non-zero arities), and whose leaves are labelled by symbols
in NF∗ ∪Σ0. Thus we define the language of (finite) Σ-labelled trees generated by G to be
Reacho

G
.

▸ Proposition 2.4. ILTGs are equi-expressive with pushdown tree automata [8] as generators
of Σ-labelled tree languages. Thus ILTGs generate precisely the level-1 trees4 of the hierarchy
of (collapsible) pushdown trees [18].

The idea is that the non-terminals and indices of an ILTG correspond respectively to the
states and stack symbols of a pushdown tree automaton. See the full paper for a proof.

▸ Remark 2.5. (i) ILTGs are similar to Aho’s indexed grammars [1] but there are important
differences. First Aho’s grammars are generators of word languages which are equi-expressive
with second-order pushdown word automata; they define level 2 of the Maslov Hierarchy
[16, 18]. Secondly, the linearity constraint on ILTG (each leaf of the RHS of a rule has at
most one occurrence of a non-terminal) has the effect of reining in the power of indices, so
that the branch language of a tree generated by an ILTG is context-free. (ii) Engelfriet and
Vogler [4] introduced regular tree grammars with pushdown store which are equi-expressive
with context-free tree languages [8], and with ILTGs. (iii) ILTGs define a class of trees with
rich algorithmic properties, which make them highly suitable for verification (for example,
their emptiness problem is in EXPTIME). In fact, all trees in the hierarchy of (collapsible)
pushdown trees have decidable MSO theories [17].

ILTGs are a concise formalism; when rewriting, indices propagate from the root of a
term-tree to its leaves, just like substitutions. We think that ILTGs are an attractive vehicle
for the presentation of our algorithm.

Minimally Reachable Match Minimally reachable match is a concept due to Jones and
Andersen [10]; it formalises the idea of rewriting a term by as many steps as necessary—but
no more—in order to achieve a match against a pattern. Here we generalise it to the setting
of indexed grammar, and consider the substitution that witnesses a minimally reachable
match of a uniformly indexed term against a pattern. A term t ∈ TΣ(NF∗) is said to be
uniformly indexed (or simply uniform) just if t = distδ(s) for some δ ∈ F∗ and s ∈ TΣ(N)
i.e. every non-terminal in t is annotated with the same index sequence.

▸ Definition 2.6 (Minimally Reachable Match). Let G = (Σ,N ,F , S,G) be an ILTG, s ∈ TΣ(V)
be a pattern, and distα1...αnt be a uniform term (thus t ∈ TΣ(N)). We say that a substitution
σ is a minimally reachable match of distα1...αn(t) against s just if there exists m ≥ 0 such
that

(i) distα1...αn(t)→mG σs, and
(ii) ¬(∃σ′.distα1...αn(t)→m−1

G
σ′s→ σs), and

(iii) ¬(∃σ′.∃k < n.(distα1...αk(t)→mG σ′s and σ = distαk+1...αn(σ′))).

4 See, for example, the survey [18] for an introduction to the hierarchies of finite and infinite ranked
trees. Note that ILTGs are generators of (languages of) both finite and infinite trees.

RTA’11

192 Functional Collecting Semantics and Indexed Linear Tree Grammars

I.e. m is the minimal number of reduction steps from distα1...αnt, and α1 . . . αn is a corres-
ponding minimal index sequence, that are required to achieve a match against the pattern
s. We shall sometimes refer to σ as a minimally reachable substitution.

Condition (iii) means that every index in α1 . . . αn must be “consumed” in the construc-
tion of σ. For example, take the rules in Example 2.2 and the pattern s = f(g(X),h(h(Y)))
then f(Aαα ,Bαα) →∗ f(g(Aα) ,h(h(B))) = σs is a minimal derivation, where σ = {X ↦ Aα,
Y ↦ B}. However the derivation f(Aαα β ,Bαα β)→∗ f(g(Aαβ) ,h(h(Bβ)))= distβ(σs) is
not minimal, because β is superfluous. Note that in the absence of indices (i.e. in a regular
tree grammar), n is necessarily 0, and so, the notion of minimally reachable match here
coincides with that of Jones and Andersen’s.

We say that an ILTG is uniform if the RHS of every rule is uniform. In a uniform ILTG,
a minimally reachable match of a uniform term t against a pattern p has the nice property
that the substitution in question will only replace a variable with a subterm of t (which
is uniform) or an indexed subterm of the RHS of a rule (which is also uniform). In the
following we write r′ ≤ r to mean that r′ is a subterm of r.

▸ Proposition 2.7. Let G be an ILTG, t ∈ TΣ(N) and p ∈ TΣ(V). If σ is the substitution of
a minimally reachable match of distγ(t) against p then for all X in Vars(p), σX ≤ distγ(t),
or σX = distγ′(g) for some index sequence γ′ and some subterm g of the right-hand-side
(RHS) of a G-rule.

▸ Notational Convention 2.8. Henceforth we assume a program P = { li → ri ∣ 1 ≤ i ≤ p} and a
set I of input terms over a ranked alphabet Σ = ∆⊍Γ, where ∆ consists of defined-operator
symbols and Γ consists of constructor symbols. We further assume that the input I ∶=
Reacho

G0
where G0 is a (uniform) ILTG with start symbol R0. We aim to over-approximate

the collecting semantics of P on I by means of ILTGs, ranged over by G, that are defined
over a terminal alphabet which is set to be Σ, and a non-terminal alphabet N that satisfies

N ⊇ {X ∣X ∈ Vars(li),1 ≤ i ≤ p} ∪ {R0,R1, . . . ,Rp }

where R0 is the start symbol. Note that every symbol of P (whether user-defined or con-
structor) is a terminal symbol of G; and every program variable of P is a non-terminal of G.
For each 1 ≤ i ≤ p, the non-terminal Ri (read “the results of the rule li → ri”) is intended to
generate a superset of all the terms that are reachable from li in a rewriting sequence that
originates from a term in I.

We make precise what it means for an ILTG to be a safe over-approximation of the
collecting semantics of P on I, and distinguish two versions of safety.

▸ Definition 2.9 (Safety). Let (Σ,N ,F , S,G) be an ILTG.
(i) G is globally safe for P on I just if there are terms (i.e. elements of TΣ(NF∗))
R̃0, R̃1, . . . , R̃p, and
X̃, for each X ∈ Vars(ri), each 1 ≤ i ≤ p

such that for every i and (σ, g) ∈ Zi, R̃i →∗

G
g; and X̃ →∗

G
σX for each X ∈ Vars(ri).

(ii) G is locally safe for P on I just if for every i and (σ, g) ∈ Zi, there is an index
sequence δσ such that Ri δσ →∗

G
g; and X δσ →∗

G
σX for each X ∈ Vars(ri).

Note that regular tree grammars are ILTGs with an empty index set. Both versions of
safety subsume Jones and Andersen’s (which assumes regularity of both the input and the
approximating grammar).

Jonathan Kochems and Luke Ong 193

3 The Grammar Completion Algorithm

Suppose we want to investigate the effect the program P in Example 2.1 has on the set
ReachG where the ILTG G is defined in Example 3.1.

▸ Example 3.1. N = {R0,R1,Rσ1
1 ,Rσ2

1 ,R2,Rσ1
2 ,Rσ2

2 }, F = {σ1,σ2}, Σ0 = {0}, Σ1 = {counter,
genh,genk,S,h,k}, Σ2 = {f}

R0 → counter(0) | Rσ1
1 | Rσ1

2
Rσ1

1 → R1σ1
Rσ2

1 → R1σ2
Rσ1

2 → R2σ1
Rσ2

2 → R2σ2

R1 → counter(S(X)) | Rσ2
1 | Rσ2

2
R2 → f(genh(X),genk(X))
Xσ1 → 0
Xσ2 → S(X)

If we rewrite the term R2σ2σ1 (which is easily seen to be in ReachG)

R2σ2σ1 →∗

G
f(genh(S(Xσ1)),genk(Xσ2σ1)) →P f(h(genh(Xσ1)),genk(Xσ2σ1)) =∶ t

then we observe that t is P reachable from a term in ReachG , but t is not in ReachG which
thus can be seen not to be invariant under P. However, if we place the rules of Example 3.4
and G in a new ILTG G′ then using the latter we can rewrite

R2σ2σ1 →∗ f(R4σ3σ1),genk(Xσ2σ1)) →∗ f(h(genh(Xσ1)),genk(Xσ2σ1)).

Thus G′ can be seen as a partial completion of G with respect to P; the former is however
still not complete w.r.t. P. In fact, G is an intermediate result of our algorithm to build
an over-approximation of P on the input ReachG0 where G0 is the ILTG with a single rule
R0 → counter(0) and start symbol R0 .

We aim to over-approximate the collecting semantics of P on I by means of ILTGs G
that conform to Notational Convention 2.8, using an operator on ITLG, δn

P
(-), which we

will introduce shortly. First we define an auxiliary operation that takes a rule of an ILTG
and returns a set of rules.

▸ Definition 3.2 (Ext-Operator). Let G be an ILTG, n ≥ 0 and Aγ → C[distα1...αk(g′)] ∈ G
where g′ ∈ TΣ(N). The set Extn

P,G(Aγ → C[distα1...αk(g′)]) contains (only) the following
rules

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aγ → C[Rσi α1 . . . αk] (I)

Rσi β1 . . . βmin(m,n) → { Ri σ if m ≤ n
Ri σ ⊺ otherwise (II)

Ri → ri (III)
Xσ → aprxn(σ0X), for each X ∈ Vars(ri) (IV)

whenever there exist an index sequence β = β1 . . . βm, a substitution σ0, and an 1 ≤ i ≤ n
such that

(1) β and α = α1 . . . αk are compatible sequences (i.e. one is a prefix of the other), and
(2) σ0 is a minimally reachable match of distβ1...βm(g′) against li, and
(3) σ is the index (qua substitution) defined by σX ∶= erase(σ0X) for each variableX, where

erase(t) erases every index sequence, and every superscript of every non-terminal, that
occur in t ∈ TΣ(NF∗); for example

erase(g(f(Rτ1α1α2, h(a,Xβ1β2β3)))) = g(f(R1, h(a,X))))

RTA’11

194 Functional Collecting Semantics and Indexed Linear Tree Grammars

where aprxi(Aα1 . . . αk) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A⊺ if i = 0
Aα1 . . . αk if i > 0 ∧ k ≤ i
Aα1 . . . αi ⊺ if i > 0 ∧ k > i.

The function aprxi is extended to terms and substitutions in the natural way.

▸ Remark 3.3. (i) In rule of type (IV) above, X on the LHS is a non-terminal; the expression
aprxn(σ0X) on the RHS denotes the term obtained by applying the substitution aprxn(σ0)
to the variable X (of P). (ii) Several minimally reachable matches σ0 may give rise to
the same substitution σ. The equation in condition (3) is intended to “merge” indices so
that only a finite number of indices is eventually generated. (iii) In case m > n, the
type-(II) rule is added: Rσi α1 . . . αn → Ri σ ⊺. The operation Extn

P,G(-) does not produce a
rule with Ri σ or Ri σ ⊺ on the LHS. The point of the distinguished index ⊺—as indicated
in the definition of ⊺(G) in the following—is to introduce a measure of non-determinacy,
conflating all possible instantiations of a variable X by substitutions introduced during the
construction. (iv) Every rule of Extn

P,G(Aγ → C[distα1...αk(g′)]) has index sequences of
length at most n + 1, assuming that Aγ → C[distα1...αk(g′)] itself has index sequences of
length at most n.

▸ Example 3.4. The following are the rules in Ext1
G,P(R2→f ([genh(X)],genk(X))) where G

and P are as before.

R2 → f(Rσ3
4 ,genk(X))

R2 → f(Rσ4
3 ,genk(X))

Rσ4
3 σ1 → R3σ4

R3 → a
Xσ3 → X

Rσ3
4 σ2 → R4σ3

R4 → h(genh(X))

The rules are the result of the two minimally reachable matches σ3 (which is the substi-
tution {X↦X}) of genh(Xσ2) against genh(S(X)) and σ4 (which is the empty substitution)
of genh(Xσ1) against genh(0). The two patterns are the LHSs of P’s 4th and 3rd rule.

An ILTG completion algorithm Let n ≥ 0. Using the operation Extn
P,G(-) on G-rules, we

first define an operator δn
P
(-) on ILTGs, and then construct a sequence of ILTGs by iterating

it.
δn
P
(G) ∶= ⋃

Aγ→C[distα1...αk (g
′)]∈G

Extn
P,G(Aγ → C[distα1...αk(g′)]) ∪ ⊺(G)

where (writing γ′ < γ to mean “γ′ is a proper prefix of γ”)

⊺(G) ∶= ⋃
A≠Rσ

i
Aγ→t∈G

⋃
γ′<γ

{Aγ′⊺→ aprx0(t)} ∪ ⋃
Rσi γ→t∈G

⋃
γ′<γ

{Rσi γ′⊺→ aprx1(t)}

The construction then proceeds as follows. Starting off with an ILTG G0, we inductively
construct a sequence of ILTGs by Gn0 ∶= G0 and Gni+1 ∶= Gni ∪ δnP(Gni). For each n ≥ 0, this
gives an increasing sequence of ILTGs (qua sets of rules): Gn0 ⊆ Gn1 ⊆ Gn2 ⊆ Gn3 ⊆ . . .
▸ Remark 3.5. The seed, G0, is an arbitrary uniform ILTG (conforming to Notational Conven-
tion 2.8). Note that uniformity is not a real restriction since every ILTG can be transformed
to an equivalent uniform ILTG. It follows from Proposition 2.4 that the input set of our
algorithm can be an arbitrary pushdown-tree language.

▸ Example 3.6. Combining the rules below and Examples 3.1 and 3.4 we get the result of
our procedure to approximate the collecting semantics of the program P in Example 2.1 on
the input grammar G0 = {R0 → counter(0)}.

Jonathan Kochems and Luke Ong 195

//. . . the rules of Examples 3.1 and 3.4
R2 → f(Rσ3

4 , Rσ4
5) | f(Rσ3

4 , Rσ3
6)

R2 → f(Rσ4
3 , Rσ4

5) | f(Rσ4
3 , Rσ3

6)
R4 → h(Rσ4

3) | h(Rσ3
4)

Rσ4
5 σ1 → R5σ4

Rσ3
6 σ2 → R6σ3

R5 → b
R6 → k(genk(X)) | k(Rσ4

5) | k(Rσ3
6)

Note that the results introduced by the operator ⊺(−) have been omitted. It can be
easily seen that the reachable ground terms of the resulting ILTG are precisely the terms
reachable by P from G0. Further the ground terms reachable from R2σ

n
2 σ1 are

f(hi(genhn−i(a),kj(genkn−j(b))))

which are the result terms bound to the substitution σn2 ○ σ1 in Z2 in P’s collecting se-
mantics (where we write fn = f ○ . . . ○ f n-times), letting n range over all n we get pre-
cisely Z2.5 Moreover, the set of reachable ground constructor terms from R0 is precisely
{ f(hn(a), kn(b)) ∣ n ≥ 0}. Note that the tree language generated by P from G0 is non-
regular. Thus, we can see that our algorithm makes use of the greater expressivity provided
by ILTGs to describe this set.

4 Termination

There are two key ideas in the termination proof of the ILTG completion algorithm. The
first, due to Jones and Andersen, concerns minimally reachable match. By considering only
these substitutions when constructing Extn

P,Gi(-), the RHS of every rule that is generated
is guaranteed to be a variant of a subterm of the RHS of either a P-rule or a G0-rule; and
the set of such variants is bounded. Secondly, the merging of substitutions via erase ensures
that only finitely many indices are generated eventually.

Variants Let X be a set of terms. A X -variant of t is a term obtained from t by replacing
one or more subterms by an element of X . For example, the term f(g(Aαβ,Bααα), a) is a
N ′F ′≤3-variant of the term t = f(g(h(A), f(A′, b, c), a), where N ′ = {A,B} and F ′ = {α,β}
and we write A≤k for the set of sequences of elements of A of length no more than k. Note
that the term t trivially is a TΣ(NF∗) -variant of itself. The following definition makes the
variant relation precise.

▸ Definition 4.1 (X -Variant). Let X ⊆ TΣ(NF∗). We define the X -variant relation ⊑X ⊆
TΣ(NF∗) × TΣ(NF∗) by induction over the following rules:

t ⊑X t for t ∈ TΣ(NF∗)
s ⊑X t for s ∈ X and t ∈ TΣ(NF∗)
if ti ⊑X t′i for each 1 ≤ i ≤ n then f(t1, . . . , tn) ⊑X f(t′1, . . . , t′n)

If s ⊑X t we say s is an X -variant of t.

We note at this point that for a fixed X the relation ⊑X is reflexive and transitive.
The next proposition captures the observation that our flow analysis procedure does not

really add “new information”. It turns out that all RHSs of rules in Gni are in fact variants
of subterms of terms t where t ranges over the RHSs of rules in G0 and P.

For i, n ≥ 0, define Fi,n be the index set of Gni and write Ni,n (N0) for the set of non-
terminals occurring in Gni (G0).

5 Owing to the “merging” of substitutions, it is not always possible to identify indices with substitutions.

RTA’11

196 Functional Collecting Semantics and Indexed Linear Tree Grammars

▸ Proposition 4.2. Assume that G0 is uniform. For each i, n ≥ 0 and each rule Aγ → t in
Gni , there exist a rule l → r in P∪G0 and r′ ≤ r such that t ⊑X r′ where X = Ni,nF≤max(n+1,2)

i,n ,
and t is uniform.

In the following we write VP = ⋃pi=1 Vars(li) and NP = {Ri ∣ 1 ≤ i ≤ p}.

▸ Lemma 4.3. For each i, n ≥ 0, Fi,n ⊆ F0 ∪ {⊺} ∪ {σ ∣ σ has type VP → Y } where

Y ∶= { t ∈ TΣ(NF∗) ∣ there exist l → r ∈ G0 ∪P and r′ ≤ r such that t ⊑NP∪VP r′ }

and F0 is the index set of G0 (which is defined to be ∅ in case G0 is regular). Hence there
is some m ≥ 0 such that for all i, n ≥ 0, ∣Fi,n∣ ≤m.

Termination of our completion procedure is an immediate consequence of Proposition 4.2
and Lemma 4.3.

▸ Theorem 4.4 (Termination). For each n ≥ 0, there is some i ≥ 0 such that Gni = Gni+1.
I.e. the algorithm terminates.

We will refer to the fixpoint ILTG by Gn from now on.
We can give the following size bound for Gn.

∣Gn∣ = O ((size(P) + size(G0))2∣VP ∣m(n,D) × size(P)D∣VP ∣m(n,D)+D+1)

where m(n,D) = D(max(n + 1,2) + 1) + n + 1, size(P) is linear in ∣P ∣, ∣VP ∣ and the number
of subterms of the largest RHS of P, and size(G0) is linear in ∣G0∣, the number of G′0s non-
terminals, indices and LHSs and number of subterms of the largest RHS of G0. Note that
D is greatest number (k + 1)d such that d = depth(r) and k is the arity of a Σ symbol
occurring in r, where r ranges over the RHSs of P and G0. Thus, we can see the size of Gn is
polynomial in the number of rules in P and G0, and exponential in n, D and the number of
variables.6 For comparison, a similar analysis yields that the size of the fixpoint grammar
of Jones and Andersen’s procedure is O(size(G0) + size(P))3 × size(P)D).

5 Soundness: Local and Global Safety

A program P (or an ILTG G) determines a transition graph whose vertices are terms and
whose edge-set is the rewrite relation of the program (or grammar). In such a setting it
is natural to consider simulation. A key insight of our soundness proof is that reachability
under ILTG Gn is invariant under P-transition, modulo simulation. I.e. whenever a term
t ∈ TΣ(NF∗), which is reachable from s under rewriting by Gn, can make a P-transition to
t′, then there is a term, which is reachable from s under rewriting by Gn, that simulates t′.

The main technical result (Theorem 5.12) is that Gn is locally safe, from which global
safety follows. We organise our proof as follows. First, we identify a crucial property of
ILTGs that are candidates for approximating the collecting semantics of P on I, called
emulation (Definition 5.5). We show that emulation implies invariance under P-transition,
modulo simulation (Proposition 5.6), which implies local safety (Proposition 5.7). It then
remains to show that Gn satisfies emulation (Theorem 5.10).

6 Note that D can be made into a constant by enforcing a constraint on the depth of RHSs. A program
can be transformed into a conforming program by introducing “subroutines” to reduce the depth of
RHSs. The increase in rules is then polynomial in the length of P.

Jonathan Kochems and Luke Ong 197

Simulation Fix Σ,N ,F and a program P = { li → ri ∣ 1 ≤ i ≤ p} (over Σ) and let the meta-
variable R range over P and ILTGs G.

▸ Definition 5.1 (Σ-equal R-simulation). We call a relation R ⊆ (TΣ(NF∗))2 a Σ-equal
pre-R-simulation just if R ⊆ FR(R), where FR(R) is defined to be the set of pairs (t1, t2) ∈
(TΣ(NF∗))2 satisfying

(i) t̂1 = t̂2, where t̂ ∈ TΣ(∗) is obtained from t by replacing every NF∗-subterm of t by a
special symbol ∗, which is assumed not to be a member of Σ ∪∆; and

(ii) for every t′1 if t1 →R t′1 then there exists t′2 such that t2 →R t′2 and (t′1, t′2) ∈ R.
Since FR is a monotone function, by Knaster-Tarski Fixpoint Theorem, it has a greatest fix-
point, which we write as ⪯R and refer to as Σ-equal R-simulation (or simply R-simulation).
We read s ⪯R t as “t R-simulates s”.

We denote the intersection of the G-simulation and P-simulation by ⪯G,P i.e. ⪯G,P ∶=
⪯G ∩ ⪯P . Whenever it is clear from the context, we drop the subscript and write it simply
as ⪯.

▸ Proposition 5.2. Let G be an ILTG, then the relation ⪯ has the following properties.

(i) Whenever two terms are related by ⪯, if one of them is ground (i.e. a member of TΣ)
then so is the other, and they are equal terms.

(ii) ⪯ is a pre-congruence i.e. if t ⪯ t′ then C[t] ⪯ C[t′].
(iii) ⪯ is a preorder on TΣ(NF∗).
(iv) If t1 ⪯ t2 and t1 →∗ t′1 then there is a term t′2 such that t2 →∗ t′2 and t′1 ⪯ t′2
(v) If t ⪯ t′ and t→∗ s for some s ∈ TΣ, then t′ →∗ s.
(vi) If t ⪯ t′ then Reacho

G
(t) ⊆ Reacho

G
(t′).

▸ Proposition 5.3. Let t0 be a term such that if t ∈ ReachG(t0) and t→P t′ then there exists
t′′ ∈ ReachG(t0) such that t′ ⪯ t′′. Then

(i) for each n ≥ 0, if t ∈ ReachG(t0) and t→n
P
t′ then there exists t′′ ∈ ReachG(t0) such that

t′ ⪯ t′′.
(ii) Reacho

P
(ReachG(t0)) ⊆ Reacho

G
(t0)

Emulation The collecting semantics of a program P on an input set I can be characterised
as follows [10, Lemma 2.6]. We aim to introduce a notion (called emulation) that mimicks
the property.

▸ Lemma 5.4 (Jones and Andersen 2007). The collecting semantics of P on I is the smallest
(ordered point-wise) tuple of sets of pairs, (Z0, Z1, . . . , Zp), that satisfies:

(1) If g ∈ I then (id, g) ∈ Z0.
(2) If (σ,C[σ′ li]) ∈ Zj then (σ′, σ′ ri) ∈ Zi for 0 ≤ i, j ≤ p.
(3) If (σ,C[σ′ li]) ∈ Zj and (σ′, g′) ∈ Zi, then (σ,C[g′]) ∈ Zj for 0 ≤ i, j ≤ p.

In the definition to follow, we assume that ITLGs G0 and G that satisfy the Notational
Convention 2.8, with the input to P set to ReachG0 . Let the meta-variable A range over the
following subset of non-terminals (of G0 and G)

{R0,R1, . . . ,Rp } ∪ {X ∣X ∈ Vars(ri),1 ≤ i ≤ p}. (1)

▸ Definition 5.5 (Emulation). An ILTG G emulates the collecting semantics of P on input
Reacho

G0
just if

RTA’11

198 Functional Collecting Semantics and Indexed Linear Tree Grammars

(i) ReachG0 ⊆ ReachG(R0)
(ii) whenever C[σ li] ∈ ReachG(Aγ) then there are δσ ∈ F∗ and substitution σ′ such that

(a) σ′ ri ∈ ReachG(Ri δσ), σ′Z ∈ ReachG(Z δσ) for each Z ∈ Vars(ri), and σ ⪯ σ′

(i.e. σX ⪯ σ′X for all X ∈ V)
(b) if t ∈ ReachG(Ri δσ) then C[t] ∈ ReachG(Aγ).

▸ Proposition 5.6. Let G be an ILTG that emulates the collecting semantics of P on Reacho
G0
.

Then, with A ranging over the set (1) of non-terminals, and δ ranging over F∗

(i) if t ∈ ReachG(Aδ) and t→∗

P
t′ then there exists t′′ ∈ ReachG(Aδ) such that t′ ⪯ t′′.

(ii) Reacho
P
(ReachG(Aδ)) ⊆ Reacho

G
(Aδ).

Proof. (i) Let t ∈ ReachG(Aδ). We assume that t→P t′; the general case of t→∗

P
t′ then

follows from Proposition 5.3. By assumption, t = C[σli] and t′ = C[σri] for some i. Thus by
assumption of emulation there exist σ′ and δσ such that σ′ri ∈ ReachG(Riδσ) and σ ⪯ σ′. So
C[σri] ⪯ C[σ′ri] as ⪯ is a pre-congruence. Also since σ′ri ∈ ReachG(Riδσ), it follows from
the emulation assumption that C[σ′ri] ∈ ReachG(Aδ).

(ii) Follows from Proposition 5.3 when combined with (i).
◂

▸ Proposition 5.7. Let G be an ILTG that emulates the collecting semantics of P on Reacho
G0
.

Then G is locally safe for P on Reacho
G0
.

Proof. Let (σ, g) ∈ Zi, then there exists w ∈ Reacho
G0

and context C[-] such that w →∗

P

C[σ li] and σ ri →∗

P
g. Note that C[σ li], σ ri and g are elements of TΣ. Thus C[σli] ∈

Reacho
P
(ReachG0) ⊆ Reacho

P
(ReachG(R0)) ⊆ Reacho

G
(R0), the second inclusion follows from

Proposition 5.6(ii). Thus by definition there exist σ′ and δσ such that σ′ ri ∈ ReachG(Ri δσ),
σ′X ∈ ReachG(X δσ) for each X ∈ Vars(ri), and σ ⪯ σ′.

Since range(σ) ⊆ TΣ, σ ⪯ σ′ and ⪯ is Σ-equal, we have that σ = σ′. Hence we can conclude
that in fact σ ri ∈ ReachG(Ri δσ) and σX ∈ ReachG(X δσ). Now since σ ri →∗

P
g, it follows

from Proposition 5.6(ii) that g ∈ Reacho
P
(ReachG(Ri δσ)) ⊆ Reacho

G
(Ri δσ). Thus Ri δσ →∗ g

and X δσ →∗ σX.
◂

▸ Remark 5.8. Define a simulation relation over index sequences by γ ⪯ γ′ just if Aγ ⪯ Aγ′
for all A ∈ N . If an ILTG is locally safe for P on Reacho

G0
and has an index ⊺ (say) that

simulates every index (i.e. α ⪯ ⊺ for all α ∈ F), then it is also globally safe, for we can set
R̃i ∶= Ri ⊺ and X̃ ∶=X ⊺.

Gn emulates the collecting semantics For our soundness argument it remains to show that
for each n, the fixpoint ILTG Gn emulates the collecting semantics. We begin by stating a
technical lemma.

▸ Lemma 5.9. For each n ≥ 0, if Aγ →∗

Gn
C[σli] then there are σ0, σ

′

0 and δ such that

(i) Aγ →∗

Gn
C[σ0li] and σ0ri →∗

Gn
σri

(ii) Aγ →∗

Gn
C[Riδ]

(iii) X δ →∗

Gn
σ′0X, for each X ∈ Vars(ri)

(iv) σ0 ⪯ σ′0

Emulation is a straightforward consequence of the above result.

Jonathan Kochems and Luke Ong 199

▸ Theorem 5.10. For each n ≥ 0, Gn emulates the collecting semantics of P on Reacho
G0
.

Proof. We will now show that the conditions (i), (iia) and (iib) of Definition 5.5 hold for Gn.
By construction it is the case that Gn ⊇ G0, thus ReachG0 = ReachG0(R0) ⊆ ReachGn(R0).
Therefore condition (i) is satisfied. For condition (iia) and (iib), suppose that C[σli] ∈
ReachGn(Aγ). By applying Lemma 5.9 to Aγ →∗

Gn
C[σli], it follows that for some δσ,σ0,σ′0,

we have Aγ →∗ C[Riδσ], Xδσ →∗ σ′0X for every X that occurs in ri, σ0ri →∗

Gn
σri and

σ0 ⪯ σ′0. Since σ0 ⪯ σ′0, σ0X →∗

Gn
σX , there is a term σ′X such that σ′0X →∗

Gn
σ′X and

σX ⪯ σ′X for all X ∈ Vars(ri). Thus we can infer that σ ⪯ σ′ and σ′0ri →∗

Gn
σ′ri. Hence

Xδσ →∗

Gn
σ′0X →∗

Gn
σ′X. Further Riδσ → distδσri →∗ σ′ri by rewriting all non-terminals

X ∈ Vars(ri) to σ′X. We can thus infer that σ′ri ∈ ReachGn(Riδσ), σ′X ∈ ReachGn(Xδσ)
where σ ⪯ σ′. Hence condition (iia) holds. For condition (iib) further suppose that t ∈
ReachGn(Riδσ), then since Aγ →∗ C[Riδσ] and Riδσ →∗ t we can rewrite Aγ →∗ C[t], i.e.
C[t] ∈ ReachGn(Aγ). ◂

Thus it follows from Proposition 5.7 that Gn is locally safe for each n ≥ 0. To prove
global safety, we combine the following lemma with Remark 5.8.

▸ Proposition 5.11. For all γ0, γ1, γ2 ∈ F∗ we have γ0γ1 ⪯ γ0⊺γ2 in Gn.

To summarise

▸ Theorem 5.12. For each n ≥ 0, the fixpoint ILTG Gn is both locally and globally safe for
program P on input ReachG0 .

6 Related Work

TRS Reachability Problem There is a line of work in the rewriting community devoted to
the construction of ReachR(I) where I is a regular set and R is a TRS satisfying various
restrictions. This is an interesting problem because for a regular input set I, ReachR(I) is
not necessarily regular, even if R is a confluent and terminating linear TRS [7].

Based on earlier work by Genet [6], Feuillade et al. [5] proposed a tree-automaton com-
pletion algorithm for over-approximating ReachR(I), for a given (left-linear) TRS R and a
regular input set I. The algorithm constructs a sequence of tree automata and is paramet-
rised by an abstraction function that maps terms to states of the automaton. This method
is quite versatile as the completion procedure can be fine-tuned by choosing the appropri-
ate abstraction function. However, the approach is not fully automatic; further not every
abstraction function is guaranteed to lead to a fixpoint automaton.

Building on this work, Boichut et al. [2] introduced a semi-algorithm which automatically
chooses abstraction functions for the completion procedure. Their aim is to obtain a more
conclusive analysis of whether a term t is reachable from a given input set. The abstraction
function is refined in order to obtain either a fixpoint automaton which does not accept t or
an under-approximation of ReachP(I) which does include t. However, this approach is not
guaranteed to terminate.

Model Checking Functional Programs Kobayashi et al. [11] introduced a type-based
model-checking method for an extension of higher-order recursion schemes called higher-
order multi-parameter tree transducers (HMTT). They gave an algorithm for checking if
the tree generated by a given HMTT satisfies a given output specification, provided the
input trees conform to a given input specification. It is not easy to compare our work with
theirs, but two aspects stand out. First their specifications are restricted to regular tree

RTA’11

200 Functional Collecting Semantics and Indexed Linear Tree Grammars

languages. Secondly patterns (for matching) in their framework are required to satisfy a
rigid type constraint; for example, their method cannot handle our Example 2.1 (unless
certain invariants on intermediate data structures are provided by the programmer [21]).

Ong and Ramsay [19] recently introduced pattern-matching recursion schemes (PMRS)
as an accurate model of computation for functional programs that manipulate algebraic data
types. They present a verification method that, given an order-n PMRS P and an input
set I generated by a regular tree grammar, constructs an order-n weak PMRS which over-
approximates the set of terms reachable from I under rewriting from P. Their construction
uses a binding analysis à la Jones and Andersen to over-approximate only the first-order
pattern-matching behaviour, whilst remaining completely faithful to the higher-order control
flow. We believe that their binding analysis can be refined by using a variant of our ILTG-
based completion algorithm, thus giving a more accurate over-approximation of pattern-
matching in their framework.

XML Type Checking The extensible markup language XML is the standard format for
exchanging structured data. Central to XML processing is the type checking problem: given
an input type, an output type and a transformation f , does f transform every input that
conforms to the input type to an output that conforms to the output type? Since the XML
type checking problem is undecidable, general solutions are necessarily approximate. How-
ever, by restricting types and transformations appropriately, type checking can be made
decidable. A recent direction [14, 15] considers types given by languages recognisable by
finite-state automata, and transformations specified by (versions of) stay macro tree trans-
ducers (SMTTs). SMTTs are first-order functional programs that generate output trees by
top-down pattern matching its first (tree) argument, while possibly accumulating intermedi-
ate results in the other (tree) parameters: they are essentially first-order pattern-matching
recursion schemes [19]. It would be interesting to understand the approach based on SMTTs,
as it seems likely that there are connections with our work.

7 Evaluation, Conclusion and Further Directions

Evaluation A few remarks by way of comparison with related work. (i) Our algorithm can
take an arbitrary pushdown tree language as the input set. To our knowledge, all published
over-approximation results for the reachability problem for left-linear TRS assume a regular
input set. (ii) For each fixed n ≥ 0, our completion method is at least as accurate as Jones
and Andersen’s [10] (because after erasing all references to indices, our method yields the
same result as Jones and Andersen’s, modulo some superfluous rules). (iii) A source of
inaccuracy in Jones and Andersen’s approach is the decoupling of the pairing (σ, t) ∈ Zi
(in the collecting semantics) between a reachable substitution σ and the associated result
term t. The notion of emulation allows us to introduce a weak form of coupling between
σ and t in the sense of local safety. The definition of emulation also applies to Jones
and Andersen’s fixpoint regular tree grammar. However, in the absence of indices, δσ = ε.
Thus, we can see that the coupling of program results and program states (substitutions)
is stronger in our fixpoint ILTG. (iv) It is not straightforward to compare our result with
related work from the rewriting community [9, 5, 2]. We can see from Example 2.1 that
our approach accurately captures a non-regular set of reachable terms. Because Feuillade et
al. and Boichut et al. use finite tree automata, such accuracy is beyond their reach. However,
there is an example in the full version of this paper [13] for which our algorithm produces
a strict over-approximation which is regular, whereas, by a judicious choice of parameters,

Jonathan Kochems and Luke Ong 201

the algorithm of Feuillade et al. can yield a better over-approximation. On the other hand,
our algorithm is fully automatic and guaranteed to terminate for each fixed n (as is Jones
and Andersen’s), neither of which is true of the methods of Feuillade et al. and of Boichut
et al..

Conclusion Using indices to capture (sets of) substitutions, we have presented a completion
algorithm which, given a left-linear TRS P, an input set described by an ILTG G0 and n ≥ 0,
constructs an ILTG Gn that safely over-approximates the collecting semantics of P on G0.
To our knowledge, this is the first completion procedure for pushdown tree automata, and
it yields a strong approximation result for the left-linear TRS reachability problem.

Further Directions (i) A priority is to construct an implementation of our completion
algorithm for empirical evaluation. (ii) A key idea of our approach is to merge substi-
tutions, σ and σ′, just when erase(σ) = erase(σ′). One way to improve our algorithm
is to refine the merge operation. For example, one could define erase1(Aα1 . . . αn) ∶=
A erase(α1) . . . erase(αn). A similar argument to our current termination algorithm should
apply. One could envisage an inductive definition in the same style for erase2, erase3,
(iii) It would be interesting to identify sufficient conditions for the ILTG completion al-
gorithm to be accurate for reachability i.e. for which class of programs does the fixpoint
ILTG generate precisely the set of reachable terms?

Acknowledgements Financial support by EPSRC (research grant EP/F036361/1 and
OUCL DTG Account doctoral studentship for the first author) is gratefully acknowledged.
We would like to thank Damien Sereni and Steven Ramsay for helpful discussions and in-
sightful comments, and the anonymous reviewers for their detailed reports.

References
1 Alfred V. Aho. Indexed grammars - an extension of context-free grammars. Journal of the

ACM (JACM), 15(4):647–671, 1968.
2 Yohan Boichut, Roméo Courbis, Pierre-Cyrille Héam, and Olga Kouchnarenko. Finer is

better: Abstraction refinement for rewriting approximations. In Proceedings of Rewriting
Techniques and Applications (RTA), volume 5117 of Lecture Notes in Computer Science,
pages 48–62. Springer, 2008.

3 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings of
the Symposium on Principles of Programming Languages (POPL), pages 238–252. ACM,
1977.

4 Joost Engelfriet and Heiko Vogler. Pushdown machines for the macro tree transducer.
Theoretical Computer Science, 42:251–368, 1986.

5 Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong. Reachability Analysis
over Term Rewriting Systems. Journal of Automated Reasoning, 33(3-4):341–383, 2005.

6 Thomas Genet. Decidable approximations of sets of descendants and sets of normal forms.
In Proceedings of Rewriting Techniques and Applications (RTA), volume 1379 of Lecture
Notes in Computer Science, pages 151–165. Springer, 1998.

7 Rémi Gilleron and Sophie Tison. Regular tree languages and rewrite systems. Fundamenta
Informaticae, 24(1/2):157–174, 1995.

8 Irène Guessarian. Pushdown tree automata. Mathematical Systems Theory, 16(4):237–263,
1983.

RTA’11

202 Functional Collecting Semantics and Indexed Linear Tree Grammars

9 Florent Jacquemard. Decidable approximations of term rewriting systems. In Proceedings of
Rewriting Techniques and Applications (RTA), volume 1103 of Lecture Notes in Computer
Science, pages 362–376. Springer, 1996.

10 Neil D. Jones and Nils Andersen. Flow analysis of lazy higher-order functional programs.
Theoretical Computer Science, 375(1-3):120–136, 2007.

11 Naoki Kobayashi, Naoshi Tabuchi, and Hiroshi Unno. Higher-order multi-parameter tree
transducers and recursion schemes for program verification. In Proceedings of the Sym-
posium on Principles of Programming Languages (POPL), pages 495–508. ACM, 2010.

12 Jonathan Kochems. Approximating reachable terms of functional programs. Oxford Uni-
versity MMathsCS 4th-year Project Report, 2010.

13 Jonathan Kochems and C.-H. Luke Ong. Improved functional flow and reachability analyses
using indexed linear tree grammars. Long version, 2010.

14 Sebastian Maneth, Alexandru Berlea, Thomas Perst, and Helmut Seidl. Xml type checking
with macro tree transducers. In Proceedings of the Symposium on Principles of Database
Systems (PODS), pages 283–294. ACM, 2005.

15 Sebastian Maneth, Thomas Perst, and Helmut Seidl. Exact xml type checking in polynomial
time. In Proceedings of the International Conference on Database Theory (ICDT), volume
4353 of Lecture Notes in Computer Science, pages 254–268. Springer, 2007.

16 A. N. Maslov. Multilevel stack automata. Problems of Information Transmission, 12:38–43,
1976.

17 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes.
In Proceedings of Symposium on Logic in Computer Science (LICS), pages 81–90. IEEE
Computer Society, 2006.

18 C.-H. Luke Ong. Models of Higher-Order Computation: Recursion Schemes and Collapsible
Pushdown Automata. In J. Esparza, B. Spanfelner, and O. Grumberg, editors, Logics and
Languages for Reliability and Security, pages 263–300. IOS Press, 2010. NATO Science for
Peace and Security Series, D: Information and Communication Security - Vol. 25.

19 C.-H. Luke Ong and Steven James Ramsay. Verifying Higher-Order Functional Programs
with Pattern-Matching Algebraic Data Types. In Proceedings of the Symposium on Prin-
ciples of Programming Languages (POPL), pages 587–598. ACM, 2011.

20 John C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363–397, 1998.

21 Hiroshi Unno, Naoshi Tabuchi, and Naoki Kobayashi. Verification of tree-processing pro-
grams via higher-order model checking. In Proceedings of the Asian Symposium on Pro-
gramming Languages and Systems (APLAS), volume 6461 of Lecture Notes in Computer
Science, pages 312–327. Springer, 2010.

Higher Order Dependency Pairs for Algebraic
Functional Systems
Cynthia Kop1 and Femke van Raamsdonk1

1 Faculty of Sciences, VU, De Boelelaan 1081a, 1081 HV Amsterdam

Abstract
We extend the termination method using dynamic dependency pairs to higher order rewriting
systems with beta as a rewrite step, also called Algebraic Functional Systems (AFSs). We
introduce a variation of usable rules, and use monotone algebras to solve the constraints generated
by dependency pairs. This approach differs in several respects from those dealing with higher
order rewriting modulo beta (e.g. HRSs).

Keywords and phrases higher order rewriting, termination, dynamic dependency pairs

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.203

Category Regular Research Paper

1 Introduction

An important method to (automatically) prove termination of first order term rewriting is
the dependency pair approach by Arts and Giesl [3]. This approach transforms a rewrite
system into groups of ordering constraints, such that rewriting is terminating if and only
if the groups of constraints are (separately) solvable. Various optimizations of the method
have been studied, see for example [7, 6].

This paper contributes to the study of dependency pairs for higher order rewriting.
Higher order rewriting comes in different shapes. First, there is rewriting modulo αβη as
in the higher order rewrite systems (HRSs) defined by Nipkow [20]; Klop’s CRSs [13] and
Khasidashvili’s ERSs [12] are in some aspects similar. Various definitions of dependency pairs,
often with optimizations, have been given for HRSs [23, 22, 17, 15, 24]. Second, applicative
term rewriting systems with functional variables but no abstraction are sometimes considered
as a (restricted) form of higher order rewriting. Also in this setting several definitions
of dependency pairs exist [16, 18, 19, 1, 2, 8]. The aim of the present paper is to study
dependency pairs for a third variant of higher order rewriting: algebraic functional systems
(AFSs), introduced by Jouannaud and Okada [10]. In AFSs we consider simply typed terms,
which are rewritten both using specific rewrite rules and β-reduction, with matching modulo
α. While higher order versions of the recursive path ordering are commonly studied in the
setting of AFSs [11, 5], there is little work on dependency pairs for this formalism.

We briefly discuss the ideas from studies of dependency pairs for HRSs and for applicative
systems in Section 2; we also explain why those approaches do not quite, or not at all apply to
the setting with AFSs. We define dependency pairs for AFSs in the so-called dynamic style,
where functional variables in the right-hand side of a rewrite rule may give rise to dependency
pairs. We study the notions of dependency chains, dependency graphs and reduction orders
for AFSs with dynamic dependency pairs. To demonstrate that the dynamic approach has
adequate strength even without restrictions, we also define a variant of usable rules and
apply van de Pol’s monotone algebra approach [21] to solve constraints generated by the
method. The result is a method to prove termination (a complete method for left-linear

© Cynthia Kop and Femke van Raamsdonk;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 203–218

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.203
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

204 Dynamic Higher Order Dependency Pairs

systems), which may serve as a basis for further definitions – for example static dependency
pairs, or dynamic pairs with restrictions that allow us to drop the subterm property.

2 Background and Related Work

The extension of dependency pairs to the higher order case is not entirely straightforward and
thus many variations exist. This work can roughly be split along two axes. On the one axis,
the higher order formalism (we distinguish between applicative rewriting, rewriting modulo
β (HRSs), and with β as a separate step (AFSs)), on the other the style of dependency pairs
(with the common styles being dynamic and static). Figure 1 gives an overview.

Applicative HRS AFS
Dynamic [16] [23] [15] this paper

Static [18] [19] [4] [22] [17] [24] [4]
Other [1] [2] [8] – –

Figure 1 References on Higher Order Dependency Pairs

The dynamic and static
approach differ in the treat-
ment of leading variables in
the right-hand sides of rules
(subterms x·s1 · · · sn with n >
0 and x a free variable). In the
dynamic approach, such subterms lead to a dependency pair; in the static approach they do
not. Consequently, first order techniques like argument filterings and usable rules are easier
to extend to a static approach, while equivalence results tend to be limited to the dynamic
style. Static dependency pairs can only be applied on systems satisfying certain restrictions.

Dependency pairs for applicative term rewriting We first say some words about
applicative term rewriting. In applicative systems, terms are built from variables, constants
and a binary application operator. Functional variables may be present, as in x · a, but there
is no abstraction, as in λx. x. There are various styles of applicative rewriting.

A dynamic approach was defined both for untyped and simply-typed applicative systems
in [16], along with a definition of argument filterings. A first static approach appears in [18]
and is improved in [19]; the method is restricted to ‘plain function passing’ systems where,
intuitively, leading variables are harmless. Due to the lack of binders, it is also possible
to eliminate leading variables by instantiating them, as is done for simply typed systems
in [1, 2]; in [8], an uncurrying transformation from untyped applicative systems to normal
first order systems is used. These techniques have no parallel in rewriting with binders.

Unfortunately, they are not directly useful in the setting of AFSs, since termination may
be lost by adding λ-abstraction and β-reduction. For example, the simply typed applicative
system app · (abs ·F) ·x→ F ·x, with F : ι⇒ ι a functional variable, x : ι a variable, and app,
abs constants, is terminating because in every step the size of a term decreases. However,
adding λ-abstraction and β-reduction spoils this property: with ω = abs · (λx. app · x · x) we
have app · ω · ω = app · (abs · (λx. app · x · x)) · ω → (λx. app · x · x) · ω → app · ω · ω.

Dynamic Dependency Pairs for HRSs A first, very natural, definition of dependency
pairs for HRSs is given in [23]. Here termination is not equivalent to the absence of infinite
dependency chains, and a term is required to be greater than its subterms (the subterm
property), which makes many optimizations impossible. Consequently, most of the focus
since has been on the static approach. However, with restrictions on the rules the subterm
property may be weakened, as discussed in [15] (extended abstract).

Static Dependency Pairs for HRSs The static approach in [18] is moved to the setting
of HRSs in [17], and extended with argument filterings and usable rules in [24]. The static

C. Kop and F. van Raamsdonk 205

approach omits dependency pairs f#(~l) ; x(~r) with x a variable, which avoids the need of a
subterm property. The technique is restricted to plain function passing HRSs; for example the
(terminating) rule foo(bar(λx. F (x)))→ F (a) cannot be handled. In addition, bound variables
may become free in a dependency pair. For instance, the rule I(s(n)) → twice(λx. I(x), n)
generates a pair I#(s(n)) ; I#(x) which admits an infinite dependency chain.

The definitions for HRSs [23, 17] do not immediately carry over to AFSs, since AFSs may
have rules of functional type and β-reduction is a separate rewrite step. A short paper
by Blanqui [4] introduces static dependency pairs on a form of rewriting which includes
AFSs, but it restricts to base-type rules. The present work considers dynamic dependency
pairs and is most related to [23], but is adaptated for the different formalism. Our method
conservatively extends the one for first order rewriting and provides a characterization of
termination for left-linear AFSs. We have chosen for a dynamic rather than a static approach
because, although the static approach is stronger when applicable, the dynamic definitions
can be given without restrictions. It would be nice for future work to integrate the two
approaches; for the moment they co-exist with each their own advantages and disadvantages.

3 Preliminaries

We consider higher order rewriting as defined by Jouannaud and Okada, also called Algebraic
Functional Systems (AFSs). Terms are built from simply typed variables, abstraction and
application (as in simply typed λ-calculus), and in addition function symbols which take a
fixed number of typed arguments. Terms and matching are modulo α, and β is a rewrite
step. We follow roughly the definitions in [25, Chapter 11], as recalled below.

Types and Terms The set of simple types (or just types) is generated from a given set B of
base types and the binary type constructor⇒, which is right-associative. Types are denoted
by σ, τ and base types by ι, κ. A type with at least one occurrence of ⇒ is called a functional
type. A type declaration is an expression of the form (σ1 × . . . × σn)⇒ τ ; if n = 0 this is
written as just τ . Type declarations are not types, but are used for typing purposes.

We assume a set V, consisting of infinitely many typed variables for each type, and a
set F disjoint from V, consisting of function symbols each equipped with a type declaration.
Variables are denoted by x, y, z and function symbols by f, g, h or using more suggestive
notation. To stress the type (declaration) of a symbol a we may write a : σ. Terms over F
are those expressions s for which we can infer s : σ for some type σ using the clauses:

(var) x : σ if x : σ ∈ V
(app) s · t : τ if s : σ⇒τ and t : σ
(abs) λx. s : σ⇒τ if x : σ ∈ V and s : τ
(fun) f(s1, . . . , sn) : τ if f : (σ1 × . . .× σn)⇒τ ∈ F and s1 : σ1, . . . , sn : σn

Note that a function symbol f : (σ1 × . . .× σn)⇒τ takes exactly n arguments, and τ is
not necessarily a base type. λ binds occurrences of variables as in the λ-calculus. Terms
are considered modulo α-conversion; bound variables are renamed if necessary. The set of
variables of s which are not bound is denoted FV (s). Application is left-associative.

A substitution [~x := ~s], with ~x and ~s non-empty finite vectors of equal length, is the
homomorphic extension of the type-preserving mapping ~x 7→ ~s from variables to terms.
Substitutions are denoted γ, δ, and the result of applying γ to a term s is denoted sγ. The
domain dom(γ) of γ = [~x := ~s] is {~x}. Substituting does not capture free variables.

We assume a fresh symbol 2σ : σ for every type σ. A context C[] is a term with a single
occurrence of some 2σ. The result of replacing 2σ in C[] by a term s of type σ is denoted

RTA’11

206 Dynamic Higher Order Dependency Pairs

C[s]. Free variables may be captured; if C[] = λx.2σ then C[x] = λx. x. If s = C[t] we say t
is a subterm of s, notation s� t, or s� t (strict subterm) if C[] is not the empty context 2.

Rules and Rewriting A rewrite rule is a pair of terms l→ r such that l and r are terms
of the same type and do not contain a subterm of the form (λx. s) · t, all free variables of r
also occur in l, and l has the form f(l1, . . . , ln) · ln+1 · · · lm (with m ≥ n ≥ 0). Given a set of
rules R, the rewrite or reduction relation →R on terms is given by the following clauses:

(rule) C[lγ] →R C[rγ] with l→ r ∈ R, C a context, γ a substitution
(beta) C[(λx. s) · t] →R C[s[x := t]]

We sometimes use the notation s→β t for a rewrite step using (beta). An algebraic functional
system (AFS) is the combination of a set of terms and a rewrite relation on this set, and is
usually specified by a set of rules (perhaps with function symbols). A function symbol f is a
defined symbol of an AFS if there is a rule with left-hand side f(l1, . . . , ln) · ln+1 · · · lm. A
function symbol that is not a defined symbol is a constructor symbol. The sets of defined or
constructor symbols are denoted by D or C respectively. A rewrite rule l→ r is left-linear if
every free variable occurs at most once in l; an AFS is left-linear if all its rewrite rules are.

I Example 3.1. Throughout this paper, we will consider as an example the AFS twice. It has
four function symbols, o : nat, s : (nat)⇒nat, I : (nat)⇒nat, twice : (nat⇒nat)⇒nat⇒nat,
and three rewrite rules:

I(o) → o twice(F) → λy. F · (F · y)
I(s(n)) → s(twice(λx. I(x)) · n)

An example reduction: I(s(o))→ s(twice(λx. I(x))·o)→ s((λy. (λx. I(x))·((λx. I(x))·y))·o)→β

s((λx. I(x)) · ((λx. I(x)) · o))→β s((λx. I(x)) · I(o))→ s((λx. I(x)) · o)→β s(I(o))→ s(o).

The symbol I represents the identity function, and therefore no infinite reduction exists.
However, this is not trivial to prove; neither orderings like HORPO [11] nor a static dependency
pair approach can handle the second rule, due to the subterm I(x). The static approach gives
a requirement I#(s(n)) > I#(x), where the right-hand side contains a variable which does
not occur in the left-hand side. Since > must be closed under substitution, this is impossible
to satisfy, as s(n) might be substituted for x. Applying HORPO leads to a similar problem.

4 Dependency Pairs

An intuition behind the dependency pair approach is to identify those parts of the right-hand
sides of rewrite rules which may give rise to an infinite reduction. These are subterms headed
by a defined symbol (as in first order term rewriting), and also subterms headed by a free
variable, because such a variable can be instantiated by a defined symbol or abstraction. The
latter is typical for the dynamic approach to higher order dependency pairs.

In this section we will extend the concepts of dependency pairs and dependency chains to
AFSs. We show that an AFS is terminating if it does not have an infinite dependency chain,
and that absence of dependency chains characterizes termination for left-linear AFSs.

Completed Rules An AFS is completed by adding for each rule of the form l→ λx1 . . . xn. r

with n > 0 and r not an abstraction the n new rules l ·x1 → λx2 . . . xn. r, . . . , l ·x1 ·· · ··xn → r.
We do this to avoid creating dependency pairs containing a β-redex. Completing does not
affect termination. For example, the system twice is completed by adding twice(F) ·m →
F · (F ·m). In the remainder of the paper, we work with completed AFSs.

C. Kop and F. van Raamsdonk 207

Candidate terms The definition of a dependency pair uses the notion of candidate terms,
intuitively those subterms which might cause non-termination. Subterms that cannot be
reduced at the root are omitted, because they are not a minimal starting point of an infinite
reduction. Bound variables that become free by taking a subterm are replaced by fresh
constants. We denote by C the set consisting of infinitely many fresh symbols cx with cx the
same type as x, where x in cx is not bound and is not subject to α-conversion.

I Definition 4.1. We say t[x1 := cx1 , . . . , xn := cxn] is a candidate term of s if s � t,
and x1, . . . , xn are the variables which occur bound in s but free in t, and either t =
f(t1, . . . , tn) · tn+1 · · · tm with f a defined symbol and m ≥ n ≥ 0, or t = x · t1 · · · tn with x
free in s and n > 0. We denote the set of candidate terms of s by Cand(s).

In the AFS twice we have Cand(F ·(F ·m)) = {F ·(F ·m), F ·m} and Cand(s(twice(λx. I(x)) ·
n)) = {twice(λx. I(x)) ·n, twice(λx. I(x)), I(cx)}. Note that for example x ·y is not a candidate
term of g(λx. x · y) because x occurs only bound.

Dependency Pairs The definition of dependency pair also uses marked function symbols
as in the first order case. Let F# = F ∪ {f# : σ | f : σ ∈ D}, so F extended with a marked
version for every defined symbol, having the same type declaration. The marked counterpart
of a term s, notation s#, is f#(s1, . . . , sn) if s = f(s1, . . . , sn) with f in D, and just s
otherwise. For example, (twice(F))# = twice#(F) and (twice(F) ·m)# = twice(F) ·m.

I Definition 4.2 (Dependency Pair). The set of dependency pairs of a rewrite rule l → r,
notation DP(l→ r), consists of:

all pairs l# ; p# with p ∈ Cand(r),
all pairs l · y1 · · · yk ; r · y1 · · · yk with 1 ≤ k ≤ n if r : σ1⇒ . . .⇒ σn⇒ ι, and either
r = x · r1 · · · rm with m ≥ 0 or r = f(r1, . . . , ri) · ri+1 · · · rm with m ≥ i ≥ 0 and f ∈ D.

We use DP(R) (or just DP) for the set of all dependency pairs of rewrite rules of an AFS R.

I Example 4.3. The set of dependency pairs of the AFS twice consists of:

I#(s(n)) ; twice(λx. I(x)) · n twice#(F) ; F · (F · cy)
I#(s(n)) ; twice#(λx. I(x)) twice#(F) ; F · cy
I#(s(n)) ; I#(cx) twice(F) ·m ; F · (F ·m)

twice(F) ·m ; F ·m

The last two dependency pairs originate from the rule added by completion.

To illustrate the second form of dependency pair, consider the system with function
symbols app : (o)⇒ o⇒ o and abs : (o⇒ o)⇒ o, and one rewrite rule: app(abs(x)) → x.
This system has no dependency pairs of the first form, but does admit a two-step loop:
s := app(abs(λx. app(x) · x)) · abs(λx. app(x) · x)→ (λx. app(x) · x) · abs(λx. app(x) · x)→β s.

Comparing our approach to static dependency pairs as defined in [17], the two main
differences are that we avoid bound variables becoming free, and that we include dependency
pairs where the right-hand side is headed by a variable. We call such pairs collapsing.

Dependency Chains We can now investigate termination by means of dependency chains:

I Definition 4.4. A dependency chain is a sequence [(ρi, si, ti) | i ∈ N] such that for all i:
1. ρi ∈ DP ∪ {beta},
2. if ρi = li ; pi ∈ DP there exists γ with domain FV (li) such that si = liγ and ti = piγ

RTA’11

208 Dynamic Higher Order Dependency Pairs

3. if ρi = beta then si = (λx. u) · v · w1 · · ·wk and either
a. k > 0 and ti = u[x := v] · w1 · · ·wk, or
b. k = 0 and there is w such that u� w and x ∈ FV (w) and w#[x := v] = ti, but w 6= x

4. ti →∗in si+1

A step→in is obtained by rewriting some si inside a term of the form f(s1, . . . , sn)·sn+1 · · · sm.

I Theorem 4.5. If R is non-terminating there is an infinite dependency chain over DP(R).

Proof Sketch. Say a term s is minimally non-terminating (MNT) if s is terminating but all
its subterms are not. Let u−1 be any MNT term, and subsequently for every i ∈ N, given an
MNT term ui−1, we define ρi ∈ DP ∪ {beta} and terms si and ti. Note (**): if an MNT
term is reduced at any other position than the top, the result is also MNT, or terminating.

If ui−1 = (λx. s) · t then s[x := t] is also non-terminating (because eventually a topmost
step must be done, and we can see that s[x := t] reduces to the result); let ui be an MNT
subterm of s[x := t] and define ρi, si, ti := beta, ui−1, u

#
i . If ui−1 = (λx. s) · t · v0 · · · vk

then by (**) ui := s[x := t] · v0 · · · vk is also MNT, so choose ρi, si, ti := beta, ui−1, ui.
Otherwise ui−1 = f(v1, . . . , vn) · vn+1 · · · vm; then ui−1 →∗in some term lγ · w1 · · ·wk, with
rγ · ~w still non-terminating. If k > 0 then by (**) rγ · ~w is MNT, so choose ui := rγ · ~w and
ρi, si, ti := l · x1 · · ·xk ; r · x1 · · ·xk, lγ · ~w, rγ · ~w. Otherwise let r′ be the smallest subterm
of r such that p := r′δ is still non-terminating, where δ replaces the newly free variables xi
by cxi

. Then some analysis shows that p is a candidate of r and pγ is also MNT; choose
ui := pγ and ρi, si, ti := l# ; p#, l#γ, p#γ. This process generates a dependency chain. J

The converse of Theorem 4.5 does not hold. Consider the AFS with rules:
f(x, y, s(z))→ g(h(x, y), λu. f(u, x, z)) and h(x, x)→ f(x, s(x), s(s(x)))

This system has the following dependency pairs:

f#(x, y, s(z)) ; h#(x, y) h#(x, x) ; f#(x, s(x), s(s(x)))
f#(x, y, s(z)) ; f#(cu, x, z)

There is an infinite dependency chain: f#(cu, s(cu), s(s(cu))) ; f#(cu, cu, s(cu)) ; h#(cu, cu)
; f#(cu, s(cu), s(s(cu))) ; . . . However, the AFS is terminating, intuitively because the
bound variable destroys matching possibilities. The crucial point of the example is the com-
bination of bound variables and non-left-linear rules. Theorem 4.6 shows that for left-linear
AFSs, the absence of infinite dependency chains actually characterizes termination.

I Theorem 4.6. A left-linear AFS R is terminating if and only if it does not admit an
infinite dependency chain.

Proof Sketch. In a left-linear system replacing variables by a function symbol that doesn’t
occur in any rule has no effect on applicability of →R. Thus a dependency chain effectively
produces an infinite reduction |si| →R ·� |ti| →∗R |si+1| (where | · | replaces any f# by its
unmarked counterpart), and this implies the existence of an infinite →R reduction. J

5 The Dependency Graph

As in the first order case, we use a dependency graph to organize the dependency pairs. The
definition of a dependency graph is typical for our setting here, namely AFSs with dynamic
dependency pairs, but the other notions we use are similar to the first order ones.

C. Kop and F. van Raamsdonk 209

The dependency graph of an AFS R has the dependency pairs of R as nodes, and an edge
from node l ; p to node l′ ; p′ if there is a finite dependency chain [(l ; p, s1, t1), (beta, s2,

t2), . . . , (beta, sk−1, tk−1), (l′ ; p′, sk, tk)] with all but the first and the last elements beta.

I Example 5.1. The dependency graph of the AFS twice:

I#(s(n)) ; twice(λx. I(x)) · n I#(s(n)) ; twice#(λx. I(x))

I#(s(n)) ; I#(cx)

twice(F) ·m; F · (F ·m)

twice(F) ·m; F ·m

twice#(F) ; F · (F · cy)

twice#(F) ; F · cy

A cycle is a non-empty set C of dependency pairs such that between every two pairs ρ, π ∈ C
there is a non-empty path in the graph using only nodes in C. A cycle that is not contained in
any other cycle is called a strongly connected component (SCC). To prove termination we must
show that cycles in a dependency graph are in some sense well-behaved (see Theorem 6.2).
Due to clause 3b in Definition 4.4, there is an edge from any node of the form l ; x ·r1 . . . ·rn
with x a variable to all other nodes. Hence a rule with a functional variable in its right-hand
side gives rise to many cycles. Here, exactly, lies the appeal of the static approach, which
eliminates the need for such pairs. However, this barrier is not impossible to overcome, and
as discussed, the dynamic approach can deal with systems where the static approach fails.

A set D ⊆ DP is looping if there is an infinite dependency chain using only dependency
pairs from D and beta. By termination of simply typed β-reduction, ∅ is not looping.

Because the dependency graph cannot be computed in general, one uses approximations
of the dependency graph, which have the same nodes but possibly more edges. A brute
method to find an approximation of the dependency graph is to have an edge between
l ; p and l′ ; p′ as soon as the head of p is a variable, or if p and l′ both have the form
f(s1, . . . , sn) · sn+1 · · · sm for some function symbol f and some m ≥ n ≥ 0. It is interesting
to study more sophisticated methods to find approximations, but this is left for future work.

In the remainder of this paper, we will assume that dependency graphs (and hence also
their approximations) have only finitely many nodes. This is the case if the AFS under
consideration has finitely many rewrite rules. However, note that also for infinite AFSs
(arising for example by instantiation of polymorphic rewrite rules) we can work with finite
dependency graphs, if (infinite) sets of dependency pairs are represented by a single node.

I Lemma 5.2. Let G be an approximation of the dependency graph of an AFS R. Suppose
that every cycle in G is non-looping. Then R is terminating.

Proof Sketch. Given an infinite dependency chain, there must be a dependency pair ρi
which occurs infinitely often (by the finiteness assumption). Then {ρj | j > i} is a cycle. J

I Example 5.3. The dependency graph (approximation) of twice from Example 5.1 admits
many cycles, such as {twice(F) · n; F · (F · n)} or the following cycle Ctwice:

I#(s(n)) ; twice(λx. I(x)) · n twice#(F) ; F · (F · cy)
I#(s(n)) ; twice#(λx. I(x)) twice#(F) ; F · cy

twice(F) ·m ; F · (F ·m) twice(F) ·m ; F ·m

Ctwice is an SCC and includes all cycles. Therefore twice is terminating if Ctwice is non-looping.

RTA’11

210 Dynamic Higher Order Dependency Pairs

6 Reduction Orders

The challenge, then, is to prove the absence of looping cycles. We use the following definition:

I Definition 6.1. A reduction triple consists of a well-founded ordering >, a quasi-ordering
≥ and a sub-relation ≥1 of ≥, such that:
1. > and ≥ are compatible: either > · ≥ ⊆ > or ≥ · > ⊆ >;
2. >, ≥ and ≥1 are all stable (that is, closed under substitution);
3. ≥1 is monotonic: (that is, if s ≥1 t with s, t sharing a type, then C[s] ≥1 C[t]);
4. ≥1 contains beta (that is, always (λx. s) · t ≥1 s[x := t]).

A reduction pair is a pair (>,≥) such that (>,≥,≥) is a reduction triple; this corresponds
with the original (first order) notion of reduction pair. The reduction triple is a generalisation
of this notion, where ≥ itself is not required to be monotonic; we will need a non-monotonic
≥ in Section 6.1 to compare terms with different types. To deal with subterm reduction in
dependency chains, an additional definition is needed. We say ≥ has the limited subterm
property if: for all x, s, t, u such that s�u and u is neither an abstraction nor a single variable,
there is a substitution γ such that (λx. s) · t ≥ (u#)γ[x := t]. Intuitively, the substitution γ
is used to replace free variables in u that are bound in s by fresh constants cx. However, we
will also use a more liberal replacement of those variables, hence the general γ.

The following theorem shows how reduction triples can be used with dependency pairs.

I Theorem 6.2. A set D = D1]D2 of dependency pairs is non-looping if D2 is non-looping,
and there is a reduction triple (>,≥,≥1) such that

l > p for all l ; p ∈ D1,
l ≥ p for all l ; p ∈ D2,
l ≥1 r for all l→ r ∈ R,
either D is non-collapsing or ≥ satisfies the limited subterm property.

Proof Sketch. If D is looping it has an infinite chain which (as D2 is non-looping) contains
infinitely many pairs in D1. If D is non-collapsing we can find such a chain without beta steps,
and have si ≥ ti ≥ si+1 for all i, and if ρi ∈ D1 even si > ti, contradicting well-foundedness
of >. If D is collapsing then let [(ρi, si, ti)|i ∈ N|i ≥ j] be an infinite dependency chain over
D; if ρj ∈ D1 then sj > tj ≥ sj+1, if ρj ∈ D2 then sj ≥ tj ≥ sj+1 and if ρj = beta then
there is some substitution δ such that sj ≥ tjδ ≥ sj+1δ. Since [(ρi, siδ, tiδ)|i ∈ N|i ≥ j + 1]
is also a dependency chain we can continue this reasoning recursively, obtaining a decreasing
≥ sequence with infinitely many > steps, contradicting well-foundedness. J

Theorem 6.2 can be used to prove that every cycle in the dependency graph approximation
of an AFS is non-looping; termination follows with Lemma 5.2. See also Section 9 for an
algorithm. For left-linear AFSs, we even have a characterization of termination.

I Theorem 6.3. A left-linear AFS with dependency graph approximation G is terminating
if and only if for every cycle in G the requirements of Theorem 6.2 are satisfied.

I Example 6.4. Termination of twice is proved if there is a reduction triple (>,≥,≥1) with
the limited subterm property, such that l ≥1 r for all rules, and l > p for every dependency
pair in Ctwice from Example 5.3 (choosing D2 = ∅, which is non-looping).

C. Kop and F. van Raamsdonk 211

6.1 Type Changing
The situation so far is not completely satisfactory, because both > and ≥ may have to compare
terms of different types. Consider for example the dependency pair twice#(F) ; F · cy from
twice where the two sides have a different type. Moreover, the comparison in the definition of
limited subterm property may concern terms of different types. This is problematic because
term orderings do not usually compare terms of arbitrary different types; neither any version
of the higher order path ordering [11, 5] nor monotone algebras [21] are equipped for this.

A solution is to manipulate the ordering requirements. Let (�,�) be a reduction pair (so
a pair such that (�,�,�) is a reduction triple). Define >, ≥, and ≥1 as follows:

s > t if there are fresh variables x1, . . . , xn and terms u1, . . . , um such that s · x1 · · ·xn �
t · u1 · · ·um and both sides have some base type;
s ≥ t if there are fresh variables x1, . . . , xn and terms u1, . . . , um such that s ·x1 · · ·xn R
t · u1 · · ·um and both sides have some base type, where R is � ∪ � · � ∪ � · �;
s ≥1 t if s � t and s, t have the same type.

I Lemma 6.5. (>,≥,≥1) as generated from a reduction pair (�,�) is a reduction triple.

Proof. This is easy, noting: (1) if s ≥1 t then by monotonicity s~x � t~x, (2) if s > t then for
any ~u there are ~v such that s · ~u � t · ~v (by stability of �), (3) similar for ≥. J

The relations > and ≥ are not necessarily computable, but we will not need to work
with them directly. To prove some set of dependency pairs D non-looping, we can choose
for every pair l ; p ∈ D a corresponding base-type pair l ; p, and prove either l � p or
l � p. For example, we could assign l := l · x1 · · ·xn and p := p · cy1 · · · cym

, where the cyi
are

chosen arbitrarily. This is the choice we will use in examples in this paper. Other choices for
p, for instance made in such a way as to duplicate existing requirements, are also possible.

To make sure that ≥ satisfies the limited subterm property, we consider a base-type
version of subterm reduction, which is strongly related to β-reduction.

I Definition 6.6. �! is the relation on base-type terms (and �! its reflexive closure) generated
by the following clauses:

(λx. s) · t0 · · · tn �! u if s[x := t0] · t1 · · · tn �! u

f(s1, . . . , sm) · t1 · · · tn �! u if si · ~c�! u

s · t1 · · · tn �! u if ti · ~c�! u (s may have any form)

Here, s ·~c is a term s applied to constants cy of the right type. Note that if s�t and s has base
type, there are terms u1, . . . , un and substitution γ such that s�! tγ ·u1 · · ·un. Consequently,
≥ satisfies the limited subterm property if � ∪ � contains �! and f(~x) � f#(~x) for all
f ∈ D (the marking property). We can derive the following theorem.

I Theorem 6.7. A set of dependency pairs D = D1]D2 is non-looping if D2 is non-looping
and there is a reduction pair (�,�) such that:
1. l � p for all l ; p ∈ D1;
2. l � p for all l ; p ∈ D2;
3. l � r for all l→ r ∈ R;
4. if D is collapsing, then � ∪ � contains �!, and f(~x) � f#(~x) for all f ∈ D.

I Example 6.8. To prove that Ctwice is non-looping it suffices to find a reduction pair (�,�)
such that l � r for all rules, � satisfies the subterm and marking properties, and furthermore:

I#(s(n)) � twice(λx. I(x)) · n twice#(F) · x � F · (F · cy)
I#(s(n)) � twice#(λx. I(x)) · cz twice#(F) · x � F · cy

twice(F) ·m � F · (F ·m) twice(F) ·m � F ·m

RTA’11

212 Dynamic Higher Order Dependency Pairs

This completes the basis of dynamic dependency pairs for AFSs. But is this approach
any easier than proving l > r for all rewrite rules? Unless the dependency graph has no
cycles we still have to prove l ≥ r for all rules and with an ordering like HORPO [11] this is
barely an improvement. In Section 7 we will therefore discuss a variation of usable rules,
which allows us to drop a number of ordering requirements. In Section 8 we will define a
variation of the monotone algebra approach that is especially suited to dependency pairs.

7 Formative Rules

In the first order setting, the result corresponding with Theorem 6.2 is optimized: it is
sufficient to consider for a cycle only its usable rules instead of all rules. The definition of
usable rules cannot easily be extended to our setting, because we admit collapsing dependency
pairs. Therefore we take a different approach with the same goal of restricting attention to
rules which are in some way relevant to a set of dependency pairs. Where usable rules are
defined from the right-hand sides of dependency pairs, our formative rules are based on the
left-hand sides. We will use the notion of simple terms:

I Definition 7.1. A term s is simple if:
it is linear,
it has no subterm of the form x · s1 · · · sn with n > 0 and x a free variable,
there is no occurrence of a free variable below an abstraction.

Many examples of AFSs, such as rules from functional programming, have a simple left-hand
side. The intuition behind formative rules is that, for rewrite rules with a simple left-hand
side, only the formative rules can contribute to the creation of its pattern.

I Definition 7.2. For β-normal terms s, let Symb(s) be recursively defined as follows:

Symb(λx. s : σ) = {〈ABS , σ〉} ∪ Symb(s)
Symb(f(s1, . . . , sn) · sn+1 · · · sm : σ) = {〈f, σ〉} ∪ Symb(s1) ∪ . . . ∪ Symb(sm)

Symb(x · s1 · · · sn : σ) = {〈VAR, σ〉} ∪ Symb(s1) ∪ . . . ∪ Symb(sn) (n > 0)
Symb(x) = ∅

The formative symbols and rules of any term are defined by a (possibly) infinite process:
the starting point: FS0(s) = Symb(s)
for all n ≥ 0, the set FRn(s) consists of rules l · x1 · · ·xk → r · x1 · · ·xk if l→ r ∈ R and
k = 0, r = λx. r′ : σ and 〈ABS , σ〉 ∈ FSn(s), or
r = f(~u) · ~v : σ1⇒ . . .⇒σk⇒τ and 〈f, τ〉 ∈ FSn(s), or
r = x ·~v : σ1⇒ . . .⇒σk⇒τ and 〈f, τ〉 ∈ FSn(s) for some f ∈F∪{ABS ,VAR}; |~v| ≥ 0

FSn+1(s) = FSn(s) ∪
⋃
l→r∈FRn(s) Symb(l)

Now FR(s) is defined as the union of all FRn(s) (this is a finite union for finite AFSs) in the
case that both s is simple and all rules in this union have a simple left-hand side. Otherwise,
FR(s) = R. The set of formative rules of a dependency pair, FR(f(l1, . . . , ln)·ln+1 · · · lm ; p),
is defined as

⋃
1≤i≤m FR(li). For a set D of dependency pairs, FR(D) =

⋃
l;p∈D FR(l ; p).

Note that FRn(s) and FSn+1(s) can easily be calculated (automatically) from FSn(s); to
compute FR(s) a tool would simply repeat this process until either a rule with a non-simple
left-hand-side is included (in which case FR(s) = R), or until no new symbols are added.

C. Kop and F. van Raamsdonk 213

I Example 7.3. Recall the rules for the (completed) system twice:

(A) I(o) → o (C) twice(F) → λy. F · (F · y)
(B) I(s(n)) → s(twice(λx. I(x)) · n) (D) twice(F) ·m → F · (F ·m)

In this context, let l = s(n). Then

FS0(l) = {〈s, nat〉} FS1(l) = {〈s, nat〉, 〈twice, nat〉, 〈I, nat〉}
FR0(l) = {(B), (D)} FR1(l) = {(B), (D)} = FR0(l)

We have FR(I#(s(n)) ; p) = FR(s(n)) = {(B), (D)} for any p. Note that for a dependency
pair with left-hand side twice(F) · n or twice#(F) the set of formative rules is empty (since
Symb(F) = Symb(n) = ∅). Therefore, the formative rules of the SCC Ctwice are (B) and (D).

Using formative rules Formative rules are constructed in such a way that to reduce to a
term of the form lγ we only need its formative rules:

I Lemma 7.4. If s is terminating and s →∗R lγ, then there exists a substitution δ on the
same domain as γ such that each δ(x)→∗R γ(x) and s→∗FR(l) lδ.

Proof Sketch. We assume l is simple and not a variable (otherwise this is trivial). Transform
the reduction s→∗R lγ into a reduction without any headmost steps with a rule l′ → λx. r′

(this is possible because the rules have been completed). Then perform induction on s first,
using →R ∪�, the length of the reduction second. If s is headed by a beta-redex we can
start with a β-step because lγ is not (and complete with IH1), if s reduces to lγ without
any headmost steps we use the � part of IH1 (variable capture is not an issue because γ
can be assumed to have empty domain if l is an abstraction) and if s→∗R l′γ′ · t1 · · · tn →R
r′γ′ · t1 · · · tn →∗R′ lγ with either r′ headed by a variable or the latter part not using any
headmost steps, then l′′ := l′ ·x1 · · ·xn → r′ ·x1 · · ·xn =: r′′ is a formative rule of l and can be
assumed simple, so we use the second induction hypothesis to get s→∗FR(l′′) l

′′δ′ →R r′′δ′ and
the first induction hypothesis to have r′′δ′ →∗FR(l) lδ; this suffices because FR(l′′) ⊆ FR(l). J

With this we can strengthen the definition of dependency chains, and adapt Theorem 4.5:

I Lemma 7.5. If R is non-terminating, there is an infinite dependency chain over DP(R)
such that for all i: ti →∗in si+1 using only rules from FR(li+1).

Thus, we can restrict attention to dependency chains using only formative rules, and
adapt the definition of looping and the results of Sections 5 and 6 accordingly. We obtain:

I Theorem 7.6 (Complete Result). A set of dependency pairs D = D1]D2 is non-looping
if D2 is non-looping and there is a reduction triple such that:
1. l > p for l ; p ∈ D1,
2. l ≥ p for l ; p ∈ D2,
3. l ≥1 r for l→ r ∈ FR(D),
4. If D is collapsing, then ≥ additionally satisfies the limited subterm property.
Also ∅ is non-looping. An AFS with rules R and dependency graph approximation G is
terminating if all cycles in G are non-looping, which holds if all SCCs are non-looping.

In requirement (3) in Theorem 6.7 we can also restrict attention to the formative rules of D
instead of considering all rules. It remains to find a suitable reduction triple or pair.

RTA’11

214 Dynamic Higher Order Dependency Pairs

8 Monotone Algebras

A semantical method to prove termination of rewriting is to interpret terms in a well-founded
algebra, and show that whenever s→ t their interpretations decrease: JsK > JtK. For TRSs,
such an algebra is called a termination model if JlK > JrK for all rules l → r and some
additional properties guarantee that this implies JC[lγ]K > JC[rγ]K for all contexts C and
substitutions γ. A TRS is terminating if and only if it has a termination model [9, 26]. Van
de Pol [21] generalizes this approach to HRSs, with higher order rewriting modulo αβη, and
shows that a HRS is terminating if it has a termination model; the converse does not hold.

Here we consider interpretations of AFS terms in a monotone algebra, and use the
orderings to solve dependency pair constraints. Since > does not have to be monotonic when
using dependency pairs, the theory of [21] can be significantly simplified. We interpret all
base types with the same algebra to avoid problems with comparing differently-typed terms.

I Definition 8.1 (Weakly Monotonic Functionals). Let A be an algebra with a well-founded
partial order > and minimum element 0. We assume there is a binary operator ∨ on A such
that x ∨ y ≥ x, y for all x, y ∈ A and x ∨ 0 = x. Terms will be interpreted by elements of,
and weakly monotonic functionals over, A. Intuitively, a functional f is weakly monotonic
if f(x) ≥ f(y) whenever x ≥ y; however, f only needs to be defined on weakly monotonic
input. We inductively define the weakly monotonic functionals for all types, and relations
=wm and wwm on these functionals:

the interpretation for base types: WMι = A for all ι ∈ B,
the orderings on WMι (with ι ∈ B): =wm equals >, and wwm is its reflexive closure,
the interpretation for functional types: WMσ⇒τ consists of the functions mapping
elements of WMσ to elements of WMτ , such that wwm is preserved (that is, if x wwm y

in WMσ then f(x) wwm f(y) in WMτ),
the orderings on WMσ⇒τ : we have f =wm g iff f(x) =wm g(x) for all x ∈ WMσ, and
f wwm g iff f(x) wwm g(x) for all x ∈ WMσ.

=wm and wwm are an order and quasi-order respectively, and strongly compatible. If either
x =wm y or x = y then x wwm y, but the converse implication does not hold.

Constant functions are weakly monotonic functionals: for n ∈ A and σ = τ1⇒ . . .⇒τk⇒ ι

(note that ι always refers to a base type), let nσ = λλx1 . . . xk.n (the function inWMσ taking
k arguments and returning n). The function λλf.f(~0) is also in WMσ⇒ι, where f(~0) is short
for f(0τ1 , . . . , 0τk

). A weakly monotonic functional not defined in [21], but which will be
needed to deal with term application, is max:

maxι(x, y) = x ∨ y (for x, y ∈ A)
maxσ⇒τ (f, y) = λλx.maxτ (f(x), y) (for f ∈ WMσ⇒τ , y ∈ A)

Using induction on the type of the first argument, it is easy to see that maxσ ∈ WMσ⇒ι⇒σ.

Term Interpretation. Using an interpretation J of function symbols, van de Pol associates
to each closed term a weakly monotonic functional. Although the definition in [21] considers
terms modulo αβη, this is not a significant blockade because we can handle application as a
function symbol. The following is our own adaptation of the translation in [21]:

I Definition 8.2. For all function symbols f : (σ1 × . . .× σn)⇒τ let Jf ∈ WMσ, where σ
is σ1⇒ . . . σn⇒τ . A valuation is a function α with a finite domain of variables, such that
α(x) ∈ WMσ for x : σ in its domain. For any AFS-term s and valuation α whose domain
contains all x ∈ FV (s), let JsKJ ,α be the weakly monotonic functional defined as follows:

C. Kop and F. van Raamsdonk 215

JxKJ ,α = α(x) if x ∈ V
Jf(s1, . . . , sn)KJ ,α = Jf (Js1K, . . . , JsnK)
Jλx. sKJ ,α = λλn.JsKJ ,α∪{x7→n} if x /∈ dom(α)
Js · tKJ ,α = max(JsKJ ,α(JtKJ ,α), JtKJ ,α(~0))

I Example 8.3. In our running example, consider an interpretation into the natural numbers
Say JI = λλn.n and Js = λλn.n+ 1. Then JI(s(x))KJ ,α = α(x) + 1.

Reduction Pair Since this definition uses weak rather than strict monotonicity it cannot be
used directly like in first order rewriting: JlK =wm JrK does not in general imply JC[lγ]K =wm
JC[rγ]K. This issue (which van de Pol works around by definining an additional relation)
disappears in the context of dependency pairs. Using Theorem 6.7 we obtain a number of
requirements JlK =wm JrK or JlK wwm JrK, and additionally, for collapsing D, the subterm
and marking properties must be satisfied. The latter is a simple restriction, the former holds
if the value of a function is always greater than or equal to the value of its arguments.

I Theorem 8.4. Let J be a symbol interpretation such that:
Jf wwm Jf# for all f ∈ D
J maps each cx to the appropriate 0σ
for all f : (σ1 × . . . × σn)⇒ τ1⇒ . . .⇒ τm⇒ ι ∈ F , all 1 ≤ i ≤ n and all n ∈ WMσi

:
Jf (0σ1 , . . . , n, . . . , 0σn , 0τ1 , . . . , 0τm) wwm n(~0).

Define s � t if JsKJ ,α =wm JtKJ ,α for all valuations α and s � t if JsKJ ,α wwm JtKJ ,α for
all valuations α. Then (�,�) is a reduction pair which satisfies the subterm and marking
properties from Theorem 6.7.

Proof. Compatibility is evident, weak monotonicity holds by a simple case distinction and
stability by the substitution Lemma [21, Theorem 3.2.1]. By the interpretation of application
also→β is contained in �, and subterm reduction is included by an inductive argument which
uses the last two requirements. The marking property is given by the first requirement. J

It is not immediately obvious how to use monotone algebras automatically; a lot will
depend on the chosen interpretation for the function symbols. Common first order methods,
like polynomial or matrix interpretations, are not likely to be succesful in the presence of
functional variables. However, it is very likely that higher order parallels exist, such as an
interpretation with primitive recursive functions. While a proper study of such methods is
beyond the scope of this paper, the example below might give some initial ideas.

I Example 8.5. Suppose we have to satisfy a requirement map(F, cons(x, y)) � cons(F ·
x,map(F, y)), where F : nat⇒nat. We consider an interpretation in the natural numbers
(with standard >, 0, and ∨ giving the highest of two numbers) using primitive recursive
functions. Let G(f,m, n) be the recursive function defined by: G(f,m, 0) = max(f(m),m)
and G(f,m, n+1) = f(n+1, 2G(f,m, n)). This function is weakly monotonic in each of
f , m and n, and moreover G(f,m, n+k) ≥ G(f,m, n)+G(f,m, k) for all n, k > 0. Also
G(f,m, n) ≥ m, and G(f,m, n) ≥ f(0) if f is weakly monotonic. Choose Jcons = λλnm.n+m+1
and Jmap = λλfn.G(f, n, n+1), and let α = {F 7→ f, x 7→ n, y 7→ m} be a valuation. Then:

Jmap(F, cons(x, y))KJ ,α = G(f, n+m+1, n+m+2)
wwm G(f, n+m+1, n+1) +G(f, n+m+1,m+1)
= f(n+1) + 2G(f, n+m+1, n) +G(f, n+m+1,m+1)
wwm f(n) + 2(n+m+1) +G(f,m,m+1)
=wm max(f(n), n) +G(f,m,m+1) + 1
= Jcons(F · x,map(F, y))KJ ,α

RTA’11

216 Dynamic Higher Order Dependency Pairs

9 Conclusion

A Termination Algorithm The combination of Theorem 7.6 and Section 6.1 provides an
algorithm to prove termination of an AFS. First calculate the system’s dependency pairs
and take an approximation of the (finite) dependency graph. Then:
1. remove all nodes from G which are not on a cycle;
2. if G is empty return terminating; otherwise find an SCC C;
3. determine a partition in C = C1] C2 and find a reduction pair (�,�) such that l � p for

l ; p ∈ C1, l � p for l ; p ∈ C2, l � r for l→ r ∈ FR(C) and either C is non-collapsing,
or � ∪ � contains �! and f(~x) � f#(~x) for all f ∈ D; if this step fails, return fail;

4. remove all pairs in C1 from the graph, since any cycle C′ which includes such a pair is a
subcycle of C and thus also proved non-looping by (�,�); continue with (1).

The algorithm iterates over a graph approximation, simplifying SCCs until none remain;
note that this moves in the direction of the dependency pair framework as defined in [6].

I Example 9.1. Consider our running example twice, whose dependency graph was shown
in Example 5.1. As instructed in step (1) of the algorithm, we remove nodes not on a cycle.

I#(s(n)) ; twice(λx. I(x)) · n I#(s(n)) ; twice#(λx. I(x))

twice(F) · n; F · (F · n)

twice(F) · n; F · n

twice#(F) ; F · (F · cn)

twice#(F) ; F · cn

In step (2) we choose the SCC of all pairs in the graph; its formative rules are calculated in Ex-
ample 7.3. For step (3) let C1 := {I#(s(n)) ; twice(λx. I(x)) ·n, I#(s(n)) ; twice#(λx. I(x))}
and C2 the set containing the other pairs. We have the following proof obligations:

A. I#(s(n)) � twice(λx. I(x)) · n E. twice#(F) · x � F · (F · cy)
B. I#(s(n)) � twice#(λx. I(x)) · cz F. twice#(F) · x � F · cy
C. twice(F) ·m � F · (F ·m) G. I(s(n)) � s(twice(λx. I(x)) · n)
D. twice(F) ·m � F ·m H. twice(F) ·m � F · (F ·m)

Requirement (H) is a duplicate of (C). Using an interpretation in functionals over the natural
numbers where each Jcx

= 0, and assuming Jtwice = Jtwice# , (B) is implied by (A), and (E)
by (C), and (F) by (D). The remaining requirements are satisfied with JI# = JI = λλn.n and
Js = λλn.n+ 1 and Jtwice# = Jtwice = λλf.λλn.f(f(n)):

A. n+ 1 > max((λλn.n)((λλn.n)n), n) = max(n, n) = n

C. max(F (F (n)), n) ≥ max(F (max(F (n), n)),max(F (n), n))
D. max(F (F (n)), n) ≥ max(F (n), n)
G. n+ 1 ≥ max(n, n) + 1 = n+ 1

The calculations for (A) and (G) are obvious. With some reasoning (distinguishing the
cases n > F (n), and F (n) ≥ n and noting that F (n) ≥ n implies F (F (n)) ≥ F (n) by weak
monotonicity), (C) and (D) also hold.

Thus we move on to step (4) and remove the two nodes in C1 from the graph:

C. Kop and F. van Raamsdonk 217

twice(F) · n; F · (F · n)

twice(F) · n; F · n

twice#(F) ; F · (F · cn)

twice#(F) ; F · cn

All nodes are still interconnected, so we continue with the SCC of all pairs. Interestingly,
FR(C) = ∅. Therefore it suffices to find a reduction pair with the usual properties and:

twice(F) · n � F · (F · n) twice#(F) · n � F · (F · cy)
twice(F) · n � F · n twice#(F) · n � F · cy

This is satisfied with an algebra interpretation with Jtwice# = Jtwice = λλfn.max(f(f(n)), n)+
1. Thus we remove the final four nodes from the graph, and conclude that twice is terminating.

Summary and Future Work We have defined a first basic dependency pair method for
AFSs, with a variation of usable rules which takes into account the possible presence of
collapsing dependency pairs. We have explained that besides orderings such as HORPO also
monotone algebras can be used to solve the ordering constraints.

We intend to further study dependency pairs for AFSs with restrictions. For example,
if function symbols have a base output type we can drop requirements, yielding an easier
method. If we restrict to rules without abstractions in the left-hand sides, we may weaken the
subterm property to obtain a stronger method, and define for instance argument filterings
(in the extended abstract [15] a first step in this direction is given for HRSs).

A preliminary version of the dependency pair method with argument filterings is imple-
mented in the tool WANDA v1.0 [14]. We intend to improve the implementation by taking
into account also the dependency graph, strongly connected components and formative rules.

This work aims to contribute to the larger goal of understanding dependency pairs for
higher order rewriting, and creating tools to automatically prove termination in this setting.

Acknowledgments. We are very grateful for the constructive comments of the referees that
helped to improve the paper. We also gratefully acknowledge remarks from Jan Willem Klop.

References
1 T. Aoto and Y. Yamada. Dependency pairs for simply typed term rewriting. In J. Giesl,

editor, Proceedings of RTA 2005, volume 3467 of LNCS, pages 120–134, Nara, Japan, April
2005. Springer.

2 T. Aoto and Y. Yamada. Argument filterings and usable rules for simply typed dependency
pairs. In S. Ghilardi and R. Sebastiani, editors, Proceedings of FroCoS 2009, volume 5749
of LNAI, pages 117–132, Trento, Italy, September 2009. Springer.

3 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236(1-2):133–178, 2000.

4 F. Blanqui. Higher-order dependency pairs. In Proceedings of WST 2006, Seattle, USA,
August 2006.

5 F. Blanqui, J.-P. Jouannaud, and A. Rubio. The computability path ordering: The end
of a quest. In CSL 2008, volume 5213 of LNCS, pages 1–14, Bertinoro, Italy, July 2008.
Springer.

6 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combin-
ing techniques for automated termination proofs. In Proceedings of LPAR 2004, volume
3452 of Lecture Notes in Computer Science, pages 301–331. Springer, 2005.

RTA’11

218 Dynamic Higher Order Dependency Pairs

7 N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Information
and Computation, 205(4):474–511, 2007.

8 Nao Hirokawa, Aart Middeldorp, and Harald Zankl. Uncurrying for termination. In LPAR
2008, volume 5330 of LNAI, pages 667–681, Doha, 2008. Springer-Verlag.

9 G. Huet and D.C. Oppen. Equations and rewrite rules: a survey. In R.V Book, editor,
Formal Language Theory: Perspectives and Open Problems, pages 349–405. Academic Press,
London, 1980.

10 J.-P. Jouannaud and M. Okada. A computation model for executable higher-order algebraic
specification languages. In LICS 1991, pages 350–361, Amsterdam, The Netherlands, July
1991. IEEE Computer Society Press.

11 J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In LICS 1999,
pages 402–411, Trento, Italy, July 1999.

12 Z. Khasidashvili. Expression Reduction Systems. In Proceedings of I. Vekua Institute of
Applied Mathematics, volume 36, pages 200–220, Tblisi, Georgia, 1990.

13 J.W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical Centre Tracts.
CWI, Amsterdam, The Netherlands, 1980. PhD Thesis.

14 C. Kop. Wanda. http://www.few.vu.nl/~kop/code.html.
15 C. Kop and F. van Raamsdonk. Higher-order dependency pairs with argument filterings.

In Proceedings of WST 2010, Edinburgh, UK, July 2010. http://www.few.vu.nl/~kop/
wst10.pdf.

16 K. Kusakari. On proving termination of term rewriting systems with higher-order variables.
IPSJ Transactions on Programming, 42(SIG 7 PRO11):35–45, 2001.

17 K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method based on
strong computability for higher-order rewrite systems. IEICE Transactions on Information
and Systems, 92(10):2007–2015, 2009.

18 K. Kusakari and M. Sakai. Enhancing dependency pair method using strong computability
in simply-typed term rewriting. AAECC, 18(5):407–431, 2007.

19 K. Kusakari and M. Sakai. Static dependency pair method for simply-typed term rewriting
and related techniques. IEICE Transactions, 2(92-D):235–247, 2009.

20 T. Nipkow. Higher-order critical pairs. In LICS 1991, pages 342–349, Amsterdam, The
Netherlands, July 1991.

21 J.C. van de Pol. Termination of Higher-order Rerwite Systems. PhD thesis, University of
Utrecht, 1996.

22 M. Sakai and K. Kusakari. On dependency pair method for proving termination of higher-
order rewrite systems. IEICE Transactions on Information and Systems, E88-D(3):583–593,
2005.

23 M. Sakai, Y. Watanabe, and T. Sakabe. An extension of the dependency pair method for
proving termination of higher-order rewrite systems. IEICE Transactions on Information
and Systems, E84-D(8):1025–1032, 2001.

24 S. Suzuki, K. Kusakari, and F. Blanqui. Argument filterings and usable rules in higher-order
rewrite systems. IPSJ Transactions on Programming, 4(2):1–12, 2011. To appear.

25 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

26 H. Zantema. Termination of term rewriting: interpretation and type elimination. Journal
of Symbolic Computation, 17:23–50, 1994.

http://www.few.vu.nl/~kop/code.html
http://www.few.vu.nl/~kop/wst10.pdf
http://www.few.vu.nl/~kop/wst10.pdf

Anti-Unification for Unranked Terms and Hedges
Temur Kutsia1, Jordi Levy2, and Mateu Villaret3

1 Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
kutsia@risc.jku.at

2 Artificial Intelligence Research Institute (IIIA)
Spanish Council for Scientific Research (CSIC)
Barcelona, Spain
levy@iiia.csic.es

3 Departament d’Informàtica i Matemàtica Aplicada (IMA)
Universitat de Girona (UdG), Girona, Spain
villaret@ima.udg.edu

Abstract
We study anti-unification for unranked terms and hedges that may contain term and hedge vari-
ables. The anti-unification problem of two hedges s̃1 and s̃2 is concerned with finding their gener-
alization, a hedge q̃ such that both s̃1 and s̃2 are instances of q̃ under some substitutions. Hedge
variables help to fill in gaps in generalizations, while term variables abstract single (sub)terms
with different top function symbols. First, we design a complete and minimal algorithm to com-
pute least general generalizations. Then, we improve the efficiency of the algorithm by restricting
possible alternatives permitted in the generalizations. The restrictions are imposed with the help
of a rigidity function that is a parameter in the improved algorithm and selects certain common
subsequences from the hedges to be generalized. Finally, we indicate a possible application of
the algorithm in software engineering.

1998 ACM Subject Classification F.4.2 [Theory of Computation]: Mathematical Logic and
Formal Languages—Grammars and Other Rewriting Systems, F.2.2 [Theory of Computation]:
Analysis of Algorithms and Problem Complexity—Nonnumerical Algorithms and Problems, D.2.7
[Software]: Software Engineering—Distribution, Maintenance, and Enhancement.

Keywords and phrases Anti-unification, generalization, unranked terms, hedges, software clones.

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.219

Category Regular Research Paper

1 Introduction

The anti-unification problem of two terms t1 and t2 is concerned with finding their gen-
eralization, a term t such that both t1 and t2 are instances of t under some substitutions.
The problem has a trivial solution, a fresh variable, that is the most general generalization
of the given terms. Interesting generalizations are the least general ones. The purpose of
anti-unification algorithms is to compute such least general generalizations. Plotkin [27] and
Reynolds [28] pioneered research on anti-unification, designing generalization algorithms for
ranked terms (where function symbols have a fixed arity) in the syntactic case. Since then, a
number of algorithms and their modifications have been developed, addressing the problem
in various theories (e.g., [1, 2, 4, 9, 15, 26]) and from different application points of view
(e.g., [3, 8, 12, 17, 25, 31]). Applications come from the areas such as reasoning by analogy,

© T. Kutsia, J. Levy, and M. Villaret;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 219–234

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.219
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

220 Anti-Unification for Unranked Terms and Hedges

machine learning, inductive logic programming, software engineering, program synthesis,
analysis, transformation, verification, just to name a few.

Unranked terms differ from the ranked ones by not having fixed arity for function symbols.
Hedges are finite sequences of such terms. They are flexible structures, popular in representing
semistructured data. To take the advantage of variadicity, unranked terms and hedges use
two kinds of variables: term variables that stand for a single term and hedge variables
that stand for hedges. Solving techniques over unranked terms and hedges mostly address
unification and matching problems, see, e.g., [11, 18, 19, 20, 21, 23, 24]. Anti-unification for
these structures practically has not been studied. The only exceptions, to the best of our
knowledge, are [3, 33], where anti-unification of feature terms, and a special case of so called
simple hedges are considered, respectively.

We address this shortcoming, presenting algorithms to compute least general general-
izations for unranked terms/hedges. Hedge variables help to fill in gaps in generalizations,
while term variables abstract single (sub)terms with different top function symbols. First,
we develop a complete and minimal algorithm. Next, we improve its efficiency by restricting
possible alternatives permitted in the generalizations. The restrictions are imposed with
the help of a rigidity function that is a parameter in the improved algorithm. At each step,
the algorithm decides which subsequence of terms of the given hedges is to be (structurally)
retained in the generalization. This gives more efficient, yet pretty general algorithm for a
generic rigidity function. Instantiating the parameter with specific rigidity functions, we
obtain various special instances.

Finally, we discuss a possible application in software code clone detection. Our results
open a possibility to address the problem of searching XML clones by means of anti-unification.
Rigid hedge generalizations provide several advantages for this, combining fast textual and
precise structural techniques.

2 Preliminaries

Given pairwise disjoint countable sets of unranked function symbols F (symbols without
fixed arity), term variables VT, and hedge variables VH, we define unranked terms (terms
in short) and hedges (sequences of terms or hedge variables) over F and V = VT ∪ VH by
the grammar: t ::= x | f(s̃), s ::= t | X, s̃ ::= s1, . . . , sn, where x ∈ VT, f ∈ F, X ∈ VH,
and n ≥ 0. With this definition, terms are singleton hedges. Not all singleton hedges are
terms: some may be hedge variables. If s̃ = s1, . . . , sn and s̃′ = s′1, . . . , s

′
m, then we write

s̃, s̃′ for s1, . . . , sn, s
′
1, . . . , s

′
m. We denote by s̃|i the ith element of s̃. We denote by s̃|ji ,

where i < j, the subsequence between positions i and j excluding them, i.e., the subsequence
s̃|i+1, . . . , s̃|j−1. The length of a sequence s̃, denoted |s̃|, is the number of elements in it.

The set of terms (resp., the set of hedges) over F and V is denoted by T(F,VT,VH) (resp.,
by H(F,VT,VH)). We use the letters f, g, h, a, b, c, and d for function symbols, x, y, and z
for term variables, X,Y, Z, U, and V for hedge variables, χ for a term variable or a hedge
variable, t, l, and r for terms, s and q for a hedge variable or a term, and s̃ and q̃ for hedges.
The empty hedge is denoted by ε. The terms of the form a(ε) are written as just a.

The size of a term t is the number of occurrences of symbols (from F ∪ V) in it and is
denoted by size(t). We denote by var(t) the set of variables of a term. These definitions are
generalized for any syntactic object.

A substitution is a mapping from hedge variables to hedges and from term variables to
terms, which is identity almost everywhere. We will use the traditional finite set representation
of substitutions, writing, e.g., {x 7→ f(a), X 7→ ε, Y 7→ x, g(a, Z)} for the substitution that

T. Kutsia, J. Levy, and M. Villaret 221

maps every variable to itself except x, X, and Y that are mapped respectively to f(a), to ε,
and to x, g(a, Z). The lower case Greek letters are used to denote substitutions, with the
exception of the identity substitution for which we write Id.

Substitutions can be applied to terms and hedges using the congruences

σ(f(s1, . . . , sn)) = f(σ(s1), . . . , σ(sn)), σ(s1, . . . , sn) = σ(s1), . . . , σ(sn).

We call σ(s) and σ(s̃) the instances of respectively s and s̃ and use postfix notation to denote
them, writing sσ and s̃σ. We also say that s̃ is more general than q̃ if q̃ is an instance
of s̃ and denote this fact by s̃ � q̃. If s̃ � q̃ and q̃ � s̃, then we write s̃ ' q̃. If s̃ � q̃

and s̃ 6' q̃, then we say that s̃ is strictly more general than q̃ and write s̃ ≺ q̃. The set
dom(σ) = {χ ∈ V | χσ 6= χ} is called the domain of σ.

The composition of two substitutions σ and ϑ, written as σϑ, is defined as the composition
of two mappings: We have s(σϑ) = (sσ)ϑ for all s. A substitution σ1 is more general than
σ2 with respect to a set of variables X ⊆ V, written σ1 �X σ2, if there exists ϑ such that
χσ1ϑ = χσ2, for each χ ∈ X . The relations ' and ≺ are extended to substitutions: σ1 'X σ2
means σ1 �X σ2 and σ2 �X σ1, and σ1 ≺X σ2 means σ1 �X σ2 and σ1 6'X σ2.

The top symbol of a term is defined as top(x) = x and top(f(s̃)) = f . We extend this
notion to hedges, defining it as the sequence of symbols as follows: top(ε) = ε, top(X, s̃) =
Xtop(s̃), and top(t, s̃) = top(t)top(s̃). Notice that we write these sequences as words, e.g.,
top(f(a), a,X, x) = faXx. The letter w will be used for those words.

A hedge s̃ is called a generalization or an anti-instance of two hedges s̃1 and s̃2 if s̃ � s̃1
and s̃ � s̃2. That means, there exist substitutions σ1 and σ2 such that s̃1 = s̃σ1 and s̃2 = s̃σ2.
We say that a hedge s̃ is a least general generalization (lgg in short), aka a most specific
anti-instance, of s̃1 and s̃2 if s̃ is a generalization of s̃1 and s̃2 and there is no generalization
q̃ of s̃1 and s̃2 that satisfies s̃ ≺ q̃. That means, there are no generalizations of s̃1 and s̃2
that are strictly less general than their least general generalization.

An anti-unification problem (or equation), AUP in short, is a triple χ : s̃1 , s̃2, where
χ does not occur in s̃1 and s̃2. Intuitively, χ is a variable that stands for the most general
generalization of s̃1 and s̃2. An anti-unifier of χ : s̃1 , s̃2 is a substitution σ such that
dom(σ) ⊆ {χ} and χσ is a generalization of both s̃1 and s̃2. An anti-unifier σ of an AUP
χ : s̃1 , s̃2 is least general (or most specific) if there is no anti-unifier of ϑ of the same
problem that satisfies σ ≺X ϑ. Obviously, if σ is a least general anti-unifier of an AUP
χ : s̃1 , s̃2, then χσ is a least general generalization of s̃1 and s̃2.

A complete set of generalizations of two hedges s̃1 and s̃2 is a set G of hedges that satisfies
the properties:
Soundness: Each q̃ ∈ G is a generalization of both s̃1 and s̃2.
Completeness: For each generalization s̃ of s̃1 and s̃2, there exists q̃ ∈ G such that s̃ � q̃.

G is a minimal complete set of generalizations of s̃1 and s̃2 if it, in addition to soundness
and completeness, satisfies also the following property:
Minimality: For each q̃1, q̃2 ∈ G, if q̃1 � q̃2 then q̃1 = q̃2.

I Lemma 2.1. For any three hedges s̃1, s̃2 and q̃, and any pair of substitutions σ1 and σ2
satisfying s̃1 = q̃σ1 and s̃2 = q̃σ2, if size(q̃) ≥ size(s̃1) + size(s̃2) then there exists a hedge
variable X occurring in q̃ such that Xσ1 = Xσ2 = ε.

Proof. The hedge q̃ can not contain more function symbols than s̃1 and s̃2 do. It also can
not contain more term variables than there are subterms in s̃1 or s̃2. Violation of any of
these conditions would forbid s̃1 or s̃2 to be an instance of q̃. Hence, the only reason why
size(q̃) ≥ size(s̃1) + size(s̃2) is that q̃ may contain extra hedge variables that are mapped to
ε by both σ1 and σ2. J

RTA’11

222 Anti-Unification for Unranked Terms and Hedges

I Lemma 2.2. For any hedges s̃1 and s̃2 there exists their minimal complete set of general-
izations that, modulo ', is unique and finite.

Proof. For classical first-order anti-unification this property is trivial, because instantiation
does not decrease the size of terms. This means that anti-unifiers of two terms are smaller
than each of those terms, hence finite modulo variable renaming. For hedges the property is
not so simple to prove because instantiating a hedge variable by ε, the size of a term may
decrease. However, by Lemma 2.1 we have that for any anti-unifier q̃ of s̃1 and s̃2 with
size(q̃) ≥ size(s̃1) + size(s̃2) there exists another anti-unifier less general than q̃ (that we can
obtain by replacing those extra hedge variables in q̃ by ε). The set of anti-unifiers smaller
than the sum of the sizes of both hedges is a complete set of anti-unifiers, and it is finite and
unique modulo '. J

We denote the minimal complete set of generalizations of s̃1 and s̃2 by mcg(s̃1, s̃2). Its
elements are lggs of s̃1 and s̃2.

Like unification problems, anti-unification problems may be classified as unitary (if
minimal complete sets of generalizations always exist and are singletons), finitary (if they
always exist, are finite, and the problem is not unitary), infinitary (if they always exist and
may be infinite), and nullary (if they may not exist). Hence, Lemma 2.2 implies that hedge
anti-unification is finitary.

An anti-unification problem always has an anti-unifier. The empty substitution is a
trivial example that represents the most general generalization. Our goal is to compute less
general generalizations. In the next section, we design an algorithm that computes (the set
of anti-unifiers that represents) the mcg of a given AUP. It requires some care to properly
address the issues that arise because of hedge variables in generalizations.

Quiz 1: Given two hedges s̃ = f(a), f(a) and q̃ = f(a), f , what is the set mcg(s̃, q̃)?
Hint: There are three elements in mcg(s̃, q̃).

Below we assume that the hedges to be generalized are variable disjoint.

3 Complete and Minimal Algorithm

We present our anti-unification algorithm as a rule-based algorithm that works on triples
A;S;σ. Here A is a set of AUPs of the form {X1 : s̃1 , q̃1, . . . , Xn : s̃n , q̃n} where each Xi
occurs in the problem only once, S is a set of already solved anti-unification equations (the
store), and σ is a substitution (computed so far)1. We call such a triple a system. The rules
transform systems into systems:

T-H: Trivial Hedge
{X : ε , ε} ∪A; S; σ =⇒ A; S; σ{X 7→ ε}.

Dec-T: Decomposition for Terms
{X : f(s̃) , f(q̃)} ∪A; S; σ =⇒ {Y : s̃ , q̃} ∪A; S; σ{X 7→ f(Y)}

where Y is a fresh variable.
Dec1-H: Decomposition 1 for Hedges
{X : s, s̃ , q, q̃} ∪A; S; σ =⇒ {Y : s , q, Z : s̃ , q̃} ∪A; S; σ{X 7→ Y, Z},

where U : s, s̃ , q, q̃ /∈ S for all U ∈ VH, the variables Y and Z are fresh, and s̃ 6= ε or q̃ 6= ε.

1 Such a representation was first proposed in [1] for equational anti-unification.

T. Kutsia, J. Levy, and M. Villaret 223

Dec2-H: Decomposition 2 for Hedges
{X : s, s̃ , q̃} ∪A; S; σ =⇒ {Y : s , ε, Z : s̃ , q̃} ∪A; S; σ{X 7→ Y,Z},

where χ : s, s̃ , q̃ /∈ S for all χ, the variables Y and Z are fresh, and s̃ 6= ε or q̃ 6= ε.

Dec3-H: Decomposition 3 for Hedges
{X : s̃ , q, q̃} ∪A; S; σ =⇒ {Y : ε , q, Z : s̃ , q̃} ∪A; S; σ{X 7→ Y,Z},

where χ : s̃ , q, q̃ /∈ S for all χ, the variables Y and Z are fresh, and s̃ 6= ε or q̃ 6= ε.

Sol1-H: Solve 1 for Hedges
{X : s , ε} ∪A; S; σ =⇒ A; {X : s , ε} ∪ S; σ, if Y : s , ε /∈ S for all Y .

Sol2-H: Solve 2 for Hedges
{X : ε , q} ∪A; S; σ =⇒ A; {X : ε , q} ∪ S; σ, if Y : ε , q /∈ S for all Y .

Sol3-H: Solve 3 for Hedges
{X : s , q} ∪A; S; σ =⇒ A; {X : s , q} ∪ S; σ,

if s 6= q, s ∈ VH or q ∈ VH, and Y : s , q /∈ S for all Y .

Sol-T: Solve for Terms
{X : l , r} ∪A; S; σ =⇒ A; {y : l , r} ∪ S; σ{X 7→ y},

if top(l) 6= top(r), χ : l , r /∈ S for all χ, and y is fresh.

Rec: Recover
{X : s̃ , q̃} ∪A; {χ : s̃ , q̃} ∪ S; σ =⇒ A; {χ : s̃ , q̃} ∪ S; σ{X 7→ χ}.

The idea of the store is to keep track of already solved AUPs in order to generalize the
same pair of hedges with the same variable, as it is illustrated in the Rec rule: The already
solved AUP χ : s̃ , q̃ from the store helps to reuse χ instead of X as a generalization of s̃
and q̃. This is important, since we aim at computing lggs.

In the condition of Dec1-H we use a hedge variable U while in Dec2-H and Dec3-H in the
same role χ appears. The reason is that in Dec1-H, the hedge s, s̃ or the hedge q, q̃ is not
a term and, hence, we can not have a term variable in place of U . On the other hand, in
Dec2-H and Dec3-H it can happen that the AUP in the condition is between terms with χ
being a term variable.

Notice that there is no rule for AUPs of the form X : x , x. This is because we assume
the hedges to be generalized are variable disjoint and, hence, such problems do not appear.

To compute generalizations for hedges s̃ and q̃, the procedure starts with {X : s̃ , q̃}; ∅; Id
where X is a fresh hedge variable and applies the rules on each selected anti-unification
equation in all possible ways. We denote this procedure by G. To show that the process
terminates, we define a complexity measure of the triple A;S;σ as a multiset M(A) :=
{size(s̃ , q̃) + 1 | X : s̃ , q̃ ∈ A}. We order complexity measures by the multiset extension
>m of the standard ordering on natural numbers. It is easy to check that the theorem below
holds, which immediately implies termination:

I Theorem 3.1. If A1;S1;σ1 =⇒ A2;S2;σ2 in G, then M(A1) >m M(A2).

Hence, starting from {X : s̃ , q̃}; ∅; Id, each sequence of transformations by G necessarily
terminates with a triple of the form ∅;S;σ.

I Theorem 3.2 (Soundness of G). If {X : s̃ , q̃}; ∅; Id =⇒∗ ∅;S;σ is a derivation in G,
then Xσ � s̃ and Xσ � q̃.

RTA’11

224 Anti-Unification for Unranked Terms and Hedges

Proof. The theorem follows from the straightforward fact that if Xσ � s̃ and Xσ � q̃

and {X : s̃ , q̃} ∪ A;S;σ =⇒ A′, S′, σ′ is a transformation step in G, then Xσ′ � s̃ and
Xσ′ � q̃. J

If {X : s̃ , q̃}; ∅; Id =⇒∗ ∅;S;σ is a derivation in G, then we say that
σ is a substitution computed by G for X : s̃ , q̃;
the restriction of σ on X, denoted by σ|X , is a anti-unifier of X : s̃ , q̃ computed by G;
the hedge Xσ is a generalization of s̃ and q̃ computed by G.

The proof of completeness of the algorithm requires auxiliary definitions and lemmas. We
start generalizing the notion of anti-unifier for sets of equations.

I Definition 3.3. A set of AUPs is a set A = {χ1 : s̃1 , q̃1, . . . , χn : s̃n , q̃n}, where each of
the variables χ1, . . . , χn does not occur more than once. We define the set of generalization
variables gvar(A) = {χ1, . . . , χn}.

I Definition 3.4. A substitution σ is called an anti-unifier of a set of AUPs A, if dom(σ) ⊆
gvar(A) and for each (χ : s̃ , q̃) ∈ A, χσ is a generalization of both s̃ and q̃.

Similarly, least general anti-unifiers are also generalized for sets of AUPs.

I Definition 3.5. We say that a set of AUPs A is unsimplifiable if any anti-unifier of A is
equal to Id modulo variable renaming.

Notice that if A is unsimplifiable then A cannot contain equations with pairs of terms
with the same top symbol x : f(s̃) , f(q̃), equations between equal sequences χ : s̃ , s̃,
equations between terms X : f(s̃) , g(q̃) where X ∈ VH, nor pairs of identical equations
χ : s̃ , q̃, χ′ : s̃ , q̃.

I Lemma 3.6. Let A be a set of AUPs satisfying gvar(A) ⊆ VH. Let S be an unsimplifiable
set of AUPs. Let ϑ be an anti-unifier of A. Then, there exists a sequence of transformations
A;S; Id =⇒∗ ∅;S′;σ where ϑ �gvar(A) σ.

This lemma is crucial for showing completeness of G. Its proof is quite long and proceeds
by structural induction on A and by detailed case analysis on the form of a selected AUP in
transformations. The interested reader can find it in the technical report [22].

I Theorem 3.7 (Completeness of G). Let ϑ be an anti-unifier of X : s̃ , q̃. Then G computes
a substitution σ such that Xϑ � Xσ.

Proof. Immediate consequence of Lemma 3.6 with A = {X : s̃ , q̃} and S = ∅. J

Hence, collecting all the hedges Xσ such that {X : s̃ , q̃}; ∅; Id =⇒∗ ∅;S;σ, we obtain a
finite complete set of generalizations of s̃ and q̃. In general, this set is not minimal. Even for
such a simple input as {X : f(a) , f(b)}; ∅; Id, the algorithm G produces five generalizations:
two hedges Y1, Y2 and Z1, Z2 and three terms f(U1, U2), f(V1, V2), and f(x). The last term
is an instance of the other four generalizations.

Nevertheless, this redundancy is not trivially avoidable because rules allowing apparently
useless alignments are needed for completeness:

Answer to Quiz 1. Besides the “expected” lgg f(a), f(X), the set mcg(s̃, q̃) for
s̃ = f(a), f(a) and q̃ = f(a), f also contains two less obvious ones: f(X,Y), f(X) and
f(X,Y), f(Y).

We need a minimization step to keep only least general generalizations. Minimization
involves a matchability test between two hedges. If two hedges s̃ and q̃ are in the set we are
going to minimize, then we proceed as follows:

T. Kutsia, J. Levy, and M. Villaret 225

If s̃ ' q̃, then we delete one of them and keep the other (e.g., with the smaller size).
If one of them is strictly more general than the other one, we delete the more general
hedge and keep the more specific one.

For matchability, one could, in principle, use the hedge matching algorithm from [18],
but there is a subtlety one should take into account: The hedges that are to be matched, in
general, are not ground. Therefore, when trying to match, e.g., s̃ = X,X to q̃ = X, a, we
should rename X in q̃ into a new constant. Furthermore, we should introduce a restriction
that no term variable matches such new constants. Thus, the matchability test should fail
for the problems like X,X � X, a and x� X.

Hence, combining G with minimization, we can compute mcg(s̃1, s̃2) for each s̃1 and s̃2.

I Example 3.8. For the terms f(g(a,X), a,X, b) and f(g(b), b), G computes the mcg:
{f(g(x, Y), Z, Y, b), f(g(x, Y), x, Y, Z), f(g(U, Y, Z), Y, Z, b), f(g(U, Y, Z), U, Y, b)}. These
four lggs are selected from 169 generalizations computed in the first step of the algorithm.

The drawback of the algorithm G is that it is highly nondeterministic. It computes O(3n)
generalizations2, where n is the size of the input. (For instance, for f(a1, a2, a3, a4, a5) and
f(b1, b2, b3, b4, b5) it computes 11685 generalizations, most of them several times, until it
selects a single one, e.g., f(x1, x2, x3, x4, x5), on the minimization step.) The minimization
step involves NP-complete hedge matching algorithm (see [18, 21]) performed on the pairs
of elements of the generalization set. Hence, this algorithm is only of theoretical interest
and falls short of being practically useful. Our goal is to impose requirements on the set
of generalizations such that, on the one hand, it is still “interesting”, on the other hand, it
can be computed faster in many cases. This leads us to the notion of rigid generalization,
described in the next section.

4 Computing Rigid Generalizations

The main intuition behind rigid generalizations is to capture the structure (modulo a given
rigidity property) of as many nonvariable terms in the input hedges as possible. It is
parameterized by a binary rigidity function R that computes a finite set of alignments for
strings, defined as follows:

I Definition 4.1 (Alignment and Rigidity Function). Let w1 and w2 be strings of symbols.
Then the sequence a1[i1, j1] · · · an[in, jn], for n ≥ 0, is an alignment if

i’s and j’s are positive integers such that i1 < · · · < in and j1 < · · · < jn, and
ak = w1|ik = w2|jk , for all 1 ≤ k ≤ n.

A rigidity function R is a function that returns, for every pair of strings of symbols w1
and w2, a set of alignments of w1 and w2.

I Example 4.2. We give some examples of rigidity functions. Here and below, instead of
saying that the rigidity function R returns “the set of alignments of ...”, we just say that it
returns “the set of ...”.
R returns the set of all longest common subsequences of its arguments: R(abc, dd) = {ε},
R(abcda, bcad) = {b[2, 1]c[3, 2]a[5, 3], b[2, 1]c[3, 2]d[4, 4]}.
R returns the set of all those longest common subsequences whose length is at least 4:
R(abcda, bca) = ∅, R(abcda, bcacda) = {a[1, 3]c[3, 4]d[4, 5]a[5, 6], b[2, 1]c[3, 4]d[4, 5]a[5, 6]}.

2 Notice that the hedge decomposition rule has three non-deterministic choices.

RTA’11

226 Anti-Unification for Unranked Terms and Hedges

R returns the set of all longest common substrings of its arguments: R(abcda, bcad) =
{b[2, 1]c[3, 2]}, R(abcda, bcada) = {b[2, 1]c[3, 2], d[4, 4]a[5, 5]}, R(abc, dd) = {ε}.

I Definition 4.3 (R-Generalization). Given two (variable disjoint) hedges s̃1 and s̃2 and the
rigidity functionR, we say that a hedge s̃ that generalizes both s̃1 and s̃2 is their generalization
with respect to R, or, in short, an R-generalization, if either R(top(s̃1), top(s̃2)) = ∅ and s̃
is a hedge variable, or there exists an alignment f1[i1, j1] · · · fn[in, jn] ∈ R(top(s̃1), top(s̃2)),
such that the following conditions are fulfilled:
1. The sequence s̃ does not contain pairs of consecutive hedge variables.
2. If we remove all hedge variables that occur as elements of s̃, we get a sequence of the

form f1(q̃1), . . . , fn(q̃n).
3. For every 1 ≤ k ≤ n, there exists a pair of sequences s̃′1 and s̃′2 such that s̃1|ik = fk(s̃′1),

s̃2|jk = fk(s̃′2) and q̃k is an R-generalization of s̃′1 and s̃′2.

Under this definition, R-generalizations do not contain term variables. The minimal
complete set of R-generalizations of s̃1 and s̃2 is denoted by mcgR(s̃1, s̃2). An R-anti-unifier
of X : s̃1 , s̃2 is a substitution σ such that Xσ is an R-generalization of s̃1 and s̃2.

I Example 4.4. Let R(w1, w2) be the set of all longest common subsequences of w1 and w2.
The terms t1 = f(g(a,X), a,X, b) and t2 = f(g(b), b) have a single least general R-
generalization f(g(Y), Z, b). Note that this term does not belong to mcg(t1, t2) computed
in Example 3.8.
f(g(a, a), a,X, b) and f(g(b, b), g(Y), b) have two R-generalizations: f(g(U), Z, b) and
f(V, g(U), Z, b). The first one is less general than the second one.
The hedges a, b and b, c have a single R-generalization: X, b, Y .

I Example 4.5. Let R(w1, w2) be the set of all longest common substrings of w1 and w2.
The least general R-generalization of a, a, b, f, f, f(a, a, b) and a, a, c, f, f, f(a, a, c) is the
hedge X, f, f, f(a, a, Y).
The least general R-generalization of a, a, b, b, f, f, f(a, a, b, b) and a, a, c, f, f, f(a, a, c) is
the hedge X, f, f, f(a, a, Y).

Quiz 2: What is the mcgR(s̃, q̃) for two identical hedges s̃ = f(a, b, c), g(a), h(a) and q̃ =
f(a, b, c), g(a), h(a), where R is a function that computes the set of all common subsequences
of the minimal length 3 of its arguments?

Our goal is to compute a minimal complete set of R-generalizations. For this, we design
a new set of transformation rules. It consists of only four rules shown below:

R-Dec-H: R-Rigid Decomposition for Hedges
{X : s̃ , q̃} ∪A; S; σ =⇒
{Zk : s̃k , q̃k | 1 ≤ k ≤ n} ∪A;
{Y0 : s̃|i10 , q̃|j10 } ∪ {Yk : s̃|ik+1

ik
, q̃|jk+1

jk
| 1 ≤ k ≤ n− 1} ∪ {Yn : s̃||s̃|+1

in
, q̃||q̃|+1

jn
} ∪S;

σ{X 7→ Y0, f1(Z1), Y1, . . . , Yn−1, fn(Zn), Yn},
if R(top(s̃), top(q̃)) contains a sequence f1[i1, j1] · · · fn[in, jn] such that for all 1 ≤ k ≤ n,
s̃|ik = fk(s̃k), q̃|jk = fk(q̃k), and Y0, Yk’s and Zk’s are fresh.

R-S-H: R-Rigid Solve for Hedges
{X : s̃ , q̃} ∪A; S; σ =⇒ A; {X : s̃ , q̃} ∪ S; σ,

if R(top(s̃), top(q̃)) = ∅. (Notice that this transformation is equivalent to rule R-Dec-H where
R(top(s̃), top(q̃)) = {ε}).

T. Kutsia, J. Levy, and M. Villaret 227

R-CS1: R-Rigid Clean Store 1
A; {X1 : s̃ , q̃, X2 : s̃ , q̃} ∪ S; σ =⇒ A; {X1 : s̃ , q̃} ∪ S; σ{X2 7→ X1}, if X1 6= X2.

R-CS2: R-Rigid Clean Store 2
A; {X : ε , ε} ∪ S; σ =⇒ A; S; σ{X 7→ ε}

To compute R-generalizations of s̃ and q̃, we start with {X : s̃ , q̃}; ∅; Id and apply the
rules on the selected anti-unification equation(s) in all possible ways. The obtained procedure
is denoted by G(R). To show that it terminates, we define the complexity measure for
A;S;σ as a pair (M(A),M(S)), where M is defined as in the termination proof of G. The
measures are compared lexicographically. Each rule strictly reduces it, therefore there can
be no infinite transformation chains. All the rules, except R-Dec-H, transform the selected
equation(s) uniquely. R-Dec-H can introduce only finitely many branchings, because R
returns a finite set. Hence, the following theorem holds:

I Theorem 4.6. The procedure G(R) terminates on any input and produces a system ∅;S;σ
where S is irreducible with respect to the store cleaning rules.

The intuition behind the R-Dec-H rule is that, once R gives the set of alignments of
the strings top(s̃) and top(q̃), we choose one alignment from it, and rigid decomposition is
not permitted to be performed on the equations formed by the remaining subsequences of s̃
and q̃ (i.e, the ones that are generalized by Y ’s in R-Dec-H). Otherwise, the generalization
might violate the restrictions of Definition 4.3. Therefore, we move these equations to the
store where the decomposition and solve rules do not apply. However, it may introduce
certain redundancies in the store. These redundancies are dealt with the store cleaning rules.
Another interesting observation is that G(R) never introduces in the set A or S equations of
the form x : l , r where x is a term variable.

Since we generalize variable disjoint hedges, the strings in R(top(s̃), top(q̃)) (that are
common subsequences of top(s̃) and top(q̃)) do not contain variables. After application of the
rule R-Dec-H, each hedge variable in the anti-unifier gets separated from the other variables
by a nonvariable term, to obey the restriction 1 of Definition 4.3.

We did not have the store cleaning rules in our previous algorithm G, because the AUPs
they are dealing with would never appear in the store the rules in G are operating on.

Proving soundness of G(R) is quite involved, because we should show that the output of
G(R) satisfies properties of R-generalizations. We need a couple of lemmas for that:

I Lemma 4.7. Let A;S;ϑ =⇒R1 A1;S1;ϑσ1 =⇒R2 A2;S2;ϑσ1σ2 be a sequence of trans-
formations where R1 ∈ {R-CS1,R-CS2} and R2 ∈ {R-Dec-H,R-S-H}. Then there exists a
transformation sequence A;S;ϑ =⇒R2 A

′
1;S′1;ϑσ2 =⇒R1 A

′
2;S′2;ϑσ2σ1 such that A′2 = A2,

S′2 = S2, and ϑσ1σ2 = ϑσ2σ1.

Proof. Since R1 does not affect the first component in the system, we have A1 = A and
A′2 = A′1. We perform the step R2 in the second transformation sequence exactly in the same
way as in the first one, choosing the same rule, the same AUP in A, the same alignment, and
the same fresh variables. Then A′1 = A2 and, hence, A′2 = A2. As for the stores, S2 consists
of all the AUPs in S except those deleted by R1 and R2 and, in addition, it contains the
AUPs introduced by R2. In the second sequence, S′1 consists of all the AUPs in S except the
one deleted by R2 and the ones introduced by R2. In the last step, we delete from S′1 exactly
the same AUP that was deleted from S1 by R1. Therefore, we get S′2 = S2. Finally, σ1 and
σ2 commute, because their domains and ranges are disjoint. Hence, ϑσ1σ2 = ϑσ2σ1. J

RTA’11

228 Anti-Unification for Unranked Terms and Hedges

I Lemma 4.8. If A;S1;ϑ =⇒∗ ∅;S2;ϑσ is a derivation in G(R) using only R-Dec-H and
R-S-H, then for all (X : s̃ , q̃) ∈ A, the hedge Xσ is an R-generalization of s̃ and q̃.

Proof. We proceed by induction on the length of the derivation. If it is 1, then the derivation
has the form {X : s̃ , q̃};S;ϑ =⇒∗ ∅; {X : s̃ , q̃}∪S;ϑσ, where σ = {X 7→ Y0} for a fresh Y0
if the used rule isR-Dec-H, and σ = Id if the used rule isR-S-H. SinceR(top(s̃), top(q̃)) ⊆ {ε},
Xσ is an R-generalization of s̃ and q̃.

Now we assume that the lemma holds for all derivations with the length less than m > 1
and prove it for m. Let the system to be transformed be {X : s̃ , q̃} ∪ A′;S;ϑ. If it is
transformed by the rule R-S-H then R(top(s̃), top(q̃)) = ∅, σ = Id, and we obtain a new
system A′; {X : s̃ , q̃} ∪ S;ϑ. By the induction hypothesis, X ′σ is an R-generalization of s̃′
and q̃′ for all (X ′ : s̃′ , q̃′) ∈ A′. By the definition of R-generalization, the same holds for
Xσ, s̃, and q̃ because R(top(s̃), top(q̃)) = ∅.

If the ruleR-Dec-H is used to transform {X : s̃ , q̃}∪A′;S;ϑ, then the new system is {Zk :
s̃k , q̃k | 1 ≤ k ≤ n} ∪ A′;S′;ϑσ′, where σ′ = {X 7→ Y0, f1(Z1), Y1, . . . , Yn−1, fn(Zn), Yn}
and the conditions of R-Dec-H are satisfied. By the induction hypothesis, We have a
derivation {Zk : s̃k , q̃k | 1 ≤ k ≤ n} ∪ A′;S′;ϑσ′ =⇒∗ ∅;S′′;ϑσ′σ′′ using only the rules
R-Dec-H and R-S-H such that for all (X ′ : s̃′ , q̃′) ∈ {Zk : s̃k , q̃k | 1 ≤ k ≤ n} ∪ A′, the
hedge X ′σ′′ is an R-generalization of s̃′ and q̃′. In particular, this holds for Z’s. Therefore,
Xσ′σ′′ is an R-generalization of s̃ and q̃. This finishes the proof. J

I Lemma 4.9. If {X : s̃1 , s̃2}; ∅; Id =⇒∗ ∅;S1;ϑ =⇒R ∅;S2;ϑσ is a derivation in G(R)
such that Xϑ is an R-generalization of s̃1 and s̃2 and R ∈ {R-CS1,R-CS2}. Then Xϑσ is
an R-generalization of s̃1 and s̃2.

Proof. Let R be R-CS1, transforming {X1 : s̃′1 , s̃′2, X2 : s̃′1 , s̃′2} ⊆ S1 into {X1 : s̃′1 ,
s̃′2} ⊆ S2 with the substitution σ = {X2 7→ X1}. The hedges s̃′1 and s̃′2 occur in s̃1 and s̃2,
respectively, so that the corresponding occurrences are abstracted by the same variable in
Xϑ. This variable for some pairs of occurrences of s̃′1 and s̃′2 is X1 and for some others X2.
Hence, if we replace X2 with X1 in Xϑ, the obtained hedge Xϑσ will be a generalization of
s̃1 and s̃2.

To prove that after this replacement we still have an R-generalization of s̃1 and s̃2, we
proceed by induction on the maximal depth d of the occurrences of X2 in Xϑ. It is enough to
show that replacing only one occurrence of X2 with X1 retains the R-generalization property.

Let first d = 0. Then Xϑ has a form q̃1, X2, q̃2. Replacing X2 with X1 gives q̃1, X1, q̃2,
that keeps the same alignment from R(top(s̃1), top(s̃2)) that was in Xϑ and satisfies all three
conditions of the definition of R-generalization. Hence, q̃1, X1, q̃2 is an R-generalization of
s̃1 and s̃2.

Now assume that d > 0. It means that there exists a term f(q̃) in Xϑ, such that X2
occurs at depth d− 1 in q̃. Then there are terms f(s̃′′1) in s̃1 and f(s̃′′2) in s̃2 such that q̃ is an
R-generalization of s̃′′1 and s̃′′2 . By the induction hypothesis, replacing an occurrence of X2
in q̃ with X1 gives a hedge that is again an R-generalization of s̃′′1 and s̃′′2 . Hence, the hedge
obtained from Xϑ by replacing one occurrence of X2 with X1 is an R-generalization of s̃1
and s̃2, because we just showed that the third condition of the definition of R-generalization
is satisfied, while the other two conditions were not affected.

Repeating the process of replacement of one occurrence of X2 by X1 iteratively until
there are no more X2’s in Xϑ, we prove that Xϑσ is an R-generalization of s̃1 and s̃2.

Proof for R = R-CS2 is straightforward. J

Now we can prove the soundness theorem for G(R):

T. Kutsia, J. Levy, and M. Villaret 229

I Theorem 4.10 (Soundness of G(R)). If {X : s̃1 , s̃2}; ∅; Id =⇒∗ ∅;S;σ is a derivation in
G(R), then Xσ is an R-generalization of s̃1 and s̃2.

Proof. By Lemma 4.7, every derivation in G(R) can be reordered so that first only the
rules R-Dec-H and R-S-H are applied until the set of AUPs becomes empty, and then the
store is cleaned. The substitutions computed by the original derivation and by the reordered
derivation coincide. Let σ′ be the substitution obtained at the end of the subderivation
with R-Dec-H and R-S-H. By Lemma 4.8, Xσ′ is an R-generalization of s̃1 and s̃2. By
Lemma 4.9, substitutions introduced by the store cleaning rules keep the R-generalization
property. Hence, Xσ is an R-generalization of s̃1 and s̃2. J

The algorithm G(R) is complete, as the following theorem shows.

I Theorem 4.11 (Completeness of G(R)). Let q̃ be an R-generalization of s̃1 and s̃2. Then
G(R) computes an R-anti-unifier σ for X : s̃1 , s̃2 such that q̃ � Xσ.

The proof of this theorem is rather long, proceeding by induction on the size of q̃ and by
case analysis on its form. It can be found in the technical report [22].

We may prune the search space of the algorithm G(R), giving priority to the rules R-CS1
and R-CS2. If they are applicable to a system, no other rule should apply to it. It can
prevent re-computing equivalent R-generalizations on different branches without violating
completeness. In addition, we may forbid the rule R-Dec-H to add to the set A the AUPs
of the form Zk : ε , ε for 1 ≤ k ≤ n, and to the set S the AUPs of the form Ym : ε , ε for
0 ≤ m ≤ n. Respectively, such Zk’s and Ym’s are replaced by ε in the substitution computed
by R-Dec-H. These simplifications can be justified by the fact that those AUPs, anyway,
eventually will be eliminated by the R-CS2 rule. Therefore, they do not affect completeness.
In the examples below we assume G(R) to be optimized in such ways. The length of each
derivation under the optimized G(R) does not exceed the size of the input problem.

To compute minimal complete set of R-generalizations, we still need to perform the
minimization step, unless the cardinality of the set that R computes is not greater than 1.
In the latter case the G(R) computes a single R-generalization of the input hedges.

Hence, combining G(R) with the minimization step, we can compute mcgR(s̃1, s̃2) for
any hedges s̃1, s̃2, and the rigidity function R.

I Example 4.12. Given two terms f(g(a, a), a,X, b) and f(g(b, b), g(Y), b), and R being the
function computing the set of all longest common subsequences, the algorithm G(R) gives
two R-generalizations: f(V, g(U), Z, b) and f(g(U), Z, b). After the minimization step, only
the last one is retained. We illustrate how G(R) computes f(g(U), Z, b):

{X0 : f(g(a, a), a,X, b) , f(g(b, b), g(Y), b)}; ∅; Id =⇒R-Dec-H

{X1 : g(a, a), a,X, b , g(b, b), g(Y), b}; ∅; {X0 7→ f(X1)}.

This problem is transformed by the R-Dec-H rule with the alignment g[1, 1]b[4, 3]:

{U : a, a , b, b, U ′ : ε , ε}; {Z : a,X , g(Y)}; {X0 7→ f(g(U), Z, b(U ′)), . . .} =⇒R-S-H

{U ′ : ε , ε}; {U : a, a , b, b, Z : a,X , g(Y)}; {X0 7→ f(g(U), Z, b(U ′)), . . .} =⇒R-Dec-H

∅; {U : a, a , b, b, Z : a,X , g(Y)}; {X0 7→ f(g(U), Z, b), . . .}.

From the final state one can get not only the R-anti-unifier {X0 7→ f(g(U), Z, b)} and the
corresponding R-generalization f(g(U), Z, b), but also the substitutions that show how the
original terms are obtained from the R-generalization. These substitutions can be extracted

RTA’11

230 Anti-Unification for Unranked Terms and Hedges

from the store: σ1 = {U 7→ a, a, Z 7→ a,X} with f(g(U), Z, b)σ1 = f(g(a, a), a,X, b) and
σ2 = {U 7→ b, b, Z 7→ g(Y)} with f(g(U), Z, b)σ2 = f(g(b, b), g(Y), b). In this way, we can
also say that the store gives us the difference of the input terms.

I Example 4.13. Let R compute the set of all longest common substrings of its arguments
and let a, a, b, f, f, f(a, a, b) and a, a, c, f, f, f(a, a, c) be the input hedges. Their only R-
generalization X, f, f, f(a, a, Y) can be computed by G(R) performing the following steps:

{X0 : a, a, b, f, f, f(a, a, b) , a, a, c, f, f, f(a, a, c)}; ∅; Id =⇒R-Dec-H

{Y ′ : a, a, b , a, a, c}; {X : a, a, b , a, a, c}; {X0 7→ X, f, f, f(Y ′)} =⇒R-Dec-H

∅; {X : a, a, b , a, a, c, Y : b , c}; {X0 7→ X, f, f, f(a, a, Y), . . .}.

Answer to the Quiz 2: Given two identical hedges s̃ = f(a, b, c), g(a), h(a) and q̃ =
f(a, b, c), g(a), h(a) and R computing the set of all common subsequences of the minimal
length 3 of its arguments, mcgR(s̃, q̃) = {f(a, b, c), g(X), h(X)}. One might expect the lgg to
be the hedge f(a, b, c), g(a), h(a) itself, but it violates the condition 3 of Definition 4.3.

The example in the Quiz 2 makes it clear why among the R-generalization rules, we do
not have the one that would generalize two identical terms with the same term (the so called
Trivial Terms rule). It would simply make the G(R) algorithm unsound.

Our approach generalizes existing works on word anti-unification. To extend the word
anti-unification algorthm from [10] to hedges, one can just take as R the function that
generates the singleton set consisting of the maximal variable-free subsequence in the unique
generalization of two words computed in [10]. Similarly, ε-free anti-unification for words [6]
can be extended to hedges by taking R as the function that computes the set of all maximal
variable-free subsequences of ε-free generalizations of the input words.

Precision of rigid anti-unification can be improved, permitting term variables to occur in
rigid generalizations. The idea is to generalize AUPs between two term sequences of equal
length not with a single hedge variable, but with a sequence of term variables of the same
length. This refinement would give f(x1, x2, x3, x4, x5) (instead of f(X)) as a generalization
of f(a1, a2, a3, a4, a5) and f(b1, b2, b3, b4, b5). This can be achieved by a relatively little
computational overhead compared to the G(R) algorithm. The details can be found in [22].
Here we only remark that the standard anti-unification over ranked terms [27, 28] can be
modeled by such a refinement of R-generalization, choosing R as the function that returns
a singleton set R(w1, w2) = {a1[i1, i1] · · · an[in, in]}, where a1 · · · an is the longest common
subsequence of w1 and w2 such that all ais occur at the same positions in w1 and w2.

5 Application in Clone Detection

In this section we outline a possible application of R-generalization in software code clone
detection. Clone detection is an active research topic since clones are considered to be a
significantly problematic issue for software maintenance. Studies show that from 5 to 20% of
software systems can contain duplicated code. Due to various complications such duplicated
pieces cause, it is widely agreed and the clones should be detected. The survey papers [29, 30]
give a detailed characterization of code duplication reasons and drawbacks, introduce clone
types, describe and evaluate clone detection process and techniques, and list open problems
in clone detection research. The proposed classification distinguishes four types of clones:

Type I: Identical code fragments except for variations in whitespace, layout and comments.

T. Kutsia, J. Levy, and M. Villaret 231

Type II: Syntactically identical fragments except for variations in identifiers, literals, types,
whitespace, layout and comments.

Type III: Copied fragments with further modifications such as changed, added or removed
statements, in addition to variations in identifiers, literals, types, whitespace, layout and
comments.

Type IV: Two or more code fragments that perform the same computation but are imple-
mented by different syntactic variants.

Complexity and sophistication in detecting such clones increases from Type I through
Type IV with Type IV being the highest. (Although it does not mean that Type IV contains
other types as special cases.) R-generalizations can help in detecting clones of types I-III.
We illustrate the idea on an example of a clone of type III.

I Example 5.1. Type III clones from [29]:

if (a >= b) { if (m >= n)
c = d + b; // Comment1 { // Comment1’
d = d + 1; } y = x + n;

else z = 1; // Added statement
c = d - a; //Comment2 x = x + 5; //Comment3 }

else
y = x - m; //Comment2’

Some clone detection techniques are based on tree representation of the code, like
parse trees, abstract syntax trees, or an XML form of abstract syntax trees; see, e.g.,
[5, 13, 16, 34, 32], for some of the works that follow this approach. We assume that the code
is represented in a structural form that can be encoded with unranked terms (or hedges).
We keep the representation abstract, without specifying what exactly this structural form is.

Usually, clone detection tools first preprocess the code, then find potential clone candidates,
and, finally, analyze them to detect actual clones. One can employ the R-generalization
algorithm in the process of finding potential code clones. Further analysis can be based on
various measures, like, e.g., on the size of the generalization, or on the maximal length of a
nonvariable hedge in the generalization, etc. Although we are not concerned with this part,
by choosing appropriate Rs we can anticipate this last filtering process. The choice of the R
depends on what is considered as interesting clone.

I Example 5.2. Unranked term form for the pieces of code in Example 5.1:

if (≥ (a, b), then(= (c,+(d, b)),= (d,+(d, 1))), else(= (c,−(d, a))))
if (≥ (m,n), then(= (y,+(x,n)),= (z, 1),= (x,+(x, 5))), else(= (y,−(x,m))))

Let R be the relation of longest common subsequence. We choose it to capture the idea
that the clones have a lot in common. Such an R is supposed to draw out from two pieces of
code as much common statements as possible. Then (the refinement with term variables for)
R-generalization of these terms returns three generalizations as clone candidates:

if (≥ (x1 , x2), then(X ,= (x3 , x4),= (x5 ,+(x5 , x6))), else(x7 ,−(x5 , x1))),
if (≥ (y1 , y2), then(= (y3 ,+(y4 , y2)),Y ,= (y4 ,+(y4 , y5))), else(y3 ,−(y4 , y1))),
if (≥ (z1 , z2), then(= (z3 ,+(z4 , z2)),= (z5 , z6),Z), else(z3 ,−(z4 , z1))).

Among them, we say that the second one is the best generalization of the clone pieces,
because it preserves the common structure better that the other two (has a bigger size
compared to them).

RTA’11

232 Anti-Unification for Unranked Terms and Hedges

6 Discussion

The standard anti-unification [27, 28] has already been considered for computing software
clones in [8, 7], detecting mostly clones of types I and II. However, we think that parameterized
anti-unification over unranked terms offers more flexibility in finding clone candidates. First
of all, it helps to detect inserted or deleted pieces of code, which is necessary for clones of type
III. Besides, if we are interested in clones whose length (as a sequence of program statements)
is greater than a predefined threshold, we can include this measure in the definition of the
relation R, considering only sequences that are longer than the threshold number. Another
advantage of this approach is that it is modular, where most of the computations are
performed on strings. It may combine advantages of fast textual and precise structural
techniques. For many interesting string relations (e.g., longest common subsequence, longest
common substring, sequence alignment, etc.), there exist efficient algorithms that also scale
well for large data [14]. Hence, one can take advantage using these off-the-shelf methods
when computing clone candidates by R-generalization.

Yet another advantage of using R-generalizations in clone detection is that it works on
unranked terms that are natural abstractions of XML documents. How to detect clones
well in generated XML/HTML is mentioned as one of the open problems in clone detection
research in [29]. A detection technique that uses R-generalization would be an interesting
approach to this problem.

Moreover, from the clones computed by R-generalization (anti-unification, in general)
one can extract a procedure. This process has a use in code refactoring. The clones can
be replaced by the procedure calls, properly instantiated by the substitution that gives
from the computed R-generalization the clone it generalizes. As we saw in Example 4.12,
these substitutions are easily extracted from the store. In general, while anti-unifiers reflect
similarities between two inputs, the data in the store can be used to identify differences
between them (i.e., between inputs). This provides for unranked trees a functionality similar,
for instance, to one of the well-known comparison utilities (e.g., diff, cmp, fc) that compare
the contents of files, finding common contents and differences in them.

The emphasis of this paper is not, however, on clone detection by anti-unification. It can
be a topic of separate research where (a) one shows that the R-generalization approach can
cover a wide range of currently existing techniques to find similarities between different pieces
of code, and (b) presents a clone detection method (and its implementation) fully, starting
from code preprocessing till returning the actual interesting clones, where R-generalization
performs the task of selecting clone candidates. In this paper we presented the R-anti-
unification itself from the theoretical point of view and just tried to indicate some possibilities
of its application in clone detection.

We proved properties of R-generalization for a generic R, i.e., for the entire class of
rigidity functions. Specializing R with a particular function, we obtain a specific instance of
R-generalization. We saw how certain known generalization problems fall into the class of
specific instances of R-generalization in this way.
R-generalization can be made more precise by permitting to generalize term sequences of

equal length with a sequence of term variables of the same length, instead of abstracting
the original sequences by a single hedge variable. One could think of another extension, to
allow a kind of recursive rigid generalization, extending the scope of rigid decomposition rule
to the hedges that we currently move to the store, whenever possible. It would require an
appropriate revision of the definition of rigid anti-unification.

T. Kutsia, J. Levy, and M. Villaret 233

7 Final Comments

We have presented anti-unification algorithms for unranked terms and hedges, starting from a
minimal complete one and then designing a more efficient and flexible version for computing
only rigid anti-unifiers. We indicated possible applications of this technique in software code
clone detection.

There are a couple of possible directions in future work. One option is to bring in certain
higher-order features that can help to further improve the precision of rigid generalizations.
An example of such a higher-order extension would be the introduction of function variables.
With their help, the algorithm can compute generalizations of the arguments of terms whose
heads are distinct. Other interesting directions would be to perform unranked anti-unification
in a sorted setting or on compressed terms.

Acknowledgments

This research has been partially supported by the CICyT projects SuRoS (ref. TIN2008-
04547/TIN) and TASSAT (ref. TIN2010-20967-C04-01) and by the EC FP6 for Integrated
Infrastructures Initiatives under the project SCIEnce (contract No. 026133). The authors
thank the anonymous referees for helpful comments.

References
1 M. Alpuente, S. Escobar, J. Meseguer, and P. Ojeda. A modular equational generalization

algorithm. In M. Hanus, editor, LOPSTR, volume 5438 of Lecture Notes in Computer
Science, pages 24–39. Springer, 2008.

2 M. Alpuente, S. Escobar, J. Meseguer, and P. Ojeda. Order-sorted generalization. Electr.
Notes Theor. Comput. Sci., 246:27–38, 2009.

3 E. Armengol and E. Plaza. Bottom-up induction of feature terms. Machine Learning,
41(3):259–294, 2000.

4 F. Baader. Unification, weak unification, upper bound, lower bound, and generalization
problems. In R. V. Book, editor, RTA, volume 488 of Lecture Notes in Computer Science,
pages 86–97. Springer, 1991.

5 I. D. Baxter, A. Yahin, L. M. de Moura, M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In ICSM, pages 368–377, 1998.

6 A. Biere. Normalisation, unification and generalisation in free monoids. Master’s thesis,
University of Karlsruhe, 1993. (in German).

7 P. Bulychev and M. Minea. An evaluation of duplicate code detection using anti-unification.
In Proc. 3rd International Workshop on Software Clones, 2009.

8 P. E. Bulychev, E. V. Kostylev, and V. A. Zakharov. Anti-unification algorithms and their
applications in program analysis. In A. Pnueli, I. Virbitskaite, and A. Voronkov, editors,
Ershov Memorial Conference, volume 5947 of Lecture Notes in Computer Science, pages
413–423. Springer, 2009.

9 J. Burghardt. E-generalization using grammars. Artif. Intell., 165(1):1–35, 2005.
10 I. Cicekli and N. K. Cicekli. Generalizing predicates with string arguments. Appl. Intell.,

25(1):23–36, 2006.
11 H. Cirstea, C. Kirchner, R. Kopetz, and P.-E. Moreau. Anti-patterns for rule-based lan-

guages. J. Symb. Comput., 45(5):523–550, 2010.
12 A. L. Delcher and S. Kasif. Efficient parallel term matching and anti-unification. J. Autom.

Reasoning, 9(3):391–406, 1992.

RTA’11

234 Anti-Unification for Unranked Terms and Hedges

13 W. S. Evans, C. W. Fraser, and F. Ma. Clone detection via structural abstraction. Software
Quality Journal, 17(4):309–330, 2009.

14 D. Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Compu-
tational Biology. Cambridge University Press, 1997.

15 G. Huet. Résolution d’équations dans des langages d’ordre 1, 2, . . . , ω. PhD thesis, Univer-
sité Paris VII, September 1976.

16 R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix trees. In
WCRE, pages 253–262. IEEE Computer Society, 2006.

17 U. Krumnack, A. Schwering, H. Gust, and K.-U. Kühnberger. Restricted higher-order
anti-unification for analogy making. In M. A. Orgun and J. Thornton, editors, Australian
Conference on Artificial Intelligence, volume 4830 of Lecture Notes in Computer Science,
pages 273–282. Springer, 2007.

18 T. Kutsia. Solving equations with sequence variables and sequence functions. J. Symb.
Comput., 42(3):352–388, 2007.

19 T. Kutsia. Flat matching. J. Symb. Comput., 43(12):858–873, 2008.
20 T. Kutsia, J. Levy, and M. Villaret. Sequence unification through currying. In F. Baader,

editor, RTA, volume 4533 of Lecture Notes in Computer Science, pages 288–302. Springer,
2007.

21 T. Kutsia, J. Levy, and M. Villaret. On the relation between context and sequence unifica-
tion. J. Symb. Comput., 45(1):74–95, 2010.

22 T. Kutsia, J. Levy, and M. Villaret. Anti-Unification for Unranked Terms and Hedges.
Technical Report 11-03, RISC Report Series, University of Linz, Austria, 2011.

23 T. Kutsia and M. Marin. Matching with regular constraints. In G. Sutcliffe and A. Voronkov,
editors, LPAR, volume 3835 of Lecture Notes in Computer Science, pages 215–229. Springer,
2005.

24 T. Kutsia and M. Marin. Order-sorted unification with regular expression sorts. In C. Lynch,
editor, RTA, volume 6 of LIPIcs, pages 193–208. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2010.

25 J. Lu, J. Mylopoulos, M. Harao, and M. Hagiya. Higher order generalization and its
application in program verification. Ann. Math. Artif. Intell., 28(1-4):107–126, 2000.

26 F. Pfenning. Unification and anti-unification in the calculus of constructions. In LICS,
pages 74–85. IEEE Computer Society, 1991.

27 G. D. Plotkin. A note on inductive generalization. Machine Intelligence, 5(1):153–163,
1970.

28 J. C. Reynolds. Transformational systems and the algebraic structure of atomic formulas.
Machine Intelligence, 5(1):135–151, 1970.

29 C. K. Roy and J. R. Cordy. A survey of software clone detection research. Technical report,
School of Computing, Queen’s University at Kingston, Ontario, Canada, 2007.

30 C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach. Sci. Comput. Program., 74(7):470–495, 2009.

31 U. Schmid. Inductive Synthesis of Functional Programs, Universal Planning, Folding of
Finite Programs, and Schema Abstraction by Analogical Reasoning, volume 2654 of Lecture
Notes in Computer Science. Springer, 2003.

32 V. Wahler, D. Seipel, J. W. von Gudenberg, and G. Fischer. Clone detection in source code
by frequent itemset techniques. In SCAM, pages 128–135. IEEE Computer Society, 2004.

33 A. Yamamoto, K. Ito, A. Ishino, and H. Arimura. Modelling semi-structured documents
with hedges for deduction and induction. In C. Rouveirol and M. Sebag, editors, ILP,
volume 2157 of Lecture Notes in Computer Science, pages 240–247. Springer, 2001.

34 W. Yang. Identifying syntactic differences between two programs. Softw., Pract. Exper.,
21(7):739–755, 1991.

Termination Proofs in the Dependency Pair
Framework May Induce Multiple Recursive
Derivational Complexity∗

Georg Moser1 and Andreas Schnabl1

1 Institute of Computer Science
University of Innsbruck, Austria
{georg.moser,andreas.schnabl}@uibk.ac.at

Abstract
We study the complexity of rewrite systems shown terminating via the dependency pair frame-
work using processors for reduction pairs, dependency graphs, or the subterm criterion. The
complexity of such systems is bounded by a multiple recursive function, provided the complexity
induced by the employed base techniques is at most multiple recursive. Moreover this upper
bound is tight.

1998 ACM Subject Classification F.2.2, F.4.1, D.2.4, D.2.8

Keywords and phrases Complexity, DP Framework, Multiple Recursive Functions

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.235

Category Regular Research Paper

1 Introduction

Several notions to assess the complexity of a terminating term rewrite system (TRS) have
been proposed in the literature, compare [3, 13, 4, 11]. The conceptually simplest one was
suggested by Hofbauer and Lautemann in [13]: the derivational complexity function with
respect to a terminating TRSR relates the maximal derivation height to the size of the initial
term. We adopt this notion as our central definition of the complexity of a TRS. However,
we emphasise that our results immediately carry over to other complexity measures of TRSs
(compare Section 5). Hence our results are conceivable as an investigation into implicit
computational complexity theory (see [2] for an overview). To motivate our study consider
the following example.

I Example 1.1. Let R1 be the TRS defined by the following rules:

Ack(0, y)→ S(y) Ack(S(x),S(y))→ Ack(x,Ack(S(x), y))
Ack(S(x), 0)→ Ack(x, S(0))

The R1 encodes the Ackermann function. Hence its derivational complexity function grows
faster than any primitive recursive functions. Furthermore it is easy to see that the deriva-
tional complexity with respect to R1 is bounded by a multiple recursive function.

∗ This research is supported by FWF (Austrian Science Fund) project P20133 and a grant of the Uni-
versity of Innsbruck.

© Georg Moser and Andreas Schnabl;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 235–250

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.235
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

236 Complexity Induced by the DP Framework

We show termination of R1 by an application of the dependency pair framework (DP
framework for short), compare [9, 23]. (All used notions will be defined in Section 2.) The
set of dependency pairs DP(R1) with respect to R1 is given below:

Ack](S(x), 0)→ Ack](x, S(0)) Ack](S(x),S(y))→ Ack](x,Ack(S(x), y))

Ack](S(x),S(y))→ Ack](S(x), y)

These six rules together constitute the DP problem (DP(R1),R1). We apply the subterm
criterion processor ΦSC with respect to the simple projection π1 that projects the first argu-
ment of the dependency pair symbol Ack]. Thus ΦSC((DP(R1),R1)) consists of the single
DP problem (P,R1), where P = {Ack](S(x),S(y)) → Ack](S(x), y))}. Another application
of ΦSC, this time with the simple projection π2 projecting on the second argument of Ack]

yields the DP problem (∅,R1), which is trivially finite. Thus termination of R1 follows.
For termination proofs by direct methods a considerable number of results establish

essentially optimal upper bounds on the growth rate of the derivational complexity function.
For example [25] studies the derivational complexity induced by the lexicographic path order
(LPO). LPO induces multiple recursive derivational complexity. In recent years the research
focused on automatable proof methods that induce polynomially bounded (derivational)
complexity (see for example [26, 18, 24]). The focus and the re-newed interest in this area
was partly triggered by the integration of a dedicated complexity category in the annual
international termination competition.1.

None of these results can be applied to our motivating example. Abstracting from
Example 1.1 suppose termination of a given TRS R can be shown via the DP framework
in conjunction with a well-defined set of processors. Furthermore assume that all base
techniques employed in the termination proof (employed within a processor) induce at most
multiple recursive derivational complexity. Kindly note that this assumption is rather weak
as for all termination techniques whose complexity has been analysed a multiple recursive
upper bound exists. Then we show that the derivational complexity with respect to R is
bounded by a multiply recursive function. We restrict our attention to simple DP processors
like the reduction pair processor, the dependency graph processor or the subterm criterion
processor. Furthermore we show that this upper bound is tight, even if we restrict to base
techniques that induce linear derivational complexity. This result can be understood as
a negative result: using the above mentioned DP processors, it is theoretically impossible
to prove termination of any TRS whose (derivational) complexity is not bounded by a
multiply recursive function. One famous example of such a TRS is Dershowitz’s system
TRS/D33-33, aka the Hydra battle rewrite system (see [6, 14]). On the other hand, our result
immediately turns termination provers into automatic complexity provers, albeit rather weak
ones. Furthermore it provides the basis for further investigations into termination techniques
that induced more feasible (derivational) complexities.

The rest of this paper is organised as follows. In Section 2 we present basic notions and
starting points of the paper. Section 3 states our main result and provides suitable examples
to show that the multiple recursive bound presented is tight. The technical construction is
given in Section 4. Finally, we conclude in Section 5. Due to space restriction, some technical
proofs have been replaced by sketches. For the full proofs, we refer to the extended version
of this paper [17].

1 http://termcomp.uibk.ac.at

http://termcomp.uibk.ac.at

G. Moser and A. Schnabl 237

2 Preliminaries

We assume familiarity with term rewriting (see [22]) and in particular with the DP method
and the DP framework (see [9, 10, 23]). Let V denote a countably infinite set of variables
and F a signature. Without loss of generality we assume that F contains at least one
constant. The set of (ground) terms over F and V is denoted by T (F ,V) (T (F)). The
(proper) subterm relation is denoted as E (C) and the subterm of t at position p is denoted
as t|p. Let t be a term. The root symbol of t is denoted as rt(t); the positions of t are denoted
as Pos(t); the size (depth) of t is denoted as |t| (dp(t)). Let R and S be finite TRSs over F .
We write →R (or simply→) for the induced rewrite relation. Let s ε−→R t (s >ε−−→R t) denote
rewrite steps at (below) the root. We recall the notion of relative rewriting [8]. Let R and S
be finite TRSs over F . The relative rewrite relation →R/S is defined as→∗S · →R · →∗S . We
use NF(R) to denote the set of normal-forms of R, and NF(R/S) for the set of normal forms
of→R/S . The n-fold composition of→ is denoted as→n and the derivation height of a term
s with respect to a finitely branching, well-founded binary relation → on terms is defined
as dh(s,→) := max{n | ∃t s →n t}. The derivational complexity function of R is defined
as: dcR(n) = max{dh(t,→R) | |t| 6 n}. Let R be a TRS and M a termination method.
We say M induces a certain derivational complexity, if dcR is bounded by a function of this
complexity, whenever termination of R follows by M .

Let t be a term. We set t] = t if t ∈ V, and t] = f](t1, . . . , tn) if t = f(t1, . . . , tn). Here f]
is a new n-ary function symbol called dependency pair symbol. The set DP(R) of dependency
pairs of R is defined as {l] → u] | l→ r ∈ R, u E r, but u 6 l, and rt(u) is defined}.2 A DP
problem is a pair (P,R), where P and R are sets of rewrite rules.3 It is finite if there
exists no infinite sequence of rules s1 → t1, s2 → t2, . . . from P such that for all i > 0, ti is
terminating with respect to R, and there exist substitutions σ and τ with tiσ →∗R si+1τ .
A DP problem of the form (∅,R) is trivially finite. We recall the following (well-known)
characterisation of termination of a TRS. A TRS R is terminating if and only if the DP
problem (DP(R),R) is finite. A DP processor is a mapping from DP problems to sets of DP
problems. A DP processor Φ is sound if for all DP problems (P,R), (P,R) is finite whenever
all DP problems in Φ((P,R)) are finite. A reduction pair (<,�) consists of a preorder <
which is closed under contexts and substitutions, and a compatible well-founded order �
which is closed under substitutions. Here compatibility means the inclusion < · � · < ⊆ �.
Recall that any well-founded weakly monotone algebra (A,<) gives rise to a reduction pair
(<A,�A).

I Proposition 2.1 ([9]). Let (<,�) be a reduction pair. Then the following DP processor
(reduction pair processor) ΦRP is sound:

ΦRP((P,R)) =
{
{(P ′,R)} if P ′ ∪R ⊆ < and P \ P ′ ⊆ �
{(P,R)} otherwise .

The dependency graph of a DP problem (P,R) (denoted by DG(P,R)) is a graph whose
nodes are the elements of P. It contains an edge from s → t to u → v whenever there
exist substitutions σ and τ such that tσ →∗R uτ . A strongly connected component (SCC for
short) of DG(P,R) is a maximal subset of nodes such that for each pair of nodes s → t,
u → v, there exists a path (possibly empty) from s → t to u → v. Note that this is the

2 The observation that pairs l] → u] such that u C l need not be considered is due to Dershowitz.
3 We use a simpler definition of DP problems than [9, 23], which suffices in our context.

RTA’11

238 Complexity Induced by the DP Framework

standard definition of SCC from graph theory (cf. [5], for instance), which slightly differs
from the definition that is often used in the termination literature. We call an SCC trivial
if it consists of a single node s → t such that the only path from that node to itself is the
empty path. All other SCCs are called nontrivial.

I Proposition 2.2 ([9]). The following DP processor (dependency graph processor) ΦDG is
sound: ΦDG((P,R)) = {(P ′,R) | P ′ is a nontrivial SCC of DG(P,R)} .

A simple projection is an argument filtering π such that for each function symbol f ∈ F
of arity n, we have π(f) = [1, . . . , n], and for each dependency pair symbol f ∈ F] \ F ,
π(f) = i for some 1 6 i 6 n.

I Proposition 2.3 ([10, 23]). Let π be a simple projection. Then the following DP processor
(subterm criterion processor) ΦSC is sound:

ΦSC((P,R)) =
{
{(P ′,R)} if π(P ′) ⊆ D and π(P \ P ′) ⊆ B

{(P,R)} otherwise .

Let R be a TRS. A proof tree of R is a tree satisfying the following: the nodes are
DP problems, the root is (DP(R),R), each leaf is a DP problem of the shape (∅,R), and
for each inner node (P,R′), there exists a sound DP processor Φ such that each element
of Φ((P,R′)) is a child of (P,R′), and each of the edges from (P,R′) to the elements of
Φ((P,R′)) is labelled by Φ.

I Theorem 2.4. Let R be a TRS such that there exists a proof tree PT of R. Suppose that
each edge label of that proof tree is a reduction pair, dependency graph, or subterm criterion
processor. Then R is terminating.

Furthermore, we recall some essentials of recursion theory, compare [20, 21]. We call the
following functions over N initial functions: the constant zero function zn(x1, . . . , xn) = 0
of all arities, the unary successor function s(x) = x + 1, and all projection functions
πin(x1, . . . , xn) = xi for 1 6 i 6 n. A class C of functions over N is closed under com-
position if for all f : Nm → N and g1, . . . , gm : Nn → N in C, the function h(x1, . . . , xn) =
f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)) is in C, as well. It is closed under primitive recur-
sion if for all f : Nn → N and g : Nn+2 → N, the function h defined by h(0, x1, . . . , xn) =
f(x1, . . . , xn) and h(y + 1, x1, . . . , xn) = f(y, h(y, x1, . . . , xn), x1, . . . , xn) is contained in C,
as well. The k-ary Ackermann function Ak for k > 2 is defined recursively as follows:

Ak(0, . . . , 0, xk) = xk + 1
Ak(x1, . . . , xk−2, xk−1 + 1, 0) = Ak(x1, . . . , xk−1, 1)

Ak(x1, . . . , xk−2, xk−1 + 1, xk + 1) = Ak(x1, . . . , xk−1, Ak(x1, . . . , xk−2, xk−1 + 1, xk))
Ak(x1, . . . , xi−1, xi + 1, 0, . . . , 0, xk) = Ak(x1, . . . , xi, xk, 0, . . . , 0, xk)

Here, the last equation is a schema instantiated for all 1 6 i 6 k − 2. The set of primitive
recursive functions is the smallest set of functions over N which contains all initial functions
and is closed under composition and primitive recursion. The set of multiply recursive
functions is the smallest set of functions over N which contains all initial functions and
k-ary Ackermann functions, and is closed under composition and primitive recursion.

I Proposition 2.5 ([21], Chapter 1). For every multiply recursive function f , there exists a
k such that Ak asymptotically dominates f .

G. Moser and A. Schnabl 239

3 Main Theorem

In this short section we show that there exist TRSs whose termination is shown via The-
orem 2.4 such that the derivational complexity cannot be bounded by a primitive recursive
function. Furthermore we state our main result in precise terms.

I Example 3.1. Consider the following TRS R2, taken from [13, 12]: i(x) ◦ (y ◦ z) → x ◦
(i(i(y)) ◦ z) and i(x) ◦ (y ◦ (z ◦ w))→ x ◦ (z ◦ (y ◦ w)). It is shown in [12] that dcR2 is not
primitive recursive as the system encodes the Ackermann function.

Following Endrullis et al. [7, Example 11] we show termination of R2 employing The-
orem 2.4. The dependency pairs with respect to R2 are:

1: i(x) ◦] (y ◦ z)→ x ◦] (i(i(y)) ◦ z) 2 : i(x) ◦] (y ◦ z)→ i(i(y)) ◦] z
3: i(x) ◦] (y ◦ (z ◦ w))→ x ◦] (z ◦ (y ◦ w)) 4 : i(x) ◦] (y ◦ (z ◦ w))→ z ◦] (y ◦ w)
5 : i(x) ◦] (y ◦ (z ◦ w))→ y ◦] w

First, consider the reduction pair induced by the polynomial algebra A defined as follows:
◦]A(x, y) = y, ◦A(x, y) = y+ 1, and iA(x) = 0. An application of the processor ΦRP removes
the dependency pairs {2, 4, 5}. Next, we apply the reduction pair induced by the polynomial
algebra B with ◦]B(x, y) = x, ◦B(x, y) = 0, and iB(x) = x+ 1, which removes the remaining
pairs {1, 3}. Hence we conclude termination of R.

As a corollary we see that the derivational complexity function dcR2 is bounded from
below by a function that grows faster than any primitive recursive function. On the other
hand the complexity induced by the base techniques is linear. Let P1 denote the set of
dependency pairs {2, 4, 5} and let P2 = {1, 3}. It is easy to infer from the polynomial algebras
A and B employed in the two applications of ΦRP that the derivation height functions
dh(t],→P1/(P2∪R)) and dh(t],→P2/R) are linear in |t|. In order to obtain a tight lower
bound we generalise Example 1.1

I Example 3.2. Let k > 2 and consider the following schematic rewrite rules, denoted as
Rk3 . It is easy to see that for fixed k, the TRS Rk3 encodes the k-ary Ackermann function:

Ackk(0, . . . , 0, n)→ S(n)
Ackk(l1, . . . , lk−2,S(m), 0)→ Ackk(l1, . . . , lk−2,m,S(0))

Ackk(l1, . . . , lk−2,S(m),S(n))→ Ackk(l1, . . . , lk−2,m,Ackk(l1, . . . , lk−2,S(m), n))
Ackk(l1, . . . , li−1,S(li), 0, . . . , 0, n)→ Ackk(l1, . . . , li, n, 0, . . . , 0, n)

Here, the last rule is a schema instantiated for all 1 6 i 6 k − 2.

Following of the pattern of the termination proof of R1, we show termination of Rk3 by
k applications of processor ΦSC. The next lemma is a direct consequence of Proposition 2.5
and the above considerations.

I Lemma 3.3. For any multiple recursive function f , there exists a TRS R whose deriv-
ational complexity function dcR majorises f . Furthermore termination of R follows by an
application of Theorem 2.4.

Lemma 3.3 shows that the DP framework admits much higher derivational complexities
than the basic DP method. In [15, 16] we show that the derivational complexity induced by
the DP method is primitive recursive in the complexity induced by the base technique, even

RTA’11

240 Complexity Induced by the DP Framework

if standard refinements like usable rules or dependency graphs are considered. Examples 3.1
and 3.2 show that we cannot hope to achieve such a bound in the context of the DP frame-
work. In the remainder of this paper we show that jumping to the next function class, the
multiple recursive functions, suffices to bound the induced derivational complexities.

I Definition 3.4. Let R be a TRS whose termination is shown via Theorem 2.4, and PT
the proof tree employed by the theorem. Let k be the maximum number of SCCs in any
dependency graph employed by any instance of ΦDG occurring in PT, and let g : N → N
denote a monotone function such that:

g(n) > max({k} ∪ {dh(t],→(P\Q)/(R∪Q)) | there exists an edge from (P,R) to (Q,R)
in PT labelled by an instance of ΦRP and |t| 6 n}) .

Then g is called a reduction pair function of R with respect to PT.

Note that some reduction pair function can often be computed just by inspection of the
employed instances of ΦRP. Moreover, for most of the known reduction pairs (in particular,
for virtually all reduction pairs currently applied by automatic termination provers), it is
easily possible to compute a multiply recursive reduction pair function.

I Theorem 3.5 (Main Theorem). Let R be a TRS whose termination is shown via The-
orem 2.4 and let the reduction pair function g of R be multiple recursive. Then the deriva-
tional complexity function dcR with respect to R is bounded by a multiple recursive function.
Furthermore this upper bound is tight.

The proof of Theorem 3.5 makes use of a combinatorial argument, and is given in the
next section. Here we present the proof plan. In proving the theorem we essentially use three
different ideas. First, we exploit the given proof tree PT. We observe that, if we restrict
our attention to termination of terms, we can focus on specific branches of the proof tree.
Secondly, we define a TRS S simulating the initial TRS R: s →R t implies tr(s) →+

S tr(t).
Here tr denotes a suitable interpretation of terms into the signature of the simulating TRS S,
compare Definition 4.11. The term tr(t) aggregates the termination arguments for t given by
the DP processors in part of the proof tree which has been identified as particularly relevant
for t in the first step. Finally, S will be simple enough to be compatible with a LPO so that
we can employ Weiermann’s result in [25] to deduce a multiple recursive upper bound on
the derivational complexity with respect to S and conclusively with respect to R.

Note that our proof technique is conceptually simpler than the technique we used in
[15, 16] to show a triple exponential upper complexity bound on the most basic version of
the dependency pair method: in order to establish the much lower bound in [15, 16], we con-
structed the whole proof argument from scratch, while in this paper we exploit Weiermann’s
analysis of the derivational complexity induced by LPO (see [25]). Still the here presented
application of Weiermann’s result is non-trivial and requires some preparation.

4 Proof of the Main Result

In this section we prove our main result, Theorem 3.5. We start with some preliminary
definitions. Let R denote a TRS. We assume without loss of generality for each considered
termination proof that whenever a DP processor Φ is applied to a DP problem (P,R),
then Φ((P,R)) 6= {(P,R)}. For each of the DP processors Φ considered in this paper, the
following facts are obvious: (P ′,R′) ∈ Φ((P,R)) implies P ′ ⊂ P and R′ = R. Therefore,
we assume throughout the rest of this paper that for each DP problem (P,R), P ⊆ DP(R).

G. Moser and A. Schnabl 241

In particular, each rule in P has the shape s] → t] for some s, t ∈ T (F ,V). Moreover,
(P ′,R) ∈ Φ((P,R)), (P ′′,R) ∈ Φ((P,R)), and P ′ 6= P ′′ imply P ′ ∩ P ′′ = ∅. Therefore,
each dependency pair can only appear in a single branch of a proof tree.

Let G be a dependency graph; we order the SCCs of G by assigning a rank to each of
them. Let P, Q denote two distinct SCCs of G. We call Q reachable from P if there exist
nodes u ∈ P, v ∈ Q and a path in G from u to v. Let k be the number of SCCs in G. Consider
a bijection rk(G, ·) from the set of SCCs of G to {1, . . . , k} such that rk(G,P) > rk(G,Q)
whenever Q is reachable from P in G. We call rk(G,P) the rank of an SCC P in G. The
rank of a dependency pair l → r, denoted by rk(G, l → r), is the rank of P in G such that
l→ r ∈ P. Finally, the rank of a term t such that t] 6∈ NF(P/R) for some SCC P of G is
defined by rk(G, t) := max{rk(G, l → r) | ∃σ t] →∗R lσ}. Observe that rk(G, t) need not be
defined, although t has a redex at the root position. This is due to the fact that this redex
need not be governed by a dependency pair. On the other hand observe that if t 6∈ NF(P/R)
for some SCC P of G, then rk(G, t) is defined. Furthermore in this case rk(G, t) > 0 and
dh(t],→P/R) > 0.

We now change the definition of proof trees to better suit our needs. The main change is
that for ΦDG, all SCCs of the respective dependency graph are taken into account (not just,
as usual, the nontrivial ones). While termination of trivial SCCs follows trivially, they might
still form a bridge between nontrivial SCCs in a dependency graph thus crucially increasing
the length of derivations. Example 4.2 below illustrates this. Moreover, as mentioned above,
we use the proof tree to track its currently relevant part with respect to showing termination
of a given term. This relevant part may very well include the DP problem belonging to a
trivial SCC of a dependency graph.

I Definition 4.1. We redefine proof trees. A proof tree PT of R is a tree satisfying:
1) The nodes of PT are DP problems and (DP(R),R) is the root of PT.
2) For every inner node (P,R) in PT, there exists a sound DP processor Φ such that for

each DP problem (Q,R) ∈ Φ((P,R)), there exists an edge from (P,R) to (Q,R) in PT
labelled by Φ.

3) Further, suppose Φ = ΦDG. Then there exists an edge from (P,R) to a leaf (Q,R)
(labelled by Φ) for every trivial SCC Q of DG(P,R). Moreover the successors of (P,R)
are ordered from left to right in decreasing order with respect to the function rk.

The positions of nodes in PT are defined as usual as finite sequences of numbers. We
write Greek letters for positions in PT. It is easy to verify that there is a one-to-one
correspondence between proof trees according to Section 2 and Definition 4.1.

I Example 4.2. Consider the TRS R4 given by the rewrite rules: d(0) → 0, d(S(x)) →
S(S(d(x))), e(S(x), y) → e(x, d(y)), and sexp(S(x), e(0, y)) → sexp(x, e(y,S(0))). The de-
pendency pairs DP(R4) of R4 are:

1: d](S(x))→ d](x)
2 : e](S(x), y)→ d](y) 3 : e](S(x), y)→ e](x, d(y))
4 : sexp](S(x), e(0, y))→ e](y,S(0)) 5 : sexp](S(x), e(0, y))→ sexp](x, e(y,S(0)))

We start with the dependency graph processor ΦDG. The dependency graph of the initial
DP problem (DP(R4),R4) contains three nontrivial SCCs {1}, {3}, and {5}, and two trivial
SCCs {2} and {4}. Finiteness of each of the nontrivial SCCs can be shown by the reduction
pair processor ΦRP employing the following linear polynomial algebra A: SA(x) = x + 1,
0A = 0, dA(x) = 2x, eA(x, y) = 0, sexpA(x, y) = 0, and d]A(x) = e]A(x, y) = sexp]A(x, y) = x.

RTA’11

242 Complexity Induced by the DP Framework

Figure 1 shows the proof tree PT of this termination proof, where we make use of a
simplified notation for edge labels. The nodes at positions 11, 31, and 51 are leaves in this
proof tree because they are labelled by the DP problem (∅,R4), which is trivially finite. The
nodes at positions 2 and 4 are leaves because {4} and {2} are trivial SCCs of the dependency
graph employed. The following derivation illustrates the importance of trivial SCCs in our
analysis:

e](Sn(0),S(0))→∗{3}∪R4
e](S(0),S2n(0))→{2} d](S2n(0))→∗{1}∪R4

S2n+1
(0)

Observe that the step within the trivial SCC {2} connects two subderivations using the
(otherwise unconnected) SCCs {3} and {1}, thus increasing the length of the total derivation.
In order to capture this behaviour, we keep track of trivial SCCs in our proof trees.

(DP(R4),R4)

({3},R4)({4},R4)({5},R4) ({2},R4) ({1},R4)

(∅,R4) (∅,R4) (∅,R4)

ΦDG

ΦRP ΦRP ΦRP

Figure 1 A proof tree of R4

For the remainder of this section, we assume that termination of R is shown Theorem 2.4
employing a proof tree PT. Further suppose that there exists a multiply recursive reduction
pair function of R, and fix such a function g. Let d be the depth of PT plus one. As
stated in the proof plan, we now determine which part of the termination proof is active
with respect to a given term. Intuitively, for many terms, only a part of PT is relevant for
showing termination of that particular term. More specifically, for any term t, only a certain
subset of the dependency pairs can be used for rewriting t]. Of these dependency pairs, we
view the one occurring in the leftmost positions of PT (with respect to the order of PT) as
the current dependency pair. We call the set of positions in which the current dependency
pair occurs, the current path of t in PT.

I Example 4.3 (continued from Example 4.2). Consider the terms t1 = sexp(S(0), e(0,S(0))),
t2 = sexp(0, e(S(0),S(0))), and t3 = e(S(0),S(0)). We obtain the following derivations:
t]1 →DP(R4) t

]
2 and t]1 →DP(R4) t

]
3. Hence the term t]1 is not a normal form with respect to

{5}/R4 nor with {4}/R4. Similarly t]3 is not a normal form with respect to {3}/R4 and
{2}/R4. Therefore, the parts of PT highlighted in Figure 2 are particularly relevant for t1
and t3, respectively. The term t]2 is a normal form with respect to DP(R4)/R4, therefore no
part of the proof tree is relevant to show termination for t2.

The next definition formalises the relevant parts of a proof tree. As mentioned above it
suffices to restrict the notion to a single path.

I Definition 4.4. The current path PT(t) of a term t in PT is defined as follows. If t] ∈
NF(DP(R)/R), then PT(t) is the empty path, denoted as (). Otherwise, for each dependency
pair l → r such that t] /∈ NF({l → r}/R), consider the set of nodes whose label contains
l → r. By previous observations, each of these sets forms a path starting at the root node

G. Moser and A. Schnabl 243

(DP(R4),R4)

({3},R4)({4},R4)({5},R4) ({2},R4) ({1},R4)

(∅,R4) (∅,R4) (∅,R4)

ΦDG

ΦRP ΦRP ΦRP

(DP(R4),R4)

({3},R4)({4},R4)({5},R4) ({2},R4) ({1},R4)

(∅,R4) (∅,R4) (∅,R4)

ΦDG

ΦRP ΦRP ΦRP

Figure 2 The relevant parts of the proof tree for two terms

of PT. The set of positions forming the leftmost of these paths is PT(t). We use PTi(t)
to project on single elements of PT(t) = (α1 = ε, α2, . . . , αn): if i > n, then PTi(t) = ⊥,
otherwise PTi(t) = αi.

I Example 4.5 (continued from Example 4.3). The current paths of t1, t2, and t3 are the
following: we have PT(t1) = (ε, 1), PT(t2) = (), and PT(t3) = (ε, 3). For t1, the projections
on the single elements of the path are the following: PT1(t1) = ε, PT2(t1) = 1, and PTi(t1) =
⊥ for i > 2.

Using the DP processors applied to the nodes of PT(t), we now define the complexity
measure norm(t) assigned to t. For each DP processor, we use whatever value is naturally
decreasing in the termination argument of that processor in order to get the associated
bound. Given the reduction pair function g, norm(t) is easily computable.

I Definition 4.6. We define the mapping normi : T (F ,V) → N ∪ T (F ,V) ∪ {⊥} for i ∈ N
as follows: let t ∈ T (F ,V) and α = PTi(t).
1) If α = ⊥, we set normi(t) = 0 if rt(t) is a defined symbol, and normi(t) = ⊥ otherwise.
2) If α 6= ⊥ and (P,R) denotes the node at position α in PT such that (P,R) is a leaf,

then either P = ∅, or P is a trivial SCC of a dependency graph. In both cases, we set
normi(t) = dh(t],→P/R).

3) If α 6= ⊥ and (P,R) denotes the node at position α in PT such that (P,R) is an inner
node, then suppose Φ labels each edge starting from (P,R):
– If Φ is ΦRP with Φ((P,R)) = {(Q,R)}, then we set normi(t) = dh(t],→(P\Q)/(Q∪R)).
– If Φ is ΦDG using a dependency graph G, then we set normi(t) = rk(G, t).
– If Φ is ΦSC using a simple projection π, then we set normi(t) = π(t]).

We extend the mappings normi to the norm of a term: norm(t) = (norm1(t), . . . , normd(t)).

The central idea behind the complexity measures used in the mapping norm is that
rewrite steps induce lexicographical decreases in the norm of the considered term.

I Definition 4.7. We define the following order A on N∪T (F ,V)∪{⊥}. We have a A b if and
only if one of the following properties holds: (i) a ∈ N, b ∈ N, and a > b, (ii) a ∈ T (F ,V),
b ∈ T (F ,V), and a(→R ∪ B)+b, and (iii) a ∈ T (F ,V) and b = 0, or a ∈ T (F ,V) ∪ N and
b = ⊥.

We define w to be the reflexive closure of A. We write Alex and wlex for the lexicographic
extensions of A and w, respectively. Note that termination of R implies well-foundedness
of (→R ∪B)+, hence A is well-founded.

I Lemma 4.8. Let s and t be terms such that s >ε−−→R t. For all 1 6 i < d, if PTi(s) = PTi(t)
and normi(s) = normi(t), then either PTi+1(t) = ⊥, or PTi+1(s) = PTi+1(t).

RTA’11

244 Complexity Induced by the DP Framework

Proof Sketch. Straightforward case distinction on the node at position PTi(s). J

I Lemma 4.9. For any terms s and t such that s >ε−−→R t, we have norm(s) wlex norm(t).

Proof. We can assume that rt(t) is a defined symbol. Otherwise, normi(t) = ⊥ for all
1 6 i 6 d, and hence norm(t) = (⊥, . . . ,⊥), so the lemma would be trivial. As rt(s) = rt(t),
rt(s) is also defined. Hence, s] →R t].

We now show the following by induction on d−i: if for all 1 6 j < i, normj(s) = normj(t),
then (normi(s), . . . , normd(s)) wlex (normi(t), . . . , normd(t)). Clearly, this claim implies the
lemma, so the remainder of this proof is devoted to it. Applying Lemma 4.8 i − 1 times
reveals that PTi(t) is either ⊥ or the same as PTi(s). We perform case distinction on
PTi(t). We restrict our attention to the interesting case that PTi(s) = PTi(t) = α, α 6= ⊥,
and (P,R) denotes the node at α in PT such that (P,R) is an inner node.

Suppose Φ labels the edges starting from (P,R). If Φ is ΦRP with Φ((P,R)) = {(Q,R)},
then because of s] →R t], the inequality dh(s],→(P\Q)/(Q∪R)) > dh(t],→(P\Q)/(Q∪R)).
Thus normi(s) w normi(t) holds. If Φ is ΦDG using a dependency graph G, then for each
SCC Pj in G, s] can only be a normal form of Pj/R if t] is one, as well. Therefore, we
have normi(s) w normi(t) in that case, too. If Φ is ΦSC with simple projection π, then
normi(s) = π(s])→=

R π(t]) = normi(t), and hence normi(s) w normi(t).
So, regardless of the processor Φ, we have normi(s) w normi(t). If normi(s) A normi(t),

then the claim trivially follows. On the other hand, if normi(s) = normi(t), then the claim
holds by induction hypothesis. J

The following lemma extends Lemma 4.9 to root steps s ε−→R t. However, in this case,
we do not consider only the root position of t, but all positions that were “created” by the
rewrite step. So essentially, we show that such a step causes a decrease in Alex from s to
subterms of t. The restriction on positions p below takes care of the Dershowitz condition
in the definition of dependency pairs and the substitution of the applied rewrite rule.

I Lemma 4.10. For any terms s and t such that s ε−→R t, we have norm(s) Alex norm(t|p)
for all p ∈ Pos(t) such that t|p 6 s.

Proof. For this proof, we fix p, and let u = t|p. We can assume that rt(u) is a defined symbol.
Otherwise, norm(u) = (⊥, . . . ,⊥), but norm(s) wlex (0, . . . , 0) (note that rt(s) is defined),
so the lemma would be immediate. Hence, we have s] →DP(R) u

] using some dependency
pair l → r. Let j be the greatest number between 1 and d such that PTj(s) 6= ⊥, the
node at PTj(s) is (Q,R), and Q contains l → r. Note that such a number exists: since
s] →DP(R) u

], we have PT1(s) = ε, which denotes (DP(R),R), and DP(R) contains l → r.
Let α = PTj(s). We distinguish whether PTj(u) = α. This determines whether the strict
part of the lexicographic decrease must happen at index j or at an earlier index.

Suppose PTj(u) = α. Then we show that for all 1 6 i 6 j, normi(s) w normi(u) holds,
and normj(s) A normj(u). From these two properties, the lemma follows. In order to show
them, we fix some 1 6 i 6 j. Let β = PTi(s) = PTi(u).
1) If the node at position β is a leaf of PT, then i = j, andQ is a trivial SCC of a dependency

graph. By assumption, l → r ∈ Q. Therefore, dh(s],→Q/R) > dh(u],→Q/R), and thus
normi(s) A normi(u).

2) If the node (P,R) at position β is an inner node of PT, let Φ be the label of each edge
starting from (P,R). Obviously, Q ⊆ P, and therefore l → r ∈ P. For all possibilities
of Φ, the semantics of Φ imply that normi(s) w normi(u). Moreover, if i = j, then
normi(s) A normi(u) follows. In more detail: If Φ is ΦRP, then let {(P ′,R)} = Φ((P,R)).
Since l → r ∈ P, it follows that dh(s],→(P\P′)/(P′∪R)) > dh(u],→(P\P′)/(P′∪R)), and

G. Moser and A. Schnabl 245

thus normi(s) w normi(u). If i = j, then by definition of j, l→ r is contained in P \ P ′.
Therefore, normi(s) A normi(u) in that case. If Φ is ΦDG using a dependency graph G,
then by definition of SCCs in a dependency graph, rk(G, s) > rk(G, l → r) > rk(G, u),
hence normi(s) w normi(u). If i = j, then by definition of j, rk(G, s) 6= rk(G, l → r).
Thus, normi(s) A normi(u) in that case. If Φ is ΦSC with Φ((P,R)) = (P ′,R) and
simple projection π, then π(s]) D π(u]), and hence normi(s) w normi(u). If i = j, then
by definition of j, l → r ∈ P \ P ′, and hence π(s]) B π(u]) and normi(s) A normi(u) in
that case.

In all cases, it follows that for all 1 6 i 6 j, normi(s) w normi(u) holds, and normj(s) A
normj(u).

Now suppose PTj(u) 6= α. Then let i be the greatest number between 1 and j such that
PTi(s) = PTi(u) = β. As β is a prefix of α, the node (P,R) at β is an inner node of PT.
Let Φ be the label of each edge starting from (P,R). Using the arguments from above, we
see that normi′(s) w normi′(u) for all 1 6 i′ 6 i. We now show that normi(s) A normi(u) or
normi+1(s) A normi+1(u) holds.

1) If Φ is ΦRP or ΦSC, then by our assumptions, PTi+1(s) = β1. Since β has only one child
in this case, this implies PTi+1(u) = ⊥. Thus, normi+1(s) > 0 = normi+1(u).

2) If Φ is ΦDG, then normi(s) 6= normi(u), since PTi+1(s) 6= PTi+1(u) by assumption. Thus
normi(s) A normi(u).

In both cases, it follows that norm(s) Alex norm(u), which is what we wanted to show. J

Up to now, we have shown norm decreases under rewriting. For rewrite steps whose
redex position is at the root, this decrease is even strict. In order to turn this into an upper
bound on derivational complexities, we still have to do some work: we also have to consider
the norm of all proper subterms of a considered term, and the range of norm is not suitable
for direct complexity measures yet. We now solve these problems by lifting the range of
norm to the term level and simulating derivations of R at that level.

For the rest of this section let A be the maximum arity of any function symbol occurring
in R, and C := max{dp(r) | l → r ∈ R}. Depending on PT, d, A, C, and g, we now
define a TRS S which simulates R and is compatible with LPO. The simulating TRS S
is based on a mapping tr (see Definition 4.13) such that s →R t implies tr(s) →+

S tr(t).
Given a term t, tr employs the d + A-ary function symbol f. The first d arguments of f
are used to represent norm(t); the last a arguments of f are used to represent tr(t′) for each
direct subterm t′ of t. In the simulation, we often have to recalculate the first d arguments
of each f. Due to the definition of norm, we know that for each term t and 1 6 i 6 d,
either normi(t) ∈ N and normi(t) 6 g(|t|), or normi(t) ∈ T (F ,V) and normi(t) E t, or
normi(t) = ⊥. We use a unary function symbol choice such that choice(tr(t)) rewrites to
the representations of g(|t|), tr(t′) for each subterm t′ of t, and ⊥. In particular we often
we use terms of the shape choice(f(0, . . . , 0, x1, . . . , xA)) in the definition of S, so we use the
abbreviation N(x1, . . . , xA) for this.

The main tool for achieving the simulation of a root rewrite step s ε−→R t are rules which
build the new f symbols for the positions in t “created” by the step. These are at most AC+1

many new positions, and each proper subterm of s may be duplicated at most that many
times. As a very simple example, if d = 3, A = 1, and C = 1, this behaviour is simulated

RTA’11

246 Complexity Induced by the DP Framework

by rules of the following shape:

f(u1,S(u2), u3, x)→ f(u1, u2, N(x), f(u1, u2, N(x), x))
f(u1, f(v1, v2, v3, y), u3, x)→ f(u1, y,N(x), f(u1, y,N(x), x))
f(u1, f(v1, v2, v3, y), u3, x)→ f(u1, 0, N(x), f(u1, 0, N(x), x))

f(u1, 0, u3, x)→ f(u1,⊥, N(x), f(u1,⊥, N(x), x))

We use similar rules for decreases of u1 or u3 with respect to the ordering A. In order
to write down these rules concisely for arbitrary A and C, we make use of the following
abbreviation Mk

i (for i ∈ {1, . . . , d} and k ∈ N):

M0
i (u1, . . . , ui, x1, . . . , xA) = f(u1, . . . , ui, N(x1, . . . , xA), x1, . . . , xA)

Mk+1
i (u1, . . . , ui, x1, . . . , xA)

= f(u1, . . . , ui, N(Mk
i (u1, . . . , ui, x1, . . . , xA)),Mk

i (u1, . . . , ui, x1, . . . , xA))

Here ui (i ∈ {1, . . . , i}) and xj (j ∈ {1, . . . , A}) denote variables and t is an abbreviation of
t, . . . , t, where the number of repetitions of t follows from the context.

Consider the reduction pair function g of R. Since g is assumed to be a multiple recursive
function, it is an easy exercise to define a TRS S ′ (employing the constructors S, 0) that
computes the function g: one can simply define g using only initial functions, composition,
primitive recursion, and k-ary Ackermann functions, and directly turn the resulting defini-
tion of g into rewrite rules. That is, there exists a TRS S ′ and a defined function symbol
g such that g(Sn(0)) →∗S′ Sg(n)(0). Here we use Sn(0) to denote S(. . . (S(0)) . . .), where S
is repeated n times. Moreover, S ′ is compatible with a LPO such that the precedence � of
the LPO includes g � S � 0.

I Definition 4.11. Consider the following (schematic) TRS S, where 1 6 i 6 d and 1 6
j 6 A. Here we use ~x as a shorthand for x1, . . . , xA.

1i : f(u1, . . . , ui−1,S(ui), ui+1, . . . , ud, ~x)→MC
i (u1, . . . , ui, ~x)

2i,j : f(u1, . . . , ui−1, f(v1, . . . , vd, ~y), ui+1, . . . , ud, ~x)→MC
i (u1, . . . , ui−1, yj , ~x)

3i : f(u1, . . . , ui−1, f(v1, . . . , vd, ~y), ui+1, . . . , ud, ~x)→MC
i (u1, . . . , ui−1, 0, ~x)

4i : f(u1, . . . , ui−1, 0, ui+1, . . . , ud, ~x)→MC
i (u1, . . . , ui−1,⊥, ~x)

5j : size(f(u1, . . . , ud, ~x))→ ×A(size(xj))
6 : size(c)→ S(0)
7 : ×A(S(x))→ SA(×A(x))
8 : ×A(0)→ 0
9: f(u1, . . . , ud, ~x)→ c

10j : f(u1, . . . , ud, ~x)→ xj

11: h(x)→ f(N(x), x)

12: z→ f(N(c), c)
13j : choice(f(u1, . . . , ud, ~x))→ xj

14: choice(x)→ g(size(x))
15: choice(x)→ ⊥

These rules are augmented by S ′ defining the function symbol g. The signatures of S ′ and
S \ S ′ are disjoint with the exception of g and the constructors S and 0.

G. Moser and A. Schnabl 247

Note that S depends only on the constants d, A, C, and the reduction pair function g.
The rules 1i–4i are the main rules for the simulation of the effects of a single rewrite step
s
ε−→R t in S. These rules employ that normi(s]) A normi((t|p)]) for all p ∈ Pos(t) such that

t|p 6 s, and normi′(s]) w normi′((t|p)]) for all 1 6 i′ 6 i. They are also responsible for
creating the at most AC+1 many new positions and copies of each subterm of s in t. The
rules 5j–8 define a function symbol size, that is, size(s) reduces to a numeral Sn(0) such that
n > |s|. The rules 9–10j make sure that any superfluous positions and copies of subterms
created by the rules of type 1i–4i can be deleted. The rules 11 and 12 guarantee that the
simulating derivation can be started with a small enough initial term. The rules 13j–15
define the function symbol choice introduced in the abbreviations MC

i , and N . Loosely
speaking, choice(t) is an upper bound of all normi(t) with respect to w.

The next lemma essentially follows from Weiermann’s result that LPO induces multiple
recursive derivational complexity.

I Lemma 4.12. The function dcS is multiply recursive.

Proof. The TRS S ′ computing g can be shown terminating using an LPO such that the
precedence � of the LPO contains g � S � 0. It is easy to check that extending this
precedence by

h, z � f � choice � g size � S � ×,0, c,⊥ ,

makes the whole TRS S compatible with this LPO. By [25], termination of a finite TRS by
an LPO implies that the derivational complexity of that TRS is multiple recursive. Note
that the definition of multiple recursion used in this paper and the definition given in [25]
coincide by [19]. Thus, dcS is a multiple recursive function. J

For the remainder of this section, let H denote the signature of S. We now show that
the TRS S indeed simulates R as requested. Since the proofs of the lemmas in this part of
the paper are rather straightforward, but very technical. for them.

I Definition 4.13. The mapping tr : T (F) → T (H) is defined by the equation tr(t) =
f((norm1(t))∗, . . . , (normd(t))∗, tr(t1), . . . , tr(tn), c, . . . , c), where t = f(t1, . . . , tn) and the op-
erator (·)∗ is defined for a term s as follows:

u∗ :=

⊥ if u = ⊥
Su(0) if u ∈ N
tr(u) if u ∈ T (F ,V)

We define an equivalence s ≈ t on T (H). If s = c, then t = c. Otherwise if s =
f(u1, . . . , ud, s1, . . . , sA), then t = f(v1, . . . , vd, t1, . . . , tA) such that si ≈ ti for all 1 6 i 6 A.

I Lemma 4.14. For all ground terms s with t ≈ tr(s), size(t)→+
S Sn(0) where n > |s|.

Proof Sketch. The proof uses induction on |s|. The main ingredient of the inductive argu-
ment is straightforward application of the rules 5j–8 of S. J

I Lemma 4.15. The following properties of S hold:
1) If s = f(u∗1, . . . , u∗d, ~s), t = tr(t′) = f(v∗1 , . . . , v∗d, ~s), and (u1, . . . , ud) Alex (v1, . . . , vd),

then s→+
S t.

2) For any ground terms s = tr(s′) and t = tr(t′), s′ ε−→R t′ implies s→+
S t.

RTA’11

248 Complexity Induced by the DP Framework

3) If a →R b and tr(a) →+
S tr(b), then for any n-ary function symbol f ∈ F , we have

s = tr(f(t1, . . . , a, . . . , tn))→+
S tr(f(t1, . . . , b, . . . , tn)).

Proof Sketch. The proof uses mutual induction on dh(s,→S∪B). Note that by Lemma 4.12,
S terminates, and hence →S ∪B is well-founded. The following are the central parts of the
inductive arguments for the three properties of the lemma:
1) Property 1 states that all lexicographic decreases in the norm of a term occurring during

a simulation can indeed be handled by S. The main ingredient for this part of the proof
is the application of the rules 1i–4i of S.

2) Property 2 states that the simulation of a root rewrite step can indeed be done within
S. The outline of this part of the proof is the following: The first step of the simulation
is an application of one of the rules 1i–4i. This yields a rewrite step of the shape

s→S MC
i ((norm1(s′))∗, . . . , (normi−1(s′))∗, v′∗i , s1, . . . , sn)

such that v′i A normi(s′). The proof then proceeds to show by side induction on dp(u)
the following for subterms u of t′, which concludes Property 2 of the lemma:

M
dp(u)
i ((norm1(s′))∗, . . . , (normi−1(s′))∗, v′∗i , s1, . . . , sn)→∗S tr(u) .

The most important argument within the side induction is the application of Lemma 4.10.
3) Property 3 essentially states that Property 2 is closed under contexts. The main ingredi-

ent for this part of the proof is the application of Lemma 4.9.
J

The next lemma is an easy consequence of Lemma 4.15(2) and (3).
I Lemma 4.16. For any ground terms s and t, s→R t implies tr(s)→+

S tr(t).
Lemma 4.16 yields that the length of any derivation in R can be estimated by the

maximal derivation height with respect to S. To extend Lemma 4.16 so that the derivational
complexity function dcR can be measured via the function dcS we make use of the following
lemma.
I Lemma 4.17. For any ground term t, we have hdp(t)(z)→+

S tr(t).
Proof Sketch. The proof uses induction on dp(t). The main ingredients of the induct-
ive argument are rules 11–12 of S and choice(t′) essentially being an upper bound for all
normi(t′). J

We recall our main result, Theorem 3.5.
I Theorem (Main Theorem). Let R be a TRS whose termination is shown via Theorem 2.4
and let the reduction pair function g of R be multiple recursive. Then the derivational
complexity function dcR with respect to R is bounded by a multiple recursive function. Fur-
thermore this upper bound is tight.
Proof. Let S be the simulating TRS for R, as defined over the course of this section. Due
to Lemma 4.12, dcS is multiply recursive. Let t be a term. Without loss of generality, we
assume that t is ground. Due to Lemmas 4.16 and 4.17, we have the following inequalities:

dh(t,→R) 6 dh(tr(t),→S) 6 dh(hdp(t)(z),→S) .

Note that |hdp(t)(z)| 6 |t|. Hence for all n ∈ N: dcR(n) 6 dcS(n). Thus, dcR is multiply
recursive. Tightness of the bound follows by Lemma 3.3: for any multiply recursive function
f , there exists a k such that dcRk3 dominates f , and dcRk3 terminates by Theorem 2.4.
Moreover, the proof tree induced by the termination proof shown in Example 3.2 admits a
constant reduction pair function. J

G. Moser and A. Schnabl 249

5 Conclusion and Future Work

In this paper we established that the derivational complexity of any TRS whose termina-
tion can be shown within the DP framework is bounded by a multiple recursive function,
whenever the set of processors used is suitably restricted.

As briefly mentioned in the introduction the derivational complexity is not the only
measure of the complexity of a TRS suggested in the literature. In particular, alternative
approaches have been suggested by Choppy et al. [3], Cichon and Lescanne [4], Hirokawa
and the first author [11]. In [11] the runtime complexity with respect to a TRS is defined as
a refinement of the derivational complexity, by restricting the set of admitted initial terms.
This notion has first been suggested in [3], where it is augmented by an average case analysis.
Finally [4] studies the complexity of the functions computed by a given TRS. This latter
notion is extensively studied within implicit computational complexity theory (see [2] for an
overview).

While we have presented our results for derivational complexity, it is easy to see that the
same result holds for runtime complexity (as defined in [11]) and also for the complexity of
the functions computed by the TRS (as suggested in [4]). For the former it suffices to observe
that runtime complexity is a restriction of derivational complexity and that Example 3.2
provides a non-primitive recursive lower bound also in the context of runtime complexity.
With respect to the second claim it suffices to observe that any function computed by a
TRS that admits at most multiple recursive runtime complexity is computable on a Turing
machine in multiple recursive time (compare also [1]). We assume that a similar result holds
for the more involved notion proposed in [3]. However, this requires further work.

Thus our results indicate that the DP framework may induce multiple recursive com-
plexity. This constitutes a first, but important, step towards the analysis of the complexity
induced by the DP framework in general. Note that for all termination technique whose
complexity has been analysed a multiple recursive upper bound exists. This leads us to the
following conjecture.

I Conjecture. Let R be a TRS whose termination can be proved with the DP framework
using any DP processors, whose induced complexity does not exceed the class of multiple
recursive functions. Then the derivational complexity with respect to R is multiple recursive.

Should this conjecture be true, then for instance, none of the existing automated termination
techniques would in theory be powerful enough to prove termination of Dershowitz’s sys-
tem TRS/D33-33, aka the Hydra battle rewrite system, whose complexity is not a provable
recursive function of Peano Arithmetic (see [6, 14]). Hence far beyond multiple-recursion.

References
1 M. Avanzini and G. Moser. Closing the gap between runtime complexity and polytime

computability. In Proc. 21st RTA, volume 6 of LIPIcs, pages 33–48, 2010.
2 P. Baillot, J.-Y. Marion, and S. R. D. Rocca. Guest editorial: Special issue on implicit

computational complexity. ACM Trans. Comput. Log., 10(4), 2009.
3 C. Choppy, S. Kaplan, and M. Soria. Complexity analysis of term-rewriting systems. TCS,

67(2–3):261–282, 1989.
4 E.-A. Cichon and P. Lescanne. Polynomial interpretations and the complexity of algorithms.

In Proc. 11th CADE, volume 607 of LNCS, pages 139–147, 1992.
5 T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.

McGraw-Hill Higher Education, 2nd edition, 2001.

RTA’11

250 Complexity Induced by the DP Framework

6 N. Dershowitz and G. Moser. The Hydra battle revisited. In Rewriting, Computation and
Proof, volume 4600 of LNCS, pages 1–27, 2007.

7 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination
of term rewriting. JAR, 40(3):195–220, 2008.

8 A. Geser. Relative Termination. PhD thesis, Universität Passau, 1990.
9 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving

dependency pairs. JAR, 37(3):155–203, 2006.
10 N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and features. IC,

205:474–511, 2007.
11 N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair

method. In Proc. 4th IJCAR, volume 5195 of LNAI, pages 364–380, 2008.
12 D. Hofbauer. Termination Proofs and Derivation Lengths in Term Rewriting Systems.

PhD thesis, Technische Universität Berlin, 1992.
13 D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations. In Proc.

3rd RTA, volume 355 of LNCS, pages 167–177, 1989.
14 G. Moser. The Hydra Battle and Cichon’s Principle. AAECC, 20(2):133–158, 2009.
15 G. Moser and A. Schnabl. The derivational complexity induced by the dependency pair

method. In Proc. 20th RTA, volume 5595 of LNCS, pages 255–269, 2009.
16 G. Moser and A. Schnabl. The derivational complexity induced by the dependency pair

method. LMCS, 2011. To appear. Available at http://arxiv.org/abs/0904.0570.
17 G. Moser and A. Schnabl. Termination proofs in the dependency pair framework may

induce multiple recursive derivational complexity. CoRR, abs/1103.5082, 2011.
18 F. Neurauter, H. Zankl, and A. Middeldorp. Revisiting matrix interpretations for polyno-

mial derivational complexity of term rewriting. In Proc. 17th LPAR, volume 6397 of LNCS
(ARCoSS), pages 550–564, 2010.

19 R. Péter. Zusammenhang der mehrfachen und transfiniten Rekursionen. JSL, 15(4):248–
272, 1950.

20 R. Péter. Recursive Functions. Academic Press, 1967.
21 H. E. Rose. Subrecursion - function and hierarchies. Clarendon Press, 1984.
22 TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 2003.
23 R. Thiemann. The DP Framework for Proving Termination of Term Rewriting. PhD thesis,

University of Aachen, 2007.
24 J. Waldmann. Polynomially bounded matrix interpretations. In Proc. 21st RTA, volume 6

of LIPIcs, pages 357–372, 2010.
25 A. Weiermann. Termination proofs for term rewriting systems with lexicographic path

orderings imply multiply recursive derivation lengths. TCS, 139(1,2):355–362, 1995.
26 H. Zankl and M. Korp. Modular complexity analysis via relative complexity. In Proc. 21st

RTA, volume 6 of LIPIcs, pages 385–400, 2010.

http://arxiv.org/abs/0904.0570

Revisiting Matrix Interpretations for Proving
Termination of Term Rewriting
Friedrich Neurauter∗ and Aart Middeldorp

Institute of Computer Science
University of Innsbruck, Austria
{friedrich.neurauter,aart.middeldorp}@uibk.ac.at

Abstract
Matrix interpretations are a powerful technique for proving termination of term rewrite systems,
which is based on the well-known paradigm of interpreting terms into a domain equipped with
a suitable well-founded order, such that every rewrite step causes a strict decrease. Tradition-
ally, one uses vectors of non-negative numbers as domain, where two vectors are in the order
relation if there is a strict decrease in the respective first components and a weak decrease in
all other components. In this paper, we study various alternative well-founded orders on vectors
of non-negative numbers based on vector norms and compare the resulting variants of matrix
interpretations to each other and to the traditional approach. These comparisons are mainly
theoretical in nature. We do, however, also identify one of these variants as a proper generaliz-
ation of traditional matrix interpretations as a stand-alone termination method, which has the
additional advantage that it gives rise to a more powerful implementation.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, F.4.1 Math-
ematical Logic: Computational logic.

Keywords and phrases term rewriting, termination, matrix interpretations

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.251

Category Regular Research Paper

1 Introduction

As far as research on termination of term rewrite systems is concerned, in recent years a
lot of effort has been put on proving termination automatically. Indeed, many powerful
techniques for establishing termination of term rewrite systems that have been developed
in the course of time have been automated successfully, as is evident in the results of the
(annual) international competition for termination tools.1 In particular, the method of matrix
interpretations greatly contributes to the success of these tools.

Matrix interpretations were originally introduced by Hofbauer and Waldmann in the
context of string rewriting [8, 9], allowing them to solve hard termination problems like
{aa → bc, bb → ac, cc → ab}, Problem #104 in the RTA list of open problems.2 One
particular instance of the matrix method of [9] has been extended to term rewriting by
Endrullis et al. in [4]. The method is based on the well-known paradigm of interpreting
terms (strings) into a domain equipped with a suitable well-founded order, such that every

∗ Friedrich Neurauter is supported by a grant of the University of Innsbruck.
1 http://termcomp.uibk.ac.at.
2 http://rtaloop.mancoosi.univ-paris-diderot.fr.

© F. Neurauter and A. Middeldorp;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 251–266

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.251
http://termcomp.uibk.ac.at
http://rtaloop.mancoosi.univ-paris-diderot.fr
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

252 Matrix Interpretations

rewrite step causes a strict decrease with respect to this order. In [4], the authors consider
the set of vectors of natural numbers as domain and equip it with a well-founded order
that is not total, such that two vectors are in the order relation if there is a strict decrease
in the respective first components and a weak decrease in all other components. Function
symbols are interpreted by suitable linear mappings represented by square matrices all of
whose entries are natural numbers. In [1, 5, 15], the method of Endrullis et al. was lifted to
the non-negative rational (real) numbers using the same technique that was already used to
lift polynomial interpretations from the naturals to the rationals (reals) (cf. [7]). Recently,
another generalization appeared in [3] that employs matrices of natural numbers (instead
of vectors) as underlying domain and associates to each function symbol a linear matrix
polynomial. In principle, this approach also allows for non-linear matrix polynomials.

In this paper, we re-examine the basics of the method of Endrullis et al., especially
focusing on the actual role of the well-founded order on vectors of natural numbers it is based
on. Obviously, there are many other orders on vectors of natural numbers having the desired
properties, so why the choice of this particular order? In [4], the justification is as follows (in
addition to the very convincing fact that the resulting termination method is very powerful):

Of course other orders on vectors could have been chosen, too, but many of them
are not suitable for our purpose. For instance, choosing a lexicographic order fails
because then multiplication by a constant matrix is not monotone in general.

But still the question remains whether there exist other orders inducing variants of matrix
interpretations that are also useful for proving termination of term rewrite systems. To this
end, we study various alternative well-founded orders on vectors of (natural) numbers based
on vector norms. The underlying idea is that every rewrite step is supposed to decrease the
“length” of the associated vectors. This leads directly to the notion of normed vector spaces,
norms being a suitable measure of the length or magnitude of a vector. Basically, we consider
two classes of orders, weakly decreasing orders, where two vectors are comparable only if
there is a weak decrease in every single component, and orders without this property. The
conclusion is that the latter kind of orders induces only weak forms of matrix interpretations
that are no more powerful than linear polynomial interpretations. For weakly decreasing
orders (like the order in [4]), however, the situation is different. That is to say that some of
them do indeed induce matrix interpretations that are useful for proving termination. In
particular, one of these variants subsumes traditional matrix interpretations and has the
additional advantage that it gives rise to a more powerful implementation.

The remainder of this paper is organized as follows. In Section 2, we introduce some
preliminary definitions and terminology concerning matrix interpretations. In Section 3, we
present the orders on vectors of natural numbers considered in this paper. Sections 4 and 5
are dedicated to matrix interpretations over weakly decreasing orders and the comparison
between them, while Section 6 features matrix interpretations over non-weakly decreasing
orders. In Section 7 we present a generalization of traditional matrix interpretations, before
concluding in Section 8.

2 Preliminaries

As usual, we denote by N and Z the sets of natural and integer numbers. Given N ∈ {N,Z},
>N denotes the standard order of the respective domain. The cardinality of a (finite) set S is
denoted by |S|. For any ring R, we denote the ring of all n-dimensional square matrices over
R by Rn×n. A matrix is non-negative if all its entries are non-negative. Abusing notation, we

F. Neurauter and A. Middeldorp 253

denote the set of all non-negative n-dimensional square matrices of Zn×n by Nn×n. As usual,
we denote the transpose of a matrix (vector) M by MT . For any vector ~x = (x1, . . . , xn)T ,
(~x)i denotes its i-th component. Likewise, Mij denotes the entry in the i-th row and j-th
column of a matrix M , and Mj− (M−j) refers to the j-th row (column). A zero column
is a column, where all entries are zero. For M ∈ Rn×n and I ⊆ {1, . . . , n}, (M)I denotes
the submatrix of M formed by the rows and columns whose indices are in the index set
I. Finally, a permutation matrix is a square matrix whose entries are all 0’s and 1’s, with
exactly one 1 in each row and exactly one 1 in each column.

We assume familiarity with the basics of term rewriting [2, 14]. Let V denote a countably
infinite set of variables and F a signature, that is, a set of function symbols equipped with
fixed arities. The set of terms over F and V is denoted by T (F ,V). By Var(t) we denote
the set of variables occurring in a term t, and |t|x denotes the number of occurrences of
the variable x. A rewrite rule is a pair of terms (`, r), conveniently written as `→ r, such
that ` is not a variable and all variables in r are contained in `. A term rewrite system R
(TRS for short) over T (F ,V) is a set of rewrite rules. The rewrite relation induced by → is
denoted by →R. As usual, →∗R denotes the reflexive transitive closure of →R and →nR its
n-th iterate. For notational convenience, we sometimes drop the subscript R if it is clear
from the context.

An important concept for establishing termination of TRSs is the notion of well-founded
monotone algebras. An F-algebra A consists of a non-empty carrier A and interpretation
functions fA : An → A for every n-ary function symbol f ∈ F . By [α]A(·) : T (F ,V)→ A we
denote the usual evaluation function of A with respect to a variable assignment α : V → A.
An interpretation fA : An → A is monotone with respect to a binary relation >A on A if
fA(a1, . . . , ai, . . . , an) >A fA(a1, . . . , b, . . . , an) for all a1, . . . , an, b ∈ A and i ∈ {1, . . . , n}
with ai >A b. A well-founded monotone F-algebra is a pair (A, >A), where A is an F -algebra
and >A is a well-founded order on A, such that every fA is monotone with respect to >A. It
is well-known that a TRS R is terminating if and only if it is compatible with a well-founded
monotone algebra (A, >A), where compatibility means that for every rewrite rule `→ r ∈ R,
[α]A(`) >A [α]A(r) for all variable assignments α : V → A.

3 Well-founded Orders on Vectors of Natural Numbers

In this section we introduce several well-founded orders on vectors of natural numbers serving
as foundation for alternative kinds of matrix interpretations. We consider two classes of
orders on Nn, n > 1, weakly decreasing orders and non-weakly decreasing ones.

3.1 Weakly Decreasing Orders

We call a (partial) order > on Nn weakly decreasing if (x1, . . . , xn)T > (y1, . . . , yn)T implies
xi >N yi for all i ∈ {1, . . . , n}. The component-wise (partial) order on Nn induced by >N is
denoted by >w.

I Definition 3.1. Let I ⊆ {1, . . . , n} be a non-empty index set, and let ~x = (x1, . . . , xn)T
and ~y = (y1, . . . , yn)T be vectors in Nn. We define relations >wI , >wΣ, >w` and >wm on Nn as
follows:

Weak decrease + strict decrease in some component(s):

~x >wI ~y :⇐⇒ ~x >w ~y ∧ ∃ j ∈ I : xj >N yj

RTA’11

254 Matrix Interpretations

Weak decrease + strict decrease in sum of components:

~x >wΣ ~y :⇐⇒ ~x >w ~y ∧
n∑
i=1

xi >N

n∑
i=1

yi

Weak decrease + strict decrease in Euclidean length:

~x >w` ~y :⇐⇒ ~x >w ~y ∧
n∑
i=1

x2
i >N

n∑
i=1

y2
i

Weak decrease + strict decrease in maximum component:

~x >wm ~y :⇐⇒ ~x >w ~y ∧ max
i
xi >N max

i
yi

It is routine to verify that all these relations are in fact well-founded orders on vectors of
natural numbers.

I Lemma 3.2. The relations >wI , >wΣ, >w` and >wm are well-founded orders on Nn. J

The relations listed above are not the only well-founded orders on Nn. Numerous variations
exist. Some of these (like parameterizing >wΣ or >w` by an index set I) are implicitly covered
because of the lemma below, while others (like demanding a strict decrease in all components
specified by an index set I) proved to be impractical.

Intuitively, the order >wI is a generalization of >w1 , the order used in [4], where the strict
decrease is not necessarily fixed to one specific component; in particular, >w1 = >wI for
I = {1}. Moreover, its extension to matrices yields the main order considered in [3]. As to
the remaining three orders, two vectors being in relation means that there is a strict decrease
in the lengths of the vectors with respect to the Manhattan, Euclidean or maximum norm,
respectively [10]. The relationship between these orders is described in the following lemma.

I Lemma 3.3. Let I, J and K be non-empty index sets, such that I = {1, . . . , n} and
J ⊆ K ⊆ I. Then the following statements hold:
1. >wJ ⊆ >wK and >w1 = >w{1},
2. >w1 and >wm are incomparable for n > 2, identical otherwise,
3. >wm ⊂ >wI = >wΣ = >w` for n > 2, all identical otherwise, and
4. >wI is the strict part of >w.

The last item gives rise to the following corollary stressing an important aspect of some
of the orders considered above.

I Corollary 3.4. For I = {1, . . . , n}, >wI is the most general of the weakly decreasing proper
orders on Nn (in the sense that it subsumes any other such order). J

3.2 Non-weakly Decreasing Orders
Taking a closer look at Definition 3.1, one observes that weak decreasingness is not the
essential property for obtaining well-founded orders on vectors of natural numbers, which
is all we need to build matrix interpretations upon. That is to say that the last three
orders remain well-founded orders on Nn even after dropping this property. We denote the
corresponding orders by >Σ, >` and >m, respectively. Concerning >wI , one must be careful
when dropping weak decreasingness because the resulting relation >I is an order only if
the index set I is a singleton set, in which case >I is also well-founded. In the remainder
of this paper this is implicitly assumed whenever we refer to >I . Finally, we note that all
four orders coincide in the one-dimensional case (n = 1), all being equal to >N. For n > 2,
however, all these orders are pairwise incomparable (for all singleton sets I).

F. Neurauter and A. Middeldorp 255

4 Matrix Interpretations and Weakly Decreasing Orders

In this section we take the orders introduced in Definition 3.1 and build matrix interpretations
on top of them. According to Lemma 3.3 (item 3), we only have to consider the family
of orders (>wI)I parametrized by some non-empty index set I ⊆ {1, . . . , n} and >wm, the
order induced by the maximum norm. We shall see, however, that the latter kind of matrix
interpretation is subsumed by an instance of the former.

Before we can go about formally defining matrix interpretations over >wI (>wm), we have
to have an understanding of when a linear function is monotone with respect to the orders >w

and >wI (>wm). We consider linear functions of the form f(~x1, . . . , ~xk) =
∑k
i=1 Fi~xi+ ~f , where

~f ∈ Nn and Fi ∈ Nn×n for all i ∈ {1, . . . , k}. Obviously, all such functions are monotone with
respect to >w. Concerning monotonicity with respect to >wI , we give necessary and sufficient
conditions in the lemma below. A similar lemma, showing sufficiency of the conditions,
appeared in [3].

I Lemma 4.1. Let I ⊆ {1, . . . , n} be a non-empty index set. The function f(~x1, . . . , ~xk) =∑k
i=1 Fi~xi + ~f is monotone with respect to >wI if and only if for each (Fi)I , i = 1, . . . , k, all

column sums are at least one.

Proof. Let ~x1, . . . , ~xk and ~y be arbitrary vectors in Nn, such that ~xi >wI ~y for some argument
position i ∈ {1, . . . , k}. Then there exist a vector ~d ∈ Nn and an index j ∈ I, such that
~xi = ~y+ ~d and dj >N 0. Now f(. . . , ~xi, . . .) >wI f(. . . , ~y, . . .) holds if and only if Fi ~xi >wI Fi ~y,
which is equivalent to Fi ~d >wI 0. If all column sums of (Fi)I are at least one, then we have
(Fi)−j >wI 0, which yields Fi ~d >wI 0 because of Fi ~d >w (Fi)−j · dj >w (Fi)−j .

Conversely, if (Fi)I has a zero column, then let j′ ∈ I denote the index of the column of
Fi it originates from, and let ~xi be zero everywhere except for its j′-th component, which we
set to one. Then ~xi >wI 0 but f(. . . , 0, ~xi, 0, . . .) = (Fi)−j′ + ~f 6>wI ~f = f(0, . . . , 0). J

We are now ready to formally define matrix interpretations over instances of >wI (cf. also
the E-compatible matrix interpretations in [3]).

I Definition 4.2. Let F denote a signature and I ⊆ {1, . . . , n} a non-empty index set. An
n-dimensional matrix interpretation M>wI over >wI is an F -algebra with carrier Nn together
with the well-founded order >wI , where each k-ary function symbol f ∈ F is interpreted by
a function fM : (Nn)k → Nn, (~x1, . . . , ~xk) 7→

∑k
i=1 Fi~xi + ~f with ~f ∈ Nn and Fi ∈ Nn×n for

all i ∈ {1, . . . , k}, such that fM is monotone with respect to >wI .

Clearly, such matrix interpretations are well-founded monotone algebras. Moreover, the
notion of matrix interpretations of Endrullis et al. [4] is included in Definition 4.2 by choosing
the special index set I = {1}. In order to use a matrix interpretationM over >wI to establish
termination of a TRS, one should be able to check whether [α]M(`) >wI [α]M(r) for all
α : V → Nn and rules `→ r. The following well-known lemma is helpful for this purpose.

I Lemma 4.3. LetM be an F-algebra with carrier Nn as in Definition 4.2 and t a term with
Var(t) = {x1, . . . , xm}. Then there exist matrices T1, . . . , Tm ∈ Nn×n and a vector ~t ∈ Nn,
such that for any assignment α : V → Nn, [α]M(t) = T1α(x1) + · · ·+ Tmα(xm) + ~t. J

Therefore, the compatibility checks [α]M(`) >wI [α]M(r) and [α]M(`) >w [α]M(r) boil
down to the comparison of such linear functions, which is decidable according to the next
lemma. Here, > denotes the component-wise (partial) order on Nn×n induced by >N.

RTA’11

256 Matrix Interpretations

I Lemma 4.4. Let L1, . . . , Lm, R1, . . . , Rm and ~l, ~r correspond to a rewrite rule `→ r as
in Lemma 4.3. Then, for . ∈ {>wI ,>w}, [α]M(`) . [α]M(r) for all variable assignments
α : V → Nn if and only if ~l . ~r and Li > Ri for i = 1, . . . ,m. J

We close this section with the treatment of matrix interpretations over >wm. In particular,
we show that they are subsumed by the instance of matrix interpretations over >wI one
obtains by choosing I = {1, . . . , n}, which is assumed to be the case in the rest of this section.
According to Lemma 3.3, we have >wm ⊆ >wI for all dimensions n > 1. However, this does
not directly imply that the same inclusion also holds for matrix interpretations based on
these two orders because of the monotonicity requirement that all interpretation functions
have to satisfy. If the monotonicity conditions with respect to >wI are more strict than the
ones for >wm, then the set of potential interpretation functions is smaller, and it is therefore
very well conceivable that the inclusion on the base orders does not propagate to the notions
of matrix interpretations built on top of them. However, this is not the case for the two
orders considered here.

I Lemma 4.5. Let f(~x1, . . . , ~xk) =
∑k
i=1 Fi~xi + ~f , where ~f ∈ Nn and F1, . . . , Fk ∈ Nn×n.

Then monotonicity of f with respect to >wm implies monotonicity with respect to >wI .

Proof. This can be shown using contraposition. Assume that f is not monotone with respect
to >wI . According to Lemma 4.1 this means that (at least) one of its matrices has a zero
column. Without loss of generality, let the j-th column of some Fi, i ∈ {1, . . . , k}, be a zero
column and let ~xi be zero everywhere except for its j-th component. Then ~xi >wm 0 but
f(. . . , 0, ~xi, 0, . . .) = ~f 6>wm ~f = f(0, . . . , 0), i.e., f is not monotone with respect to >wm. J

Hence, ifM>wm is a matrix interpretation over >wm, consisting of a set of interpretation
functions that are monotone with respect to >wm, then the same functions together with >wI
constitute a matrix interpretationM>wI over >wI that is able to orient all rules orientable by
M>wm because of the inclusion >wm ⊆ >wI . In other words,M>wI subsumesM>wm .

5 Comparing Matrix Interpretations over Weakly Decreasing Orders

After the discussion in the previous section the family of orders (>wI)I parametrized by
some non-empty index set I ⊆ {1, . . . , n} remains as a potentially interesting foundation for
matrix interpretations. It includes the traditional order >w1 as well as >wΣ = >w` , the most
general of the weakly decreasing orders on Nn (cf. Lemma 3.3 and Corollary 3.4). Now the
purpose of this chapter is to compare the resulting variants of matrix interpretations to each
other and thus also to the traditional approach.

First, we remark that we do not have to consider all possible index sets since matrix
interpretations are invariant under permutations. For example, matrix interpretations over
>w{1} are equivalent to matrix interpretations over >w{j}, j ∈ {2, . . . , n}, with respect to
termination proving power. The relevant property is that there is a strict decrease in a
single fixed vector component, it is not important which component. All that matters
is the cardinality of the index set I. Hence, for n-dimensional matrix interpretations,
we are left with n different index sets, and, without loss of generality, we can restrict to
the sets Id = {1, . . . , d} for d = 1, 2, . . . , n. By definition, the following inclusions hold:
>wI1
⊂ >wI2

⊂ · · · ⊂ >wIn . However, as explained at the end of the previous section, from this
we cannot immediately conclude that the same inclusions also hold for matrix interpretations
based on these orders because for I ⊂ J , monotonicity of a function with respect to >wI does
not imply monotonicity with respect to >wJ according to Lemma 4.1. In fact, the situation
turns out to be a bit more intricate. To begin with, let us consider the following example.

F. Neurauter and A. Middeldorp 257

I Example 5.1. Consider the TRS R1 = { f(a)→ f(g(a)), g(b)→ g(f(b)) }. Termination of
this system can be shown with the following 2-dimensional matrix interpretation over >w{1,2}:

fM(~x) =
(

0 1
1 1

)
~x gM(~x) =

(
1 1
1 0

)
~x aM =

(
0
1

)
bM =

(
1
0

)
However, one can show that there is no compatible 2-dimensional matrix interpretation
over >w{1}. In the same vein, one can establish termination of the TRS R2

f(g(x))→ f(a(g(g(f(x))), g(g(f(x))))) a(x, x)→ h(x) f(x)→ x

h(h(x))→ c(h(x)) c(x)→ x g(x)→ x

via the following 2-dimensional matrix interpretation over >w{1}

aM(~x, ~y) =
(

1 0
0 0

)
~x+

(
1 0
0 0

)
~y +

(
3
0

)
cM(~x) =

(
1 0
0 2

)
~x+

(
1
0

)
fM(~x) =

(
1 3
0 1

)
~x+

(
1
0

)
gM(~x) =

(
1 0
1 2

)
~x+

(
1
3

)
hM(~x) =

(
2 0
0 0

)
~x+

(
1
0

)
and show that there is no compatible 2-dimensional matrix interpretation over >w{1,2}.

The bottom line of this example is that if we fix the dimension, then matrix interpretations
over >w{1} are incomparable to matrix interpretations over >w{1,2}. (We are not aware of
a general construction that works for any dimension.) However, without this restriction
the situation is altogether different. That is to say that for dimension 3, for example,
there is a compatible matrix interpretation over >w{1} for the TRS R1. Likewise, there
is a compatible 3-dimensional matrix interpretation over >w{1,2} for the TRS R2. Indeed,
that is no coincidence as will be shown in the remainder of this section. In particular, we
shall see that in some sense the various instances of matrix interpretations over >wI are all
equivalent with respect to termination proving power, no matter what the index set I looks
like. To get to the bottom of this phenomenon, we need a couple of transformations on
matrix interpretations.

As to the first transformation, let P ∈ Nn×n be a nonsingular matrix andM some matrix
interpretation consisting of a collection of interpretation functions {fM}f∈F , such that each
k-ary function symbol f in the signature is interpreted by a function fM(~x1, . . . , ~xk) =∑k
i=1 Fi~xi + ~f , where ~f ∈ Nn and Fi ∈ Nn×n for all i ∈ {1, . . . , k}. Then we associate with

M a matrix interpretation ΦP (M), where each k-ary function symbol f is interpreted by a
function fΦP (M)(~x1, . . . , ~xk) =

∑k
i=1 PFiP

−1~xi + P ~f .
I Remark. Note that in general PFiP−1 is not a non-negative matrix, even if P and Fi are
non-negative. As we need this property in our context, we must be careful when applying
this transformation, unless P happens to be a (generalized) permutation matrix. In the
remainder of this paper, non-negativity of PFiP−1 is assumed or explicitly stated.

According to Lemma 4.3, the interpretation of a term with respect toM and a variable
assignment α can be written as [α]M(t) = T1α(x1) + · · ·+ Tmα(xm) + ~t. By construction of
ΦP (M), we obtain the following lemma.

I Lemma 5.2. Let T1, . . . , Tm and ~t correspond to a term t as described in Lemma 4.3.
Then [α]ΦP (M)(t) = PT1P

−1α(x1) + · · ·+ PTmP
−1α(xm) + P~t for any assignment α. J

I Corollary 5.3. For every ground term t, [α]ΦP (M)(t) = P · [α]M(t). J

RTA’11

258 Matrix Interpretations

Our next transformation associates with an n-dimensional matrix interpretation M
(as above) an (n+ 1)-dimensional matrix interpretation Ψ(M), where each k-ary function
symbol f is interpreted by a function fΨ(M)(~x1, . . . , ~xk) =

∑k
i=1 F

′
i~xi + ~f ′, such that for all

i ∈ {1, . . . , k},

~f ′ =
(

0
~f

)
and F ′i =

(
fi 0
0 Fi

)
for some fi ∈ N \ {0}.

Moreover, we associate with M (resp. Ψ(M)) a linear polynomial interpretation P(M),
where each k-ary function symbol f is interpreted by a linear polynomial fP(M)(x1, . . . , xk) =∑k
i=1 fixi (with the fi’s of Ψ(M)).

I Lemma 5.4. Let t be an arbitrary term. Then for all variable assignments α : V → Nn
and β : V → N, the following statement holds:

[γ]Ψ(M)(t) =
(

[β]P(M)(t)
[α]M(t)

)
for the variable assignment γ : V → Nn+1, x 7→

(
β(x)
α(x)

)
. J

I Corollary 5.5. For every ground term t, [γ]Ψ(M)(t) =
(

0
[α]M(t)

)
. J

Again, by Lemma 4.3, [α]M(t) can be written as [α]M(t) = T1α(x1) + · · ·+ Tmα(xm) +~t.
Likewise, the interpretation of t with respect to P(M) and some variable assignment β can
be written as [β]P(M)(t) = t1β(x1) + · · ·+ tmβ(xm), where t1, . . . , tm ∈ N. Plugging these
expressions into Lemma 5.4, we obtain the following lemma.

I Lemma 5.6. Let T1, . . . , Tm, t1, . . . , tm and ~t correspond to a term t as described above.
Then, in the situation of Lemma 5.4, the following statement holds:

[γ]Ψ(M)(t) =
m∑
i=1

(
ti 0
0 Ti

)
γ(xi) +

(
0
~t

)
J

Moreover, if all the fi’s introduced by Ψ(M) are one, then each ti in [β]P(M)(t) corres-
ponds to the number of occurrences of the associated variable xi.

I Lemma 5.7. Let t be an arbitrary term with Var(t) = {x1, . . . , xm}, and let all inter-
pretation functions in P(M) have the shape fP(M)(x1, . . . , xk) =

∑k
i=1 xi (for each k-ary

function symbol f). Then for any variable assignment β, [β]P(M)(t) =
∑m
i=1 |t|xiβ(xi). J

We are now ready to present the main results of this section comparing matrix interpret-
ations over various instances of >wI with respect to proving (direct) termination of TRSs. In
what follows, for a given TRS R, R ⊆ <P(M) abbreviates [β]P(M)(`) >N [β]P(M)(r) for all
variable assignments β : V → N and all rewrite rules `→ r ∈ R.

I Lemma 5.8. LetM be an n-dimensional matrix interpretation over >wI , I ⊆ {1, . . . , n},
and let R be a TRS satisfying R ⊆ <P(M). Then compatibility of R with M implies
compatibility with an (n+ 1)-dimensional matrix interpretation over >wJ , where |J | = |I|+ 1,
J ⊆ {1, . . . , n+ 1}.

Proof. Assuming thatM is compatible with R, we show that Ψ(M) is compatible as well.
To this end, we let J = {1} ∪ {x + 1 | x ∈ I } and reason as follows. By assumption, all
interpretation functions of M are monotone with respect to >wI , that is, for each matrix
M ∈M, all column sums of (M)I are at least one according to Lemma 4.1. By construction

F. Neurauter and A. Middeldorp 259

of Ψ(M), this implies that for each matrix M ′ ∈ Ψ(M), all column sums of (M ′)J are also
at least one. Hence, all interpretation functions of Ψ(M) are monotone with respect to >wJ .
As to compatibility of Ψ(M) with R, for any rewrite rule `→ r, [γ]Ψ(M)(`) >wJ [γ]Ψ(M)(r)
holds for all variable assignments γ if and only if(

[β]P(M)(`)
[α]M(`)

)
>wJ

(
[β]P(M)(r)

[α]M(r)

)
for all variable assignments α and β (cf. Lemma 5.4).

By definition of >wJ , it remains to show that there is a weak decrease in every single component
and a strict decrease in some component with index j ∈ J . By compatibility ofM with R,
we have [α]M(`) >wI [α]M(r) for all assignments α, which immediately establishes the latter
requirement and, together with the assumption R ⊆ <P(M), also the former. J

With the help of Lemma 5.7 one can replace the semantic condition R ⊆ <P(M) by a
(more familiar) syntactic condition.

I Corollary 5.9. Let R be a non-duplicating TRS. Then compatibility of R with an n-
dimensional matrix interpretation over >wI , I ⊆ {1, . . . , n}, implies compatibility with an
(n+ 1)-dimensional matrix interpretation over >wJ , where |J | = |I|+ 1, J ⊆ {1, . . . , n+ 1}.

Proof. Setting all the fi’s introduced by Ψ(M) to one, the condition R ⊆ <P(M) becomes
equivalent to R being non-duplicating according to Lemma 5.7. J

I Example 5.10. Consider the TRS R3 = { f(x)→ g(h(x, x)), g(a)→ f(a) }. Termination
can be shown with the following 2-dimensional matrix interpretation over >w{1}:

fM(~x) =
(

3 0
2 0

)
~x+

(
2
0

)
gM(~x) =

(
1 1
0 0

)
~x+

(
1
0

)
hM(~x, ~y) =

(
2 0
0 0

)
~x+

(
1 0
0 0

)
~y aM =

(
0
3

)
Moreover, the following linear polynomial interpretation orients all rules weakly:

fP(M)(x) = 2x gP(M)(x) = x hP(M)(x, y) = x+ y aP(M) = 0

Hence, by (the proof of) Lemma 5.8, there exists a compatible 3-dimensional matrix inter-
pretation over >w{1,2}.

Next we argue that the precondition R ⊆ <P(M) in Lemma 5.8 is only technical in
nature (to satisfy the formal definition of a well-founded monotone algebra); when it comes
to termination proving power, it is actually superfluous.
I Remark. In the situation of Lemma 5.8, if M is compatible with R, then, no matter
whether R ⊆ <P(M) or not, Ψ(M) always establishes termination of R by proving the
absence of infinite rewrite sequences of ground terms (assuming that the associated signature
contains at least one constant symbol). This follows from Corollary 5.5 and compatibility
ofM with R. Also note that in the proof of Lemma 5.8 the only purpose of the condition
R ⊆ <P(M) is to ensure a weak decrease in the first components of the vectors associated
with some rewrite rule. However, for ground terms, we always have a weak decrease by
Corollary 5.5.

Finally, we remark that by doubling the dimension of M these technicalities can be
resolved.

RTA’11

260 Matrix Interpretations

I Lemma 5.11. Compatibility of a TRS R with an n-dimensional matrix interpretation
over >wI , I ⊆ {1, . . . , n}, implies compatibility with a 2n-dimensional matrix interpretation
over >wJ , where |J | = 2 · |I|, J ⊆ {1, . . . , 2n}.

In order to prove Lemma 5.11, we introduce a construction that combines two matrix
interpretationsM and N (not necessarily of the same dimension) to a matrix interpretation
Π(M,N) as follows. Assuming M consists of interpretation functions fM(~x1, . . . , ~xk) =∑k
i=1 Fi~xi + ~f and N of interpretation functions fN (~x1, . . . , ~xk) =

∑k
i=1 F̃i~xi + f̃ , the

Π(M,N)-interpretation of each k-ary function symbol f is

fΠ(M,N)(~x1, . . . , ~xk) =
k∑
i=1

(
Fi 0
0 F̃i

)
~xi +

(
~f

f̃

)
I Lemma 5.12. Let t be an arbitrary term. Then for all variable assignments α and β,

[γ]Π(M,N)(t) =
(

[α]M(t)
[β]N (t)

)
for the variable assignment γ(x) =

(
α(x)
β(x)

)
.

Proof. By induction on the structure of t. J

Proof of Lemma 5.11. Assuming thatM is an n-dimensional matrix interpretation over
>wI compatible with R, we show that Π(M,M) is compatible as well. To this end, we let
J = I ∪ {x+ n | x ∈ I } and reason as follows. By assumption, all interpretation functions
ofM are monotone with respect to >wI , that is, for each matrix M ∈M, all column sums of
(M)I are at least one according to Lemma 4.1. By construction of Π(M,M), this implies that
for each matrix M ′ ∈ Π(M,M), all column sums of (M ′)J are also at least one. Hence, all
interpretation functions of Π(M,M) are monotone with respect to >wJ . As to compatibility
of Π(M,M) with R, for any rewrite rule ` → r, [γ]Π(M,M)(`) >wJ [γ]Π(M,M)(r) holds for
all variable assignments γ if and only if(

[α]M(`)
[β]M(`)

)
>wJ

(
[α]M(r)
[β]M(r)

)
for all variable assignments α and β (cf. Lemma 5.12).

But this follows directly from compatibility ofM with R since [α]M(`) >wI [α]M(r) for all
assignments α. J

Summarizing the above results, every TRS that can be proved terminating by a matrix
interpretation over >wI , for some index set I, can also be proved terminating by a matrix
interpretation over >wJ , for a larger index set J , at the expense of an increased dimension.

Next we elaborate on the converse of this statement. To this end, let us consider some
TRS R and a compatible n-dimensional matrix interpretationM over >wI , where |I| > 1,
consisting of interpretation functions fM(~x1, . . . , ~xk) =

∑k
i=1 Fi~xi+ ~f for each k-ary function

symbol f in the signature. Our aim is to show that R is also compatible with a matrix
interpretation over >w{1} (or more generally, >wI for a singleton index set I), albeit with a
higher dimension.

First, we transform M into M′ := Ψ(M), which is in turn transformed into M′′ :=
ΦP (M′) for P = I + U , where I is the identity matrix and U is all zero except for the
entries U1,i+1 = 1, for all i ∈ I. As P−1 = I − U is not non-negative, we have to ensure
well-definedness ofM′′, that is, make sure that all its matrices are non-negative. Now for
any matrix (vector) M , PM is equal to M except for the first row, which is the sum of the
rows of M with indices in {1} ∪ { i+ 1 | i ∈ I }. Hence,

P

(
fi 0
0 Fi

)
=
(
fi

∑
c∈I(Fi)c1 · · ·

∑
c∈I(Fi)cn

0 (Fi)−1 · · · (Fi)−n

)

F. Neurauter and A. Middeldorp 261

Multiplying this matrix by P−1 from the right has the effect of subtracting its first column
from the columns with indices in { i+1 | i ∈ I }, thus replacing

∑
c∈I(Fi)cj by

∑
c∈I(Fi)cj−fi

for all indices j ∈ I in the above representation. As these are the only entries that may
eventually be negative,

∑
c∈I(Fi)cj − fi > 0 for all j ∈ I implies well-definedness of M′′.

Note, however, that if all the fi’s introduced by the transformation Ψ are one, then the latter
condition is satisfied without further ado because, by assumption, all interpretation functions
of M are monotone with respect to >wI ; hence, for all j ∈ I,

∑
c∈I(Fi)cj is at least one

according to Lemma 4.1. Moreover, note that the top-left entry of each matrix occurring in
M′′ is positive since fi > 0. Consequently, all interpretation functions ofM′′ are monotone
with respect to >w{1}.

As to compatibility ofM′′ with R, let `→ r be an arbitrary rule in R, and let [α]M(`) =
L1α(x1) + · · ·+Lmα(xm) +~l and [α]M(r) = R1α(x1) + · · ·+Rmα(xm) +~r, where x1, . . . , xm
are the variables occurring in ` and r. Likewise, let [β]P(M)(`) = l1β(x1) + · · ·+ lmβ(xm),
where l1, . . . , lm ∈ N, and similarly for [β]P(M)(r). By compatibility ofM, we have ~l >wI ~r
and Li > Ri for i = 1, . . . ,m (cf. Lemma 4.4). Moreover, by Lemmata 5.2 and 5.6,

[γ]M′′(`) =
m∑
i=1

P

(
li 0
0 Li

)
P−1γ(xi) + P

(
0
~l

)
for γ : V → Nn+1, x 7→

(
β(x)
α(x)

)
.

Therefore, [γ]M′′(`) >w{1} [γ]M′′(r) holds for all variable assignments γ if and only if

P

(
0
~l

)
>w{1} P

(
0
~r

)
and P

(
li − ri 0

0 Li −Ri

)
P−1 > 0 for i = 1, . . . ,m.

The first condition follows directly from ~l >wI ~r and the shape of P . Concerning the second
condition, we first rewrite the corresponding matrix to(

li − ri
∑
c∈I(Li −Ri)c1 · · ·

∑
c∈I(Li −Ri)cn

0 (Li −Ri)−1 · · · (Li −Ri)−n

)
P−1.

Using the fact that Li > Ri, the entire matrix is non-negative if and only if, for i = 1, . . . ,m,
li > ri and

∑
c∈I(Li −Ri)cj > li − ri for all j ∈ I.

Based on these observations, we establish the following lemma.

I Lemma 5.13. LetM be an n-dimensional matrix interpretation over >wI , I ⊆ {1, . . . , n},
such that |I| > 1, and let R be a TRS satisfying R ⊆ <P(M). Moreover, assume that for
each k-ary function symbol f , all column sums of each (Fi)I are greater than or equal to
fi for all i ∈ {1, . . . , k}, and that for each `→ r ∈ R, all column sums of each (Li −Ri)I
are greater than or equal to li − ri for all i ∈ {1, . . . ,m}. Then compatibility of R with
M implies compatibility with an (n+ 1)-dimensional matrix interpretation over >wJ , where
|J | = 1, J ⊆ {1, . . . , n+ 1}. J

I Corollary 5.14. LetM be an n-dimensional matrix interpretation over >wI , I ⊆ {1, . . . , n},
such that |I| > 1, and let R be a non-duplicating TRS. Moreover, assume that for each
` → r ∈ R, all column sums of each (Li −Ri)I are greater than or equal to li − ri for
all i ∈ {1, . . . ,m}. Then compatibility of R with M implies compatibility with an (n+ 1)-
dimensional matrix interpretation over >wJ , where |J | = 1, J ⊆ {1, . . . , n+ 1}.

Proof. Setting all the fi’s introduced by Ψ(M) to one, the condition R ⊆ <P(M) becomes
equivalent to R being non-duplicating according to Lemma 5.7. Moreover, all column sums
of each (Fi)I are greater than or equal to fi = 1 because all interpretation functions ofM
are monotone with respect to >wI . J

RTA’11

262 Matrix Interpretations

By restricting the class of non-duplicating TRSs further, we can get rid of the condition
that all column sums of (Li −Ri)I are greater than or equal to li − ri.

I Corollary 5.15. Let R be a TRS, such that for all `→ r ∈ R, |`|x = |r|x for all variables x.
Then compatibility of R with an n-dimensional matrix interpretation over >wI , where |I| > 1
and I ⊆ {1, . . . , n}, implies compatibility with an (n+ 1)-dimensional matrix interpretation
over >wJ , where |J | = 1, J ⊆ {1, . . . , n+ 1}. J

I Remark. Let all the fi’s introduced by Ψ(M) be one. Then, in the situation of Lemma 5.13,
if M is compatible with R, then, no matter whether the other preconditions mentioned
in the lemma are satisfied or not,M′′ always establishes termination of R by proving the
absence of infinite rewrite sequences of ground terms. This can be seen as follows. Assume
to the contrary that t1 → t2 → t3 → · · · is such an infinite sequence. By Corollaries 5.3 and
5.5, we have

[γ]M′′(ti) = P · [γ]Ψ(M)(ti) = P ·
(

0
[α]M(ti)

)
=
(∑

c∈I([α]M(ti))c
[α]M(ti)

)
From this and from compatibility ofM with R, we conclude that [γ]M′′(ti) >w{1} [γ]M′′(ti+1)
holds for all i ∈ N \ {0} because of [α]M(ti) >wI [α]M(ti+1). However, this contradicts
well-foundedness of >w{1}.

6 Matrix Interpretations and Non-weakly Decreasing Orders

In this section we investigate the usefulness of the orders >Σ, >`, >m and >I (where I is
a singleton set) introduced in Subsection 3.2 for building matrix interpretations on top of
them. As these orders originated from the orders introduced in Definition 3.1 by dropping
the property of weak decreasingness, each of them obviously subsumes its ancestor, e.g.,
>wΣ ⊂ >Σ, so that one is tempted to believe that these more general base orders would
induce more powerful kinds of matrix interpretations. However, as already mentioned at
the end of Section 4, an inclusion like >wΣ ⊂ >Σ does not necessarily propagate to the
corresponding notions of matrix interpretations because of the monotonicity requirement all
interpretation functions have to satisfy. Indeed, it turns out that the monotonicity conditions
with respect to >Σ, >`, >m and >I are much stronger than the ones associated with their
respective weakly decreasing counterparts, ultimately resulting in weaker notions of matrix
interpretations. In particular, we will see that matrix interpretations over >I and >Σ are
equivalent to linear polynomial interpretations.

As already mentioned in Subsection 3.2, all four orders are equal to >N when the dimension
n is one. Hence, matrix interpretations based on them are at least as powerful as linear
polynomial interpretations. Next we show that matrix interpretations over >I and >Σ
are no more powerful than linear polynomial interpretations. Since matrix interpretations
are invariant under permutations, we consider the index set I = {1} without loss of any
generality.

I Lemma 6.1. Let f(~x1, . . . , ~xk) =
∑k
i=1 Fi~xi + ~f , where ~f ∈ Nn and F1, . . . , Fk ∈ Nn×n.

Then f(~x1, . . . , ~xk) is monotone with respect to >{1} if and only if for each Fi, i = 1, . . . , k,
(Fi)11 > 1 and (Fi)12 = · · · = (Fi)1n = 0. J

Intuitively, this means that the first component of a function application f(~x1, . . . , ~xk)
only depends on the respective first components of its arguments, not on the other compon-
ents. Based on this observation and the fact that for comparisons with >{1} only the first

F. Neurauter and A. Middeldorp 263

components matter, we associate the following linear polynomial interpretation P with a given
matrix interpretationM over >{1}. For each k-ary function symbol f , if fM(~x1, . . . , ~xk) =∑k
i=1 Fi~xi + ~f is its interpretation in M, with all matrices satisfying the conditions of

Lemma 6.1, then we define its P-interpretation as fP(x1, . . . , xk) =
∑k
i=1(Fi)11 xi + (~f)1,

which is monotone because (Fi)11 > 1. By construction, the P-interpretation of an arbit-
rary term coincides with the first component of itsM-interpretation. The straightforward
induction proof is omitted.

I Lemma 6.2. LetM be a matrix interpretation over >{1} of dimension n, P the associated
linear polynomial interpretation as described above and t an arbitrary term. Then for any
variable assignment α : V → Nn, π1([α]M(t)) = [π1 ◦α]P(t), where π1 projects a vector to its
first component. J

Therefore, any rewrite rule `→ r that is orientable byM, is also orientable by P (since
π1 ◦ α covers all assignments V → N), which shows that matrix interpretations over >{1}
(>I) are no more powerful than linear polynomial interpretations. The following lemma
states that this is also the case for matrix interpretations over >Σ.

I Lemma 6.3. Let f(~x1, . . . , ~xk) =
∑k
i=1 Fi~xi + ~f , where ~f ∈ Nn and F1, . . . , Fk ∈ Nn×n.

Then f(~x1, . . . , ~xk) is monotone with respect to >Σ if and only if for each Fi, i = 1, . . . , k,
all column sums are equal and at least one. J

In analogy to the treatment of matrix interpretations over >{1}, given an n-dimensional
matrix interpretationM over >Σ, we again associate a linear polynomial interpretation P
withM as follows. For each k-ary function symbol f , if fM(~x1, . . . , ~xk) =

∑k
i=1 Fi~xi + ~f is

its interpretation inM, with all matrices satisfying the conditions of Lemma 6.3, then its
P-interpretation is defined as fP(x1, . . . , xk) =

∑k
i=1 F

Σ
i xi +

∑n
j=1(~f)j , where FΣ

i denotes
the column sum of Fi, which is equal for all columns of Fi and at least one; hence, fP is
monotone. By construction, the P-interpretation of an arbitrary term coincides with the
sum of the components of itsM-interpretation.

I Lemma 6.4. LetM be a matrix interpretation over >Σ of dimension n, P the associated
linear polynomial interpretation as described above and t an arbitrary term. Then for any
variable assignment α : V → Nn,

∑n
j=1 ([α]M(t))j = [α′]P(t), where α′(x) =

∑n
j=1(α(x))j

for all x ∈ V. J

So, if a rewrite rule `→ r is orientable byM, i.e., [α]M(`) >Σ [α]M(r) for all variable
assignments α, then it is also orientable by P (since α′ covers all assignments V → N), which
shows that matrix interpretations over >Σ are no more powerful than linear polynomial
interpretations.

Finally, concerning matrix interpretations over >m and >`, the situation is similar as
for >Σ and >I . That is to say that the respective monotonicity conditions are too strong,
thus reducing the set of potential interpretation functions down to a size that renders matrix
interpretations over >m and >` useless. For example, one can show that for monotonicity
of a function A~x + ~b with respect to >m, it is necessary that the matrix A satisfies the
conditions of Lemma 6.3, that is, all column sums of A must be equal and at least one; e.g.,
by considering vectors ~x and ~y, such that all components of ~y are equal to some y ∈ N and ~x
is zero everywhere except for its j-th component, j ∈ {1, . . . , n}, which contains the value
y + 1. Similarly, one can show that for monotonicity of A~x +~b with respect to >`, it is
necessary that all column vectors of A are non-zero and have the same (Euclidean) length;
e.g., for dimension 2 and higher, by considering vectors ~x = (y ∓ 1, y ± 1, 0, . . . , 0)T and

RTA’11

264 Matrix Interpretations

~y = (y, y, 0, . . . , 0)T , where y ∈ N \ {0}. However, these conditions are not sufficient. Even if
A is the identity matrix, A~x+~b is not necessarily monotone with respect to >`.

7 Improved Matrix Interpretations

According to the results presented in Section 5, in theory the various instances of matrix
interpretations over >wI are all equivalent somehow with respect to termination proving
power if there is no bound on the dimension of the matrices. In practice, however, due
to computational restrictions the dimension is limited. But then the various instances of
matrix interpretations over >wI are incomparable as witnessed by Example 5.1 and by the
experiments we performed. Therefore, an implementation should try all instances (cf. also
[3]). Apart from parallelization, one could try to combine the constraints associated with
each instance into a single disjunctive constraint and let the constraint solver figure out which
instance to pursue. This approach was chosen in [3]. However, according to our experiments,
it does not yield an efficient implementation (cf. experimental results below). Therefore, we
propose a different approach, which generalizes traditional matrix interpretations.

Given some signature F , we define an F-algebraM with carrier Nn, where each k-ary
function symbol f ∈ F is interpreted by a linear function as in Definition 4.2 (without the
monotonicity requirement). Concerning monotonicity, we demand that

all functions are monotone with respect to >wI1
, or

all functions are monotone with respect to >wI2
, or

...
all functions are monotone with respect to >wIn .

Compatibility with a given TRS R is established by demanding that for every rewrite rule
`→ r ∈ R, [α]M(`) >wI1

[α]M(r) for all variable assignments α; i.e., every rewrite rule gives
rise to a strict decrease in the first components of the vectors associated with it.

Clearly, if all interpretation functions of M are monotone with respect to >wI1
, then

M corresponds to a traditional matrix interpretation [4]. More generally, M always is a
matrix interpretation over >wId , d ∈ {1, . . . , n}, in the sense of Definition 4.2 because of the
inclusions >wI1

⊂ >wI2
⊂ · · · ⊂ >wIn .

Next we provide some experimental data. We implemented the variants of matrix
interpretations considered in this paper in the termination prover TTT2 [11] and analyzed
their performance on TPDB3 version 7.0.2. All tests have been performed on a laptop
equipped with 2 GB of main memory and one dual-core INTEL® Core 2 Duo T7500 processor
running at a clock rate of 2.2 GHz with a time limit of 60 seconds per system.4

Table 1 summarizes our results for establishing direct termination (using matrix inter-
pretations as a stand-alone method). We searched for matrix interpretations of dimensions
two and three by encoding the constraints as an SMT problem (quantifier-free non-linear
arithmetic), which is solved by bit-blasting. The table lists the number of bits used to
represent matrix/vector coefficients, the number of bits for intermediate results is one higher
than that. The entry >ext

{1} in the first column refers to the notion of matrix interpretations
presented above, whereas the entry [3] refers to the approach proposed in [3]. For the
experiments presented in the table the time limit was hardly ever consumed. Typically, a
termination proof is obtained in about 2 (5) seconds for dimension 2 (3). For dimensions 4

3 Termination Problems Data Base, http://termcomp.uibk.ac.at.
4 For full details see http://colo6-c703.uibk.ac.at/ttt2/fn/matrix.

http://termcomp.uibk.ac.at
http://colo6-c703.uibk.ac.at/ttt2/fn/matrix

F. Neurauter and A. Middeldorp 265

Table 1 Experimental results for various matrix interpretations.

method dimension # bits SCORE

>wI1 2 3 242

>wI2 2 3 247

>ext
{1} 2 3 254

[3] 2 3 250

method dimension # bits SCORE

>wI1 3 2|3 266|285

>wI2 3 2|3 252|264

>wI3 3 2|3 249|269

>ext
{1} 3 2|3 276|287

[3] 3 2|3 267|270

and higher, however, there are many more timeouts, resulting in inferior performance scores;
e.g., for matrix interpretations over >wI1

of dimension 4 (with 3 bits) one loses more than 40
of the 285 systems for dimension 3.

8 Conclusion and Future Work

In this paper we studied various alternative well-founded orders on vectors of natural numbers
based on vector norms. Most of them turned out to be equivalent to or subsumed by an
instance of >wI , an order which already appeared in [3]. In this respect, our main contribution
are the theoretical comparisons presented in Section 5, as well as the variant of matrix
interpretations introduced in Section 7. We do note, however, that the situation is altogether
different when switching from the natural numbers to the rationals and reals. Then it is not
the case anymore that almost all of the orders of Section 3 (suitably adapted) are equivalent.
In particular, one could imagine interpretation functions, all of whose matrices have entries
less than one, but which are still monotone. We leave this issue for the near future. In this
context, we also mention the recent work of Lucas [12] where an attempt is made to simulate
matrix interpretation over the rationals by an interpretation over the naturals.

We also plan to investigate on the ramifications of the kinds of matrix interpretations
proposed in this paper with respect to recent results on the derivational complexity of
TRSs [13]. For example, if a matrix has a diagonal of all zeros, then its trace, the sum of the
diagonal entries, is also zero. As the trace of a matrix is the sum of its eigenvalues, which
have been shown to be the determining factor for the derivational complexity of TRSs, a
lower trace might be beneficial in this context.

In the near future work we will address alternative matrix interpretations in the context of
the DP framework [6], where it suffices to consider weakly monotone algebras. A well-founded
weakly monotone F-algebra (A, >,&) is an F -algebra A equipped with two relations >, & on
A, such that > is well-founded, > ·& ⊆ >, and for every f ∈ F , fA is monotone with respect
to &. If, in addition, fA is also monotone with respect to > (for every f ∈ F), then we
obtain an extended monotone F-algebra [4], the analogon of well-founded monotone algebras
in the context of relative termination.

Based on the results of the previous sections, the following instances of a weakly monotone
algebra (Nn, >,&), where & = >w and (1) > = >wI for I = {1, . . . , n}, (2) > = >Σ, (3)
> = >m, or (4) > = >` need to be considered. As to the first instance, we note that
> is the strict part of & according to Lemma 3.3. Yet this is exactly the case that is
considered in [4], apart from a refinement that reduces the search space in an implementation.
Moreover, by Corollary 3.4, no other weakly decreasing orders need to be considered for
>. However, observing that weak decreasingness is not really needed to obtain a weakly
monotone algebra, one might as well drop it, thus obtaining a weakly monotone algebra,

RTA’11

266 Matrix Interpretations

where > = >Σ (instance (2) above), which is a proper generalization of the first one since
>wI = >wΣ ⊂ >Σ (cf. Lemma 3.3). Similarly, one can use the non-weakly decreasing orders
>m and >` to obtain other instances of weakly monotone algebras. They are all incomparable
since >Σ, >m and >` are so.

Acknowledgements We thank Bertram Felgenhauer for his helpful comments in the early
stages of this work.

References
1 B. Alarcón, S. Lucas, and R. Navarro-Marset. Proving termination with matrix interpret-

ations over the reals. In Proc. 10th International Workshop on Termination (WST 2009),
pages 12–15, 2009.

2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

3 P. Courtieu, G. Gbedo, and O. Pons. Improved matrix interpretation. In Proc. 36th
International Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM 2010), volume 5901 of LNCS, pages 283–295, 2010.

4 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination
of term rewriting. Journal of Automated Reasoning, 40(2–3):195–220, 2008.

5 A. Gebhardt, D. Hofbauer, and J. Waldmann. Matrix evolutions. In Proc. 9th International
Workshop on Termination (WST 2007), pages 4–8, 2007.

6 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Combin-
ing techniques for automated termination proofs. In Proc. 11th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 11), volume 3452
of LNAI, pages 301–331, 2005.

7 D. Hofbauer. Termination proofs by context-dependent interpretations. In Proc. 12th
International Conference on Rewriting Techniques and Applications (RTA 2001), volume
2051 of LNCS, pages 108–121, 2001.

8 D. Hofbauer and J. Waldmann. Termination of {aa→ bc, bb→ ac, cc→ ab}. Information
Processing Letters, 98(4):156–158, 2006.

9 D. Hofbauer and J. Waldmann. Termination of string rewriting with matrix interpretations.
In Proc. 17th International Conference on Rewriting Techniques and Applications (RTA
2006), volume 4098 of LNCS, pages 328–342, 2006.

10 R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1990.
11 M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2. In

Proc. 20th International Conference on Rewriting Techniques and Applications (RTA 2009),
volume 5595 of LNCS, pages 295–304, 2009.

12 S. Lucas. From matrix interpretations over the rationals to matrix interpretations over the
naturals. In Proc. 10th International Conference on Artificial Intelligence and Symbolic
Computation (AISC 2010), volume 6167 of LNCS, pages 116–131, 2010.

13 F. Neurauter, H. Zankl, and A. Middeldorp. Revisiting matrix interpretations for polyno-
mial derivational complexity of term rewriting. In Proc. 17th International Conference on
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 17), volume 6397 of
LNCS, pages 550–564, 2010.

14 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

15 H. Zankl and A. Middeldorp. Satisfiability of non-linear (ir)rational arithmetic. In Proc.
16th International Conference on Logic for Programming, Artificial Intelligence, and Reas-
oning (LPAR 16), volume 6355 of LNCS, 2010.

Soundness of Unravelings for Deterministic
Conditional Term Rewriting Systems via
Ultra-Properties Related to Linearity
Naoki Nishida1, Masahiko Sakai1, and Toshiki Sakabe1

1 Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, 4648603 Nagoya, Japan
{nishida,sakai,sakabe}@is.nagoya-u.ac.jp

Abstract
Unravelings are transformations from a conditional term rewriting system (CTRS, for short)
over an original signature into an unconditional term rewriting systems (TRS, for short) over
an extended signature. They are not sound for every CTRS w.r.t. reduction, while they are
complete w.r.t. reduction. Here, soundness w.r.t. reduction means that every reduction sequence
of the corresponding unraveled TRS, of which the initial and end terms are over the original
signature, can be simulated by the reduction of the original CTRS. In this paper, we show that
an optimized variant of Ohlebusch’s unraveling for deterministic CTRSs is sound w.r.t. reduction
if the corresponding unraveled TRSs are left-linear or both right-linear and non-erasing. We also
show that soundness of the variant implies that of Ohlebusch’s unraveling.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases conditional term rewriting, program transformation

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.267

Category Regular Research Paper

1 Introduction

Unravelings are transformations from a conditional term rewriting system (CTRS, for short)
over an original signature into an unconditional term rewriting system (TRS, for short) over
an extended signature, that are complete for every CTRS w.r.t. the simulation of reduction
sequences of the CTRS [11], i.e., every reduction sequence of the CTRS can be simulated by
the reduction of the corresponding unraveled TRS. The unraveled TRSs are approximations
of the original CTRSs and they are useful in analyzing properties of the CTRSs, such as
syntactic properties, modularity and operational termination, since TRSs are much easier
to handle than CTRSs. Marchiori has proposed unravelings for join and normal CTRSs in
order to analyze ultra-properties and modularity of the CTRSs [11], and he has also proposed
an unraveling for deterministic CTRSs (DCTRS, for short) [12]. Ohlebusch has presented
an improved variant of Marchiori’s unraveling for DCTRSs in order to analyze termination
of logic programs [20]. Termination of the unraveled TRSs is a practical sufficient-condition
for proving operational termination of the original CTRSs [10]. A variant of Ohlebusch’s
unraveling for DCTRSs has been proposed in [14] and [4] (cf. [19, 18, 3]). This variant is
sometimes called optimized in the sense that the variable-carrying arguments of U symbols
introduced via the application of the unraveling are optimized.

Although the mechanism of unconditional rewriting is much simpler than that of condi-
tional rewriting, the reduction of the unraveled TRSs has never been used as an alternative

© Naoki Nishida, Masahiko Sakai, and Toshiki Sakabe;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 267–282

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.267
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

268 Soundness of Unravelings for Deterministic CTRSs via Ultra-Properties

to that of the original CTRSs in order to simulate reduction sequences of the CTRSs. This is
because unravelings are not sound for every CTRS w.r.t. reduction [11, 20]. Here, soundness
w.r.t. reduction (simply, soundness) means that every reduction sequence of the unraveled
TRSs, of which the initial and end terms are over the original signatures, can be simulated
by the reduction of the original CTRSs [11]. It has been shown that unravelings are sound if
the unraveled TRSs satisfy some syntactic properties or if appropriate reduction strategies
are introduced to the reduction of the unraveled TRSs. Marchiori has shown in [11] that
his unravelings for join and normal CTRSs are sound for left-linear ones, and he has also
shown in [12] that his unraveling for DCTRSs is sound for semi-linear DCTRSs. Nishida et
al. have shown in [19] that the combined reduction restriction of the membership [25] and
context-sensitive [9] conditions that are determined via the application of the optimized un-
raveling is sufficient for soundness. Schernhammer and Gramlich have shown in [23, 22] that
a similar context-sensitive restriction is sufficient for soundness of Ohlebusch’s unraveling.
Gmeiner et al. have shown in [5] that Marchiori’s unraveling for normal CTRSs is sound for
confluent, non-erasing or weakly left-linear ones. They have also given a discussion what
properties are necessary or sufficient for soundness.

In this paper, we show two sufficient syntactic-conditions of DCTRSs for soundness
of the optimized unraveling. One is ultra-left-linearity w.r.t. the unraveling, i.e., that the
unraveled TRSs are left-linear. The other is the combination of ultra-right-linearity and
ultra-non-erasingness w.r.t. the unraveling, i.e., that the unraveled TRSs are right-linear
and non-erasing. We also provide necessary and sufficient syntactic-conditions of DCTRSs
in which the corresponding unraveled TRSs are left-linear, right-linear and non-erasing,
respectively. Finally, we show that soundness of the optimized unraveling implies that of
Ohlebusch’s unraveling, i.e., if the optimized one is sound for a DCTRS, then Ohlebusch’s
one is also sound for the DCTRS. A main difference to the preliminary version [17] is the
result on the relationship with Ohlebusch’s unraveling.

The optimized unraveling in this paper is employed in the inversion compilers for con-
structor TRSs [14, 19, 18]. The compilers transform a constructor TRS into a DCTRS
defining inverses of functions defined in the constructor TRS and then unravel it into a
TRS (see Example 3.3). The resulting TRS may have extra variables since the interme-
diate DCTRS may have extra variables that occur in the right-hand side but not in the
conditional part. For this reason, this paper allows TRSs to have extra variables (called
EV-TRS). It is allowed to instantiate extra variables with arbitrary terms in applying re-
write rules. Since many instantiated terms of extra variables are meaningless and sometimes
cause non-termination, we focus on meaningful derivations by giving a restriction to reduc-
tion sequences of the resulting TRS. The restriction, called EV-basicness [16, 14, 17], is a
relaxed variant of the basicness property [7, 13] of reduction sequences: if a TRS has extra
variables, then any redex introduced by extra variables is not reduced anywhere in reduc-
tion sequences. Roughly speaking, in applying the inversion compilers, the resulting TRS is
often right-linear (left-linear, resp.) if the input constructor TRS is left-linear (right-linear,
resp.). Moreover, the resulting TRS is usually non-erasing if the target function is injective.
Note that injective functions are the most interesting targets of program inversion. For
these reasons, the sufficient conditions shown in this paper are very practical because they
guarantee that the resulting TRS is definitely an inverse of the given constructor TRS.

As described above, Ohlebusch’s unraveling is sound for any DCTRS if we introduce
the particular context-sensitive restriction to the reduction of the corresponding unraveled
TRSs. However, characterizing sufficient syntactic-properties for soundness without the
restriction to the reduction is important for the use of the unraveled TRSs instead of the

N. Nishida, M. Sakai, and T. Sakabe 269

original CTRSs since the context-sensitivity makes the reduction more complicated than
the ordinary reduction. Moreover, if the unraveling is sound for the resulting TRS obtained
by the inversion compilers [14, 19, 18] without context-sensitivity, then we can apply the
restricted completion [15] to the resulting TRS in order to make it convergent. Note that
when the target of the inversion compilers are injective functions, convergence of the resulting
TRSs is desirable. For these reasons, soundness of unravelings without any restriction to
the reduction is important in employing the reduction of the unraveled TRSs instead of that
of the original CTRSs.

Finally, we briefly describe a related work that is not mentioned above. Serbanuta and
Rosu have proposed a sound and complete transformation of left-linear or ground-confluent
DCTRSs into TRSs where function symbols in the original signatures are completely ex-
tended, increasing their arities [24]. Their transformation is based on Viry’s approach [26]
that is another direction of developing transformations of CTRSs to TRSs. Rules produced
by this transformation are much more complicated than those produced by unravelings.
Moreover, it is not easy to know if DCTRSs are ground-confluent.

This paper is organized as follows. In Section 2, we review basic notions and notations
of term rewriting. In Section 3, we review unravelings for DCTRSs and syntactic properties
related to DCTRSs and the corresponding unraveled TRSs. In Section 4, we show the main
results of this paper, i.e., the optimized unraveling for DCTRSs is sound if the corresponding
unraveled TRSs are left-linear or both right-linear and non-erasing. We also show that these
results hold for Ohlebusch’s unraveling. In Section 5, we briefly describe future work on
soundness of unravelings.

2 Preliminaries

In this section, we review basic notions and notations of term rewriting [2, 21].
Throughout the paper, we use V as a countably infinite of variables. Let F be a signature,

a finite set of function symbols each of which has its own fixed arity that is denoted by ar(f)
for a function symbol f . The set of terms over F and V is denoted by T (F ,V), and the set
of variables appearing in any of terms t1, · · · , tn is denoted by Var(t1, · · · , tn). The identity
of terms s and t is written by s ≡ t. A term is called linear if any variable occurs in the term
at most once. The set of positions of a term t is denoted by Pos(t). The sets of positions for
function symbols and for variables in t are denoted by PosF (t) and PosV(t), respectively.
For a term t and a position p of t, the notation t|p represents the subterm of t at the position
p. The function symbol at the root position ε of term t is denoted by root(t). Given an n-hole
context C[] with parallel positions p1, · · · , pn, the notation C[t1, · · · , tn]p1,··· ,pn represents
the term obtained by replacing each occurrence of hole � at position pi with term ti for all
1 ≤ i ≤ n. We may omit the subscription p1,··· ,pn . For positions p and p′ of a term, we write
p′ ≥ p if p is a prefix of p′ (i.e., there exists a q′ such that pq = p′). Moreover, we write p′
> p if p is a proper prefix of p′.

The domain and range of a substitution σ are denoted by Dom(σ) and Ran(σ), respect-
ively. We may denote σ by {x1 7→ t1, · · · , xn 7→ tn} if Dom(σ) = {x1, · · · , xn} and σ(xi)
≡ ti for all 1 ≤ i ≤ n. For a signature F , the set of substitutions whose domains are over
F and V is denoted by Sub(F ,V): Sub(F ,V) = {σ | Ran(σ) ⊆ T (F ,V)}. The application
σ(t) of a substitution σ to a term t is abbreviated to tσ. Given a set X of variables, σ|X
denotes the restricted substitution of σ w.r.t. X: σ|X = {x 7→ xσ | x ∈ Dom(σ) ∩X}. The
composition σθ of substitutions σ and θ is defined as xσθ = (xσ)θ.

An oriented conditional rewrite rule over a signature F is a triple (l, r, c), denoted by

RTA’11

270 Soundness of Unravelings for Deterministic CTRSs via Ultra-Properties

l → r ⇐ c, such that the left-hand side l is a non-variable term in T (F ,V), the right-hand
side r is a term in T (F ,V), and the conditional part c is a sequence s1 � t1; · · · ; sk � tk
(k ≥ 0) where all of s1, t1 · · · , sk, tk are terms in T (F ,V). In particular, the rewrite rule
is called unconditional if the conditional part is the empty sequence (i.e., k = 0), and we
may abbreviate it to l → r. The rewrite rule is called extended if the condition “l 6∈ V”
is not imposed. We sometimes attach a unique label ρ to the rewrite rule l → r ⇐ c by
denoting ρ : l→ r ⇐ c, and we use the label to refer to the rewrite rule. The set of variables
in c and in ρ are denoted by Var(c) and Var(ρ), respectively: Var(s1 � t1; · · · ; sk � tk)
= Var(s1, t1, · · · , sk, tk) and Var(ρ) = Var(l, r, c). A variable occurring in r or c is called
an extra variables of the rule ρ if it does not occur in l. The set of extra variables of ρ is
denoted by EVar(ρ): EVar(ρ) = Var(r, c) \ Var(l).

An oriented conditional term rewriting system (CTRS, for short) over a signature F is a
finite set of oriented conditional rewrite rules over F . In particular, a CTRS is called an EV-
TRS if all of its rules are unconditional, and called an extended CTRS (eCTRS, for short)
if the condition “l 6∈ V” of conditional rewrite rules is not imposed. Moreover, a CTRS is
called an (unconditional) term rewriting system (TRS, for short) if every rule l → r ⇐ c in
it is unconditional and satisfies Var(l) ⊇ Var(r). Note that an eCTRS is called an eTRS if
all of its rules are unconditional. For an eCTRS R, the n-level reduction relation →(n),R of
R is defined as follows: →(0),R = ∅, and →(i+1),R = →(i),R ∪{(C[lσ]p, C[lσ]p) | ρ : l→ r ⇐
s1 � t1; · · · ; sk � tk ∈ R, s1σ →∗(i),R t1σ, · · · , skσ →∗(i),R tkσ} where i ≥ 0 and →∗(i),R is
the reflexive and transitive closure of→(i),R. The reduction relation of R is defined as→R =⋃
n≥0 →(n),R. To specify the applied rule ρ and the position p, we may write→ρ,p,R or→p,R

instead of→R. Moreover, we may write→>ε,R instead of→ρ,p,R or→p,R if p > ε. The join
relation ↓R is defined as ↓R = {(s, t) | ∃u. s→∗R u ∧ t→∗R u}. The parallel reduction ⇒R is
defined as ⇒R = {(C[s1, · · · , sn]p1,··· ,pn , C[t1, · · · , tn]p1,··· ,pn) | s1 →R t1, · · · , sn →R tn}.
We may write ⇒>ε,R instead of ⇒R if pi > ε for all 1 ≤ i ≤ pn.

An (extended) conditional rewrite rule ρ : l→ r ⇐ c is called left-linear (LL, for short) if
l is linear, called right-linear (RL, for short) if r is linear, called non-erasing (NE, for short)
if Var(l) ⊆ Var(r), called non-collapsing if the right-hand side r is not a variable, and called
non-left-variable (non-LV, for short) if l is not a variable. An eCTRS is called left-linear
(right-linear, non-erasing, non-collapsing, non-left-variable, resp.) if all of its rules are left-
linear (right-linear, non-erasing, non-collapsing and non-LV, resp.). Note that a non-LV
eCTRS is a CTRS (i.e., it is not an extended one).

An (extended) conditional rewrite rule ρ : l→ r ⇐ s1 � t1; · · · ; sk � tk is called determ-
inistic if Var(si) ⊆ Var(l, t1, · · · , ti−1) for all 1 ≤ i ≤ k. An eCTRS is called deterministic
(eDCTRS, for short) if all of its rules are deterministic. The rule ρ is classified according to
the distribution of variables in the rule as follows: Type 1 if Var(r, s1, t1, · · · , sk, tk) ⊆ Var(l),
Type 2 if Var(r) ⊆ Var(l), Type 3 if Var(r) ⊆ Var(l, s1, t1, · · · , sk, tk), and Type 4 otherwise.
An e(D)CTRS is called a 1-e(D)CTRS (2-e(D)CTRS 3-e(D)CTRS, and 4-e(D)CTRS, resp.)
if all of its rules are Type 1 (Type 2, Type 3 and Type 4, resp.).

3 Unraveling for DCTRSs

In this section, we first recall an unraveling for DCTRSs proposed by Ohlebusch and its
optimized variant. Then, we show some syntactic properties related to the unraveled TRSs.
The unravelings and some results are extended to eDCTRSs.

A computable transformation U from eCTRSs into eTRSs is called an unraveling if for
every eCTRS R, ↓R ⊆ ↓U(R) and U(T ∪ R) = T ∪ U(R) whenever T is an eTRS [11, 12].

N. Nishida, M. Sakai, and T. Sakabe 271

Note that a sufficient condition for ↓R ⊆ ↓U(R) is →R ⊆ →∗U(R). For an eDCTRS R over a
signature F , the unraveling U is called sound w.r.t. reduction (simulation-sound [17, 19], or
simply sound) if→∗U(R) ⊆ →

∗
R on T (F ,V)×T (F ,V) (i.e., for any terms s and t in T (F ,V),

s →∗U(R) t implies s →∗R t).
For a finite set A = {a1, · · · , an},

−→
A denotes the unique sequence a1, · · · , an of elements

in A, following some fixed ordering ≺ such that a1 ≺ · · · ≺ an.

I Definition 3.1 (unraveling U [20]). Let R be an eDCTRS over a signature F . For every
conditional rule ρ : l→ r ⇐ s1 � t1; · · · ; sk � tk in R, we prepare k fresh function symbols
Uρ1 , · · · , U

ρ
k , called U symbols, that do not appear in F . We transform ρ into a set U(ρ) of

k + 1 unconditional rewrite rules as follows:

U(ρ) = { l→ Uρ1 (s1,
−→
X1), Uρ1 (t1,

−→
X1)→ Uρ2 (s2,

−→
X2), · · · , Uρk (tk,

−→
Xk)→ r }

where Xi = Var(l, t1, · · · , ti−1). Note that U(l′ → r′) = {l′ → r′}. U is extended to
eDCTRSs (i.e., U(R) =

⋃
ρ∈R U(ρ)) and U(R) is an eTRS over the extended signature

FU(R) where FU(R) = F ∪ {Uρi | ρ : l→ r ⇐ s1 � t1; · · · ; sk � tk ∈ R, 1 ≤ i ≤ k}.

It is clear that →R ⊆ →∗U(R) and U(T]R) = T ∪U(R) if T is unconditional. Thus, U is an
unraveling for eDCTRSs.

I Definition 3.2 (optimized unraveling Uopt [14, 4]). Let R be an eDCTRS over a signature
F . Introducing U symbols Uρ1 , · · · , U

ρ
k again, we transform ρ : l→ r ⇐ s1 � t1; · · · ; sk � tk

into a set Uopt(ρ) of k + 1 unconditional rewrite rules as follows:

Uopt(ρ) = { l→ Uρ1 (s1,
−→
X1), Uρ1 (t1,

−→
X1)→ Uρ2 (s2,

−→
X2), · · · , Uρk (tk,

−→
Xk)→ r }

where Xi = Var(l, t1, · · · , ti−1) ∩ Var(r, ti, si+1, ti+1, · · · , sk, tk). Note that Uopt(l′ → r′) =
{l′ → r′}. Uopt is extended to eDCTRSs (i.e., Uopt(R) =

⋃
ρ∈R Uopt(ρ)) and Uopt(R) is an

eTRS over the extended signature FUopt(R) where FUopt(R) = FU(R).

It is clear that Uopt is also an unraveling for eDCTRSs. Note that Xi in Definition 3.2
is the set of variables which appear in any of l, t1, · · · , ti−1 and also appear in any of
r, ti, si+1, ti+1, · · · , sk, tk, i.e., every variable in Xi is referred after si is considered. On
the other hand, Xi in Definition 3.1 is used for carrying all the variables that already ap-
pear. This is the only difference between U and Uopt and the reason why Uopt is sometimes
called an optimized variant of U. Note that all of the following are equivalent: R is in Type 3,
U(R) has no extra variable, and Uopt(R) has no extra variable.

I Example 3.3. Consider the following TRS defining addition and multiplication of natural
numbers encoded as 0, s(0), s(s(0)), · · · :

R1 =
{

0 + y→ y s(x) + y→ s(x + y)
0 × y→ 0 x × 0→ 0 s(x) × s(y)→ s((x × s(y)) +y)

}
This TRS is inverted to the following 4-DCTRS R2 [14, 19, 18] where +−1 and ×−1 are
function symbols that define the inverse relation of + and ×, respectively (i.e., +−1(sm+n(0))
→∗R2

tp2(sm(0), sn(0)) and ×−1(sm×n(0)) →∗R2
tp2(sm(0), sn(0))) and tp2 is a constructor

for representing tuples of two terms:

R2 =

+−1(y)→ tp2(0, y) +−1(s(z))→ tp2(s(x), y)⇐ +−1(z)� tp2(x, y)
×−1(0)→ tp2(0, y) ×−1(0)→ tp2(x, 0)

×−1(s(z))→ tp2(s(x), s(y))⇐ +−1(z)� tp2(w, y); ×−1(w)� tp2(x, s(y))

RTA’11

272 Soundness of Unravelings for Deterministic CTRSs via Ultra-Properties

This DCTRS is unraveled by U and Uopt as follows:

U(R2) =

+−1(y)→ tp2(0, y)
+−1(s(z))→ U1(+−1(z), z)

U1(tp2(x, y), z)→ tp2(s(x), y)
×−1(0)→ tp2(0, y)
×−1(0)→ tp2(x, 0)

×−1(s(z))→ U2(+−1(z), z)
U2(tp2(w, y), z)→ U3(×−1(w), z, w, y)

U3(tp2(x, s(y)), z, w, y)→ tp2(s(x), s(y))

Uopt(R2) =

+−1(y)→ tp2(0, y)
+−1(s(z))→ U1(+−1(z))

U1(tp2(x, y))→ tp2(s(x), y)
×−1(0)→ tp2(0, y)
×−1(0)→ tp2(x, 0)

×−1(s(z))→ U2(+−1(z))
U2(tp2(w, y))→ U3(×−1(w), y)

U3(tp2(x, s(y)), y)→ tp2(s(x), s(y))

Unravelings are not sound for every target (e)CTRS. The CTRS shown in the following

example is a counterexample against soundness of an unraveling proposed in [11], and also
of both U and Uopt.

I Example 3.4. Consider the following 3-DCTRS and its unraveled TRS:

R3 =
{

f(x)→ x⇐ x� e g(d, x, x)→ A a→ c b→ c c→ e k→ l
h(x, x)→ g(x, x, f(k)) d→m a→ d b→ d c→ l k→m

}
U(R3) = Uopt(R3) = { f(x)→ U4(x, x) U4(e, x)→ x · · · }

We have a reduction sequence of U(R3) from h(f(a), f(b)) to A but not a reduction sequence
of R3. Thus, neither U nor Uopt is sound for R3. We will observe the detail of the reduction
sequence in Subsection 4.1.

Soundness of U can be recovered by restricting the reduction of the unraveled TRSs to
the context-sensitive one [9] with the replacement mapping determined via the application of
U: U is sound for a 3-DCTRS R if the reduction of U(R) is restricted to context-sensitive re-
writing with the replacement mapping µ such that µ(Uρi) = {1} for any U symbol Uρi [23, 22].
This holds for Uopt by restricting the context-sensitive reduction to one with the membership
constraints [25] that x ∈ T (F ,V) for any variable x appearing in the left-hand sides of rules
in Uopt(R) [19]. Soundness of Uopt requires a more complicated restriction than U requires.
From this viewpoint, Uopt does not look an “optimized” variant of U.

To analyze syntactic relationships between eDCTRS and the corresponding unraveled
eTRSs, we recall ultra-properties of DCTRSs [11, 12], extending them to eDCTRSs.

I Definition 3.5 (ultra-property [11, 12]). Let P be a property on (extended) conditional
rewrite rules, and U be an unraveling. An (extended) conditional rewrite rule ρ is said to be
ultra-P w.r.t. U (U -P, for short) if all the rules in U(ρ) satisfy the property P. An eDCTRS
R is said to be ultra-P w.r.t. U if all the rules in R are ultra-P.

For example, U-LL, U-RL and U-NE denote ultra-left-linear w.r.t. U, ultra-right-linear w.r.t.
U and ultra-non-erasing w.r.t. U, respectively, and Uopt-LL, Uopt-RL and Uopt-NE denote
ultra-left-linear w.r.t. Uopt, ultra-right-linear w.r.t. Uopt and ultra-non-erasing w.r.t. Uopt,
respectively. Note that ultra-left-linearity w.r.t. U is the same as the semi-linearity in [12].

I Example 3.6. The DCTRS R2 in Example 3.3 is non-LV and non-collapsing w.r.t. both
U and Uopt but R2 is not U-LL, U-RL or U-NE, while R2 is Uopt-RL and Uopt-NE but not
Uopt-LL.

The ultra-LL, ultra-RL and ultra-NE properties w.r.t. Uopt are characterized by syntactic
properties of DCTRSs as follows.

N. Nishida, M. Sakai, and T. Sakabe 273

I Lemma 3.7 ([14, 18]). Let ρ : l→ r ⇐ s1 � t1; · · · ; sk � tk be an extended deterministic
conditional rewrite rule. Then, all of the following hold:

ρ is Uopt-LL iff all of l, t1, · · · , tk are linear and Var(ti)∩Var(l, t1, · · · , ti−1) = ∅ for all
1 ≤ i ≤ k,
ρ is Uopt-RL iff all of r, s1, · · · , sk are linear and Var(si)∩Var(r, ti, si+1, ti+1, · · · , sk, tk)
= ∅ for all 1 ≤ i ≤ k, and
ρ is Uopt-NE iff Var(l) ⊆ Var(r, s1, · · · , sk) and Var(ti) ⊆ Var(r, si+1, · · · , sk,) for all
1 ≤ i ≤ k.

The sufficient and necessary condition for the Uopt-NE property in Lemma 3.7 is equi-
valent to the one shown in [14, 18] that Var(l) ⊆ Var(r, s1, t1, · · · , sk, tk) and Var(ti) ⊆
Var(r, si+1, ti+1, · · · , sk, tk) for all 1 ≤ i ≤ k. Neither of the second nor third claims in
Lemma 3.7 holds for U (cf. Example 3.6), while the first one holds for U. Quite restricted
variants of the second and third claims hold for U.
I Lemma 3.8. Let ρ : l → r ⇐ s1 � t1; · · · ; sk � tk be an extended deterministic
conditional rewrite rule. Then, all of the following hold:

ρ is U-LL iff l, t1, · · · , tk are linear and Var(ti) ∩ Var(l, t1, · · · , ti−1) = ∅ for all 1 ≤ i

≤ k, (i.e., ρ is U-LL iff ρ is Uopt-LL),
ρ is U-RL iff r is linear and all of s1, · · · , sk are ground, and
ρ is U-NE iff Var(l, t1, · · · , tk) ⊆ Var(r).

By definition of U(ρ), it is clear that Lemma 3.8 holds. Due to Lemmas 3.7 and 3.8, we have
the following relationship between the ultra-RL and ultra-NE properties w.r.t. U and Uopt.
I Corollary 3.9. The U-RL and U-NE properties imply Uopt-RL and Uopt-NE, resp.

As for the non-collapsing and non-LV properties, we have the following relationships
between eDCTRSs and the corresponding unraveled eTRSs.
I Lemma 3.10. Let U be either U or Uopt, and ρ be an (extended) conditional rewrite rule.
Then, ρ is non-collapsing (non-LV, resp.) iff U(ρ) is non-collapsing (non-LV, resp.). Thus,
an eDCTRS R is non-collapsing (non-LV, resp.) iff U(R) is non-collapsing (non-LV, resp.).
By definition, it is clear that Lemma 3.10 holds. It follows from Lemma 3.10 that for both
U and Uopt, the non-LV and non-collapsing properties are equivalent to the ultra-non-LV
and ultra-non-collapsing properties, respectively.

4 Soundness without Context-Sensitivity

In this section, we first show that the unraveling Uopt is sound for a Uopt-LL DCTRS if
the reduction of the corresponding unraveled EV-TRS is restricted to EV-basic ones (see
Definition 4.2). Then, we show that Uopt is sound for DCTRSs that are both Uopt-RL and
Uopt-NE. Finally, we show that these claims also hold for the unraveling U. In the rest of
this paper, we may write the terminology “RL-NE” for “right-linear and non-erasing”, and
may also write the terminology “ultra-RL-NE w.r.t. an unraveling U” (U -RL-NE, for short)
for “ultra-RL and ultra-NE w.r.t. U”.

4.1 Observation of Unsoundness
To begin with, we discuss why Uopt is not sound for R3 in Example 3.4. Consider the detail
of the derivation h(f(a), f(b)) →∗Uopt(R3) A:

h(f(a), f(b))→∗Uopt(R3) h(U4(c, d),U4(c, d))→∗Uopt(R3) g(U4(c, d),U4(c, d), f(k))
→∗Uopt(R3) g(d,U4(l,m),U4(l,m))→Uopt(R3) A

RTA’11

274 Soundness of Unravelings for Deterministic CTRSs via Ultra-Properties

To succeed in this derivation, the following subderivations are necessary:
to apply the rule g(d, x, x)→ A, the subterm f(a) in the initial term is reduced to d,
to apply the rule h(x, x) → g(x, x, f(k)), both the subterms f(a) and f(b) in the initial
term are reduced to the same term, and
to apply the rule g(d, x, x)→ A, both the subterm f(b) in the initial term and the term
f(k) derived from the application of h(x, x)→ g(x, x, f(k)) are reduced to the same term.

In summary, all of the terms f(a), f(b) and f(k) have to be reduced to the same term d.
However, this is impossible on the reduction of R3. Nevertheless, in the above derivation,
h(x, x)→ g(x, x, f(k)) is applied after reducing f(a) and f(b) to U4(c, d); one of U4(c, d) that
comes from f(a) is reduced to d, and the other U4(c, d) that comes from f(b) is reduced to
U4(l,m) in order to be the same with f(k); finally, g(d, x, x)→ A is applied. These undesired
subderivations must be caused by the non-right-linear rule h(x, x) → g(x, x, f(k)) and the
erasing rule g(d, x, x)→ A in Uopt(R3). This is because

the application of h(x, x)→ g(x, x, f(k)) to h(U4(c, d),U4(c, d)) keeps two occurrences of
U4(c, d) that are intermediate states of evaluating f(a) and f(b), respectively, and each
of them has a capability to be reduced to a different term later though they should be
the same, and
g(d, x, x)→ A erases the two occurrences of U4(l,m) as if they come from the same term
(in fact, they come from the terms f(b) and f(k), respectively, that should be reduced to
different terms).

Viewed in this light, it is conjectured that the combination of right-linearity and non-
erasingness of the unraveled TRSs is a sufficient condition for soundness of Uopt.

On the other hand, left-linearity of the unraveled TRSs also seems a sufficient condition
for soundness of Uopt. A positive witness is that the unravelings for join and normal CTRSs
are sound for left-linear CTRSs [11, 5] and Marchiori’s unraveling for 3-DCTRSs is sound for
Uopt-LL ones [12]. In addition, left-linearity of the unraveled TRSs seems another solution
to avoid the problem mentioned above. Thus, it is conjectured that left-linearity of the
unraveled TRSs is a sufficient condition for soundness of Uopt.

In the next two subsections, we will prove these two conjectures above. We first show
the case of left-linearity since the other case can be reduced to soundness under the left-
linearity case, by transforming a DCTRS into the inverted one. The key features are that
the inverted one is Uopt-LL if the DCTRS is Uopt-RL, and that the unraveled TRS of the
inverted one is equivalent to the inverted unraveled TRS of the DCTRS if the DCTRS is
Uopt-NE. The converse of this approach is impossible since the second key feature needs the
Uopt-NE property (i.e., every Uopt-LL DCTRS does not imply the Uopt-NE property of the
corresponding inverted DCTRS).

4.2 Soundness on Ultra-Left-Linearity
In this subsection, we show that the optimized unraveling Uopt is sound for Uopt-LL DCTRSs
if the reduction of the unraveled TRSs is restricted to the EV-basic one (see Definition 4.2).
Roughly speaking, in an EV-basic reduction sequence, any redex introduced via extra vari-
ables at the application of rewrite rules is never reduced anywhere. Note that for eTRSs
having no extra variables, the EV-basic property is not a restriction at all, since all of their
reduction sequences are EV-basic. In practical cases (e.g., inverse TRSs [14, 19, 18, 16]),
extra variables are instantiated with constructor terms. At the application of rewrite rules,
extra variables in the unraveled eTRSs may introduce undesired terms, e.g., terms rooted by
U symbols that are not reachable from terms over the original signature. As a consequence,

N. Nishida, M. Sakai, and T. Sakabe 275

Uopt is not always sound w.r.t. non-EV-basic reduction sequences of the unraveled eTRSs
(see Example 4.7).

We first prepare a technical lemma to help us to prove the main lemma. Let X be a
finite set of variables, σ and θ be substitutions, and→ be a binary relation on terms. Then,
we write Xσ → Xθ if xσ → xθ for any x ∈ X.

I Lemma 4.1. Let R be an eDCTRS, ρ : l → r ⇐ s1 � t1; · · · ; sk � tk be a Uopt-LL
conditional rewrite rule in R, σ1, · · · , σk+1 be substitutions, and Xi = Var(l, t1, · · · , ti−1)∩
Var(r, ti, si+1, ti+1, · · · , sk, tk) for all 1 ≤ i ≤ k. If siσi →∗R tiσi+1 and Xiσi →∗R Xiσi+1
for all 1 ≤ i ≤ k, then lσ1 →+

R rσk+1.

Proof. Let σ be the substitution σ1|Var(l)∪σ2|X1\Var(l)∪· · ·∪σk|Xk\Xk−1∪σk+1|Var(ti,r)\Xk .
Then, we have that lσ ≡ lσ1. It follows from Xiσi →∗R Xiσi+1 that Xiσ →∗R Xiσi+1
for all 1 ≤ i ≤ k. It follows from the Uopt-LL property and Lemma 3.7 that Var(ti) ∩(
Dom(σ1|Var(l)) ∪ · · · ∪ Dom(σi−1|Xi−1\Xi−2)

)
= ∅ for all 1 ≤ i ≤ k, and hence tiσi ≡ tiσ

for all 1 ≤ i ≤ k. Thus we have that siσ →∗R siσi →∗R tiσi+1 ≡ tiσ. Similarly, we have that
rσ →∗R rσk+1. Therefore, we have that lσ1 ≡ lσ →R rσ →∗R rσk+1. J

Next we define the notion of EV-basic (EV-safe [16, 14, 17]) reduction sequences of
eTRSs. Roughly speaking, in an EV-basic reduction sequences, any redex introduced via
extra variables are not reduced anywhere. This notion can be formalized by relaxing the
notion of basic reduction sequences [7, 13].

I Definition 4.2 (EV-basic reduction [16]). Let R be an eTRS and ρi : li → ri ∈ R for all i
≥ 1. Let t0 →ρ1,p1,R t2 →ρ2,p2,R · · · be a reduction sequence of R, and B0 ⊆ PosF (t0) such
that B0 is prefix closed (i.e., if p < q and q ∈ B0 then p ∈ B0). We define the sets B1, B2, · · ·
of positions from the sequence and B0 inductively as Bi = (Bi−1 \ {q ∈ Bi−1 | q ≥ pi}) ∪
{piq | q ∈ PosF (ri)} ∪ {pip′q | pipq ∈ Bi−1, p ∈ PosV(li), li|p ≡ ri|p′} for all i ≥ 1. Note
that B1, B2, · · · are prefix closed. For all i ≥ 0, positions in Bi are referred as basic positions
of ti w.r.t. extra variables. The reduction sequence above is said to be based on B0 w.r.t.
extra variables if pi ∈ Bi−1 for all i ≥ 1. If the sequence is finite with length n, then we
denote it by B0 : t0 −−→evb

∗
R
Bn : tn or B0 : t0 −−→evb

∗
R
tn. In particular, the reduction sequence

is called basic w.r.t. extra variables (EV-basic, for short) if B0 = PosF (t0). If the EV-basic
sequence is finite with length n, then we denote it by t0 −−→evb

∗
R
tn.

Note that EV-basicness is different from basicness [7, 13] in the sense that all the basic
positions are propagated at the application of rewrite rules but none of the positions for extra
variables are added to basic positions. A typical instance of EV-basic reduction sequences is
a reduction sequence obtained by substituting a normal form for each extra variable when
applying rewrite rules.

To specify a set of terms with which extra variables are possibly instantiated at the rule
application, we introduce the notion of EV-instantiation on sets of terms. Let R be an eTRS
and T be a set of terms. A derivation t0 →ρ1,p1,R t1 →ρ2,p2,R · · · is called EV-instantiated on
T if any extra variable of ρi : li → ri is instantiated by a term in T , i.e., ti|piq ∈ T for any q ∈
PosV(ri) such that ri|q ∈ EVar(ρi). By the same token, the notion of the EV-instantiation
property is defined for the parallel reduction of eTRSs. For any of the unraveled eTRSs,
its EV-basic reduction sequences have the following property related to EV-instantiation on
the set of terms over the original signature.

I Lemma 4.3. Let R be a Uopt-LL eDCTRS over a signature F , and s, t be terms in
T (F ,V). If s −−→

evb
∗
Uopt(R)

t then there exists a derivation s →∗Uopt(R) t that is EV-instantiated
on T (F ,V).

RTA’11

276 Soundness of Unravelings for Deterministic CTRSs via Ultra-Properties

Proof. It can be proved by induction on the term structure that for a term s, a linear term
l with U-symbol-free proper subterms, and substitutions θ, σ, η such that θ ∈ Sub(F ,V) and
root(xδ) is a U symbol for any x ∈ Dom(η), if sθη ≡ lσ, then there exists a substitution σ′
such that sθ ≡ lσ′ and lσ ≡ lσ′η.

To prove this lemma, it suffices to show that for terms s ∈ T (FUopt(R),V) and t ∈ T (F ,V)
and for substitutions θ and η such that θ ∈ Sub(FUopt(R),V) and root(xη) is a U symbol
for any x ∈ Dom(η), if PosF (sθ) : sθη −−→

evb
n

Uopt(R)
t then there exists a substitution σ ∈

Sub(F ,V) such that sθσ →n
Uopt(R) t and the derivation is EV-instantiated on T (F ,V). We

prove this claim by induction on n.
Suppose that PosF (sθ) : sθη −−→

evb
n

Uopt(R)
t. From the EV-basic property of the derivation

and the above claim, we can assume w.l.o.g. that sθ is of the form C[s′]p, sθη ≡ Cθη[s′η]
≡ Cθη[lδη]p →ρ,p,Uopt(R) Cθη[rδη] →n−1

Uopt(R) t, δ ∈ Sub(F ,V), s′ ≡ lδ, and p ∈ PosF (sθ),
where ρ is l → r, Var(l, r) ∩ Var(sθ) = ∅, the set B of EV-basic positions in Cθη[rδη] is
(PosF (sθ) \ {q ∈ PosF (sθ) | p ≤ q}) ∪ {pq | q ∈ PosF (r)} ∪ {pp′q | pp′′q ∈ PosF (sθ), p′′ ∈
PosV(l), l|p′′ ≡ r|p′}, and B : Cθη[rδη] −−→

evb
n−1
Uopt(R)

t. Let δ′ and δ′′ be substitutions such
that δ′ ∈ Sub(F ,V), δ|EVar(ρ) = δ′η, Dom(δ′′)∩ (Var(l, r)∪Dom(η)) = ∅, and root(xδ′′) is
a U symbol for any x ∈ Dom(δ′′).

Let θ′ = θ|Var(C[])∪δVar(l)∪δ′|EVar(ρ) and η′ = η∪δ′′. Then, θ′ and η′ are substitutions
such that Cθη[rδ] ≡ (C[r])θ′η′. By the definition of the EV-basic property, we have that B
= PosF ((C[r])θ′). Thus, by the induction hypothesis, we have that there exists a substitu-
tion σ in Sub(F ,V) such that (C[r])θ′σ →n−1

Uopt(R) t and the derivation is EV-instantiated on
T (F ,V). Now we have that sθσ ≡ (Cθ[s′])σ ≡ (Cθ[lδ])σ ≡ (Cθ′[lθ′])σ →Uopt(R) (Cθ′[rθ′])σ
≡ (C[r])θ′σ′ →n−1

Uopt(R) t. Since θ and σ are in Sub(F ,V), any extra variables in r is instan-
tiated by a term in T (F ,V). Therefore, this derivation is EV-instantiated on T (F ,V). J

The soundness result of this subsection is a consequence of the following key lemma.

I Lemma 4.4. Let R be a Uopt-LL eDCTRS over a signature F , s be a term in T (F ,V),
t be a linear term in T (FUopt(R),V), and σ be a substitution in Sub(FUopt(R),V). Suppose
that R is non-LV or non-collapsing. If s ⇒n

Uopt(R) tσ for some n ≥ 0 and the derivation is
EV-instantiated on T (F ,V), then there exists a substitution θ in Sub(F ,V) such that s →∗R
tθ ⇒m

Uopt(R) tσ and the derivation tθ ⇒m
Uopt(R) tσ is EV-instantiated on T (F ,V) for some

m ≤ n such that if tσ ∈ T (F ,V) then m = 0.

Proof. We prove this lemma by induction on the lexicographic product (n, s) of n and the
structure of s. Suppose that s ⇒n

Uopt(R) tσ. Since the case that s is a variable is trivial, we
only consider the remaining case that s is rooted by a function symbol.

We first consider the case that s ⇒n
Uopt(R) tσ does not contain any reduction step at the

root position. Let s be of the form f(s1, · · · , sk). Then, we have that s ≡ f(s1, · · · , sk)
⇒n

Uopt(R) f(t1, · · · , tk)σ ≡ tσ and thus si ⇒ni
Uopt(R) tiσ, where n1 + · · · + nk = n. By

the induction hypothesis, there exists a substitution θi ∈ Sub(F ,V) such that si →∗R tiθi
⇒mi

Uopt(R) tiσ and the derivation tiθi ⇒mi
Uopt(R) tiσ is EV-instantiated on T (F ,V) for some mi

≤ ni such that mi = 0 if tiσ ∈ T (F ,V). Let θ = θ1|Var(t1)∪ · · ·∪ θk|Var(tk). Then, it follows
from the linearity of t that θ is a substitution in Sub(F ,V). We have that s ≡ f(s1, · · · , sk)
→∗R f(t1, · · · , tk)θ ≡ tθ ⇒m

Uopt(R) tσ and the derivation tθ ⇒m
Uopt(R) tσ is EV-instantiated on

T (F ,V). where m = m1 + · · ·+mk ≤ n such that if tσ ∈ T (F ,V) then m = 0.
Next we consider the remaining case. To simplify the proof, we assume w.l.o.g. that any

N. Nishida, M. Sakai, and T. Sakabe 277

rule has two conditions of the form s1 � t1; s2 � t2. Then, we can assume that

s⇒n0
Uopt(R) lσ1→ε,Uopt(R) u1σ1 ⇒

n1
>ε,Uopt(R) u

′
1σ2

→ε,Uopt(R) u2σ2 ⇒
n2
>ε,Uopt(R) u

′
2σ3 →ε,Uopt(R) rσ3 ⇒

n3
Uopt(R) t3σ3,

where s ⇒n0
>ε,Uopt(R) lσ1 if R is non-LV, and rσ3 ⇒

n3
>ε,Uopt(R) rσ otherwise (i.e., if R is non-

collapsing), ρ : l → r ⇐ s1 � t1; s2 � t2 ∈ R, ui ≡ Uρi (si,
−→
Xi), u′i ≡ Uρi (ti,

−→
Xi), X1 =

Var(l) ∩ Var(r, t1, s2, t2), X2 = Var(l, t1) ∩ Var(r), and tσ is a term between u1σ to t3σ3.
We only consider the case that tσ is t3σ3 since this case is the most complicated. For this
reason, we assume that t3σ3 ≡ tσ and n0 + n1 + n2 + n3 + 3 = n.

By the induction hypothesis, there exists a substitution θ1 ∈ Sub(F ,V) such that s →∗R
lθ ⇒m0

Uopt(R) lσ1 and the derivation lθ ⇒m0
Uopt(R) lσ1 is EV-instantiated on T (F ,V). Let θ′1 =

θ|Var(l)∪σ1|EVar(l→u1). Then, θ′1 is a substitution in T (F ,V). Moreover, it follows from the
standard property of the parallel reduction that u1θ

′
1 ⇒

m1
>ε,Uopt(R) u1σ1 ⇒

n2
>ε,Uopt(R) u

′
1σ2.

Thus, we have that s1θ
′
1 ⇒

m′1
Uopt(R) t1σ2 and X1θ

′
1 ⇒

m′′1
Uopt(R) X1σ2 where m′′1 is the summation

of reduction steps andm′1+m′′1 = m1+n2. Since the Uopt-LL property provides Var(t1)∩X1
= ∅, by the induction hypothesis, there exists a substitution θ2 ∈ Sub(F ,V) such that s1θ

′
1

→∗R t1θ2 ⇒
m2
Uopt(R) t1σ2 and X1θ

′
1 →∗R X1θ2 ⇒

j2
Uopt(R) X1σ2 where j2 is the summation of

reduction steps and m2 + j2 ≤ m1 + n2.
In the same way, we obtain substitutions θ3 and θ in Sub(F ,V) such that s2θ2 →∗R t2θ3,

X2 →∗R X2θ3, rθ3 →∗R tθ ⇒m
Uopt(R) tσ, where m ≤ n such that if tσ ∈ T (F ,V) then m =

0. It follows from Lemma 4.1 that lθ1 →∗R rθ3. Therefore, we have that s →∗R rθ3 →∗R tθ

⇒m
Uopt(R) tσ where m ≤ n such that if tσ ∈ T (F ,V) then m = 0. J

As a consequence of Lemma 4.4, we show the main theorem of this subsection.

I Theorem 4.5. Uopt is sound for a Uopt-LL eDCTRSs R over a signature F if R is non-LV
or non-collapsing and if the reduction of Uopt(R) is restricted to the EV-basic one (i.e., for
any terms s and t in T (F ,V), if s −−→

evb
∗
Uopt(R)

t then s →∗R t).

Proof. Suppose that s −−→
evb
∗
Uopt(R)

t and s, t ∈ T (F ,V). Then, it follows from Lemma 4.3
that there is a derivation s →∗Uopt(R) t that is EV-instantiated on T (F ,V). Since a single
step of →Uopt(R) can be considered as a single step of the parallel reduction, we have the
derivation s ⇒∗Uopt(R) t that is EV-instantiated on T (F ,V). Let x be a variable and σ be a
substitution such that xσ ≡ t. Then, it follows from Lemma 4.4 that s →∗R xσ ≡ t. J

It is clear that for a 3-eDCTRS R, any reduction sequence of R is EV-basic. Therefore, Uopt
is sound for Uopt-LL 3-eDCTRSs.

I Corollary 4.6. Uopt is sound for Uopt-LL 3-eDCTRSs that are non-LV or non-collapsing.

Due to the technical proof of Lemma 4.4, we assumed that eDCTRS is non-LV or non-
collapsing. It is not known yet that this assumption can be relaxed (or removed). However,
this assumption is not so restrictive since every DCTRS (not an extended one) is non-LV.
Corollary 4.6 is not a direct consequence of the result in [12] on soundness for Uopt-LL 3-
DCTRSs since U symbols introduced by Uopt have less arguments than those introduced by
Marchiori’s unraveling for DCTRSs.

Finally, we show a counterexample against Theorem 4.5 without the EV-basic property.

RTA’11

278 Soundness of Unravelings for Deterministic CTRSs via Ultra-Properties

I Example 4.7. Consider the following DCTRS and its unraveled EV-TRS:

R4 = { e→ f(x)⇐ l� d, A→ h(x, x) }
Uopt(R4) = U(R4) = { e→ U5(l), U5(d)→ f(x), A→ h(x, x) }

We have the derivation A →Uopt(R4) h(U5(d),U5(d)) →∗Uopt(R4) h(f(a), f(b)) that is not EV-
basic: the term U5(d) introduced by instantiating the extra variable x in the applied rule
A → h(x, x) is reduced. However, A cannot be reduced by R4 to h(f(a), f(b)). Therefore,
Uopt is not sound for R4. Note that U is not sound either.

4.3 Soundness on Ultra-Right-Linear-Non-Erasing Property
In this subsection, we show that Uopt is sound for DCTRSs that are ultra-RL-NE w.r.t.
Uopt. To prove it, we reduce the soundness to that of Uopt for ultra-LL DCTRSs.

We first define the operation to transform an eDCTRS into an eDCTRS that defines
the inverse relation of the former eDCTRS. Note that the “inverse” has a different meaning
from the sense of program inversion.

I Definition 4.8. Let ρ : l → r ⇐ s1 � t1; · · · ; sk � tk be an (extended) conditional
rewrite rule. We define the operation ()−1 as (l → r ⇐ s1 � t1; · · · ; sk � tk)−1 =
r → l ⇐ tk � sk; · · · ; t1 � s1. This operation is extended to eDCTRSs as (R)−1 =
{(ρ)−1 | ρ ∈ R}. Moreover, for a binary relation →, we denote the inverse relation of → by
(→)−1: (→)−1 = {(t, s) | s→ t}.

For an eCTRS R, the inverse relation of →R is equivalent to the reduction of (R)−1.

I Theorem 4.9. Let R be an eCTRS. Then, (→R)−1 = →(R)−1 .

Proof. It suffices to show that (→(n),R)−1 = →(n),(R)−1 for all n ≥ 0. This can be proved
by induction on n. J

Regarding the operation ()−1 and the Uopt-NE property, there are dual relationships
between Uopt-LL and Uopt-RL and between the non-LV and non-collapsing properties.

I Lemma 4.10. Let ρ : l → r ⇐ s1 � t1; · · · ; sk � tk be an extended deterministic rewrite
rule. Then all of the following hold:
1. Var(ti) ⊆ Var(r, si+1, · · · , sk) for all 1 ≤ i ≤ k iff (ρ)−1 is deterministic,
2. Var(l) ⊆ Var(r, s1, · · · , sk) iff (ρ)−1 is in Type 3,
3. if Var(ti) ⊆ Var(r, si+1, · · · , sk) for all 1 ≤ i ≤ k, then

a. Uopt((ρ)−1) = (Uopt(ρ))−1 up to the renaming of U symbols, and
b. ρ is Uopt-LL (Uopt-RL, resp.) iff (ρ)−1 is Uopt-RL (Uopt-LL, resp.),

4. ρ is non-LV (non-collapsing, resp.) iff (ρ)−1 is non-collapsing (non-LV, resp.).

Proof. The claims 1, 2 and 4 are trivial. Consider Uopt(ρ) in Definition 3.2. We can assume
w.l.o.g. that Uopt((ρ)−1) = {r → Uρk (tk,

−→
Yk), · · · , Uρ2 (s2,

−→
Y2) → Uρ1 (t1,

−→
Y1), Uρ1 (s1,

−→
Y1) → l}

where Yi = Var(r, sk, · · · , si+1) ∩ Var(l, si, ti−1, si−1, · · · , t1, s1). Since ρ is deterministic,
we have that Var(si) ⊆ Var(l, t1, · · · , ti−1) for all 1 ≤ i ≤ k.

To prove the claim 3-a, it suffices to show that Xi = Yi for all 1 ≤ i ≤ k. It follows from
Var(si) ⊆ Var(l, t1, · · · , ti−1) that Var(l, s1, t1, · · · , si−1, ti−1, si) = Var(l, t1, · · · , ti−1), and
hence Yi = Var(r, si+1, · · · , sk) ∩ Var(l, t1, · · · , ti−1). Moreover, it follows from Var(ti) ⊆
Var(r, si+1, · · · , sk) that Var(r, ti, si+1, ti+1, · · · , sk, tk) = Var(r, si+1, · · · , sk), and hence
Xi = Var(l, t1, · · · , ti−1) ∩ Var(r, si+1, · · · , sk). Therefore, Xi = Yi for all 1 ≤ i ≤ k.

N. Nishida, M. Sakai, and T. Sakabe 279

Finally, we prove the claim 3-b. Suppose that ρ is Uopt-LL. Then, it follows from Lemma
3.7 that l, Uρ1 (t1,

−→
X1), · · · , Uρk (tk,

−→
Xk) are linear. Thus, Uopt((ρ)−1) is right-linear and

hence (ρ)−1 is Uopt-RL. Suppose that ρ is Uopt-RL. Then, it follows from Lemma 3.7 that
r, Uρ1 (s1,

−→
X1), · · · , Uρk (sk,

−→
Xk) are linear. Thus, Uopt((ρ)−1) is left-linear and hence (ρ)−1 is

Uopt-LL. The if part is similar to the only-if part above. J
Note that neither the claims 3-a nor 3-b in Lemma 4.10 holds for U.

I Corollary 4.11. Let R be an eDCTRS. Then all of the following hold:
R is Uopt-NE iff (R)−1 is a 3-eDCTRS,
if R is Uopt-NE, then

Uopt((R)−1) = (Uopt(R))−1 up to the renaming of U symbols, and
R is Uopt-LL (Uopt-RL, resp.) iff (R)−1 is Uopt-RL (Uopt-LL, resp.), and

R is non-LV (non-collapsing, resp.) iff (R)−1 is non-collapsing (non-LV, resp.).

Finally, we show soundness of Uopt for a Uopt-RL-NE eDCTRS R by reducing it to
soundness for the Uopt-LL eDCTRS (R)−1.

I Theorem 4.12. Uopt is sound for Uopt-RL-NE eDCTRSs that are non-LV or non-collapsing.

Proof. Let R be a Uopt-RL-NE eDCTRS over a signature F . Then, it follows from Co-
rollary 4.11 that (R)−1 is a Uopt-LL 3-eDCTRS that is non-collapsing or non-LV. Thus, it
follows from Corollary 4.6 that Uopt is sound for (R)−1, i.e., →∗Uopt((R)−1) ⊆ →

∗
(R)−1 holds

over T (F ,V) × T (F ,V). It follows from Corollary 4.11 that Uopt((R)−1) = (Uopt(R))−1,
and hence →∗Uopt((R)−1) = →∗(Uopt(R))−1 . By Theorem 4.9, we have that →∗(Uopt(R))−1 =
(→∗Uopt(R))−1 and →∗(R)−1 = (→∗R)−1. Thus, we have that (→∗Uopt(R))−1 ⊆ (→∗R)−1 (i.e.,
→∗Uopt(R) ⊆ →

∗
R) over T (F ,V)× T (F ,V). J

I Example 4.13. Consider R2 in Example 3.3 again. The eDCTRS R2 is non-LV, Uopt-RL-
NE but neither U-RL nor U-LL. Thanks to Theorem 4.12, Uopt is sound for R2 and thus
Uopt(R2) can be used for simulating the reduction of R2.

Ultra-right-linearity is not a soundness condition for Uopt.

I Example 4.14. Consider the 3-DCTRS (R4)−1 and the unraveled TRS (Uopt(R4))−1

obtained from Example 4.7. (R4)−1 is Uopt-RL but not Uopt-NE. We have the derivation
h(f(a), f(b)) →∗Uopt((R4)−1) A. However, h(f(a), f(b)) cannot be reduced by (R4)−1 to A.
Therefore, Uopt is not sound for (R4)−1. Note that U is sound for (R4)−1.

It is possible to prove Theorem 4.12 directly [17], by using the feature that every reduction
sequence of right-linear TRSs can be transformed to a basic one [13]. However, Theorem 4.5
cannot be proved by using Theorem 4.12. This is because Uopt((R)−1) = (Uopt(R))−1 does
not hold for every Uopt-LL DCTRSs (see Uopt(R2) in Example 3.3).

4.4 Soundness of Ohlebusch’s Unraveling
In this subsection, we show that soundness of Uopt implies that of U.

We first introduce the notion of argument filterings [1, 8]. An argument filtering over a
signature F is a mapping π from F to sets of natural numbers such that π(f)⊆ {1, · · · , ar(f)}
for any f ∈ F . Note that this paper does not use collapsing definitions π(f) ∈ {1, · · · , ar(f)}.
When π(f) is not defined explicitly, we assume that π(f) = {1, · · · , ar(f)}. Argument
filterings are extended to terms as follows: π(x) = x for x ∈ V, and π(f(t1, · · · , tn)) =
f(π(ti1), · · · , π(tim)) for f ∈ F where π(f) = {i1, · · · , im} and 1 ≤ i1 < i2 < · · · < im ≤ n.

RTA’11

280 Soundness of Unravelings for Deterministic CTRSs via Ultra-Properties

They are also extended to eTRSs as follows: π(R) = {π(l)→ π(r) | l → r ∈ R}. Note that
π(R) is an eTRS. Argument filterings have the following properties.

I Lemma 4.15. Let π be an argument filtering. Let t be a term and σ, σπ be substitutions
such that σπ = {x 7→ π(xσ) | x ∈ Dom(σ)}. Then, π(tσ) ≡ (π(t))σπ. Let R be an eTRS
and s, t be terms. If s →∗R t then π(s) →∗π(R) π(t).

The unraveling Uopt is an optimized variant of U in the sense that variables carried by U
symbols are optimized. Thus, Uopt(R) can simulate any reduction sequence of U(R).

I Lemma 4.16. Let R be an eDCTRS over a signature F , and s, t be terms in T (F ,V). If
s →∗U(R) t, then s →∗Uopt(R) t.

Proof. We assume w.l.o.g. that for every rule ρ : l → r ⇐ s1 � t1; · · · ; sk � tk in
R, the same U symbols Uρ1 , · · · , U

ρ
k are introduced for U(R) and Uopt(R). Let π be an

argument filtering such that for every ρ : l → r ⇐ s1 � t1; · · · ; sk � tk in R, π(Uρi)
= {1, i1, · · · , im} where Xi = Var(l, t1, · · · , ti−1), −→Xi is a sequence x1, · · · , xn, Yi = Xi ∩
Var(r, ti, si+1, ti+1, · · · , sk, tk), −→Yi is a sequence y1, · · · , ym, and xij ≡ yj for all 1 ≤ j ≤ m.
Then, it is clear that π(U(R)) = Uopt(R). Since s, t are in T (F ,V), we have that π(s) ≡ s

and π(t) ≡ t. Thus, it follows from Lemma 4.15 that s ≡ π(s) →∗Uopt(R) π(t) ≡ t. J

Moreover, Uopt(R) can simulate every EV-basic reduction sequence of U(R).

I Lemma 4.17. Let R be an eTRS, s, t be terms, and π be an argument filtering such that
EVar(π(l)→ π(r)) ⊆ EVar(ρ) for every ρ : l→ r ∈ R. If s −−→

evb
∗
R
t then π(s) −−→

evb
∗
π(R)

π(t).

Proof. We first define modifications for a position p of a term u and a set P of positions of
u by applying an argument filtering π: πu(p) = p if p = ε; πu(p) = jp′′ if u ≡ f(u1, · · · , un),
π(f) = {i1, · · · , im}, i1 < · · · < im, p = ijp

′, and p′′ = πui(p′); πu(P) = P if u ∈ V; πu(P) =
{ε | ε ∈ P}∪

{
jp′ | p′ ∈ πtij ({p

′′ | ijp′′ ∈ P})
}
if u ≡ f(u1, · · · , un), π(f) = {i1, · · · , im}, i1

< · · · < im. We prove that if B : s −−→
evb

n

R
B′ : t and πs(B) ⊆ B1 ⊆ Pos(π(s)) then B1 : π(s)

−−→
evb
∗
π(R)

B′1 : π(t) and πt(B′) ⊆ B′1. To prove this claim by induction on n, it suffices to show
that if B : s −−→

evb p,R
B′ : t then πs(p) is defined and πs(B) : π(s) −−→

evb πs(p),π(R)
πt(B′) : π(t).

This follows from the assumption and the definitions of −−→
evb

and πt(). J

I Lemma 4.18. Let R be an eDCTRS over a signature F , and s, t be terms in T (F ,V). If
s −−→

evb
∗
U(R)

t then s −−→
evb
∗
Uopt(R)

t.

Proof. Rules in Uopt(R) that may contain extra variables are of the form Uρk (tk,
−→
Yk) → r

where ρ : l → r ⇐ s1 � t1; · · · ; sk � tk in R. By the definition of U, we have
that Uρk(tk,

−→
Xk) → r in U(R), Yk ⊆ Xk, and Var(r) ∩ Yk = Var(r) ∩ Xk. Thus, we

have that EVar(Uρk (tk,
−→
Yk) → r) = Var(r) \ (Var(tk) ∪ Yk) = Var(r) \ (Var(tk) ∪ Xk)

= EVar(Uρk (tk,
−→
Xk)→ r). Thus, this theorem follows from Lemma 4.17. J

Finally, it can be said that soundness of Uopt implies that of U.

I Theorem 4.19. U is sound for an eDCTRS (w.r.t. EV-basic reduction of U(R)) if Uopt
is sound for the eDCTRS (w.r.t. EV-basic reduction of Uopt(R)).

Proof. Let R be an eDCTRS over a signature F , and s, t be terms in T (F ,V) such that s
→∗U(R) t. Then, it follows from Lemma 4.16 that s →∗Uopt(R) t. Moreover, it follows from
soundness of Uopt that s →∗R t. Therefore, U is sound. In the same way, the case of the
EV-basic reduction can be proved. J

N. Nishida, M. Sakai, and T. Sakabe 281

I Corollary 4.20. U is sound for 3-DCTRSs that are U-LL or Uopt-RL-NE.

The converse of Theorem 4.19 does not hold. For example, U is sound for the DCTRS (R4)−1

in Example 4.14 but Uopt is not sound. The reason must be that U symbols introduced via
the application of U have more variables (i.e., information) than the corresponding U symbols
introduced by Uopt. Thus, U is sufficient to produce TRSs that can be used instead of the
original DCTRSs. Though, Uopt will be useful in investigating soundness of U since the
unraveled TRSs obtained by Uopt are simpler than those obtained by U.

5 Conclusion

In this paper, we have shown that the unravelings for DCTRSs are sound for DCTRSs
that are ultra-LL or ultra-RL-NE, and shown that Ohlebusch’s unraveling is sound for a
DCTRS if the optimized one is sound for the DCTRS. We have also shown necessary and
sufficient syntactic conditions for ultra-LL, ultra-RL, and ultra-NE, respectively. Future
work is to relax these syntactic conditions for the soundness, e.g., that each rule is ultra-LL
or ultra-RL-NE.

Extending the results in [5], it is shown in [6] that U is sound for confluent 3-DCTRSs
w.r.t. the reduction to normal forms, and U is sound for 3-DCTRSs that are U-RL or weakly
left-linear. For the case of U-RL 3-DCTRSs, this result is incompatible with Theorem 4.12
(see Example 4.13). For the case of weakly left-linear 3-DCTRS, this result is strictly
stronger than Corollary 4.6 since Uopt-LL 3-DCTRSs are weakly left-linear. Extending the
results in [6] w.r.t. confluence and weak left-linearity to Uopt is a further direction of this
research.

Acknowledgements
We would like to thank the anonymous reviewers for their useful comments to improve this
paper. This research was partially supported by MEXT KAKENHI #17700009, #21700011
and #20300010, and Kayamori Foundation of Informational Science Advancement.

References
1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236(1-2):133–178, 2000.
2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univ. Press, 1998.
3 F. Durán, S. Lucas, C. Marché, J. Meseguer, and X. Urbain. Proving operational ter-

mination of membership equational programs. Higher-Order and Symbolic Computation,
21(1-2):59–88, 2008.

4 F. Durán, S. Lucas, J. Meseguer, C. Marché, and X. Urbain. Proving termination of
membership equational programs. In Proc. of the 2004 ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-based Program Manipulation, pp. 147–158, ACM, 2004.

5 K. Gmeiner, B. Gramlich, and F. Schernhammer. On (un)soundness of unravelings. In
Proc. of the 21st International Conference on Rewriting Techniques and Applications, Vol.
6 of LIPIcs, pp. 119–134, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2010.

6 K. Gmeiner, B. Gramlich, and F. Schernhammer. Soundness conditions for unraveling
deterministic conditional rewrite systems. Draft version, Jan. 2011.

7 J.-M. Hullot. Canonical forms and unification. In Proc. of the 5th International Conference
on Automated Deduction, Vol. 87 of Lecture Notes in Computer Science, pp. 318–334, 1980.

RTA’11

282 Soundness of Unravelings for Deterministic CTRSs via Ultra-Properties

8 K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation. In Proc.
of the International Conference on Principles and Practice of Declarative Programming,
Vol. 1702 of Lecture Notes in Computer Science, pp. 47–61, Springer, 1999.

9 S. Lucas. Context-sensitive computations in functional and functional logic programs.
Journal of Functional and Logic Programming, 1998(1), 1998.

10 S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional term rewrit-
ing systems. Information Processing Letters, 95(4):446–453, 2005.

11 M. Marchiori. Unravelings and ultra-properties. In Proc. of the 5th International Confer-
ence on Algebraic and Logic Programming, Vol. 1139 of Lecture Notes in Computer Science,
pp. 107–121, Springer, 1996.

12 M. Marchiori. On deterministic conditional rewriting. Computation Structures Group,
Memo 405, MIT Laboratory for Computer Science, 1997.

13 A. Middeldorp and E. Hamoen. Completeness results for basic narrowing. Applicable
Algebra in Engineering, Communication and Computing, 5:213–253, 1994.

14 N. Nishida. Transformational Approach to Inverse Computation in Term Rewriting. Doctor
thesis, Nagoya University, Jan. 2004.

15 N. Nishida and M. Sakai. Completion after program inversion of injective functions. In Proc.
of the 8th International Workshop on Reduction Strategies in Rewriting and Programming,
Vol. 237 of Electronic Notes in Theoretical Computer Science, pp. 39–56, Apr. 2009.

16 N. Nishida, M. Sakai, and T. Sakabe. Narrowing-based simulation of term rewriting sys-
tems with extra variables and its termination proof. Functional and Constraint Logic
Programming, Electronic Notes in Theoretical Computer Science, 86(3):1–18, Nov. 2003.

17 N. Nishida, M. Sakai, and T. Sakabe. On simulation-completeness of unraveling for condi-
tional term rewriting systems. IEICE Technical Report SS2004-18, IEICE, Vol. 104, No.
243, pp. 25–30, Aug. 2004.

18 N. Nishida, M. Sakai, and T. Sakabe. Generation of inverse computation programs of
constructor term rewriting systems. The IEICE Transactions on Information and Systems,
J88-D-I(8):1171–1183, Aug. 2005 (in Japanese).

19 N. Nishida, M. Sakai, and T. Sakabe. Partial inversion of constructor term rewriting
systems. In Proc. of the 16th International Conference on Rewriting Techniques and Ap-
plications, Vol. 3467 of Lecture Notes in Computer Science, pp. 264–278, Springer, 2005.

20 E. Ohlebusch. Termination of logic programs: Transformational methods revisited. Ap-
plicable Algebra in Engineering, Communication and Computing, 12(1-2):73–116, 2001.

21 E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, April 2002.
22 F. Schernhammer and B. Gramlich. Characterizing and proving operational termination

of deterministic conditional term rewriting systems. The Journal of Logic and Algebraic
Programming – Revised selected papers of NWPT 2008, 79(7):659–688, Oct. 2010.

23 F. Schernhammer and B. Gramlich. On proving and characterizing operational termination
of deterministic conditional rewrite systems. In Proc. of the 9th International Workshop
on Termination, pp. 82–85, June 2007.

24 T.-F. Serbanuta and G. Rosu. Computationally equivalent elimination of conditions. In
Proc. of the 17th International Conference on Rewriting Techniques and Applications, Vol.
4098 of Lecture Notes in Computer Science, pp. 19–34 Springer, 2006.

25 Y. Toyama. Confluent term rewriting systems with membership conditions. In Proc. of the
1st International Workshop on Conditional Term Rewriting Systems, Vol. 308 of Lecture
Notes in Computer Science, pp. 228–241, Springer, 1987.

26 P. Viry. Elimination of conditions. Journal of Symbolic Computation, 28(3):381–401, 1999.

Program Inversion for Tail Recursive Functions
Naoki Nishida1 and Germán Vidal2

1 Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, 4648603 Nagoya, Japan
nishida@is.nagoya-u.ac.jp

2 MiST, DSIC, Universitat Politècnica de València
Camino de Vera, s/n, 46022 Valencia, Spain
gvidal@dsic.upv.es

Abstract
Program inversion is a fundamental problem that has been addressed in many different pro-
gramming settings and applications. In the context of term rewriting, several methods already
exist for computing the inverse of an injective function. These methods, however, usually return
non-terminating inverted functions when the considered function is tail recursive. In this paper,
we propose a direct and intuitive approach to the inversion of tail recursive functions. Our new
technique is able to produce good results even without the use of an additional post-processing
of determinization or completion. Moreover, when combined with a traditional approach to
program inversion, it constitutes a promising approach to define a general method for program
inversion. Our experimental results confirm that the new technique compares well with previous
approaches.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases term rewriting, program transformation, termination

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.283

Category Regular Research Paper

1 Introduction

Inverse computation for an n-ary function f is, given an output v of f , the calculation
of (all) the possible inputs v1, · · · , v1 of f such that f(v1, · · · , vn) = v [27, 28]. To be
more precise this is usually called full inverse computation, in contrast to partial one where
some inputs are also provided, i.e., given the output v of f and part of its inputs, say
vi1 , . . . , vim , the partial inverse computation computes the remaining inputs vj1 , . . . , vjk such
that f(v1, . . . , vn) = v with {vi1 , . . . , vim}∪{vj1 , . . . , vjk} = {v1, . . . , vn} and {vi1 , . . . , vim}∩
{vj1 , . . . , vjk} = ∅. Two approaches to inverse computation are distinguished [1]: inverse
interpreters [4, 1, 32, 15] that perform inverse computation taking the output v, the given
inputs (if any), and the definition of f as input, and inversion compilers [16, 9, 12, 27, 28, 22,
20, 24, 23, 6, 7, 11, 2] that performs program inversion. More precisely, inversion compilers
take the definition of f as input and compute the definition of a (possibly partial) inverse
function f−1. Note that inverse interpreters can be transformed into inversion compilers
by producing inverse functions including an inverse interpreter in the target programming
language that is specialized for the function being inverted (similarly to, e.g., [15]). Semi-
inversion [17, 18, 19] is a more general notion than partial inversion that allows the original
output to be partially given.

© Naoki Nishida and Germán Vidal;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 283–298

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.283
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

284 Program Inversion for Tail Recursive Functions

Typical applications of (full and partial) program inversion are the automatic develop-
ment of dual programs: encryption and decryption (e.g., cryptographic encoder enc(x, k)
and decoder dec(y, k) with a symmetric key k), data compression and decompression (e.g.,
zip/unzip), data/program translation and re-translation between different programming lan-
guages, and so on. Given one-half of dual programs, inversion provides the other program
automatically and without bugs, thus guaranteeing high reliability. This is specially import-
ant for encryption/decryption and compression/decompression since a bug in these programs
may cause serious security problems.

The most popular target of program inversion is the class of injective functions (or func-
tions that are injective w.r.t. the unknown arguments when partial inversion is considered).
Deterministic definitions are expected as inverses of injective functions since the inverse
relation for injective functions is one-to-one. However, this is not ensured by existing meth-
ods and in many cases overlapping and/or non-terminating functions are produced instead.
Thus, the elimination of non-determinism in inverted functions has recently attracted a
lot of interest [6, 7, 11, 2, 21]. Indeed, since all the inversion techniques developed so far
are essentially similar, one can say that the difficult part of program inversion for injective
functions lies in the elimination of the undesired non-determinism.

In the field of term rewriting, a full-inversion method for constructor term rewriting
systems (TRS, for short) has been proposed, and later extended to partial inversion [20,
24, 23]. The compiler (fully or partially) inverts a constructor TRS into a conditional term
rewriting system (CTRS, for short) that completely defines inverses of functions defined
in the original TRS. The conditional parts of rewrite rules in the CTRS can be seen as
let-structures for declaring variables that are locally used in the rewrite rules.

The method for eliminating non-determinism in [21], a post process for the compilers
in [20, 24, 23], consists in applying a restricted variant of completion to the systems obtained
from the inverse conditional systems by unraveling [14, 26]. This method requires the
conditional systems to be operationally terminating [13] (i.e., any derivation is finite) and
outputs computationally-equivalent unconditional systems that are terminating and non-
overlapping when the method halts successfully. Although this method is quite restrictive
and does not always succeed, it was able to successfully transform all the benchmarks shown
in [10, 6, 7, 11] with operationally terminating inverses [21], while it was not applicable to the
other benchmarks with non-operationally-terminating inverses (see Example 3.2 below). On
the other hand, the method for eliminating non-determinism in [6, 7, 11] is based on applying
LR parsing techniques to a grammar-based representation of functional programs. This is
quite an interesting non-standard application of LR parsing and performs surprisingly well
for the benchmarks of [10] that contain several kinds of schemes of function definitions (such
as tail-recursion, non-tail-recursion, and the combination of both), despite the fact that
only LR(0) parsing is considered. The authors do not consider partial inversion since the
grammar-based representation is not adequate to identify known and unknown arguments
separately. Moreover, the grammar-based programs cannot express functions containing
erasing rules (though these rules arise quite naturally when considering partially inverted
programs).

Given an n-ary function f , traditional approaches to (partial) inversion are based on
the property “f(v1, · · · , vn) = v iff f−1(v, vi1 , · · · , vim) = (vj1 , · · · , vjk) where {i1, · · · , im}
are known input arguments and {i1, · · · , im}] {j1, · · · , jk} = {1, · · · , n}”, i.e., the equa-
tion f(v1, · · · , vn) = v is replaced by f−1(v, vi1 , · · · , vim) = (vj1 , · · · , vjk) and instruction
sequences are inverted [27, 28, 22, 20, 24, 23, 6, 7, 11, 2]. For example, when consider-
ing full inversion, a rewrite rule is normalized to a conditional rule f(t1, · · · , tn) → t ⇐

N. Nishida and G. Vidal 285

f1(−→u1) � x1; · · · ; fk(−→uk) � xk (see Definition 3.4), and it is inverted to a conditional
rule f−1(t) → (t1, · · · , tn) ⇐ f−1

k (xk) � (−→uk); · · · ; f−1
1 (x1) � (−→u1) where t1, · · · , tn, t

are constructor terms, −→u1, · · · ,−→uk are sequences of constructor terms, and x1, · · · , xn are
variables (see Example 3.1 below). This approach is in principle applicable to arbitrary
functions. Unfortunately, for a tail-recursive function defined by a rule like f(t1, · · · , tn)→
f(u1, · · · , un), this approach generates a non-operationally-terminating rule of the form
f−1(x)→ (t1, · · · , tn)⇐ f−1(x)� (u′1, · · · , u′n); · · · when full inversion is considered.

When the first argument of the inverse f−1 takes as input the output of the original
function f (i.e., the input value of the first argument of f−1 is in the range of f), a breadth-
first search is enough to get the output (i.e., the original input) since there exists a finite path
from the original input to the original output. Therefore, for a non-operationally-terminating
inverse system of an injective function, a breadth-first search is enough to compute the
output. However, the finiteness of the breadth-first search is guaranteed only when the input
is one of the outputs of the original function. Thus, in general, the breadth-first search might
be non-terminating (i.e., the search space might be infinite). Furthermore, when the given
function is not surjective (which is itself difficult to know), it is not easy to determine whether
the input is one of the outputs of the original function or not. Moreover, practical rewriting
systems (or functional programming environments) do not usually implement breadth-first
search strategies. For these reasons, the (operational) termination of inverted systems is
desired.

As stated above, the non-determinism elimination method of [6, 7, 11] can solve the
non-determinism of some inverted programs so that the resulting system is terminating.
This method, however, does not succeed for all inverted systems. On the other hand,
the method in [21] cannot be applied to any non-operationally-terminating system since
the method requires termination. As mentioned before, when full inversion is considered,
tail recursive rules of the form f(t1, · · · , tn) → f(u1, · · · , un) are inverted to f−1(x) →
(t1, · · · , tn) ⇐ f−1(x) � (u′1, · · · , u′n); · · · that cause non-termination (since f−1(x) calls
f−1(x) again). Therefore, the traditional approaches to inversion are not suitable for tail
recursive rules (unless some post-processing is applied to recover more suitable definitions).
Actually, the basic methods for program inversion have not been significantly improved since
their original definitions (the focus has been in the development of methods for eliminating
non-determinism instead). However, we think that there is still room for improving the
current inversion techniques.

In this paper, we introduce a novel approach to program inversion which is specially
tailored to deal with tail recursive functions defined by means of a rewrite system. We
combine this approach with the previous technique in [20, 23] to produce a general inversion
method. For the sake of readability, we only consider the full inversion of functions (as
in [20, 23]), though it would not be difficult to combine our technique with the approach to
partial inversion of [20, 24]. In addition, we do not consider sorts in this paper, though the
results can be straightforwardly extended to many-sorted systems. Our research is motivated
by the fact that tail recursive functions are extensively used due to their good computational
properties (i.e., they are usually compiled as iterations, which are much more efficient than
standard recursive functions).

This paper is organized as follows. In Section 2 we briefly review notions and notations
of term rewriting. Section 3 introduces an inversion method for tail recursive functions.
Section 4 shows a summary of our experimental evaluation and compare the new approach
with related works. Finally, Section 5 concludes and points out some directions for future
research. Proofs of technical results can be found in the extended version [25] of this paper.

RTA’11

286 Program Inversion for Tail Recursive Functions

2 Preliminaries

In this section, we recall some basic notions and notations of term rewriting [3, 26].
Throughout this paper, we use V as a countably infinite set of variables. Let F be a

signature, i.e., a finite set of function symbols with a fixed arity denoted by ar(f) for a
function symbol f . The set of terms over F and V is denoted by T (F ,V), and the set of
variables appearing in terms t1, · · · , tn is denoted by Var(t1, · · · , tn). The identity of terms
s and t is written by s ≡ t. The notation C[t1, · · · , tn]p1,··· ,pn represents the term obtained
by replacing each hole � at position pi of an n-hole context C[] with term ti for 1 ≤ i

≤ n. We may omit the subscripts p1, · · · , pn when they are clear from the context. The
domain and range of a substitution σ are denoted by Dom(σ) and Ran(σ), respectively; a
substitution σ will be denoted by {x1 7→ t1, · · · , xn 7→ tn} if Dom(σ) = {x1, · · · , xn} and
σ(xi) ≡ ti for 1 ≤ i ≤ n. The set of variables appearing in the range of σ is denoted by
VRan(σ): VRan(σ) =

⋃
x∈Dom(σ) Var(xσ). The application σ(t) of substitution σ to term

t is abbreviated to tσ.
An (oriented) conditional rewrite rule over a signature F is a triple (l, r, c), denoted by

l → r ⇐ c, such that the left-hand side l is a non-variable term of T (F ,V), the right-hand
side r is a term of T (F ,V), and the conditional part c is a sequence s1 � t1; · · · ; sk � tk
(k ≥ 0) where s1, · · · , sk, t1, · · · , tk are terms of T (F ,V). In particular, the rewrite rule
is called unconditional if the conditional part is the empty sequence (i.e., k = 0), and we
may abbreviate it to l → r. We sometimes attach a unique label ρ to rule l → r ⇐ c,
written ρ : l → r ⇐ c, so that we can use the label to refer to this rule. The set of
variables in c and ρ are denoted by Var(c) and Var(ρ), resp.: Var(s1 � t1; · · · ; sk � tk) =
Var(s1, t1, · · · , sk, tk) and Var(ρ) = Var(l, r, c).

An (oriented) conditional term rewriting system (CTRS, for short) R over a signature F
is a finite set of conditional rewrite rules over F . In particular, R is called an (unconditional)
term rewriting system (TRS, for short) if every rule l → r ⇐ c in R is unconditional and
satisfies Var(l) ⊇ Var(r). The rewrite relation →R of R is defined as follows: →(0),R =
∅, →(i+1),R = →(i),R ∪{(C[lσ], C[rσ]) | l → r ⇐ s1 � t1; · · · ; sk � tk ∈ R, s1σ →∗(i),R
t1σ, · · · , skσ →∗(i),R tkσ} for i ≥ 0, and →R =

⋃
i≥0 →(i),R. A notion of operational

termination of CTRSs is defined via the absence of infinite well-formed proof trees in some
inference system [13]: a CTRS R is operationally terminating if for any terms s and t, any
proof tree attempting to prove that s →∗R t cannot be infinite.

A conditional rewrite rule l → r ⇐ s1 � t1; · · · ; sk � tk is called deterministic if
Var(si) ⊆ Var(l, t1, · · · , ti−1) for 1 ≤ i ≤ k. Note that the terminology “deterministic”
refers to the sequential evaluation of conditional parts, i.e., when a CTRS is deterministic,
the conditional parts can be evaluated from left to right. In contrast, the determinacy of
the rewrite rule application is denoted with the terminology “non-overlapping”. A CTRS
is called deterministic (DCTRS, for short) if all of its rules are deterministic. A CTRS is
called non-erasing if every rule l→ r ⇐ c satisfies Var(l) ⊆ Var(r).

Let R be a CTRS over a signature F . The set of defined symbols of R is denoted by DR
= {root(l) | l → r ⇐ c ∈ R} and the set of constructors of R is denoted by CR = F \ DR.
A term in T (CR,V) is called a constructor term of R. The CTRS R is called a constructor
system if for each rule in R, any proper subterm of the left-hand side is a constructor term
of R. A substitution σ is called a constructor substitution of R if Ran(σ) ⊆ T (CR,V). For
a term t, cap(t) is a term obtained by replacing each proper subterm rooted by a defined
symbol with a fresh variable [26].

As a model of the call-by-value evaluation, we define the constructor-based reduction

N. Nishida and G. Vidal 287

relation −→c R of a CTRS R, a restricted variant of constructor rewriting in [31], as follows:
−→c (0),R = ∅,
−→c (n+1),R = −→c (n),R ∪ {(C[lθ], C[rθ]) | l → r ⇐ s1 � t1; · · · ; sk � tk ∈ R, Ran(θ) ⊆
T (CR,V), s1θ −→c ∗(n),R t1θ, · · · , skθ −→c

∗
(n),R tkθ}, where n ≥ 0, and

−→c R =
⋃
i>0−→c (i),R.

Roughly speaking, for a CTRS that can be regarded as a functional program, the constructor-
based reduction corresponds to the call-by-value evaluation where constructor terms are con-
sidered as data objects. Note that −→c R is a strict subrelation of the operationally innermost
reduction [21], the innermost reduction of DCTRSs, if every rule l→ r ⇐ s1 � t1; · · · ; sk �
tk satisfies that t1, · · · , tk ∈ T (CR,V). Unlike the innermost reduction of CTRSs (cf. [8]),
−→c R is well-defined for every CTRS since constructor terms are well-defined while normal
forms of non-operationally-terminating CTRSs are not well-defined.

Let R be a CTRS. Two rewrite rules l1 → r1 ⇐ c1 and l2 → r2 ⇐ c2 are called
overlapping if there exists a context C[] and a non-variable term t such that l2 ≡ C[t] and
l1 and t are unifiable, where we assume w.l.o.g. that these rules share no variable. Then, a
conditional pair of terms ((C[r1])θ, r2θ)⇐ c1θ; c2θ is called a critical pair of R where θ is a
most general unifier of l1 and t. A critical pair (s, t) ⇐ c is called trivial if s ≡ t, and it is
called infeasible w.r.t. −→c R if for any substitution σ, c contains a condition u� v such that
uσ 6−→c ∗R vσ [33].

Let R be a DCTRS and f be a defined symbol of R. A rule l→ r in R is called an f -rule
if root(l) is f . We denote the set of f -rules in R by R|f . For a set D of defined symbols, R|D
denotes

⋃
g∈D R|g. The set DepR(f) of defined symbols that f depends on is the minimum

set such that
DepR(f) contains every defined symbol appearing in r, c of l→ r ⇐ c ∈ R|f , and
DepR(f) ⊇ DepR(g) if g ∈ DepR(f).

The symbol f is called (mutually) recursive if there exists a symbol g in DepR(f) that
depends on f . Moreover, f is called self-recursive if the only such symbol is f itself. An
f -rule l → r is called a non-recursive rule if any defined symbol in r does not depend on
f ; otherwise, the f -rule is called a recursive rule. Let t1, · · · , tn be constructor terms of R.
Then the term f(t1, · · · , tn) is called a call pattern.

We introduce special constructors tp0, tp1, tp2, · · · with ar(tpi) = i in order to denote
tuples (records) of terms, e.g., the tuple (t1, · · · , tn) of terms t1, · · · , tn is denoted by
tpn(t1, · · · , tn). The reason why these constructors are introduced is that the inverses of
n-ary functions with n > 1 will return tuples of terms. A CTRS R is called tp-free if it
does not contain any tuple symbol. Although it may seem trivially correct in a functional
setting, we will never replace tp1(t) by t in our term rewriting context. The reason is that,
given a CTRS R that is operationally terminating w.r.t.→R, the CTRS obtained from R by
replacing each occurrence of tp1(t) by t is not always operationally terminating w.r.t. →R

while it is operationally terminating w.r.t. −→c R.
We are now ready to introduce our notion of full inverses for functions:

I Definition 2.1 (full inverse). Let R be a tp-free CTRS over a signature F and S be a
CTRS over a signature G such that CR ⊆ CS . A defined symbol g of S is called a full inverse
of f if

for any constructor terms t1, · · · , tn, u of R, f(t1, · · · , tn) −→c ∗R u if and only if g(u) −→c ∗S
tpn(t1, · · · , tn).

In the following, the full inverse of a function f is denoted by f−1. We say that a rewrite
system S is a full inverse system of f in R if S defines f−1.

RTA’11

288 Program Inversion for Tail Recursive Functions

3 Inversion Transformation for Tail Recursive Functions

In this section, we introduce a method for the inversion of constructor TRSs which extends
the previous approach of [20, 23] with an appropriate technique for the inversion of tail
recursive functions.

I Example 3.1. Consider the following rewrite system defining the well-known reverse
function with an accumulating parameter:

Rreverse =

reverse(xs)→ rev(xs, nil)
rev(nil, ws)→ ws

rev(cons(x, xs), ys)→ rev(xs, cons(x, ys))

This system is inverted by the previous inversion technique [20, 23, 6, 7, 11] as follows:

Rreverse =

reverse−1(ys)→ tp1(xs)⇐ rev−1(ys)� tp2(xs, nil)

rev−1(ws)→ tp2(nil, ws)
rev−1(zs)→ tp2(cons(x, xs), ys)⇐ rev−1(zs)� tp2(xs, cons(x, ys))

The functions reverse and reverse−1 are full inverses of each other, and the functions rev
and rev−1 are full inverses of each other too. However, reverse is injective but rev is not.
Unfortunately, this inverse system is neither non-overlapping nor operationally terminating.
Moreover, the method in [21] is not applicable because the inverted system is not opera-
tionally terminating. Luckily, for this example, the non-determinism elimination method
in [6, 7, 11] can transform Rreverse into a computationally equivalent CTRS that is opera-
tionally terminating and non-overlapping. However, this method is not always successful
(see Example 3.14 below) and thus we plan to introduce instead a direct approach that is
able to produce the right inverse without the need of a post-process (which nevertheless will
be still applicable when the direct approach does not succeed).

For the sake of readability, we only consider functions defined by unconditional and non-
erasing constructor TRSs as a target of inversion. We also require tail recursive functions
to be self-recursive1 according to the following scheme:

there is a single non-recursive rule f(w1, · · · , wn)→ r such that the right-hand side r is
a constructor term, and
there are one or more recursive rules of the form f(t1, · · · , tn)→ f(u1, · · · , un).

These restrictions are not essential and thus the results shown later can easily be extended
to functions that do not fulfill them. Given a tail recursive function f , a call pattern
f(t1, · · · , tm) is called initial if it is a renamed variant of cap(t) where t is either

a subterm of the right-hand side of some rule which is not an f -rule, or
a strict subterm of the right-hand side of some recursive f -rule.

Intuitively speaking, initial call patterns represent initial calls to tail recursive functions.

I Example 3.2. Consider again the TRS Rreverse of Example 3.1. Then, the only initial call
of rev in Rreverse is rev(xs, nil).

The next definition introduces a notion of inverse which is specially tailored to tail recursive
functions.

1 It is possible in general to transform mutually recursive functions to a computationally equivalent self-
recursive functions, by adding an extra argument to each function to show the original function and by
replacing all the recursive function symbols with the same fresh one. However, this transformation is
not necessary since the inversion shown later can easily be extended to tail mutually-recursive functions.

N. Nishida and G. Vidal 289

I Definition 3.3 (tail recursive inverse). Let R be a tp-free CTRS over a signature F and S
be a CTRS over a signature G such that CR ⊆ CS . Given a tail recursive function f of R, a
defined symbol g of S is called a tail recursive inverse of f if

for any constructor terms t1, · · · , tn of R, f(t1, · · · , tn) −→c ∗R u if and only if u ≡ rσ

and g(w1, · · · , wn)σ −→c ∗S tpn(t1, · · · , tn) for a constructor substitution σ of R and a non-
recursive f -rule f(w1, · · · , wn)→ r.

In the following, we denote by f̃ the tail recursive inverse of f .

Let us first illustrate our technique with an example. In Example 3.1 above, one can observe
that the computation of reverse has the following scheme:

reverse(xs)θ0→
rev(xs, nil)θ0 ≡ rev(cons(x1, xs1), ys1)θ1 → rev(xs1, cons(x1, ys1))θ1

≡ rev(cons(x2, xs2), ys2)θ2 → rev(xs2, cons(x2, ys2))θ2...
≡ rev(cons(xn, xsn), ysn)θn→ rev(xsn, cons(xn, ysn))θn ≡ rev(nil, ws)θ → wsθ

Therefore, the inverse function reverse−1 should start with a call to rev(nil, ws)θ and should
end with a call to rev(xs, nil)θ0. Then, the computation of r̃ev should follow the pattern

r̃ev(nil, ws)θ ≡ r̃ev(xsn, cons(xn, ysn))θn→ r̃ev(cons(xn, xsn), ysn)θn...
≡ r̃ev(xs1, cons(x1, ys1))θ1 → r̃ev(cons(x1, xs1), ys1)θ1 ≡ r̃ev(xs, nil)θ0

so that it outputs tp2(xs, nil)θ0. Thus, this pattern means that we should require r̃ev(nil, ws)
to be reduced to tp2(xs, nil). To summarize, the inversion of the tail-recursive function rev
will proceed as follows:

First, we normalize the right-hand side of the rules in order to avoid defined function
symbols (except for the topmost one when the function is tail-recursive; see the formal
definition below):

reverse(xs)→ ys⇐ rev(xs, nil)� ys

rev(nil, ws)→ ws

rev(cons(x, xs), ys)→ rev(xs, cons(x, ys))

Then, the first rule is transformed to

reverse(xs)→ ys⇐ rev(xs, nil)� ws; ws� ys

The condition ws � ys is added to make it explicit that ys should be equal to ws, the
output of function rev (i.e., the right-hand side of the base case). Now, we basically
proceed to exchange the left- and right-hand sides of every equation except for the call
to the tail-recursive function rev which is transformed as explained above:

reverse−1(ys)→ xs⇐ ys� ws; r̃ev(nil, ws)� tp2(xs, nil)

The intermediate reduction steps in the computation for r̃ev are done using the inverse
of the recursive rule for rev (we just exchanged the left- and right-hand sides):

r̃ev(xs, cons(x, ys))→ r̃ev(cons(x, xs), ys)

Finally, the base case for r̃ev has now the form

r̃ev(xs, nil)→ tp2(xs, nil)

RTA’11

290 Program Inversion for Tail Recursive Functions

according to the reasoning above. Therefore, we get the following non-overlapping and
operationally terminating system:

Rreverse =

reverse−1(ws)→ xs⇐ r̃ev(nil, ws)� tp2(xs, nil)

r̃ev(xs, nil)→ tp2(xs, nil)
r̃ev(xs, cons(x, ys))→ r̃ev(cons(x, xs), ys)

where the condition ys� ws has been removed by substituting ws with ys.

The idea above is similar to that in [18]. However, there is no formalization nor correctness
proofs in [18]. In the rest of this section, we formalize this idea and prove its correctness.

In the previous example, no nested function calls occurred in the right-hand sides of
rev. However, we could easily extend the above approach to tail recursive functions whose
right-hand sides have nested function calls by dealing with them inductively. Note that we
keep applying the old approach of [20, 23] to non-tail-recursive functions.

The following definition introduces a pre-processing of normalization which is similar to
that in [2] for functional programs with let expressions. The main difference is that the
root symbols of the right-hand sides of tail recursive rules are not normalized in our case.

I Definition 3.4 (normalization). Let R be a constructor TRS and f be a defined symbol of
R. For an f -rule l → r, the normalized rewrite rule N (l → r) is a conditional rewrite rule
obtained by repeatedly applying the following transformation until the right-hand side has
either no defined symbol or just one at the root position when f is tail recursive:

Given a rule l → C[t] ⇐ c such that t is rooted by a defined symbol of R and has no
defined symbol in its proper subterms, we transform it into l→ C[x]⇐ c; t� x, where
x is a fresh variable.

The normalization N is extended to TRSs as follows N (R) = {N (l→ r) | l→ r ∈ R}.

The correctness of the normalization process is a consequence of the following results:

I Lemma 3.5. Let R and S be constructor CTRSs such that R = R0] {ρ : l → C[r]⇐ c}
and S = R0]{ρ′ : l→ C[x]⇐ c; r � x} such that x is a fresh variable, r contains a defined
symbol of R and, for each s′ � t′ in c, t′ is a constructor term of R. Then, for all terms s
and constructor terms t of R, s −→c ∗R t iff s −→c ∗S t.

Proof (Sketch). The if and only-if parts can be proved by induction on the lexicographic
product (k, n) of −→c n(k),S and −→c n(k),R, respectively (see [25]). J

I Lemma 3.6. Let R be a constructor TRS, s be a term, and t be a constructor term of R.
Then, s −→c ∗R t iff s −→c ∗N (R) t.

Proof (Sketch). This lemma is a direct consequence of Lemma 3.5. J

For the sake of readability, we assume w.l.o.g. that a constructor TRS contains only the
rewrite rules usable for the computation of the main function it defines. Thus, the analysis
used in [20, 24, 23] to collect which functions are inverted is not necessary and we simply
invert all the functions of the TRS. Moreover, we assume that the main function is not tail
recursive since the new approach for tail recursive functions requires at least one initial call
to the tail recursive function (as it happens in practice).

I Definition 3.7 (inversion). Let R be a constructor TRS such that its main function is not
tail recursive. Then, the transformation Inv is defined as follows:

TRS inversion Inv(R) =
⋃
l→r⇐c∈N (R) Invrule(l→ r ⇐ c)

N. Nishida and G. Vidal 291

Rule inversion Invrule:
(i) If f is not tail recursive, then

Invrule(f(u1, · · · , un)→ r ⇐ s1 � t1; · · · ; sk � tk)
= { f−1(r)→ tpn(u1, · · · , un)⇐ Invc(sk � tk); · · · ; Invc(s1 � t1) }

(ii) If f is tail recursive and the corresponding rule is a non-recursive f -rule, then
Invrule(f(u1, · · · , un)→ r) =
{ f̃(w1, · · · , wn)→ tpn(w1, · · · , wn) | f(w1, · · · , wn) is an initial call of f in R }

(iii) Otherwise (i.e., if f is tail recursive and the corresponding rule is a recursive f -rule),
Invrule(f(u1, · · · , un)→ f(r1, · · · , rn)⇐ s1 � t1; · · · ; sk � tk)

= { f̃(r1, · · · , rn)→ f̃(u1, · · · , un)⇐ Invc(sk � tk); · · · ; Invc(s1 � t1) }

Condition inversion Invc:
(i) If f is not tail recursive, then

Invc(f(u1, · · · , un)� x) = f−1(x)� tpn(u1, · · · , un)

(ii) Otherwise,
Invc(f(u1, · · · , un)� x) = x� r; f̃(v1, · · · , vn)� tpn(u1, · · · , un)

where f(v1, · · · , vn)→ r is a renamed variant of a non-recursive f -rule such that the
variables in v1, · · · , vn are fresh.

Each inversion according to Definition 3.7 proceeds as follows:
Rule inversion (i) and Condition inversion (i) process non-tail-recursive functions simil-
arly to the previous inversion methods of [20, 23].
Rule inversion (ii) generates a non-recursive rule of f̃ for a tail recursive function f . In
this case, the input rule f(u1, · · · , un)→ r is not used, except for the root defined symbol
f of the left-hand side. This case is only a trigger to generate non-recursive rules for f̃ ,
while the discarded terms u1, · · · , un, r are consumed via f(v1, · · · , vn)→ r in Condition
inversion (ii).
Rule inversion (iii), the main part of our new approach, inverts a recursive rule of a tail
recursive function f following the idea described above.
Condition inversion (ii) inverts the condition of a tail recursive function f into the con-
dition that is an initial call of f̃ , adding a condition that connects x and r.

We will show later how to remove the assumption that non-recursive rules of tail recursive
functions are unique (see Example 3.13 below). Returned tuples of f̃ can sometimes be
further optimized (e.g., by eliminating trivial elements such as nil in tp2(xs, nil) returned
by r̃ev). However, when there are several initial calls, such optimizations might destroy the
correctness of the transformation and should be carefully considered.

I Example 3.8. Consider the TRS Rreverse from Example 3.1 again. Normalization only
changes the first rule as follows:

N (reverse(xs)→ rev(xs, nil)) = reverse(xs)→ ys⇐ rev(xs, nil)� ys

Then, each rule in N (Rreverse) is inverted as follows:

Invrule(reverse(xs)→ ys⇐ rev(xs, nil)� ys)
= { reverse−1(ys)→ tp1(xs)⇐ Invc(rev(xs, nil)� ys) }
= { reverse−1(ys)→ tp1(xs)⇐ ys� zs; r̃ev(nil, zs)� tp2(xs, nil) }

Invrule(rev(nil, ws)→ ws) = { r̃ev(xs, nil)� tp2(xs, nil) }
Invrule(rev(cons(x, xs), ys)→ rev(xs, cons(x, ys)))

= { r̃ev(xs, cons(x, ys))→ r̃ev(cons(x, xs), ys) }

RTA’11

292 Program Inversion for Tail Recursive Functions

Thus, Rreverse is inverted as follows:

Inv(Rreverse) =

reverse−1(ys)→ tp1(xs)⇐ ys� zs; r̃ev(nil, zs)� tp2(xs, nil)

r̃ev(xs, nil)→ tp2(xs, nil)
r̃ev(xs, cons(x, ys))→ r̃ev(cons(x, xs), ys)

Inv(Rreverse) is non-overlapping and operationally terminating.

Now, we show the correctness of Inv.

I Lemma 3.9 (completeness). Let R be a tp-free constructor TRS over a signature F , f be a
defined symbol of R, and c be Invc(f(u1, · · · , un)� x) that is needed for generating Inv(R),
where x is a fresh variable. For any constructor substitution σ, if f(u1, · · · , un)σ −→c ∗N (R)
xσ, then there exists an extended constructor substitution σ′ of σ such that sσ′ −→c ∗Inv(R) tσ

′

for each condition s� t in c.

Proof (Sketch). This can be proved by induction on the length n of −→c nN (R) (see [25]). J

I Lemma 3.10 (soundness). Let R be a tp-free constructor TRS over a signature F , f be a
defined symbol of R, and c be Invc(f(u1, · · · , un)� x) that is needed for generating Inv(R),
where x is a fresh variable. For any constructor substitution σ, if sσ −→c ∗Inv(R) tσ for each
condition s� t in c, then f(u1, · · · , un)σ −→c ∗N (R) xσ.

Proof (Sketch). This lemma can be proved by induction on the lexicographic product (m,n)
wherem and n are the maximum integers among (m′, n′) of sσ −→c n

′

(m′),Inv(R) tσ (see [25]). J

I Theorem 3.11 (correctness). Let R be a tp-free constructor TRS over a signature F , and
f be a defined symbol of R. Then, all of the following hold:

If f is not tail recursive, then f−1 in Inv(R) is a full inverse of f .
If f is tail recursive, then f̃ in Inv(R) is a tail recursive inverse of f .

Proof (Sketch). This theorem follows from Lemmas 3.6, 3.9 and 3.10. J

Now, we show two simple optimizations that can be applied after Inv:
1. A rule ρ : l → r ⇐ s1 � t1; · · · , p1 � p2; · · · ; sk � tk can be replaced by lσ → rσ ⇐

s1σ � t1σ; · · · ; skσ � tkσ if p1 and p2 are unifiable constructor terms, where σ is a
most general unifier of p1 and p2 such that VRan(σ) ∩ Var(ρ) = ∅.

2. The rule ρ above can be removed from the rewrite system if p1 and p2 are not unifiable.
For a constructor TRS R, the CTRS obtained by applying the above two optimizations to
Inv(R) as much as possible is denoted by Invopt(R).

I Example 3.12. Inv(Rreverse) in Example 3.8 is optimized as follows:

Invopt(Rreverse) =

reverse−1(ys)→ tp1(xs)⇐ r̃ev(nil, ys)� tp2(xs, nil)

r̃ev(xs, nil)→ tp2(xs, nil)
r̃ev(xs, cons(x, ys))→ r̃ev(cons(x, xs), ys)

As mentioned before, the technique for the elimination of non-determinism of [6, 7, 11] is
able to produce a similar result starting from the full inverse system obtained by the old
approach (i.e., the system shown in Example 3.1). However, their technique is very sensitive
to the structure of the program and does not always produce non-overlapping deterministic
programs (e.g., the next example cannot be inverted following the approach of [6, 7, 11]).

Our next example illustrates the application of the inversion technique when there are
several initial call patterns.

N. Nishida and G. Vidal 293

I Example 3.13. Consider the following TRS Rtreepaths:

Rtreepaths =

treepaths(t)→ paths(t, nil, nil)

paths(leaf, qs, qss)→ cons(qs, qss)
paths(bin(l, r), ps, pss)→ paths(l, cons(0, ps), paths(r, cons(1, ps), pss))

The function treepaths takes a binary tree over bin and leaf as input and returns the list
of paths from the root to leaves, e.g., for bin(leaf, bin(bin(leaf, leaf), bin(bin(leaf, leaf), leaf))),
the function treepaths returns the list corresponding to [[0],[0,0,1],[1,0,1],[0,0,1,1],
[1,0,1,1],[1,1,1]], where 0 and 1 indicate the left and right children, resp. The right-
hand side of the third rule contains a nested function call to paths, so it is an initial call of
paths. Thus, Rtreepaths is inverted as follows:

Invopt(Rtreepaths) =

treepaths−1(cons(qs, qss))→ tp1(t)⇐ p̃aths(leaf, qs, qss)� tp3(t, nil, nil)
p̃aths(t, nil, nil)→ tp3(t, nil, nil)

p̃aths(r, cons(1, ps), pss)→ tp3(r, cons(1, ps), pss)
p̃aths(l, cons(0, ps), cons(qs, qss))→ p̃aths(bin(l, r), ps, pss)

⇐ p̃aths(leaf, qs, qss)� tp3(r, cons(1, ps), pss))

I Example 3.14. Consider the TRS Runbin2 = Rub ∪Rinc (a slight variation of that in [6, 7,
11]) with

Rub =

unbin(u)→ ub(u, nil)

ub(s(zero), b)→ b

ub(s(s(v)), b)→ ub(s(v), inc(b))

 ; Rinc =

inc(nil)→ cons(0, nil)

inc(cons(0, xs))→ cons(1, xs)
inc(cons(1, xs))→ cons(0, inc(xs))

The function unbin translates natural numbers s(zero), s(s(zero)), s(s(s(zero))), · · · into the
(reversed) binary numbers nil, cons(0, nil), cons(1, nil), cons(0, cons(0, nil)), · · · , resp., where
nil represents 1 and inc is used to increment binary numbers. Runbin2 is inverted as follows:

Invopt(Runbin2) =

unbin−1(b)→ tp1(u)⇐ ũb(s(zero), b)� tp2(u, nil)

ũb(u, nil)→ tp2(u, nil)
ũb(s(v), x)→ ũb(s(s(v)), b)⇐ inc−1(x)� tp1(b)

 ∪ Invopt(Rinc)

where

Invopt(Rinc) =

inc−1(cons(0, nil))→ tp1(nil)
inc−1(cons(1, xs))→ tp1(cons(0, xs))
inc−1(cons(0, ys))→ tp1(cons(1, xs))⇐ inc−1(ys)� tp1(xs)

The result is operationally terminating and overlapping while the method in [6, 7, 11] fails to
generate an inverse of unbin due to a so-called shift/shift conflict. Moreover, the application
of the non-determinism elimination in [6, 7, 11] to Invopt(Runbin2) also fails due to a shift/shift
conflict.

Unfortunately, although Invopt(Runbin2) is operationally terminating, its rules are overlap-
ping. Luckily, there exists a simple approach to improve the result of the inversion trans-
formation.

If a CTRS is non-overlapping, then the application of rewrite rules to innermost redexes
is deterministic. For analyzing confluence of CTRSs, the notion of infeasible critical pairs is

RTA’11

294 Program Inversion for Tail Recursive Functions

useful since overlapping rules producing infeasible critical pairs can be considered to be non-
overlapping in practice [33]. However, this notion is not so helpful to determine which rules
should be applied to redexes before evaluating the conditional parts. On the other hand, a
bit more attentive analysis is sometimes helpful. Consider Invopt(Runbin2) in Example 3.14
again. The critical pairs of Invopt(Runbin2) are the following:

(tp2(s(v), nil), ũb(s(s(v)), b))⇐ inc−1(nil)� tp1(b)
(ũb(s(s(v)), b), tp2(s(v), nil))⇐ inc−1(nil)� tp1(b)
(tp1(nil), tp1(cons(1, xs)))⇐ inc−1(nil)� tp1(xs)
(tp1(cons(1, xs)), tp1(nil))⇐ inc−1(nil)� tp1(xs)

Since inc−1(nil) is undefined, it is easy to see that these critical pairs are infeasible and that
we do not need to apply the second rule of ũb and the third rule of inc−1 to terms of the
forms ũb(u, nil) and inc−1(cons(0, nil)), resp. This observation comes from the performance
of the restricted completion in [21] that is used for transforming unraveled inverted TRSs into
confluent ones. We call a critical pair (u, v)⇐ c statically infeasible w.r.t. −→c if c contains a
condition f(s1, · · · , sn) � t such that s1, · · · , sn, t are constructor terms and f(s1, · · · , sn)
is unifiable with none of the left-hand sides of f -rules. We call a CTRS practically non-
overlapping if every critical pair of the CTRS is either trivial and at least one of the rules
forming the critical pair is unconditional, or it is statically infeasible. For a practically
non-overlapping constructor CTRS, we can straightforwardly give a priority between its
rewrite rules in advance as priority rewrite systems [29] that are more faithful to functional
programs.
I Example 3.15. Consider Invopt(Runbin2) in Example 3.14 again. All the critical pairs are
statically infeasible and thus Invopt(Runbin2) is practically non-overlapping.
When removing the assumption that a tail recursive function has a single non-recursive rule,
we extend Definition 3.7 as follows: the condition sequence Invc(sk � tk); · · · ; Invc(s1 �
t1) is replaced by c1; · · · ; ck where ci ∈ Invc(si � ti) for all 1 ≤ i ≤ k, and Con-
dition inverse (ii) is replaced by Invc(f(u1, · · · , un) � x) = {x � r; f̃(v1, · · · , vn) �
tpn(u1, · · · , un) | f(v1, · · · , vn)→ r is a renamed variant of a non-recursive f -rule}. Our
next example illustrates the application of this extended inversion technique to tail recursive
functions having two non-recursive rules.
I Example 3.16 (reverse2). Consider the following variant of reverse in Example 3.1:

Rreverse2 =

reverse(xs)→ rev(xs, nil)
rev(nil, ys)→ ys

rev(cons(x, nil), ys)→ snoc(ys, x)
rev(cons(x1, cons(x2, xs)), ys)→ rev(xs, cons(x2, cons(x1, ys)))

snoc(nil, y)→ cons(y, nil)
snoc(cons(x, xs), y)→ cons(x, snoc(xs, y))

Applying the extended inversion, Rreverse2 is inverted as follows:
Invopt(Rreverse2) =

reverse−1(ys)→ tp1(xs)⇐ r̃ev(nil, ys)� tp2(xs, nil)
reverse−1(ys)→ tp1(xs)⇐ snoc−1(ys)� tp2(zs, z);

r̃ev(cons(z, nil), zs)� tp2(xs, nil)
r̃ev(xs, nil)→ tp2(xs, nil)

r̃ev(xs, cons(x2, cons(x1, ys)))→ r̃ev(cons(x1, cons(x2, xs)), ys)
snoc−1(cons(y, nil))→ tp2(nil, y)
snoc−1(cons(x, ys))→ tp2(cons(x, xs), y)⇐ snoc−1(ys)� tp2(xs, y)

N. Nishida and G. Vidal 295

The result is operationally terminating but not practically non-overlapping while the method
in [6, 7, 11] fails to generate an inverse of reverse2 due to a shift/shift conflict. Unfortunately,
the application of the non-determinism elimination in [6, 7, 11] to Invopt(Rreverse2) also fails
due to a shift/shift conflict.

4 Comparison with Previous Approaches

The method in this paper is a conservative extension of [20, 23] to better deal with the
inversion of tail recursive functions. While the previous approach always produces non-
terminating rules from the inversion of tail recursive functions, this is not always the case
for the new approach, which is thus strictly better regarding the generation of terminating
systems. Note that the method in this paper can invert every constructor TRS, though the
resulting CTRS is not always practically non-overlapping and operationally terminating.

In the following, we show some experimental results from the evaluation of our new
approach. First, we applied it to the standard 15 benchmarks from [10].2 Ten of the bench-
marks are non-tail-recursive functions without tail-recursive rules. For these benchmarks,
our method generates the same inverse systems as the previous method [20, 24, 23] and all
the results are operationally terminating and practically non-overlapping. Note that the
method in [6, 7, 11] is also successful for the 10 benchmarks.

As for the remaining 5 benchmarks, three of them are tail recursive ones, and the other
two are non-tail recursive functions containing tail-recursive rules. Table 1 summarizes
the results on the 3 tail recursive functions, reverse, unbin and treepaths, and also con-
tains the results on other tail recursive functions: unbin2 (Example 3.14) and reverse2 (Ex-
ample 3.16). Moreover, the lower half of Table 1 summarizes the results of applying the
inversion to inverses obtained from the first 3 benchmarks: Invopt(reverse), Invopt(unbin)
and Invopt(treepaths) are the systems obtained by applying Invopt to reverse, unbin and
treepaths, resp., and lrinv-reverse, lrinv-unbin and lrinv-treepaths are obtained by applying the
method [6, 7, 11] to reverse, unbin and treepaths, respectively. Note that the benchmarks in
the second half are in principle out of scope of our approach, but we applied our inversion
method to them extending it straightforwardly. Operational termination of the resulting
systems obtained by our method was proved by the termination tool VMTL [30].

By lack of space, we did not show a transformation of non-tail-recursive functions to
equivalent tail-recursive ones, that is an extension of the idea of continuation passing style
to the first-order setting. However, after transforming the remaining two benchmarks that
are not tail-recursive but contain tail-recursive rules into tail-recursive ones, our method
succeeds in generating operationally terminating and practically non-overlapping inverse
systems. Thus, our method is successful for all the benchmarks shown in [6, 7, 11]. A
similar transformation is called context-moving [5]. However, this transformation is sound
when the contexts to be moved satisfy a property like associativity or commutativity. Thus,
the context-moving transformation is not applicable to arbitrary non-tail-recursive functions.

There exist some examples that the method in [6, 7, 11] fails to invert but our approach
succeeds, e.g., unbin2. On the other hand, we have never found an example in which the non-
determinism problem cannot be solved by our approach but can be solved by the method
in [6, 7, 11], though it may exist. To summarize, a promising strategy for program inversion

2 Unfortunately, the site shown in [10] is not accessible now. Some of the benchmarks can be found
in [6, 7, 11]. All the benchmarks are reviewed in [21] and also available from the following URL for the
implementation of our method: http://www.trs.cm.is.nagoya-u.ac.jp/repius/.

RTA’11

296 Program Inversion for Tail Recursive Functions

Table 1 Comparison with the previous approaches [20, 24] and [6, 7, 11]: “SN”, “NOV” and
“PNOV” mean that the inverse is “operationally terminating”, “non-overlapping” and “practically
non-overlapping”, respectively.

inverse by [20, 24, 23] inverse by [6, 7, 11] inverse by this paper
benchmark SN?/NOV?/PNOV? SN?/NOV? SN?/NOV?/PNOV?

reverse [10, 6, 7, 11] no/no/no yes/yes yes/yes/yes
unbin [10, 6, 7, 11] no/no/no yes/yes yes/no/yes

treepaths [10, 6, 7, 11] no/no/no yes/yes yes/yes/yes

unbin2 (Example 3.14) no/no/no fail (no output) yes/no/yes
reverse2 (Example 3.16) no/no/no fail (no output) yes/no/no

Invopt(reverse) no/no/no yes/yes yes/yes/yes
Invopt(unbin) no/no/no yes/yes yes/yes/yes

Invopt(treepaths) no/no/no yes/yes yes/yes/yes

lrinv-reverse no/no/no yes/yes yes/yes/yes
lrinv-unbin no/no/no yes/yes yes/yes/yes

lrinv-treepaths no/no/no fail (no output) yes/yes/yes

would first apply our approach and, then, the non-determinism elimination of [6, 7, 11] (ap-
propriately extended to deal with erasing rules), when the output of our approach contains
some non-determinism.

As stated before, the idea of our approach to inversion of tail recursive functions is similar
to that in [18], though there the idea is only illustrated by using some examples and there is
no formal transformation nor correctness proof. On the other hand, we introduced a formal
definition and its correctness proof, together with an analysis on overlaps between generated
rewrite rules. Moreover, our formalization can be easily extended to tail recursive functions
with several initial calls and non-recursive rules.

Another related work is the method in [15], though it is more related to inverse compu-
tation than to program inversion. Nevertheless, we note that this method is only applicable
to linear functions and it is not guaranteed the termination of the produced programs for
any input (only for the inputs that are original outputs). Moreover, tail recursive functions
are out of scope of this paper.

5 Conclusion

In this paper, we have proposed the notion of tail recursive inverses and have introduced an
appropriate approach to program inversion which extends the previous technique from [20,
23] in order to deal with systems containing tail recursive functions. As mentioned before,
for the sake of readability, we assumed the following restrictions in this paper: the original
TRS is unconditional, non-erasing and tp-free; and tail recursive functions are self-recursive.
However, it would not be difficult to remove these assumptions (and, indeed, they are not
required in the implemented method). Moreover, it would be easy to combine the new
approach to the inversion of tail recursive functions with the method of [20, 24] for partial
inversion, so there is ample room for improving and extending our approach.

As for future work, we plan to develop a method for the elimination of non-determinism in
inverted rules since there are examples, such as reverse2 in Example 3.16. Another promising
direction for future work is the search of sufficient conditions for tail recursive functions so
that the computed inverses with our technique are operationally terminating.

N. Nishida and G. Vidal 297

Acknowledgements
We thank the anonymous reviewers for their useful comments to improve this paper. This
work has been partially supported by MEXT KAKENHI #21700011 and the Spanish Min-
isterio de Ciencia e Innovación under grant TIN2008-06622-C03-02. Part of this research
was done while the first author was visiting the MiST group at the Universitat Politècnica
de València as part of an Institutional Program for Young Researcher Overseas Visits. The
first author is grateful to the members of the MiST and ELP groups.

References
1 S. M. Abramov and R. Glück. The universal resolving algorithm and its correctness: inverse

computation in a functional language. Science of Computer Programming, 43(2-3):193–229,
2002.

2 J. M. Almendros-Jiménez and G. Vidal. Automatic partial inversion of inductively sequen-
tial functions. In Proc. of the 18th Int’l Symposium on Implementation and Application of
Functional Languages (Revised Selected Papers), volume 4449 of Lecture Notes in Computer
Science, pp. 253–270, Springer, 2007.

3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
United Kingdom, 1998.

4 N. Dershowitz and S. Mitra. Jeopardy. In Proc. of the 10th International Conference on
Rewriting Techniques and Applications, volume 1631 of Lecture Notes in Computer Science,
pp. 16–29, Trento, Italy, July 1999.

5 J. Giesl. Context-moving transformations for function verification. In Selected Papers of the
9th International Workshop on Logic Programming Synthesis and Transformation, volume
1817 of Lecture Notes in Computer Science, pp. 293–312, Springer, 2000.

6 R. Glück and M. Kawabe. A program inverter for a functional language with equality
and constructors. In Proc. of the 1st Asian Symposium on Programming Languages and
Systems, volume 2895 of Lecture Notes in Computer Science, pp. 246–264, Springer, 2003.

7 R. Glück and M. Kawabe. A method for automatic program inversion based on LR(0)
parsing. Fundamenta Informaticae, 66(4):367–395, 2005.

8 B. Gramlich. On the (non-)existence of least fixed points in conditional equational logic
and conditional rewriting. In Proc. of the 2nd International Workshop on Fixed Points in
Computer Science – Extended Abstracts, pp. 38–40, Paris, France, July 2000.

9 P. G. Harrison. Function inversion. In Proc. of IFIP TC2 Workshop on Partial Evaluation
and Mixed Computation, pp. 153–166, North-Holland, 1988.

10 M. Kawabe and Y. Futamura. Case studies with an automatic program inversion system. In
Proc. of the 21st Conference of Japan Society for Software Science and Technology, number
6C-3, 5 pages, 2004.

11 M. Kawabe and R. Glück. The program inverter LRinv and its structure. In Proc. of the
7th International Symposium on Practical Aspects of Declarative Languages, volume 3350
of Lecture Notes in Computer Science, pp. 219–234, Springer, Jan. 2005.

12 H. Khoshnevisan and K. M. Sephton. InvX: An automatic function inverter. In Proc. of
the 3rd International Conference on Rewriting Techniques and Applications, volume 355 of
Lecture Notes in Computer Science, pp. 564–568, Springer, 1989.

13 S. Lucas, C. Marché, and J. Meseguer. Operational termination of conditional term rewrit-
ing systems. Information Processing Letters, 95(4):446–453, 2005.

14 M. Marchiori. Unravelings and ultra-properties. In Proc. of the 5th International Con-
ference on Algebraic and Logic Programming, volume 1139 of Lecture Notes in Computer
Science, pp. 107–121, Springer, 1996.

RTA’11

298 Program Inversion for Tail Recursive Functions

15 K. Matsuda, S.-C. Mu, Z. Hu, and M. Takeichi. A grammar-based approach to invertible
programs. In Proc. of the 19 the European Symposium on Programming, volume 6012 of
Lecture Notes in Computer Science, pp. 448–467, Springer, 2010.

16 J. McCarthy. The inversion of functions defined by Turing machines. In Automata Studies,
pp. 177–181. Princeton University Press, 1956.

17 T. Æ. Mogensen. Semi-inversion of guarded equations. In Proc. of the 4th International
Conference on Generative Programming and Component Engineering, volume 3676 of Lec-
ture Notes in Computer Science, pp. 189–204, Springer, 2005.

18 T. Æ. Mogensen. Report on an implementation of a semi-inverter. In Proc. of the 6th
International Andrei Ershov Memorial Conference on Perspectives of Systems Informatics,
volume 4378 of Lecture Notes in Computer Science, pp. 322–334, Springer, 2006.

19 T. Æ. Mogensen. Semi-inversion of functional parameters. In Proc. of the 2008 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
pp. 21–29, New York, NY, USA, 2008. ACM Press.

20 N. Nishida. Transformational Approach to Inverse Computation in Term Rewriting. Doctor
thesis, Graduate School of Engineering, Nagoya University, Nagoya, Japan, Jan. 2004.

21 N. Nishida and M. Sakai. Completion after program inversion of injective functions. In Proc.
of the 8th International Workshop on Reduction Strategies in Rewriting and Programming,
Volume 237 of Electronic Notes in Theoretical Computer Science, pp. 39–56, Apr. 2009.

22 N. Nishida, M. Sakai, and T. Sakabe. Generation of inverse term rewriting systems for
pure treeless functions. In Proc. of the International Workshop on Rewriting in Proof and
Computation, pp. 188–198, Sendai, Japan, Oct. 2001.

23 N. Nishida, M. Sakai, and T. Sakabe. Generation of inverse computation programs of
constructor term rewriting systems. IEICE Transactions on Information and Systems,
J88-D-I(8):1171–1183, Aug. 2005 (in Japanese).

24 N. Nishida, M. Sakai, and T. Sakabe. Partial inversion of constructor term rewriting
systems. In Proc. of the 16th Int’l Conference on Rewriting Techniques and Applications,
volume 3467 of Lecture Notes in Computer Science, pp. 264–278, Springer, Apr. 2005.

25 N. Nishida and G. Vidal. Program inversion for tail recursive functions. The full version of
this paper, available from http://www.trs.cm.is.nagoya-u.ac.jp/~nishida/rta11/.

26 E. Ohlebusch. Advanced Topics in Term Rewriting. Springer-Verlag, April 2002.
27 A. Romanenko. The generation of inverse functions in Refal. In Proc. of IFIP TC2 Work-

shop on Partial Evaluation and Mixed Computation, pp. 427–444, North-Holland, 1988.
28 A. Romanenko. Inversion and metacomputation. In Proc. of the Symposium on Partial

Evaluation and Semantics-Based Program Manipulation, volume 26 of SIGPLAN Notices,
pp. 12–22, ACM Press, Sept. 1991.

29 M. Sakai and Y. Toyama. Semantics and strong sequentiality of priority term rewriting
systems. Theoretical Computer Science, 208(1-2):87–110, 1998.

30 F. Schernhammer and B. Gramlich. VMTL—a modular termination laboratory. In Proc.
of the 20th International Conference on Rewriting Techniques and Applications, volume
5595 of Lecture Notes in Computer Science, pp. 285–294, Springer, 2009.

31 P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated termination
proofs for logic programs by term rewriting. ACM Transactions on Computational Logic,
11(1):52 pages, Oct. 2009.

32 J. P. Secher and M. H. Sørensen. From checking to inference via driving and dag grammars.
In Proc. of the 2002 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, volume 37 of SIGPLAN Notices, pp. 41–51, Portland, Oregon, USA,
March 2002.

33 Y. Takahashi, M. Sakai, and Y. Toyama. On the confluence property of conditional term
rewriting systems. IEICE Transactions, J79-D-I(11):897–902, 1996 (in Japanese).

Refinement Types as Higher-Order Dependency
Pairs
Cody Roux1

1 INRIA - Lorraine
615 r. du Jardin Botanique, 54600 Villers-lès-Nancy, France

Abstract
Refinement types are a well-studied manner of performing in-depth analysis on functional pro-
grams. The dependency pair method is a very powerful method used to prove termination of
rewrite systems; however its extension to higher-order rewrite systems is still the subject of active
research. We observe that a variant of refinement types allows us to express a form of higher-order
dependency pair method: from the rewrite system labeled with typing information, we build a
type-level approximated dependency graph, and describe a type level embedding preorder. We de-
scribe a syntactic termination criterion involving the graph and the preorder, which generalizes
the simple projection criterion of Middeldorp and Hirokawa [21], and prove our main result: if
the graph passes the criterion, then every well-typed term is strongly normalizing.

Keywords and phrases Dependency Pairs, Higher-Order, Refinement Types

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.299

Category Regular Research Paper

1 Introduction

Types are used to perform static analysis on programs. Various type systems have been
developed to infer information about termination, run-time complexity, or the presence of
uncaught exceptions.

We are interested in one such development, namely dependent types [30, 13]. Dependent
types explicitly allow “object level” terms to appear in the types, and may be used to fully
specify (extensional) program behavior using the so called Curry-Howard isomorphism. We
are particularly interested here in refinement types [36, 17]. For a given base type B and a
property P on programs, we may form a type R which is a refinement of B and which is
intuitively given the semantics:

R = {t :B | P (t)}.

Programing languages based on dependent type systems have the reputation of being
unwieldy, due to the perceived weight of proof obligations in heavily specified types. The
field of dependently typed programing can be seen as a quest to find the compromise between
expressivity of types and ease of use for the programmer. In this paper we propose a type
system which we believe achieves such a compromise for a termination analysis based on the
shape of constructor terms.

Dependency pairs are a highly successful technique for proving termination of first-order
rewrite systems [4]. However, it is difficult to apply the method to higher-order rewrite
systems. Indeed, the data-flow of such systems is significantly different than that of first-order
ones. Let us examine the rewrite rule:

f (S x) � (λy.f y) x
© Cody Roux;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 299–312

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.299
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

300 Refinement Types as Higher-Order Dependency Pairs

Which can for example be written in the higher-order rewriting framework of Jouannaud
& Okada [26]. The termination of well-typed terms under this rewrite system combined
with β-reduction cannot be inferred by simply looking at the left-hand side f (S x) and
the recursive call f y in the right hand side as it could be in first-order rewriting. Here we
need to infer that the variable y can only be instantiated by a subterm of S x. This can be
done using dependent types, using a framework called size-based termination or sometimes
type-based termination [22, 1, 5, 7, 10].

The dependency pair method rests on the examination of the aptly-named dependency
pairs, which correspond to left-hand sides of rules and function calls with their arguments in
the right-hand side of the rules. For instance with a rule

f(c(x, y), z) � g(f(x, y))

We would have two dependency pairs, the pair f(c(x, y), z) � f(x, y) and the pair f(c(x, y), z)
� g(f(x, y)) (in the case that g is a defined symbol).

We can then define a chain to be a pair (θ, φ) of substitutions, and a couple (t1 � u1, t2 �
u2) of dependency pairs such that u1θ reduces to t2φ. We may connect chains in an intuitive
manner, and the fundamental theorem of dependency pairs may be stated: a (first-order)
rewrite system is terminating if and only if there are no infinite chains. See also the original
article [4] for details.

To prove that no infinite chains exist, one wants to work with the dependency graph: the
graph built using the dependency pairs as nodes and with a vertex between N1 = t1 � u1
and N2 = t2 � u2 if there exist θ and φ such that (θ, φ), (N1, N2) form a chain. It is then
shown that if the system is finite, then it is sufficient to consider only the cycles in this
graph and prove that they may not lead to infinite chains [18]. It is known that in general
computing the dependency graph is undecidable (this is the unification modulo rewriting
problem, see e.g. Jouannaud et al . [25]), so in practice we compute an approximation (or
estimation) of the graph that is conservative: all edges in the dependency graph are sure to
appear in the approximated graph. One common (see for instance Giesl [20]) and reasonable
approximation is to perform ordinary unification on non-defined symbols (that is, symbols
that are not at the head of a left-hand side), while replacing each subterm headed by a
defined symbol by a fresh variable, ensuring that it may unify with any other term.

In this article, we show that the dependency pair technique with the approximated
dependency graph can be modeled using a form of refinement types containing patterns
which denote sets of possible values to which a term reduces. The syntax and type system
are described in section 2. These type-patterns must be explicitly abstracted and applied,
a choice that allows us to have very simple type inference. We then use these types to
build a notion of type-based dependency pair for higher-order rewrite rules, as well as an
approximated dependency graph which corresponds to the estimation described above. We
describe an order on the type annotations, that essentially captures the subterm ordering, and
use this order to express a decrease condition along cycles in the approximated dependency
graph. In section 3 we describe a suitable generalization of the simple projection criterion first
described by Middeldorp and Hirokawa [21]: if in every strongly connected component of the
graph and every cycle in the component, the decrease condition holds, then every well-typed
term is strongly normalizing under combination of the rewrite rules and β-reduction. The
actual operational semantics are defined not on the terms themselves, but on erased terms in
which we remove the explicit type information. Section 4 concludes with a comparison with
other approaches to higher-order dependency pairs and possible extensions of our criterion.

Cody Roux 301

2 Syntax and Typing Rules

The language we consider is simply a variant of the λ-calculus with constants. For simplicity we
only consider the datatype of binary (unlabeled) trees. The development may be generalized
without difficulty to other first-order datatypes, i.e. types whose constructors do not have
higher-order recursive arguments. We define the syntax of patterns

p, q ∈ P := α | _ | ⊥ | leaf | node(p, q)

With α ∈ V a set of pattern variables, and _ is called wildcard. Patterns appear in types to
describe possible reducts of terms. We define the set of types:

T,U ∈ T := B(p) | T → U | ∀α.T

An atomic type is a type of the form B(p). The set of terms of our language is defined by:

t, u ∈ Trm := x | f | t u | t p | λx :T.t | λα.t | Leaf | Node

With x ∈ X a set of term variables, f ∈ Σ is a set of defined function symbols and α ∈ V .
A constructor is either Leaf or Node. A context is a list of judgements x :T with x ∈ X

and T ∈ T , with each variable appearing only once. Notice that application and abstraction
of patterns is explicit.

Intuitively, B(p) denotes the set of terms for which every reduct in normal form matches
the pattern p. For instance, any binary tree t is in the semantics of B(_), only binary
trees that reduce to Node t1 t2 for some binary trees t1 and t2 are in B(node(_,_)), and
only terms that never reduce to a constructor are in B(⊥). Our operational semantics is
defined by rewriting, which has the following consequences, which may be surprising to a
programming language theorist:

It may be the case that a term t has several distinct normal forms. Indeed we do not
require our system to be orthogonal, or even confluent (we do require it to be finitely
branching though). Therefore a term is in the semantics of B(node(_,_)) if all its reducts
reduce to a term of the form Node t u.
It is possible for a term to be stuck in the empty context, that is in normal form and not
headed by a constructor or an abstraction. Therefore B(⊥) is not necessarily empty even
in the empty context.

We write FV(t) (resp. FV(T), FV(Γ)) for the set of free (type or term) variables in a
term t (resp. a type T , a context Γ). If a term (resp. pattern) does not contain any free
variables, we say that it is closed. We write ∀~α.T for ∀α1.∀α2 . . . ∀αn.T , and arrows and
application are associative to the left and right respectively, as usual. A pattern variable α
appears in B(p) if it appears in p. It appears positively in a type T if:

T = B(p) and α appears in p
T = T1 → T2 and α appears positively in T2 or negatively in T1 (or both),

with α appearing negatively in T if T = T1 → T2 and α appears negatively in T2 or positively
in T1 (or both).

We consider a type assignment τ : Σ→ T , such that for each f ∈ Σ, there is a number k
such that τf is of the form

τf = ∀α1, . . . , αk.B(α1)→ . . .→ B(αk)→ Tf

and each αi may appear only positively in Tf . In this case k is called the number of recursive
arguments.

RTA’11

302 Refinement Types as Higher-Order Dependency Pairs

ax
Γ, x :T,∆ ` x :T

Γ, x :T ` t :U
t-lamΓ ` λx :T.t :T → U

Γ ` t :Tα /∈ FV(Γ) p-lamΓ ` λα.t :∀α.T

leaf-introΓ ` Leaf : B(leaf)

node-introΓ ` Node:∀αβ.B(α)→ B(β)→ B(node(α, β))

Γ ` t :T → U Γ ` u :T t-appΓ ` t u :U
Γ ` t :∀α.T p-app

Γ ` t p :T{α 7→ p}

symbΓ ` f : τf

Figure 1 Typing Rules

The positivity condition is quite similar to the one used in the usual formulation of
type-based termination, see for instance Abel [2] for an in depth analysis. The typing rules
are also similar to the ones for type-based termination. The typing rules of our system are
given by the typing rules in Figure 1.

To these rules we add the subtyping rule:

Γ ` t :T T ≤ U
subΓ ` t :U

Where the subtyping relation is defined, first on patterns, then on types by:

p� _ ⊥ � p

α� α leaf � leaf

p1 � q1 p2 � q2

node(p1, p2)� node(q1, q2)

p� q

B(p) ≤ B(q)

T2 ≤ T1 U1 ≤ U2
T1 → U1 ≤ T2 ≤ U2

T ≤ U
∀α.T ≤ ∀α.U

This type system is similar to the refinement types described by Freeman et al . [17], for
a subset of the ML language. However they consider more complex refinements in which
arbitrary unions are allowed (and for which type checking is undecidable!) and which does
not allow one to explicitly name the shape of a term in the type, i.e. it does not allow (our
version of) type-level variables. Furthermore, our system is not very distant from generalized
algebraic datatypes as are implemented in certain Haskell extensions [33], though subtyping
is not present in that framework.

Cody Roux 303

α /∈ Γ,Γ′
Γ, x : B(α),Γ′ `min x : B(α)

Γ `min Leaf : B(leaf)

Γ `min c1 : B(p1) Γ `min c2 : B(p2)
Γ `min Node p1 p2 c1 c2 : B(node(p1, p2))

Γ `min c1 : B(p1) . . . Γ `min ck : B(pk)
~α /∈ ΓΓ `min f p1 . . . pk c1 . . . ck :Tfφ

With τf = ∀α1 . . . αk.B(α1)→ . . .→ B(αk)→ Tf and φ(αi) = pi for 1 ≤ i ≤ k.

Figure 2 Minimal Typing Rules

It may seem surprising that we choose to represent pattern abstraction (by λα.t), and
pattern application (by t p) explicitly in our system. This choice is justified by the simplicity
of type inference with explicit parameters. In the author’s opinion, implicit arguments
should be handled by the following schema: at the user level a language without implicit
parameters; these parameters are inferred by the compiler, which type-checks a language
with all parameters present. Then at run-time they are once again erased. This is exactly
analogous to a Hindley-Milner type language in which System F is used as an intermediate
language [31, 24]. It is also our belief that explicit parameters will allow this criterion to
be more easily integrated into languages with pre-existing dependent types, e.g. Agda [32],
Epigram [29] or Coq [15].

A constructor term c ∈ C is a term built following the rules:
c1, c2 ∈ C := x | Leaf | Node p1 p2 c1 c2

with x ∈ X .
A rewrite rule is a pair of terms (l, r) which we write l � r, such that l is of the form

f p1 . . . pn c1 . . . ck with f ∈ Σ, pi ∈ P and ci ∈ C, and k is the number of recursive arguments
of f . We suppose that the free variables of r appear in l. Note that there is no linearity
restriction on the left-hand sides of rules, and that left-hand sides may not contain any
abstractions.

We suppose in addition that every function symbol g ∈ r is fully applied to its pattern
arguments, that is if τg = ∀α1 . . . αl.T then for each occurrence of g in r there are patterns
p1, . . . , pl ∈ P such that g p1 . . . pl appears at that position.

In the following we consider a finite set R of rewrite rules. The set R is well-typed if for
each rule l � r ∈ R, there is a context Γ and a type T such that

Γ `min l :T
and

Γ ` r :T
with `min the minimal typing relation defined in Figure 2.

Notice that if Γ `min ci : T then T is unique. Minimal typing is related to other work
on size-based termination [11], in which it is called the pattern condition. Its purpose is to
constrain the possible types of constructor terms in left-hand sides, so that the type gives
an exact semantics of the matched terms. In particular, if Γ `min x : B(p), then p = α,
x : B(α) and α may not appear in the type of any other variable. Furthermore, subtyping is
forbidden, so that a constructor term of the form Node p q t u is given a type of the form
B(node(p, q)), and Leaf is given the type B(leaf).

RTA’11

304 Refinement Types as Higher-Order Dependency Pairs

We give the following theorem without proof.

I Theorem 2.1. Type checking is decidable: there is a procedure which, given Γ, t and T ,
decides whether

Γ ` t :T
is derivable.

It may be useful to note here that subtyping is necessary to type all but the most trivial
of programs: let f : ∀α.B(α)→ B(_) be the function that computes the mirror image of a
binary tree, which may be defined in our system by the rules

f leaf Leaf � Leaf
f node(α, β) (Node α β x y) � Node _ _ (f β y) (f α x)

This function is well-typed using the minimal typing rules in the context x : B(α), y : B(β),
but subtyping is necessary to type the second rule, as the term Node _ _ (f β y) (f α x)
has type node(_,_) and not _ which is the required return type of f .

We can then define a higher-order analogue of dependency pairs, which uses type infor-
mation instead of term information.

I Definition 2.2. Let ρ = f ~p ~c � r be a rule in R, with Γ such that Γ `min f ~p ~c :T , and
Γ ` r :T . The set of type dependency pairs DPT (ρ) is the set{

f](p1, . . . , pk) � g](q1, . . . , ql) | ∀i,Γ `min ci : B(pi) ∧ g q1 . . . ql appears in r
}

The set DPT (R) is defined as the union of all DPT (ρ), for ρ ∈ R, where we suppose that all
variables are disjoint between dependency pairs.

The set of higher-order dependency pairs defined above should already be seen as an
abstraction of the traditional dependency pair notion (for example those defined in [4]).
Indeed, due to subtyping, there may be some information lost in the types, if for instance
the wildcard pattern is used. As an example, if f, g and h all have type ∀α.B(α)→ B(_),
consider the rule

f α x � g _ (h α x)

The dependency pair we obtain is

f](α) � g](_)

The information that g is called on the argument h α x is lost.
This approach can therefore be seen as a type-based manner to study an approximation

of the dependency graph. Note that in the case where h is given a more precise type, like
∀α.B(α)→ B(leaf), which is the case if every normal form of h p t is either neutral or Leaf,
we have a more precise approximation.

Note that in the following definition, a dependency pair can not be easily seen as a rule
of the system itself, though it may be seen as a first-order rewrite rule which operates on
“type level” function symbols and constructors.

Cody Roux 305

I Definition 2.3. Let p and q be patterns. We define pattern-unification as the smallest
relation verifying:

p ./ _ p ./ α

leaf ./ leaf ⊥ ./ ⊥
p ./ q
q ./ p

p1 ./ q1 p2 ./ q2

node(p1, p2) ./ node(q1, q2)

The standard typed dependency graph GR is defined as the graph with

As set of nodes the set DPT (R).
An edge from the dependency pair t � g](p1, . . . , pk) to g](q1, . . . , qk) � u if for every
1 ≤ i ≤ k, pi ./ qi.

This definition gives us an adequate higher-order notion of standard approximated
dependency graph. We will now show that it is possible to give an order on the terms in the
dependency pairs, which is similar to a simplification order and which will allow us to show
termination of well-typed terms under the rules, if the graph satisfies an intuitive decrease
criterion.

I Definition 2.4. Given patterns p and q which do not contain _, we define the embeddeding
preorder on P written p� q by the following rules

pi � q ⇒ node(p1, p2) � q for i = 1, 2
p1 � q1 ∧ p2 � q2 ⇒ node(p1, p2) � node(q1, q2)
p1 � q1 ∧ p2 � q2 ⇒ node(p1, p2) � node(q1, q2)

With � as the reflexive closure of �.

The preorder � can be used to verify a structural decrease in values: if t : B(p), u : B(q)
in a common context and p � q, then the maximum size of normal forms of t is strictly
greater that the maximum size of normal forms in u. This explains why we must forbid _ in
the definition of �, as a term can be simultaneously typed in B(node(_,_)) and B(_) (and
so no decrease is possible).

Non termination can intuitively be traced to cycles in the dependency graph. We wish to
consider termination on terms with erased pattern arguments and type annotations.

3 Operational Semantics and the Main Theorem

Rewriting needs to be performed over terms with erased pattern annotations. The problem
with the naïve definition of rewriting arises when trying to match on patterns. Take the rule

f node(α, β) (Node x y) � Leaf

In the presence of this rule, we wish to have, for instance, the reduction

f _ (Node (g x) (h x)) � Leaf

where g and h are arbitrary defined symbols. However, there is no substitution θ such that
node(α, β)θ = _. There are two ways to deal with this. Either we take subtyping into account

RTA’11

306 Refinement Types as Higher-Order Dependency Pairs

when performing matching, or we erase the pattern arguments when performing reduction.
We adopt the second solution, which has the advantage of requiring fewer reductions, and is
closer to practice in languages with dependent type annotations (see for example McKinna
[30]). Symmetrically, we erase pattern abstractions as well.

I Definition 3.1. We define the set of erased terms Trm|�| as:

t, u ∈ Trm|�| := x | f | λx.t | t u | Leaf | Node

Where x ∈ X and f ∈ F .
Given a term t ∈ Trm, we define the erasure |t| ∈ Trm|�| of t as:

|x| = x

|f | = f

λx :T.t	= λx.	t		
λα.t	=	t		
t u	=	t		u
t p	=	t		
Leaf	= Leaf			
Node	= Node			

An erased term can intuitively be thought of as the compiled form of a well typed term.

I Definition 3.2. An erased term t head rewrites to a term u if there is some rule l � r ∈ R
and some substitution σ from X to terms in Trm|�| such that

|l|σ = t ∧ |r|σ = u

We define β-reduction �β as

λx.t u �β t{x 7→ u}

And we define the reduction � as the closure of head-rewriting and β-reduction by term
contexts. We then define �∗ and �+ as the symmetric transitive and transitive closure of �,
respectively.

We can now express our termination criterion. We need to consider the strongly connected
components, or SCCs of the typed dependency graph. A strongly connected component of a
graph G is a full subgraph such that each node is reachable from all the others.

I Definition 3.3. Let G be the typed dependency graph for R and let G1, . . . ,Gn be the SCCs
of G. Suppose that for each Gi, there is a simple projection ιi : Σ → N which to f ∈ Σ
associates an integer 1 ≤ ιif ≤ k (with k the number of recursive arguments of f).

We say that R passes the simple projection criterion for ι if

For each 1 ≤ i ≤ n and each rule f](p1, . . . , pn) � g](q1, . . . , qm) in Gi, we have pιi
f
� qιig .

For each cycle in Gi, there is some rule f](p1, . . . , pn) � g](q1, . . . , qm) such that

pιi
f
� qιig

I Theorem 3.4. (Main theorem)
Suppose that there is ι such that R passes the simple projection criterion for ι. Then for

every Γ, t, T such that Γ ` t :T ,

|t| ∈ SNR

Cody Roux 307

g](leaf) � c]

c] � app]

c] � g](node(leaf, leaf))

Figure 3 Dependency graph of Example 1

The proof of this theorem uses classic computability methods, and can be found in the
online version, from the authors homepage. Let us give two examples of the application of
this technique.

I Example 1. Take the rewrite system given by the signature:

app: ∀αβ.(B(α)→ B(β))→ B(α)→ B(β), c : B(leaf), g :∀α.B(α)→ B(leaf)

We give the rewrite rules:

app → λαβ.λx : B(α)→ B(β).λy : B(α).x y

c→ app node(leaf, leaf) leaf (g node(leaf, leaf)) (Node leaf leaf Leaf Leaf)

g node(α, β) (Nodeα β x y)→ Leaf

g leaf Leaf → c

or, in more readable form with pattern arguments and type annotations omitted:

app → λx.λy.x y

c → app g (Node Leaf Leaf)
g (Node x y) → Leaf

g Leaf → c

It is possible to verify that the criterion can be applied and that in consequence, according to
Theorem 3.4, all well typed terms are strongly normalizing under R∪ β.

Indeed, we may easily check that each of these rules is minimally typed in some context.
Furthermore, we can check that the dependency graph in Figure 3 has no cycles.

One may object that if we inline the definition of app and perform β-reduction on the right-
hand sides of rules we obtain a rewrite system that can be treated with more conventional
methods, such as those performed by the AProVe tool [19] (on terms without abstraction, and
without β-reduction). However this operation can be very costly if performed automatically
and is, in its most naïve form, ineffective for even slightly more complex higher-order programs
such as map, which performs pattern matching and for which we need to instantiate. By
resorting to typing, we allow termination to be proven using only “local” considerations, as
the information encoding the semantics of app is contained in its type.

RTA’11

308 Refinement Types as Higher-Order Dependency Pairs

i](node(α, β)) � i](α)

i](node(α, β)) � i](β)

f](node(α, β)) � g](node(α, β))

f](node(α, β)) � i](node(α, β))

g](node(α, β)) � f](α)

g](node(α, β)) � i](node(α, β))

g](leaf) � f](⊥) g](leaf) � h](leaf)h](node(α, β)) � h](α)

Figure 4 The dependency graph for Example 2

However it becomes necessary, if one desires a fully automated termination check on an
unannotated system, to somehow infer the type of defined constants, and possibly perform
an analysis quite similar in effect to the one proposed above. We believe that to this end one
may apply known type inference technology, such as the one described in [14], to compute
these annotated types. In conclusion, what used to be a termination problem becomes a
type inference problem, and may benefit from the knowledge and techniques of this new
community, as well as facilitate integration of these techniques into type-theoretic based
proof assistants like Coq [15].

Let us examine a second, slightly more complex example, in which there is “real” recursion.

I Example 2. Let R be the rewrite system defined by

f (Node x y) → g (i (Node x y)
g (Node x y) → f (i x)

g Leaf → f (h Leaf)
i (Node x y) → Node (i x) (i y)

i Leaf → Leaf
h (Node x y) → h x

Again with the type arguments omitted for readability, and with types f, g :∀α.B(α)→ B(_),
h : ∀α.B(α) → B(⊥) and i : ∀α.B(α) → B(α). Every equation can be typed in the con-
text Γ = x : B(α), y : B(β). The system with full type annotations is given in the ap-
pendix (or in the online version). The dependency graph is given in Figure 4, and has as
SCCs the full subgraphs of GR with nodes

{
i](node(α, β)) � i](α), i](node(α, β)) � i](β)

}
,{

f](node(α, β)) � g](node(α, β), g](node(α, β) � f](α)
}
and

{
h](node(α, β)) � h](α)

}
re-

spectively.
Taking ιs = 1 for every SCC and every symbol s ∈ Σ, it is easy to show that every SCC

respects the decrease criterion on cycles. For example, in the cycle

f](node(α, β)) � g](node(α, β))� g](node(α, β)) � f](α)

we have node(α, β) � node(α, β) and node(α, β) � α, so the cycle is weakly decreasing with
at least one strict decrease.

We may then again apply the correctness theorem to conclude that the erasure of all
well-typed terms are strongly normalizing with respect to R∪ β.

Note that the minimality condition is important: otherwise one could take

f :∀αβ.B(α)→ B(β)→ B(_)

Cody Roux 309

with the rule

f node(leaf, leaf) leaf x y � f leaf leaf y y

This rule can be typed in the context x : B(node(leaf, leaf)), y : B(leaf), but not minimally
typed, as the variables x and y do not have type B(α) for some variable α, and passes the
termination criterion: the dependency graph is without cycles, as node(leaf, leaf) does not
unify with leaf. However, this system leads to the non terminating reduction f Leaf Leaf �
f Leaf Leaf.

4 Comparison, future work

Several extensions of dependency pairs to different forms of higher-order rewriting have
been proposed, first for applicative systems (variables may appear in application position,
but there are no λ-abstractions) [19, 35, 3] and subsequently for more expressive systems
including λ-abstractions [27, 8]. For the frameworks that do not handle the presence of
bound variables, the usual approach is to defunctionalize (also called lambda-lifting) [16, 23]
which is a whole program transformation which yields operationally equivalent terms for a
given rewrite system.

All the techniques cited above, when applied to Example 1, where we may replace the
rule app→ λx.λy.x y with the rule app x y → x y (which does not involve bound variables),
generate a dependency graph with cycles. For example, in Sakai & Kusakari [35], using the
so-called “dynamic approach” the dependency graph is:

c[] � g[] c[] � app[g, Node[Leaf,Leaf]] g[Leaf] � c[]

app[x, y] � x[y]

It is of course possible to prove that there are no infinite chains for this problem (the
criterion is complete), but we have not much progressed from the initial formulation!

Using the so-called “static approach” from the same paper, which is based on computability
(as is our framework), we obtain the following graph:

c[] � g[z] c[] � app[g, Node[Leaf,Leaf]] g[Leaf] � c[]

RTA’11

310 Refinement Types as Higher-Order Dependency Pairs

However it is not possible to prove that there are no infinite chains for this problem, as
there is one! Therefore the criterion presented in the present paper allows a finer analysis of
the possible calls.

The termination checking software AProVE, which used methods drawn in part from Giesl
et al [19] succeeds in proving termination of Example 1, by using an analysis involving the
computation of variable instances and symbolic reduction. As noted previously, our approach
does not need such an expensive analysis as the information required is already contained in
the type information. However it seems that such an analysis may be used to infer the type
annotations required in our framework. At the moment it is unclear how the typing approach
precisely compares to these techniques. More investigation is clearly needed in this direction.

AProVE can also easily prove termination of the second rewrite system (Example 2).
However semantic information needs to be inferred (for example a polynomial interpretation
needs to be given) when trying to well-order the cycle

f (Node x y) � g (i (Node x y))� g (Node x y) � f (i x)

This information is already supplied by our type system (through the fact that i is of
type ∀α.B(α)→ B(α)), and therefore it suffices to consider only syntactic information on
the approximated dependency graph. The subterm criterion by Aoto and Yamada [3] is
insufficient to treat this example.

Work by Bove and Capretta [12] allows one to use dependent types to encode functions
that terminate for complex reasons, using functions which can be shown to be structurally
recursive. While the theoretical power of this approach is stronger than that of ours, it not
possible to give a straightforward encoding of our type-based framework using this approach,
due to the presence of subtyping. Note also that our criterion applies to open terms with
erased arguments, whereas the Bove-Capretta method does not.

The framework described here is only the first step towards a satisfactory type-based
dependency pair framework using refinement types. We intuitively consider a “type level”
first-order rewrite system, use standard techniques to show that that system is terminating,
and show that this implies termination of the object level system. More work is required to
obtain a satisfactory “dependency pairs by typing” framework.

Our work seems quite orthogonal to the size-change principle [28], which suggests we
could apply this principle to treat cycles in the typed dependency graph, as a more powerful
criterion than simple decrease on one indexed argument.

It is clear that the definitions and proofs in the current work extend to other first-order
inductive types like lists, Peano natural numbers, etc. We conjecture that this framework
can be extended to more general positive inductive types, like the type of Brower ordinals
[9]. These kinds of inductive types seem to be difficult to treat with other (non type-based)
methods.

For now types have to be explicitly given by the user, and for complete automation of
our criterion it is necessary to infer the type annotations. Notice that trivial annotations
(return type always B(_)) can very easily be infered automatically. Some work on automatic
inference of type-level annotations has been carried out by Chin et al . [14] which considers
annotations in the language of linear arithmetic, and by Barthe, Gregoire and Pastawski
[6] for a more restricted language of size-types. We believe that inference of explicit type
information in the terms is quite feasible with current state-of-the-art methods, for example
those used for inferring the type of functional programs using GADTs [33].

We only consider matching on non-defined symbols, though an extension to a framework
with matching on defined symbols seems feasible if we add some conversion rule to our type
system.

Cody Roux 311

We believe that refinement types are simply an alternative way of presenting the depen-
dency pair method for higher-order rewrite systems. It is the occasion to draw a parallel
between the types community and the rewriting community, by emphasizing that techniques
used for the inference of dependent type annotations (for example work on liquid types [34]),
may in fact be used to infer information necessary for proving termination and (we believe)
vice-versa. It may also be interesting in the case of a programming language for the user to
supply the types as documentation, in what some call “type directed programing”.

Acknowledgements We thank Frederic Blanqui and Andreas Abel for the discussions that
led to the birth of this work and for very insightful comments concerning a draft of this
paper, as well as anonymous referees for numerous corrections.

References
1 A. Abel. Termination checking with types. Theoretical Informatics and Applications,

38(4):277–319, 2004.
2 A. Abel. Semi-continuous sized types and termination. In Z. Ésik, editor, CSL, volume

4207 of Lecture Notes in Computer Science, pages 72–88. Springer, 2006.
3 T. Aoto and T. Yamada. Dependency pairs for simply typed term rewriting. In J. Giesl,

editor, RTA, volume 3467 of Lecture Notes in Computer Science, pages 120–134. Springer,
2005.

4 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236(1-2):133–178, 2000.

5 G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of
recursive definitions. Mathematical Structures in Computer Science, 14(1):97–141, 2004.

6 G. Barthe, B. Grégoire, and F. Pastawski. Practical inference for typed-based termination
in a polymorphic setting. In Typed Lambda Calculi and Applications, pages 71–85, 2009.

7 F. Blanqui. A type-based termination criterion for dependently-typed higher-order rewrite
systems. In Proc. of the 15th International Conference on Rewriting Techniques and Ap-
plications, volume 3091 of Lecture Notes in Computer Science, 2004.

8 F. Blanqui. Higher-order dependency pairs. In Proceedings of the 8th International Work-
shop on Termination, 2006.

9 F. Blanqui, J.-P. Jouannaud, and M. Okada. Inductive-data-type Systems. Theoretical
Computer Science, 272:41–68, 2002.

10 F. Blanqui and C. Riba. Combining typing and size constraints for checking the termina-
tion of higher-order conditional rewrite systems. In Proceedings of the 13th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, Lecture Notes
in Computer Science 4246, 2006.

11 F. Blanqui and C. Roux. On the relation between sized-types based termination and
semantic labelling. In E. Grädel and R. Kahle, editors, CSL, volume 5771 of Lecture Notes
in Computer Science, pages 147–162. Springer, 2009.

12 A. Bove and V. Capretta. Modelling general recursion in type theory. Mathematical Struc-
tures in Computer Science, 15(4):671–708, 2005.

13 N. G. D. Bruijn. The mathematical language automath, its usage, and some of its extensions.
In M. Laudet, editor, Proceedings of the Symposium on Automatic Demonstration, volume
125, pages 29–61. Springer-Verlag, 1968.

14 W.-N. Chin and S.-C. Khoo. Calculating sized types. Journal of Higher-Order and Symbolic
Computation, 14(2-3):261–300, 2001.

15 Coq Development Team. The Coq Reference Manual, Version 8.2. INRIA Rocquencourt,
France, 2008. http://coq.inria.fr/.

RTA’11

http://coq.inria.fr/

312 Refinement Types as Higher-Order Dependency Pairs

16 O. Danvy and L. R. Nielsen. Defunctionalization at work. In proceedings of PPDP, pages
162–174. ACM, 2001.

17 T. Freeman and F. Pfenning. Refinement types for ML. SIGPLAN Not., 26(6):268–277,
1991.

18 J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using depen-
dency pairs. J. Symb. Comput., 34:21–58, July 2002.

19 J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination of
higher-order functions. In proceedings of the 5th FROCOS conference, pages 216–231.
Springer, 2005.

20 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

21 N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and features.
Information and Compututation, 205:474–511, April 2007.

22 J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized
types. In Proceedings of the 23th ACM Symposium on Principles of Programming Language,
1996.

23 T. Johnsson. Lambda lifting: Transforming programs to recursive equations. In Functional
Programming Languages and Computer Architecture, pages 190–203. Springer-Verlag, 1985.

24 S. Jones and E. Meijer. Henk: a typed intermediate language, 1997.
25 J.-P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental construction of unification

algorithms in equational theories. In Proceedings of the 10th Colloquium on Automata,
Languages and Programming, pages 361–373, London, UK, 1983. Springer-Verlag.

26 J.-P. Jouannaud and M. Okada. A computational model for executable higher-order alge-
braic specification languages. In Proceedings of the sixth annual IEEE Symposium on Logic
in Computer Science (LICS ’91), pages 350–361, 1991.

27 K. Kusakari, Y. Isogai, M. Sakai, and F. Blanqui. Static dependency pair method based on
strong computability for higher-order rewrite systems. IEICE Transactions, 92-D(10):2007–
2015, 2009.

28 C. S. Lee, N. D. Jones, and A. Ben-Amram. The size-change principle for program termi-
nation. In Proceedings of POPL’01, pages 81–92. ACM Press, 2001.

29 C. McBride and J. McKinna. The view from the left. Journal of Functionnal Programming,
14(1):69–111, 2004.

30 J. McKinna. Why dependent types matter. SIGPLAN Not., 41(1):1–1, 2006.
31 R. Milner. A theory of type polymorphism in programming. Journal of Computer and

System Sciences, 17:348–375, 1978.
32 U. Norell. Towards a practical programming language based on dependent type theory. PhD

thesis, Department of Computer Science and Engineering, Chalmers University of Technol-
ogy, SE-412 96 Göteborg, Sweden, September 2007.

33 S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-based type
inference for gadts. In Proceedings of the eleventh ACM SIGPLAN international conference
on Functional programming, ICFP ’06, pages 50–61, New York, NY, USA, 2006. ACM.

34 P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In R. Gupta and S. P. Amaras-
inghe, editors, PLDI, pages 159–169. ACM, 2008.

35 M. Sakai and K. Kusakari. On dependency pair method for proving termination of higher-
order rewrite systems. IEICE Transactions on Information and Systems, E88-D(3):583–593,
2005.

36 H. Xi and D. Scott. Dependent types in practical programming. In In Proceedings of ACM
SIGPLAN Symposium on Principles of Programming Languages, pages 214–227. ACM
Press, 1998.

Weakening the Axiom of Overlap in
Infinitary Lambda Calculus
Paula Severi1,2 and Fer-Jan de Vries1,3

1 Department of Computer Science, University of Leicester, UK
2 ps56@mcs.le.ac.uk
3 fdv1@mcs.le.ac.uk

Abstract
In this paper we present a set of necessary and sufficient conditions on a set of lambda terms
to serve as the set of meaningless terms in an infinitary bottom extension of lambda calculus.
So far only a set of sufficient conditions was known for choosing a suitable set of meaningless
terms to make this construction produce confluent extensions. The conditions covered the three
main known examples of sets of meaningless terms. However, the much later construction of
many more examples of sets of meaningless terms satisfying the sufficient conditions renewed the
interest in the necessity question and led us to reconsider the old conditions.

The key idea in this paper is an alternative solution for solving the overlap between beta
reduction and bottom reduction. This allows us to reformulate the Axiom of Overlap, which now
determines together with the other conditions a larger class of sets of meaningless terms. We
show that the reformulated conditions are not only sufficient but also necessary for obtaining a
confluent and normalizing infinitary lambda beta bottom calculus. As an interesting consequence
of the necessity proof we obtain for infinitary lambda calculus with beta and bot reduction that
confluence implies normalization.

1998 ACM Subject Classification F.4.1 Mathematical Logic (F.1.1, I.2.2, I.2.3, I.2.4)

Keywords and phrases Infinitary Lambda Calculus, Confluence, Normalization

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.313

Category Regular Research Paper

1 Introduction

In Lambda Calculus there exists a perhaps surprising number of different formalisations of
the idea of undefined or meaningless term [3, 4, 1, 13, 6, 11]. The rough intuition is that
such terms cannot contribute information to any context in which they are placed, and may
be mapped to the bottom element of the semantic domain of a denotational semantics. In
this paper we are interested in the sets of meaningless terms that arise when one tries to
extend lambda calculus with infinite terms and infinite strongly converging reductions in
such a way that the confluence property is preserved.

The first attempt to characterise sets of meaningless terms axiomatically was made for
first order term rewriting [2]. These axioms were revised and further extended to lambda
calculus in [11, 7], and recently to combinatory reduction systems [12]. The axioms are
general assumptions for ensuring confluence and normalization of infinitary lambda calculi
λ∞β⊥U

with a ⊥U -rule that rewrites the terms of the set U of meaningless terms to ⊥. This
general notion of set of meaningless terms captures two well-known examples from lambda
calculus: the set HN of terms without head normal form and the set WN of terms without

© Paula Severi and Fer-Jan de Vries;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 313–328

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.313
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

314 Weakening the Axion of Overlap in the Infinitary Lambda Calculus

weak head normal form. The initial papers on infinitary lambda calculus revealed a third
main example: the set T N of terms without top normal form [3, 6, 9]. Only later in [15, 16]
we realised that there are far more sets of meaningless lambda terms which give rise to an
ample collection of models of the finitary and the infinitary lambda calculus.

It is now natural to ask: for which sets U of meaningless terms is the corresponding
infinitary lambda calculus λ∞β⊥U

confluent? The confluence proofs in [11, 7] show that the
axioms in the notion of set of meaningless term are a sufficient condition, but are they also
necessary?

In this paper we will show sufficient and necessary conditions for having a confluent
and normalizing infinitary lambda calculus λ∞β⊥U

. The key idea can be found in Section 3
where we present a new solution for solving the overlap between beta reduction and bottom
reduction. This allows us to give a reformulation of the Axiom of Overlap from [11, 7] which
we call Axiom of Weak Overlap. If we replace Overlap by Weak Overlap in the definition of
set of meaningless terms, then we obtain the larger class of sets of weak meaningless terms.
In Section 4 we give many new examples of sets of weak meaningless sets. In Section 5, we
prove that the infinitary lambda beta bottom calculus λ∞β⊥U

is confluent for any set of weak
meaningless terms U . In Section 8, we prove the converse: whenever an infinitary lambda
beta bottom calculus λ∞β⊥U

is confluent, there exists a set U ′ of weak meaningless terms
that defines the same reduction as U . As an unexpected result in Section 7 we obtain that
confluence implies normalization for infinitary lambda beta bottom calculi λ∞β⊥U

.

2 Infinitary Lambda Calculus

We will now briefly recall some notions and facts of infinitary lambda calculus from our
earlier work [8, 9, 7, 14, 17]. We assume familiarity with basic notions and notations from [3].
Let Λ be the set of λ-terms and Λ⊥ be the set of finite λ-terms with ⊥.

I Definition 2.1 (Finite and Infinite Lambda Terms). The set Λ∞⊥ of finite and infinite λ-terms
is defined by coinduction using the grammar:

M ::= ⊥ | x | (λx.M) | (MM)

where x is a variable from some fixed, large enough set of variables V. The set Λ∞ consists
of the terms in Λ∞⊥ which do not contain ⊥. The set (Λ∞)0 consists of the terms in Λ∞ that
are closed, i.e. without free variables.

Having defined the raw terms, we now follow the usual conventions on syntax of finitary
and infinitary lambda calculus [3, 7]. As explained in the latter, many concepts from finitary
lambda calculus generalise immediately to the infinitary setting, context, position, (head)
redex, free and bound variables, (head) normal form and so on. As customary in finitary
lambda calculus, we identify terms that are α-convertible and we use the variable convention
(bound variables are implicitly renamed before a substitution is made) to avoid variable
capture. We will use the notation Mσ to denote the simultaneous substitution of the free
variables in M by substitution σ : V → Λ∞⊥ .

I Notation 2.2. We will use the following abbreviations of λ-terms:

I = λx.x O = λx1.λx2.λx3. . . . Ω = (λx.xx)λx.xx
1 = λxy.xy Mω = M(M(M . . .)) Ωη = λx1.(λx2.(λx3. . . . x3)x2)x1

K = λxy.x

Paula Severi and Fer-Jan de Vries 315

The point of the syntax of infinitary lambda calculus is to have one framework that
captures both finite and infinite terms. This has the pleasant consequence that Böhm trees
don’t have to be defined in a separate formalism. Böhm trees are nothing else than normal
forms under a particular notion of reduction. So, in the following we will freely identify trees
with terms in Λ∞⊥ . In [9, 11, 7], an alternative definition of the set Λ∞⊥ is given using a metric.
The coinductive and metric definitions are equivalent [5]. Note that here we follow [7] and
consider only one set of λ-terms, namely Λ∞⊥ , in contrast to the formulations in [9, 11] where
several metric completions (all subsets of Λ∞⊥) of the set of finite terms are considered.

We will consider infinitary lambda calculus with two reductions rules: the familiar beta
rule and the ⊥U -rule which is parametrised by some set U of terms. This ⊥U -rule generalises
the ⊥-rule used to define Böhm trees in which terms without head normal form with are
identified with bottom [11, 7].

I Definition 2.3 (β-rule). We consider the β-rule on Λ∞⊥ :

(λx.M)N →M [x := N] (β)

The one step reduction →β is the smallest binary relation containing β and closed under
contexts.

I Definition 2.4 (⊥U -rule). Let U ⊆ Λ∞. We define the ⊥U -rule on Λ∞⊥ :

M [⊥ := Ω] ∈ U M 6= ⊥
(⊥U)

M → ⊥

Occasionally, we may denote ⊥U just by ⊥. The one step reduction →⊥U is the smallest
binary relation containing ⊥U and closed under contexts. The reduction→β⊥U is the smallest
binary relation containing β and ⊥U closed under contexts.

We will consider calculi with various combinations of these rules: λ∞β⊥U
, λ∞β and λ∞⊥U

. We
will use the notation λ∞ρ where ρ is a variable ranging over {β⊥U , β, ⊥U}.

I Definition 2.5 (Subterm at a certain Position). Positions are finite sequences of 0, 1 and 2’s
and include the empty sequence 〈〉. Provided it exists, the subterm M |p of a term M ∈ Λ⊥
at position p is defined by induction as usual:

M |〈〉 = M (λxM)|0p = M |p (MN)|1p = M |p (MN)|2p = N |p

The depth of a subterm N at position p occurs in M is the length of p.

I Definition 2.6 (Truncation). The truncation of M at depth n is obtained by replacing all
subterms at depth n by ⊥ and is denoted by Mn.

I Definition 2.7 (Metric). We define a metric d : Λ⊥ × Λ⊥ → [0, 1] as follows: d(M,N) = 0,
if M = N and d(M,N) = 2−m, where m = max{Mn = Nn | n ∈ N}.

The metric will be used in the definition of a transfinite reduction sequence. Note that
we will use customary notation like α, β, γ for arbitrary ordinals and λ for limit ordinals.
The context will disambiguate the overloading.

I Definition 2.8 (Strongly Converging Reductions [7]). Let λ∞ρ = (Λ∞⊥ ,→ρ).
1. A transfinite reduction sequence of length α in λ∞ρ , where α is any ordinal, is a sequence

of reduction steps (Mβ →ρ Mβ+1)β<α. In the step Mβ →ρ Mβ+1, we denote the position
of the contracted redex in Mβ by pβ and the depth of this redex by dβ .

RTA’11

316 Weakening the Axion of Overlap in the Infinitary Lambda Calculus

2. We define that a sequence (Mβ →ρ Mβ+1)β<α is a Cauchy (converging) reduction
sequence from M0 to Mα if, for every limit ordinal λ ≤ α, the distance d(Mβ ,Mλ) tends
to 0 as β approaches λ from below.

3. We define that a sequence (Mβ →ρ Mβ+1)β<α is strongly converging if, it is Cauchy
converging and if, for every limit ordinal λ ≤ α, the depth dβ of the contracted redex in
Mβ →ρ Mβ+1 tends to infinity as β approaches λ from below.

In contrast to strongly converging reductions Cauchy converging reductions don’t project
well. Hence strongly converging reduction is the natural notion of reduction to study. This
preference is reflected in the next notation.
I Notation 2.9. Let λ∞ρ = (Λ∞⊥ ,→ρ).
1. M →ρ N denotes a one step reduction from M to N ;
2. M →→ρ N denotes a finite reduction from M to N ;
3. M →→→ρ N denotes a strongly converging reduction from M to N .

I Definition 2.10. Let λ∞ρ = (Λ∞⊥ ,→ρ).
1. λ∞ρ is confluent, if ρ←←← ◦ →→→ρ ⊆ →→→ρ ◦ ρ←←←.
2. A term M in λ∞ρ is in ρ-normal form, if there is no N in λ∞ρ such that M →ρ N .
3. λ∞ρ is normalizing, if for all M ∈ Λ∞⊥ there is an N in ρ-normal form such that M →→→ρ N .

If λ∞β⊥U
is confluent and normalizing, the normal form of a term M is unique and denoted

by nfU (M).

I Definition 2.11 (Rootactive). Let M ∈ Λ∞⊥ . We say that M is rootactive, if for any
N ∈ Λ∞⊥ , if M →→→β N then N →→β (λx.P)Q for some P,Q ∈ Λ∞⊥ . Let R denote the set
{M ∈ Λ∞ |M is rootactive} of bottom free rootactive terms.

I Definition 2.12. Let M,N ∈ Λ∞. We write M U←→ N , if N can be obtained from M by
replacing some (possibly infinitely many) subterms in U by other terms in U .

In the next definition, we follow the axiomatisation of [11] which is equivalent to the one
in [7] which combines Closure under β-reduction and Closure under substitutions in one
Descendants axiom.

I Definition 2.13 ([7]). We give names to the following properties that a set U ⊆ Λ∞ may
satisfy:
1. Axiom of Rootactiveness: R ⊆ U .
2. Axiom of Closure under β-reduction: M →→→β N implies N ∈ U for all M,N ∈ U .
3. Axiom of Closure under Substitution: Mσ ∈ U for all M ∈ U and substitutions σ.
4. Axiom of Overlap: for all M ∈ U , if M = λx.P then (λx.P)Q ∈ U for all Q ∈ Λ∞.
5. Axiom of Indiscernibility: for all M,N ∈ Λ∞ such that M U←→ N , M ∈ U if and only

if N ∈ U .

In order to guarantee confluence of the Infinitary Lambda Calculi, we define the notion
of sets of meaningless terms [11, 7].

I Definition 2.14 (Meaningless Set). 1. A set U ⊆ Λ∞ is called a set of meaningless terms
(meaningless set for short), if it satisfies the Axioms (1-5). These axioms are called the
axioms of meaningless terms.

2. M = {U ⊆ Λ∞ | U is a set of meaningless terms}.

In Section 4, we will show many examples of meaningless sets other than R.

Paula Severi and Fer-Jan de Vries 317

I Theorem 2.15 (Sufficiency of Rootactiveness for Normalization [11, 7]). Let U ⊆ Λ∞. If U
satisfies Rootactiveness, then λ∞β⊥U

is normalizing.

I Theorem 2.16 (Sufficiency of Meaninglessness for Confluence and Normalization [11, 7]).
Let U ⊆ Λ∞. If U is a set of meaningless terms, then λ∞β⊥U

is confluent and normalizing.

The following theorem relates the infinitary lambda calculus with models of the finite
lambda calculus (see Definitions 5.2.7 and 5.3.1 in [3]).

I Theorem 2.17 (λ-model MU). Each set U such that λ∞β⊥U
is confluent and normalizing

gives rise to a λ-model denoted by MU .

Proof. The domain ofMU is the set nfU (Λ∞⊥) of normal forms of λ∞β⊥U
. We interpret a lambda

term M by its normal form nfU (M) and we define application simply by nfU (M) • nfU (N) =
nfU (MN). J

We denote by MOD(λ) = {MU | U defines a confluent and normalizing λ∞β⊥U
}, the class

of models induced by the confluent and normalizing infinitary lambda calculi.

3 Reconsidering the Axiom of Overlap

In [11] it was noted that there is the possibility of overlap between the beta and the bottom
rule for meaningles terms of the form λx.M . This was resolved by the Axiom of Overlap.
That was a satisfactory solution, as it covered the examples of meaningless terms that were
known at the time. However, as we will show here, it is not the only way.

Let us first re-examine the rationale behind the Axiom of Overlap in detail. Let U be a
set of meaningless terms. Overlap between ⊥-reduction and β-reduction occurs when the
⊥-redex is of the form λx.P . This gives a divergence

(λx.P)Q
⊥

yyrrrrr β

((PPPPP

⊥Q P [x := Q]

The Axiom of Overlap solves this divergence in combination with Rootactiveness, Closure
under β-reduction and Indiscernibility. When λx.P ∈ U then by Overlap we have that
(λx.P)Q ∈ U . By Rootactiveness and Indiscernibility also ΩQ ∈ U . On one hand we have
⊥Q→⊥ ⊥ since (⊥Q)[⊥ := Ω] = ΩQ ∈ U . On the other, by Closure under β-reduction, we
have P [x := Q] ∈ U and thus also P [x := Q]→⊥ ⊥.

(λx.P)Q
⊥

yyrrrrr β

((PPPPP

⊥Q

⊥ %%

P [x := Q]
⊥

vv⊥

There is, however, another way of resolving this divergence, not considered in [11]. Suppose
besides λx.P ∈ U we also have P →→→β Wx with W ∈ U . Then if U satisfies Closure under
substitution, we have that W [x := Q] ∈ U and then (Wx)[x := Q] = W [x := Q]Q→⊥ ⊥Q:

(λx.P)Q

⊥

������������� β

((((P((PPPPPP

(λx.Wx)Q
β

((RRRRRRR

⊥Q W [x := Q]Q⊥oo

RTA’11

318 Weakening the Axion of Overlap in the Infinitary Lambda Calculus

Thus we find an alternative axiom of overlap and an alternative notion of meaningless set:

I Definition 3.1 (Axiom of Alternative Overlap, Set of Alternative Meaningless Terms).
1. A set U ⊆ Λ∞ is said to satisfy Alternative Overlap, if for each abstraction λx.P ∈ U ,

there is some W ∈ U such that P →→→β Wx.
2. A set U ⊆ Λ∞ is called a set of alternative meaningless terms, if it satisfies Rootactiveness,

Closure under β-reduction, Substitution, Alternative Overlap and Indiscernibility.
3. AM = {U ⊆ Λ∞ | U is a set of alternative meaningless terms}.

We can capture both axioms, Overlap and Alternative Overlap, in a single general axiom:

I Definition 3.2 (Axiom of Weak Overlap, Set of Weak Meaningless Terms).
1. A set U ⊆ Λ∞ is said to satisfy the axiom of Weak Overlap, if for each abstraction

λx.P ∈ U there is some W ∈ U such that P →→→β Wx, or (λx.P)Q ∈ U for all Q ∈ Λ∞.
2. A set U ⊆ Λ∞ is called a set of weak meaningless terms, if it satisfies the Axioms of Closure

under β-reduction, Substitution, Weak Overlap, Rootactiveness and Indiscernibility.
3. WM = {U ⊆ Λ∞ | U is a set of weak meaningless terms}.

It is trivial to see that if U satisfies either Overlap or Alternative Overlap then it satisfies
Weak Overlap. The converse is also true as proved in the following theorem.

I Theorem 3.3. Let U ⊆ Λ∞ satisfy the Axioms of Closure under β-reduction and Indiscern-
ibility. Then, U satisfies the Axiom of Weak Overlap if and only if U either satisfies the Axiom
of Overlap or the Axiom of Alternative Overlap. Moreover, if U contains an abstraction then
U cannot satisfy both the Axioms of Overlap and Alternative Overlap simultaneously.

Proof. ⇐ is trivial. We prove ⇒. Suppose λx.P1 ∈ U for which we have that (λx.P1)Q ∈ U
for all Q ∈ Λ∞. Therefore for any other abstraction λx.P2 ∈ U we get by Indiscernibility
(λx.P2)Q ∈ U for all Q ∈ Λ∞. That is, the axiom of Overlap holds.

If, however, for no abstraction λx.P1 ∈ Λ∞ we have that (λx.P1)Q ∈ U for all Q ∈ Λ∞,
then by Weak Overlap it must be that for each abstraction λx.P ∈ U we have that there is
some W ∈ U such that P →→→β Wx. Hence the axiom of Alternative Overlap holds.

Assume λx.P ∈ U . Suppose U satisfies the Axiom of Overlap. Then by Overlap we have
(λx.P)x ∈ U and hence P ∈ U by Closure under β-reduction. By Indiscernibility we find
λx.Ω ∈ U . But there is no W such that Ω reduces to Wx. Therefore U does not satisfy
Alternative Overlap. Hence U cannot satisfy both axioms simultaneously. J

I Corollary 3.4. 1. WM = M ∪ AM
2. If U ∈M ∩ AM, then U does not contain any abstraction.

4 Examples of Sets of Weak Meaningless Terms

In this section, we recall some examples of sets of meaningless terms from [11, 7, 16] and
give new examples of sets of weak meaningless terms.

I Definition 4.1. Let M ∈ Λ∞. We say that
1. M is a head normal form (hnf) if M = λx1 . . . xn.yP1 . . . Pk. We define HN = {M ∈

Λ∞ |M →→β N and N is a head normal form}.
2. M is a weak head normal form (whnf) if M is a hnf or M = λx.N . We define WN =
{M ∈ Λ∞ |M →→β N and N and N is a weak head normal form}.

Paula Severi and Fer-Jan de Vries 319

3. M is a top normal form (tnf) if it is either a whnf or an application (NP) where there
is no Q such that N →→β λx.Q. We define T N = {M ∈ Λ∞ |M →→β N and N is a top
normal form}.

4. M is a strong active form (saf) if M = RP1 . . . Pk and R is rootactive. We define
SA = {M ∈ Λ∞ |M →→β N and N is a strong active form}.

5. M is a strong active form relative to X ifM = RP1 . . . Pk, R is rootactive and P1, . . . , Pk ∈
X. We define SAX = {M ∈ Λ∞ | M →→→β N and N is a strong active form relative to
X}.

6. M is a strong infinite left spine form (silsf) if M = (. . . P2)P1. We define SIL = {M ∈
Λ∞ |M →→→β N and N is a strong infinite left spine form}.

7. M is a head active form (haf) if M = λx1 . . . xn.RP1 . . . Pk and R is rootactive. We define
HA = {M ∈ Λ∞ |M →→β N and N is a head active form}.

8. M is an infinite left spine form (ilsf) if M = λx1 . . . xn.(. . . P2)P1. We define IL = {M ∈
Λ∞ |M →→→β N and N is an infinite left spine form}.

9. We define O = {M ∈ Λ∞ |M →→→β O} where O = λx1.λx2.λx3.
By HN , WN and T N we denote the complements in Λ∞ of HN , WN and T N

respectively. Note that R = T N , WN = SA ∪ SIL and HN = HA∪ IL ∪ O.
I Theorem 4.2 ([11, 7]). T N , WN and HN are meaningless sets.

The Berarducci tree BerT(M) of a term M is its normal form in λ∞β⊥U
where U is

R = T N [6, 8]. The Lévy-Longo tree LLT(M) is the normal form of M in λ∞β⊥U
where U is

WN [8]. The Böhm tree BT(M) is the normal form of M in λ∞β⊥U
where U is HN [3].

I Theorem 4.3 ([16]). The following are meaningless sets:
1. SA, HA, HA∪ IL and HA∪O.
2. SAX , provided X ⊆ BerT(Λ∞⊥) ∩ (Λ∞)0.

Any set of meaningless terms that does not contain abstractions such as R or SA is
trivially a set of alternative meaningless terms. We will give examples of sets of alternative
meaningless terms which contain abstractions and which are not sets of meaningless terms.
I Definition 4.4. Define Uη = U ∪ {M |M →→→β λx.Nx and N ∈ U} for U ⊆ Λ∞.
If U is a set of meaningless terms, Uη does not have to be a set of weak meaningless terms.
For example, SAη is not a set of weak meaningless terms. It does not satisfy Indiscernibility
since Ωx ∈ SAη is a subterm of λx.Ωx ∈ SAη but λx.Ω 6∈ SAη. Similarly, (SA ∪ SIL)η
is not a set of weak meaningless terms. On the other hand, for U ∈ {HA,HA∪ IL,HA∪
O,HA∪ IL ∪ O,Λ∞}, the set Uη is a meaningless set because Uη = U ; but Uη is not a set
of alternative meaningless terms, as it cannot be both by Corollary 3.4.
I Theorem 4.5. 1. Rη is a set of alternative meaningless terms.
2. SAηX is a set of alternative meaningless terms, provided X ⊆ BerT(Λ∞⊥) ∩ (Λ∞)0.

We skip the proof as it follows the same pattern as the proofs for meaningless sets
presented in [16]. By Corollary 3.4, the sets in the above theorem are not sets of meaningless
terms because they contain abstractions. Since {SAηX | X ⊆ BerT(Λ∞⊥) ∩ (Λ∞)0} has the
cardinality 2c of the continuum, we have that:
I Corollary 4.6. Let c be the cardinality of the continuum. There are 2c sets of alternative
meaningless terms which are not meaningless sets.
I Remark. The set WM of all sets of weak meaningless terms forms a poset with a top, R,
and a bottom, Λ∞. In Figure 1 we depict the relative order of the sets mentioned in this
section. The notation U1 → U2 indicates that U1 ⊃ U2.

RTA’11

320 Weakening the Axion of Overlap in the Infinitary Lambda Calculus

Λ∞

��

HA∪ IL ∪ O
uullllll

))RRRRRR

HA∪ IL
vvmmmmm

))RRRRRRRR
HA∪O

vvllllllll

SA ∪ SIL

((QQQQQQQ
HA

uullllllllll

SA SAηX
��

SAX
�� uu

lllllllll
Rη

��

R
��

uu

lllllllllll

Figure 1 A poset of sets of weak meaningless terms

5 Weak Meaninglessness implies Confluence and Normalization

In this section, we prove confluence of λ∞β⊥U
when U is a set of weak meaningless terms. This

extends the result in [11, 7] where confluence of λ∞β⊥U
is shown under the provision that U is

a set of meaningless terms. First we need some auxiliary results.

I Proposition 5.1. Let U ⊆ Λ∞ satisfy the Axioms of Rootactiveness and of Indiscernibility.
Then the calculus λ∞⊥U

= (Λ∞⊥ ,→⊥U) is confluent.

Proof. We sketch a standard transfinite inductive tiling diagram proof. The basic information
that this proof uses are the following elementary tiling diagrams for one-set coinitial ⊥U -
reductions.

M0
⊥U

m
//

⊥U n
��

M1

⊥U n
��

M2
⊥U

m
// M3

M0
⊥U

m
//

⊥U n
��

M1

⊥U n
��

M2 M3

M0
⊥U

n
//

⊥U n
��

M1

M2 M3

The labels n,m used in the diagrams indicate the depth at which the ⊥U reduction takes
place. The important thing to note is that the depth of a ⊥U -redex in a term does not
change when it is not erased in the contraction of another ⊥U -redex elsewhere in the term.

The diagrams reflect three possibilities. The redexes in the two coinitial reductions are
either disjoint, properly nested or identical. In each case the respective diagram show how to
complete confluence with two cofinal ⊥U -reductions, which are either one-step or empty.

The middle diagram requires Indiscernibility. Suppose M1 is of the form C1[C2[W]] for
contexts C1[], C2[]. And suppose W and C2[W] belong to U . Then by Indiscernibility
we get C2[Ω] ∈ U and so C1[C2[⊥]]→⊥ C1[⊥]. This completes the diagram:

C1[C2[W]] ⊥U

m
//

⊥U n
��

C1[C2[⊥]]

⊥U n
��

C1[⊥] C1[⊥]

Paula Severi and Fer-Jan de Vries 321

Given two transfinite coinitial ⊥U -reductions one now constructs the following tiling dia-
gram [7] inductively in which all vertical and horizontal reductions are strongly converging.

M0,0
⊥U

m0
//

⊥U n0
��

M0,1
⊥U

m1
//

⊥U n0
��

M0,2

⊥U n0
��

M0,β

⊥U n0
��

M1,0
⊥U

m0
//

⊥U n1
��

M1,1
⊥U

m1
//

⊥U n1
��

M1,2

⊥U n1
��

M1,β

⊥U n1
��

M2,0
⊥U

m0
// M2,1

⊥U

m1
// M2,2 M2,β

Mα,0
⊥U

m0
// Mα,1

⊥U

m1
// Mα,2 Mα,β

We skip the proof, which is similar to confluence proof of λh∞η in [14], because the elementary
tiles that load the induction are similar for ⊥U and η. The simplicity of these rules makes
it unnecessary to specify the positions; the information of the depth in each step of the
reduction sequence suffices. J

I Lemma 5.2. [11, Lemma 27] Let U ⊆ Λ∞ satisfy the Axiom of Closure under Substitution.
If M →→→β⊥U N , then M →→→β L→→→⊥U N for some L ∈ Λ∞⊥ .

We need somre terminology and notation: An outermost ⊥U -redex of M is a maximal
subterm N of M such that N [⊥ := Ω] ∈ U . We denote by M out−→⊥U N if the contracted
redex in M →⊥U N is an outermost ⊥U -redex.

The information stored at the root of a term M is denoted by root(M) and defined
by cases: root(x) = x, root(λx.M) = λx and root(MN) = @. We denote M ∼root N if
root(M) = root(N).

I Lemma 5.3. Let U ⊆ Λ∞ satisfy the Axioms of Rootactiveness and Indiscernibility. If
M →→→⊥U N and N is in β⊥U -normal form then M out→→→⊥U N .

Proof. Suppose M = M0 →→→⊥U Mα = N is a reduction of length α and N is a β⊥U -normal
form. We define a new reduction N0

out→→→⊥U Nα by induction on α satisfying the property Φ(β)
for all 0 ≤ β ≤ α where Φ(β) is defined as follows. If (Mβ)|p = ⊥, then (Nβ)|p[⊥ := Ω] ∈ U .
Otherwise, if (Mβ)|p 6= ⊥, then (Mβ)|p ∼root (Nβ)|p.

Base Case. Let N0 be equal to M .
Successor Case. Suppose we have constructed N0 →→→⊥U Nβ and Φ(β) holds. And suppose

Mβ →⊥U Mβ+1 by contraction of a term of U at position p in Mβ . If the subterm at p in
Mβ is an outermost ⊥U -redex, we construct Nβ

out−→⊥U Nβ+1 by reducing the corresponding
term at p in Nβ to ⊥. And if it is not an outermost ⊥U -redex, we put Nβ+1 = Nβ . It is not
difficult to prove Φ(β + 1) using Indiscernibility.

Note that the constructed reduction sequence is strongly convergent because the original
sequence M = M0 →→→⊥U Mα = N is strongly convergent.

Limit Case. Since the constructed reduction sequences N0
out→→→⊥U Nβ are strongly conver-

gent, the limit λ always exists. It is not difficult to prove Φ(λ) using strong convergence of
the reduction and induction hypothesis, i.e. Φ(β) holds for all β < λ.

Thus we have constructed M0 = N0
out→→→⊥U Nα satisfying Φ. Since Mα is a ⊥U -normal

form, the ⊥’s remaining in Mα have been introduced by an outermost ⊥-reduction. Hence
we find ⊥’s at the same location in Nα. By Φ(α) we get that at the other positions p,
(Mα)|p ∼root (Nα)|p. That is Mα = Nα. Hence M0 = N0

out→→→⊥U Nα = Mα. J

RTA’11

322 Weakening the Axion of Overlap in the Infinitary Lambda Calculus

I Lemma 5.4. Let U ⊆ Λ∞ satisfy the Axiom of Rootactiveness, Closure under Substitution,
β-reduction and Indiscernibility. If W ∈ U then nfR(W)[⊥ := Ω] ∈ U .

Proof. We have W →→→β⊥R nfR(W). By Lemma 5.2 and Closure under Substitution, there
exists W0 such that W →→→β W0 →→→⊥R nfR(W). By Closure under β-reduction, W0 ∈ U . We
can assume that the ⊥-steps in W0 →→→⊥R nfR(W0) all contract outermost redexes by Lemma
5.3. ThenW0 is obtained from nfR(W0) by replacing rootactive subterms by ⊥. Since R ⊆ U ,
we have that W0

U←→ nfR(W0)[⊥ := Ω]. By Indiscernibility, nfR(W0)[⊥ := Ω] ∈ U . J

I Proposition 5.5. Let U ⊆ Λ∞ be a set of alternative meaningless terms. If L →→→⊥U N

and N is a β⊥U -normal form, then nfR(L)→→→⊥U N .

Proof. If L →→→⊥U N and N is a β⊥U normal form. By Lemma 5.3 we may assume that
L

out→→→⊥U N . Since N is a β⊥U normal form, if a β-redex (λx.P)Q occurs in L, then
either (λx.P)[⊥ := Ω] ∈ U or (λx.P)Q is contained in some subterm W of L such that
W [⊥ := Ω] ∈ U . We consider the following set:

W = {W |W is a maximal subterm of L such that W [⊥ := Ω] ∈ U}

We enumerate W in the order of the increasing depth of its subterms, and subterms with
the same depth we order them from left to right. We obtain either W = {Wn | n ≤ k} if W
is finite or W = {Wn | n ∈ N} if W is infinite. We will define inductively a β⊥R reduction
L = L0 →→→β⊥R L1 →→→β⊥R L2 →→→β⊥R . . . with a segment Ln−1 →→→β⊥R Ln for each Wn ∈ W .
We will show by induction on n that the following properties hold for all n,
(A) Let L = C[W1, . . . ,Wn]. Then Ln = C[W ′1, . . . ,W ′n] and W ′m[⊥ := Ω] ∈ U for all
m ≤ n.

(B) The new terms W ′1, . . .W ′n of Ln are in β⊥R-normal form. If for some i, W ′i is an
abstraction, then it does not overlap a β-redex, i.e. W ′i does not occur in an application
W ′iQ of Ln.

Suppose we have constructed L = L0 →→→β⊥R Ln−1 and Wn is the next maximal meaning-
less subterm of W to be considered. Let L = C[W1, . . . ,Wn−1,Wn]. The context obtained
from C instantiating the last hole with Wn has n − 1 holes. By Induction Hypothesis,
Ln−1 = C[W ′1, . . . ,W ′n−1,Wn] and W ′m[⊥ := Ω] ∈ U for all m ≤ n− 1. In particular, Wn is
a subterm of Ln−1. We have two possibilities:

(1) nfR(Wn) = λx.P and Wn occurs in an application WnQ of L. By Lemma 5.4,
λx.P [⊥ := Ω] ∈ U because Wn ∈ U . By Alternative Overlap P [⊥ := Ω] = P0x with
P0 ∈ U . Since Wn is maximal and it occurs in Ln−1, we have Ln−1 = Cn[WnQn]. We extend
L = L0 →→→β⊥R Ln−1 with

Ln−1 = Cn[WnQn]]→→→β⊥R Cn[nfR(P0)Qn] = Ln

Proof of (A). Now, Ln = C[W ′1, . . . ,W ′n−1,W
′
n] where W ′n[⊥ := Ω] = P0 ∈ U .

Proof of (B). Since P is in β⊥R-normal form and P [⊥ := Ω] = P0x, we have P = nfR(P) =
nfR(P0)x. Hence nfR(P0) cannot be an abstraction and nfR(P0)Qn is not a β-redex and
there are no β-redexes in W ′n = nfR(P0) either.

(2) Otherwise, i.e. either nfR(Wn) is not an abstraction or it is an abstraction and it
does not occur in an application nfR(Wn)Q in L. Since Wn is a subterm of Ln−1, we have
Ln−1 = Cn[Wn]. Then, we extend L = L0 →→→β⊥R Ln−1 with

Ln−1 = Cn[Wn]→→→β⊥R Cn[nfR(Wn)] = Ln

Paula Severi and Fer-Jan de Vries 323

Proof of A). Now, Ln = C[W ′1, . . . ,W ′n−1,W
′
n] where W ′n[⊥ := Ω] = nfR(Wn)[⊥ := Ω] ∈ U

by Lemma 5.4.
Proof of (B). By Induction Hypothesis, if a β-redex occurs in Ln−1 then it should occur inside
or overlap some of its subterms in {Wm | m > n− 1} ⊆ W. We replaced Wn by nfR(Wn)
which does not have any β-redex and it cannot overlap a β-redex in Ln. If a β-redex occurs
in Ln then it should occur inside or overlap some of its subterms in {Wm | m > n} ⊆ W.

The concatenation of all these strongly converging reductions is strongly converging [9]. Let
K the last term Lk or (ifW is finite) the limit Lω of L = L0 →→→β⊥R L1 →→→β⊥R L2 →→→β⊥R
It follows from (A) and strong convergence thatK is obtained from L by replacing its subterms
in W ⊆ U by other subterms in U , and hence, we have K →→→⊥ N . It follows from (A,B) and
strong convergence that K is obtained from L by replacing all its maximal subterms of U by
β⊥R-normal forms and if some subterm W ∈ W is an abstraction then it does not overlap
with a β-redex. Therefore K is a β⊥R normal form and by Confluence of λ∞β⊥R

(Theorems
2.16 and 4.2), we have K = nfR(L). J

I Theorem 5.6 (Sufficiency of Alternative Meaninglessness for Confluence). Let U be a set of
alternative meaningless terms. Then, λ∞β⊥U

is confluent.

Proof. The proof is sketched in the following diagram.

M

βzzzzuzzuuuuuuu

β $$ $$I$$IIIIIII
β⊥U

ttttittiiiiiiiiiiiiiiiii
β⊥U

** **U**UUUUUUUUUUUUUUUUU

M1

β⊥U

����
���

(1) L1

⊥U

�������������������
β⊥R $$ $$I$$IIIIII (2) L2

⊥U

�� ��
;��;;;;;;;;;;;;

β⊥Rzzzzuzz uuuuuu
M2

β⊥U

����
���

(1)

nfR(M)(3) (3)

⊥U
ttttittiiiiiiiiiiiiiii

⊥U
** **U**UUUUUUUUUUUUUUU

N1 (4)

⊥U UUUUUUUUUUUUUUU

UUUUUUUUUUUUUUU N2

⊥Uiiiiiiiiiiiiiii

iiiiiiiiiiiiiii

N1 = N2

Suppose we have a divergence M1 β⊥←←← M →→→β⊥ M2. By Rootactiveness for U , we can
reduce M1 and M2 further to their respective β⊥U -normal forms N1 and N2 by Theorem
2.15. (1) By Closure under substitution for U and Lemma 5.2 we find L1 and L2 such
that M →→→β L1 →→→⊥U N1 and M →→→β L2 →→→⊥U N2. (2) By normalization and confluence
of λ∞β⊥R

we construct the reductions L1 →→→β⊥U nfR(M) and L2 →→→β⊥U nfR(M). (3) By
Proposition 5.5 we then find the reductions nfR(L1)→→→⊥U N1 and nfR(L2)→→→⊥U N2. By
normalization and confluence of λ∞β⊥R

, we have nfR(M) = nfR(L1) = nfR(L2). (4) Finally
Proposition 5.1 on confluence of ⊥U and the fact that N1 and N2 are by construction normal
forms for ⊥U -reduction implies that N1 and N2 are identical. J

I Corollary 5.7 (Sufficiency of Weak Meaninglessness for Confluence and Normalization). Let
U be a set of weak meaningless terms. Then, λ∞β⊥U

is confluent and normalizing.

Proof. Immediate from Theorems 5.6 and 2.16, and Corollary 3.4. J

By Theorem 4.5 and Corollary 5.7, the Infinitary lambda calculi λ∞β⊥U
where U ∈ {SAηX |

X ⊆ BerT(Λ) ∩ (Λ∞)0} are confluent and normalizing. By Theorem 2.17, they all induce
different models of the finite lambda calculus. Since {SAηX | X ⊆ BerT(Λ) ∩ (Λ∞)0} has
cardinality 2ω, we have that:

RTA’11

324 Weakening the Axion of Overlap in the Infinitary Lambda Calculus

I Corollary 5.8. There are 2ω different models of the finite lambda calculus such that:
1. λx.Ωx = Ω but I 6= 1,
2. M = N if BerT(M) = BerT(N) and
3. ΩM = Ω for some M ∈ Λ such that BerT(M) ∈ (Λ∞)0.

6 Axioms of Closure under Expansion

In this section, we define two axioms: Closure under β-expansions [10] and Closure under
β⊥-expansion from ⊥. In the cited paper we introduced Closure under β-expansion to obtain
ω-compression. In this paper we use the axiom to show that an arbitrary weak meaningless
set U ⊆ Λ∞ and its β-expansion U determine the same lambda models.

I Definition 6.1. We define the following axioms on a set U ⊆ Λ∞.

1. We say that U satisfies the Axiom of Closure under β-expansion if for all N ∈ U , if
M →→→β N then M ∈ U .

2. We say that U satisfies the Axiom of Closure under β⊥-expansion from ⊥ if for all M ∈ Λ∞,
if M →→→β⊥U ⊥ then M ∈ U .

3. B = {U ⊆ Λ∞ | U satisfies the Axiom of Closure under β⊥-expansion from ⊥}.

I Remark. Note that if U satisfies Axiom of Closure under β⊥-expansion from ⊥ then
U = {M ∈ Λ∞ |M →→→β⊥U ⊥}, i.e. U is the set of β⊥-expansions of ⊥. We also have that U
satisfies Closure under β-expansion.
I Remark. All sets of weak meaningless terms of Figure 1, have been defined to satisfy
Closure under β-expansion to facilitate the proof of Indiscernibility. If a set U satisfies
Rootactiveness and Indiscernibility, then U is closed under certain β-expansions. Since the
set R is closed under β-expansions, we have that, for example, IΩ ∈ R. By Indiscernibility,
if M ∈ U then IM should also belong to U .
I Remark. All examples of sets of (weak) meaningless terms given in Section 4 also satisfy
Closure under β⊥-expansion from ⊥. Suppose M →→→β⊥U ⊥. By Closure under Substitution,
by Lemma 5.2, there is an N with M →→→β N →→→⊥U ⊥. Hence N out→→→⊥U ⊥ by Lemma 5.3.
Then N reduces in one step to ⊥ so that N ∈ U . Closure under β-expansion implies M ∈ U .

Given a set U , we can always extend it to a set U that satisfies Closure under β⊥-expansion
from ⊥ by taking: U = {M ∈ Λ∞ |M →→→β⊥U ⊥}. We have that U and U define the same
reduction:

I Theorem 6.2 (Same Reduction). Let M,N ∈ Λ∞⊥ and U ⊆ Λ∞. Then, M →→→β⊥U N if and
only if M →→→β⊥U

N .

Proof. Let M = C[P]→⊥U
C[⊥] = N where P ∈ U . Then P →→→β⊥U ⊥. Hence, M →→→β⊥U

C[⊥] = N . The converse is trivial. J

We define the equivalence relation U ∼ U ′ if →→→β⊥U and→→→β⊥′
U
are equal. Then, every

∼-equivalence class [U] has a unique canonical representative obtained by taking the union
of all the members of the class, i.e. U =

⋃
[U].

I Corollary 6.3 (Same Normal Form). Let U ⊆ Λ∞.

1. λ∞β⊥U
is confluent (normalizing) if and only if λ∞β⊥U

is confluent (normalizing).
2. Let λ∞β⊥U

be confluent and normalizing. Then, nfU = nfU .

Paula Severi and Fer-Jan de Vries 325

3. Let λ∞β⊥U1
and λ∞β⊥U2

be confluent and normalizing. Then, U1 = U2 iff nfU1 = nfU2 .

We say that two models are equal, i.e. MU1 = MU2 , if they have the same domain
and their interpretation functions are equal. As an immediate consequence of the previous
corollary and Theorem 2.17, we have that U and U define the same model:

I Corollary 6.4 (Same Model). Let MU1 ,MU1 ∈MOD(λ). Then, U1 = U2 iff MU1 = MU2 .

7 Confluence implies Normalization

In this section, we prove that if λ∞β⊥U
is confluent then U satisfies the Axiom of Rootactiveness

provided that U is the set of expansions of ⊥. As a corollary, we conclude that confluence of
λ∞β⊥U

implies normalization of λ∞β⊥U
.

I Definition 7.1. For any M ∈ Λ∞⊥ , let M I be the result of replacing every application PQ
in M by I(PQ).

For example, ΩI = I((λx.I(xx))(λx.I(xx))).

I Lemma 7.2. 1. (P [x := Q])I = P I[x := QI].
2. If M →β N then M I →→β N

I.
3. If M →→β (λx.P)Q then M I →→β I(P [x := Q])I.

Proof. We prove Part 2. Suppose M = (λx.P)Q→β P [x := Q]. Using Part 1, we have that
M I = I((λx.P I)QI)→β I(P I[x := QI]) = I(P [x := Q])I →β (P [x := Q])I.

We prove Part 3. Suppose M →→β (λx.P)Q. Using Parts 1 and 2, we have M I →→β

((λx.P)Q)I = I((λx.P I)QI)→β I(P I[x := QI]) = I(P [x := Q])I. J

I Lemma 7.3. For any M ∈ R, M I reduces both to M and Iω.

Proof. It is easy to show that M I →→→β M for all M ∈ Λ∞⊥ . Since M is rootactive, there
is an infinite reduction starting for M containing infinitely many root reduction steps, i.e.
M →→β (λx.P0)Q0 →β P0[x := Q0] →→β (λx.P1)Q1 →β P1[x := Q2] Applying Lemma
7.2 Parts 2 and 3, we can construct the following reduction sequence.

M I →→β ((λx.P0)Q0)I →β I(P0[x := Q0])I →→β I((λx.P1)Q1)I →β I(I(P I
1 [x := QI

1])) . . .

The limit of the above sequence is Iω. J

I Theorem 7.4 (Necessity of Rootactiveness for Confluence). Let U ⊆ Λ∞ satisfy Closure
under β⊥-expansion from ⊥. If λ∞β⊥U

is confluent then U satisfies Rootactiveness.

Proof. We prove that U satisfies the Axiom of Rootactiveness. By Lemma 7.3, ΩI →→→β Iω
and ΩI →→→β Ω. Since λ∞β⊥U

is confluent, there exists P such that Iω →→→β⊥ P and Ω→→→β⊥ P .
Since Ω only β-reduces to itself, we have that Ω →⊥ Q →→→β⊥ P . Hence, Ω = C[M] →⊥
C[⊥] = Q for M ∈ U . Suppose M is a proper subterm of Ω. We have the following cases.
1. Case M = x. Then x[x := P]→⊥ ⊥ and P ∈ U for all P ∈ Λ∞. In particular, Ω ∈ U .
2. Case M = xx. Then xx[x := λx.xx]→⊥ ⊥. Hence, Ω ∈ U .
3. Case M = λx.xx. Hence Ω→→⊥ ⊥⊥ and also Iω →→→β⊥ ⊥⊥. Since Iω can only β-reduce

to itself, Iω = C ′[N]→⊥ C[⊥]→→→β⊥ ⊥⊥. Suppose N is a proper subterm of Iω. There
are two possibilities:
a. Case N = Iω. Then Ω→→→β⊥ ⊥ and Ω ∈ U .

RTA’11

326 Weakening the Axion of Overlap in the Infinitary Lambda Calculus

b. Case N = I. Then, Iω →→→⊥ ⊥ω = ⊥(⊥(⊥ . . .)). On the other hand, Iω →→→β⊥ ⊥⊥.
This is possible only if ⊥ω →⊥ ⊥. Hence, Ω→⊥ ⊥ and Ω ∈ U .

Hence, Q = ⊥ = P and also Iω →→→β⊥ ⊥. By Lemma 7.3, for any M ∈ R, M I →→→β M and
M →→→β Iω. Since λ∞β⊥U

is confluent and Iω →⊥ ⊥ we have M →→→β⊥ ⊥. Since U is the set of
expansions of ⊥, we have M ∈ U . J

I Corollary 7.5 (Confluence implies Normalization). If λ∞β⊥U
is confluent then λ∞β⊥U

is nor-
malizing.

Proof. Let λ∞β⊥U
be confluent. By Corollary 6.3, λ∞β⊥U

is confluent. By Theorem 7.4, U
satisfies Rootactiveness. By Theorem 2.15 and Corollary 6.3 λ∞β⊥U

and λ∞β⊥U
are normalizing.

J

As a consequence of the previous corollary, if the infinitary lambda calculus λ∞β⊥U
is

confluent then it induces a λ-model (see Theorem 2.17).

8 Confluence implies Weak Meaninglessness

In Section 5, we proved that if U is a set of weak meaningless terms then λ∞β⊥ is confluent
(Theorem 5.6). In this section, we study whether the converse holds. We will prove that
confluence of λ∞β⊥U

implies that U is a set of weak meaningless terms. In other words, if
λ∞β⊥U

is confluent then there exists a set U ′ of weak meaningless terms that defines the same
reduction as U .

I Theorem 8.1 (Necessity of Weak Meaninglessness for Confluence I). Let U ⊆ Λ∞ satisfy
Closure under β⊥-expansion from ⊥. If λ∞β⊥U

is confluent then U is a set of weak meaningless
terms.

Proof. Suppose λ∞β⊥ is confluent. Rootactiveness of U follows from Theorem 7.4. We prove
that U satisfies the remaining axioms:

We prove that U satisfies Indiscernibility. Suppose M U←→ N . It is not difficult to show
that there exists P such that M →→→⊥ P and N →→→⊥ P . If M ∈ U then M →⊥ ⊥. Since λ∞⊥
is confluent, we have N →→→β⊥ ⊥. By Closure under β⊥-expansion from ⊥, we get N ∈ U .

We prove that U satisfies Closure under Substitution. Let P ∈ U and Q ∈ Λ∞. We will
prove P [x := Q] ∈ U . Since P ∈ U , we have (λx.P)Q →⊥ (λx.⊥)Q →β ⊥. We also have
(λx.P)Q →β P [x := Q]. Since λ∞β⊥U

is confluent, P [x := Q] →→→β⊥ ⊥. By Closure under
β⊥-expansion from ⊥, we have P [x := Q] ∈ U .

We prove that U satisfies Closure under β-reduction. If M →→→β N and M ∈ U then
M →⊥ ⊥. By Confluence, N →→→β⊥ ⊥. By Closure under β⊥-expansion from ⊥, we find
N ∈ U .

Finally, we prove that U satisfies Weak Overlap. If λx.P ∈ U then (λx.P)x →⊥ ⊥x
and (λx.P)x →β P . Since λ∞β⊥U

is confluent, there exists N such that P →→→β⊥ N and
⊥x→→→β⊥ N . We have two possibilities:
1. N = ⊥x. Then P →→→β⊥ ⊥x. By Theorem 5.2, we have that P →→→β P

′ →→→⊥ ⊥x for some
P ′ ∈ Λ∞⊥ . Then, P ′ = Wx and W →→→⊥ ⊥. By Closure under β⊥-expansion from ⊥, we
have W ∈ U . Trivially, W ∈ Λ∞ because P ∈ Λ∞ and P →→→β Wx.

2. N = ⊥. Then, (λx.P)x →⊥ P →→→β⊥ ⊥. By Closure under β⊥-expansion from ⊥, we
have that (λx.P)x ∈ U . By Closure under Substitutions, (λx.P)Q ∈ U for all Q ∈ Λ∞.

J

Paula Severi and Fer-Jan de Vries 327

I Corollary 8.2 (Necessity of Weak Meaninglessness for Confluence II). If λ∞β⊥U
is confluent

then there exists a set U ′ of weak meaningless terms that defines the same reduction as U .

Proof. By Theorem 6.2, U and U define the same reduction. By Corollary 6.3, λ∞β⊥U
is

confluent. By Theorem 8.1, U is a set of weak meaningless terms. J

The following corollary can also be proved directly.

I Corollary 8.3. If U is a set of weak meaningless terms then so is U .

Proof. Let U be a set of weak meaningless terms. By Corollary 5.7, λ∞β⊥U
is confluent and

normalizing. By Corollary 6.3, we have that λ∞β⊥U
is confluent and normalizing. By Theorem

8.1, U is a set of weak meaningless terms. J

I Corollary 8.4. MOD(λ) = {MU | U ∈WM ∩ B} = {MU | U ∈WM}.

Proof. We first prove MOD(λ) ⊆ {MU | U ∈WM ∩ B}. Let MU ∈MOD(λ). By Corollary
6.3, if λ∞β⊥U

is confluent and normalizing, so is λ∞β⊥U
. By Corollary 6.4, MU = MU . By

Theorem 8.1, U ∈WM ∩ B. Hence, MU = MU ∈ {MU | U ∈WM ∩ B}.
It is trivial to see that {MU | U ∈ WM ∩ B} ⊆ {MU | U ∈ WM}. The inclusion

{MU | U ∈WM} ⊆MOD(λ) follows from Corollary 5.7. J

I Corollary 8.5. There is a bijection from the set WM ∩ B to MOD(λ).

Proof. Let U ∈WM ∩ B. By Corollary 5.7, the infinitary lambda calculus λ∞β⊥U
is confluent

and normalizing. Hence, we can consider the mapping that given U ∈WM ∩ B yields MU .
This mapping is surjective by Corollary 8.4 and it is injective by Corollary 6.4. J

9 Conclusions and Future Research

In this paper, we have weakend the Axiom of Overlap in order to find an axiomatization
that is both necessary and sufficient for having confluent and normalizing infinitary lambda
calculi λ∞β⊥U

.
In a natural sequel to this paper we plan to study the same question for first order term

rewriting. Afteral the axioms of meaningless sets (minus substitution) were first formulated
for such systems [2, 11]. If successful a generalisation to combinatory reduction systems
(extending [12]) may then well be possible.

The sets shown in Figure 1 are not the only sets of weak meaningless terms. We also
plan to study the structure of the set WM of sets of weak meaningless terms closed under β
expansion and provide an exhaustive classification if possible.

One reason that this set is of interest is that each such weak meaningless set gives rise
to its own model of the infinitary lambda calculus, which in turn defines a finitary lambda
theory. We are hopeful that the set of weakly meaningless sets is in fact a lattice. And it is
of interest to explore the relation with the well-studied lattice of lambda theories.

Finally it is of interest to see how other denotational semantics can model the infinitary
lambda caluli. Or to see whether each of the infinite lambda calculi λ∞β⊥U

can be provided
with an intersection type discipline sucht that two terms have the same normal form if and
only if the have the same type.

Acknowledgements
We would like to thank the reviewers for their detailed and helpful comments and suggestions
that they provided.

RTA’11

328 Weakening the Axion of Overlap in the Infinitary Lambda Calculus

References
1 S. Abramsky and C.-H. Luke Ong. Full abstraction in the lazy lambda calculus. Information

and Computation, 105(2):159–267, 1993.
2 Z.M. Ariola, J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Syntactic definitions

of undefined: On defining the undefined. In Theoretical Aspects of Computer Software,
volume 789 of LNCS, pages 543–554. Springer, 1994.

3 H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Ams-
terdam, Revised edition, 1984.

4 H.P. Barendregt. Representing ‘undefined’ in lambda calculus. Journal of Functional
Programming, 2(3):367–374, July 1992.

5 M. Barr. Terminal coalgebras for endofunctors on sets. Theoretical Computer Science,
114(2):299–315, 1999.

6 A. Berarducci. Infinite λ-calculus and non-sensible models. In Logic and algebra (Pontig-
nano, 1994), pages 339–377. Dekker, New York, 1996.

7 J.R. Kennaway and F.J. de Vries. Infinitary rewriting. In Terese, editor, Term Rewriting
Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science, pages 668–711.
Cambridge University Press, 2003.

8 J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Infinite lambda calculus and
Böhm models. In Rewriting Techniques and Applications, volume 914 of LNCS, pages
257–270. Springer, 1995.

9 J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Infinitary lambda calculus.
Theoretical Computer Science, 175(1):93–125, 1997.

10 J.R. Kennaway, P.G. Severi, M.R. Sleep, and F.J. de Vries. Infinitary rewriting: From
syntax to semantics. In Processes, Terms and Cycles, volume 3838 of LNCS, pages 148–
172. Springer, 2005.

11 J.R. Kennaway, V. van Oostrom, and F.J. de Vries. Meaningless terms in rewriting. Journal
of Functional and Logic Programming, Article 1:35 pp, 1999.

12 J. Ketema. Comparing Böhm-like trees. In Rewriting Techniques and Applications, volume
5595 of LNCS, pages 239–254. Springer, 2009.

13 J. Kuper. Partiality in Logic and Computation, Aspects of Undefinedness. PhD thesis,
Universiteit Twente, February 1994.

14 P.G. Severi and F.J. de Vries. An extensional Böhm model. In Rewriting Techniques and
Applications, volume 2378 of LNCS, pages 159–173. Springer, 2002.

15 P.G. Severi and F.J. de Vries. Continuity and discontinuity in lambda calculus. In Typed
Lambda Calculus and Applications, volume 3461 of LNCS, pages 369–385. Springer, 2005.

16 P.G. Severi and F.J. de Vries. Order Structures for Böhm-like models. In Computer Science
Logic, volume 3634 of LNCS, pages 103–116. Springer, 2005.

17 P.G. Severi and F.J. de Vries. A Lambda Calculus for D∞. Technical report, University of
Leicester, 2002.

Modular and Certified Semantic Labeling and
Unlabeling∗

Christian Sternagel and René Thiemann

Institute of Computer Science, University of Innsbruck, Austria
{christian.sternagel|rene.thiemann}@uibk.ac.at

Abstract
Semantic labeling is a powerful transformation technique to prove termination of term rewrite
systems. The dual technique is unlabeling. For unlabeling it is essential to drop the so called
decreasing rules which sometimes have to be added when applying semantic labeling. We indicate
two problems concerning unlabeling and present our solutions.

The first problem is that currently unlabeling cannot be applied as a modular step, since the
decreasing rules are determined by a semantic labeling step which may have taken place much
earlier. To this end, we give an implicit definition of decreasing rules that does not depend on
any knowledge about preceding labelings.

The second problem is that unlabeling is in general unsound. To solve this issue, we introduce
the notion of extended termination problems. Moreover, we show how existing termination
techniques can be lifted to operate on extended termination problems.

All our proofs have been formalized in Isabelle/HOL as part of the IsaFoR/CeTA project.

1998 ACM Subject Classification F.4.2

Keywords and phrases semantic labeling, certification, term rewriting, unlabeling

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.329

Category Regular Research Paper

1 Introduction

In recent years, termination provers for term rewrite systems (TRSs) became more and more
powerful. Nowadays, we do no longer have to prove termination by embedding all rules of
a TRS into a single reduction order. Instead, most provers construct multi-step proofs by
combining different termination techniques1 resulting in tree-like termination proofs. As a
result, termination provers became more complex and thus, more error-prone. It is regularly
demonstrated that we cannot blindly trust termination provers. Every now and then, some
prover delivers a faulty proof. Most of the time, this is only detected if there is another
prover giving a contradictory answer. Furthermore, it just is too much work to check a
generated proof by hand. (Besides, checking by hand is not very reliable.)

To solve this issue, recent interest is in the automatic certification of termination proofs
[3, 4, 18]. To this end, we formalized many termination techniques in our Isabelle/HOL [15]
library IsaFoR [18] (in the remainder we just write Isabelle, instead of Isabelle/HOL). Using
IsaFoR, we obtain CeTA, an automatic certifier for termination proofs.

∗ This research is supported by FWF (Austrian Science Fund) project P22767-N13.
1 Several termination techniques are based upon reduction orders, but there are also techniques which do

not generate orders. Hence, the multi-step proofs are not just a lexicographic combination of orders.

© Christian Sternagel and René Thiemann;
licensed under Creative Commons License ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 329–344

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.329
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

330 Modular and Certified Semantic Labeling and Unlabeling

In this paper, we present our formalization of semantic labeling and unlabeling [19], two
important termination techniques. Semantic labeling introduces differently labeled variants
of the same symbol, allowing a distinction in orders, etc. Semantic labeling typically produces
large TRSs. Hence, unlabeling is important to keep the number of symbols and rules small.

I Example 1.1. Consider the small TRS Secret_05/teparla3 from the termination problem
database (TPDB) which only consists of two rules, has two different symbols, and two variables.
We just describe the structure of the proof that has been generated by the termination prover
AProVE [10] in 21 seconds during the 2008 termination competition.2

After applying the dependency pair transformation [1] and some standard techniques, a
termination problem containing three rules and three different symbols is obtained. Then,
semantic labeling is applied. The result after simplification, is a system with five rules and
seven different symbols. Unlabeling yields a problem with three rules and three symbols.
Another labeling produces a new termination problem with 12 rules. This is finally proven
to be terminating using a matrix interpretation [6] of dimension two.

Note that without the unlabeling step, the second labeling would have returned a
system with 5025 rules instead of 12—for this huge termination problem no suitable matrix
interpretation of dimension two is detected.

Whereas the previous example shows that unlabeling is essential to keep systems small,
we also found examples where unlabeling was the key to get a successful termination proof
at all, cf. Example 4.2 for details.

Unfortunately, unlabeling is not sound in general. In order to allow nested labeling and
unlabeling and turn unlabeling into a sound and modular technique (not relying on context
information), we have designed a new framework. All existing termination techniques are
easily integrated in this framework. In fact, CeTA uses the new framework for certification.

Note that all the proofs that are presented (or omitted) in the following, have been
formalized as part of IsaFoR. Hence, we merely give sketches of our “real” proofs. Our goal is
to show the general proof outlines and help to understand the full proofs. The library IsaFoR
with all formalized proofs, the executable certifier CeTA, and all details about our experiments
are available at CeTA’s website:

http://cl-informatik.uibk.ac.at/software/ceta

The paper is structured as follows. In Section 2, we recapitulate some required notions of term
rewriting as well as the basic definitions of semantic labeling. Afterwards, in Section 3, we
give some challenges for modular labeling and unlabeling. Then, in Section 4, we extend the
previous results to the dependency pair framework. We discuss challenges for the certification
in Section 5. Our experiments are presented in Section 6 before we conclude in Section 7.

2 Preliminaries

2.1 Term Rewriting
We assume familiarity with term rewriting [2]. Still, we recall the most important notions
that are used later on. A (first-order) term t over a set of variables V and a set of function
symbols F is either a variable x ∈ V or an n-ary function symbol f ∈ F applied to n argument
terms f(~tn). For brevity we write ~tn to denote a sequence of n elements t1, . . . , tn and (h(~tn))

2 See http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=35708

http://cl-informatik.uibk.ac.at/software/ceta
http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=35708

Christian Sternagel and René Thiemann 331

(note the additional pair of parentheses) for (h(t1), . . . , h(tn)), i.e., mapping a function h
over the elements of a sequence ~tn. A context C is a term containing exactly one hole (�).
Replacing � in a context C by a term t is denoted by C[t]. A (rewrite) rule is a pair of
terms `→ r and a TRS R is a set of such rules. The rewrite relation (induced by R) →R is
the closure under substitutions and contexts of R, i.e., s→R t iff there is a context C, a rule
`→ r ∈ R, and a substitution σ such that s = C[`σ] and t = C[rσ].

We say that an element t is terminating / strongly normalizing (w.r.t. some binary relation
S), and write SNS(t), if it cannot start an infinite sequence t = t1 S t2 S t3 S · · · . The whole
relation is terminating, written SN(S), if all elements are terminating w.r.t. it. For a TRS R
and a term t, we write SN(R) and SNR(t) instead of SN(→R) and SN→R(t). We write S+

(S∗) for the (reflexive and) transitive closure of S.

I Definition 2.1 (Termination Technique). A termination technique is a mapping TT from
TRSs to TRSs. It is sound if termination of TT(R) implies termination of R.

Using sound termination techniques one tries to modify a given TRS R until the empty
TRS is reached. If this succeeds, one obtains a proof tree showing termination of R.

2.2 Semantic Labeling
An algebra A over F is a pair (A, {fA}f∈F) consisting of a non-empty carrier A and an
interpretation function fA : An → A for every n-ary function symbol f ∈ F . Given an
assignment α : V → A, we write [α]A(t) for the interpretation of the term t. An algebra A is
a model of a rewrite system R, if [α]A(`) = [α]A(r) for all rules `→ r ∈ R and all assignments
α. If the carrier A is equipped with a well-founded order >A such that [α]A(`) >A [α]A(r)
for all `→ r ∈ R and all assignments α, then A is a quasi-model of R.

For each function symbol f there also is a corresponding non-empty set Lf of labels for f
and a labeling function `f : An → Lf . The labeled signature Flab consists of n-ary function
symbols fa for every n-ary function symbol f ∈ F and label a ∈ Lf . The labeling function
`f determines the label of the root symbol f of a term f(~tn) based on the values of the
arguments ~tn. For every assignment α : V → A the mapping labα : T (F ,V)→ T (Flab,V) is
inductively defined by

labα(t) =
{
f`f ([α]A(~tn))(labα(~tn)) if t = f(~tn),
t otherwise.

The labeled TRS lab(R) over the signature Flab consists of the rules labα(`)→ labα(r) for
all `→ r ∈ R and α : V → A.

For quasi-models, every set of labels Lf needs to be equipped with a well-founded order
>Lf , giving rise to the set Dec of decreasing rules:

Dec = {fa(~xn)→ fb(~xn) | a, b ∈ Lf , a >Lf b, n-ary f ∈ F}

Furthermore, every interpretation function fA and every labeling function `f has to be
weakly monotone, i.e., if a >A a′ then fA(a1, . . . , a, . . . , an) >A fA(a1, . . . , a

′, . . . , an) and
`f (a1, . . . , a, . . . , an) >Lf `f (a1, . . . , a

′, . . . , an).
Unlabeling a symbol is defined via the following function, removing one layer of labels.

Then, the function is extended homomorphically to terms, rules, and TRSs.

unlab(f) =
{
g if f = ga,
f if f is not labeled.

RTA’11

332 Modular and Certified Semantic Labeling and Unlabeling

In [19], Zantema showed that labeled TRSs can simulate their unlabeled counterparts
(corresponding to 1 and 2 in the following lemma; 3 and 4 are obvious).

I Lemma 2.2. Let R be a TRS,A an algebra, and α an arbitrary assignment.
1. If A is a model of R then t→R u implies labα(t)→lab(R) labα(u).
2. If A is a quasi-model of R then t→R u implies labα(t)→+

lab(R)∪Dec labα(u).
3. t→lab(R) u implies unlab(t)→R unlab(u).
4. t→Dec u implies unlab(t) = unlab(u).

From Lemma 2.2 we obtain that R is terminating if and only if lab(R) (∪Dec) is termi-
nating when A is a (quasi-)model of R. Completeness is achieved by unlabeling all terms in a
possible infinite rewrite sequence of the labeled TRS. Soundness is proved by transforming a
presupposed infinite rewrite sequence in R into an infinite rewrite sequence in lab(R) (∪Dec).
This is done by applying the labeling function labα(·) (for an arbitrary assignment α) to all
terms in the infinite rewrite sequence of R. Hence, semantic labeling is sound and complete
for termination (using models and quasi-models, respectively).

3 Modular Semantic Labeling and Unlabeling

One problem with semantic labeling is that the labeled system is usually large. Hence,
termination provers such as AProVE [10], Jambox [5], Torpa [20], and TPA [13] perform
labeling, then try to simplify the resulting TRS by sound termination techniques, and
afterwards unlabel the TRS again, to continue on a small system. This poses two challenges:
1. If labeling was performed using a quasi-model, then the decreasing rules are added.

However, unlabeling a decreasing rule fa(~xn)→ fb(~xn) leads to the nonterminating rule
f(~xn)→ f(~xn). Hence, one has to remove the decreasing rules before unlabeling.

2. Between labeling and unlabeling, arbitrary (sound) termination techniques may be applied.
However, for unlabeling we want to remove the decreasing rules that are determined by
the corresponding labeling step. Hence, unlabeling is not a modular technique that only
takes a TRS as input. Instead, it relies on context information, namely the decreasing
rules that have been used in the corresponding labeling step (which may occur several
steps upwards in the termination proof).

Solving the first challenge is technically easy: just remove the decreasing rules before
unlabeling. The only question is, whether it is always sound to remove the decreasing rules.

To handle the second challenge, we propose an implicit definition of decreasing rules.

I Definition 3.1 (Decreasing rules of a TRS). We define the decreasing rules of a TRS R as
D(R) = {`→ r ∈ R | unlab(`) = unlab(r) ∧ ` 6= r}. We further define the unlabeled version
of a TRS as U(R) = unlab(R \ D(R)).

The condition ` 6= r ensures that a labeled variant of an original rule is never decreasing. For
example, if f(~xn)→ f(~xn) is a rule (and hence the original TRS is not terminating), then
each labeled variant has the form fa(~xn)→ fa(~xn) for some a ∈ Lf . If we would consider
such a rule as decreasing, we could transform a nonterminating TRS into a terminating one,
using labeling and unlabeling.

I Lemma 3.2. Let Lf and >Lf be given for each symbol f to determine Dec. Then
D(Dec) = Dec, D(lab(R)) = ∅, D(lab(R) ∪ Dec) = Dec, and U(lab(R) ∪ Dec) = R.

Now it is easy to define a modular version of unlabeling which does not require external
knowledge about what the decreasing rules are.

Christian Sternagel and René Thiemann 333

I Definition 3.3 (Unlabeling as modular termination technique). The unlabeling termination
technique replaces a TRS R by U(R).

Hence, we solved the second challenge and made unlabeling into an independent technique
which does not need any knowledge on the previous application of semantic labeling that
introduced the decreasing rules. Thus, termination proofs can now use the following structure
where no global information has to be passed around:
1. Switch from R to lab(R) (∪ Dec).
2. Modify lab(R) (∪ Dec) by sound termination techniques resulting in R′.
3. Unlabel R′ resulting in U(R′).

Although this approach is used in termination provers, it is unsound in general as not
every sound termination technique may be used between labeling and unlabeling. This is
illustrated by the following example.

I Example 3.4. We start with the nonterminating TRS R = {f(a)→ f(b), b→ a}. Then,
we apply semantic labeling using the algebra A with A = {0, 1}, interpretations fA(x) = 0,
aA = 0, bA = 1, Lf = A, `f(x) = x, and the standard order on the naturals. Note
that A is a quasi-model of R. The resulting labeled TRS is lab(R) ∪ Dec = {f0(a) →
f1(b), b → a, f1(x) → f0(x)}. It is sound to replace lab(R) ∪ Dec by the (nonterminating)
TRS R′ = {f1(x) → f0(x), f0(x) → f1(x)}. However, unlabeling R′ yields U(R′) = ∅ as
both rules in R′ are decreasing according to Definition 3.1. Hence, some of the performed
deductions were not sound. Since semantic labeling and the switch from lab(R) ∪ Dec to R′
are sound, we obtain that unlabeling via U is unsound.

The problematic step when unlabeling, i.e., when switching from R to U(R) = unlab(R \
D(R)), is the removal of the decreasing rules. If the decreasing rules are the only source of
nontermination, then this removal is unsound. However, the decreasing rules Dec that are
obtained from semantic labeling are always terminating. Thus, after labeling we have to prove
termination of the labeled system including the decreasing rules, but we may assume that
the decreasing rules are terminating. If we know that the decreasing rules are terminating,
then unlabeling by U is sound. We obtain the following structure of termination proofs:
1. Initially we have to prove SN(R).
2. After labeling, we have to prove SN(D(R′)) =⇒ SN(R′) for R′ = lab(R) ∪ Dec.
3. Then, we modify R′ to R′′ with SN(D(R′′)) =⇒ SN(R′′) implies SN(D(R′)) =⇒ SN(R′).
4. Finally, we unlabel R′′ resulting in U(R′′) and have to prove SN(U(R′′)).
This approach works fine for termination proofs where semantic labeling is not nested.
However, we are aware of termination proofs where labeling is applied in a nested way.

I Example 3.5. Consider the TRS Gebhardt_06/16 from the TPDB. During the 2008
termination competition, Jambox proved termination of this TRS, applying the following
steps: labeling - labeling - labeling - polynomial order - unlabeling - four applications of
polynomial orders - unlabeling - unlabeling.3

To support this kind of proof we define the following variant of strong normalization.

I Definition 3.6. An extended termination problem is a pair (R, n) consisting of a TRS R
and a number n ∈ N. An extended problem (R, n) is strongly normalizing (SN(R, n)) iff

(∀m < n.SN(D(Um(R)))) =⇒ SN(R).

3 See http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=27220

RTA’11

http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=27220

334 Modular and Certified Semantic Labeling and Unlabeling

An extended termination technique is a mapping xTT from extended termination problems
to extended termination problems. It is sound iff SN(xTT(R, n)) implies SN(R, n).

The number n in an extended termination problem (R, n) describes how often we can
assume that the decreasing rules are terminating, and hence, it tells us how often we can
delete the decreasing rules during unlabeling. The following lemma provides the link between
both variants of strong normalization.

I Lemma 3.7. 1. SN(R) iff SN(R, 0).
2. If SN(R) then SN(R, n).

I Lemma 3.8 (Extended Unlabeling). Extended unlabeling is sound where

U(R, n) =
{

(U(R), n− 1) if n > 0,
(unlab(R), 0) otherwise.

Proof. We only consider the interesting case where n > 0. So, we have to show SN(R, n)
under the first assumption SN(U(R), n− 1). To prove SN(R, n), we have to prove SN(R)
under the second assumption ∀m < n. SN(D(Um(R))). Since n > 0 we can choose m = 0
and obtain SN(D(R)).

To show SN(R) we assume that there is an infinite →R-derivation t1 →R t2 →R · · ·
and obtain a contradiction. The infinite derivation is also an infinite →R\D(R) ∪ →D(R)-
derivation. Since D(R) is terminating, we know that there are infinitely many i with
ti→R\D(R)ti+1. Hence unlab(ti)→U(R) unlab(ti+1) for all these i as U(R) = unlab(R\D(R)).
Moreover, for all i where ti →D(R) ti+1, we know that unlab(ti) →unlab(D(R)) unlab(ti+1)
and hence, unlab(ti) = unlab(ti+1) since every rule in unlab(D(R)) has the same left- and
right-hand side. Thus, we have constructed an infinite derivation for U(R) proving that
SN(U(R)) does not hold. Together with the assumption SN(U(R), n− 1), we obtain that
∀m < n − 1.SN(D(Um(U(R)))) does not hold (by Definition 3.6). Hence, there is some
m < n− 1 such that SN(D(Um+1(R))) does not hold. Now, using the second assumption
and m+ 1 < n we obtain SN(D(Um+1(R))), providing the required contradiction. J

I Lemma 3.9 (Extended Semantic Labeling). Semantic labeling is sound as extended termi-
nation technique: Whenever we can switch from R to lab(R) (∪ Dec) via semantic labeling,
then it is sound to switch from (R, n) to (lab(R) (∪ Dec), n+ 1).

Proof. Note that models are just a special case of quasi-models as already observed in [19].
Hence, we only consider quasi-models in the proof. So, assuming SN(lab(R) ∪ Dec, n+ 1)
we have to prove SN(R, n). To show the latter, we may assume ∀m < n. SN(D(Um(R)))
and have to prove SN(R). We do so by assuming that there is an infinite R-derivation
t1 →R t2 →R · · · and deriving a contradiction. As we have a quasi-model we know
that labα(t1) →+

lab(R)∪Dec labα(t2) →+
lab(R)∪Dec · · · is an infinite lab(R) ∪ Dec-derivation,

showing that SN(lab(R) ∪ Dec) does not hold. By the conditions of semantic labeling,
we further know SN(Dec). Using SN(lab(R) ∪ Dec, n + 1) we conclude that ∀m < n +
1.SN(D(Um(lab(R) ∪ Dec))) does not hold. Hence there is some m < n + 1 such that
SN(D(Um(lab(R) ∪ Dec))) does not hold. If m = 0 then by Lemma 3.2 we know that
D(Um(lab(R) ∪ Dec)) = D(lab(R) ∪ Dec) = Dec, and thus SN(Dec) does not hold, a
contradiction. Otherwise, m = m′ + 1 for some m′ where m′ < n. Together with
∀m < n.SN(D(Um(R))), we obtain SN(D(Um′(R))). On the other hand, we know that
SN(D(Um′+1(lab(R) ∪ Dec))) does not hold. This again leads to a contradiction since
D(Um′+1(lab(R) ∪ Dec)) = D(Um′(U(lab(R) ∪ Dec))) = D(Um′(R)) by Lemma 3.2. J

Christian Sternagel and René Thiemann 335

The previous two lemmas show that labeling and unlabeling can be performed as inde-
pendent techniques on extended termination problems.

The question remains how to integrate other existing termination techniques, i.e., which
techniques may be applied between labeling and unlabeling. Here, we consider two variants.

I Definition 3.10 (Lift). Let TT be some termination technique. Then lift(TT) and
lift0(TT) are extended termination techniques where lift(TT)(R, n) = (TT(R), n) and
lift0(TT)(R, n) = (TT(R), 0).

In principle lift(TT) is preferable, since it does not change n, allowing to remove the
decreasing rules when unlabeling (which is not possible using lift0(TT)). However, in general
the fact that TT is sound does not imply that lift(TT) is sound. This can easily be seen
by reusing Example 3.4 where the extended termination problem (R, 0) is transformed to
(lab(R) ∪ Dec, 1) by semantic labeling, then to (R′, 1) using lift(TT) for the unnamed sound
termination technique TT in Example 3.4, and then to (∅, 0) by unlabeling. Since this
establishes a complete termination proof for the nonterminating TRS R, and since labeling
and unlabeling are sound, we know that lift(TT) is unsound.

Since we cannot always use lift(TT), we give three different approaches to use termination
techniques as extended termination techniques (in order of preference):
1. Identify a (hopefully large) class of termination techniques TT for which soundness of

TT implies soundness of lift(TT).
2. Perform a direct proof that lift(TT) is sound as extended termination technique.
3. Use lift0(TT) for any sound termination technique TT.

We first prove soundness of approach 3.

I Lemma 3.11. If TT is sound then lift0(TT) is sound.

Proof. We have to prove that SN(TT(R), 0) implies SN(R, n). So, assume SN(TT(R), 0).
Hence, SN(TT(R)) using Lemma 3.7(1). As TT is sound, we conclude SN(R) and this
implies SN(R, n) by Lemma 3.7(2). J

We start to prove soundness of lift(TT) for some sound termination technique TT in order
to detect where the problem is. To prove soundness, we have to show that SN(TT(R), n)
implies SN(R, n). Thus, assume SN(TT(R), n). To prove SN(R, n) we may assume that
∀m < n.SN(D(Um(R))) and have to prove SN(R). Since TT is sound, it suffices to
prove SN(TT(R)). To this end, it suffices to show ∀m < n.SN(D(Um(TT(R)))) by using
SN(TT(R), n). Hence, the only missing step is to conclude

SN(D(Um(R))) =⇒ SN(D(Um(TT(R)))). (?)

I Lemma 3.12. If TT is sound and if (?) is satisfied for all m, then lift(TT) is sound.

A sufficient condition to ensure (?) is to demand that TT(R) ⊆ R as unlab, D, and U
are monotone w.r.t. set inclusion. Hence, all techniques that remove rules like rule removal
via reduction pairs, or (RFC) matchbounds [7, 14] can safely be used between labeling and
unlabeling. However, this excludes techniques like the flat context closure which is required
for root-labeling.

I Definition 3.13 (Root-Labeling). Let R be a TRS over the signature F . Let AF be an
algebra with carrier F . Moreover, for every n-ary f ∈ F , we fix the interpretation function
fAF (~xn) = f , the set of labels Lf = Fn, and the labeling function `f (~xn) = (~xn).

RTA’11

336 Modular and Certified Semantic Labeling and Unlabeling

Note that root-labeling is just a specific instantiation of general semantic labeling with
models. Hence, it is sound whenever AF is a model of R. However, in general AF does not
constitute a model of R. Hence, a transformation technique was introduced that modifies R
in a way that AF always is a model of the result: the closure under flat contexts.

I Definition 3.14 (Flat Context Closure). For an n-ary symbol f , the flat context for the i-th
argument is FCi(f) = f(x1, . . . , xi−1,�, xi+1, . . . , xn), where all the xj are fresh variables.
The set of flat contexts over F is defined by FC(F) = {FCi(f) | n-ary f ∈ F , 1 6 i 6 n}.
The closure under flat contexts of a TRS R w.r.t. the signature F is given by

FCF (R) = {C[`]→ C[r] | C ∈ FC(F), `→ r ∈ Ra} ∪ (R \Ra)

where Ra denotes those rules of R, for which the root of the left-hand side and the root of
the right-hand side differ.

Since Jambox applies root-labeling recursively (the labeling in Example 3.5 is root-
labeling), we definitely would like to aim at a larger class of termination techniques than
those which satisfy TT(R) ⊆ R. A natural extension would be to use the weaker condition
→TT(R) ⊆ →R. Then, also root-labeling together with the closure under flat contexts would
be supported. Unfortunately, →TT(R) ⊆ →R does not imply →D(Um(TT(R))) ⊆ →D(Um(R))
and thus, does not imply (?). Moreover, in the following example we show that even if TT is
sound and →TT(R) ⊆ →R then soundness of lift(TT) cannot be guaranteed.

I Example 3.15. Consider the TRS R = {f1(x) → f0(a), f0(x) → f1(x)}. Let TT be the
termination technique that replaces R by R′ = {f1(a)→ f0(a), f0(x)→ f1(x)}. Then, TT is
sound as R′ is not terminating. Moreover, →R′ ⊆ →R. Nevertheless, lift(TT) is unsound,
since it would replace (R, 1) by (R′, 1). That this replacement is unsound can be seen as
follows: SN(R, 1) does not hold since R is not terminating but the decreasing rules of R (i.e.,
D(R) = {f0(x) → f1(x)}) are terminating. However, SN(R′, 1) is satisfied as D(R′) = R′
and hence termination of D(R′) implies termination of R′.

We have seen that requiring TT(R) ⊆ R is too restrictive to allow root-labeling. But only
requiring →TT(R) ⊆ →R is unsound. However, there is another condition which is weaker
than set inclusion, implies soundness, and allows the application of flat context closures.

I Definition 3.16. The context subset relation ⊆c is defined as

R ⊆c S iff ∀`→ r ∈ R.∃C, `′ → r′ ∈ S. ` = C[`′] ∧ r = C[r′].

I Lemma 3.17. 1. R ⊆ S implies R ⊆c S
2. R ⊆c S implies →R ⊆ →S
3. R ⊆c S implies D(R) ⊆c D(S) and U(R) ⊆c U(S)
4. If TT is sound and ∀R.TT(R) ⊆c R then lift(TT) is sound

Proof. 1. To show R ⊆c S, let `→ r ∈ R. Using R ⊆ S we know that `→ r ∈ S. Hence,
∃C, `′ → r′ ∈ S. ` = C[`′] ∧ r = C[r′] by choosing C = � and `′ → r′ = `→ r.

2. Assume t = D[`σ] →R D[rσ] = s using some rule ` → r ∈ R. As R ⊆c S, we obtain
C and `′ → r′ ∈ S such that ` = C[`′] and r = C[r′]. Hence, t = D[`σ] = D[C[`′]σ] =
D[Cσ[`′σ]]→S D[Cσ[r′σ]] = D[C[r′]σ] = D[rσ] = s.

3. We first show D(R) ⊆c D(S). So, let ` → r ∈ D(R). Hence, ` → r ∈ R, unlab(`) =
unlab(r) and ` 6= r. UsingR ⊆c S we obtain C and `′ → r′ ∈ S such that ` = C[`′] and r =
C[r′]. Thus, unlab(C)[unlab(`′)] = unlab(C[`′]) = unlab(`) = unlab(r) = unlab(C[r′]) =

Christian Sternagel and René Thiemann 337

unlab(C)[unlab(r′)] shows that unlab(`′) = unlab(r′). Similarly, C[`′] = ` 6= r = C[r′]
implies `′ 6= r′. So, `′ → r′ ∈ D(S) and thus, ∃C, `′ → r′ ∈ D(S). ` = C[`′] ∧ r = C[r′].
Now let us show U(R) = unlab(R\D(R)) ⊆c unlab(S\D(S)) = U(S). This property is the
crucial part, since potentially we remove less rules fromR than from S. Assume unlab(`)→
unlab(r) ∈ U(R), i.e., `→ r ∈ R and unlab(`) 6= unlab(r) ∨ ` = r. As R ⊆c S we obtain
C and `′ → r′ ∈ S such that ` = C[`′] and r = C[r′]. Hence, unlab(`) = unlab(C[`′]) =
unlab(C)[unlab(`′)] and unlab(r) = unlab(C[r′]) = unlab(C)[unlab(r′)]. Thus, we can
simplify unlab(`) 6= unlab(r)∨ ` = r to unlab(C)[unlab(`′)] 6= unlab(C)[unlab(r′)]∨C[`′] =
C[r′] and further to unlab(`′) 6= unlab(r′) ∨ `′ = r′. Using `′ → r′ ∈ S this shows that
`′ → r′ ∈ S \ D(S) and thus, unlab(`′) → unlab(r′) ∈ U(S). By choosing the context
unlab(C) and the rule unlab(`′) → unlab(r′) we have finally shown that ∃C, `′ → r′ ∈
U(S). unlab(`) = C[`′] ∧ unlab(r) = C[r′].

4. By Lemma 3.12 we only have to prove (?). Using TT(R) ⊆c R and 3 one can show that
Um(TT(R)) ⊆c Um(R) by induction on m. Using 3 again, we conclude D(Um(TT(R)))
⊆c D(Um(R)) and thus, →D(Um(TT(R))) ⊆ →D(Um(R)) by 2. Then (?) immediately
follows. J

I Corollary 3.18. Let R be a TRS over the signature F . Then lift(FCF) is sound.

Proof. It was shown in [16] that FCF is sound for TRSs. Furthermore, FCF (R) ⊆c R by
definition of FC(F) and thus, by Lemma 3.17(4), lift(FCF) is sound, too. J

Note that several termination techniques TT satisfy TT(R) ⊆c R and hence, can be
used between labeling and unlabeling. However, there are still some techniques which do not
satisfy this requirement. Examples would be string reversal and uncurrying [11].

Of course, it is possible to use lift0(TT), however, for string reversal also a direct soundness
proof can be performed to show that lifting string reversal is sound.

I Theorem 3.19. Let TT be the technique of string reversal where TT(R) = rev(R), if R is
a string rewrite system, and TT(R) = R, otherwise. Then lift(TT) is sound.

Proof. By Lemma 3.12 we just have to prove (?), i.e., we have to show for all m that
SN(D(Um(R))) implies SN(D(Um(rev(R)))). To this end, we have proven that reversing
can be commuted with both D and U : rev(D(R)) = D(rev(R)) and rev(U(R)) = U(rev(R).
Hence, rev(D(Um(R))) = D(Um(rev(R))). This completes the proof: since string reversal
is complete, we know that termination of D(Um(R)) implies termination of rev(D(Um(R)))
and therefore, also of D(Um(rev(R))). J

To summarize, we can now certify termination proofs where labeling and unlabeling
are modular techniques (and hence, can be applied recursively), and where all supported
techniques of CeTA (except uncurrying) can be used between labeling and unlabeling.

An easy alternative to our extended termination techniques would be the use of relative
rewriting. The obvious idea is to add the decreasing rules as relative rules when performing
semantic labeling. In this way, unlabeling would directly be modular and sound, since one can
always remove relative rules where both sides of the rule are identical. This alternative is used
in the independent and unpublished formalization of semantic labeling in the CoLoR library.
The main problem with this alternative is that some techniques like RFC matchbounds can
be used in our framework, but not in combination with relative rewriting in general (during
the termination competition in 2010 a tool has been disqualified for giving a wrong answer
for a relative termination problem; the reason was the use of RFC matchbounds). For a
further discussion on matchbounds and relative rewriting we refer to [12].

RTA’11

338 Modular and Certified Semantic Labeling and Unlabeling

4 Dependency Pair Framework

The DP framework [8] is a way to modularize termination proofs. Instead of TRSs one
investigates so called DP problems, consisting of two TRSs. The initial DP problem for a
TRS R is (DP(R),R) where DP(R) denotes the dependency pairs of R [1]. A (P,R)-chain
is a possibly infinite derivation of the form:

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P · · · (?)

where si → ti ∈ P for all i > 0. If additionally every tiσi is terminating w.r.t. R, then the
chain is minimal. A DP problem (P,R) is called finite [8], if there is no minimal infinite
(P,R)-chain. Proving finiteness of a DP problem is done by simplifying (P,R) using so
called processors recursively. A processor transforms a DP problem into a new DP problem.
The aim is to reach a DP problem where the P-component is empty (such DP problems are
trivially finite). To conclude finiteness of the initial DP problem, the applied processors need
to be sound. A processor Proc is sound whenever for all DP problems (P,R) we have that
finiteness of Proc(P,R) implies finiteness of (P,R).

Semantic labeling can easily be lifted to DP problems. Soundness of the following
processor is an immediate consequence of [19].

I Theorem 4.1. Let (P,R) be a DP problem and A be an algebra. If A is a quasi-model of
R, then it is sound to return the DP problem (lab(P), lab(R) ∪ Dec).

The following example shows that unlabeling is not only necessary for efficiency, but that
unlabeling is required to apply other techniques.

I Example 4.2. We consider the TRS Secret_07/4 from the TPDB.

1: g(c, g(c, x)) → g(e, g(d, x))
2: g(d, g(d, x)) → g(c, g(e, x))
3: g(e, g(e, x)) → g(d, g(c, x))

4: g(x, g(y, g(x, y))) → g(a, g(x, g(y, b)))
5: f(g(x, y)) → g(y, g(f(f(x)), a))

In the 2008 termination competition AProVE found a termination proof of the following
structure (we present a simplified version, missing some unnecessary steps that have been
applied in the original proof).4 First, the initial DP problem is transformed into (P, {1–4})
where P consists of the pairs G(c, g(c, x))→ G(e, g(d, x)), G(d, g(d, x))→ G(c, g(e, x)), and
G(e, g(e, x))→ G(d, g(c, x)). Then, labeling and further processing yields the DP problem
(P ′,R′) where P ′ contains the pairs

G00(c, g00(c, x))→ G00(e, g00(d, x)) G00(e, g00(e, x))→ G00(d, g00(c, x))
G00(d, g00(d, x))→ G00(c, g00(e, x))

and R′ is the following TRS.

g00(c, g00(c, x))→ g00(e, g00(d, x)) g00(c, g01(c, x))→ g00(e, g01(d, x))
g00(d, g00(d, x))→ g00(c, g00(e, x)) g00(d, g01(d, x))→ g00(c, g01(e, x))
g00(e, g00(e, x))→ g00(d, g00(c, x)) g00(e, g01(e, x))→ g00(d, g01(c, x))

4 See http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=35909

http://termcomp.uibk.ac.at/termcomp/competition/resultDetail.seam?resultId=35909

Christian Sternagel and René Thiemann 339

Hence, all labeled versions of Rule 4 have been deleted, and unlabeling yields the DP problem
(P, {1–3}). This DP problem is applicative. Hence, we may apply the A-transformation [9]
to obtain the DP problem having the pairs

C(c(x))→ E(d(x)) D(d(x))→ C(e(x)) E(e(x))→ D(c(x))

and the rules

c(c(x))→ e(d(x)) d(d(x))→ c(e(x)) e(e(x))→ d(c(x))

This DP problem is solved using standard techniques. Note that for the A-transformation it
was essential that unlabeling was performed, as the DP problem (P ′,R′) is not applicative.

Unfortunately, unlabeling as processor is in general unsound. In contrast to unlabeling
on TRSs, here a problem already arises when using the model-version of semantic labeling
without decreasing rules. The main reason is that unlabeling might introduce nontermination.
Hence, minimality of an unlabeled infinite chain cannot be guaranteed.5

I Example 4.3. Consider the DP problem (P,∅) where P = {F(x) → F(g(a))}. This
DP problem is obviously not finite. Applying semantic labeling is trivially possible since
there are no rules which have to satisfy the (quasi-)model condition. We choose A = {0, 1},
and for each f we define fA(. . .) = 0 and `f (~xn) = (~xn). We obtain the labeled pairs
lab(P) = {F0(x)→ F0(g0(a)),F1(x)→ F0(g0(a))} and by Theorem 4.1 we know that the DP
problem (lab(P),∅) is again not finite. We can further modify the DP problem by replacing
it with (lab(P),R) where R = {g1(x)→ g1(x)}. Note that this modification is sound since
(lab(P),R) still allows a minimal infinite chain and is therefore not finite.

However, applying unlabeling we obtain the DP problem (P, unlab(R)) which is finite
as now the right-hand side F(g(a)) of the only pair in P is not terminating w.r.t. U(R) =
{g(x)→ g(x)}. Hence, unlabeling is unsound in general. The main problem is again that
the notion of soundness is too weak. It allows the application of processors between labeling
and unlabeling which may replace (lab(P),∅) by (lab(P),R).

To solve this problem, we again add a counter n which tells us how often we may unlabel.

I Definition 4.4. An extended DP problem is a triple (P,R, n) where (P,R) is a DP problem
and n ∈ N. An extended DP problem (P,R, n) is finite iff there is no infinite chain

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P t3σ3 →∗R · · ·

such that for all i: ∀m 6 n. SNUm(R)(unlabm(tiσi)).

Hence, the only difference between finiteness of DP problems and extended DP problems is
the minimality condition (SNR(tiσi) versus ∀m 6 n. SNUm(R)(unlabm(tiσi))). We therefore
obtain a similar lemma to Lemma 3.7, but now for DP problems.

I Lemma 4.5. 1. (P,R) is finite iff (P,R, 0) is finite.
2. If (P,R) is finite then (P,R, n) is finite.

As for termination techniques we can lift every processor to an extended processor.

5 There is no problem in the formalization of semantic labeling in CoLoR at this point, as it does not
feature minimal chains.

RTA’11

340 Modular and Certified Semantic Labeling and Unlabeling

I Definition 4.6 (Lift). Let Proc be a processor with Proc(P,R) = (P ′,R′). Then
lift(Proc) and lift0(Proc) are extended processors where lift(Proc)(P,R, n) = (P ′,R′, n)
and lift0(Proc)(P,R, n) = (P ′,R′, 0).

We obtain similar results for lift0 as for termination techniques: whenever Proc is
sound then lift0(Proc) is sound. However, additionally demanding that R′ ⊆c R or even
P ′ ⊆ P ∧ R′ = R where Proc(P,R) = (P ′,R′) does not suffice to ensure soundness of
lift(Proc). This is demonstrated in the upcoming example.

I Example 4.7. Let P = {F0(x)→ F0(b)}, P ′ = {F0(x)→ F0(g0(b))}, and R = {g1(x)→
g0(h1(x))}. Then (P,R, 1) is not finite as obviously there is an infinite (P,R)-chain where all
terms in the chain are F0(b) and moreover, F0(b) is terminating w.r.t. R and unlab(F0(b)) =
F(b) is terminating w.r.t. U(R) = {g(x)→ g(h(x))}. Hence, also (P ∪ P ′,R, 1) is not finite
by constructing the same chain.

Note that the processor Proc which replaces (P ∪P ′,R) by (P ′,R) is sound, since (P ′,R)
is not finite: again, there is an infinite (P ′,R)-chain, and every chain is also minimal since R
is terminating. However, lift(Proc) is unsound as (P ′,R, 1) is finite: otherwise, there would
be an infinite chain where F0(g0(b)) is terminating w.r.t. R and unlab(F0(g0(b))) = F(g(b))
is terminating w.r.t. U(R). But it is easy to see that F(g(b)) is not terminating w.r.t. U(R).

Since requiring just R′ ⊆c R (or even P ′ ⊆ P ∧ R′ = R) does not suffice to ensure
soundness of lift(Proc) we demand a slightly stronger property than soundness.

I Definition 4.8. A processor Proc is chain-identifying iff whenever Proc(P,R) = (P ′,R′)
and there is some minimal infinite (P,R)-chain

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P t3σ3 →∗R · · ·

then R′ ⊆c R and there is some k such that

skσk →P′ tkσk →∗R′ sk+1σk+1 →P′ tk+1σk+1 →∗R′ sk+2σk+2 →P′ tk+2σk+2 →∗R′ · · ·

is an infinite (P ′,R′)-chain.

Chain-identifying processors ensure that every minimal infinite chain of (P,R) has an
infinite tail where R∗-steps can be replaced by R′∗-steps and all pairs are from P ′. Note
that every chain-identifying processor is sound. Moreover, several processors are indeed
chain-identifying. Some examples are the reduction pair processor, the dependency graph
processor, and all standard processors which just remove pairs and rules. The following
lemma shows that chain-identifying processors can be used as extended processors via lift.

I Lemma 4.9. 1. If Proc is sound, then lift0(Proc) is sound.
2. If Proc is chain-identifying then lift(Proc) is sound.

Proof. Let P, R, P ′, and R′ be given such that Proc(P,R) = (P ′,R′).
1. We assume that (P ′,R′, 0) is finite and have to show that (P,R, n) is finite. By

Lemma 4.5(1) and the assumption we know that (P ′,R′) is finite. Thus, also (P,R) is
finite using the soundness of Proc. By Lemma 4.5(2) we conclude finiteness of (P,R, n).

2. Here, we may assume that (P ′,R′, n) is finite and have to show that (P,R, n) is finite.
We show finiteness of (P,R, n) via contraposition. So, assume (P,R, n) is not finite.
This shows that there is an infinite (P,R)-chain

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P t3σ3 →∗R · · ·

Christian Sternagel and René Thiemann 341

such that for all i we have ∀m 6 n. SNUm(R)(unlabm(tiσi)). By choosing m = 0 we also
have SNR(tiσi) for all i. Hence, the chain is also a minimal infinite (P,R)-chain. Since
Proc is chain-identifying we know that R′ ⊆c R and there is some k such that

skσk →P′ tkσk →∗R′ sk+1σk+1 →P′ tk+1σk+1 →∗R′ sk+2σk+2 →P′ tk+2σk+2 →∗R′ · · ·

is an infinite (P ′,R′)-chain. We continue to prove that for every i and every m 6 n we
have SNUm(R′)(unlabm(tiσi)). This leads to the desired contradiction, since then we have
shown that (P ′,R′, n) is not finite.
To prove SNUm(R′)(unlabm(tiσi)) we first use minimality of the (P,R)-chain to conclude
SNUm(R)(unlabm(tiσi)). Then the result immediately follows since the rewrite relation of
Um(R′) is a subset of the rewrite relation of Um(R) by Lemma 3.17, 2 and 3. J

Using these results allowed us to develop the first certified proof of the TRS in Example 4.2.
We only had to change the given proof such that uncurrying [11] is used instead of the
A-transformation, since we have only formalized the former technique. The detailed proof is
provided in the IsaFoR/CeTA repository.6

However, unlike for TRSs, root-labeling is not directly supported as root-labeling on DP
problems [16, 17] is not a chain-identifying processor. Here again, root-labeling itself is not
the problem, but making sure that the fixed algebra is a model of R, which is again done
by closing under flat contexts. In the DP framework we need the auxiliary function block4,
given by the equations block4(f(~tn)) = f(4(~tn)) and block4(x) = x.

I Definition 4.10 (Flat Context Closure). Let (P,R) be a DP problem such that R is
left-linear and F is a superset of the signature of R combined with the non-root symbols of
P. Furthermore, let 4 be a function symbol not in F . Then the closure under flat contexts
of (P,R) is given by FCF (P,R) = (block4(P),FC{4}∪F (R)).

As the pairs of a DP problem are modified, we do not get soundness of lift(FCF) via
Lemma 4.9. Nevertheless, by using the definition of finiteness of extended DP problems and
providing a manual proof one can show that lift(FCF) is indeed sound.

5 Problems in Certification

We present three problems that arose when trying to certify proofs with semantic labeling.
The first problem for the certifier is that internally it only works on extended termina-

tion/DP problems, whereas in the provided proofs just TRSs and DP problems are given
without the additional numbers. However, this problem is fixed by computing the number
during certification. This is easy and seems to be a safe solution: the format for termination
proofs remains unchanged, and so far no termination proof was refused with the reason that
the internal computation of the number was wrong.

The second and third problem are concerned with how semantic labeling is applied, since
usually variations of Lemma 3.9 and Theorem 4.1 are used in termination provers.

The second problem occurs for TRSs as well as DP problems. The theory about semantic
labeling demands that Dec is added to the new TRS when using quasi-models. However,
termination provers typically reduce the set of rules and “optimize” semantic labeling by
only adding rules Dec′ such that →Dec ⊆ →+

Dec′ .

6 http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/raw-file/v1.16/
examples/secret_07_trs_4_top.proof.xml

RTA’11

http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/raw-file/v1.16/examples/secret_07_trs_4_top.proof.xml
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR/raw-file/v1.16/examples/secret_07_trs_4_top.proof.xml

342 Modular and Certified Semantic Labeling and Unlabeling

For example, if Lf = {0, 1, 2} and the order is the standard order on the naturals, then
Dec = {f2(x) → f1(x), f1(x) → f0(x), f2(x) → f0(x)}. However, the last rule is often
omitted since it can be simulated by the previous two rules. To certify these termination
proofs, we fist need to show that we may safely replace Dec by any Dec′ where→Dec ⊆ →+

Dec′ .
Moreover, we have to provide a certified algorithm which for a given TRS Dec′ and a given
order can ensure that the condition →Dec ⊆ →+

Dec′ is satisfied. Furthermore, the algorithm
should accept all Dec′ where the condition is satisfied.

The third problem only occurs when dealing with quasi-models in the DP framework.
Note that in standard DP problems the roots of P are special symbols (tuple symbols) which
do not occur in the remaining DP problem. However, when applying Theorem 4.1 as it is,
this invariant is destroyed since the decreasing rules for tuple symbols are added as new rules.
We illustrate the problem and two possible solutions in the following example.

I Example 5.1. Consider a DP problem (P,R) where F(s(x), a)→ F(x, b) ∈ P and b is not
defined in R. Then, the dependency graph estimation EDG [1] can detect that there is no
connection from the mentioned pair to itself. However, when performing labeling with a
quasi-model where s(x) is interpreted as min(x+ 1, 2) and where `F(x, y) = x then for the
mentioned pair we get all three rules {6, 8, 10} in the labeled pairs P ′ and the decreasing
rules for F are DecF = {7, 9, 11}.

6: F2(s(x), a) → F2(x, b)
7: F2(x, y) → F1(x, y)

8: F2(s(x), a) → F1(x, b)
9: F2(x, y) → F0(x, y)

10: F1(s(x), a) → F0(x, b)
11: F1(x, y) → F0(x, y)

Note that when adding DecF as new rules, then the EDG contains an edge from
F2(s(x), a) → F1(x, b) to all other pairs since F1 is defined in DecF. Hence, this is not
the preferred way to add decreasing rules: not even the decrease in the labels is recognized.

One solution is to add DecF as new pairs. Then one obtains a standard DP problem and
the decrease in the labels is reflected in the EDG. But there still is a path from F2(s(x), a)→
F2(x, b) to F1(s(x), a)→ F0(x, b) via the pair F2(x, y)→ F1(x, y), since the information that
the second argument of Fn is b is lost when passing the pair F2(x, y)→ F1(x, y).

To encounter this problem, there is another solution where DecF is not produced at all,
but where the labels of all tuple-symbols in right-hand sides of P ′ are decreased. In this
example, one would have to add the additional pair F2(s(x), a)→ F0(x, b) to P ′.

Hence, termination proofs might have used one of the two variants instead of Theorem 4.1.
Here, the first variant returns the problem (lab(P) ∪ DecF] , lab(R) ∪ DecF) and the second
variant returns (lab(P)≥, lab(R) ∪ DecF) where DecF] are the decreasing rules for all tuple
symbols, DecF are the decreasing rules for the remaining symbols, and lab(P)≥ = {s →
f`′(~t) | s→ f`(~t) ∈ lab(P), ` ≥Lf `′}.

To certify these termination proofs the problem was mainly in formalizing that these
variants of Theorem 4.1 are indeed sound.

I Theorem 5.2. Both variants of Theorem 4.1 are sound, provided that they are applied on
DP problems (P,R) where neither left- nor right-hand sides of P are variables and the roots
of P are distinguished tuple symbols which do not occur in the remaining DP problem.

We shortly describe the proof idea. The main problem is that we cannot w.l.o.g. restrict
the substitutions in a chain such that they do not contain tuple symbols [17]. Thus, we
may have to apply rules in DecF] also below the root, in order to simulate a reduction
tiσi →∗R si+1σi+1. The trick is to introduce a second set of labels and labeling functions for
the tuple symbols. The new labeling functions label all tuple symbols by the same element.

Christian Sternagel and René Thiemann 343

Hence, no decreasing rules are required for them (w.r.t. the second set of labeling functions)
and on all other symbols the labeling functions coincide.

Afterwards, we use a combined labeling of terms: The root of the term is labeled
according to the original function, and below the root it is labeled w.r.t. the second labeling
function. In this way no decreasing rules for the tuple symbols have to be applied below
the root and moreover, on all terms in the DP problem, the original and the combined
labeling produce the same result. Thus, we can transform a given (P,R)-chain into a
(lab(P) ∪ DecF] , lab(R) ∪ DecF)-chain. Theorem 5.2 easily follows.

To summarize, we discussed some problems which occurred when trying to certify existing
proofs which are mainly due to optimizations of the basic semantic labeling theorems. Of
course, we also need to check the model condition, whether the orders are weakly monotone
when using quasi-orders, etc. Whereas the general theorems about soundness of semantic
labeling have been formalized for arbitrary carriers, for the certification we currently only
support finite carriers. Then checking the required conditions is performed via enumerating
all possible assignments.

In total, our formalization of pure semantic labeling consists of 3300 lines of Isabelle,
where roughly half of it is about semantic labeling on generic algebras, and the other half
contains executable functions for the certifier using algebras over finite carriers and soundness
proofs for these functions. Moreover, the theory about the semantic labeling framework with
extended termination techniques, extended DP problems, etc., consists of another 1000 lines.

6 Experiments

To test the impact of our formalization we ran AProVE on the TPDB (version 8.0), considering
all 2795 TRSs. We used two different strategies which are similar to the strategy CERT that
was used during the 2010 termination competition in the certified termination category: –SL
is like CERT but with semantic labeling removed, and +SL is like CERT including all three
variants of semantic labeling that are supported by AProVE (root-labeling, semantic-labeling
on finite carriers with models and quasi-models).

We performed all our experiments on a machine with two 2.8GHz Quad-Core Intel Xeon
processors and 6GB of main memory. The following results where obtained using a 60
seconds timeout.

–SL +SL total

termination proofs 1137 1207 1227
nontermination proofs 225 218 227
total time (in minutes) 1186 1219
certification time (in minutes) 1 3

CeTA (version 1.17) certified all but two proofs. On one TRS, both –SL and +SL delivered
a faulty proof, caused by a bug in the LPO output of AProVE (which will be fixed soonish).

The results show that by using semantic labeling we obtain 90 new certified termination
proofs. This is an increase of nearly 8%. Note that +SL has not solved all TRSs where –SL
was successful. This is due to timing issues in the strategy.

7 Conclusion

During our formalization of semantic labeling we have detected that unlabeling is unsound
when using the current semantics of termination problems. We solved the problem by

RTA’11

344 Modular and Certified Semantic Labeling and Unlabeling

extending termination problems and the DP framework such that recursive labeling and
unlabeling are supported, as well as all other existing termination techniques. This framework
forms the semantic basis of our certifier CeTA which now fully supports semantic labeling.

Acknowledgments We thank Christian Kuknat and Carsten Fuhs for their support in
providing certifiable proofs with semantic labeling generated by AProVE.

References
1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theor. Comput.

Sci., 236(1-2):133–178, 2000.
2 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univ. Press, 1999.
3 F. Blanqui, W. Delobel, S. Coupet-Grimal, S. Hinderer, and A. Koprowski. CoLoR, a Coq

library on rewriting and termination. In WST, pages 69–73, 2006.
4 É. Contejean, A. Paskevich, X. Urbain, P. Courtieu, O. Pons, and J. Forest. A3PAT, an

approach for certified automated termination proofs. In PEPM, pages 63–72, 2010.
5 J. Endrullis. Jambox. Available at http://joerg.endrullis.de.
6 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination

of term rewriting. J. Autom. Reasoning, 40(2-3):195–220, 2008.
7 A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify

termination of left-linear term rewriting systems. Inf. Comput., 205(4):512–534, 2007.
8 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving

dependency pairs. J. Autom. Reasoning, 37(3):155–203, 2006.
9 J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination of

higher-order functions. In FroCoS, LNAI 3717, pages 216–231, 2005.
10 J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination proofs

in the dependency pair framework. In IJCAR, LNAI 4130, pages 281–286, 2006.
11 N. Hirokawa, A. Middeldorp, and H. Zankl. Uncurrying for termination. In LPAR, LNAI

5330, pages 667–681, 2008.
12 D. Hofbauer and J. Waldmann. Match-bounds for relative termination. In WST, 2010.
13 A. Koprowski. TPA: Termination proved automatically. In RTA, LNCS 4098, 2006.
14 M. Korp and A. Middeldorp. Match-bounds revisited. Inf. Comput., 207(11):1259–1283,

2009.
15 T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-

Order Logic. LNCS 2283. Springer, 2002.
16 C. Sternagel and A. Middeldorp. Root-labeling. In RTA, LNCS 5117, pages 336–350, 2008.
17 C. Sternagel and R. Thiemann. Signature extensions preserve termination. In CSL, LNCS

6247, pages 514–528, 2010.
18 R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In TPHOLs,

LNCS 5674, pages 452–468, 2009.
19 H. Zantema. Termination of term rewriting by semantic labelling. Fundam. Inform.,

24(1-2):89–105, 1995.
20 H. Zantema. Termination of string rewriting proved automatically. J. Autom. Reasoning,

34(2):105–139, 2005.

http://joerg.endrullis.de

Type Preservation as a Confluence Problem∗

Aaron Stump1, Garrin Kimmell1, and Roba El Haj Omar1

1 Computer Science
The University of Iowa
astump@acm.org, gkimmell@cs.uiowa.edu, roba-elhajomar@uiowa.edu

Abstract
This paper begins with recent work by Kuan, MacQueen, and Findler, which shows how standard
type systems, such as the simply typed lambda calculus, can be viewed as abstract reduction
systems operating on terms. The central idea is to think of the process of typing a term as
the computation of an abstract value for that term. The standard metatheoretic property of
type preservation can then be seen as a confluence problem involving the concrete and abstract
operational semantics, viewed as abstract reduction systems (ARSs).

In this paper, we build on the work of Kuan et al. by showing show how modern ARS
theory, in particular the theory of decreasing diagrams, can be used to establish type preservation
via confluence. We illustrate this idea through several examples of solving such problems using
decreasing diagrams. We also consider how automated tools for analysis of term-rewriting systems
can be applied in testing type preservation.1

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory

Keywords and phrases Term rewriting, Type Safety, Confluence

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.345

Category Regular Research Paper

1 Introduction

The central idea of this paper is to view typing as an abstract operational semantics, and
then study its interaction with concrete operational semantics using the theory of abstract
reduction systems (ARSs). This idea was already proposed by Kuan, MacQueen, and Findler
in 2007 [10]. They did not, however, use modern tools of term-rewriting theory in their
study. Ellison et al. also explored a similar rewriting approach to type inference, but again
without applying term-rewriting theory for the metatheory [7] (also [9]). In contrast, we
seek to apply powerful tools from term-rewriting theory to prove standard metatheoretic
properties of type systems.

Like Kuan et al., we view typing as abstract reduction, and consider types to be abstract
forms of the values produced by reduction. For example, the concrete term, λx : int.x
reduces to the abstract value int ⇒ int. Reduction is defined on mixed terms, which
contain both (standard) concrete terms, and partially abstract ones. We show that the
combined relation consisting of both abstract and concrete reduction is confluent, for typed
terms. Kuan et al. also claim this result, but their proof sketch appeals to the standard

∗ This work was partially supported by the U.S. National Science Foundation, contract CCF-0910510, as
part of the Trellys project.

1 An extended version of this paper, including proofs of Theorems 2.1 and 5.1, is available at http:
//www.cs.uiowa.edu/~astump/papers/rta11.pdf

© Aaron Stump and Garrin Kimmell and Roba El Haj Omar;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 345–360

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.345
http://www.cs.uiowa.edu/~astump/papers/rta11.pdf
http://www.cs.uiowa.edu/~astump/papers/rta11.pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

346 Type Preservation as a Confluence Problem

metatheoretic property of Type Preservation. In contrast, we prove confluence directly using
decreasing diagrams, and show how this then implies the standard metatheoretic property of
Type Preservation.

The contribution of this paper is to show how type preservation, cast as a confluence
problem, can be solved using the tools of abstract reduction systems and term-rewriting.
This provides an alternative proof method for establishing type preservation for programming
languages. Having alternative methods is, of course, valuable in its own right, but we will see
that the rewriting approach is qualitatively simpler than the traditional one, and arguably
more intuitive. This may enable shorter and simpler proofs of type preservation for other
systems, as we consider further in the Conclusion.

We begin (Section 2) by developing the approach in detail for a straightforward example,
namely call-by-value Simply Typed Lambda Calculus (STLC). We consider next several
variations on this, including extending STLC with a fixed-point combinator (Section 3),
adding polymorphism (Section 4), and implementing type inference (Section 5). Kuan et al.
also considered type inference, but did not make the connection which we identify, that type
inference from the rewriting perspective corresponds to narrowing, rather than rewriting.
These first systems we consider can all can be analyzed using a very simple labeling for the
decreasing diagrams argument. We conclude with a trickier example, namely simply typed
combinators with uniform syntax (i.e., no syntactic distinction between terms and types) in
Section 6. We show how automated term-rewriting tools can be used to partially automate
the proof of type preservation.

2 A Rewriting View of Simple Typing

This section demonstrates the proposed new approach, for the example of STLC. While
our focus in this paper is Type Preservation, we also consider the standard Progress and
Type Safety properties. For Progress, it is instructive to include reduction rules for some
selected constants (a and f below), so that there are stuck terms that should be ruled out
by the type system. Otherwise, in pure STLC, every closed normal form is a value, namely a
λ-abstraction. We see how to view a type-computation (also called type-synthesis) system
for STLC as an abstract operational semantics, and type preservation as a form of confluence
for the combination of the abstract and the standard concrete operational semantics. We
first recapitulate the standard approach to the definitions.

We use several standard notations in this paper. For an abstract reduction relation
→, we define →= as its reflexive closure, →+ as its transitive closure, and →∗ as its
reflexive-transitive closure.

2.1 Syntax and Semantics
The syntax for terms, types, and contexts is the following, where f and a are specific
constants, and x ranges over a countably infinite set of variables:

types T ::= A | T1 ⇒ T2
standard terms t ::= f | a | x | t1 t2 | λx : T.t
contexts Γ ::= · | Γ, x : T

We assume standard additional conventions and notations, such as [t/x]t′ for the capture-
avoiding substitution of t for x in t′, and E[t] for grafting a term into a context. Figure 1
defines a standard type system for STLC, which can be viewed as deterministically computing

Aaron Stump and Garrin Kimmell and Roba El Haj Omar 347

Γ(x) = T

Γ ` x : T Γ ` f : A⇒ A Γ ` a : A

Γ ` t1 : T2 ⇒ T1 Γ ` t2 : T2
Γ ` t1 t2 : T1

Γ, x : T1 ` t : T2
Γ ` λx : T1. t : T1 ⇒ T2

Figure 1 Type-computation rules for simply typed lambda calculus with selected constants

E[(λx : T. t) v] → E[[v/x]t]

E[f a] → E[a]

values v ::= λx : T.t | a | f
evaluation contexts E ::= ∗ | (E t) | (v E)

Figure 2 A call-by-value small-step operational semantics

a type T as output, given a term t and a typing context Γ as inputs. A standard small-step
call-by-value (CBV) operational semantics is defined using the rules of Figure 2.

As mentioned above, we are including constants so that the Progress theorem is not
trivial. These constants are a and f , with the reduction rule Ec[fa]→c Ec[a]. Using these
constants we can also construct stuck terms, such as ff , which we demonstrate are ill-typed
in the proof of Progress. An example concrete reduction is (with redexes underlined):

(λx : (A→ A).x (x a)) f →c f (f a) →c f a →c a

2.2 Basic Metatheory
The main theorem relating the reduction relation → and typing is Type Preservation,
which states:

(Γ ` t : T ∧ t → t′) ⇒ Γ ` t′ : T

The standard proof method is to proceed by induction on the structure of the typing
derivation, with case analysis on the reduction derivation (cf. Chapters 8 and 9 of [12]).
A separate induction is required to prove a substitution lemma, needed critically for type
preservation for β-reduction steps:

Γ ` t : T ∧ Γ, x : T ` t′ : T ′ ⇒ Γ ` [t/x]t′ : T ′

One also typically proves Progress:

(· ` t : T ∧ t 6→) ⇒ ∃v. t = v

Here, the notation t 6→ means ∀t′. ¬(t → t′); i.e., t is a normal form. Normal forms which
are not values are called stuck terms. An example is f f . Combining Type Preservation and
Progress allows us to prove Type Safety [19]. This property states that the normal forms
of closed well-typed terms are values, not stuck terms, and in our setting can be stated:

(· ` t : T ∧ t →∗ t′ 6→) ⇒ ∃v. t′ = v

This is proved by induction on the length of the reduction sequence from t to t′.

RTA’11

348 Type Preservation as a Confluence Problem

types T ::= A | T1 ⇒ T2
standard terms t ::= x | λx : T. t | t t′ | a | f
mixed terms m ::= x | λx : T.m | m m′ | a | f |

A | T ⇒ m

standard values v ::= λx : T.t | a | f
mixed values u ::= λx : T.m | T ⇒ m | A | a | f

Figure 3 Syntax for STLC using mixed terms

Ec[f a] →c Ec[a]
c(f-β)

Ec[(λx : T.m) u] →c Ec[[u/x]m]
c(β)

Ea[(T ⇒ m) T] →a Ea[m]
a(β)

Ea[λx : T.m] →a Ea[T ⇒ [T/x]m]
a(λ)

Ea[f] →a Ea[A⇒ A]
a(f)

Ea[a] →a Ea[A]
a(a)

mixed evaluation contexts Ec ::= ∗ | (Ec t) | (u Ec)
abstract evaluation contexts Ea ::= ∗ | (Ea m) | (m Ea) | λx : T.Ea | T ⇒ Ea

Figure 4 Abstract and concrete operational semantics for STLC

2.3 Typing as Abstract Operational Semantics
To view typing as an abstract form of reduction, we use mixed terms, defined in Figure 3.
Types like T1 ⇒ T2 will serve as abstractions of λ-abstractions. Figure 4 gives rules
for concrete (→c) and abstract (→a) reduction. We denote the union of these reduction
relations as →ca. The definition of abstract evaluation contexts makes abstract reduction
nondeterministic, as reduction is allowed anywhere inside a term. This is different from
the approach followed by Kuan et al., where abstract and concrete reduction are both
deterministic. Here is an example reduction using the abstract operational semantics:

λx : (A⇒ A). λy : A. (x (x y)) →a

λx : (A⇒ A). A ⇒ (x (x A)) →a

(A⇒ A) ⇒ A ⇒ ((A⇒ A) ((A⇒ A) A)) →a

(A⇒ A) ⇒ A ⇒ ((A⇒ A) A) →a

(A⇒ A) ⇒ A ⇒ A

The final result is a type T . Indeed, using the standard typing rules of Section 2.1, we
can prove that the starting term of this reduction has that type T , in the empty context.
Abstract reduction to a type plays the role of typing above.

If we look back at our standard typing rules (Figure 1), we can now see them as essentially
big-step abstract operational rules. Recall that big-step CBV operational semantics for
STLC is defined by:

t1 ⇓ λx : T.t′1 t2 ⇓ t′2 [t′2/x]t′1 ⇓ t′

t1 t2 ⇓ t′

Aaron Stump and Garrin Kimmell and Roba El Haj Omar 349

In our setting, this would be concrete big-step reduction, which we might denote ⇓c. The
abstract version of this rule, where we abstract λ-abstractions by arrow-types, is

t1 ⇓a T ⇒ T ′ t2 ⇓a T

t1 t2 ⇓a T ′

If we drop the typing context from the typing rule for applications (from Figure 1), we obtain
essentially the same rule.

The standard approach to proving type preservation relates a small-step concrete opera-
tional semantics with a big-step abstract operational semantics (i.e., the standard typing
relation). We find it both more elegant, and arguably more informative to relate abstract
and concrete small-step relations, as we will do in the next section.

I Theorem 2.1 (Relation with Standard Typing). For standard terms t, we have x1 :
T1, · · · , xn : Tn ` t : T iff [T1/x1, · · · , Tn/xn]t→∗a T .

See the companion technical report for the proof [14].

I Theorem 2.2 (Termination of Abstract Reduction). The relation →a is terminating.

Proof. Whenever m→a m
′, the following measure is strictly decreased from m to m′: the

number of occurrences of term constructs (listed in the definition of terms) which are not
also type constructs (listed in the definition of types) and which occur in the term. Term
constructs of STLC which are not also type constructs are constants, variables, λ-abstractions,
and applications. End proof.

2.4 Type Preservation as Confluence
The relation →ca is not confluent in general, as Kuan et al. note also in their setting. It is,
however, confluent if restricted to typable terms, which are mixed terms m such that m→∗a T
for some type T . We will make use here of the standard notion of confluence of an element
with respect to a binary relation →: m is confluent (with respect to →) iff for all m1 and
m2 such that m2 ←∗ m→∗ m1, there exists m̂ such that m1 →∗ m̂←∗ m2. In this section,
we prove the following result:

I Theorem 2.3 (Confluence of combined reduction). Every typable mixed term is confluent
with respect to the reduction relation →ca.

We obtain the following as an obvious corollary, noting that types T are in normal form (so
joinability of m′ and T becomes just reducibility of m′ to T):

I Theorem 2.4 (Type Preservation). If m→∗a T and m→∗c m′, then m′ →∗a T .

We can phrase this result already in terms of multistep concrete reduction, while as described
above, the standard approach to type preservation is stated first for single-step reduction,
and then extended inductively to multistep reduction. Theorem 2.4 can also be phrased in
terms of standard typing, using Theorem 2.1.

We prove Theorem 2.3 by a simple application of decreasing diagrams [17]. Recall that the
main result of the theory of decreasing diagrams is that if every local peak can be completed
to a locally decreasing diagram with respect to a fixed well-founded partial ordering on
labeled steps in the diagram, then the ARS is confluent. A locally decreasing diagram has
peak s1 ←α t→β s2 and valley of the form

s1 →∗gα→=
β→∗(gα)∪(gβ) t̂←

∗
(gα)∪(gβ)←

=
α←∗gβ s2

RTA’11

350 Type Preservation as a Confluence Problem

where gα denotes the set of labels strictly smaller in the fixed well-founded ordering than α,
and if A is a set of labels, then →A denotes the relation

⋃
α∈A →α.

For Theorem 2.3, we label every step m→c m
′ with c, and every step m→a m

′ with a,
using the label ordering a < c . We must prove that every local peak starting with a typable
term can be completed to a locally decreasing diagram. Since →c is deterministic (due to
the restrictions inherent in the definition of reduction contexts Ec), we must only consider
local peaks of the form m1 ←a m→a m2 (we will call these aa-peaks) and m1 ←a m→c m2
(ac-peaks). For the first, we have the following theorem:

I Theorem 2.5. The relation →a is confluent.

Proof. In fact, we can prove that→1 has the diamond property (i.e., (←a · →a) ⊆ (→a · ←a),
which is well-known to imply confluence). Suppose m →a m1 and m →a m2. No critical
overlap is possible between these steps, because none of the redexes in the a-rules of Figure 4
(such as (T ⇒ m) T in the a(β) rule) can critically overlap another such redex. If the
positions of the redexes in the terms are parallel, then (as usual) we can join m1 and m2
by applying to each the reduction required to obtain the other. Finally, we must consider
the case of non-critical overlap (where the position of one redex in m is a prefix of the other
position). We can also join m1 and m2 in this case by applying the reduction to mi which
was used in m→a m3−i, because abstract reduction cannot duplicate or delete an a-redex.
The only duplication of any subterm in the abstract reduction rules of Figure 4 is of the type
T in a(λ). The only deletion possible is of the type T in a(β). Since types cannot contain
redexes, there is no duplication or deletion of redexes. This means that if the position of the
first redex is a prefix of the second (say), then there is exactly one descendant (see Section
4.2 of [15]) of the second redex in m1, and this can be reduced in one step to join m1 with
the reduct of m2 obtained by reducing the first redex. So every aa-peak can be completed
with one joining step on each side of the diagram (and local decreasingness obviously holds).
This gives the diamond property and thus confluence for →a. J

We return now to the rest of the proof of Theorem 2.3, and consider the ac-peaks.
There are only two possibilities. First, we could have the a-redex at a position parallel to
the position of the c-redex. In this case, the diagram can be appropriately completed by
commuting the steps. Second we could have the a-redex inside a subterm of the c-redex.
There are four simple situations, and one somewhat more complex situation. The first two
simple situations are that the a-redex is inside m or inside mixed value u, respectively, where
the redex is (λx : T.m) u. In the first case, the peak is

Ec[(λx : T.m′) u] ←a Ec[(λx : T.m) u] →c Ec[[u/x]m]

The required valley is just:

Ec[(λx : T.m′) u] →c Ec[[u/x]m′] ←a Ec[[u/x]m]

The right joining step is justified because abstract reduction is closed under substitution.
The labels on the single joining sides are as required for local decreasingness. In the second
simple situation, the peak is:

Ec[(λx : T.m) u′] ←a Ec[(λx : T.m) u] →c Ec[[u/x]m]

The required valley is:

Ec[(λx : T.m) u′] →c Ec[[u′/x]m] ←∗a Ec[[u/x]m]

Aaron Stump and Garrin Kimmell and Roba El Haj Omar 351

Here, the labels on the right joining path are all less than the label on the right edge of the
peak, satisfying the requirement for local decreasingness. Note that the left joining step
would not be possible if we had phrased concrete reduction using just standard terms: we
need to apply the c(β) rule with mixed value u, which might not be a standard value. Also,
we require the following easily proved lemma (proof omitted), to conclude that contracting
the a-redex in u indeed results in a new value u′:

I Lemma 2.6. If u→∗a m then m is also a mixed value.

The second two simple situations involve f a. First:

Ea[(A⇒ A) a]←a Ea[f a]→c Ea[a]

The joining valley, which is again locally decreasing because its labels are less than c, is:

Ea[(A⇒ A) a]→a Ea[(A⇒ A) A]→a Ea[A]←a Ea[a]

Second:

Ea[f A]←a Ea[f a]→c Ea[a]

The joining valley is:

Ea[f A]→a Ea[(A⇒ A) A]→a Ea[A]←a Ea[a]

Finally, the more complicated case is shown in Figure 5. Since the term at the peak is
typable, we know that u →∗a T1. This is because abstract reduction cannot eliminate an
application from a term, except via a(β): no abstract reduction rule can erase a term. So we
know that u→∗a T1, or else the application displayed at the peak could not be eliminated by
abstract reduction.

Considering the diagram in Figure 5, we see that again, the labels in the joining steps are
all less than the label on the right edge of the peak. So the condition for local decreasingness
is satisfied. Note that the bottom-right joining step, from Ec[[u/x]m] to Ec[[T1/x]m] requires
nondeterminism of →a (and if x 6∈ Vars(m), is just an identity step). It would not hold if
abstract reduction were restricted to the abstract analog of call-by-value concrete reduction,
as done by Kuan et al. We have proved the following, which suffices by the theory of
decreasing diagrams to prove Confluence (Theorem 2.3):

I Lemma 2.7 (Local Decrease for Type Diagrams). Every local peak of →ac can be completed
to a locally decreasing diagram.

We can complete the basic metatheory for STLC by proving:

I Theorem 2.8 (Progress). If standard term t is closed, t →∗a T , and t 6→c, then t is a
concrete standard value.

Proof. The only possibility for a closed standard term that is a normal form of →c other
than a standard value is a stuck term Ec[d t], where t is a c-normal form and either d ≡ a, or
else d ≡ f and t 6≡ a. Let d t be the smallest such stuck term in Ec[d t]. The term Ec[d t] has
an a-normal form (by Theorem 2.2), which must contain a descendant of d t. This is because,
as already noted, our abstract reduction rules drop an expression only if it is a type (rule
a(β)). Also, abstract reduction cannot contract a descendant of f t itself, which we argue
by cases on the form of f t (call this term t̂). If t̂ ≡ a t, then for some m, t̂ a-normalizes to

RTA’11

352 Type Preservation as a Confluence Problem

Ec[(λx : T1.m) u]

Ec[(T1 ⇒ [T1/x]m) u] Ec[[u/x]m]
a c

Ec[(T1 ⇒ [T1/x]m) T1]

Ec[[T1/x]m]

since u→∗a T1

a *

since u→∗a T1
a *

a

Figure 5 Crucial locally decreasing diagram for STLC

A m, which is still a descendant of t̂. If t̂ ≡ f f , then t̂ a-normalizes to (A⇒ A) (A⇒ A)
(also still a descendant). If t̂ ≡ f λx : T.t, then t̂ a-normalizes to (A ⇒ A) (A ⇒ m) for
some m. This shows that a descendant of d t must still be contained in the a-normal form of
t ≡ Ec[d t], contradicting t→∗a T . J

We then obtain the final result as a direct corollary of Theorems 2.4 and 2.8.

I Theorem 2.9 (Type Safety). If standard term t is closed, t→∗a T , and t→∗c t′ 6→c, then t′
is a concrete value.

The development in this section compares favorably with the standard one, which requires
an induction proof for type preservation, another for the additionally required substitution
lemma, and a final one for Type Safety. In contrast, here all that was required was to analyze
ac-peaks for local decreasingness (the aa-peaks being easily joinable in one step) in order to
establish Type Preservation. That analysis is both more local and more informative, as it
gives a more direct insight into how the (small-step) process of abstracting a term to its type
relates to the small-step operational semantics.

3 STLC with a Fixed-Point Combinator

We may easily extend the results of the previous section to include a fixed-point combinator
fix. This is a standard example, which enables now possibly diverging concrete reductions.
The approach using decreasing diagrams easily adapts to this new situation. Figure 6 shows
the additions to the syntax of STLC. The proof of Termination of Abstract Reduction
(Theorem 2.2) goes through exactly as stated above, since fix is a term construct but not
a type construct, and our new abstract reduction for fix-terms again reduces the number
of occurrences of term constructs which are not type constructs. For Local Decrease for
Type Diagrams (Lemma 2.7), there is still no critical overlap between a-steps, and no
possibility of erasing or duplicating a redex, so →a still has the diamond property. The
simple ac-peaks are easily completed, similarly to the simple ones for STLC. We must then
just consider this new ac-peak:

Ec[(T ⇒ T) [T/f]m)←a Ec[fix f : T.m]→a Ec[[fix f : T.m/f]m]

Aaron Stump and Garrin Kimmell and Roba El Haj Omar 353

(standard) terms t ::= . . . | fix f : T. t
(mixed) terms m ::= . . . | fix f : T.m
abstract evaluation contexts Ea ::= . . . | fix f : T.Ea

Ec[fix f : T.m] →c Ec[[fix f : T.m/f]m] Ea[fix f : T.m] →a Ea[(T ⇒ T) [T/f]m]

Figure 6 Extending STLC with a fixed-point combinator

types T ::= . . . | α | ∀α.T
standard terms t ::= . . . | Λα.t | t@T
mixed terms m t ::= . . . | Λα.m | m@T | ∀α.m
standard values v ::= . . . | Λα.t
mixed values u ::= . . . | Λα.m | ∀α.m

Figure 7 Polymorphism syntactic extensions

This can be completed as follows:

L. Ec[(T ⇒ T) [T/f]m]→∗a Ec[(T ⇒ T) T]→a Ec[T]
R. Ec[[fix f : T.m/f]m]→∗a Ec[[((T ⇒ T) [T/f]m)/f]m]→∗a Ec[[T/f]m]→∗a Ec[T]

Here, several steps use [T/f]m→∗a T , which holds because the term at the peak is typable.
This diagram is again locally decreasing. We conclude Confluence (Theorem 2.3) as above.
There are no possible additional stuck terms, so Progress (Theorem 2.8) is trivially extended,
allowing us to conclude Type Safety (Theorem 2.9).

4 Adding Polymorphism

In this section, we extend STLC with System-F style polymorphism. Figures 7 and 8 show
the additional syntax, evaluation contexts, and reduction rules. At the term level, we add
syntax for type abstraction (Λ), type application (t@t), and type variables α. At the type
level, we add universally quantified types ∀α. T . As is standard practice, concrete reduction
now includes a β-like rule for eliminating type applications of type abstractions. The abstract
reduction relation has a similar rule for type applications of universal types, and also a rule
for computing a universal type from a type abstraction.

The argument for Termination of Abstraction Reduction (Theorem 2.2) is extended
easily, since the two new →a rules, a(Λ) and a(βT), again strictly decrease the number of
occurrences of terms which are not types. We can extend the proof of Local Decrease
for Type Diagrams (Lemma 2.7) by considering new →ac peaks. As before, these can be
separated into cc, aa, and ac cases. As with the STLC case, the →c relation is deterministic,
so there are no cc peaks. There are no critical overlaps between →a steps, and again no
possibility to erase or duplicate a redex. So we maintain the diamond property for aa-peaks.
A c-redex of the form (Λx. t)@T gives rise to a possible ac-peak, where a-reduction occurs
under the Λ:

Ec[(Λα.m′)@T] ←a Ec[(Λα.m)@T]→c Ec[[T/α]m]

RTA’11

354 Type Preservation as a Confluence Problem

Ec[(Λα.m)@T] →c Ec[[T/α]m]
c(βT)

Ea[(∀α.m)@T] →a Ea[[T/α]m]
a(βT)

Ea[Λα.t] →a Ea[∀α.t]
a(Λ)

mixed evaluation contexts Ec ::= . . . | (Ec @ T) | (u @ Ec)
abstract evaluation contexts Ea ::= . . . | (Ea m) | ((∀α.m)@ Ea)

Figure 8 Polymorphism operational semantics extensions

As with the STLC, a-reduction is closed under substitution, so this peak can be completed
as shown:

Ec[(Λα.m′)@T] →c Ec[[T/α]m′]←a Ec[[T/α]m]

The grammar for the polymorphic language requires that all type-level applications contain
a proper type T in the argument position, so there does not exist a ac-peak analagous to the
STLC ac-peak where an a-step occurs in the argument subterm of a c-redex. There is only
one critical overlap, due to the a(Λ) and c(βT) rules,

Ec[(∀α.m)@T]←a Ec[(Λα.m)@T]→c Ec[[T/α]m]

This can be completed with a single c-reduction:

Ec[(∀α.m)@T]→c Ec[[T/α]m]←=
c Ec[[T/α]m]

This completes the proof for Local Decrease of Type Diagrams.
Finally, the proof of Progress for STLC is extended by considering a few new stuck

terms. These are terms of the form a@T and f@T , which reduce to non-type a-normal forms
A@T and (A⇒ A)@T , respectively, contradicting Progress’s assumption of typability. Also,
we could have a Λα.m or f Λα.m, but these reduce respectively to non-type a-normal forms
A ∀α.m′ and (A ⇒ A) ∀α.m′, for some m′. We again conclude Type Safety.

5 Type Inference for STLC

We can modify STLC reduction rules to allow us to infer, rather than check, the type of
STLC terms where type annotations are omitted for λ-bound variables. Inferring simple
types is a central operation in ML-style type inference. The central idea is to base abstract
reduction on narrowing, rather than just rewriting. Our focus in this paper is the use of
confluence to prove type safety, and not necessarily the efficient implementations of the
resulting reduction system. Nevertheless, we believe that abstract reduction systems can
serve as the basis for efficient implementation, as demonstrated by Kuan [11] for similar
reduction systems.

Figure 9 shows the grammar of STLC-inf. In this language, λ-bound variables do not
have type annotations, as they will be inferred. The syntax of types now includes type
variables αi, which may be instantiated by narrowing.

Using narrowing, we can define the abstract reduction system shown in Figure 9 to infer
the types of terms. In the a(β) rule, we calculate the most general unifier of the function

Aaron Stump and Garrin Kimmell and Roba El Haj Omar 355

types T ::= T ⇒ T | αi | A
standard terms t ::= x | t t′ | λx.t | a | f
mixed terms m ::= x | m m′ | λx.m | a | f | T ⇒ m| A | αi
standard values v ::= a | f | λx.t
mixed values u ::= a | f | λx.m | T ⇒ u | A
mixed evaluation contexts Ec ::= ∗ | (Ec m) | (u Ec)
abstract evaluation contexts Ea ::= ∗ | (Ea m) | (m Ea) | T ⇒ Ea | αi Ea

Ec[(λx.m)u] →c Ec[[u/x]m]
c(β)

αi /∈ FV (Ea[λx.m])
Ea[λx.m] →a Ea[αi ⇒ [αi/x]m]

a(λ)

σ is mgu(T1, T2)
Ea[(T1 ⇒ m)T2] →a σ(Ea[m])

a(β)
Ea[f]→a Ea[A⇒ A]

a(f)

αj /∈ FV (Ea[αi T])
Ea[αi T]→a [(T ⇒ αj)/αi](Ea[αj])

a(gen)
Ea[a]→a Ea[A]

a(a)

ρ is a permutation of type variables
t→a ρ t

a(rename)

Figure 9 Type Inference Syntax and Semantics

type’s domain and the argument, and apply it to the entire term, including the evaluation
context. This contrasts with the rules we have seen in previous systems presented in this
paper, where substitutions are applied only to the focus of the evaluation context. We
assume for all rules that introduce new type variables that they do so following a fixed order.
We include the rule a(rename) to avoid non-confluence due to different choices of new type
variables in the rules a(gen) and a(λ).

The following theorem relates STLC-inf typing to STLC typing. The erasure of an STLC
term, |t|, drops type annotations from λ bindings, producing an STLC-inf term.

I Theorem 5.1 (Relation with STLC Typing). If t→∗a T , where T contains free type variables
α1, ..., αn, then for all types T1, ...Tn, there exists a term t′ in STLC such that t′ →∗a
[T1/α1, ...Tn/αn]T in STLC and |t′| = t.

The complete proof can be found in the Appendix of the expanded technical report.
We extend the metatheoretic results to STLC-inf as follows. We no longer have Ter-

mination of Abstract Reduction, due to a(rename). This does not impact subsequent
results, as aa-peaks are still joinable in one step. The ac-peak depicted in Figure 5 is adapted
to account for the inference of types for λ-bound variables, as shown in Figure 10. The
completion of the a reduction relies on the assumption that the generated type variable α is
not free in the original term.

Because the a(β) rule uses narrowing to compute λ-bound variable types, it is possible to
generate aa-peaks when a polymorphic function is used at multiple monotypes. Consider the
following reduction resulting in a mixed term:

(λg.λx.λy.λh.h (g x) (g y)) (λw.w) f a →+
a αh(αg(A⇒ A))(αgA)

We can reduce this latter term to the following distinct stuck terms, depending on which

RTA’11

356 Type Preservation as a Confluence Problem

Ec[(λx.m) u]

Ec[[u/x]m]

c

Ec[[T/x]m]

since u→a T

a

Ec[(α⇒ [α/x]m) u]

a

Ec[(α⇒ [α/x]m) T]

since u→a T
a

[T/α]Ec[[α/x]m]
a

since α /∈ FV (Ec[(λx.m)u])
a

Figure 10 Crucial locally decreasing diagram for STLC-inf

mixed terms t ::= S〈t1, t2, t3〉 | K〈t1, t2〉 | t1 t2 | t1 ⇒ t2 | A | kind(t1, t2)
mixed values u ::= S〈t1, t2, t3〉 | K〈t1, t2〉 | A | t1 ⇒ t2
concrete evaluation contexts Ec ::= ∗ | Ec t | u Ec

Figure 11 Uniform-STLC language syntax and evaluation contexts

application of αg we contract with the a(gen) rule first:

αh ((A⇒ αj) (A⇒ A)) αj αh αj (((A⇒ A) ⇒ αj) A)

But we are proving Confluence only for typeable terms t →∗a T . So such peaks can be
disregarded. We conclude Confluence and then Type Preservation as above. The proof
of Progress is adapted directly from STLC, as the changes in STLC-inf do not essentially
affect the form of stuck terms. So we can conclude Type Safety.

6 Simply Typed Combinators with Uniform Syntax

In this section, we consider a language, which we call Uniform-STC, that does not distinguish
terms and types syntactically. Advanced type systems like Pure Type Systems must often
rely solely on the typing rules to distinguish terms and types (and kinds, superkinds, etc.) [4].
In Uniform-STC, we explore issues that arise in applying the rewriting approach to more
advanced type systems. We must now implement kinding (i.e., type checking of types) as part
the abstract reduction relation. We adopt a combinatory formulation so that the abstract
reduction relation can be described by a first-order term-rewriting system.

Figure 11 shows the syntax for the Uniform-STC language. There is a single syntactic
category t for mixed terms and types, which include a base type A and simple function types.
S〈t1, t2, t3〉 and K〈t1, t2〉 are the usual combinators, indexed by terms which determine their

Aaron Stump and Garrin Kimmell and Roba El Haj Omar 357

c(β-S). Ec[S〈t1, t2, t3〉 u u′ u′′]→c Ec[u u′′ (u′ u′′)]

c(β-K). Ec[K〈t1, t2〉 u u′]→c Ec[u]

a(S). S〈t1, t2, t3〉 →a kind(t1, kind(t2, kind(t3, (t1⇒t2⇒t3)⇒(t1⇒t2)⇒(t1⇒t3))))
a(K). K〈t1, t2〉 →a kind(t1, kind(t2, (t1 ⇒ t2 ⇒ t1)))
a(β). (t1 ⇒ t2) t1 →a kind(t1, t2)
a(k-⇒). kind((t1 ⇒ t2), t)→a kind(t1, kind(t2, t))
a(k-A). kind(A, t)→a t

Figure 12 Concrete and abstract reduction rules

simple types. The kind construct for terms is used to implement kinding. The rules for
concrete and abstract reduction are given in Figure 12. The concrete rules are just the
standard ones for call-by-value reduction of combinator terms. For abstraction reduction, we
are using first-order term-rewriting rules (unlike for previous systems).

For STLC (Section 2), abstract β-redexes have the form (T ⇒ t) T . For Uniform-STC,
since there is no syntactic distinction between terms and types, abstract β-redexes take the
form (t1 ⇒ t2) t1, and we must use kinding to ensure that t1 is a type. This is why the
a(β) rule introduces a kind-term. We also enforce kinding when abstracting simply typed
combinators S〈t1, t2, t3〉 and K〈t1, t2〉 to their types. The rules for kind-terms (a(k-⇒) and
a(k-A)) make sure that the first term is a type, and then reduce to the second term.

Following our general procedure, we wish to show that every local peak at a typable term
can be completed to a locally decreasing diagram. Here, we define typability by value u to
mean abstract reduction to u where u is kindable, which we define as kind(u,A)→∗a A. This
definition avoids the need to define types syntactically.

Abstract reduction for Uniform-STC does not have the diamond property, non-left-linear
rule a(β), where there could indeed be redexes in the expressions matching the repeated
variable t1. Fortunately, abstract reduction can be automatically analyzed for termination:
Aprove reports that it can be shown terminating using a recursive path ordering [8]. This
means that we can use van Oostrom’s source-labeling heuristic for a-steps [18]. We label
steps as follows:

label(m→c m
′) = c label(m→a m

′) = (a,m)

Steps are then ordered by the relation � defined by:

∀m.c � (m, a) ∀m,m′.m→+
a m

′ ⇔ (m, a) � (m′, a)

The abstract reduction rules are non-overlapping. The aa-peaks which occur can all be joined
using either one a-step on either side as for STLC, or else using additional balancing steps if
one of the rules applied is a(β). In the latter case, the diagram is still decreasing due to the
termination of abstract reduction.

But we can actually use even a simpler argument for aa-peaks. The automated confluence
prover ACP reports that the abstract reduction relation is confluent [2]. So by completeness
of decreasing diagrams for countable relations (recalled in [18] from van Oostrom’s PhD
thesis), there must exist a labeling of abstract reduction steps that allows all aa-peaks to

RTA’11

358 Type Preservation as a Confluence Problem

be completed to locally decreasing diagrams. We can then extend this labeling to include c
(labeling c-steps), with c bigger in the extended ordering than all the labels of a-steps.

With this ordering (or the source-labeling), we then have the following locally decreasing
diagram (the one for c(β-S) is similar and omitted), where t̂ is (t1 ⇒ t2 ⇒ t1) and u is
kind(t1, kind(t2, ∗)):

P. Ec[u[(t̂ t t′)]]←a Ec[(K〈t1, t2〉 t t′)]→a Ec[t]
L. Ec[u[(t̂ t t′)]]→∗a Ec[u[(t̂ t1 t′′)]]→a Ec[u[((t2 ⇒ t1) t′′)]]→∗a

Ec[u[((t2 ⇒ t1) t2)]]→a Ec[kind(t1, kind(t2, t1))]→∗a Ec[t1]
R. Ec[t]→∗a Ec[t1]

The →∗a-steps are justified because the peak term (shown on line (P)) is assumed to be
typable. By confluence of abstract reduction, this implies that the sources of all the left
steps are also typable. For each →∗a-step, since abstract reduction cannot drop redexes
(as all rules are non-erasing), we argue as for STLC that a descendant of the appropriate
displayed kind-term or application must eventually be contracted, as otherwise, a stuck
descendant of such would remain in the final term. Kindable terms cannot contain stuck
applications or stuck kind-terms, because our abstract reduction rules are non-erasing. And
contraction of those displayed kind-terms or applications requires the reductions used for
the →∗a-steps, which are sufficient to complete the diagram. The diagram is again locally
decreasing because the c-step from the peak is greater than all the other steps in the diagram.
We thus have Confluence of ac-reduction for typable terms, and the following statement of
type preservation (relying on our definition above of typability):

I Theorem 6.1 (Type Preservation). If t has type t1 and t→c t
′, then t′ also has type t1.

As an aside, note that a natural modification of this problem is out of the range of ACP,
version 0.20. Suppose we are trying to group kind-checking terms so that we can avoid
duplicate kind checks for the same term. For this, we may wish to permute kind-terms, and
pull them out of other term constructs. The following rules implement this idea, and can be
neither proved confluent nor disproved by ACP, version 0.20. Just the first seven rules are
also unsolvable by ACP.

(VAR a b c A B C D)
(RULES

S(A,B,C) -> kind(A,kind(B,kind(C,
arrow(arrow(arrow(A,arrow(B,C)),arrow(A,B)),arrow(A,C)))))

K(A,B) -> kind(A,kind(B,arrow(A,arrow(B,A))))
app(arrow(A,b),A) -> kind(A,b)
kind(base,a) -> a
kind(arrow(A,B),a) -> kind(A, kind(B, a))
kind(A,kind(A,a)) -> kind(A,a)
kind(A,kind(B,a)) -> kind(B,kind(A,a))
app(kind(A,b),c) -> kind(A,app(b,c))
app(c,kind(A,b)) -> kind(A,app(c,b))
arrow(kind(A,b),c) -> kind(A,arrow(b,c))
arrow(c,kind(A,b)) -> kind(A,arrow(c,b))
kind(kind(a,b),c) -> kind(a,kind(b,c))

)

7 Conclusion

We have seen how to use decreasing diagrams to establish confluence of a reduction relation
combining concrete reduction (the standard operational semantics) with abstract reduction,

Aaron Stump and Garrin Kimmell and Roba El Haj Omar 359

which can be thought of as a small-step typing relation. Type Preservation is then an
immediate corollary of confluence. We have applied this to several example type systems.
We highlight that we are able to cast type inference as a form of narrowing, and that for
first-order systems, we can apply termination and confluence checkers to automate part of
the proof of type preservation.

For future work, the approach should be applied to more advanced type systems. De-
pendent type systems pose a particular challenge, because from the point of view of abstract
reduction, Π-bound variables must play a dual role. When computing a dependent function
type Πx : T. T ′ from an abstraction λx : T.t, we may need to abstract x to T , as for STLC;
but we may also need to leave it unabstracted, since with dependent types, x is allowed to
appear in the range type T ′. We conjecture that this can be accommodated by substituting
a pair (x, T) for x in the body of the λ-abstraction, and then choosing either the term or
type part of the pair depending on how the pair is used.

It would be interesting to try to use the rewriting method to automate type preservation
proofs completely. While the Programming Languages community has invested substantial
effort in recent years on computer-checked proofs of properties like Type Safety for program-
ming languages (initiated particularly by the POPLmark Challenge [3]), there is relatively
little work on fully automatic proofs of type preservation (an example is [13]). The rewriting
approach could contribute to filling that gap.

Our longer term goal is to use this approach to design and analyze type systems for
symbolic simulation. In program verification tools like Pex and KeY, symbolic simulation
is a central component [5, 16]. But these systems do not seek to prove that their symbolic-
simulation algorithms are correct. Indeed, the authors of the KeY system argue against
expending the effort to do this [6]. The rewriting approach promises to make it easier to
relate symbolic simulation, viewed as an abstract reduction relation, with the small-step
operational semantics.

Acknowledgments. We thank the anonymous RTA 2011 reviewers for their helpful
comments, which have improved this paper.

References
1 S. Abramsky, D. Gabbay, and T. Maibaum, editors. Handbook of Logic in Computer Science.

Oxford University Press, 1992.
2 T. Aoto, J. Yoshida, and Y. Toyama. Proving Confluence of Term Rewriting Systems

Automatically. In R. Treinen, editor, Rewriting Techniques and Applications (RTA), pages
93–102, 2009.

3 B. Aydemir, A. Bohannon, M. Fairbairn, J. Foster, B. Pierce, P. Sewell, D. Vytiniotis,
G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory for the masses: The
POPLmark Challenge. In Proceedings of the Eighteenth International Conference on The-
orem Proving in Higher Order Logics (TPHOLs 2005), 2005.

4 H. Barendregt. Lambda Calculi with Types, pages 117–309. Volume 2 of Abramsky et al.
[1], 1992.

5 B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented Software:
The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

6 B. Beckert and V. Klebanov. Must Program Verification Systems and Calculi be Verified?
In Proceedings, 3rd International Verification Workshop (VERIFY), Workshop at Federated
Logic Conferences (FLoC), Seattle, USA, pages 34–41, 2006.

7 C. Ellison, T. Şerbănuţă, and G. Roşu. A Rewriting Logic Approach to Type Inference.
In A. Corradini and U. Montanari, editors, Recent Trends in Algebraic Development Tech-
niques (WADT), pages 135–151, 2008.

RTA’11

360 Type Preservation as a Confluence Problem

8 J. Giesl, P. Schneider-Kamp, and R. Thiemann. Automatic Termination Proofs in the
Dependency Pair Framework. In U. Furbach and N. Shankar, editors, Automated Reasoning,
Third International Joint Conference (IJCAR), pages 281–286, 2006.

9 M. Hills and G. Rosu. A Rewriting Logic Semantics Approach to Modular Program Ana-
lysis. In C. Lynch, editor, Proceedings of the 21st International Conference on Rewriting
Techniques and Applications, RTA 2010, July 11-13, 2010, Edinburgh, Scotland, UK, pages
151–160, 2010.

10 G. Kuan, D. MacQueen, and R. Findler. A rewriting semantics for type inference. In
Proceedings of the 16th European conference on Programming (ESOP), pages 426–440.
Springer-Verlag, 2007.

11 George Kuan. Type checking and inference via reductions. In Matthias Felleisen,
Robert Bruce Findler, and Matthew Flatt, editors, Semantics Engineering with PLT Redex.
MIT Press, 2009.

12 B. Pierce. Types and Programming Languages. The MIT Press, 2002.
13 C. Schürmann and F. Pfenning. Automated Theorem Proving in a Simple Meta-Logic for

LF. In C. Kirchner and H. Kirchner, editors, 15th International Conference on Automated
Deduction (CADE), pages 286–300, 1998.

14 A. Stump, G. Kimmell, and R. El Haj Omar. Type Preservation as a Confluence Problem.
Companion report, available from first author’s home page.

15 TeReSe, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

16 N. Tillmann and W. Schulte. Parameterized Unit Tests. SIGSOFT Softw. Eng. Notes,
30:253–262, 2005.

17 V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer Science,
126(2):259–280, 1994.

18 V. van Oostrom. Confluence by Decreasing Diagrams, Converted. In A. Voronkov, editor,
Rewriting Techniques and Applications, pages 306–320, 2008.

19 A. Wright and M. Felleisen. A Syntactic Approach to Type Soundness. Information and
Computation, 115(1):38–94, 1994.

Left-linear Bounded TRSs are Inverse
Recognizability Preserving
Irène Durand and Marc Sylvestre

LaBRI, Université Bordeaux 1
351 Cours de la libération, F-33405 Talence cedex, France

Abstract
Bounded rewriting for linear term rewriting systems has been defined in (I. Durand, G. Sén-
izergues, M. Sylvestre. Termination of linear bounded term rewriting systems. Proceedings of
the 21st International Conference on Rewriting Techniques and Applications) as a restriction
of the usual notion of rewriting. We extend here this notion to the whole class of left-linear
term rewriting systems, and we show that bounded rewriting is effectively inverse-recognizability
preserving. The bounded class (BO) is, by definition, the set of left-linear systems for which
every derivation can be replaced by a bottom-up derivation. The class BO contains (strictly)
several classes of systems which were already known to be inverse-recognizability preserving: the
left-linear growing systems, and the inverse right-linear finite-path overlapping systems.

1998 ACM Subject Classification Primary: F.4.2, Secondary: F.3.2, F.4.1

Keywords and phrases Term Rewriting, Preservation of Recognizability, Rewriting Strategies

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.361

Category Regular Research Paper

1 Introduction

General framework. A term rewriting system (TRS) R is effectively recognizability preserving
(respectively inverse recognizability preserving) if for every recognizable set of terms T the
set [T](→∗R) = {s | ∃t ∈ T, t→∗R s} (resp. (→∗R)[T] = {s | ∃t ∈ T, s→∗R t}) is recognizable
and can be built. Many efforts have been made for finding subclasses of TRSs which are
(inverse) recognizability preserving. The identification of such subclasses is important and
has applications in equational reasoning, formal computation, automated deduction, and
verification. For example, the reachability problem which is central in these areas, particularly
in verification, is decidable for these classes of TRSs. The techniques used to prove reachability
are often based on the computation of [E](→∗R) for some set E, and are coming from the
Knuth and Bendix completion algorithm (see [14] for the seminal paper). An entire workshop
is devoted to the reachability problem: the Workshop on Reachability Problem (RP). Each
result of recognizability preservation yields also almost directly a new decidable call-by-need
class [4] and decidability results on confluence (see [1] or [7] for a survey) and joinability.
This notion has also been used to prove termination of systems for which none of the already
known termination techniques work [10]. Different techniques for proving termination have
been implemented in several softwares (Matchbox [24], AProVE [11], TORPA [25], CiME
[3]). Consequently, the seek of a class which preserves the recognizability is well motivated.
Many such classes have been defined by imposing syntactical restrictions on the rewrite rules
(e.g. growing TRSs [16, 12] and finite-path overlapping TRSs [20, 21]). Another way is to use
a strategy, i.e. restrictions on the derivations rather than on the rules, to ensure preservation
of recognizability. Various such strategies where studied in [8, 17, 19, 5, 6]. In this paper,

© Irène Durand and Marc Sylvestre;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 361–376

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.361
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

362 Left-linear Bounded TRSs are Inverse Recognizability Preserving

we extend the bounded rewriting for linear TRSs to left-linear TRSs that may have non
right-linear rules and we prove that this strategy is inverse recognizability preserving.
From linear TRSs to left-linear TRSs. Bounded rewriting for linear TRSs is essentially a new
version of bottom-up rewriting [5] that is easier to define and has better properties. The
reader may refer to [6] for more details on bounded rewriting for linear TRSs. Intuitively, for
a linear TRS R, a derivation is k-bounded (lbo(k)) if when a rule is applied, the parts of the
substitution located at a depth greater than k are not rewritten further in the derivation,
i.e. do not match the left-handside of a rule applied further. A linear TRS R is lbo(k) if
for any derivation s →∗R t there exists a lbo(k) derivation s k→∗R t. The class of linear
lbo(k) TRSs is denoted by LBO(k). One of the goals of this paper is to drop the right-linear
restriction and propose an extension of bounded rewriting to left-linear TRSs. This extension
cannot be the trivial one: even if nothing in the definition of LBO(k) TRSs requires the linear
condition, keeping this definition unchanged would define a class containing only linear TRSs
(see example 4.14).

To solve this problem, we introduce a binary symbol E and a set E of three rewrite
rules to handle this symbol: the introduction rule x → E(x, x), and two selection rules
E(x, y) → x and E(x, y) → y. Intuitively, E allows to store several descendants of the
same initial subterm. Let R be a left-linear TRS over a signature F . Roughly speaking,
a derivation in R∪ E is k-bounded if when a rule is applied, the parts of the substitution
located at a depth greater than k (without taking the E into consideration) are not rewritten
further in the derivation, i.e. do not match the left-handside of a rule of R applied further.
A derivation in s→∗R t is k-bounded convertible (boc(k)) if there exists a bo(k)-derivation
from s to t in R∪ E . Note that this definition does not constrain the application of the rules
of E . A TRS is bo(k) if every derivation is boc(k).

The class of bo(k) TRSs is denoted by BO(k). Let us see how we use the symbol E.
Suppose that f(a)→f(x)→g(x,x) g(a, a)→a→b g(a, b). The symbol E is used to apply the rule
a→ b before the rule f(x)→ g(x, x). First, we use E to create an envelop which contains a
and b: f(a)→x→E(x,x) f(E(a, a))→a→b f(E(a, b)). Then we can apply the rule f(x)→ g(x, x),
and use the selections rules to obtain g(a, b): f(E(a, b)) → g(E(a, b), E(a, b)) →E(x,y)→x
g(a, E(a, b)) →E(x,y)→y g(a, b). The introduction of the symbol E can be viewed as a
counterpart of the construction of the powerset automaton in the extension of Jacquemard’s
saturation method [12] by Nagaya and Toyama [16] (this saturation method is used to prove
that left-linear growing TRSs are inverse recognizability preserving).
Inverse recognizability preservation. In section 5, we prove that bounded rewriting for
left-linear TRSs is effectively inverse recognizability preserving. This result is obtained by
simulating bo(k)-derivations by a ground tree transducer. The idea of simulating bo(k)-
derivations is similar to the idea developed in [5] where bottom-up(k) derivations are simulated
using a ground TRS. This simulation yields directly to the inverse preservation result since
GTTs are effectively inverse recognizability preserving.
Strongly bounded systems. In section 6, we introduce a subclass of BO(k) called the strongly
bounded class (SBO(k)). The membership problem for SBO(k) is decidable whereas the
membership problem for BO(0) is undecidable. The class of strongly bounded TRSs contains
inverse right-linear finite-path overlapping TRSs [22] and left-linear growing TRSs [16]. Note
that a long version of this paper is available at: http://hal.archives-ouvertes.fr/
hal-00580528/fr/.

http://hal.archives-ouvertes.fr/hal-00580528/fr/
http://hal.archives-ouvertes.fr/hal-00580528/fr/

Irène Durand and Marc Sylvestre 363

2 Preliminaries

Given a set E, we denote by P(E) its powerset i.e. the set of all its subsets. Its cardinality is
denoted by Card(E). A finite word over an alphabet A is a map u : [0, `− 1]→ A, for some
` ∈ N. The integer ` is the length of the word u and is denoted by |u|. The set of words over A
is denoted by A∗ and endowed with the usual concatenation operation u, v ∈ A∗ 7→ u ·v ∈ A∗.
The empty word is denoted by ε.

Assume that the set A is ordered. We denote by �LexA the lexicographic order on the
set of words A∗. We may omit LexA when it is clear from the context. We assume the
reader familiar with terms and automata (see e.g. [2] or [23] for an introduction). We call
signature a set F of symbols with arity ar : F → N. The subset of symbols with arity m ∈ N
is denoted by Fm.

As usual, a finite set P ⊆ N∗ is called a tree-domain (or, domain, for short) iff for every
u ∈ N∗, i ∈ N (u · i ∈ P ⇒ u ∈ P) & (u · (i+1) ∈ P ⇒ u · i ∈ P). We call P ′ ⊆ P a subdomain
of P iff, P ′ is a domain and, for every u ∈ P, i ∈ N (u·i ∈ P ′ & u·(i+1) ∈ P)⇒ u·(i+1) ∈ P ′.

A (first-order) term on a signature F is a partial map t : N∗ → F whose domain is a
non-empty tree-domain and which respects the arity assignment. We denote by T (F ,V)
the set of first-order terms over the signature F ∪ V, where F is a signature and V is a
denumerable set of variables of arity 0.

The domain of t is also called its set of positions and denoted by Pos(t). The set of
variables of t is denoted by Var(t). A variable x is said to occur at depth n in t if there exists a
position u ∈ Pos(t) such that t(u) = x and |u| = n. The root symbol of t is denoted by root(t).
Given a set of symbols and variables A ⊆ F ∪V and a term t, the set of positions u ∈ Pos(t)
such that t(u) ∈ A is denoted by PosA(t) and the set of position u ∈ Pos(t) such that
t(u) /∈ A is denoted by Pos\A(t). Let X be either A or \A and u ∈ PosX(t). We denote by
PosX�u(t) (respectively PosX≺u(t)) the set of positions v ∈ PosX(t) such that v � u (resp.
v ≺ u) and by PosX�u(t) (respectively PosX�u(t)) the set of positions v ∈ PosX(t) such that
v � u (resp. v � u). When A = {f} for some f ∈ F ∪V we may denote Posf (t) (respectively
Pos\f (t)) instead of Pos{f}(t) (resp. Pos\{f}(t)). A substitution σ is a mapping from V into
T (F ,V). The substitution σ is naturally extended to a morphism σ : T (F ,V)→ T (F ,V),
where σ(f(t1, .., tn)) = f(σ(t1), . . . , σ(tn)), for each f ∈ Fn, ti ∈ T (F ,V). Substitutions will
often be used in postfix notation: tσ is the result of applying σ to the term t. The depth
of a term t is defined by dpt(t) := sup{Card(Pos�u(t)) | u ∈ Pos\V(t)}. This definition is
extended to substitutions dpt(σ) := max{dpt(xσ) | x ∈ V}. For a term t and a symbol f ∈ F ,
we define dpt\f (t) by: dpt\f (t) := sup{Card(Pos\f �u(t)) |u ∈ Pos\{f}∪V(t)}. This definition
is extended to substitutions dpt\f (σ) := max{dpt\f (xσ) | x ∈ V}. The set of leaves of t is the
set PosV∪F0(t) and is also denoted by Lv(t). For a variable x ∈ Var(t), the set of positions
Posx(t) is also denoted by Pos(t, x). Let w ∈ Lv(t). The branch containing w is the set of
positions u such that u � w.

Given a term t and u ∈ Pos(t) the subterm of t at u is denoted by t/u and defined by
Pos(t/u) = {w | uw ∈ Pos(t)} and ∀w ∈ Pos(t/u), t/u(w) = t(uw).

A term that does not contain twice the same variable is called linear. Given a linear term
t ∈ T (F ,V), x ∈ Var(t), we denote by pos(t, x) the position of x in t.

A term containing no variable is called ground. The set of ground terms is abbreviated
to T (F) or T whenever F is understood.

We denote by C[t1, . . . , tn]u1,...,un the term obtained from C[]u1,...,un by replacing, for
every i ∈ {1, . . . , n}, the symbol � at position ui by the term ti. Let t be a term, and
{u1, . . . , un} ⊂ Pos(t) be a set of incomparable positions given in lexicographic order. We

RTA’11

364 Left-linear Bounded TRSs are Inverse Recognizability Preserving

denote by t[]u1,...,um the context obtained from t by replacing each subterm t/ui at a position
ui by a leaf labeled by �.

A rewrite rule over the signature F is a pair l→ r of terms in T (F ,V).
We call l (resp. r) the left-handside (resp. right-handside) of the rule (lhs and rhs for

short). A rule is linear if both its left and right-handsides are linear. A rule is left-linear if
its left-handside is linear.

A term rewriting system (TRS for short) is a pair (F ,R) where F is a signature and R a
finite set of rewrite rules over the signature F . When F is clear from the context or contains
exactly the symbols of R, we may omit F and write simply R.

We denote by LHS(R) the set of lhs of R, and by RHS(R) the set of rhs of R.
Rewriting is defined as usual: for every s, t ∈ T (F), s →R t means that there exist

a position v ∈ Pos(s), a rule l → r ∈ R, and a substitution σ such that s = s[lσ]v and
t = s[rσ]v.

We denote by →+
R the transitive closure of →, by →0,1

R its reflexive closure, and by →∗R
its reflexive and transitive closure. We may omit R when it is clear from the context. We
say that there exists a derivation from s to t in R when s→∗R t. The length of a derivation
is the number of steps in this derivation. An n-step derivation from s to t is denoted by
s→n t. More generally, the notation defined in [13] will be used in proofs.

A TRS is linear (resp. left-linear) if each of its rules is linear (resp. left-linear). A TRS
R is growing [12] if every variable of a right-handside occurs at depth at most 1 in the
corresponding left-handside.

We shall consider finite bottom-up term (tree) automata [2] (which we abbreviate to
f.t.a.). An automaton A is given by a 4-tuple (F ,Q,Qf ,Γ) where F is a signature, Q is a
finite set of symbols of arity 0, called the set of states and such that Q ∩ F0 = ∅, Qf ⊆ Q is
the set of final states, Γ is the set of transitions. A transition has either the form q → r for
some q, r ∈ Q, or f(q1, . . . , qm)→ q for some m ≥ 0, f ∈ Fm, q1, . . . , qm ∈ Q. Note that we
can have rules of the form c→ q with c ∈ F0, and q ∈ Q. We shall also consider automaton
on a denumerable signature. Such an automaton is given by a 4-tuple (F ,Q,Qf ,Γ) where F
is a denumerable signature, Q is a finite set of symbols of arity 0, Qf ⊆ Q is the set of final
states, and Γ is an denumerable set of transitions.

The set of rules Γ can be viewed as a TRS over the signature F ∪ Q. We then denote
by →A the one-step rewriting relation generated by Γ. Given an automaton A, the set of
terms accepted by A is defined by: L(A) := {t ∈ T (F) | ∃q ∈ Qf , t→∗A q}. A set of terms T
is recognizable if there exists a term automaton A such that T = L(A). The automaton A is
called deterministic if there is no rule of the form q → r for some q, r ∈ Q and if for every
t ∈ T (F ∪ Q), q, q′ ∈ Q, (t → q ∈ Γ & t → q′ ∈ Γ) ⇒ (q = q′). The automaton A is called
complete if for every m ≥ 0, f ∈ Fm and m-tuple of states (q1, . . . , qm) ∈ Qm, there exists
q ∈ Q such that f(q1, . . . , qm)→ q ∈ Γ.

Ground tree transducers have been introduced in [15]. A ground tree transducer (GTT)
is a pair V := (A1,A2) of f.t.a. automata over a signature F . Let A1 = (F ,Q1, ∅,Γ1),
A2 = (F ,Q2, ∅,Γ2). The relation recognized by V is the set L(V) := {(t, t′) | t, t′ ∈
T (F),∃s ∈ T (F ∪ (Q1 ∩ Q2)), t →∗A1

s, t′ →∗A2
s}. A set T ⊆ T (F) × T (F) is said to

be recognizable by a GTT if there exists a GTT V such that T = L(V). The reflexive and
transitive closure of the relation L(V) is recognizable by a GTT (see e.g. chapter 3.2 of [2]).

A ground recognizable TRS (GRS) (F ,G) is a (possibly infinite) TRS of the form G =
{l→ r | i ∈ I, l ∈ Ri, r ∈ Ki}, where I is a finite set, Ri and Ki for all i ∈ I are recognizable
sets of terms over F . One can easily check that the relation →∗G is recognizable by a GTT.

Given a TRS R and a set of terms T , we define (→∗R)[T] := {s ∈ T (F) | ∃t ∈ T, s→∗R t}

Irène Durand and Marc Sylvestre 365

and [T](→∗R) := {s ∈ T (F) | ∃t ∈ T, t →∗R s}. A TRS R is effectively recognizability
preserving if for every recognizable T , [T](→∗R) is recognizable and can be built. A TRS
R is effectively inverse recognizability preserving if for every recognizable T , (→∗R)[T] is
recognizable and can be built.

We shall illustrate many of our definitions with the following left-linear TRS (F1,R1)
and the following complete deterministic automaton A1.

I Example 2.1. F1 = {a, b, f(), h(), g(,), i(,)} is a signature, {x, y} is a set of variables,
R1 = {a → b, f(x) → g(x, x), h(b) → b, g(h(x), y) → i(x, y)} is a set of rules, A1 =
(F ,QA1 , {qf},ΓA1) with QA1 = {qf , qa, qb q⊥}, ΓA1 = {a→ qa, b→ qb, h(qa)→ qa, h(qb)→
qb, h(q⊥) → q⊥, i(qa, qb) → qf} ∪{f(q) → q⊥ | q ∈ QA1} ∪ {g(q, q′) → q⊥ | q, q′ ∈ QA1}
∪{i(q, q′)→ q⊥ | q, q′ ∈ QA1 , (q, q′) 6= (qa, qb)} is a complete deterministic automaton. We
have:
L(A1) = {i(t1, t2) | t1 ∈ {a, h(a), . . . , h(h(. . . (a))), . . .}, t2 ∈ {b, h(b), . . . , h(h(. . . (b))), . . .}}
and
(→∗R1

)(L(A1)) = {i(t1, t2), g(h(t1), t2), f(h(t1)) | t1 ∈ {a, h(a), . . . , h(h(. . . (a))), . . .},
t2 ∈ {a, h(a), . . . , h(h(. . . (a))), . . .} ∪ {b, h(b), . . . , h(h(. . . (b))), . . .}}.

3 The TRS E

From now on, until the end of this paper, we denote by F a finite signature, and by R a
left-linear TRS over F . Let E /∈ F be a fresh symbol of arity 2.

I Definition 3.1. Let x, y ∈ V . The left-linear TRS E is the TRS over F ∪{E} with the rules

x→ E(x, x) (1) E(x, y)→ x and E(x, y)→ y (2)

Rule (1) is the introduction rule. Rules (2) are the selection rules. Note that the TRS R∪ E
is left-linear. This TRS will be used to define bounded rewriting (section 4) and has the
following property.

I Proposition 3.2. Let s, t ∈ T (F). We have s→∗R t iff s→∗R∪E t.

4 Bounded Rewriting

Roughly speaking, a derivation in R ∪ E is k-bounded (bo(k)) if when a rule is applied,
the parts of the substitution located at a depth greater than k (without taking the E into
consideration) do not match a left-handside of a rule of R applied further. To indicate which
positions are allowed to be rewritten further, we are going to apply a marking process. A mark
is an integer. A marked term t is just a term t where all the symbols are marked. To every
derivation s0 →R∪E . . .→R∪E sn, we associate a marked derivation s0 ◦→R∪E . . . ◦→R∪E sn
(i.e. a derivation where all terms are marked terms). This derivation starts on the term s0
which is obtained from s0 by setting all the marks to 0. Now, if we consider a marked term
sj in this derivation, a mark i on a symbol f in sj indicates that the maximal depth (again,
without taking the E into consideration) at which the symbol appears in a substitution
during the derivation s0 →∗R∪E sj is i. The derivation will be said bo(k) if the maximal mark
that appears on a lhs in the marked derivation s0 ◦→R∪E . . . ◦→R∪E sn is ≤ k. Formal
definitions are given in the next sections.

RTA’11

366 Left-linear Bounded TRSs are Inverse Recognizability Preserving

4.1 Marked Terms
We define the signature of marked symbols: FN := {f i | i ∈ N, f ∈ F}. The operation
m() returns the mark of a marked symbol: for f ∈ F , i ∈ N,m(f i) = i. We extend this
operation to the symbol E: m(E) = 0, and to variables: ∀x ∈ V,m(x) = 0. We define F≤k
by F≤k := {f i | i ∈ {0, . . . , k}, f ∈ F} and by F≥k the signature F≥k := {f i | i ≥ k, f ∈ F}.
Marked terms are elements of TM (V) := T (FN ∪ {E},V). The set of ground marked terms
is denoted by TM . The operation m extends to marked terms: if t ∈ V, m(t) = 0, otherwise,
m(t) = m(root(t)). We use mmax(t) to denote the maximal mark on t. We denote by ti
the term obtained by setting all the marks in t at a position u ∈ PosF (t) to i. We extend
this notation to sets of terms (Si := {si|s ∈ S}), and to substitutions (σi : x→ (xσ)i). For
every f ∈ F , we identify f0 and f ; it follows that T (F) ⊆ T (FN), and T (F ∪ {E}) ⊆ TM .
We usually denote by t (or t̂) a marked term such that t0 = t (where t ∈ T (FN ∪ {E},V)).
The same rule will apply to substitutions and contexts. For a set of terms T ⊆ T (F ,V), we
denote by TN the set of terms {t ∈ TM | t ∈ T}.

I Example 4.1. m(f3(E(a4, b1))) = 3,m(x) = 0,m(E(a1, b2)) = 0,mmax(f3(E(a4, b1))) =
4,mmax(E(a1, b2)) = 2, and if t = g3(a0, E(x, b2)), then t1 = g1(a1, E(x, b1)).

From now on and until the end of section 5, let us fix, a language T ⊆ T (F) recognized
by a complete deterministic automaton, A = (F ,QA,Qf,A,ΓA).

We start giving some technical definitions and lemmas.

The Automaton AP
I Definition 4.2. We denote by A the (infinite) automaton A := (FN,QA,Qf,A,ΓA), with:
ΓA = {f i(q1, . . . , qn)→ q | i ∈ N, (f(q1, . . . , qn)→ q) ∈ ΓA}.

Note that A is deterministic and complete over FN, and contains all the rules ci → q for
i ∈ N, c ∈ F0, (c→ q) ∈ ΓA.

I Lemma 4.3. Let t, t̂ ∈ T (FN), q ∈ QA,m > 0. If t→∗A q then t̂→∗A q.

I Definition 4.4. We define the (infinite) automaton AP := {FN ∪ {E},QP ,Qf,P ,ΓP}
built from A, where QP = P(QA), Qf,P = {{q} | q ∈ Qf,A}, ΓP = {E(S1, S2) → S1 ∪
S2 | S1, S2 ∈ QP} ∪ {f i(S1, . . . , Sn) → Sfi(S1,...,Sn) | i ∈ N, f ∈ Fn, S1, . . . , Sn ∈ QP} with
Sfi(S1,...,Sn) = {q ∈ QA | ∀j ∈ {1, . . . , n},∃sj ∈ Sj s.t. f i(s1, . . . , sn)→ q ∈ ΓA}

Note that subsets rules are obtained like in a classical determinization procedure AP contains
all the rules ci → {q} for c ∈ F0, i ∈ N, c → q ∈ ΓA, and that AP is deterministic and
complete over FN ∪ {E}. The language recognized by AP is L(AP) = TN. For every term
t ∈ T (FN ∪ {E} ∪ QP), there is a unique state Q ∈ QP such that t →AP Q. The state Q
is the normal form associated to t and is denoted by nfAP (t). Since AP erases the marks
nfAP (t) = nfAP (t). We extend the operation m to T (FN∪QP ∪{E},V) by setting m(S) = 0.
For a term t ∈ T (FN ∪QP ∪ {E},V), and an integer i we denote by ti the term obtained by
setting all the marks in t at a position u ∈ PosF (t) to i, and we usually denote by t or t̂ a
term such that t0 = t (where t ∈ T (F ∪QP ∪ {E},V)).

I Example 4.5. Let us consider the automaton A1 from example 2.1. The following rules
belong to the set of rules of A1P : E({qa}, {qb}) → {qa, qb}, a3 → {qa}, h2({qa, q⊥}) →
{qa, q⊥}, i1({qa, qb}, {qb})→ {q⊥, qf},

E({qa, qf}, {qb, qa})→ {qa, qb, qf}, g4({qa}, {qb})→ {q⊥}.

Irène Durand and Marc Sylvestre 367

I Definition 4.6. We denote by A+
P the automaton (FN ∪ {E},QP ,Qf,P ,Γ+

P), where Γ+
P =

ΓP ∪ {S → S′ | S ∈ QP , S′ ⊂ S}.

The language recognized by the automaton A+
P is L(A+

P) = (→∗{E(x,y)→x,E(x,y)→y})[TN].

I Definition 4.7. For an automaton C = (FN ∪ {E},QC ,QC,f ,ΓC) and for every n ∈ N, we
denote by C≤n (respectively C≥n) the (finite) automaton C≤n := (F≤n∪{E},QC ,QC,f ,ΓC≤n)
(resp. C≥n := (F≥n ∪ {E},QC ,QC,f ,ΓC≥n)) where ΓC≤n := {l → r ∈ ΓC | l, r ∈ T (F≤n ∪
{E} ∪ QC)} (resp. ΓC≥n := {l→ r ∈ ΓC | l, r ∈ T (F≥n ∪ {E} ∪ QC)}).

The automaton A+
P
≥k+1 will be used to define the top of a marked term, i.e. the top part of

the term that could be used in a k-bounded derivation (see definition 5.3 given further). The
automaton A+

P
≤k will be a part of the GRS G used to simulate k-bounded derivations (see

definition 5.14).

I Definition 4.8. For all linear terms t ∈ T (FN ∪ {E} ∪ QP ,V), for all n ∈ N, we define
t� n as the unique marked term such that (t� n)0 = t, and, ∀u ∈ PosF (t), m(t� n/u) =
max(m(t/u),Card(Pos\E≺u(t)) + n)

4.2 Marked Rewriting
From now on and until the end of this paper, let us fix an integer k > 0. We introduce here
the rewrite relation ◦→ between marked terms.

I Definition 4.9 (Marked rewriting step). A ground marked term s ∈ TM rewrites to a ground
marked term t ∈ TM in R∪ E if there exist a rule l → r ∈ R ∪ E , a position v ∈ Pos(s), a
marked term l, and a marked substitution σ such that : s = s[lσ]v, t = s[r(σ � j)]v, where:
j = 0, if l→ r ∈ E , and j = 1, if l→ r ∈ R. We then just write s ◦→R∪E t.

We may omit R∪E when it is clear from the context. We use two different marking (j = 0 or
j = 1) depending on the rule applied only to properly extend the notion of weakly bottom-up
for linear TRSs (defined in [5]) to left-linear TRSs (see section 6). This notion is helpful to
prove that several already known classes of TRSs belong to the class of bounded TRSs. Let
us give some properties of marked derivations.

Associated Marked Derivation

Every derivation
d : s0 = s0[l0σ0]v0 →R∪E s0[r0σ0]v0 = s1 →R∪E . . .→R∪E sn−1[rn−1σn−1]vn−1 = sn,

is mapped to a marked derivation d called the marked derivation associated to d
d : s0 = s0[l0σ0]v0 ◦→R∪E s0[r0(σ0 � i0)]v0 = s1 ◦→R∪E
. . . ◦→R∪E sn−1[rn−1(σn−1 � in−1)]vn−1 = sn
where s0 = s0. Note that this map is unique since the position vj , the rule (lj , rj), and sj
completely determine sj+1.

4.3 Bounded Derivations and Bounded TRSs
I Definition 4.10 (Bounded derivations). A marked rewriting step s = s[lσ]v ◦→R∪E t =
s[r(σ � j)]v is k-bounded (bo(k)) if l → r ∈ E or if l → r ∈ R and the following assertion
holds: (l /∈ V ⇒ mmax(l) ≤ k) and (l ∈ V ⇒ sup({m(s/u) | u ≺ v}) ≤ k).
A marked derivation in R ∪ E is bo(k) if all its rewriting steps are bo(k). A derivation in
R∪ E is bo(k) if the associated marked derivation is bo(k). A derivation s→∗R t, s, t ∈ T (F)

RTA’11

368 Left-linear Bounded TRSs are Inverse Recognizability Preserving

is k-bounded convertible (boc(k)) if there exists a bo(k)-derivation s→∗R∪E t in R∪ E . The
left-linear TRS R is k-bounded if every derivation in R is boc(k). We denote by BO(k) the
class of k-bounded TRS and by BO the class

⋃
k∈N BO(k).

I Example 4.11. Let R1 be the TRS of example 2.1, and let
d : s0 = f(h(a)) →f(x)→g(x,x) s1 = g(h(a), h(a)) →a→b s2 = g(h(a), h(b)) →g(h(x),y)→i(x,y)
s3 = i(a, h(b))→h(b)→b s4 = i(a, b) be a derivation in R1. Let us prove that this derivation is
boc(1), i.e. that there is a derivation d′ in R1 ∪ E which is bo(1).

Let us take d′ = d. We are going to prove that this derivation is bo(2) but not bo(1), i.e.
that in the associated marked derivation, the maximal mark that appears on a lhs is 2
By definition, d starts on the term f0(h0(a0)). To build the associated marked derivation,
we just apply the marking process exposed in section 4.2. We obtain the following
derivation d : s0 = f0(h0(a0)) ◦→ s1 = g0(h1(a2), h1(a2)) ◦→ s2 = g0(h1(a2), h1(b0))
◦→ s3 = i0(a2, h1(b2)) ◦→ s4 = i0(a2, b0). We now look at the marks that appear on a
lhs during this derivation. The lhs are f0, a2, g0(h1(x), y), and h1(b2), and the maximal
mark that appears on the lhs is 2. Thus, we have proved that d is boc(2), but we want to
prove that d is boc(1).
To obtain a derivation d′ which is bo(1), we apply the rules going from the bottom to
the top. We apply the rules in this order: a → b, h(b) → b, then f(x) → g(x, x) and,
to finish g(h(x), y)→ i(x, y). Since the rule f(x)→ g(x, x) is not linear and duplicates
the variable x we need to use the symbol E to apply the rules in the correct order. We
introduce an E just above a and then apply the rule a→ b:
f0(h0(a0))→x→E(x,x) f0(h0(E(a0, a0)))→a→b f0(h0(E(a0, b0))).
Now, we introduce a second symbol E above the symbol h and get ride of the first one
with selection rules, and then apply the rule h(b)→ b:
f0(h0(E(a0, b0)))→x→E(x,x) f0(E(h0(E(a1, b1)), h0(E(a1, b1))))→E(x,y)→x
f0(E(h0(a1), h(E(a1, b1))))→E(x,y)→y f0(E(h0(a1), h0(b1)))→h(b)→b f0(E(h0(a1), b0)).
Hence, we apply the rule f(x)→ g(x, x):
f0(E(h0(a1), b0)) →f(x)→g(x,x) g0(E(h1(a2), b1), E(h1(a2), b1)), then select the needed
copies:
g0(E(h1(a2), b1), E(h1(a2), b1)) →E(x,y)→x g0(h1(a2), E(h1(a2), b1))
→E(x,y)→y g0(h1(a2), b1),
and apply the last rule:
g0(h1(a2), b1) →g(h(x),y)→i(x,y) i0(a2, b1).
The maximal mark that appears on a lhs is 1. So, d′ is bo(1) and d is boc(1).

Let us introduce a convenient notation.

I Definition 4.12. The binary relation k◦→R∪E over T (FN∪{E}) is defined by s k◦→R∪E t
if there is a bo(k) marked rewriting step in R ∪ E between s and t. The binary relation
k◦→∗R∪E over T (FN ∪ {E}) is defined by s k◦→∗R∪E t if there is a bo(k) marked derivation
from s to t. The binary relation k→∗R over T (F) is defined by s k→∗R t if there is a boc(k)
derivation in R from s to t.

Since the composition of two bo(k) marked derivations is a bo(k) marked derivation,
k◦→∗R∪E is the transitive and reflexive closure of k◦→R∪E . Note that the composition of
two boc(k)-derivation is not always a boc(k)-derivation.

Let us recall the notion of linear k-bounded rewriting defined in [6] which will be denoted
here lbo to avoid confusion.

Irène Durand and Marc Sylvestre 369

I Definition 4.13. Let R be a linear TRS. A marked rewriting step s = s[lσ]v ◦→R t =
s[r(σ � 1)]v is linear k-bounded (lbo(k)) if the following assertion holds

(l /∈ V ⇒ mmax(l) ≤ k), and (l ∈ V ⇒ sup({m(s/u) | u ≺ v}) ≤ k) (3)

A marked derivation is lbo(k) if all its rewriting steps are bo(k). A derivation in R is lbo(k) if
the associated marked derivation is lbo(k). The TRS R is linear k-bounded if every derivation
s→∗R t can be replaced by a lbo(k) derivation from s to t. We denote by LBO(k) the class
of linear k-bounded TRSs and by LBO the class

⋃
k∈N LBO(k).

By definition, LBO(k) ⊆ BO(k). Moreover, one can easily check that for every linear TRS R,
R ∈ LBO(k) iff R ∈ BO(k). Since the LBO(0) membership problem is undecidable, the BO(0)
membership problem is undecidable too. Note that in the definition of an lbo(k)-derivation,
nothing requires the linear condition. But if we consider lbo(k)-derivations for left-linear
TRSs, then the class LBO(k) does not contain left-linear TRSs with non right-linear rules.
This is illustrated in the following example.

I Example 4.14. Let R2 = {f(x) → g(x, x), a → b} and let k ∈ N. There is a bo(0)-
derivation f(f(. . . (f(a)) . . .))→E f(f(. . . (f(E(a, a)) . . .)))→a→b f(f(. . . (f(E(a, b)) . . .)))
→f(x)→g(x,x) g(f(. . . (f(E(a, b)) . . .)), f(. . . (f(E(a, b)) . . .))) →E(x,y)→x
g(f(. . . (f(a) . . .)), f(. . . (f(E(a, b)) . . .))) →E(x,y)→y g(f(. . . (f(a)) . . .), f(. . . (f(b)) . . .)) but
there is no bo(k)-derivation from f(f(. . . (f(a)) . . .)) to g(f(. . . (f(a)) . . .), f(. . . (f(b)) . . .)) which
does not use the rules of E . Note that the TRS R2 is bo(0) since every derivation in R2 is
boc(0).

Well-marked Derivation

Terms that appear on a marked derivation starting on a term s ∈ T (F) have a special form
and are said to be well-marked.

I Definition 4.15 (well-marked). A term s ∈ T (FN ∪ {E} ∪ QP ,V) is well-marked for k if
these two assertions holds
1. for all w ∈ PosV(s), for all v � w, m(s/v) ≤ k,
2. for all w ∈ Lv(s)\PosV(s), one of these two assertions holds

a. for all v � w, m(s/v) ≤ k,
b. there exists u ∈ PosF�w(s) such that:

for all v ≺ u, m(s/v) ≤ k,
for all v ∈ PosF�w(s) such that v � u, m(s/v) = k + 1 + Card(Pos\E≺v(s)) −
Card(Pos\E≺u(s)).

A marked derivation is well-marked if every term in the derivation is well-marked.

So, a term is well-marked if for every w ∈ Lv(t), the sequence of marks on the symbols of F
that appear on the branch containing w has the form: m0,m1, . . . ,mn, k+ 1, k+ 2, . . . , k+ l

with mi ≤ k in case 2b. is satisfied and m0,m1, . . . ,mn with mi ≤ k in case 1. or 2a. is
satisfied. Note that an unmarked term is well-marked, and that condition 2a. is equivalent
to for all v ≺ u,m(s/v) ≤ k, m(s/u) = k + 1, and for all v ∈ PosF�w(s) such that v � u,
m(s/v)−m(s/u) = Card(Pos\E≺v(s))− Card(Pos\E≺u(s)).

I Example 4.16. Let k = 3 and let R1 and A1 be the TRS and the automaton from example
2.1. The terms f1(E(f2(a2), x)), f0(E(f3(a4), x)), f0(f3(E(f4(a5), f3(a3)))), f2(E(f0(a4), x)),
f4(f5(E(f6({qa, q⊥}), f6(b7)))) are well-marked. The terms f4(E(f5(a6), x)),
f2(f3(E(f4(a4), f3(a4)))), and f2(f3(E(f4(a6), f3({qb, qf})))) are not well-marked since neither
1 or 2 hold.

RTA’11

370 Left-linear Bounded TRSs are Inverse Recognizability Preserving

I Lemma 4.17. A bo(k)-derivation is well-marked iff it is starting on a well-marked term.

5 Main Result

The main theorem of this section (and of the paper) is the following.

I Theorem 5.1. Let R be a left-linear rewriting TRS over a signature F . Let T be some
recognizable subset of T (F) and let k > 0. Then, the set (k→∗R)[T] is recognizable too and
can be built.

To obtain this result, we simulate bo(k)-derivations using a GTT. The construction of
the proof can be divided into three steps:

First, we define the top part Top(t) of a well-marked term t which is the part of t that
could be rewritten using a rule of R in a bo(k)-derivation.
Then we define a GRS G which has the following properties:
- If s→∗G t, then there exists t′ such that s k◦→∗R t′ →∗AP+ t (lifting rewriting with G to
R).
- If s k◦→∗R t then Top(s)→∗G Top(t) (projecting rewriting with R to G).
From these two properties of G and using some technical lemmas, we obtain the simulation
lemma 5.22. The relation →∗G is recognizable by a GTT, and since GTTs are effectively
inverse recognizability preserving, we obtain theorem 5.1.

Top of a Marked Term

By definition of a bo(k)-derivation, a symbol in a term t can match a lhs of a rule of R only
if the mark of this symbol is smaller or equal to k. This leads us to define the top part of a
well-marked term t which is (intuitively) obtained by replacing all the useless subterms t/u
by their normal form nfAP (t/u).

I Definition 5.2. Let t ∈ T (FN ∪ {E} ∪ QP ,V) be well-marked. We define Topd(t) the top
domain of t as: u ∈ Topd(t) iff u ∈ Pos(t) and ∀v ≺ u,m(t/v) ≤ k.

I Definition 5.3. Let t ∈ T (FN ∪ {E} ∪ QP ,V) be well-marked. We denote by Top(t) the
unique term such that
Pos(Top(t)) = Topd(t),
t→∗AP≥k+1 Topd(t),
for all t′ such that Pos(t′) = Topd(t) and t→∗AP≥k+1 t′, we have t′ →∗AP≥k+1 Top(t).

I Example 5.4. Let k = 3 and letR1 andA1 be the TRS and the automaton from example 2.1.
Let t0 = f0(E({qa}, g0(a0, b0))), t1 = f2(E({qa}, g0(a3, b4))), t2 = f2(E({qa}, g3(a4, b4))),
t3 = f2(E({qa}, g4(a5, b5))), t4 = f4(E({qa}, g5(a6, b6))). Note that these terms are well-
marked. We have Topd(t0) = Topd(t1) = Topd(t2) = Pos(t0), Topd(t3) = {ε, 0, 00, 01},
Topd(t4) = {ε} and t0 →0

A1P
≥4 Top(t0) = t0, t1 →A1P

≥4 f2(E({qa}, g0(a3, {qb}))) = Top(t1),
t2 →A1P

≥4 f2(E({qa}, g3(a4, {qb})))→A1P
≥4 f2(E({qa}, g3({qa}, {qb}))) = Top(t2),

t3 →A1P
≥4 f2(E({qa}, g4(a5, {qb})))→A1P

≥4 f2(E({qa}, g4({qa}, {qb}))) →A1P
≥4

f2(E({qa}, {q⊥})) = Top(t3), t4 →A1P
≥4 f4(E({qa}, g5(a6, {qb})))→A1P

≥4

f4(E({qa}, g5({qa}, {qb}))) →A1P
≥4 f4(E({qa}, {q⊥}))→A1P

≥4 f4({qa, q⊥})
→A1P

≥4 {q⊥} = Top(t4)

Irène Durand and Marc Sylvestre 371

5.1 Definition of the GRS G Used for the Simulation
Comb Associated to a Term and the Set C≤n
Before giving the definition of G we need to introduce some notations.

I Definition 5.5. We define the binary relation @ over T (FN ∪ QP ∪ {E}) by s @ t if
root(s) ∈ FN ∪ QP , root(t) = E, and there exists u ∈ {w ∈ Pos\E(t) | Pos≺w\E (t) = ∅} such
that t/u = s. We define s 6@ t by s 6@ t if s @ t does not hold.

Note that for all t, t 6@ t.

I Definition 5.6. Let t ∈ T (FN ∪ QP ∪ {E}). Let B be the TRS B := {E(x,E(y, z))− >
E(E(x, y), z)}. We denote by � t� the normal form associated to t: � t� = nfB(t).

Note that B can be easily shown to be terminating and confluent.

I Definition 5.7. Let t ∈ T (FN ∪QP ∪ {E}). Let D be the (infinite) ground TRS
D := {E(E(xσ, yσ), zσ)→ E(xσ, yσ) | σ : V → T (FN ∪QP ∪ {E}) & zσ @ E(xσ, yσ)}
∪{E(E(xσ, yσ), zσ)→ E(xσ, zσ) | σ : V → T (FN ∪QP ∪ {E}) & xσ = yσ}.
The comb associated to t is denoted by btc and is defined by btc := nfD(� t�). We extend
this definition to marked substitutions (bσc : x 7→ bxσc).

Note that D can be shown to be terminating, and that there is a unique normal form
associated to � t� .

I Example 5.8. Let t0 = E(a0, a0), t1 = E(a1, E(a2, b1)), t2 = E(a1, E(a1, b1)) and t3 =
f(E(E(b1, a2), E(b2, a2))). We have � t0 � = t0, � t1 � = E(E(a1, a2), b1), �
t2 � = E(E(a1, a1), b1), � t3 � = f(E(E(E(b1, a2), b2), a2)), bt0c = t0, bt1c = � t1 � ,
� t2 � = E(a1, b1), and bt3c = f(E(E(b1, a2), b2)).

I Definition 5.9. Let n ∈ N. Let A = {}. We denote by C≤n the (finite) set of combs:
C≤n := {btc | t ∈ T (F≤k ∪QP ∪ {E}) & dpt\E(t) ≤ n}.

Note that for a comb t, the set of term {s | bsc = t} is recognizable. The next lemma is used
to prove the projecting lemma 5.18.

I Proposition 5.10 (Comb form proposition). Let s, t ∈ T (F≤k ∪ QP ∪ {E}), u ∈ C≤k+2,
n ∈ N. If bs� nc = u and bt� nc = u, then s� n ◦→∗E t� n.

I Definition 5.11. Let t ∈ T (FN ∪ QP ∪ {E},V), Var(t) = {x1, . . . , xn}. For all 1 ≤ i ≤ n,
let ji = Card(Pos(t, xi)), and let Pos(t, xi) = {v1,1, . . . , v1,ji} where the vp,q are given in
lexicographic order. We define lin(t) as the term
lin(t) := t[x1,1, . . . , x1,j1 , . . . , xn,1, . . . , xn,jn]v1,1,...,v1,j1 ,...vn,1,...vn,jn

,

where the xi,j are distinct variables.

Each time we use the notation lin(t), we implicitly suppose that if Var(t) = {x1, . . . , xn},
then the variables in Var(lin(t)) are denoted xi,j as in definition 5.11.

Overview of the Simulation

Let us give an overview of the proof of the projecting and lifting lemmas used to simulate
bo(k)-derivations by a GTT (lemmas 5.18 and 5.15).
For every rule l → r ∈ R ∪ E , every term l ∈ T (F≤k ∪ QP ∪ {E}) and every substitution
τ : V → C≤k+2 such that τ �a : V → C≤k+2 (where a = 1 if l→ r ∈ R, and a = 0 otherwise),

RTA’11

372 Left-linear Bounded TRSs are Inverse Recognizability Preserving

we build a GRS Gl,r,τ = (L,R), where L is the recognizable set containing all the terms lσ
such that bσc = τ and R is the recognizable set containing all the terms lin(r)(σ � a) such
that for all xi,j ∈ Var(lin(r)), the associated comb of (xi,jσ � a) is bxiτ � ac. The GRS G
over F≤k ∪QP ∪ {E} is hence defined as the union of all the GRS Gl,r,τ and A+

P
≤k.

Now, let us see how the simulation works. The simulation is based on the projecting lemma
5.18 and the lifting lemma 5.15. Let us start with the projecting lemma. Let l→ r ∈ R, and
let us suppose that we want to simulate a rewriting step s = s[lσ]v k◦→R∪E t = s[rσ � a]v
using the GRS G.

The projecting lemma 5.18 claims that we can rewrite the useful top part of s to the
useful top part of t, i.e. that Top(s) = Top(s)[lTop(σ)]v →∗G Top(t) = Top(s)[rTop(σ � a)].
We obtain this derivation in two steps:

First, we cut the useless part of Top(s) using AP≤k, i.e. the parts of xσ that are marked
by an integer greater than k in xσ � a. Let us denote by σ′ the substitution obtained
after this step (i.e. the unique substitution such that σ′ � a = Top(σ � a)).
Then, since lbσ′c → rbσ′ � ac ∈ G(l, r, bσ′c), we obtain the required derivation Top(s) =
s[lσ]v →A≤kP Top(s)[lσ′]v →G(l,r,bσ′c) Top(s)[r(σ′ � a)]v = Top(s)[rTop(σ � a)]v = Top(t).

Now, let us see how the lifting lemma works. Let s = s[lσ]→G(l,r,τ) t = s[lin(r)σ′]. We want
to prove that there exists a term s′ and a derivation s k◦→R∪E s′ →∗AP t. First, we apply
the rule l→ r. We obtain a derivation s = s[lσ]v k◦→R s[r(σ � a)]. We then use the comb
form proposition 5.10, and some other technical lemmas to obtain a term s′ and a derivation
s k◦→R s[r(σ � a)] k◦→∗E s′ →AP t.

The GRS G

For every linear term t ∈ T (FN ∪ QP ∪ {E},V), and every substitution σ : V → C≤k+2, the
set {t σ′ | σ′ : V → T (Fk ∪QP ∪ {E}),∀x ∈ V, bxσ′c = xσ} is recognizable.

I Definition 5.12. We denote by Λa the set of substitutions τ : V → C≤k+2 such that
bτ � ac : V → C≤k+2.

I Definition 5.13. Let l → r ∈ R ∪ E , l ∈ T (F≤k ∪ QP ∪ {E},V). Let a = 0 if l → r ∈ E ,
and let a = 1 if l → r ∈ R. Let Var(l) = {x1, . . . , xn} and Var(r) = {x1, . . . , xm}. Let
τ ∈ Λa, and let

L = {lσ |σ : V → T (F≤k∪QP∪{E}),∀i ∈ {1, . . . , n}, bxiσc = xiτ}, R = {lin(r)(σ�a)|σ :
V → T (F≤k ∪ QP ∪ {E}), ∀i ∈ {1, . . . ,m},∀j ∈ {1, . . . ,Card(Pos(r, xi))}, bxi,jσ � ac =
bxiτ � ac}. Note that L and R are two recognizable sets of ground terms. We define the
G(l, r, τ) over F≤k ∪QP ∪ {E} by: G(l, r, τ) := {l→ r | l ∈ L, r ∈ R}.

I Definition 5.14. Let GR = {G(l, r, τ) | l → r ∈ R, l ∈ T (F≤k ∪ {E},V), τ ∈ Λ1},
GE := {G(l, r, τ) | l → r ∈ E , τ ∈ Λ0}. We define G as the GRS over F≤k ∪ {E} ∪ QP
G := GR ∪ GE ∪ ΓP(A)+≤k .

The transitive and reflexive closure of a GRS is recognizable by a GTT. The GTT
recognizing →∗G will be used to simulate bo(k)-derivations in R∪ E (see lemma 5.22).

Lifting Lemma

The lifting lemma simulates a derivation s →∗A+
P
s′ →G t by a bo(k)-derivation in R ∪ E

followed by a derivation in AP+. The proof can be found in the long version of this article.

Irène Durand and Marc Sylvestre 373

I Lemma 5.15 (lifting lemma). Let l → r ∈ R ∪ E, l ∈ T (F≤k ∪ QP ∪ {E}), let a = 0 if
l → r ∈ E and a = 1 if l → r ∈ R, and let σ ∈ Λa be a substitution. Let s ∈ T (FN ∪ {E}),
s′, t ∈ T (F≤k ∪QP ∪{E}) be such that s→∗A+

P
s′ →G(l,r,σ) t. There exists t′ ∈ T (FN,∪{E})

such that s k◦→+
R∪E t

′ →∗A+
P
t.

s s′ t

t′

AP+

∗

G(l, r, σ)

R
∪ E

+

k

A
P + ∗

Figure 1 Lifting One Step.

I Example 5.16. Let R1 and A1 be the TRS and the automaton of example 2.1 and
let k = 1. Let s = f0(E(h0(a1), E(a0, a1))) →AP+ s′ = f0(E(h0({qa}), E(a0, a1))), let
xσ = E(h0({qa}), E(a0, a1)), and let τ = bσc. Let
s′ →G(f0(x),g0(x,x),τ) t = g0(E(E(h1({qa}), h1({qa})), a1), E(h1({qa}), E(a1, a1))) (this step
holds since bE(E(h1({qa}), h1({qa})), a1)c = bE(h1({qa}), E(a1, a1))c = bxτ � ac
= E(h1({qa}), a1)). We want to find a term t′ such that s 1◦→∗R∪E t′ →∗A+

P
t. First, we apply

the rule f(x)→ g(x, x) which gives the bo(1)-step
s′ 1◦→R t′ = g0(E(h1(a2), E(a1, a1)), E(h1(a2), E(a1, a1))). Then, since
bE(h1(a2), E(a1, a1))c = xbτ � 1c, using the comb form proposition 5.10 we obtain a deriva-
tion t′ 1◦→∗E g0(E(E(h1(a2), h1(a2)), a1), E(h1(a2), E(a1, a1)))→∗AP+ t.

I Corollary 5.17 (lifting n-steps). Let s ∈ T (FN ∪ QP ∪ {E}), s′, t ∈ T (F≤k ∪ QP ∪ {E})
be such that s→∗G t. There exists t′ ∈ T (FN ∪QP ∪ {E}) such that s k◦→∗R∪E t′ →∗A+

P
t.

Projecting Lemma

The projecting lemma simulates one bo(k)-step s k◦→R∪E t by a derivation in G from Top(s)
to Top(t). The full proof is given in the long version of this paper.

I Lemma 5.18 (Projecting one step). Let s, t ∈ T (FN ∪ QP ∪ {E}), be such that s is
well-marked and s = s[lσ]v k◦→R∪E t = s[r(σ � j)]v.
1. If ∀u ≺ v, m(s/u) ≤ k then there exist a term s′ ∈ T (F≤k ∪ QP ∪ {E}), a substitution

σ′ : V → C≤k+2 such that Top(s)→∗AP≤k s
′ →G(l,r,σ′) Top(t),

2. otherwise, Top(s)→∗
A+
P
≤k Top(t).

I Example 5.19. Let us consider the TRS R1, and the automaton A1 of example 2.1,
and k = 1. We have the following derivation between these two well-marked terms s =
f1(E(a0, E(a1, E(b1, h0(h0(a1)))))) →f(x)→g(x,x) t =
g(E(a1, E(a1, E(b1, h1(h2(a3))))), E(a1, E(a1, E(b1, h1(h2(a3)))))).
Let xσ = E(a0, E(a1, E(b1, h0(h0((a1)))))). We have s = f1(xσ), t = g(xσ � 1, xσ � 1),
Top(s) = s and Top(t) = g(E(a1, E(a1, E(b1, h1({q⊥})))), E(a1, E(a1, E(b1, h1({q⊥}))))).
First, we cut the “useless” part of s using A1P

≤1 i.e. the part of xσ that is marked by an
integer greater that 1 in xσ � 1 = E(a1, E(a1, E(b1, h1(h2(a3))))). We obtain the following

RTA’11

374 Left-linear Bounded TRSs are Inverse Recognizability Preserving

s t

Top(s) s′ Top(t)

R∪ Ek

G(l, r, σ′)

AP≥k+1

∗
AP≥k+1

∗

AP≤k
∗

Figure 2 Projecting One Step, case 1.

derivation Top(s)→∗
A≤k1P

f1(E(a0, E(a1, E(b1, h0({q⊥}))))). We are now ready to apply the

step of the GRS that simulates the rule l→ r. Let xσ′ = E(a0, E(a1, E(b1, h1({q⊥)))). Let
τ = bσ′c and s′ = f(xσ′). The comb associated to xσ′ is xτ = E(E(E(a0, a1), b1), h1({q⊥})).
Moreover, the comb associated to xσ′ � 1 = E(a1, E(a1, E(b1, h1({q⊥})))) is bxτ � 1c =
E(E(a1, b1), h1({q⊥})). By definition, it means that lσ′ → r(σ′ � 1) ∈ G(l, r, τ). Hence, we
obtain the derivation Top(s)→A≤1

1P
s′ = f1(xσ′)→G(l,r,bxσ′c) g(xσ′ � 1, xσ′ � 1) = Top(t).

I Corollary 5.20 (Projecting n -steps). Let s, t ∈ T (FN ∪ QP ∪ {E}), be such that s is
well-marked and s k◦→∗R∪E t. We have Top(s)→∗G Top(t).

I Lemma 5.21. Let s ∈ T (F), q ∈ QA. We have ∃t ∈ T (FN), s k ◦→∗R∪E t →∗A q iff
s→∗G {q}.

Inverse Recognizability Preservation

I Lemma 5.22 (simulation lemma). We have (→∗G)[Qf,P] ∩ T (F) = (k→∗R)[T].

Proof. Let s ∈ (k→∗R)[T]. By definition, there exist t ∈ T (F) and q ∈ Qf,A such that
s k→∗R t→∗A q. By definition of a boc(k) derivation, there exists a marked term t such that
s k◦→∗R∪E t. By lemma 4.3, since t→∗A q, we have t→∗A q. By lemma 5.21, s→∗G {q}, and
since {q} ∈ Qf,P , we have s ∈ (→∗G)[Qf,P]. Hence, (k→∗R)[T] ⊆ (→∗G)[Qf,P] ∩ T (F).
Let s ∈ (→∗G)[Qf,P] ∩ T (F). There exists q ∈ Qf,A such that s →∗G {q}. By lemma 5.21,
there exists t ∈ T (FN) such that s k◦→∗R∪E t→∗A q. By proposition 3.2, s→∗R t, and since
there exists a bo(k) marked derivation from s to t, s k→∗R t. By lemma 4.3, since t→∗A q,
we have t→∗A q. So, t ∈ T , and s ∈ (k→∗R)[T]. J

We are now ready to prove theorem 5.1.

I Theorem 5.1. Let R be some (finite) left-linear TRS over a signature F . Let T be some
recognizable subset of T (F) and let k > 0. Then, the set (k→∗R)[T] is recognizable too.

By lemma 5.22, (→∗G)[Qf,P] ∩ T (F) = (k→∗R)[T]. The relation →∗G is recognizable by a
GTT, and since GTTs are inverse recognizability preserving (see e.g. chapter 3.2 of [2]),
(→∗G)[Qf,P] ∩ T (F) is recognizable, and thus (k→∗R)[T] is recognizable. To effectively build
the set (k→∗R)[T], we need to construct the automaton A≤kP and the GTT (→∗G). Since
GTTs are effectively inverse recognizability preserving, the result holds.

I Corollary 5.23. Every BO(k) TRS are effectively inverse recognizability preserving.

6 Strongly Bounded TRSs

We introduce here strongly bounded TRSs. The reader may refer to the long version of the
article for more details.

Irène Durand and Marc Sylvestre 375

I Definition 6.1. A marked step s = s[lσ]v ◦→R t = s[r(σ � j)]v is weakly bottom-
up (wbu for short) if l → r ∈ E or if l → r ∈ R and the following assertion holds:
(l /∈ V ⇒ m(l) = 0) and (l ∈ V ⇒ sup({m(s/u) | u ≺ v) = 0). A marked derivation is wbu
if all its rewriting steps are wbu. A derivation s →∗R∪E t is wbu if the associated marked
derivation is wbu. A derivation s→∗R t is weakly bottom-up convertible (wbuc for short) if
there exists a wbu derivation s→∗R∪E t. Let k ∈ N. A TRS is strongly k-bounded (SBO(k)
for short) if every wbu derivation starting on a term s ∈ T (F) is bo(k). We denote by SBO(k)
the class of SBO(k) TRSs. Finally, the class of strongly bounded TRS SBO is defined by:
SBO =

⋃
k∈N SBO(k).

Note that every marked derivation in E is wbu. Roughly speaking, a wbu derivation is a
derivation in which the rules of R are applied going from the bottom to the top. Moreover,
every derivation is wbuc and SBO(k) ⊂ BO(k). The class SBO contains inverse right-
linear finite-path overlapping TRSs [20], and left-linear growing TRSs [16]. Moreover, the
membership problem for the class of SBO(k) TRSs such that LHS(R) ∩ V = ∅ is decidable,
whereas the membership problem for BO(0) is undecidable, as shown in [5].

7 Perspectives

Here are some natural perspectives of development for this work.
The method developed here also might be used for testing some termination properties
and might lead to a proof of the decidability of the termination of left-linear growing
TRSs as conjectured in [16].
A dual notion of top-down rewriting should be defined (at least for linear TRSs). The
class would presumably extend the class of layered transducing TRSs defined in [18].
The TRSs considered in [9] and the TRSs considered here might be treated in a unifed
manner for the linear case and if so, might be extended to the left-linear case.

Some work in these directions has been undertaken by the authors.
Acknowledgment. We thank the anonymous referees for their useful comments, which
improved the presentation of our results.

References
1 B. Buchberger. Basic features and development of the critical-pair/completion procedure.

In Proceedings of the 1st International Conference on Rewriting Techniques and Applica-
tions, pages 1–45, 1985.

2 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available at: http://www.
grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

3 Evelyne Contejean, Claude Marché, and Xavier Urbain. CiME, 2004. Available at http:
//cime.lri.fr/.

4 I. Durand and A. Middeldorp. Decidable call-by-need computations in term rewriting. Inf.
Comput., 196(2):95–126, 2005.

5 I. Durand and G. Sénizergues. Bottom-up rewriting for words and terms, March 2009.
Available at: http://arXiv.org/abs/0903.2554.

6 I. Durand, G. Sénizergues, and M. Sylvestre. Termination of linear bounded term rewriting
systems. In Christopher Lynch, editor, Proceedings of the 21st International Conference
on Rewriting Techniques and Applications, pages 341–356. LIPIcs, July 2010.

7 Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong. Reachability Analysis
over Term Rewriting Systems. Research Report RR-4970, INRIA, 2003.

RTA’11

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://cime.lri.fr/
http://cime.lri.fr/
http://arXiv.org/abs/0903.2554

376 Left-linear Bounded TRSs are Inverse Recognizability Preserving

8 Z. Fülöp, E. Jurvanen, M. Steinby, and S. Vágvölgyi. On one-pass term rewriting. In
MFCS, pages 248–256, 1998.

9 A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string rewriting systems.
Journal Applicable Algebra in Engineering, Communication and Computing, 15(3-4):149–
171, November, 2004.

10 A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify
termination of left-linear term rewriting systems. Inform. and Comput., 205(4):512–534,
2007.

11 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated Termination Proofs
with AProVE (system description). In Proceedings of the 15th International Conference on
Rewriting Techniques and Applications, pages 210–220, 2004.

12 F. Jacquemard. Decidable approximations of term rewriting systems. In Proceedings of
the 7th International Conference on Rewriting Techniques and Applications, volume 1103
of LNCS, pages 362–376, 1996.

13 J.W. Klop. Term rewriting systems. In Handbook of Logic in Computer Science, Vol. 2,
pages 1–116. Oxford University Press, 1992.

14 D. Knuth and P. Bendix. Simple word problems in universal algebras. In Leech, editor,
Computational problems in abstract algebra, pages 263–297. Pergamon Press, 1970.

15 P. Lescanne, T. Heuillard, M. Dauchet, and S. Tison. Decidability of the confluence of
ground term rewriting systems. Research Report RR-0675, INRIA, 1987.

16 T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting systems. In
Proceedings of the 10th International Conference on Rewriting Techniques and Applications,
pages 256–270, London, UK, 1999. Springer-Verlag.

17 P. Réty and J. Vuotto. Tree automata for rewrite strategies. J. Symb. Comput., 40(1):749–
794, 2005.

18 H. Seki, T. Takai, Y. Fujinaka, and Y. Kaji. Layered transducing term rewriting system and
its recognizability preserving property. In Proceedings of the 13th International Conference
on Rewriting Techniques and Applications, volume 2378 of LNCS. Springer Verlag, 2002.

19 F. Seynhaeve, S. Tison, and M. Tommasi. Homomorphisms and concurrent term rewriting.
In FCT, pages 475–487, 1999.

20 T. Takai, Y. Kaji, and H. Seki. Right-linear finite path overlapping term rewriting systems
effectively preserve recognizability. In Proceedings of the 11th International Conference on
Rewriting Techniques and Applications, pages 246–260, 2000.

21 T. Takai, Y. Kaji, and H. Seki. Termination property of inverse finite path overlapping term
rewriting system is decidable. IEICE transactions on information and systems, 85(3):487–
496, 2002-03-01.

22 T. Takai, Y. Kaji, and H. Seki. Right-linear finite-path overlapping term rewriting systems
effectively preserve recognizability. Scienticae Mathematicae Japonicae, 2006. (to appear,
preliminary version: IEICE Technical Report COMP98-45).

23 Terese. Term Rewriting Systems by Terese, volume 55. Cambridge University Press, 2003.
24 J. Waldmann. Matchbox: A Tool for Match-Bounded String Rewriting (system descrip-

tion). In Proceedings of the 15th International Conference on Rewriting Techniques and
Applications, pages 85–94, 2004.

25 H. Zantema. TORPA: Termination of Rewriting Proved Automatically (system descrip-
tion). In Proceedings of the 15th International Conference on Rewriting Techniques and
Applications, pages 95–104, 2004.

Labelings for Decreasing Diagrams∗

Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, 6020 Innsbruck, Austria
{harald.zankl,bertram.felgenhauer,aart.middeldorp}@uibk.ac.at

Abstract
This paper is concerned with automating the decreasing diagrams technique of van Oostrom
for establishing confluence of term rewrite systems. We study abstract criteria that allow to
lexicographically combine labelings to show local diagrams decreasing. This approach has two
immediate benefits. First, it allows to use labelings for linear rewrite systems also for left-linear
ones, provided some mild conditions are satisfied. Second, it admits an incremental method for
proving confluence which subsumes recent developments in automating decreasing diagrams. The
techniques proposed in the paper have been implemented and experimental results demonstrate
how, e.g., the rule labeling benefits from our contributions.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases term rewriting, confluence, decreasing diagrams, labeling

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.377

Category Regular Research Paper

1 Introduction

The decreasing diagrams technique of van Oostrom [10] is a powerful method for showing
confluence of abstract rewrite systems, i.e., it is complete for countable systems. The main
idea of the approach is to show confluence by establishing local confluence under the side
condition that rewrite steps of the joining sequences must decrease with respect to some
well-founded order. For term rewrite systems however, the main problem for automation of
decreasing diagrams is that in general infinitely many local peaks must be considered. To
reduce this problem to a finite set of local peaks one can label rewrite steps with functions
that satisfy special properties. In [12] van Oostrom presented the rule labeling that allows to
conclude confluence of linear rewrite systems by checking decreasingness of the critical peaks
(those emerging from critical overlaps). The rule labeling has recently been implemented by
Aoto [1] and Hirokawa and Middeldorp [8]. Already in [12] van Oostrom presented constraints
that allow to apply the rule labeling to left-linear systems. This approach has recently been
implemented and extended by Aoto [1]. Our framework subsumes the above ideas.

The contributions of this paper comprise the extraction of abstract constraints on a
labeling such that for a (left-)linear rewrite system decreasingness of the critical peaks ensures
confluence. We show that the rule labeling adheres to our constraints and present additional
labeling functions. Furthermore such labeling functions can be combined lexicographically to
obtain new labeling functions satisfying our constraints. This approach allows the formulation
of an abstract criterion that makes virtually every labeling function for linear rewrite systems
also applicable to left-linear systems. Consequently, confluence of the TRS in Example 1.1

∗ This research is supported by FWF (Austrian Science Fund) project P22467.

© H. Zankl, B. Felgenhauer, and A. Middeldorp;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 377–392

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.377
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

378 Labelings for Decreasing Diagrams

can be established automatically, e.g., by the rule labeling, while current approaches based
on the decreasing diagrams technique [1, 8] as well as standard confluence criteria fail.

I Example 1.1. Consider the TRS R (from [14]) consisting of the rules

1: x+ (y + z)→ (x+ y) + z 5: x+ y → y + x 7: s(x) + y → x+ s(y)
2 : (x+ y) + z → x+ (y + z) 6 : x× y → y × x 8: x+ s(y)→ s(x) + y

3: sq(x)→ x× x 9: x× s(y)→ x+ (x× y)
4 : sq(s(x))→ (x× x) + s(x+ x) 10: s(x)× y → (x× y) + y

This system is locally confluent since all its 34 critical pairs are joinable.

The remainder of this paper is organized as follows. After recalling preliminaries in
Section 2 we present constraints (on a labeling) such that decreasingness of the critical peaks
ensures confluence for (left-)linear rewrite systems in Section 3. The merits of this approach
are assessed in Section 4. Implementation issues are addressed in Section 5 before Section 6
gives an empirical evaluation of our results. Section 7 concludes.

2 Preliminaries

We assume familiarity with term rewriting [4, 15].
Let F be a signature and let V be a set of variables disjoint from F . By T (F ,V) we

denote the set of terms over F and V. The expression |t|x indicates how often variable x
occurs in term t. The set of positions of a term t is defined as Pos(t) = {ε} if t is a variable
and as Pos(t) = {ε} ∪ {iq | q ∈ Pos(ti)} if t = f(t1, . . . , tn). We write p 6 q if q = pp′ for
some position p′, in which case q\p is defined to be p′. Furthermore p < q if p 6 q and
p 6= q. Finally, p ‖ q if neither p 6 q nor q < p. Positions are used to address occurrences
of subterms. The subterm of t at position p ∈ Pos(t) is defined as t|p = t if p = ε and as
t|p = ti|q if p = iq. We write s[t]p for the result of replacing s|p with t in s. The set of
function symbol positions PosF (t) is {p ∈ Pos(t) | t|p /∈ V} and PosV(t) = Pos(t) \ PosF (t).

A rewrite rule is a pair of terms (l, r), written l→ r such that l is not a variable and all
variables in r are contained in l. A rewrite rule l → r is duplicating if |l|x < |r|x for some
x ∈ V . A term rewrite system (TRS) is a signature together with a finite set of rewrite rules
over this signature. In the sequel signatures are implicit. By Rd and Rnd we denote the
duplicating and non-duplicating rules of a TRS R, respectively. A rewrite relation is a binary
relation on terms that is closed under contexts and substitutions. For a TRS R we define
→R to be the smallest rewrite relation that contains R. As usual →= (→∗) denotes the
reflexive (reflexive and transitive) closure of → and ‖→ denotes rewriting at parallel positions.

A relative TRS R/S is a pair of TRSs R and S with the induced rewrite relation
→R/S =→∗S · →R · →∗S . Sometimes we identify a TRS R with the relative TRS R/∅ and
vice versa. A TRS R (relative TRS R/S) is terminating if→R (→R/S) is well-founded. Two
relations > and > are called compatible if > ·> ·> ⊆ >. A monotone reduction pair (>, >)
consists of a quasi-order > and a well-founded order > such that > and > are compatible
and closed under contexts and substitutions. We recall how to prove relative termination
incrementally according to Geser [6]:

I Theorem 2.1. A relative TRS R/S is terminating if R = ∅ or there exists a monotone
reduction pair (>, >) such that R∪ S ⊆ > and (R \>)/(S \>) is terminating. J

An overlap (l1 → r1, p, l2 → r2)µ of a TRS R consists of variants l1 → r1 and l2 → r2 of
rewrite rules of R without common variables, a position p ∈ PosF (l2), and a most general

H. Zankl et al. 379

s

t u

v

(a) (parallel)

s

t u

· ·

?
(b) (critical overlap)

s

t

t1

u

v

(c) (variable overlap)

Figure 1 Three kinds of local peaks.

unifier µ of l1 and l2|p. If p = ε then we require that l1 → r1 and l2 → r2 are not variants.
From an overlap (l1 → r1, p, l2 → r2)µ we obtain a critical peak l2µ[r1µ]p ←l2µ→ r2µ and a
critical pair l2µ[r1µ]p ←o→ r2µ.

We write 〈A, {→α}α∈I〉 to denote the ARS 〈A,→〉 where → is the union of →α for all
α ∈ I. Let 〈A, {→α}α∈I〉 be an ARS and let > be a relation on I. We write →

>

α1...αn for
the union of →β where β < αi for some 1 6 i 6 n. We say →α and →β are extended
locally decreasing (with respect to > and >) if α← · →β ⊆ →

>

∗
α · →

>

=
β · →

>

∗
αβ · ∗αβ←

>

· =
α←

>

· ∗β←

>

.
An ARS 〈A, {→α}α∈I〉 is extended locally decreasing if there exists a quasi-order > and a
well-founded order > such that > and > are compatible and →α and →β are extended
locally decreasing for all α, β ∈ I with respect to > and >.

The following theorem is from [8], reformulating a result obtained by van Oostrom [10].

I Theorem 2.2. Every extended locally decreasing ARS is confluent. J

3 Confluence by Labeling

In this section we present constraints (on a labeling) such that extended local decreasingness
of the critical peaks ensures confluence of linear (Section 3.1) and left-linear (Section 3.2)
TRSs. Furthermore, we show that if two labelings satisfy these conditions then also their
lexicographic combination satisfies them.

There are three possibilities for a local peak (modulo symmetry):

t = s[r1σ]p ← s[l1σ]p = s = s[l2σ]q → s[r2σ]q = u (1)

p ‖ q (parallel)
q 6 p and p ∈ PosF (s[l2]q) (critical overlap)
q < p and p /∈ PosF (s[l2]q) (variable overlap)

These cases are visualized in Figure 1. Figure 1(a) shows the shape of a local peak where
the reductions take place at parallel positions. Here we have s→p,l1→r1 t and u→p,l1→r1 v,
i.e., the reductions drawn at opposing sides in the diagram are due to the same rules. The
question mark in Figure 1(b) conveys that joinability of critical overlaps may depend on
auxiliary rules. Variable overlaps (Figure 1(c)) can again be joined by the rules involved in
the diverging step. More precisely, if q′ is the unique position in PosV(l2) such that qq′ 6 p,
x = l2|q′ , |l2|x = m, and |r2|x = n then we have t→m−1

l1→r1
t1, t1 →l2→r2 v, and u→n

l1→r1
v.

Labelings are used to compare rewrite steps. In the sequel we denote the set of all rewrite
steps for a TRS R by ΛR and elements from this set by capital Greek letters Γ and ∆.
Furthermore if Γ = s→p,l→r t then C(Γσ) denotes the rewrite step C[sσ]→p′p,l→r C[tσ] for
any substitution σ and context C with C|p′ = �.

RTA’11

380 Labelings for Decreasing Diagrams

s

t u

v

α

δ

β

γ

(a) (parallel)

s

t u

v

α

δ

β

γ

=

(b) (variable-linear)

s

t u

v

α

δ

β

γ

(c) (variable-left-linear)

Figure 2 Labeled peaks.

I Definition 3.1. Let R be a TRS. A labeling function ` : ΛR → W is a mapping from
rewrite steps into some set W . A labeling (`,>, >) for R consists of a labeling function `, a
quasi-order >, and a well-founded order > such that > and > are compatible and for all
rewrite steps Γ,∆ ∈ ΛR, contexts C and substitutions σ:
1. `(Γ) > `(∆) implies `(C[Γσ]) > `(C[∆σ]) and
2. `(Γ) > `(∆) implies `(C[Γσ]) > `(C[∆σ])

All labelings we discuss satisfy > ⊆ > which allows to avoid tedious case distinctions.
In the sequel W , >, and > are left implicit when clear from the context and a labeling is
identified with the labeling function `. We use the terminology that a labeling ` is monotone
and stable if properties 1 and 2 of Definition 3.1 hold. Abstract labels, i.e., labels that are
unknown, are represented by lowercase Greek letters α, β, γ, etc. We write s→α p,l→r t (or
simply s→α t or s→α t) if `(s→p,l→r t) = α. Often we leave the labeling ` implicit and just
attach labels to arrows. A local peak t← s→ u is called decreasing for ` if t α← s→β u,
and →α and →β are extended locally decreasing with respect to > and >. To employ
Theorem 2.2 for TRSs, extended local decreasingness of the ARS 〈T (F ,V), {→w}w∈W 〉 must
be shown.

In the sequel we investigate conditions on a labeling such that local peaks according
to (parallel) and (variable overlap) are decreasing automatically. This is desirable since
in general there are infinitely many local peaks corresponding to these cases (even if the
underlying TRS has finitely many rules). There are also infinitely many local peaks according
to (critical overlap) in general, but for a finite TRS they are captured by the finitely many
overlaps. Still, it is undecidable if they are decreasingly joinable [8].

For later reference, Figure 2 shows labeled peaks for the case (parallel) (Figure 2(a)) and
(variable overlap) if the rule l2 → r2 in (1) is linear (Figure 2(b)) and left-linear (Figure 2(c)),
respectively. In Figure 2(c) the expression γ means a sequence of labels γ1, . . . , γn. Since the
step from u to v is parallel we can choose any permutation of γ.

3.1 Linear TRSs
The next definition presents sufficient abstract conditions on a labeling such that local peaks
according to the cases (parallel) and (variable-linear) in Figure 2 are decreasing. We use the
observation that the former can be seen as an instance of the latter to shorten proofs.

I Definition 3.2. Let ` be a labeling for a TRS R. We call ` an L-labeling (for R) if for local
peaks according to (parallel) and (variable-linear) we have α > γ and β > δ in Figures 2(a)
and 2(b), respectively.

H. Zankl et al. 381

The local diagram in Figure 3(a) visualizes the conditions on an L-labeling more succinctly.
We call the critical peaks of a TRS R Φ-decreasing if there exists a Φ-labeling ` for R such
that the critical peaks of R are decreasing for `.

The next theorem states that L-labelings may be used to show confluence of linear TRSs.

I Theorem 3.3. Let R be a linear TRS. If the critical peaks of R are L-decreasing then R
is confluent.

Proof. By assumption the critical peaks of R are decreasing for some L-labeling `. We
establish confluence of R by Theorem 2.2, i.e., show extended local decreasingness of the ARS
〈T (F ,V),→R〉 where rewrite steps are labeled according to `. Since R is linear, local peaks
have the shape (parallel), (variable-linear), or (critical overlap). By definition of an L-labeling
the former two are extended locally decreasing. Now consider a local peak according to
(critical overlap), i.e., for the peak in (1) we have q 6 p and p ∈ PosF (s[l2]q). Let p′ = p\q.
Then (s|q)[r1σ]p′ = (s[r1σ]p)|q p′← s|q →ε r2σ must be an instance of a critical peak which
is decreasing by assumption. By monotonicity and stability of ` we obtain extended local
decreasingness of the local peak (1). J

We recall the rule labeling of van Oostrom [12], parametrized by a mapping i : R → N.

I Definition 3.4. Let R be a TRS. Then `irl(s→p,l→r t) = i(l→ r).

Often i is left implicit. The rule labeling satisfies the constraints of an L-labeling.

I Lemma 3.5. Let R be a TRS. Then (`irl,>N, >N) is an L-labeling for R.

Proof. First we show that (`irl,>N, >N) is a labeling. The quasi-order >N and the well-
founded order >N are compatible. Furthermore `irl(s →p,l→r t) = i(l → r) which ensures
monotonicity and stability of `irl. Hence (`irl,>N, >N) is a labeling. Next we show the
properties demanded in Definition 3.2. For local peaks according to cases (parallel) and
(variable-linear) we recall that the steps drawn at opposite sides in the diagram, e.g., the
steps labeled with α and γ (β and δ) in Figures 2(a) and 2(b), are due to applications of the
same rule. Hence α = γ (β = δ) in Figures 2(a) and 2(b), which shows the result. J

Inspired by [8] we propose a labeling based on relative termination.

I Definition 3.6. Let R be a TRS. Then `sn(s→ t) = s.

I Lemma 3.7. Let R be a TRS. Then `Ssn := (`sn,→∗R,→
+
S/R) is an L-labeling for R,

provided →S ⊆ →R and S/R is terminating.

Proof. Let > := →∗R and > := →+
S/R. First we show that (`sn,>, >) is a labeling. By

definition of relative rewriting, →∗R and →+
S/R are compatible and →+

S/R is well-founded by
the termination assumption of S/R. Since rewriting is closed under contexts and substitutions,
`Ssn is monotone and stable and hence a labeling. Next we show the properties demanded
in Definition 3.2. The assumption →S ⊆ →R yields →+

S/R ⊆ →
∗
R which ensures > ⊆ >.

Combining α = s = β, γ = u, and δ = t with s →R t and s →R u yields α = β > γ, δ for
local peaks according to (parallel) and (variable-linear) in Figures 2(a) and 2(b). J

The L-labeling from the previous lemma allows to establish a decrease with respect
to some steps of R. The next lemma allows to combine L-labelings. Let `1 : ΛR → W1
and `2 : ΛR → W2. Then (`1,>1, >1) × (`2,>2, >2) is defined as (`1 × `2,>12, >12) where
`1 × `2 : ΛR →W1 ×W2 with (`1 × `2)(Γ) = (`1(Γ), `2(Γ)). Furthermore (x1, x2) >12 (y1, y2)
if and only if x1 > y1 or x1 >1 y1 and x2 >2 y2 and (x1, x2) >12 (y1, y2) if and only if
x1 >1 y1 or x1 >1 y1 and x2 >2 y2.

RTA’11

382 Labelings for Decreasing Diagrams

s

t u

v

α1 β1

β1 α16
>

=

(a) Labeling `1

s

t u

v

α2 β2

β2 α26
>

=

(b) Labeling `2

s

t u

v

(α1, α2) (β1, β2)

(β1, β2) (α1, α2)6
>

=

(c) Labeling `1 × `2

Figure 3 Lexicographic combination of L-labelings.

I Lemma 3.8. Let `1 and `2 be L-labelings. Then `1 × `2 is an L-labeling.

Proof. First we remark that `1 × `2 is a labeling whenever `1 and `2 are labelings. Next we
show that `1 × `2 satisfies the properties from Definition 3.2. If `1 and `2 are L-labelings
then the diagram of Figure 2(b) has the shape as in Figure 3(a) and 3(b), respectively. It is
easy to see that the lexicographic combination is again an L-labeling (cf. Figure 3(c)). J

3.2 Left-linear TRSs
For left-linear TRSs the notion of an LL-labeling is introduced.

I Definition 3.9. Let ` be a labeling for a TRS R. We call ` an LL-labeling (for R) if α > γ
and β > δ in Figure 2(a) and α > γ and β > δ in Figure 2(c). Here α > γ means α > γ1
and α > γi for 2 6 i 6 n.

The next theorem states that LL-labelings allow to show confluence of left-linear TRSs.

I Theorem 3.10. Let R be a left-linear TRS. If the critical peaks of R are LL-decreasing
then R is confluent.

Proof. By assumption the critical peaks of R are decreasing for some LL-labeling `. We
establish confluence of R by Theorem 2.2, i.e., show extended local decreasingness of the
ARS 〈T (F ,V),→R〉 by labeling rewrite steps according to `. By definition of an LL-labeling
local peaks according to (parallel) and (variable-left-linear) are extended locally decreasing.
The reasoning for local peaks according to (critical overlap) is the same as in the proof of
Theorem 3.3. J

The rule labeling from Definition 3.4 is not an LL-labeling since in Figure 2(c) we have
α = γi for 1 6 i 6 n which does not satisfy α > γ if n > 1. (See also [8, Example 5].) In
contrast, the L-labeling from Lemma 3.7 can be adapted to an LL-labeling.

I Lemma 3.11. Let R be a left-linear TRS. Then `Rd
sn is an LL-labeling, provided Rd/Rnd

is terminating.

Proof. By Theorem 2.1 the relative TRS Rd/Rnd is terminating if and only if Rd/R is.
Hence (`Rd

sn ,>, >) is a labeling by Lemma 3.7. Here > := →∗R and > := →+
Rd/R. Since

`sn(s→ t) = s, we have α = β in Figures 2(a) and 2(c). We have > ⊆ >. Hence α > γ and
α > δ in Figure 2(a) and if l2 → r2 in (1) is linear also in Figure 2(c). If l2 → r2 is not linear
then it must be duplicating and hence α > γi for 1 6 i 6 n. Combining this with α > δ from
above we obtain that `Rd

sn is an LL-labeling for R. J

H. Zankl et al. 383

To combine the previous lemma with the rule labeling we study how different labelings
can be combined and introduce the following notion.

I Definition 3.12. Let ` be an L-labeling. We call ` a weak LL-labeling if α > γ and β > δ.
for peaks according to Figure 2(c). Here α > γ means α > γi for 1 6 i 6 n.

I Remark 3.13. The L-labelings presented so far (cf. Lemmata 3.5 and 3.7) are weak
LL-labelings. Furthermore if `1 and `2 are weak LL-labelings then so are `1 × `2 and `2 × `1.

I Lemma 3.14. Let `1 be an LL-labeling and let `2 be a weak LL-labeling. Then `1 × `2
1

and `2 × `1 are LL-labelings.

Proof. By the proof of Lemma 3.8 `1× `2 and `2× `1 are labelings. The only interesting case
of (variable-left-linear) is when l2 → r2 in (1) is non-linear, i.e., γ contains more than one
element. First we show that `1× `2 is an LL-labeling. Here labels according to `1 are suffixed
with 1 and similarly for `2. Recall Figure 2(c). By assumption we have α1 > γ1, β1 > δ1
and α2 > γ2, β2 > δ2, which yields the desired (α1, α2) > (γ11, γ21), (α1, α2) > (γ1i, γ2i)
for 2 6 i 6 n, and (β1, β2) > (δ1, δ2). In the proof for `2 × `1 the assumptions yield
(α2, α1) > (γ21, γ11), (α2, α1) > (γ2i, γ1i) for 2 6 i 6 n, and (β2, β1) > (δ2, δ1). J

In particular LL-labelings can be composed lexicographically.

I Lemma 3.15. Every LL-labeling is a weak LL-labeling.

Proof. By the global assumption that > ⊆ >. J

From Theorem 3.10 and Lemmata 3.11 and 3.14 we obtain the following result.

I Corollary 3.16. Let R be a left-linear TRS. If Rd/Rnd is terminating and all critical peaks
of R are weakly LL-decreasing then R is confluent.

Proof. By Lemma 3.11 `Rd
sn is an LL-labeling. By assumption the critical peaks of R are

decreasing for some weak LL-labeling `. By Lemma 3.14 also `Rd
sn × ` is an LL-labeling. It

remains to show decreasingness of the critical peaks for `Rd
sn × `. This is obvious since for

terms s, t, u with s →R t →R u we have `Rd
sn (s → t) > `Rd

sn (t → u). Hence decreasingness
for ` implies decreasingness for `Rd

sn × `. Confluence of R follows from Theorem 3.10. J

We revisit the example from the introduction.

I Example 3.17. Recall the TRS R from Example 1.1. The polynomial interpretation

+N(x, y) = x+ y sN(x) = x+ 1 ×N(x, y) = x2 + xy + y2 sqN(x) = 3x2 + 1

shows termination ofRd/Rnd. It is easy to check that `irl with i(3) = i(6) = 2, i(4) = i(10) = 1,
and all other rules labeled 0, shows the 34 critical peaks decreasing.

The next example is more suitable to familiarize the reader with Corollary 3.16. Note
that also here no standard criterion for confluence applies.

1 Here the condition that `2 is a weak LL-labeling can be weakened to α > γ1 and β > δ in Figure 2(c).

RTA’11

384 Labelings for Decreasing Diagrams

I Example 3.18. Consider the TRS R consisting of the three rules

1: b→ a 2: a→ b 3: f(g(x, a))→ g(f(x), f(x))

We have Rd = {3} and Rnd = {1, 2}. Termination of Rd/Rnd can be established by
LPO with precedence a ∼ b and f > g. The rule labeling that takes the rule numbers as
labels shows the only critical peak decreasing, i.e., f(g(x, b)) 2← f(g(x, a))→3 g(f(x), f(x))
and f(g(x, b)) →1 f(g(x, a)) →3 g(f(x), f(x)) which allows to establish confluence of R by
Corollary 3.16.

I Remark 3.19. Using `irl(·) = 0 as weak LL-labeling, Corollary 3.16 gives a condition
(termination of Rd/Rnd) such that s→= t or t→= s for all critical pairs s←o→ t implies
confluence of a left-linear TRS R. This partially answers one question in RTA LooP #13.2

Next we prepare for a different LL-labeling. In [12, Example 20] van Oostrom suggests to
count function symbols above the contracted redex, demands that this measurement decreases
for variables that are duplicated, and combines this with the rule labeling. Consequently local
peaks according to Figure 2(c) are decreasing. Below we exploit this idea but incorporate the
following beneficial generalizations. First, we do not restrict to counting function symbols
(which has been adopted and extended by Aoto in [1]) but represent the constraints as
a relative termination problem. This abstract formulation allows to strictly subsume the
criteria from [12,1] (see Section 4) because more advanced techniques than counting symbols
can be applied for proving termination. Additionally, our setting also allows to weaken these
constraints significantly (see Lemma 3.27).

The next example motivates an LL-labeling that does not require termination of Rd/Rnd.

I Example 3.20. Consider the TRS R consisting of the six rules

f(h(x))→ h(g(f(x), x, f(h(a)))) f(x)→ a a→ b
h(x)→ c b→ ⊥ c→ ⊥

Since the duplicating rule admits an infinite sequence Corollary 3.16 cannot succeed.

In the sequel we let G be the signature consisting of unary function symbols f1, . . . , fn
for every n-ary function symbol f ∈ F .

I Definition 3.21. Let x ∈ V . We define a partial mapping ? from T (F ,V)× Pos(T (F ,V))
to terms in T (G,V) as follows:

?(f(t1, . . . , tn), p) =
{
fi(?(ti, q)) if p = iq

x if p = ε

For a left-linear TRS R we abbreviate R?>/R?= by ?(R). Here, for o ∈ {>,=},

R?o = {?(l, p)→ ?(r, q) | l→ r ∈ R, l|p = r|q = y, y ∈ V, and |r|y o 1}

The next example illustrates the transformation ?(·).

I Example 3.22. Consider the TRSR from Example 3.20. The relative TRS ?(R) = R?>/R?=
consists of the TRS R?> with rules

f1(h1(x))→ h1(g1(f1(x))) f1(h1(x))→ h1(g2(x))

and the TRS R?= which is empty.

2 http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/13.html

http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/13.html

H. Zankl et al. 385

I Definition 3.23. Let R be a TRS. Then `?(s→p,l→r t) = ?(s, p).

Due to the next lemma a termination proof of ?(R) yields an LL-labeling.

I Lemma 3.24. Let R be a TRS. Then (`?,>, >) is an LL-labeling, provided (>, >) is a
monotone reduction pair, R?> ⊆ >, and R?> ∪R?= ⊆ >.

Proof. That (`?,>, >) is a labeling for R follows from the assumption that (>, >) is a
monotone reduction pair. To see that the constraints of Definition 3.9 are satisfied we argue
as follows. For Figure 2(a) we have α = γ and β = δ because the steps drawn at opposing
sides in the diagram take place at the same positions and the function symbols above these
positions stay the same. For Figure 2(c) we have β = δ = x since the corresponding reductions
take place at the root position and hence β > δ. To see α > γ recall the peak (1). Let q′
be the unique position in PosV(l2) such that qq′ 6 p with x = l2|q′ and Q = {q′1, . . . , q′n}
with r2|q′

i
= x. By construction R?> contains all rules ?(s, q′)→ ?(u, q′i) for 1 6 i 6 n. Since

u ‖→Q v we obtain α > γi for 1 6 i 6 n (from R?> ⊆ >) and hence the desired α > γ. J

From Lemma 3.24 we obtain the following corollary.

I Corollary 3.25. Let R be a left-linear TRS and let ` be a weak LL-labeling. Let `?` denote
` × `? or `? × `. If ?(R) is terminating and the critical peaks of R are decreasing for `?`
then R is confluent.

Proof. If ?(R) is terminating then `? is an LL-labeling by Lemma 3.24. Lemma 3.14 yields
that `?` is an LL-labeling. By assumption the critical peaks are decreasing for `?` and hence
Theorem 3.10 yields the confluence of R. J

The next example illustrates the use of Corollary 3.25.

I Example 3.26. We show confluence of the TRS R from Example 3.20. Termination
of ?(R) (cf. Example 3.22) is easily shown, e.g., the polynomial interpretation

f1N(x) = 2x g1N(x) = g2N(x) = x h1N(x) = x+ 1

orients both rules in R?> strictly. To show decreasingness of the three critical peaks (two
of which are symmetric) we use `? × `irl with i(f(h(x)) → h(g(f(x), x, f(h(a))))) = 1 and
all other rules receive label 0. Since it is impractical to label with `? and compare labels
with respect to the monotone reduction pair obtained from the above termination proof
we label a step s →p,l→r t with the constant part of the interpretation of ?(s, p) (cf.
Lemma 5.2 below) and compare labels with >N and >N. E.g., a step f(h(b))→ f(h(⊥)) is
labeled 2 since ?(f(h(b)), 11) = f1(h1(x)) and [f1(h1(x))]N = 2x+ 2. Hence the critical peak
h(g(f(x), x, f(h(a))))←0,1 f(h(x))→0,0 a is closed decreasingly by

h(g(f(x), x, f(h(a))))→0,0 c→0,0 ⊥ 0,0← b 0,0← a

and the critical peak h(g(f(x), x, f(h(a)))) 0,1← f(h(x))→0,0 f(c) is closed decreasingly by

h(g(f(x), x, f(h(a))))→0,0 c→0,0 ⊥ 0,0← b 0,0← a 0,0← f(c)

which allows to prove confluence of R by Corollary 3.25.

By definition of α > γ (cf. Definition 3.9) we observe that the definition of ?(R) can be
relaxed. If l2 → r2 with l2|q′ = x ∈ V and {q′1, . . . , q′n} are the positions of the variable x
in r2 then it suffices if n − 1 instances of ?(l2, q′) → ?(r2, q

′
i) are put in R?> while one

?(l2, q′)→ ?(r2, q
′
j) can be put in R?= (since the steps labeled γ in Figure 2(c) are at parallel

positions we can choose the first closing step such that α > γ1). This improved version
of ?(R) is denoted by ??(R) = R??> /R??= . We obtain the following variant of Lemma 3.24.

RTA’11

386 Labelings for Decreasing Diagrams

I Lemma 3.27. Let R be a TRS. Then (`?,>, >) is an LL-labeling, provided (>, >) is a
monotone reduction pair, R??> ⊆ >, and R??> ∪R??= ⊆ >. J

Obviously any ??(R) is terminating whenever ?(R) is. The next example shows that the
reverse statement does not hold. In Section 5 we show how the intrinsic indeterminism
of ??(R) is eliminated in the implementation.

I Example 3.28. Consider the TRS R from Example 1.1. Then ?(R) consists of the rules

R?> R?=
sq1(s1(x))→ +1(×1(x)) ×1(x)→ ×2(x) +1(x)→ +2(x)
sq1(s1(x))→ +1(×2(x)) ×2(y)→ ×1(y) +1(s1(x))→ +1(x)
sq1(s1(x))→ +2(s1(+1(x))) ×1(s1(x))→ +1(×1(x)) +2(y)→ +1(y)
sq1(s1(x))→ +2(s1(+2(x))) ×2(s1(y))→ +2(×2(y)) +1(+1(x))→ +1(x)

sq1(x)→ ×1(x) +1(x)→ +1(s1(x)) +1(+2(y))→ +2(+1(y))
sq1(x)→ ×2(x) +2(s1(y))→ +2(y) +2(z)→ +2(+2(z))
† : ×2(y)→ +1(×2(y)) +2(+2(z))→ +2(z) +1(x)→ +1(+1(x))
×2(y)→ +2(y) +2(y)→ +2(s1(y)) +2(+1(y))→ +1(+2(y))
×1(x)→ +1(x)

† : ×1(x)→ +2(×1(x))

Let R?† denote the rules in R?> marked with †. Termination of ?(R) cannot be established
(because R?† is non-terminating) but we stress that moving these rules into R?= yields a
valid ??(R) which can be proved terminating by the polynomial interpretation with

sq1N(x) = x+ 2 ×1N(x) = ×2N(x) = x+ 1

that interprets the remaining function symbols by the identity function. We remark that
Corollary 3.25 with the labeling from Lemma 3.27 establishes confluence of R. Since all
reductions in the 34 joining sequences have only + above the redex and +1N(x) = +2N(x) = x,
the `? labeling attaches zero to any of these steps. The rule labeling that assigns i(3) =
i(6) = 2, i(4) = i(10) = 1, and zero to all other rules shows the 34 critical peaks decreasing.

4 Assessment

In this section we relate the results from this paper with each other and contributions
from [1,8]. First we observe that Corollaries 3.16 and 3.25 subsume Theorem 3.3 since the
preconditions of the corollaries evaporate for linear systems. Note that both results extend
Knuth and Bendix’ criterion [9] (joinability of critical pairs for terminating systems) for left-
linear systems. Next we compare the power of Corollaries 3.16 and 3.25. Example 3.20 and
the TRS from the following example show that Corollaries 3.16 and 3.25 are incomparable.

I Example 4.1. It is easy to adapt the TRS from Example 3.18 such that ?(R) becomes
non-terminating. Consider the TRS R

1: b→ a 2: a→ b 3: f(g(x, a))→ g(f(x), f(g(x, c)))

H. Zankl et al. 387

for which termination of Rd/Rnd and decreasingness of the critical peaks is proved similar to
Example 3.18. Note that f1(g1(x))→ g2(f1(g1(x))) ∈ R?> is non-terminating.3

Neither of Corollaries 3.16 and 3.25 gives a necessary confluence criterion for left-linear
systems. The TRSs from Example 3.20 and 4.1 are confluent. Hence (by renaming function
symbols) so is their direct sum according to Toyama’s result [17]. But the combined TRS
does not satisfy either precondition of our corollaries.

Next we show that our setting subsumes one of the results from [8]. To this end we define
the critical pair steps CPS(R) = {s→ t, s→ u | t←s→ u is a critical peak of R}.

I Theorem 4.2 ([8, Theorem 6]). Let R be a left-linear TRS. The TRS R is confluent if
←o→ ⊆→∗ · ∗← and (CPS(R) ∪Rd)/Rnd is terminating.

By Theorem 2.2 termination of (CPS(R) ∪Rd)/Rnd implies termination of CPS(R)/R
and Rd/Rnd. Hence the above result corresponds to Corollary 3.16 using `CPS(R)

sn as weak
LL-labeling. Note that our setting is strictly more liberal because of two reasons. First
we do not demand a decrease already in the peak, i.e., we can cope with non-terminating
CPS(R). Second, our approach allows to combine `sn lexicographically with further labelings.
Examples 3.18 and 3.20 show that the inclusion is strict (for the first reason).

Next we show that Corollary 3.25 generalizes the results from [1, Sections 5 and 6]. It
is not difficult to see that the encoding presented in [1, Theorem 5.4] can be mimicked by
Corollary 3.25 where linear polynomial interpretations over N of the shape as in (1)

(1) fiN(x) = x+ cf (2) fiN(x) = x+ cfi

are used to prove termination of ?(R) and `? × `rl is employed to show LL-decreasingness of
the critical peaks. In contrast to [1, Theorem 5.4], which explicitly encodes these constraints
in a single formula of linear arithmetic, our abstract formulation admits the following gains.
First, we do not restrict to weight functions but allow powerful machinery for proving
relative termination and second our approach allows to combine arbitrarily many labelings
lexicographically (cf. Lemma 3.14). Furthermore we stress that our abstract treatment
of ?(R) allows to implement Corollary 3.25 based on ??(R) (cf. Section 5) which admits
further gains in power (cf. Example 1.1 as well as Section 6).

The idea of the extension presented in [1, Example 6.1] amounts to using `rl × `? instead
of `? × `rl, which is an application of Lemma 3.14 in our setting. Finally, the extension
discussed in [1, Example 6.3] suggests to use linear polynomial interpretations over N of
the shape as in (2) to prove termination of ?(R). Note that these interpretations are still
weight functions. This explains why the approach from [1] fails to establish confluence of
the TRSs in Examples 3.18 and 3.20 since a weight function cannot show termination of the
rules f1(g1(x))→ g1(f1(x)) and f1(h1(x))→ h1(g1(f1(x))), respectively.

Note that both recent approaches [1,8] based on decreasing diagrams fail to prove the
TRS R from Example 1.1 confluent. The former can, e.g., not cope with the non-terminating
rule ×1(x)→ +0(×1(x)) in R?> (cf. Example 3.28) while overlaps with the non-terminating
rule x+ y → y + x ∈ R prevent the latter approach from succeeding. On the contrary
Examples 3.17 and 3.28 give two confluence proofs based on our setting.

Finally we present a situation when the decreasing diagrams technique typically fails.
(In a slightly different setting similar ideas are proposed in [13]. We remark that the recent

3 We remark that it is easy to extend this example such that also ??(R) is non-terminating. Just consider
the rule f(g(x, a))→ g(f(x), g(f(g(x, c), f(g(x, c))))).

RTA’11

388 Labelings for Decreasing Diagrams

paper [2] follows a different approach for associativity and commutativity.) To handle such
cases we use the following well-known result.

I Lemma 4.3. Let → ⊆� ⊆ →∗. Then confluence of � implies confluence of →. J

The following example contains rules for associativity and commutativity.

I Example 4.4. Consider the TRS R consisting of the following two rules

x ◦ (y ◦ z)→ (x ◦ y) ◦ z x ◦ y → y ◦ x

All four critical peaks are joinable but the critical peak (y ◦ z) ◦ x←x ◦ (y ◦ z)→ (x ◦ y) ◦ z
cannot be shown decreasing with our labeling functions. Let S be the TRS R augmented by
the rule (x ◦ y) ◦ z → x ◦ (y ◦ z). All twelve critical peaks of S can be shown decreasing by
the rule labeling and hence S is confluent. Confluence of R follows by Lemma 4.3.

5 Implementation

In this section we sketch how the results from this paper can be implemented.
Before decreasingness of critical peaks can be investigated, the critical pairs must be

shown convergent. For a critical pair t←o→ u in our implementation we consider all joining
sequences such that t→6n · 6n← u and there is no smaller n that admits a common reduct.

To exploit the possibility for incremental confluence proofs by lexicographically combining
labels (cf. Lemmata 3.8 and 3.14) our implementation labels rewrite steps with tuples of
natural numbers. Since our labeling functions are implemented by encoding the constraints in
non-linear (integer) arithmetic it is straightforward to combine existing labels (some partial
progress) with the search for a new labeling that shows the critical peaks decreasing.

It is straightforward to implement Corollary 3.16. After establishing termination
of Rd/Rnd (e.g., by an external termination prover) any weak LL-labeling can be tried
to show the critical peaks decreasing. In [1, 8] it is shown how the rule labeling can be
implemented by encoding the constraints in linear arithmetic.

We sketch how to implement the labeling `Ssn from Lemma 3.7 as a relative termin-
ation problem. First we fix a suitable set S, i.e., we extend the definition of critical
pair steps to critical diagram steps: CDS(R) = {s → t, s → u, ti → ti+1, uj → uj+1 |
t←s→ u is a critical peak in R, t = t0 → · · · → tn = um ← · · · ← u0 = u, 0 6 i < n − 1,
0 6 j < m− 1}. Facing the relative termination problem CDS(R)/R we try to simplify it
according to Theorem 2.1 into some S1/S2. Note that it is not necessary to finish the proof.
By Theorem 2.1 the relative TRS (CDS(R) \ S1)/R is terminating and hence by Lemma 3.7
`

CDS(R)\S1
sn is an L-labeling. Let > := →∗R and > := →+

(CDS(R)\S1)/R. Since > and > can
never increase by rewriting, it suffices to exploit the first decrease with respect to >. Next we
show how critical diagrams are labeled with natural numbers. Consider a rewrite sequence
v1 →R v2 →R · · · →R vl. If v1 →∗S1

vl then all steps are labeled with 1. Otherwise take
the largest k < l such that v1 →∗S1

vk →R vk+1 →∗R vl. Then we set `sn(vi → vi+1) = 1 for
1 6 i 6 k and `sn(vi → vi+1) = 0 for k < i < l. Note that vk → vk+1 is the first step that
causes a decrease with respect to >, i.e., v1 →(CDS(R)\S1)/R vk+1. We demonstrate the above
idea on an example.

I Example 5.1. Consider the following TRS R from [3]:

I(x)→ I(J(x)) J(x)→ J(K(J(x))) H(I(x))→ K(J(x)) J(x)→ K(J(x))

H. Zankl et al. 389

We show how the labels for the critical peak H(I(J(x))) 1← H(I(x)) →1 K(J(x)) and the
joining sequences H(I(J(x)))→1 K(J(J(x)))→0 K(J(K(J(x)))) 1← K(J(x)) can be established
by `Ssn. Let S be the TRS generated by the steps in the critical peak and the joining sequences
above. The interpretation KN(x) = HN(x) = JN(x) = x and IN(x) = x+ 1 allows to “simplify”
termination of the problem S/R according to Theorem 2.1. Since the rules that reduce the
number of I′s are dropped from S (and R), those rules admit a decrease in the labeling.

The above trick does not work to implement Corollary 3.25, since s→R t→R v does not
ensure `?(s→ t) > `?(t→ v). Here the solution is to employ only techniques (for proving
the relative TRS ?(R) terminating) that can label a rewrite step with a concrete number.
To this end we will recall matrix interpretations [5] which are a very powerful method for
proving termination of relative rewrite systems that allow to compute a variant of `?.

An F-algebra A consists of a non-empty carrier A and a set of interpretations fA for every
f ∈ F . By [α]A(·) we denote the usual evaluation function of A according to an assignment α
which maps variables to values in A. An F -algebra A together with a well-founded order �
and a quasi-order % on A is called a monotone algebra if every fA is monotone with respect
to % and � and the inclusion % · � · % ⊆ � holds. Any monotone algebra (A,%,�) induces
a well-founded order on terms: s �A t if for any assignment α the condition [α]A(s) � [α]A(t)
holds. The quasi-order s %A t is similarly defined.

Matrix interpretations (M,�) (often just denotedM) are a special kind of monotone
algebras. Here the carrier is Nd for some fixed dimension d ∈ N \ {0}. The orders % and � are
defined on Nd as ~u % ~v if (~u)i >N (~v)i for all 1 6 i 6 d and ~u � ~v if ~u % ~v and (~u)1 >N (~v)1.
Here (~v)1 denotes the first element of the vector ~v. If every f ∈ F of arity n is interpreted
as fM(~x1, . . . , ~xn) = F1 ~x1 + · · ·+ Fn ~xn + ~f where Fi ∈ Nd×d for all 1 6 i 6 n and ~f ∈ Nd
then monotonicity of � is achieved by demanding that the top left entry of every matrix Fi
is non-zero. Let α0 denote the assignment with α(x) = ~0 for all variables x.

I Lemma 5.2. Let R be a TRS and `M? (s→p,l→r, t) = ([α0]M(?(s, p)))1 for some matrix
interpretationM. Then (`M? ,>N, >N) is a weak LL-labeling, provided R?> ∪R?= ⊆ %M.

Proof. That `M? is a labeling follows from the fact that (%M,�M) is a monotone reduction
pair and R?> ∪R?= ⊆ %M. The latter also ensures that `M? is a weak LL-labeling. J

To establish progress with Lemma 5.2 the implementation demands �M ∩R?> 6= ∅. By
repeated applications of Lemmata 5.2 and 3.8 weak LL-labelings are combined lexicographic-
ally until they form an LL-labeling. This is exactly the case if termination of ??(R) can be
established using matrix interpretations.

Finally, we explain why ??(R) need not be computed explicitly to implement Corollary 3.25
with the labeling from Lemma 3.27. The idea is to start with ?(R) and incrementally prove
termination of R?>/R?= until some S1/S2 is reached. If all left-hand sides in S1 are distinct
then they must have been derived from different combinations (l, x) with l → r ∈ R and
x ∈ Var(l). Hence they are exactly those rules which should be placed in R?=. We show the
idea by means of an example.

I Example 5.3. We revisit Example 1.1 and try to prove termination of ?(R). By an
application of Theorem 2.1 with the interpretation given in Example 1.1 the problem is
termination equivalent to R†/R?= and by another application of Theorem 2.1 the same proof
can be used to show termination of (R?> \ R?†)/(R?= ∪R?†) which is a suitable candidate
for ??(R) since the rules in R?† have different left-hand sides.

RTA’11

390 Labelings for Decreasing Diagrams

without Lemma 4.3 with Lemma 4.3
method pre CR(`rl) CR(`sn) CR pre CR(`rl) CR(`sn) CR
rule labeling 40(0.2) 35(0.2) – – 40(0.2) 37(0.3) – –
Corollary 3.16 45(0.3) 40(0.6) 37(1.4) 42(1.5) 45(0.3) 42(0.7) 40(1.4) 44(1.5)
Corollary 3.25? 45(0.3) 42(0.3) 34(1.1) 42(1.2) 45(0.3) 44(0.3) 38(1.1) 44(1.2)
Corollary 3.25?? 48(0.3) 45(0.3) 36(1.1) 45(1.2) 48(0.3) 47(0.4) 40(1.1) 47(1.3)

ACP – 42(0.1) – 48(0.1) – – – –

Table 1 Experimental results for 53 left-linear TRSs.

6 Experiments

The results from the paper have been implemented and form the core of the confluence prover
CSI [18]. For experiments4 we used the collection from [1]5 which consists of 106 TRSs from
the rewriting literature dealing with confluence. From these systems 67 are left-linear, but 14
of these are known to be non-confluent which gives a theoretical upper bound of 53 systems
for which the proposed methods can succeed. Our experiments have been performed on a
notebook equipped with an Intel® Core™2 Duo processor U9400 running at a clock rate of
1.4 GHz and 3 GB of main memory.

Table 1 shows an evaluation of the results from this paper. The first column indicates
which criterion has been used to investigate confluence. A ? means that the corresponding
corollary is implemented using ?(R) whereas ?? refers to ??(R). The column labeled pre shows
for how many systems the precondition of the respective criterion is satisfied, e.g., for rule
labeling the precondition is linearity while for Corollary 3.16 the precondition is termination
of Rd/Rnd. The columns labeled CR(`) give the number of systems for which confluence
could be established using labeling `. (For Corollary 3.25 implicitly `? is also employed.) The
column labeled CR corresponds to the full power of our approach, i.e., when the lexicographic
combination of all labelings is used. In Table 1 the numbers in parentheses indicate the
average time for establishing the precondition (column pre) and finding a confluence proof
(remaining columns) in seconds, respectively. These timings show that establishing the
precondition is fast and the same holds for `rl. The most costly criterion is `sn which is also
used in column CR. All tests finished within 60 seconds.

From the table we draw the following conclusions. Depending on the labeling function
(`rl versus `sn) either Corollary 3.16 or Corollary 3.25 can handle more systems. When both
labelings are used, Corollary 3.25?? subsumes Corollary 3.16 on this testbed. Corollary 3.25?
does not subsume Corollary 3.16 since ?(R) is non-terminating for the TRS in Example 1.1
which is contained in this testbed. For the systems where Corollary 3.25?? succeeded but
Corollary 3.25? failed the corresponding relative TRS ?(R) is non-terminating. The three
systems where the precondition of Corollary 3.25 is satisfied but confluence could not be
shown (without Lemma 4.3) contain rules for associativity and commutativity. To cope with
(two of) these systems we exploit the ideas from Example 4.4. The corresponding numbers
are given in the right part of Table 1.

For reference we also give the data for ACP [3], a powerful confluence prover which
implements various confluence criteria from the literature. According to [1] their tool can

4 Details available from http://cl-informatik.uibk.ac.at/software/csi/labeling.
5 http://www.nue.riec.tohoku.ac.jp/tools/acp/examples/crexamples-100410.tgz

http://cl-informatik.uibk.ac.at/software/csi/labeling
http://www.nue.riec.tohoku.ac.jp/tools/acp/examples/crexamples-100410.tgz

H. Zankl et al. 391

method 1.1 3.18 3.20 4.1 5.1
rule labeling ×(0.2) ×(0.2) ×(0.3) ×(0.2) ×(0.2)
Corollary 3.16 X(4.6) X(0.5) ×(0.5) X(0.6) X(1.9)
Corollary 3.25? ×(1.4) X(0.5) X(1.5) ×(0.3) X(1.8)
Corollary 3.25?? X(4.6) X(0.5) X(1.3) X(0.5) X(1.9)

ACP ×(11.5) ×(0.1) ×(0.7) ×(0.1) X(0.1)

Table 2 Experimental results for the examples from the paper.

show 42 systems confluent by (their extensions of) the rule labeling and using its full
power ACP can prove 48 systems confluent. In the collection considered for Table 1 there
is one system (Example 1.1) which ACP cannot handle but where our approach (because
we consider ??(R)) succeeds and two systems that we can show confluent by adding rules as
proposed in Example 4.4. Consequently we miss four systems compared to the full power
of ACP which handles them by considering development closedness [11] and parallel critical
pairs [16, 7]. Note that these criteria investigate confluence of ◦→ and ‖→, while our approach
considers →. Since for these systems neither Rd/Rnd nor ??(R) is terminating there also is
not much hope that our current approach can be extended to handle these systems. Hence as
future work we will study properties on labeling functions that allow to investigate confluence
of ‖→ and ◦→.

Table 2 does a similar evaluation as Table 1 on the examples from the paper. Here a X
indicates that the tool could establish confluence while a × means that the tool failed. The
numbers in parentheses give the time (in seconds) the tool spent on the respective example.

From Tables 1 and 2 we conclude that our framework admits a state-of-the-art confluence
prover for left-linear systems. For the sake of completeness we remark that ACP also supports
confluence analysis for non-left-linear systems.

7 Conclusion

In this paper we studied how the decreasing diagrams technique can be automated. We
presented conditions (subsuming recent related results) that ensure confluence of a left-linear
TRS whenever its critical peaks are decreasing. The labelings we proposed can be combined
lexicographically which allows incremental proofs of confluence and has a modular flavor
in the following sense: Whenever a new labeling function is invented, the whole framework
gains power. We discussed several situations (Examples 1.1, 3.18, 3.20, 4.1) where standard
confluence techniques fail but our approach easily establishes confluence.

Currently all our investigations are aimed to show confluence of →. As motivated in
Section 6 one obvious issue for future work is to study conditions on the labelings such
that ‖→ (or ◦→) can be shown confluent. This would allow to handle the systems which
we currently lose against ACP in Table 1. Furthermore, if the recent developments in the
termination community will also reach confluence, then automatic certification of confluence
proofs by means of a theorem prover is inevitable. Since our setting is based on a single
method (decreasing diagrams) while still powerful it seems to be a good starting point for
certification efforts.

RTA’11

392 Labelings for Decreasing Diagrams

References
1 T. Aoto. Automated confluence proof by decreasing diagrams based on rule-labelling. In

Proc. 21st International Conference on Rewriting Techniques and Applications, volume 6
of Leibniz International Proceedings in Informatics, pages 7–16, 2010.

2 T. Aoto and Y. Toyama. A reduction-preserving completion for proving confluence of non-
terminating term rewriting systems. In Proc. 22nd International Conference on Rewriting
Techniques and Applications, Leibniz International Proceedings in Informatics, 2011. To
appear.

3 T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems automat-
ically. In Proc. 20th International Conference on Rewriting Techniques and Applications,
volume 5595 of Lecture Notes in Computer Science, pages 93–102, 2009.

4 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

5 J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination
of term rewriting. Journal of Automated Reasoning, 40(2-3):195–220, 2008.

6 A. Geser. Relative Termination. PhD thesis, Universität Passau, 1990. Available as tech-
nical report 91-03.

7 B. Gramlich. Confluence without termination via parallel critical pairs. In Proc. 21st
International Colloquium on Trees in Algebra and Programming, volume 1059 of Lecture
Notes in Computer Science, pages 211–225, 1996.

8 N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termination. In Proc.
5th International Joint Conference on Automated Reasoning, volume 6173 of Lecture Notes
in Artificial Intelligence, pages 487–501, 2010.

9 D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.

10 V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer Science,
126(2):259–280, 1994.

11 V. van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181,
1997.

12 V. van Oostrom. Confluence by decreasing diagrams – converted. In Proc. 19th Interna-
tional Conference on Rewriting Techniques and Applications, volume 5117 of Lecture Notes
in Computer Science, pages 306–320, 2008.

13 M. Oyamaguchi and Y. Ohta. A new parallel closed condition for Church-Rosser of left-
linear term rewriting systems. In Proc. 8th International Conference on Rewriting Tech-
niques and Applications, volume 1232 of Lecture Notes in Computer Science, pages 187–201,
1997.

14 M. Oyamaguchi and Y. Ohta. On the Church-Rosser property of left-linear term rewriting
systems. IEICE Transactions on Information and Systems, E86-D(1):131–135, 2003.

15 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

16 Y. Toyama. On the Church-Rosser property of term rewriting systems. Technical Report
17672, NTT ECL, 1981.

17 Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems.
Journal of the ACM, 34(1):128–143, 1987.

18 H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc. 23rd
International Conference on Automated Deduction, Lecture Notes in Artificial Intelligence,
2011. To appear.

Proving Equality of Streams Automatically
Hans Zantema1 and Jörg Endrullis2

1 Department of Computer Science, TU Eindhoven, The Netherlands
Institute for Computing and Information Sciences, Radboud University
Nijmegen, The Netherlands
h.zantema@tue.nl

2 Free University Amsterdam, The Netherlands
joerg@few.vu.nl

Abstract
Streams are infinite sequences over a given data type. A stream specification is a set of equations
intended to define a stream. In this paper we focus on equality of streams, more precisely,
for a given set of equations two stream terms are said to be equal if they are equal in every
model satisfying the given equations. We investigate techniques for proving equality of streams
suitable for automation. Apart from techniques that were already available in the tool CIRC
from Lucanu and Roşu, we also exploit well-definedness of streams, typically proved by proving
productivity. Moreover, our approach does not restrict to behavioral input format and does not
require termination.

We present a tool Streambox that can prove equality of a wide range of examples fully
automatically.

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.393

Category Regular Research Paper

1 Introduction

The stream ones specified by ones = 1 : ones is the infinite stream having the data element
1 on every position. The same holds for the stream c specified by c = 1 : 1 : c. So we
expect that c = ones holds. This paper is about how to prove such stream equalities fully
automatically. More precisely, given a set of stream equalities (in this case ones = 1 : ones
and c = 1 : 1 : c) that are assumed to hold, can we conclude validity of another given
stream equality (in this case c = ones)? The semantics of this question is quite natural: we
have a basic data type D, typically the booleans or natural numbers, and streams are maps
from natural numbers to D. The question now states whether if all constants and functions
occurring in the equalities are interpreted by streams and stream functions in such a way
that all given equalities hold, then also the goal equality holds.

An excellent basis for treating this problem is the circular co-induction principle as
presented in [12, 5, 9, 10, 13, 7], and implemented in the tool CIRC. Indeed, several
interesting stream equalities can be proved fully automatically by CIRC.

Both the basic circular co-induction principle and its extension using special contexts are
the basis of the current paper. However, we offer several features that are not covered by
CIRC and/or its underlying theory:

We do not require the very specific format of behavioral equations in which the root of
every left hand side should be hd or tl and the given equations should be terminating when
applied only from left to right. Instead we allow any set of equations on streams. Our
default format is the pure stream format, the format as used in [3, 14, 15]. In this format

© Hans Zantema and Jörg Endrullis;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications (RTA’11).
Editor: M. Schmidt-Schauß; pp. 393–408

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.393
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

394 Proving Equality of Streams Automatically

ones is specified by the single equation ones = 1 : ones, where the similar specification in
behavioral format consists of the two equations hd(ones) = 1 and tl(ones) = ones.
We have a simple syntactic criterion for checking for special contexts: we introduce
guardedness (Definition 4.4) and show that all contexts composed from symbols satisfying
this guardedness, are special.
In case an equality proof requires auxiliary lemmas, we do not need to enter these lemmas
ourselves, but our tool Streambox generates and uses suitable lemmas fully automatically.
If a particular stream is uniquely defined by a set of equations, and some term satisfies
these equations, we may conclude that that term is equal to that stream. In this way we
may exploit earlier techniques to prove that a stream is uniquely defined, for instance by
proving productivity. In case this is appropriate, our tool Streambox calls a current tool
for proving context-sensitive termination for proving productivity, typically succeeding for
equations that are non-terminating themselves. In this way state-of-the-art termination
tools are exploited for proving stream equality.

Combining these features, Streambox can prove several non-trivial equalities fully automatic-
ally, like the property that the Toeplitz stream is the boolean derivative of the Thue-Morse
stream, as we shall see in Example 6.4.

The tool CIRC is based on the rewriting engine Maude, in particular using rewriting
to normal form as the mechanism to check convertibility. However, for this mechanism the
equations are only used in one direction, and the approach typically fails if this rewriting is
non-terminating.

Only rewriting in one direction gives undesirable restrictions. For instance, if a stream
function f is defined by f(σ) = 0 : f(σ), and a stream a is defined by a = f(a), then a will
coincide with 0 : a as is very easily shown by the following conversion:

a = f(a) = 0 : f(a) = 0 : a.

However, in this conversion the equality a = f(a) is used in both directions, so plain rewriting
fails to derive this very simple equality. Polishing the rules, for instance by completion, could
be helpful but also has limitations. Applying the rule a→ f(a) will cause non-termination,
and f(a)→ a will cause critical pairs with the defining rule for f . In this very simple example
Knuth-Bendix completion of the equations will succeed, but for many other examples, for
instance involving commutativity, this does not hold. Moreover, in a typical scenario the
set of equations for which convertibility of two terms has to be tested is not one static set,
but is extended all time by co-induction hypotheses and proved goals and lemmas, for which
ongoing Knuth-Bendix completion would be problematic.

So instead of forcing to do rewriting in only one direction and requiring termination, a
crucial building block of our approach is a check for general convertibility without these
restrictions. Accordingly, we developed our own tooling Streambox from scratch.

A typical example for which our tool Streambox succeeds is in proving M = 0 : M , where
M is specified by both M = f(M) and M = g(M), for f and g defined mutually recursively
by

f(x : σ) = 0 : g(σ), g(x : σ) = x : f(σ).

Here x is a boolean variable and σ is a stream variable. Indeed, f replaces every symbol
on an even position by 0, and g does the same for odd positions, so if M = f(M) and
M = g(M) then indeed M has to consist only of zeros, by which M = 0 : M should hold.
Our goal is that such a property can be proved fully automatically after entering only these
equations. Extensive experiments show failure of CIRC on all variants we could think of:

Hans Zantema and Jörg Endrullis 395

keeping the M -rules as they are will yield non-termination, while reversing them yields
non-unique normal forms caused by combinations of rules like f(M) = M and hd(f(σ)) = 0.

Conceptually, our notions of circular co-induction and the use of special contexts is the
same as in [9, 10, 13, 7]. However, we do not restrict to the behavioral format as required
there, by which the underlying definitions look quite different. As streams have a natural
semantics as mappings from natural numbers to data, it is natural to relate the notions
of validity to this semantics. We succeeded in presenting the theory for arbitrary sets of
stream equations based on this semantics. In this paper both the validity of the basic circular
co-induction principle (Theorem 3.1) and its extension to special contexts (Theorem 4.2)
is proved directly by induction on natural numbers, making the theory self-contained and
independent of [9, 10, 13, 7] or any theory of co-induction. More abstract variants of Theorem
3.1 and Theorem 4.2 are given in [10, 13]; there they are proved in a more abstract setting
in which it is left implicit that streams are a valid instance.

Most of our theory easily generalizes to other infinite data types, like infinite binary
trees. However, in order to keep notations simple we chose to focus on streams. It turns out
that involved underlying proof principles already appear in streams, and can be motivated
by small boolean stream examples. Our theory is given for streams over arbitrary data
types (specified by finite constructor ground terms). In the implementation and most of
the examples we restrict to the boolean case in which 0 and 1 are the only data elements.
Example 3.4 shows how our theory can be applied for stream over natural numbers.

This paper is structured as follows. In Section 2 we present the basic setting and its
semantics. In Section 3 we present the basic version of the principal of circular co-induction.
In Section 4 we extend this to special contexts and investigate how to recognize special
contexts when given in pure stream format, the standard format as used in [3, 14, 15]. In
Section 5 we present how to prove equality by using that a stream or stream function is
uniquely defined, typically to be proved by proving productivity. Next, in Section 6 we
discuss our implementation. We conclude in Section 7.

2 Streams: Specifications and Models

In stream specifications we have two sorts: s (stream) and d (data). We assume the set D of
data elements to consist of ground terms T(Σd) over some signature Σd of which all symbols
are of type dn → d for some n ≥ 0. We will focus on the boolean case where D = Σd = {0, 1}.
We assume three particular symbols:

: having type d× s→ s;
hd having type s→ d;
tl having type s→ s.

Apart from the symbols in Σd ∪ {:, hd, tl} there is a set Σ of user defined symbols, each
being of type dn × sm → s or dn × sm → d for n,m ≥ 0.

We assume a set Xs of variables of sort s and a set Xd of variables of sort d. Using all
these ingredients we can build (well-sorted) terms:

x is a term of sort d if x ∈ Xd,
σ is a term of sort s if σ ∈ Xs,
if u1 . . . , un are terms of sort d, and t1 . . . , tm of sort s, then f(u1 . . . , un, t1 . . . , tm) is
a term of sort d if f ∈ Σ ∪ Σd ∪ {hd} has type dn × sm → d, and a term of sort s if
f ∈ Σ ∪ {:, tl} has type dn × sm → s.

The set of all such terms is denoted by T(Σ ∪ Σd ∪ {:, hd, tl},Xd,Xs).

RTA’11

396 Proving Equality of Streams Automatically

As a notational convention variables of sort d will be denoted by x, y, terms of sort d by
u, ui, variables of sort s by σ, τ , and terms of sort s by t, ti.

I Definition 2.1. An equation is a pair (`, r) ∈ T(Σ ∪ Σd ∪ {:, hd, tl},Xd,Xs)2 such that `
and r are of the same sort.

An equation (`, r) is usually written as ` = r.
A stream specification is defined to be a set of equations.

I Example 2.2. For specifying the Thue-Morse stream morse as extensively studied e.g. in
[1], we have D = Σd = {0, 1}. There are two equations of sort d:

not(0) = 1, not(1) = 0,

and the following equations of sort s:

morse = 0 : zip(inv(morse), tl(morse)) tl(x : σ) = σ

inv(x : σ) = not(x) : inv(σ) zip(x : σ, τ) = x : zip(τ, σ)

Stream specifications are intended to specify streams for the constants in Σ of sort s,
and stream functions for the other elements of Σ of sort s. Similarly, elements of Σ of sort
d should specify data elements and data functions. The combination of these streams and
functions is what we will call a stream model.

More precisely, a stream over D is a map from the natural numbers to D. Write S = Dω

for the set of all streams over D. In case of D = ∅ we have S = ∅; in case of #D = 1 we
have #S = 1. So in non-degenerate cases we have #D ≥ 2.

I Definition 2.3. A stream model over Σd ∪ Σ is defined to consist of the set S = Dω and a
set of functions and constants [f] for every f ∈ Σ, where [f] : Dn × Sm → S if the type of
f ∈ Σ is dn × sm → s, and [f] : Dn × Sm → D if the type of f ∈ Σ is dn × sm → d.

Apart from the functions and constants [f] for every f ∈ Σ, we also have [f] for every
f ∈ Σd ∪ {:, hd, tl}, defined as follows:

[f](u1, . . . , un) = f(u1, . . . , un) for f ∈ Σd of type dn → d, u1, . . . , un ∈ T(Σd), for n ≥ 0.
For u ∈ T(Σd) and s ∈ S the stream [:](u, s) is defined by

[:](u, s)(0) = u, [:](u, s)(n+ 1) = s(n)

for every n ≥ 0.
[hd](s) = s(0) for s ∈ S.
For s ∈ S the stream [tl](s) is defined by

[tl](s)(n) = s(n+ 1)

for every n ≥ 0.

A variable assignment α is defined to be a map α : Xd ∪Xs → D∪S such that α(x) ∈ D
for x ∈ Xd and α(σ) ∈ S for σ ∈ Xs.

For t ∈ T(Σ ∪ Σd ∪ {:, hd, tl},Xd,Xs) and a variable assignments α : Xd ∪Xs → D ∪ S
the stream interpretation [t, α] in the stream model (S, ([f])f∈Σ) is defined inductively by:

[x, α] = α(x) for x ∈ Xd
[σ, α] = α(σ) for σ ∈ Xs

[f(u1, . . . , un, t1, . . . , tm), α] = [f]([u1, α], . . . , [un, α], [t1, α], . . . , [tm, α])

Hans Zantema and Jörg Endrullis 397

for all terms u1, . . . , un of sort d and all terms t1, . . . , tm of sort s, and every f ∈ Σ ∪Σd ∪ {:
, hd, tl} of type dn × sm → d or dn × sm → s.

In case t is a ground term then [t, α] does not depend on α, and we simply write [t] rather
than [t, α].

I Definition 2.4. An equation ` = r is defined to hold in the stream model, or the stream
model satisfies the equation ` = r, if [`, α] = [r, α] for every variable assignment α. A stream
model is said to satisfy a set of equations if it satisfies each of its equations.

So summarizing: a stream model consists of streams, and interpretations of function
symbols as functions on streams. For the symbols :, hd, tl the interpretations are predefined;
for the other symbols the choice is free. As the interpretations of :, hd, tl are fixed it is
expected that some corresponding equations hold in every model. Indeed this is the case.
Let Eht be the set of equations:

Eht =

hd(x : σ) = x

tl(x : σ) = σ

hd(σ) : tl(σ) = σ

I Lemma 2.5. Every stream model satisfies Eht.

Proof. We have to check that all three equations of Eht hold in every stream model. Using
the definitions of [:], [hd], [tl] we obtain

[hd(x : σ), α] = [hd]([x : σ, α]) = [x : σ, α](0)[:]([x, α], [σ, α])(0) = [x, α],

proving that the first equation holds, and

[tl(x : σ), α](i) = [tl]([x : σ, α])(i) = [x : σ, α](i+ 1) = [:]([x, α], [σ, α])(i+ 1) = [σ, α](i)

for every i ≥ 0, proving that the second equation holds. For the last equation we have to
prove that [hd(σ) : tl(σ), α](i) = [σ, α](i) for every i ≥ 0. For i = 0 this holds since

[hd(σ) : tl(σ), α](0) = [:]([hd(σ), α], [tl(σ), α])(0) = [hd(σ), α] = [σ, α](0);

for i > 0 this holds since

[hd(σ) : tl(σ), α](i) = [:]([hd(σ), α], [tl(σ), α])(i) = [tl(σ), α](i− 1) = [σ, α](i).

J

Now we arrive at the central notion of this paper.

I Definition 2.6. An equation ` = r is defined to hold with respect to a stream specification
E, notation E |= ` = r, if ` = r holds in every stream model satisfying E.

A set E′ of equations is defined to hold with respect to a stream specification E, notation
E |= E′, if E |= ` = r for every ` = r ∈ E′.

For a stream specification E we write =E for the congruence generated by E, that is, the
closure of E with respect to reflexivity, symmetry, transitivity, contexts and substitution.
Only using =E is called equational reasoning.

We obviously have the following theorem.

I Theorem 2.7. For every equation ` = r satisfying ` =E∪Eht r we have E |= ` = r.

The converse of Theorem 2.7 is not true: typically E |= ` = r may hold while ` =E∪Eht r

does not hold. For instance, if E consists of the two equations c = 0 : c and d = 0 : d, then
in every model both [c] and [d] are equal to stream only consisting of zeros, so E |= c = d.
However, to prove this equational reasoning is not sufficient: c =E∪Eht d does not hold.

RTA’11

398 Proving Equality of Streams Automatically

3 Basic circular co-induction

A main goal of this paper is to extend Theorem 2.7 to more powerful syntactic techniques
suitable for implementation for concluding E |= ` = r, which are still based on equational
reasoning. As long as the elements of the intended models can be interpreted as finite terms,
inductive theorem proving is the standard approach for this kind of questions. However, here
we deal with streams, that can be seen as infinite terms, and for which we need co-induction
rather than induction.

For expressing the versions of the co-induction principle as we consider them, we need a
fresh freeze symbol fr of type s→ d. This freeze symbol is used to force that the co-induction
hypothesis is only used on top level, and not on subterms. This idea originates from [6], in
which square brackets are used as the notation for the freeze operator.

For a set E′ of equations of sort s we write fr(E′) for the set of equations fr(`) = fr(r)
for ` = r ∈ E′. The following theorem can be seen as an instance of Theorem 2 in [13]; for
completeness we give a full proof based on our stream semantics and independent of the
more abstract and general setting of [13].

I Theorem 3.1 (Basic circular co-induction). Let E be a stream specification and E′ a set of
equations of sort s, both not containing the symbol fr, such that

E |= hd(`) = hd(r) for all ` = r ∈ E′, and
E ∪ fr(E′) |= fr(tl(`)) = fr(tl(r)) for all ` = r ∈ E′.

Then E |= E′.

Proof. Take an arbitrary stream model satisfying E; we have to prove that for all ` = r ∈ E′
we have [`, α] = [r, α] for every α, that is, [`, α](n) = [r, α](n) for every n ≥ 0. We do this by
induction on n.

For n = 0 take ` = r ∈ E′. We use the property E |= hd(`) = hd(r) from which we
conclude [hd(`), α)] = [hd(r), α]. We obtain [`, α](0) = [hd(`), α)] = [hd(r), α] = [r, α](0).

For n > 0 we assume [`, α](n− 1) = [r, α](n− 1) for every α and every ` = r ∈ E′ as the
induction hypothesis. For every ` = r ∈ E′ we have to prove [`, α](n) = [r, α](n), again for
every α. As fr does neither occur in E nor in ` = r, both the assumption that the model
satisfies E and the induction hypothesis are independent of the symbol fr, and we are still
free to define [fr]. Let us define [fr](s) = s(n− 1) for every stream s. Using the induction
hypothesis, then for every α we have

[fr(`), α] = [`, α](n− 1) = [r, α](n− 1) = [fr(r), α],

so our model satisfies fr(`) = fr(r) for all ` = r ∈ E′. So from E ∪ fr(E′) |= fr(tl(`)) = fr(tl(r))
we conclude that [fr(tl(`)), α] = [fr(tl(r)), α], for all ` = r ∈ E′. We obtain

[`, α](n) = [fr(tl(`)), α] = [fr(tl(r)), α] = [r, α](n),

concluding the proof. J

The set fr(E′) in the second requirement of Theorem 3.1 is called the co-induction
hypothesis.

I Example 3.2. Let E consists of the two equations c = 0 : c and d = 0 : d. Then E |= c = d

is proved using Theorem 3.1 as follows. Choose E′ = {c = d}. Here and in the following in
equational reasoning we will abbreviate =E∪Eht and =

E∪Eht∪fr(E′) to =.
The first requirement E |= hd(c) = hd(d) follows from

hd(c) = hd(0 : c) = 0 = hd(0 : d) = hd(d).

Hans Zantema and Jörg Endrullis 399

The second requirement follows from

fr(tl(c)) = fr(tl(0 : c)) = fr(c) = fr(d) = fr(tl(0 : d)) = fr(tl(d)),

using the co-induction hypothesis fr(c) = fr(d). So Theorem 3.1 implies E |= c = d.

The basic machinery of our approach consists of combining Theorem 2.7 and Theorem
3.1: for proving E |= ` = r first it is tried to prove ` =E∪Eht r. If this succeeds we are done,
otherwise Theorem 3.1 is tried for E′ = {` = r}. For the proof obligations of Theorem 3.1
again first Theorem 2.7 is tried, as was successful in Example 3.2. Where this fails, the
failing proof obligation is added to E′ after removing the fr symbols, and using this extended
E′ Theorem 3.1 is tried. This may be repeated any number of times. In a typical scenario in
this way a finite set E′ is found for which Theorem 3.1 applies. In this way not only validity
of ` = r is proved, but also of any rule in E′.

I Example 3.3. Let E consist of the equations

zeros = 0 : zeros alt = 0 : 1 : alt
ones = 1 : ones zip(x : σ, τ) = x : zip(τ, σ).

Then E |= alt = zip(zeros, ones) is proved using Theorem 3.1 as follows. First choose
E′ = {alt = zip(zeros, ones)}. The first requirement follows from

hd(alt) = hd(0 : 1 : alt) = 0 = hd(0 : zip(ones, zeros) =

hd(zip(0 : zeros, ones) = hd(zip(zeros, ones).

For the second requirement we need fr(tl(alt)) = fr(tl(zip(zeros, ones))), for which equa-
tional reasoning using the co-induction hypothesis fails. So we add the equation tl(alt) =
tl(zip(zeros, ones)) to E′ and try again to apply Theorem 3.1. By this addition now we obtain
the requirements for the original equation in E′ for free, and only need to consider the new
equation. Now equational reasoning yields hd(tl(alt)) = 1 = hd(tl(zip(zeros, ones))), and for
the second requirement we use the co-induction hypothesis fr(alt) = fr(zip(zeros, ones)) to
obtain

fr(tl(tl(alt))) = fr(alt) = fr(zip(zeros, ones)) = fr(tl(tl(zip(zeros, ones)))),

concluding the proof.

I Example 3.4. Consider streams over the naturals, that is, Σd consists of a constant 0 and
a unary symbol s representing successor. Let E consist of the equations

from(x) = x : from(s(x))
from2(x) = x : from2(s(s(x))) zip(x : σ, τ) = x : zip(τ, σ).

We will prove E |= from(x) = zip(from2(x), from2(s(x))) using Theorem 3.1. Choose E′ =
{from(x) = zip(from2(x), from2(s(x)))}. The first requirement follows from

hd(from(x)) = hd(x : from(s(x))) = x = hd(x : zip(from2(s(x)), from2(s(s(x))))) =

hd(zip(x : from2(s(s(x))), from2(s(x)))) = hd(zip(from2(x), from2(s(x)))).

The second requirement follows from

fr(tl(from(x))) = fr(tl(x : from(s(x)))) = fr(from(s(x))) =fr(E′)

RTA’11

400 Proving Equality of Streams Automatically

fr(zip(from2(s(x)), from2(s(s(x))))) = fr(tl(x : zip(from2(s(x)), from2(s(s(x)))))) =

fr(tl(zip(x : from2(s(s(x))), from2(s(x))))) = fr(tl(zip(from2(x), from2(s(x))))),

by which the claim has been proved by Theorem 3.1. In particular, for x = 0 this yields that
the stream from(0) of natural numbers is the zip of the stream from2(0) of even numbers and
the stream from2(s(0)) of odd numbers.

More complicated examples over the natural numbers typically will require a combination
of circular co-induction and induction over the natural numbers.

4 Special contexts

Next we present a powerful generalization of Theorem 3.1: instead of only assuming fr(`) =
fr(r) we may also assume fr(C[`]) = fr(C[r]) for special contexts C, where roughly speaking
for every n the n-th element of the stream represented by C[s] only depends on the first n
elements of the stream represented by s. This notion originates from [6, 10]. As conceptually
our notion is the same, we keep the terminology special context as introduced there.

I Definition 4.1. A context C of sort s and the hole of sort s is called special with respect
to a stream specification, if for every stream model, for every α, every n ≥ 0, and every pair
of terms t, t′ of sort s the following holds:

If [t, α](i) = [t′, α](i) for all i ≤ n, then [C[t], α](n) = [C[t′], α](n).

For example, the empty context � is special; as a consequence of Theorem 4.5 we will
conclude that zip(�, σ) and zip(σ,�) and inv(�) are special contexts with respect to the
stream specification from Example 2.2.

As the first element of tl(t) is the second element of t, we observe that the context tl(�)
is not special. In Example 4.3 we will show that even(�) is not a special context.

The requirement of a context C to be special is that [C[·], α] is a causal function on
streams, that is, for every n the the first n elements of the output stream only depend on the
first n elements of the input stream. Such causal functions have been studied co-algebraically,
e.g., in [8].

Since by definition the empty context is a special context, Theorem 3.1 is a direct
consequence of the following theorem, which can be seen as an instance of Theorem 3 in [10].
For completeness we give a full proof based on our stream semantics and our corresponding
definition of special context.

I Theorem 4.2 (Circular co-induction with special contexts). Let E be a stream specification
and E′ a set of equations of sort s, both not containing the symbol fr, such that

E |= hd(`) = hd(r) for all ` = r ∈ E′, and
E ∪ {fr(C[`]) = fr(C[r]) | C is a special context, ` = r ∈ E′} |= fr(tl(`)) = fr(tl(r)) for all
` = r ∈ E′.

Then E |= E′.

Proof. Take an arbitrary stream model satisfying E; we have to prove that [`, α] = [r, α] for
every α and every ` = r ∈ E′, that is, [`, α](n) = [r, α](n) for every n ≥ 0. We do this by
induction on n.

For n = 0 we use the property E |= hd(`) = hd(r) from which we conclude [hd(`), α)] =
[hd(r), α]. We obtain [`, α](0) = [hd(`), α)] = [hd(r), α] = [r, α](0).

For n > 0 we assume as the induction hypothesis [`, α](i) = [r, α](i) for every α and every
i < n, for all ` = r ∈ E′, and we have to prove [`, α](n) = [r, α](n), again for every α and

Hans Zantema and Jörg Endrullis 401

` = r ∈ E′. As fr does neither occur in E nor in E′, both the assumption that the model
satisfies E and the induction hypothesis are independent of the symbol fr, and we are still
free to define [fr]. Just like in the proof of Theorem 3.1 define [fr](s) = s(n − 1) for every
stream s. Let C be any special context. Using the induction hypothesis and the definition of
special context, for every α and ` = r ∈ E′ we obtain

[fr(C[`], α] = [C[`], α](n− 1) = [C[r], α](n− 1) = [fr(C[l], α],

so our model satisfies fr(C[`]) = fr(C[r]). As this holds for every special context and
` = r ∈ E′, and the model still satisfies E, from the condition of the theorem we conclude
that the model also satisfies fr(tl(`)) = fr(tl(r)) for any ` = r ∈ E′. Hence we obtain

[`, α](n) = [fr(tl(`)), α] = [fr(tl(r)), α] = [r, α](n),

concluding the proof. J

I Example 4.3. We start by a negative example. Let E consists of the four equations

even(x : σ) = x : odd(σ), odd(x : σ) = even(σ), c = 0 : even(c), d = 0 : even(d).

We now will show that even(�) is not a special context. Consider two streams: one only
consisting of zeros, and the other starting by two zeros, and followed by only ones. Then
both satisfy the equations for c and d, so we conclude E 6|= c = d.

Next assume that even(�) is a special context. The first condition of Theorem 4.2 for
proving E |= c = zeros is easily checked:

hd(c) = hd(0 : even(c)) = 0 = hd(0 : even(d)) = hd(d).

Using the co-induction hypothesis fr(even(c)) = fr(even(d)) also the second condition holds:

fr(tl(c)) = fr(tl(0 : even(c))) = fr(even(c)) = fr(even(d)) = fr(tl(0 : even(d))) = fr(tl(d)).

So by Theorem 4.2 we would conclude E |= c = d, contradicting the assumption that even(�)
is a special context.

Theorem 4.2 becomes useful if we have a syntactic criterion to check whether a particular
context is special. A suitable criterion is friendly nestingness as was introduced in [3] for
establishing productivity. The underlying idea is that when using equations from left to right,
at each step at most one stream element is consumed and at least one element is produced.
Although the underlying idea is the same, for our purpose we need less conditions, for instance,
we do not require orthogonality. In other settings this idea is also called guardedness, e.g., in
process algebra, where a recursive specification is called guarded if right-hand sides can be
rewritten to a choice among terms all having a constructor on top, see e.g. [2], Section 5.5.

To avoid confusion with the more restricted notion of friendly nestingness, we prefer to
call it guardedness. Where the rest of this paper allows arbitrary equations, this guardedness
criterion for detecting special contexts is the only spot where we focus on the pure stream
format as given in [3, 14, 15].

I Definition 4.4. A stream specification E over Σ ∪ Σd ∪ {:, hd, tl} is called guarded if no
symbol of sort d in Σ has an argument of sort s, and all equations ` = r of E of sort s satisfy

the symbols hd and tl do not occur in ` and r,
r is not a variable, and the root of r is :,

RTA’11

402 Proving Equality of Streams Automatically

` is of the shape f(u1 . . . , un, t1 . . . , tm) such that either ti ∈ Xs or ti = x : σ for some
x ∈ Xd, σ ∈ Xs, for every i = 1, . . . ,m,

and E is exhaustive, that is, for every term t = f(u1 . . . , un, t1 . . . , tm) for which ui ∈ D for
i = 1, . . . , n and for every i = 1, . . . ,m the term ti is of the shape d : t′ for d ∈ D, there is
such an equation ` = r and a substitution ρ such that t = `ρ.

I Theorem 4.5. Let a stream specification E over Σ ∪ Σd ∪ {:, hd, tl} be given, and subsets
E′ ⊆ E and Σ′ ⊆ Σ such that E′ over Σ′ ∪ Σd ∪ {:, hd, tl} is a guarded stream specification.
Then every context over Σ′ ∪ Σd ∪ {:} ∪Xs ∪Xd of sort s is special with respect to E.

Proof. Fix a model for E, and an assignment α. We prove the theorem by proving the
following claim by induction on n:

Claim: If terms t, t′ of sort s satisfy [t, α](i) = [t′, α](i) for all i ≤ n, then [C[t], α](i) =
[C[t′], α](i) for all i ≤ n, for every context C of sort s in which all symbols on the
path from the root to the hole (of sort s) are in Σ′ ∪ {:}.

For C = � being the empty context the claim is trivial. For a context in which the hole
is deeper then the first level, the claim can be proved by repeatedly applying instances of
the claim for contexts in which the hole is immediately below the root. So it remains to
prove the claim for C = f(u1, . . . , un, t1, . . . , tm) in which the hole � is one of the arguments
t1, . . . , tm, say tI = �; it can not be in a data argument since we assumed that data symbols
have no arguments of sort s. For proving [C[t], α](i) = [C[t′], α](i) for i ≤ n it is obtained
form the induction hypothesis for i < n, we only need to prove [C[t], α](n) = [C[t′], α](n).

In case f = : we have C = u1 : �. For n = 0 we conclude [C[t], α](0) = [u1, α] =
[C[t′], α](0), and for n > 0 we conclude

[C[t], α](n) = [t1[t], α](n− 1) = [t1[t′], α](n− 1) = [C[t′], α](n)

by the induction hypothesis.
It remains to prove [C[t], α](n) = [C[t′], α](n) for C = f(u1, . . . , un, t1, . . . , tm) for f ∈ Σ′

and tI = �. For any term v we have

[C[v], α] = [f(u1, . . . , un, t1, . . . , tI−1, v, tI+1, . . . , tm)]), α].

Here every ui may be replaced by the data element [u1, α)], and every ti may be replaced
by [ti, α](0) : tl(ti)), α], since [ti, α] = [[ti, α](0) : tl(ti), α] by Lemma 2.5, and similar for v.
Now the resulting term matches with ` for some equation ` = r in E′, due to the definition
of guardedness, where the root of r is :. Then [C[v], α] = [u : C ′[tl(v)]∗, α] for some u ∈ D
and some context C ′ having zero or more holes, and every path from the root to a hole
only contains symbols from Σ′ ∪ {:}. The ’∗’ in C ′[tl(v)]∗ means that every hole is filled by
tl(v). For n = 0 we obtain [C[t], α](0) = [u : · · · , α](0) = [C[t′], α](0), for n > 0 we apply the
induction hypothesis on C ′ and the two terms tl(t) and tl(t′). The condition of the induction
hypothesis for n − 1 is [tl(t), α](i) = [tl(t′), α](i) for all i ≤ n − 1, which follows from the
assumption [t, α](i) = [t′, α](i) for all i ≤ n. So by the induction hypothesis we conclude
C ′[tl(t)]∗, α](n− 1) = [C ′[tl(t′)]∗, α](n− 1).

In case C ′ has 1 hole it is immediate, in case C ′ has k holes this is concluded by applying
the induction hypothesis k times. We conclude

[C[t], α](n) = [u : C ′[tl(t)]∗, α](n)
= [C ′[tl(t)]∗, α](n− 1)
= [C ′[tl(t′)]∗, α](n− 1)
= [u : C ′[tl(t′)]∗, α](n)
= [C[t′], α](n),

Hans Zantema and Jörg Endrullis 403

concluding the proof. J

I Example 4.6. Let E consist of the two equations

zip(x : σ, τ) = x : zip(τ, σ), ones = 1 : zip(ones, ones).

We want to prove that E |= ones = 1 : ones. Applying the standard approach based
on Theorem 3.1 turns out to fail: E′ will be extended forever by terms containing an
increasing number of zip symbols. Instead, using Theorem 4.2 easily applies: according to
Theorem 4.5 zip(�, σ) is a special context, by which we may use the co-induction hypothesis
fr(zip(ones, σ)) = fr(zip(1 : ones, σ)):

fr(tl(ones)) = fr(tl(1 : zip(ones, ones))) = fr(zip(ones, ones))
= fr(zip(1 : ones, ones)) = fr(1 : zip(ones, ones))
= fr(ones) = fr(tl(1 : ones)).

For proving E |= ones = 1 : ones by Theorem 4.2 it remains to prove hd(ones) = hd(1 : ones),
which is straightforward.

5 Exploiting unicity

Several techniques have been developed to prove that a stream specification has a unique
solution, many of which are based on the notion of productivity. These techniques can be
used for proving equality: if we want to prove E |= c = t for some stream constant c having
a unique solution, then we can try to prove that t satisfies the equations for c, that is,
E |= ` ↓= r ↓ for every equation ` = r in E containing the symbol c, where ↓ means that
every symbol c is replaced by t. If this is the case, then both [c] and [t] satisfy the equations
for c in every model, and since this is unique we conclude [c] = [t] in every model, so proving
E |= c = t. In this section we describe this approach in detail, also for functions rather than
only for constants c, and give an example for which all earlier techniques fail and we make
use of recent techniques to prove productivity.

I Definition 5.1. A function symbol f ∈ Σ is called uniquely defined with respect to a set
E of equations if [f]1 = [f]2 for every two models [.]1, [.]2 satisfying E.

I Theorem 5.2. Let E be a set of equations such that a symbol f is uniquely defined with
respect to E. Let t = t′ be an equation for which f is the root of t, and all arguments of f in
t are variables, all distinct. Moreover, all variables in t′ occur in t, and the symbol f does
not occur in t′. Write ↓ for the normal formal with respect to the single rule t→ t′. Assume
E |= ` ↓= r ↓ for all equations ` = r in E. Then E |= t = t′.

Proof. Let [.]1 be any model satisfying E; we have to prove that [t, α]1 = [t′, α]1 for every
variable assignment α. Define [.]2 by [g]2 = [g]1 for every symbol g 6= f , and let [f]2 interpret
t′, that is, if t = f(x1, . . . , xn, σ1, . . . , σm, then [f]2(d1, . . . , dn, s1, . . . , sm) = [t′, α]1 for α
defined by α(xi) = di, α(σi) = si. So by definition we have [t, α]2 = [t′, α]1 for every α.
Using this, one proves by induction on the structure of v that [v, α]2 = [v ↓, α]1 for every
term v and every α. Hence for every equation ` = r in E and every α we obtain

[`, α]2 = [` ↓, α]1 = [r ↓, α]1 = [r, α]2,

so the model [.]2 satisfies E. Since f is uniquely defined we now conclude [f]1 = [f]2, so

[t, α]1 = [t, α]2 = [t′, α]1

for every α, concluding the proof. J

RTA’11

404 Proving Equality of Streams Automatically

I Example 5.3. Let E consist of the equations

a = 0 : f(a) f(0 : σ) = 1 : 0 : f(σ)
alt = 0 : 1 : alt f(1 : σ) = f(σ).

We want to prove that E |= a = alt. Earlier techniques fail for doing this automatically, but
we can apply Theorem 5.2 for the term t = a. First we have to prove that a is uniquely
defined. This follows from productivity of all ground terms, which is proved using Theorem
4.1 from [15]. To this end context-sensitive termination of E has to be proved for the instance
of context-sensitive rewriting in which rewriting is allowed on all arguments of all symbols
except for the second argument of ":". This is easily proved fully automatically by tools like
AProVE [4] and µ-Term [11].

Then by Theorem 5.2 it remains to prove that E |= ` ↓= r ↓ for all equations ` = r in E,
where ↓ means replacement of a by alt. As there is only one equation containing the symbol
a, we only have to prove E |= alt = 0 : f(alt). This is easily proved by our basic machinery
based on Theorem 3.1; it can also be proved by CIRC.

It is possible to prove E |= a = alt directly by Theorem 3.1 by choosing

E′ = {a = alt, fn(a) = 1 : alt, 0 : fn(a) = alt | n > 0}.

However, since E′ is infinite, and the argument requires to prove fn(a) = 1 : 0 : fn+1(a) for
every n > 0, this approach is not suitable for automation.

We want to stress here that productivity of all ground terms does not imply that all
functions are uniquely defined on all streams, only on stream interpretations of ground terms.
In this example [f] is not uniquely defined for all streams: one can make two distinct models
both satisfying E in which [f](s) are distinct, for s being the stream purely consisting of
ones.

6 Implementation

We have implemented the techniques as presented in this paper in a tool called ‘Streambox’.
More precisely, any stream specification with a corresponding goal can be entered, or chosen
from a list, and then the tool tries to prove the goal. The basic machinery is equational
reasoning in combination with circular co-induction. For equational reasoning the tool simply
searches for a conversion, so does not require termination. The tool Streambox is available
on-line, as well as for download:

http://infinity.few.vu.nl/streambox/

The tool Streambox automatically proves equality of all examples included in this paper.
In this section we describe some aspects of our implementation not yet covered by the

theory presented so far, in particular the implementation of special contexts, the use of
case analysis, and automatic lemma search. Streambox is not stand alone: for exploiting
unicity by using Theorem 5.2 it is tried to prove unicity by proving productivity by proving
context-sensitive termination as described in [15] This is done by calling µ-Term [11], and in
case this fails by calling AProVE [4]. In this way the power of state-of-the art termination
provers is exploited.

Hans Zantema and Jörg Endrullis 405

6.1 Special contexts
Theorem 4.2 extends circular co-induction with special contexts. Roughly speaking, the idea
is that to derive the equality fr(tl(`)) = fr(tl(r)), we are allowed to use equations of the form
fr(C[`]) = fr(C[r]) for every special context C, in particular for contexts using symbols for
which the specification is guarded, as discussed in Theorem 4.5. For example, the special
contexts for Example 2.2 include:

inv(�), inv(inv(�)), inv(inv(inv(�))), . . .
zip(�, s), zip(inv(�), s), zip(inv(inv�), s), zip(zip(�, s), t), . . .

Mimicking the use of these infinitely many special contexts can be done by moving the symbol
fr up and down, as is described in the following lemma of which the proof is straightforward:

I Lemma 6.1. Let E be a stream specification and E′ a set of equations of sort s, both not
containing the symbol fr.

Let Σ′ ⊆ Σ such that every context over Σ′ ∪ {:} ∪Xs ∪Xd of sort s is special. For every
symbol f ∈ Σ′, let f# be a fresh symbol of the same type. We define the set S(Σ′) to consist
of the following equations:

fr(f(x1, . . . , xm, σ1, . . . , σm)) = f#(x1, . . . , xm, fr(σ1), . . . , fr(σm))

for every f ∈ Σ′.
Assume that the following conditions hold:
E |= hd(`) = hd(r) for all ` = r ∈ E′, and
E ∪ {fr(`) = fr(r)} ∪ S(Σ′) |= fr(tl(`)) = fr(tl(r)) for all ` = r ∈ E′.

Then E |= E′. J

Streambox derives the set Σ′ according to Theorem 4.5, and then employs the rules given
in Lemma 6.1 to treat special contexts.

6.2 Case analysis
Let us consider the following specification:

inv(0 : σ) = 1 : inv(σ), inv(1 : σ) = 0 : inv(σ),

and prove the equation inv(inv(σ)) = σ. A direct application of the basic circular co-induction
principle fails: it needs the observation that every boolean stream σ is either of the shape
σ = 0 : σ′ or σ = 1 : σ′.

The following straightforward lemma exploits this case analysis:

I Lemma 6.2 (Case analysis). Let E be a stream specification such that 0 and 1 are the only
data constructors. Let E′ ∪ {` = r} be a set of equations, and σ a stream variable occurring
in ` = r. Then E |= E′ ∪ {` = r} if and only if

E |= E′ ∪ {`[σ 7→ 0 : σ] = r[σ 7→ 0 : σ]} ∪ {`[σ 7→ 1 : σ] = r[σ 7→ 1 : σ]}

Applied to the above specification, the proof obligation is

E ∪ {fr(inv(inv(σ))) = fr(σ)} |= {fr(tl(inv(inv(0 : σ)))) = fr(tl(0 : σ))} ∪
{fr(tl(inv(inv(1 : σ)))) = fr(tl(1 : σ))}

RTA’11

406 Proving Equality of Streams Automatically

which is easily proved by equational reasoning.
In Streambox the focus is on boolean streams, and only this boolean version of case

analysis has been implemented. For other data structures case analysis can be employed as
well. For example, for streams over natural numbers one can distinguish the cases 0 : σ and
s(x) : σ.

6.3 Automatic lemma search
For many examples, circular co-induction does not suffice for deriving the goal equations
directly from the input system. Then it frequently helps to first find some auxiliary lemmas,
which can themselves be proved using circular co-induction. These lemmas then may be
employed to prove further lemmas, or the goal equations:

I Lemma 6.3 (Lemma usage). Let E be a stream specification and E′, E′′ sets of equations.
If E |= E′, then E |= E′′ if and only if E ∪ E′ |= E′′.

Proof. Since E |= E′ it follows that E′ is valid in every stream model where E is valid.
Hence, the set of stream models of E ∪ E′ coincides with that of E. J

Lemma 6.3 is used as follows: if earlier techniques fail to prove E |= E′′, then a set E′
of small equations (the lemmas) is tried to be created for which E |= E′ can be proved,
again using our approach, see below for more details. After every extension of E′ by a new
equation, it is tried to prove E ∪E′ |= E′′, and as soon this succeeds we are done. In proving
new lemmas in E′, it is allowed also to use earlier lemmas in E′.

The advantage with respect to circular co-induction is that the lemmas E′ enrich the
conversion relation, and thereby can be fruitful for deriving the goal equations.

Our tool Streambox supports an automated search for lemmas in the following way.
It enumerates small terms t1, t2, . . . of sort s by increasing ‘weight’. For the weight of a
term t we have chosen the number of function symbols in t minus ξ-times the number of
distinct variables in t (where 0 < ξ ≤ 0.1). The intention of this weight function is that the
most general lemmas are encountered first. For example, it guarantees that even(zip(s, t)) is
generated before before even(zip(s, s)), which in turn is found before even(zip(ones, ones)).

When ti is generated, for j < i it is checked whether prefixes upon some depth are equal
for ti and tj for replacing variables by some random streams. If this is the case, then it is
tried to prove E |= ti = tj . If this succeeds, then ti = tj is added to the set E′ of lemmas.

I Example 6.4. Consider the following stream specification:

morse = 0 : zip(inv(morse), tl(morse)) tl(x : σ) = σ

inv(x : σ) = not(x) : inv(σ) not(0) = 1
zip(x : σ, τ) = x : zip(τ, σ) not(1) = 0

toeplitz = 1 : zip(inv(toeplitz), ones)) xor(0 : x : xs) = x : xor(x : xs)
ones = 1 : ones xor(1 : x : xs) = not(x) : xor(x : xs)

with the goal of proving toeplitz = xor(morse). Here morse is the Thue-Morse stream from
Example 2.2, and toeplitz is a simple instance of a Toeplitz word as presented in [1], 10.11,
exercise 42: toeplitz is the stream obtained by replacing the ?-symbols in the stream 101?ω
consecutively by the elements of toeplitz. The equality between toeplitz and this alternative
characterization can also be proved by Streambox.

Hans Zantema and Jörg Endrullis 407

Our tool Streambox succeeds in proving toeplitz = xor(morse) within approximately one
minute. Among others, it discovers the 8 lemmas displayed below.

Lemma Uses Lemma
1 xor(tl(s)) = tl(xor(s))
2 xor(inv(s)) = xor(s) 1
3 inv(inv(s)) = s
4 inv(ones) = xor(ones) 1
5 zip(inv(t), inv(s)) = inv(zip(t, s))
6 xor(xor(zip(t, s))) = zip(xor(t), xor(s)) 1
7 xor(zip(inv(t), s)) = inv(xor(zip(t, s))) 1, 2, 3, 5
8 tl(inv(zip(s, s))) = xor(zip(s, ones)) 1
9 toeplitz = xor(morse) 1,2,3,4,5,6,7,8

Using these 8 lemmas, finally the proof is given.

In the default setting only the lemmas are shown that are really used, and all proofs are
given in full detail, showing the use of lemmas and co-induction hypotheses in separate colors
for clarity. By choosing ’options’ in the tool several parameters can be changed.

7 Conclusions

Streams or infinite sequences have been study extensively, see e.g., [1] and its bibliography
of over 70 pages. A compact way to specify streams is by giving a set of equations. In this
paper we investigated techniques for proving equality of streams automatically, given by such
sets of equations. As main achievements we summarize:

We present self-contained theory for the circular co-induction principle for streams,
including special contexts, as presented in [12, 5, 6, 9, 10, 13, 7]. Our proofs use the
standard semantics of streams being maps from naturals to data.
We allow any set of equations on streams; in particular we do not restrict to the specific
format of behavioral equations as in [9, 10, 13] in which only equations are allowed with
left hand sides having hd or tl on top. In contrast to the approach of the tool CIRC
[9] we never require termination. Our default format is the pure stream format as used
in [3, 14, 15], in which specifications are often given much shorter than by behavioral
equations.
Where in [10] it is stated that the algorithm for computing special contexts is quite
complex, and hence not described in detail, we have a very simple criterion for checking
for a powerful class of special contexts: guarded contexts, inspired by and closely related
to friendly nestingness from [3].
We present a technique to prove stream equality by exploiting unicity: two streams are
equal if one of them is uniquely defined and the other satisfies the equations of the first.
For using this we need to prove unicity automatically, for which we use a technique to
prove productivity by means of context-sensitive termination.
We offer a tool Streambox combining and exploiting these techniques fully automatically.
In particular, for hard examples the tool searches for lemmas autonomously, and uses
derived lemmas when appropriate. In this way for several stream equalities Streambox
outperforms the earlier tool CIRC [9].

RTA’11

408 Proving Equality of Streams Automatically

References
1 J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generalizations.

Cambridge University Press, 2003.
2 J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational Theories of

Communicating Processes, volume 50 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge, UK, 2009.

3 J. Endrullis, C. Grabmayer, and D. Hendriks. Data-oblivious stream productivity. In
Proceedings of the 11th International Conference on Logic for Programming, Artificial In-
telligence, and Reasoning (LPAR’08), volume 5330 of Lecture Notes in Computer Science,
pages 79–96. Springer-Verlag, 2008. Web interface tool: http://infinity.few.vu.nl/
productivity/.

4 J. Giesl et al. AProVE. Web interface and download: http://aprove.informatik.
rwth-aachen.de.

5 J. Goguen, K. Lin, and G. Roşu. Circular coinductive rewriting. In Proceedings, 15th Inter-
national Conference on Automated Software Engineering (ASE’00). Institute of Electrical
and Electronics Engineers Computer Society, 2000. Grenoble, France, 11-15 September
2000.

6 J. Goguen, K. Lin, and G. Roşu. Conditional circular coinductive rewriting with case
analysis. In Recent Trends in Algebraic Development Techniques (WADT02), volume 2755
of Lecture Notes in Computer Science, pages 216–232. Springer, 2003.

7 E.-I. Goriac, D. Lucanu, and G. Roşu. Automating coinduction with case analysis. In
Twelfth International Conference on Formal Engineering Methods (ICFEM’10), volume
6447 of Lecture Notes in Computer Science, pages 220–236. Springer, 2010.

8 J. Kim. Coinductive properties of causal maps. In Proceedings of the 12th International
Conference on Algebraic Methodology and Software Technology (AMAST 2008), volume
5140 of Lecture Notes in Computer Science, pages 253–267. Springer, 2008.

9 D. Lucanu and G. Roşu. CIRC: A circular coinductive prover. In CALCO’07, volume 4624
of Lecture Notes in Computer Science, pages 372 – 378. Springer, 2007.

10 D. Lucanu and G. Roşu. Circular coinduction with special contexts. In Proceedings of the
11th International Conference on Formal Engineering Methods (ICFEM’09), volume 5885
of Lecture Notes in Computer Science, pages 639–659. Springer, 2009.

11 S. Lucas et al. µ-Term. Web interface and download: http://zenon.dsic.upv.es/
muterm/.

12 G. Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.
13 G. Roşu and D. Lucanu. Circular coinduction: A proof theoretical foundation. In Proceed-

ings of the 3rd International Conference on Algebra and Coalgebra in Computer Science
(CALCO’09), volume 5728 of Lecture Notes in Computer Science, pages 127–144. Springer,
2009.

14 H. Zantema. Well-definedness of streams by termination. In Proceedings of the 20th Inter-
national Conference on Rewriting Techniques and Applications (RTA’09), volume 5595 of
Lecture Notes in Computer Science, pages 164–178. Springer-Verlag, 2009.

15 H. Zantema and M. Raffelsieper. Proving productivity in infinite data structures. In
Christopher Lynch, editor, Proceedings of the 21st International Conference on Rewriting
Techniques and Applications, volume 6 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 401–416, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

http://infinity.few.vu.nl/productivity/
http://infinity.few.vu.nl/productivity/
http://aprove.informatik.rwth-aachen.de
http://aprove.informatik.rwth-aachen.de
http://zenon.dsic.upv.es/muterm/
http://zenon.dsic.upv.es/muterm/

	i
	RTA 2011 Conference Organization
	External Reviewers
	Author Index
	Preface

	1
	3
	Introduction
	Rewriting in the design of algorithms
	Rewrite-based Descriptions
	General Paradigm

	Rewriting in Term Rewriting and Theorem Proving
	Rewriting in Formal Modeling and Analysis
	Conclusion

	9
	rta
	blank-page

	11
	Introduction
	Background and decision problems
	Fast algorithm
	Procedures and complexity
	Asymptotic complexity

	Performance analysis
	Chained keys
	Composed keys
	Denning-Sacco shared key protocol
	Fast worst case

	Discussion and future work

	21
	Introduction
	Proof Engines
	Core Language, Termination
	Declarations
	Ordering Parameters
	Criteria and Heuristics
	External Solvers, Parallel Search for Orderings

	Local Confluence, Completion and Convergence

	Certification Engine
	Input, Output
	Structure of a Proof
	Batch Mode Command Line Options
	Experiments

	Resources and Perspectives

	31
	Introduction
	Implementation of Order-Sorted ACU Unification
	Variants and Variant Generation
	Variant-based Equational Order-Sorted Unification
	Narrowing-based Symbolic Reachability Analysis
	Applications

	41
	Introduction
	int-Based TRSs
	Translating LLVM-IR Programs into int-Based TRSs
	Single Non-Recursive Function Operating on Integers
	Simplification of int-Based Rewrite Rules
	Several Functions Operating on Integers
	Programs Containing Pointers and Floating Point Numbers
	Utilizing Static Analysis Methods

	Evaluation
	Conclusions

	51
	Introduction
	Preliminaries
	First-order unification and matching
	Unif-STG
	Experiments
	Conclusion and Further Work

	61
	Introduction
	Reduction Graphs
	Anagopos—Interface and User's Guide
	Anagopos—Graph Drawing Algorithms
	Anagopos—Architecture
	Conclusion and Future Work

	71
	Introduction
	Maximal Completion
	Automation
	Computing R(C)
	Filtering S(C)

	Related Work and Comparison
	Experiments
	Conclusion and future work

	81
	Introduction
	CRSX Extensions
	Parser Generator
	Eclipse Plugin
	RulesCompiler
	Conclusions

	91
	Introduction
	Preliminaries
	Confluence criteria
	Reduction-preserving completion
	Implementation and experiments
	Conclusion

	107
	hoind
	Introduction
	Preliminaries
	Extensional Semantics
	Natural Semantics and Natural Inductive Theorems
	Checking Natural Inductive Theorems
	Conclusion

	blank-page

	123
	Introduction
	Preliminaries
	Exponential Path Order EPO
	Exponential Path Order EPO
	Embedding EPO in EPO
	Characterising Exponential Time Computation
	Conclusion

	139
	Infinitary Term Rewriting
	Term Graphs
	Canonical Term Graphs
	Partial Order on Term Graphs
	Metric on Term Graphs
	Infinitary Term Graph Rewriting
	Alternative Approaches and Future Work

	155
	Introduction
	From Recursive JBC to Modular Termination Graphs
	States
	Termination Graphs for a Single Method
	Termination Graphs for Several Methods

	From Modular Termination Graphs to Term Rewriting
	Experiments and Conclusion

	171
	Introduction
	Background and Preliminaries
	Constraints combination
	A Solver for Arrays with diff
	Preprocessing
	Completion

	The Interpolation Algorithm
	Interpolating Metarules
	The Interpolation Solver
	An Example

	Related work and Conclusions

	187
	Introduction
	Preliminaries
	The Grammar Completion Algorithm
	Termination
	Soundness: Local and Global Safety
	Related Work
	Evaluation, Conclusion and Further Directions

	203
	Introduction
	Background and Related Work
	Preliminaries
	Dependency Pairs
	The Dependency Graph
	Reduction Orders
	Type Changing

	Formative Rules
	Monotone Algebras
	Conclusion

	219
	Introduction
	Preliminaries
	Complete and Minimal Algorithm
	Computing Rigid Generalizations
	Application in Clone Detection
	Discussion
	Final Comments

	235
	Introduction
	Preliminaries
	Main Theorem
	Proof of the Main Result
	Conclusion and Future Work

	251
	Introduction
	Preliminaries
	Well-founded Orders on Vectors of Natural Numbers
	Weakly Decreasing Orders
	Non-weakly Decreasing Orders

	Matrix Interpretations and Weakly Decreasing Orders
	Comparing Matrix Interpretations over Weakly Decreasing Orders
	Matrix Interpretations and Non-weakly Decreasing Orders
	Improved Matrix Interpretations
	Conclusion and Future Work

	267
	Introduction
	Preliminaries
	Unraveling for DCTRSs
	Soundness without Context-Sensitivity
	Observation of Unsoundness
	Soundness on Ultra-Left-Linearity
	Soundness on Ultra-Right-Linear-Non-Erasing Property
	Soundness of Ohlebusch's Unraveling

	Conclusion

	283
	Introduction
	Preliminaries
	Inversion Transformation for Tail Recursive Functions
	Comparison with Previous Approaches
	Conclusion

	299
	Introduction
	Syntax and Typing Rules
	Operational Semantics and the Main Theorem
	Comparison, future work

	313
	Introduction
	Infinitary Lambda Calculus
	Reconsidering the Axiom of Overlap
	Examples of Sets of Weak Meaningless Terms
	Weak Meaninglessness implies Confluence and Normalization
	Axioms of Closure under Expansion
	Confluence implies Normalization
	Confluence implies Weak Meaninglessness
	Conclusions and Future Research

	329
	Introduction
	Preliminaries
	Term Rewriting
	Semantic Labeling

	Modular Semantic Labeling and Unlabeling
	Dependency Pair Framework
	Problems in Certification
	Experiments
	Conclusion

	345
	Introduction
	A Rewriting View of Simple Typing
	Syntax and Semantics
	Basic Metatheory
	Typing as Abstract Operational Semantics
	Type Preservation as Confluence

	STLC with a Fixed-Point Combinator
	Adding Polymorphism
	Type Inference for STLC
	Simply Typed Combinators with Uniform Syntax
	Conclusion

	361
	Introduction
	Preliminaries
	The TRS E
	Bounded Rewriting
	Marked Terms
	Marked Rewriting
	Bounded Derivations and Bounded TRSs

	Main Result
	Definition of the GRS G Used for the Simulation

	Strongly Bounded TRSs
	Perspectives

	377
	Introduction
	Preliminaries
	Confluence by Labeling
	Linear TRSs
	Left-linear TRSs

	Assessment
	Implementation
	Experiments
	Conclusion

	393
	Introduction
	Streams: Specifications and Models
	Basic circular co-induction
	Special contexts
	Exploiting unicity
	Implementation
	Special contexts
	Case analysis
	Automatic lemma search

	Conclusions

