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Introduction to the Technical Communications of
the 28th International Conference on Logic
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—— Abstract

We are proud to introduce this special issue of LIPIcs — Leibniz International Proceedings
in Informatics, dedicated to the technical communications accepted for the 28th International
Conference on Logic Programming (ICLP).

1998 ACM Subject Classification D.1.6 Logic Programming, 1.2.3 Deduction and Theorem
proving/Logic programming

Keywords and phrases Logic Programming, Organization Details

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.xvii

The ICLP meetings started in Marseille in 1982 and since then constitute the main
venue for presenting and discussing work in the area of logic programming. We contributed
to ICLP for the first time in 1991. The first guest-editor had a paper on logic programming
with sets, and the second had two papers on the parallel implementation of the Andorra
model. Since then, we continued pursuing research in this exciting area and ICLP has always
been the major venue for our work. Thus, when the ALP EC committee kindly invited us
for chairing the 2012 edition we were delighted to accept.

We particularly appreciate the honor and responsability of organising ICLP in Budapest.
Hungary has had a central role both in implementation and in the application of logic pro-
gramming. Indeed, the role of Hungary in general in Computer Science is widely recognized,
and organizing this meeting in the town of John von Neumann, one of the “talent-scouts”
of Turing, in the centenary of the birth of the latter, is just another reason for justifying the
fact that the fascinating Budapest is the unique town to host ICLP twice.

Publishing the technical communications as LIPIcs paper is a joint initiative taken by the
Association for Logic Programming and of the Dagstuhl Research Online Publication Server
(DROPS). The goal is to allow a fast preliminary publication for research contributions that
are not yet ready for a journal publication but, on the other hand, deserves to be presented
at the ICLP. Quality is ensured by an anonymous refereeing process (at least three reviewers
per paper), and by an active and very much participating program committee. The approach
was first experimented in 2010, and has had favorable feedback since.

This year, ICLP sought contributions in all areas of logic programming, including but
not restricted to:

? Agostino Dovier a.I'ld Vitor Santos.Costa;

Y _ND icensed under Creative Commons License ND
Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. xvii—xxi
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xviii

Introduction to ICLP 2012 Technical Communications

Theory: Semantic Foundations, Formalisms, Non-monotonic Reasoning, Knowledge Rep-
resentation.

Implementation: Compilation, Memory Management, Virtual Machines, Parallelism.
Environments: Program Analysis, Transformation, Validation, Verification, Debugging,
Profiling, Testing.

Language Issues: Concurrency, Objects, Coordination, Mobility, Higher Order, Types,
Modes, Assertions, Programming Techniques.

Related Paradigms: Abductive Logic Programming, Inductive Logic Programming, Con-
straint Logic Programming, Answer-Set Programming.

Applications: Databases, Data Integration and Federation, Software Engineering, Natu-
ral Language Processing, Web and Semantic Web, Agents, Artificial Intelligence, Bioin-
formatics.

In response to the call for papers we received 102 abstracts, 90 of which remained as
complete submissions. Of these, 81 were submitted as full papers and 9 as technical com-
munications. Each paper was reviewed by at least three anonymous program committee
members, selected by the program chairs. Sub-reviewers were allowed. After discussion,
involving the whole program committee, and a second round of revision for some papers,
20 papers have been selected for immediate journal publication in a special issue of Theory
and Practice of Logic Programming (TPLP). 37 papers instead have been judged to deserve
a slot for a short presentation at the Meeting and a “technical communication” publica-
tion in this Volume of the Leibniz International Proceedings in Informatics (LIPIcs) series,
published on-line through the Dagstuhl Research Online Publication Server (DROPS).

The whole set of accepted papers includes 36 technical papers, 12 application papers, 5
system and tool papers, and 4 papers submitted directly as technical communications.

The Conference program was honored to include contributions from three keynote speak-
ers and from a tutorialist. Two invited speakers come from industry, namely Ferenc Darvas
from CompuDrug International, Inc. Sedona, Arizona, and ComGrid Kft, Budapest (two
companies using computer science techniques for chemistry), and Mike Elston from Secu-
ritEase (an Australian company developing stock brokering tools). Moreover, Jan Wiele-
maker, of the VU University Amsterdam, presented an history of the first 25 years of SWI
Prolog, one of the major (and free) Prolog releases. Tutorialist Viviana Mascardi from Uni-
versity of Genova (Italy) introduced us to the hot topic of “Logic-based Agents and the
Semantic Web”.

The first ICLP Conference was organized 30 years to this year, in Marseille. During
those 30 years, ICLP has been a major venue in Computer Science. In order to acknowledge
some of the major contributions that have been fundamental to the success of LP as a
field, the ALP executive committee decided that ICLP should recognize the most influential
papers presented in the ICLP and ILPS conferences (ILPS was another major meeting in
logic programming, organized until 1998), that, 10 and 20 years onwards, have been shown
to be a major influence in the field. As program co-chairs of ICLP2012, we were the first
to be charged with this delicate task. We included papers from ICLP 1992 and ILPS 1992,
20 years onwards, and of ICLP 2002, 10 years onwards. Our procedure was to use biblio-
metric information in a first stage, and to use our own personal criteria in a second stage,
if necessary. Given that this is the first time this award was given we also considered 1991,
and 2001 papers. Although there are an impressive number of excellent papers in 1991 and
1992, one paper emerges with an outstanding record of roughly 600 citations. Further, the
paper clearly has a very major influence in the field. The paper is
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Michael Gelfond and Vladimir Lifschitz: Representing Actions in Extended Logic Pro-
gramming. JICSLP 1992: 559-573

The 10 years onward analysis again produced a group of excellent papers (as expected,
the number of citations was stricly less than for 20 years old papers). In this case choosing
the winner in a very short list was more difficult. Ackowledging their influence over the very
active field of Web Databases and Semantic Web, our selection went to:

Frangois Bry and Sebastian Schaffert: Towards a Declarative Query and Transformation
Language for XML and Semistructured Data: Simulation Unification. ICLP 2002: 255-
270

We therefore invited these authors for an invited talk in a special session at the meeting.
Frangois Bry and Sebastian Schaffert also contributed to this iussue with a survey paper,
entitled Simulation Unication: Beyond Querying Semistructured Data.

Since the first edition in 2005, organized by Enrico Pontelli, the Doctoral Consortium has
been organized at each ICLP meeting. This event is designed for doctoral students working
in areas related to logic programming, with a particular emphasis to students interested in
pursuing a career in academia. The Doctoral Consortium aims to provide students with
an opportunity to present and discuss their research directions, their thesis proposal, and
to obtain feedback from the major experts in the field. This year the doctoral consortium
organization has been coordinated by Marco Gavanelli and Stefan Woltran, and seven thesis
proposals have been considered deserving of presentation. A survey of these proposals is
part of this volume.

Together, this LIPIcs volume and the TPLP special issue constitute the proceedings of
ICLP12. The list of the 20 accepted full papers appearing (sorted by alphabetical order) in
the corresponding TPLP special issue follows:

Disjunctive Datalog with Existential Quantifiers: Semantics, Decidability, and Complex-
ity Issues. Mario Alviano, Wolfgang Faber, Nicola Leone, and Marco Manna

Towards Multi-Threaded Local Tabling Using a Common Table Space. Miguel Areias
and Ricardo Rocha

Module Theorem for the General Theory of Stable Models. Joseph Babb and Joohyung
Lee

Typed Answer Set Programming Lambda Calculus and Corresponding Inverse Lambda
Algorithms.  Chitta Baral, Juraj Dzifcak, Marcos Gonzalez, and Aaron Gottesman
D-FLAT: Declarative Problem Solving Using Tree Decompositions and Answer-Set Pro-
gramming. Bernhard Bliem, Michael Morak, and Stefan Woltran

An Improved Proof-Theoretic Compilation of Logic Programs. Iliano Cervesato
Annotating Answer-Set Programs in LANA. Marina De Vos, Doga Gizem Kisa, Jo-
hannes Oetsch, Jirg Piihrer, and Hans Tompits

SMCHR: Satisfiability Modulo Constraint Handling Rules. Gregory Duck
Conflict-driven ASP Solving with External Sources. Thomas FEiter, Michael Fink,
Thomas Krennwallner, and Christoph Redl

Multi-threaded ASP Solving with clasp.  Martin Gebser, Benjamin Kaufmann, and
Torsten Schaub

Model Checking with Probabilistic Tabled Logic Programming. Andrey Gorlin, C. R.
Ramakrishnan, and Scott Smolka

Diagrammatic confluence for Constraint Handling Rules. Rémy Haemmerlé

xix
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Introduction to ICLP 2012 Technical Communications

Inference in Probabilistic Logic Programs with Continuous Random Variables. Muham-

mad Islam, C.R. Ramakrishnan, and I. V. Ramakrishnan

Relational Theories with Null Values and Non-Herbrand Stable Models.  Viadimir Lif-

schitz, Karl Pichotta, and Fangkai Yang

The Relative Expressiveness of Defeasible Logics. Michael Maher

Compiling Finite Domain Constraints to SAT with BEE. Amit Metodi and Michael

Codish

Lightweight Compilation of (C)LP to JavaScript. Jose F. Morales, Rémy Haemmerlé,

Manuel Carro, and Manuel Hermenegildo

ASP modulo CSP: The clingcon system. Max Ostrowski and Torsten Schaub

Annotation of Logic Programs for Independent AND-Parallelism by Partial Evaluation.
German Vidal

Efficient Tabling of Structured Data with Enhanced Hash-Consing. Neng-Fa Zhou and

Christian Theil Have

We would like to take this opportunity to acknowledge and thank the other ICLP organ-
isers. Without their work and support this event would not have been possible. We would
like to start with the General chair Péter Szeredi (Budapest Univ. of Technology and Eco-
nomics), and all the organizing chairs, namely the Workshop Chair Mats Carlsson (SICS,
Sweden), the Doctoral Consortium Chairs Marco Gavanelli (Univ. of Ferrara) and Stefan
Woltran (Vienna University of Technology), the Prolog Programming Contest Chair Tom
Schrijvers (Universiteit Gent), the Publicity Chair Gergely Lukécsy (Cisco Systems Inc.),
and the Web Manager: Jénos Csorba (Budapest Univ. of Technology and Economics).
Thanks also to Alessandro Dal Palu for allowing us to publish his pictures of Budapest on
the website. We benefited from material and advice kindly given by last year’s program
chairs Michael Gelfond and John Gallagher. Thank you very much!

On behalf of the whole LP community, we would like to thank all authors who have sub-
mitted a paper, the 41 members of the program committee: Elvira Albert (U.C. Madrid),
Sergio Antoy (Portland State Univ.), Marcello Balduccini (Kodak Research Laboratories),
Manuel Carro (Technical University of Madrid (UPM)), Michael Codish (Ben Gurion Univ.),
Veronica Dahl (Simon Fraser Univ.), Marina De Vos (Univ. of Bath), Alessandro Dal Palu
(Universita degli Studi di Parma), Bart Demoen (K.U. Leuven), Thomas Eiter (T.U. Wien),
Esra Erdem (Sabanci University), Thom Frhwirth (Univ. of Ulm), Andrea Formisano (Univ.
of Perugia), Maria Garcia de la Banda (Monash Univ.), Marco Gavanelli (University of Fer-
rara), Hai-Feng Guo (Univ. of Nebraska, Omaha), Gopal Gupta (Univ. of Texas, Dallas),
Katsumi Inoue (National Inst. of Informatics, Japan), Angelika Kimmig (K.U. Leuven),
Joohyung Lee (Arizona State University), Evelina Lamma (Univ. of Ferrara), Nicola Leone
(University of Calabria), Yuliya Lierler (Univ. of Kentucky), Boon Thau Loo (Univ. of
Pennsylvania), Michael Maher (R.R.I., Sydney), Alessandra Mileo (DERI Galway), Jose
Morales (U.P. Madrid), Enrico Pontelli (New Mexico State Univ.), Gianfranco Rossi (Univ.
of Parma), Beata Sarna-Starosta (Cambian, Vancouver), Torsten Schaub (Univ. of Pots-
dam), Tom Schrijvers (Universiteit Gent), Fernando Silva (Univ. of Porto), Tran Cao Son
(New Mexico State University), Terrance Swift (Univ. Nova de Lisboa), Péter Szeredi (Bu-
dapest Univ. of Technology and Economics), Francesca Toni (Imperial College London),
Mirek Truszezynski (University of Kentucky), German Vidal (U.P. of Valencia), Stefan
Woltran (Vienna University of Technology), and Neng-Fa Zhou (CUNY, New York).

A particular thanks goes to the 96 external referees, namely: Alicia Villanueva, Amira
Zaki, Ana Paula Tomds, Andrea Bracciali, Antonis Bikakis, Antonis Kakas, Brian De-
vries, C. R. Ramakrishnan, Chiaki Sakama, Christoph Redl, Christopher Mears, Dale
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Miller, Daniel De Schreye, Daniela Inclezan, David Brown, Demis Ballis, Dimitar Shte-
rionov, Dragan Ivanovic, Evgenia Ternovska, Fabio Fioravanti, Fabrizio Riguzzi, Fangkai
Yang, Fausto Spoto, Feliks KluZniak, Francesco Calimeri, Francesco Ricca, Fred Mesnard,
Gianluigi Greco, Giovanni Grasso, Gregory Duck, Gregory Gelfond, Inés Dutra, Jesus M.
Almendros-Jimenez, Joost Vennekens, Juan Manuel Crespo, Julio Marino, Kyle Marple,
Marco Alberti, Marco Maratea, Mario Alviano, Mario Florido, Marius Schneider, Martin
Gebser, Masakazu Ishihata, Massimiliano Cattafi, Matthias Knorr, Maurice Bruynooghe,
Max Ostrowski, Michael Bartholomew, Michael Hanus, Michael Morak, Minh Dao-Tran,
Mutsunori Banbara, Naoki Nishida, Naoyuki Tamura, Neda Saeedloei, Nicola Capuano,
Nicolas Schwind, Noson Yanofsky, Nysret Musliu, Orkunt Sabuncu, Pablo Chico De Guzméan
Paolo Torroni, Paul Tarau, Peter James Stuckey, Peter Schiiller, Philipp Obermeier, Puri
Arenas-Sanchez, Rémy Haemmerlé, Rafael Del Vado Virsela, Ricardo Rocha, Richard Min,
Robert Craven, Roland Kaminski, Samir Genaim, Sandeep Chintabathina, Santiago Esco-
bar, Sara Girotto, Sean Policarpio, Simona Perri, Slim Abdennadher, Sofia Gomes, Stefania
Costantini, Stefano Bistarelli, Thomas Krennwallner, Thomas Stréder, Tomoya Tanjo, Tor-
ben Mogensen, Umut Oztok, Valerio Senni, Victor Marek, Victor Pablos Ceruelo, Wolfgang
Dvorak, Wolfgang Faber, Yana Todorova, and Yunsong Meng.
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president Gopal Gupta, to the Conference chair Manuel (Manolo) Carro, and to all the ALP
Executive committe members. We already thanked the invited speakers and the tutorialist
above, but we would like to stress here our thank to them. A particular thank goes to Marc
Herbstritt from Dagstuhl, for the support in publication of this special issue. Similarly,
David Tranah and Ilkka Niemeld deserve our thanks for their kindness and their precious
support in all TPLP publication stages.
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—— Abstract

This article first reminds of simulation unification, a non-standard unification proposed at the
18th International Conference on Logic Programming (ICLP 2002) for making logic programming
capable of querying semistructured data on the Web. This article further argues that, beyond
querying semistructured data on the Web, simulation unification has a potential for Web querying
of multimedia data and semantic metadata and for Web searching of data of all kinds.
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1 Introduction

This article is devoted to simulation unification, a non-standard unification which has been
introduced in 2002 at the 18th International Conference on Logic Programming (ICLP 2002)
with the article titled “Towards a Declarative Query and Transformation Language for XML
and Semistructured Data: Simulation Unification” [15] and the long version [16] of that
article. Simulation unification has been specified in more detail two years later, in 2004, in
the doctoral thesis “Xcerpt: A Rule-Based Query and Transformation Language for the Web”
[30] of Sebastian Schaffert.

This article recalls simulation unification and argues that it has a so far unexploited
potential for Web querying of multimedia and semantic data as well as for Web searching of
data of all kinds.

This article is structured as follows. After this introduction, Section 2 describes the
context in which and why we developed simulation unification. Section 3 is a brief, and
simplified, reminder of simulation unification. Section 4 is devoted to works related to
simulation unification. Section 5 discusses how simulation unification could be applied to
querying multimedia and semantic data and to searching. Section 6 is a conclusion.

2 What Led to Simulation Unification

At the beginning of the 90es of the 20th century, as the Web became a common medium,
many computer scientists first did not fully realised what impact the Web would have on their
areas of research. This was the case amongst others of the query answering community. At
the end of the 90es, that community hastily investigated Web query languages, what resulted
in XQuery [10], a “recommendation” of the W3C, so as to keep an hold on data access.
This community celebrated XQuery amongst others for its roots in functional programming,
© Frangois Bry and Sebastian Schaffert;
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and promoted it as a worthy descendant of SQL [20], the query language which had greatly
contributed to the success of relational databases.

We took the enthusiasm for XQuery with a skepticism rooted at a logic programming
practice. We found that XQuery was difficult to program with; we thought it would often
yield inelegant and therefore costly to maintain programms and we guessed that it would
require complicated runtime systems. Since, these intuitions have been amply confirmed and
XQuery is no longer the subject of much enthusiasm.

The study reported about in [28] had hinted at the potential of logic programming for
querying semistructured data. That article shows that restricting XPath [21], the data
selection sub-language of XQuery, to its forwards axes, that is, to so-called Forward XPath,
does not restrict the data selection language’s expressivity. Since a Forward XPath expression
basically amounts to a logic atom, a link between logic programming an Web querying was
established. The afore mentioned article [28] has received some attention because it makes
it possible to restrict formal investigations on XPath to XPath Forward what gives rise to
significant simplifications. Surprisingly, that the restriction to XPath Forward also, and for
the same reasons, gives rise to simpler queries and therefore eases both, programming and
query evaluation, has been rarely noticed.

Pattern-based queries for Web data had been proposed with the Web query languages
UnQL [19] and XML-QL [22] what suggested a full unification binding variables in the two
terms considered instead of a pattern matching binding variables in only in the pattern.

These two observations led us to simulation unification, a technique that makes logic
programming as convenient for querying semistructured data as for querying relational data.

Since, search engines, other tools the importance of which has not been immediately
understood within the query answering community, have considerably reduced the need for
Web query languages. Indeed, data are no longer only queried for but also, and mostly,
search for. In this article, we arge that, beyond querying semistructured data, simulation
unification also has a potential for both, Web querying of multimedia and semantic data and
Web searching of data of all kinds.

3 What is Simulation Unification?

Given two terms t; and ¢ simulation unification [15, 16, 30] determines, if possible, a most
general unifier ¢ for the variables in ¢; and ¢y such that every ground instances of t10
simulates in a ground instance of ty0.

Simulation unification is based on an adaption of graph simulation to terms aimed at
representing, selecting (or querying) and constructing XML data. Simulation unification’s
principles are relatively simple. The syntactical richness necessary for an easy expression of
data selections and construction makes it, however, complicated.

In the remainder of the current section 3, rooted graph simulation is introduced in Section
3.1, database terms, query terms and construct terms in Section 3.2, term simulation and
answers to query terms in Section 3.3 and simulation unification in Section 3.4.

3.1 Rooted Graph Simulation

Simulation, also called graph simulation, has been studied in [26, 27]. A term #; (seen as a
graph G1) simulates in a term ¢y (seen as a graph Go) if there is a mapping of the nodes
of G; (that is of the subterms of ¢1) in the nodes of G5 (that is, the subterms of t3) which
preserves the edges (that is, subterm nesting). Simulation is similar to, though more general
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Figure 1 Two simulations (with respect to node label equality) [15].

than, graph homomorphism because it allows two nodes of the one graph being mapped to a
single node of the other graph and vice versa.

In general, there might be more than one simulation between two graphs. Therefore,
so-called minimal simulations are considered.

Figure 1 from [15] gives two examples of simulations. In each of these two examples a

node of the left graph is mapped into a node of the right graph if their labels are identical.

Such simulations are simulations with respect to label identity. More generally, a simulation
can be defined with respect to any preorder relation (amongst other order and equivalence
relations). In Section 5, we argue that considering other relations than label equality makes
simulation unification convenient for querying multimedia and semantic data on the Web as
well as for searching for data of all kinds on the Web.

The following definition from [30] which refines that of [15] is inspired from [26, 27]. A
(directed) rooted graph G = (V, E,r) consists in a set V of vertices (or nodes), a set E of
edges (that is, ordered pairs of vertices), and a selected vertex r, called the root of G, from
which each vertex of G is accessible.

» Definition 1 (Rooted graph simulation with respect to a preorder relation ~ [30]). Let

Gy = (V1,Eq,r1) and Gy = (Va, Eg, 13) be rooted graphs and ~ C V; x V4 a preorder relation.

A relation § C Vi x V5 is a rooted simulation of G1 in G5 with respect to ~ if:

1. 1 Sro.

2. If v1 S vg, then vy ~ vs.

3. If vy S ve and (vy,v],i) € Eq, then there exists vy € V5 such that v S v} and (vg, v}, j) €
E,

A rooted simulation S of G in G5 with respect to ~ is minimal if there are no rooted

simulations 8’ of G in Gy with respect to ~ such that &’ C § (and S # 5’).

Graph simulation conveys well how the Web is queried. Web queries are mostly incomplete
specifications of data striven for that are convenientely answered by data items containing
more than the query specifies and allowing that distinct parts of the query are answered by
the same data. The relevance of graph simulation for Web querying has been first pointed
out in [19, 22].

3.2 Database Terms, Query Terms and Construct Terms
3.2.1 Database terms

Database terms are an abstraction of XML documents and a generalisation of the ground
terms of logic. Database terms are similar to logic ground terms except that the arity of a
function symbol, called “label”, is not fixed but variable, and that the order of the arguments
of a function symbol might not be compelling.
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A database term whith a root labelled ! and ordered children t4,...,t, is denoted
I[t1,...,ts]. A databasse term with a root labelled I and unordered children tq,...,¢, is
denoted I{t1,...,t,}.

Cyles, possible in XML documents though hypertext links and ID-IDREF references, are
allowed in database terms but not considered in the following for the sake of briefness. A
database terms without cycles can be seen as a tree, a database term with cycles as a rooted
graph.

3.2.2 Query terms

Query terms are patterns specifying selections of ground terms terms. They are similar to
logic atoms except that they can express incompleteness in breath and depth and that a
variable X in a query term can be restricted.

In a query term,

the brackets [ ] and { } require answers with no more ordered respectively unordered

subterms than the query term;

double brackets [[ ]] and {{ }} accept answers having more ordered respectively unordered

subterms than the query term;

a variable X can be constrained to some query terms Q using X ~+ @@, where ~ is read

“as";

X ~» desc t, read “X descendant t”, is used to express that X is bound to a term

containing a subterm ¢ at an unspecified depth.

Multiple constraints for a a same variable are allowed. Figure 2 hints at the semantics of
query terms formally specified in [17, 18, 30].

Constraining variables (with ~») might results in cyclic constraints that cannot be
answered by database terms because database terms are finite. A variable X is said to
depend on a variable Y in a query term t if X ~» ¢; is a subterm of ¢ and Y is a subterm of
t1. A query term t is said to be variable well-formed if it contains no variables Xo,..., X,
(n > 1) such that Xg = X,, and for all i =1,...n X; depends on X;_; in ¢t. Only variable
well-formed query terms are considered in the following.

A query term is ground if it contains no variables (and therefore no ~» and no desc).

Further constructs such as “option” and “except” might occur in query terms so as to
ease the expression of some queries [30, 11, 31]. They are not considered in the following for
the sake of briefness.

3.2.3 Construct terms

Construct terms serve to re-assemble the values which are specified in query terms by
variables, so as to form new database terms. Thus,[ ], { } and variables may occur in
construct terms but neither [[ ]], nor {{ }}, nor ~. In a construct term, a variable might be
preceded by “all” meaning that all values, or bindings, for this variables are to be gathered.

Rules combine construct terms and query terms in the manner of logic programming;:
A rule head is a construct term; a rule body is build up from query terms, conjunctions,
disjunctions, and negations.

Like in [15], simulation unification is defined below under the simplifying assumption
that {} and {{}} are the only kinds of braces. The complete definition is given in [30].
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’ Query terms

Possible answers

No answers

a[[b,c{d, e}, f]] alb,c{d, e, g}, f] a{b,c{d, e}, f, g}
alb,c{d, e, g}, f{g, h}] alb, c{d, e}, f, 9]
alb,c{d, e{g,h}, g}, fig, h}] | a{b,c{d, e}, f}
alb, c[d, €], f]
aldesc f[c,d],b] alfle, d], b] a[b]
alg[fle, d]], ] alg, b[fle, d]]]
a[g[f[c ]7 ]7b]
alglglfle, d]l], o]
alglglflc, d], h], ], b]
a[X ~ ble,d], Y, €] alble,d], f, €] ale, f, €]
X bound to blc,d] albld], f, €]
Y bound to f alh[b, cl, f, €]
alble, d], flg, hl, €]
X bound to ble,d]
Y bound to f[g,h]
a{X ~ blc}, X ~ b{d}} | a{b{c,d}} a{b{c}}
X bound to b{c,d} a[blc], f, €]
alX ~ b{c}, X ~ f{d}] none alb{c}]
alf{d}]
a[b{c}, f{d}]
a{{}} a af{b}
a{b, c}
a[b]
alb, c]

Figure 2 Query terms.

3.3 Term Simulation and Answers

Substitutions and grounding substitutions are defined as usual except that they assign
construct terms, but no query terms, to variables. Instances and ground instances of query
and construct terms are defined as usual except that an instance of X ~» t is defined as
an instance of X (that is, ignoring ~» t). ~» and desc induce constraints on variables and
subterms of a query term. Instances of a query that fulfill these constraints are called allowed
instances. Only allowed instances are considered in the following.

Simulation of a graph G; into a graph G is adapted into the simulation of a ground query
term @ into a ground construct term ¢ by paying the necessary attention to the brackets
{} and {{}}. Ground term simulation is then extended to query and construct terms with
variables as follows: A query term @ simulates into a construct term ¢, denote @ =< t, if
there exists a substitution o such that every ground instance of Qo simulates into a ground
instance of to.

An answer to a query term @ is a database term t such that an allowed instance of
Q@ simulates in t. As usual, substitution (so-called answer substitutions) are associated
with term answers. Because of the construct desc serving to express subterm constraints
and in contrast to classical logic programming, answers cannot be fully defined by answer
substitutions.
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3.4 Simulation Unification

Simulation unification is a non-deterministic algorithm for solving equations of the form
Q = t, read @ simulates in ¢, on query terms () and construct terms ¢t. It is based on
the following term decomposition rules — see [15, 16, 30] for a detailed description of the
non-deterministic algorithm. The outcome of simulation unification, if it succeeds, is a finite
set of substitutions called simulation unifier.

» Definition 2 (Term Decomposition Rules). Let | (with or without indices) denote a label.
Let t! and #? (with or without indices) denote query terms.
Root Elimination:
(1) I =U{t3,... 12} & true ifm>1
I 2 U{{}} & true

(2) Hth,... tL} <1 & false ifn>1
Htt, .. th} < {{}} & false ifn>1

(3) Let II be the set of (total) functions {ti,... t1} — {t2,... 2 }:

it ooty 2 HtE ot} © Vieen Ai<icn ti 2 7(t)
ifn>1land m>1

(4) L{t, ... tL} 2 L{t3,.. . t2} & falseif [y # 1y and n > 0 and m > 0

~ Elimination:
X~otl<t2 @t <2 At <X A X<t
Descendant Elimination:
desc t' < ofti, ..., t7} &t < L{t},...,12,} VViciq,, desc th <7
ifm>0

Simulation unification is sound and complete for the notion of answer recalled above
[15, 16, 30] . Like standard unification, simulation unification is symmetric since it can bind
variables in the two terms considered. Unlike standard unification, however, it is asymmetric
in the sense that it does not make the two terms considered equal, but instead makes the
one simulate into the other what in general is no symmetrical relationship.

4 Work Related to Simulation Unification

How simulation unification relates to classical involved forms of unifications is addressed in
[15] as follows:

Several unification methods have been proposed that, like simulation unification,
process flexible terms or structures, notably feature unification [1, 34] and associative-
commutative-unification, short AC-unification, [23]. Simulation unification differs
from feature unification in several aspects (discussed in [16]). Simulation unification
might remind of theory unification [2]. The significant difference between both is that
simulation unification is based upon an order relation, while theory unification refers
to a congruence relation.

Simulation unification offers a decidable alternative to equational unification [2]. We
argue in the following Section 5 that novel forms of simulation unification based on verious
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embedding or similarity relationships would be useful in querying multimedia and semantic
data as well as in searching data of all kinds.

Simulation unification has been developed for the textual query language and its visual
companion visXcerpt. Between 2002 and 2006, research prototypes of Xcerpt and visXcerpt
have been presented at database, Web, Semantic Web, logic programming and visual
programming conferences [14, 6, 7, 31, 3, 13, 4, 5].

A subsumption referring to simulation unification, called simulation subsumption, and its
use for query optimization have been introduced in [12]. Simulation subsumption expreses
query containement for queries based on simulation unification. Simulation subsumption
is useful for the query optimization, in particular for verifying the termination of recursive
queries.

5 Beyond Querying Semistructured Data

Since the publication of our original article in 2002, the Web has undergone several major
developments. First, the Semantic Web effort with its underlying technologies RDF and OWL
has gained much momentum with the emergence of “Linked Data” as a means to publish
semi-structured data using a uniform model for data representation and interlinking between
datasets. Second, while the Web of 2002 was still mainly a static, text-based Web, the Web
of 2012 is interactive and mostly consists of multimedia content. And third, with the success
of Social Software, the amount of content and data on the Web has grown tremendously,
making effective and efficient Web search more and more important. In the following, we will
briefly describe how our ideas concerning simulation unification are more important than
ever for addressing typical problems in these areas.

5.1 Generalising Simulation Unification

Simulation unification gives rise to queries retrieving structural sub-patterns within XML
data. This can be generalized to other kind of data in two complementary ways:
The first generalisation would build upon an “embedding” relationship on the data
considered which, like simulation unification, would not be symmetric.
The second generalisation would build upon a “similarity” relationship on the data
considered which, in contrast to simulation unification, would be symmetric.
In the following sections, we describe how these two generalisations could help addressing
open problems in several other areas.

5.2 RDF, RDFS and OWL

The Resource Description Framework, or “RDF* [37], is the primary model for publishing
data on the Semantic Web. At its core, it defines a graph model where vertices represent
Web resources (identified by URIs) or literal values and edges (so-called “triples”) represent
typed relations between Web resources. RDF also defines a number of different serialization
formats for this graph data, e.g. RDF /XML, Turtle, or N-Triples. Schema information about
an RDF graph can be defined using the schema languages RDFS [36] or OWL [35]. Both are
capable of representing ontological knowledge about the schema in addition to specifying
possible relations and are based on some form of logics.

Querying RDF Data. An important aspect of RDF is querying the graph data
contained in a dataset. Typical RDF queries for example express RDF subgraphs to be
found in the data queried. Given the graph model underlying RDF, pattern-based querying
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of RDF is natural. In fact, the most widely used RDF query language SPARQL [39] uses
so-called “triple patterns” specifying edges to look for in the dataset. Variables in triple
patterns are bound to values when matching a pattern in the same style as in other logic
programming languages.

While SPARQL is already a well designed and widely established query language, it
is currently only defined in terms of a query algebra similar to the relational algebra and
is not offering a declarative calculus. A query approach based on (unrooted) simulation
unification could provide such a calculus for SPARQL in a style similar to the relational
calculus behind SQL and Datalog. It would thus allow for a more declarative semantics and
advanced reasoning services over RDF by opening up RDF querying to logic programming
approaches. Note that this would also give rise to expressing RDFS and OWL ontology
semantics in terms of logic programming rules. Querying RDF data corresponds to the
“embedding relationship” of simulation unification described above.

Matching RDF Datasets. On the Semantic Web with many independent data publish-
ers a common challenge is so-called “schema alignment” or “data alignment”. In schema (or
data) alignment, the goal is to create mappings between two different schemas (or datasets)
to allow better interoperability and exchange of the data. A common way of doing schema
alignment is to map concepts from the two schemas that are “similar” regarding different
criteria.

For example, both schemas might define their own “Student” concept but with slightly
different properties:

Schema 1 defines a Student with full name, email and inscription number

Schema 2 defines a Student with first name and last name, as well as email
Schema alignment could map between the Students of Schema 1 and 2 based on the name of
the concept, the shared property email, and the similarity between first name/last name on
the one hand and full name on the other hand.

A lot of research has been undertaken to investigate automatic means to carry out schema
alignment. Nevertheless, many problems in this area today remain unsolved [33]. When
representing the different attributes of a concept in terms of a graph structure, simulation
unification in the second generalisation (“similarity relationship”) could offer a new option
for identifying similar concepts by trying to find a maximal simulation between the graphs
representing two concepts.

5.3 Linked Data

Linked Data [8, 25] is a recent development within the Semantic Web effort to publish

datasets of various sizes on the Web for anyone to use and combine, using the technologies

developed in the Semantic Web context (mainly URIs and RDF). In his initial announcement,

Tim Berners-Lee described four “Linked Data Principles” [8]:

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL)

4. Include links to other URIs. so that they can discover more things.

Since then, numerous datasets have been made available under these principles. As of

September 2011, the known part of the “Web of Data” consists of about 300 datasets from

various domains with more than 30 billion triples. Moreover, these datasets are connected

with each other with about 500 million RDF links [9].
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Conceptually, the Linked Data Cloud (or “Web of Data”) can be seen as an RDF graph
structure over distributed information systems. Since no dataset has information about the
full graph, non-local parts can only be discovered by following RDF links that span across
different servers.

Even though resources on Linked Data servers are typically interlinked and thus conceptu-
ally integrate data from many different sources, querying such data is still very cumbersome.
The main reason is that existing query languages for RDF like SPARQL are rather dataset-
centric and do not easily query over distributed or even unknown sources. There are currently
four approaches to address this issue:

a central index harvests the Web for RDF data and stores it in a central repository and

offers it for querying, e.g. using SPARQL. This approach is followed e.g. by Sindice,*

which offers a public SPARQL endpoint.

a query is distributed over several query endpoints and the results are then combined.

This approach is proposed in the SPARQL 1.1 Federation Extension [38].

accepting the incompleteness of the results returned by the query and trying to improve

the recall by different heuristics, as proposed e.g. by Hartig et.al. [24]

The first two approaches have obvious disadvantages: a central repository is not always
recent and a single point of failure, while explicit federated queries are cumbersome to write
and need exact information on how and where to access the SPARQL endpoint. They also
require that all queried servers implement the SPARQL 1.1 Federation Extensions. The
third approach is in our opinion not very user friendly, since the user cannot easily determine
whether the results he will get are complete or not and important enterprise decisions might
depend on that information.

In [32], we therefore proposed a path-based approach that is more suitable for querying
Linked Data. However, a path language only allows binding one variable at a time (the “end”
of the path) and is therefore rather limited in its expressivity and performance. Rooted
simulation unification as described previously for XML could give rise to a novel kind of
query language for Linked Data that does not share the problems of SPARQL and goes
beyond the expressivity of simple path navigations. A query pattern could use a context
resource from a local dataset as query root, follow links to other remote datasets and then
bind multiple variables at the same time, reducing the number of network requests and
providing a convenient way for formulating a query.

As an example, consider users publishing their basic profile information using the FOAF
(friend-of-a-friend) vocabulary. Each user publishes on his website an RDF file with his
name and email address, as well as links (foaf :knows) to the FOAF files of his friends.
A query based on simulation unification could then select the first name, last name and
email addresses of each friend in a single query by starting at the local FOAF file, following
foaf :knows, and binding the three variables at the same time. Such a query is currently
neither possible using SPARQL nor using a path-based approach.

5.4 Multimedia

An embedding realtionship can be specified for multimedia data expressing that, for example,
a given visual pattern can be found in a picture or in a video. Such a relationship can be
defined in terms of either geometrical image recognition algorithms, of features extracted
from the multimedia content, or of symbolic metadata associated with picture. Rather

! http://sindice.com/
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different embedding relationships can be thought of that would fullfil the needs of different
applications. For example:

Existing metadata could be queried. In the scenario described in [32], we are working with
cliff-diving videos provided by Red Bull that are accompanied with precise descriptions
of the scene, transcripts of interviews, as well as music cue sheets and general metadata
about a video (persons, locations, editor, description). A query based on Simulation
Unification could query for all videos with a certain person at a certain location.

Multimedia information extraction could automatically extract faces of persons (e.g. using
an Eigenfaces algorithm) as well as prominent structures (e.g. edges with sharp contrast)
from a large collection of images and videos and store them as features. Simulation
Unification could be used to provide a query with some sample features (the face of a
person and a tower in the background) and the be evaluated over the image collection to
retrieve matching images.

Similarity relationships are often used in retrieving multimedia data. Indeed, multimedia
applications require to retrieve images similar to some given images. Image similarity can be
specified in many different manners, with and without simliarity threshold to be fulfiled by
the selected data.

5.5 Web Search and Enterprise Search

With the tremendous increase in content, Web Search and Enterprise Search are nowadays
the most important way of finding and accessing information. The most important difference
between Web Search and Enterprise Search is that Web Search can make use of the hyperlinks
between documents (e.g. in Google’s PageRank [29] ) and the novelty of documents, while
enterprise content is typically not connected and novelty is not necessarily a good measure
for relevance.

Web Search and Enterprise Search could benefit from generalisations of simulation based
on emebedding or similarity relationships in the following typical search tasks:

Search: Both Web and Enteprise Search build in its core build upon the occurring of
a words, or phrase, or of an ordered list of words or phrases in documents. Such a
relationship could be replaced by embedding or similarity relationships for multimedia or
semantic data of the afore mentioned kind. This would result in multimedia and semantic
search engines at the the cost of indexing a well-chosen selection of patterns. For example,
this would allow searches like “the fantasy book with the blue cover”.

Grouping: Search results often contain many similar documents, e.g. different versions of
the same document in an enterprise setting. When displaying the search results, such
documents should be grouped and displayed together. Detecting such groups can be a
very hard task. A simulation unification for similarity relationships could be used for
clustering similar documents based on various document properties.

Ranking: Ranking of search results in the result list is the real art of search engines.
For example, Google considers over 300 features in their ranking algorithm to determine
the relevance of documents with respect to the search query and the user context (e.g.
location, previous searches, social networking profile). When so many aspects are taken
into account, simulation unification could provide a conceptual framework for calculating
the similarity between search results and the query and user context.
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6 Conclusion

Thias article has first recalled what led its authors to develop simulation unification for
querying semistructured data on the Web. Simulation unification has been presenteed in
2002 at the 18th International Conference on Logic Programming (ICLP 2002) [15], in the
long version [16] of that article, and in more detail in the doctoral thesis [30].

This article then has given a brief reminder of simulation unification as presented in the
afore mentioned ICLP 2002 article.

Finally, this article has suggested novel directions for Web and Semantic Web research
building upon the idea of simulation unification and generalising it in various manners.

Generalising simulation unification as suggested in this article would anchor logic pro-
gramming in promising fields of research of considerable practical importance: Querying and
Web search for multimedia and semantic data.
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—— Abstract

This paper reports on the use of the FO(+) language and the IDP framework for modeling and
solving some machine learning and data mining tasks. The core component of a model in the
IDP framework is an FO(-) theory consisting of formulas in first order logic and definitions; the
latter are basically logic programs where clause bodies can have arbitrary first order formulas.
Hence, it is a small step for a well-versed computer scientist to start modeling. We describe
some models resulting from the collaboration between IDP experts and domain experts solving
machine learning and data mining tasks. A first task is in the domain of stemmatology, a domain
of philology concerned with the relationship between surviving variant versions of text. A second
task is about a somewhat similar problem within biology where phylogenetic trees are used to
represent the evolution of species. A third and final task is about learning a minimal automaton
consistent with a given set of strings. For each task, we introduce the problem, present the IDP
code and report on some experiments.
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1 Introduction

Researchers in machine learning and data mining are often confronted with problems for
which no standard algorithms are applicable. Here we explore a few of these problems. They
can be abstracted as graph problems and are NP-complete. This means that algorithms
inherently involve search and that heuristics are needed to guide the search towards solutions.
Doing this in a procedural language is complex and cumbersome; this is the kind of application
for which high level modeling languages can be very useful. Under such a paradigm, a model
specifies the format of the data, the function to be optimized and a set of constraints to be
satisfied. The model together with a given problem instance is handed over to a solver which
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produces a solution. Several modeling languages exist in the field of Constraint Programming;
the Zinc language [16] is a good example. The Answer Set Programming (ASP) paradigm
can also be considered a modeling language; many solvers exist, examples are the systems
described in [15, 9, 21]. Another such modeling language is FO(+) [6]. Problem solving with
such modeling languages makes use of powerful solvers that perform propagation to squeeze
the search space each time a choice is made. They relieve the programmer from encoding
such propagation in procedural code. By default, these solvers use heuristics which are not
problem-specific, but even so they often outperform procedural solutions.

This paper explores the use of the FO(-) language and its incarnation in the IDP framework
for solving some machine learning and data mining problems. The core component of a
model in the IDP framework is an FO(-) theory consisting of formulas in first order logic
and definitions; the latter are basically logic programming clauses with arbitrary first order
formulas in the body. The necessary background on FO(-) is given in Section 2.

Section 3 solves a task in the domain of a stemmatology, a part of philology that studies
the relationship between surviving variant versions of a text. Section 4 discusses a problem
about phylogenetic trees as used in biology. Whereas the first two tasks are new, in Section 5,
it is investigated how well FO(+) performs on a standard machine learning task, namely the
learning of a minimal deterministic finite state automaton (DFA) that is consistent with a
given set of accepted and rejected strings.

In all of these problems, model expansion [17] —expanding a partially given structure into
a complete structure that is a model of a theory— is the core computational task. Sometimes,
a model that is minimal according to some criterion is required.

2 FO(-) and the IDP framework

2.1 FO()

The term FO(+) is used to denote a family of extensions of first order logic (FO). In this text,
the focus lies on FO(-)™" the instances supported by the IDP framework. FO(-)™" extends
FO with (among others) types, arithmetic, aggregates, partial functions and inductive defini-
tions. This section recalls the aspects of FO(+) that are necessary for a good understanding
of the rest of the paper; more information can be found in [23] and [3].

A specification in FO(+)™® consists of a number of logical components, namely vocabularies,
structures, terms, and theories. A vocabulary declares the symbols to be used (contrary
to Prolog, the first character of a symbol has no bearing on its kind); a structure is a
database with input knowledge; a term declared as a separate component represents a value
to be optimized; a theory consists of FO formulas and inductive definitions. An inductive
definition is a set of rules of the form Vz : P(Z) + ¢(Z). where ¢ is an FO(:)™ formula.
As argued in [6], the intended meaning of all common forms of definitions is captured by
the well-founded semantics [22] which extends the least model semantics of Prolog’s definite
clauses to rule sets with negation. An FO(-)™" formula differs from FO formulas in several
ways. Firstly, FO(-)™" is a many-sorted logic: every variable has an associated type and
every type an associated domain. Moreover, it is order-sorted: types can be subtypes of
others. Secondly, besides the standard terms of FO, FO(-)?® also has aggregate terms:
functions over a set of domain elements and associated numeric values which map to the
sum, product, cardinality, maximum or minimum value of the set.

We write M |= T to denote that structure M satisfies theory 7. With 2™, we denote
the interpretation of z under M, where x can be a formula or a term.
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2.2 The IDP framework

The IDP framework [5] combines a declarative specification, in FO(-)™P, with imperative

manipulation of the specification via the Lua [13] scripting language. Such an interaction
makes it a Knowledge Base System (KBS), as it allows one to reuse the same declarative
knowledge for a range of inference tasks such as model expansion, optimization, verification,
symmetry breaking, grounding, etc. For an in-depth treatment of the framework and the
supported inferences, we refer to [3].

In this paper, we focus on the inference tasks model expansion and model minimization.
The task of model expansion is, given a vocabulary V', a theory T over V and a partial
structure S over V' (at least interpreting all types), to find an interpretation M that satisfies
T and expands S, i.e., M is a model of the theory and the input structure S is a subset of
the model. Such a task is represented as (V, T, S).

The task of model minimization, represented as (V, T, S,t) with V, T and S as above
and ¢ a term, is to find a model M of T that expands S such that for all other models M’
expanding S, tM < M

The IDP framework allows users to specify FO(-)™® problem descriptions. Such a problem
description consists of logical and procedural components. The basic overall structure of the
various logical components is as in the following schema.

vocabulary V. { ... } theory T: V { ... }
term t: V { ...} structure S: V { ... }

The first component defines a vocabulary V. The other components define respectively a
theory T, a term t and a structure S. They all refer to the vocabulary V for the symbols they
use. In general, several vocabularies can be defined, eventually, one vocabulary extending
another.

We use IDP syntax in the examples throughout the paper. Each IDP operator has an
associated logical operator, the main (non-obvious) operators being: &(A), |(V), ~(—), 1(V),
?(3)7 <=>(=), ~=(#).

The procedural component consists of procedures, coded in Lua, that provide the interface
between the user and the logical components. Examples will be shown in the next sections.

3 Stemmatology

3.1 The task

The Oxford English Dictionary defines stemmatics, or stemmatology, as “the branch of
study concerned with analyzing the relationship of surviving variant versions of a text to
each other, especially so as to reconstruct a lost original.” A stemma is a kind of “family
tree” of a set of manuscripts that indicates which manuscripts have been copied from which
other manuscripts, and which manuscript is the original source. It may include both extant
(currently existing and available) and non-extant (“lost”) manuscripts. The stemma is not
necessarily a tree: sometimes a manuscript has been copied partially from one manuscript,
and partially from another, in which case the manuscript has multiple parents. Hence, a
stemma is in general a connected directed acyclic graph with a single root [1]; we use the
term CRDAG (connected rooted DAG) for it.

While constructing a stemma has some similarities with constructing a phylogenetic tree
in biology, the algorithms of that domain do not fit the stemmatological context well and
specific algorithms are developed [2].
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The problem studied here assumes that a CRDAG representing a stemma is given, as well
as feature data about (some of) the manuscripts. More specifically, for each location where
variation is observed in the manuscripts, the data includes a feature that indicates which
variant a particular manuscript has. Note that, in practice, it is highly unlikely that exactly
the same variant originated multiple times independently; when a variant occurs in multiple
manuscripts, it is reasonable to assume there was one ancestor, common to all of these, where
the variant occurred for the first time (the “source” of the variant)!. Therefore, we say that
the feature is consistent with the stemma if it is possible to indicate for each variant a single
manuscript that may have been the origin of that variant. Since for some manuscripts the
value of the feature is not known, checking consistency boils down to assigning a variant to
each node in the CRDAG in such a way that, for each variant, the nodes having that variant
form a CRDAG themselves. Using colors to denote the value of a variant, this property is
captured by the following definition.

» Definition 1 (Color-connected). Two nodes x and y in a colored CRDAG are color-connected
if a node z exists (z can be one of  and y) such that there is a directed path from z to z,
and one from z to y, and all nodes on these paths (including z, x, y) have the same color.

Given a partially colored CRDAG, the color-connected problem is to complete the coloring
such that every pair of nodes of the same color is color-connected.

3.2 An IDP solution

A pair of researchers in stemmatology attempted to develop a search free algorithm. They
wrote 370 lines of perl and used a graph library in the background. While it worked for their
benchmarks, they were worried about the completeness of their approach. After abstracting
the problem as the color-connected problem, we proved that it was NP-complete (hence
requires search) and constructed a solvable example for which their algorithm claimed no
solution exists. We also worked on an IDP solution. After several iterations, we arrived at
the following simple solution which turned out to be faster than the (incomplete) procedural
algorithm on the benchmark set. It is shown in Listing 1.

The vocabulary part introduces two types (manuscript and color), two functions and
one predicate. The function color0f maps a manuscripts to its color and the function
source0f maps a color to the manuscript that is the source of the feature. The predicate
copiedBy is used to represent the CRDAG of the stemma in the input structure.

The theory part compactly represents the color-connectedness property by a single
constraint: when the source of the color of a manuscript (x) is not equal to the manuscript
itself then there must exist a manuscript (y) with the same color that has been copied by x.

The Lua code of the procedure process (omitted, 60 lines) processes the stemma data
and builds the input structure for copiedBy. It then iterates over the features, partially
builds the structure for the function color0f and calls the procedure check, passing all
structures in the variable feature. The latter procedure calls the model expansion and
returns the result to process which reports them to the user.

Our largest benchmark so far is the Heinrichi data set [18]. This stemma about old
Finnish texts includes 48 manuscripts, 51 copiedBy tuples and information about 1042
features. Processing all features takes 12 seconds with the IDP system while it took 25
seconds with the original procedural code. Our solution is integrated in the toolset of [20].

! For some features, e.g., the spelling of a particular word, this does not hold.
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Listing 1 Description of the connected-coloring problem using IDP.

vocabulary V {
type manuscript
type color
copiedBy (manuscript , manuscript )
colorOf (manuscript ): color
sourceOf(color ): manuscript

}
theory T : V {

! x : x ~= sourceOf(colorOf(x))
=> 7 y : copiedBy(y,x) & colorOf(x) = colorOf(y).
}

procedure check(feature) {
return sat (T, feature)

}

procedure process (stemmafilename ,samplefilename) {

read the stemma data and build a structure for copiedBy

for each feature {
read the given colors and build a partial structure for colorOf
call check(feature)
report the results }

4 Minimum common supergraphs of partially labelled trees

Phylogenetic trees, extensively surveyed by [7], are the traditional tool for representing
the evolution of a given set of species. However, there exist situations in which a tree
representation is inadequate. One reason is the presence of evolutionary events that cannot
be displayed by a tree: genes may be duplicated, transferred or lost, and recombination
events (i.e., the breaking of a DNA strand followed by its reinsertion into a different DNA
molecule) as well as hybridisation events (i.e., the combination of genetic material from
several species) are known to occur. A second reason is that even when evolution is indeed
tree-like, there are cases in which a relatively large number of tree topologies might be
“equally good” according to some chosen criteria, and not enough information is available
to discriminate between those trees. One solution that has been proposed to address the
latter issue is the use of consensus trees, where the idea is to find a tree that represents a
compromise between the given topologies; another approach, on which we focus here, consists
in building a network that is compatible with all topologies of interest. A somewhat loose
description of the variant we are interested in, which will be stated in a more formal way
below, is to find the smallest graph that contains a given set of evolutionary trees. For more
information about those phylogenetic networks, see the recent book by [12] and the online,
up-to-date annotated bibliography maintained by [8].

4.1 The problem

The studied problem is about the evolution of a fixed set of m given species. The input is a
set of phylogenetic trees, each tree showing a plausible relationship between the species. All
trees have n (> m) nodes, m of them are labeled with the name of the species (typically, in
the leaves, but also internal nodes can be labeled). Given n —m extra names, the labeling of
each tree can be extended into a full labeling. The completely labeled trees then induce pairs
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of labels, whose union yields a graph over the set of n names. The task is to find a network
with a minimum number of edges. Here, we formulate the problem as a slightly more general
graph problem where we do not fix the size of the initial labeling.

» Definition 2 (Common supergraph of partially labeled n-graphs). Given is a set S of n
names and a set of graphs {G1,Ga, ..., G} where each graph G; = (V, E;, L;) has n vertices
and is partially labeled with an injective function £; : V' — S. A graph (S, ES) is a common
supergraph of {G1,Gs,...,G} if there exists, for each 4, a bijection £} : V' — S that extends
L; and such that, for each edge {v,w} of E;: {L(v), Li(w)} € ES.

A minimum common supergraph (S, ES) is a common supergraph such that |ES’| > |ES)|
for all common supergraphs (5, ES’).

Note that every labeling function £} induces an injection E; — ES, hence the name common
supergraph. Figure 1 shows two partially labeled 7-graphs, along with two of their common
supergraphs. (1 is a minimum common supergraph since 77 and 75 are not isomorphic
and GG; has only one more edge than each of 77 and 75. G2 is not a minimum common
supergraph since it has more edges than Gj.

T T> G G

Figure 1 Two 7-graphs 71 and 75, a minimum common supergraph G, and a common supergraph
G2 that is not minimum.

Now, we can consider the following decision problem: Given a set of partially labeled
n-graphs, can the labelings be completed such that the n-graphs have a common supergraph
with at most k edges? It is proven in [14] that this problem is NP-hard, even if the n-graphs
are trees with all leaves labeled.

4.2 The IDP solution

Listing 2 shows a simple model inspired by [14]. The labeling is declared as a function from
nodes to the names (it is partly specified in the input structure). The only constraint of the
theory forces the function to be bijective. The common supergraph over the names induced
by the labeling is given by the arc atoms. As the minimization is on the number of such
atoms, some care is required. Either one should make arc a symmetric relation or one should
pay attention to the direction, e.g., by ensuring z < y in arc(x,y) (every type is ordered
in FO(-)™" and provided of a < predicate). The latter is done here as the former gives a
somewhat larger grounding.

A feature of the shown solution is that the terms label (t,x) and label (t,y) each have two
occurrences in the rules defining arc. The current grounder associates a distinct variable with
each occurrence. One can avoid this by replacing the head of the definition by arc(lx,ly) and
by adding Ix=label(t,x) and ly=label(t,y) to the body. This has a dramatic effect on the size
of the grounding and on the solving time; e.g., the grounding is reduced from 620798 to 6024

lines and the solving time from 144s to 8 s on a problem with 5 trees of 8 vertices (4 leaves).
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Listing 2 Modelling ¢S-PLT in the IDP format.

vocabulary CsPltVoc {
type tree
type vertex
type name
edge (tree ,node,node)
arc (name ,name)
label (tree ,node): name

}
theory CsPltTheory: CsPltVoc {
{
arc(label (t,x),label(t,y)) <— edge(t,x,y) &
label (t,x) < label(t,y).
arc(label(t,x),label(t,y)) <— edge(t,y,x) &
label (t,x) < label(t,y).
}
! t ¢ : ?1 n : label(t,n) = c.
}

term SizeOfSupergraph: CsPltVoc { #{ x y : arc(x,y) } }
procedure main () {
print (minimize (CsPltTheory , CsPltStructure , SizeOfSupergraph )[1])

}

The solving time is exponential in the number of nodes and the program becomes
impractical on real-world problems, even if the best solution found so far is returned when
some time budget is exceeded. However, the versatility of the IDP system allowed us to
experiment with various strategies for greedily searching an approximate solution. This led
to the following quite natural solution that performed very well, with respect to both running
time and quality of the solution.

1. Find a minimum common supergraph (MCS) for every pair of trees.

2. Pick the smallest MCS (say G) and remove the two trees that are the input for G.

3. Find an MCS between G and every remaining tree.

4. Replace G by an MCS with minimum size, remove the tree that is the input for this MCS
and go back to step 3 if any tree remains.

Steps 1 and 3 of this simple procedure are performed by IDP using a model very similar
to that of Listing 2 (see [14] for the actual model). This greedy approach works very well.
Indeed, for large instances and a fixed time budget, the exact method runs out of time and
returns a suboptimal solution while the greedy method completes and returns a solution
that, although suboptimal, is typically much smaller.

5 Learning deterministic finite state automata

A third task is about learning a deterministic finite state automaton (DFA). The goal is to
find a (non-unique) smallest DFA that is consistent with a given set of positive and negative
examples. It is one of the best studied problems in grammatical inference [4], has many
application areas, and is known to be NP-complete [10]. Recently [11] won the 2010 Stamina
DFA learning competition [19] by reducing the DFA learning problem to a SAT problem and
running an off-the-shelf SAT solver. Here we explore whether an FO(-)I?® formalization can
compete with this competition winner.
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\ a
b
b b @ © accepting
@_>© @ rejecting

Figure 2 An augmented prefix tree acceptor (APTA) for S = (ST = {a, abaa,bb}, S~ = {abb, b}).
The start state is the root of the APTA.

5.1 The problem

A deterministic finite state automaton (DFA) is a directed graph consisting of a set of states
Q@ (nodes) and labeled transitions T (directed edges). The root is the start state and any
state can be an accepting state. In each state, there is exactly one transition for each symbol.
A DFA can be used to generate or accept sequences of symbols (strings) using a process
called DFA computation. When accepting strings, the symbols of the input string determine
a path through the graph. When the final state is an accepting state, the string is accepted,
otherwise it is rejected.

Given a pair of finite sets of positive example strings ST and negative example strings
S, (the input sample), the goal of DFA identification (or learning) is to find a (non-unique)
smallest DFA A that is consistent with S = {ST, 57}, i.e., every string in ST is accepted,
and every string in S~ is rejected by A. Typically, the size of a DFA is measured by |@|, the
number of states it contains.

5.2 The solution

Most DFA learning algorithms use a form of state-merging. First, a a tree-shaped automaton
called the augmented prefiz tree acceptor (APTA), is constructed. As can be seen in Figure 2,
the APTA accepts the positive examples and rejects the negative ones. State-merging
merges states under the constraint that the automaton remains deterministic (at most one
transition/label in each state) and that accepting and rejecting states cannot be merged.

States of the final automaton are thus equivalence classes of states of the APTA. Calling
the states of the final automaton colors, the problem becomes that of finding a coloring of
the states of the APTA that is consistent with the input sample. This is also the approach
taken by [11]; they formulate constraints expressing which pairs of states are incompatible,
and abstract the problem as a graph, with as states the states of the APTA and as links the
incompatible pairs. The problem is now a conventional graph coloring problem and they
use a clever SAT encoding to solve it. Here we construct a direct model in FO(-)™. But
before doing so, we have to consider one more aspect. For really large problems, the SAT
formulation was too big (hundreds of colors, resulting in over 100.000.000 clauses) [11]. To
get around such problems, they used a greedy heuristic procedural method to identify a
clique of pairwise incompatible states in the APTA. For states in such a clique, the colors
can be fixed in advance. The effect is to break some symmetries and to reduce the size of
the problem. We assume here that the states of the clique are already colored in the input
structure.

The FO(-)® DFA learning theory is depicted in Listing 3. The types state, label, the
function trans, and the predicates acc and rej describe the given input samples (and hence
the APTA). Note that trans is partial as the input samples do not define all transitions.
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Listing 3 Modelling DFA in the IDP format.

vocabulary dfaVoc {

type state

type label

type color

partial trans(state,label): state
acc(state)

rej (state)

colorOf(state): color

partial colorTrans (color ,label): color
accColor (color)

}
theory dfaTheory : dfaVoc {

! x : acc(x) => accColor(colorOf(x)).

! x : rej(x) = ~accColor(colorOf(x)).

! x 1 z : trans(x,l)=z => colorTrans(colorOf(x),l)=colorOf(z).
}

term nbColorsUsed: dfaVoc { #{ x : (? y : ColorOf(y) =x ) } }
procedure main () {

stdoptions.symmetry = 1

print (minimize (dfaTheory , simple, nbColorsUsed)[1])

}

The states of the resulting automaton are elements of the type color. Its transitions are
described by the function colorTrans. This function is also declared as a partial function.
To construct a complete DFA from the result, colorTrans has to be made total by mapping
the missing transitions to a hidden “sink” state. The function color0f maps the states of
the APTA on the states (colors) of the final automaton. Finally, the predicate accColor
describes the accepting states of the resulting automaton.

The theory expresses two constraints on accColor: accepting states of the APTA must
and rejecting states cannot be mapped to an accepting state of the final automaton. The
third constraint states that each transition on the APTA induces a transition between colors.
The term nbColorsUsed counts the number of states (colors) of the resulting automaton
and is used for minimization. Instead of minimizing the number of states, one could as well
minimize other properties such as the number of transitions, depth of the model, the size
of loops, etc. They are also easy to formalize in FO(-)™P. This makes the resulting DFA
learning tool very suitable for application in different problem domains such as software
engineering or bioinformatics where other optimization criteria are preferred.

In order to test the performance of the IDP translation, we ran it on the benchmark
set of [11]. We compare IDP with two versions of the encoding in [11]: an unoptimized
plain encoding (but with the symmetry breaking clique), and an optimized version (with
extra symmetry breaking, unit literal propagation, but without redundant clauses). The
experiment is not on the minimization problem but on the problem of constructing a DFA
with a fixed set of states.

IDP, with the symmetry breaking option on, is significantly faster than the plain SAT
encoding (not for the easy problems where the IDP time is dominated by the approximately
one second grounding time, a time not needed when the problem is directly encoded in
SAT). For example the maximum runtime of an instance in IDP is approximately 1400
seconds while one instance takes over 70000 seconds to solve in the plain encoding. The IDP
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translation is however outperformed by the optimized version of the direct SAT translation.

In the optimized encoding, the longest recorded runtime is slightly above 100 seconds. In [11]
an even better time is obtained by including extra redundant clauses. It is an interesting
question whether the performance gap can be closed by adding redundant constraints or by
parameter tuning of the SAT solver.

6 Conclusion

We have described three NP-hard problems together with their solution with FO(-) and the
IDP framework. The first problem is in the domain of stemmatology. We developed an IDP
solution that outperformed the dedicated procedural code of a researcher in the field. We
proved the problem is NP-complete and constructed problem instances on which the original

code errs. The resulting program is a useful tool for the researchers and is integrated in [20].

In a trivial extension we made the color0f function partial; then only those manuscripts
are colored as necessary for making the coloring consistent. This gives useful insight to the
philologist. Another planned variation does not enforce a unique source for each color, but
minimizes the number of sources. This can provide additional insight when the data are in
disagreement with the hypothesized stemma.

The second problem addressed the construction of a minimal common supergraph out of
a given set of phylogenetic trees. The use of FO(-)™" allowed the authors of [14] to quickly

explore various approaches and to arrive at an approximate method that gives good results.

These two applications illustrate the versatility of FO(-) for solving a new problem. The
third application compares an FO(+) formalization with a state of the art solution for the
NP-complete problem of learning a DFA. While we observe a performance gap with a highly
tuned competition winner, our solution performs better than the initial encoding of [11]. On
the other hand, the FO(-) formalization took much less effort to develop and offers a lot
more flexibility, e.g., to change the optimization criterion. The application is also a good
benchmark for further improving the IDP system.

We hope these applications inspire others to try out the IDP framework. It is a small
step for computer scientists knowledgeable about logic and Prolog. While our solutions look
deceivingly simple, a word of caution is in place. A first solution is hardly ever the best
solution; be convinced that it can be done simpler. Simpler not only means a more concise
and elegant model but also, almost always, a better performance. Try to break up complex
constraints in simpler ones, requiring less variables.

A common beginners misconception we observed, is to use one function (or relation) for
information partially given in the input structure and to use another function that extends
the partial function into a total one while that same function can serve by declaring it total
(the default for functions) and stating that the input structure is partial.

We also observed a very useful programming pattern. In each of our applications,
some equivalence class over some given elements is to be constructed. Representing this
relationships as a function from the elements to the set of equivalence classes is an excellent
choice (the function color0f in stemmatology and in DFA learning, the function label in
the phylogenetic trees).

Acknowledgements Caroline Macé and Tara Andrews brought some of the authors in
touch with stemmatology and Tara explained them the working of the procedural code.

23

ICLP’12



24

Modeling Machine Learning and Data Mining Problems with FO(-)

—— References

1

10

11

12

13

14

15

16

17

18

19

20

T. Andrews and C. Macé. Beyond the tree of texts: Graph methods for stemmatic analysis.
In preparation, 2012.

P. Baret, C. Macé, P. Robinson, C. Peersman, R. Mazza, J. Noret, E. Wattel, Van Mulken
M., Robinson P.; A. Lantin, P. Canettieri, V. Loreto, H. Windram, M. Spencer, C. Howe,
M. Albu, and A. Dress. Testing methods on an artificially created textual tradition. In
The evolution of texts: Confronting stemmatological and genetical methods, pages 255—283.
Istituti editoriali e poligrafici internazionali, Pisa, 2006.

Bart Bogaerts, Broes De Cat, Stef De Pooter, and Marc Denecker. The IDP framework
reference manual. http://dtai.cs.kuleuven.be/krr/software/idp3/documentation.
Colin de la Higuera. A bibliographical study of grammatical inference. Pattern Recognition,
38(9):1332-1348, 2005.

Stef De Pooter, Johan Wittocx, and Marc Denecker. A prototype of a knowledge-based
programming environment. In International Conference on Applications of Declarative
Programming and Knowledge Management, 2011.

Marc Denecker and Eugenia Ternovska. A logic of nonmonotone inductive definitions. ACM
Transactions on Computational Logic (TOCL), 9(2):Article 14, 2008.

Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, MA, 2004.
Philippe Gambette. Who is who in phylogenetic networks: Articles, authors and programs.
Published electronically at http://www.atgc-montpellier.fr/phylnet, 2010.

Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp: A
conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka, and John S. Schlipf,
editors, LPNMR, volume 4483 of LNCS, pages 260—-265. Springer, 2007.

E. Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302-320, 1978.

Marijn Heule and Sicco Verwer. Exact DFA identification using SAT solvers. In Grammat-
ical Inference: Theoretical Results and Applications, ICGI 2010, pages 66-79, 2010.
Daniel H. Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic Networks: Concepts,
Algorithms and Applications. Cambridge University Press, November 2010.

Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. Lua — an ex-
tensible extension language. Software: Practice and Ezperience, 26(6):635—652, 1996.
Anthony Labarre and Sicco Verwer. Merging partially labelled trees: hardness and an
efficient practical solution. In preparation, 2012.

Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7:499-562, 2002.

Kim Marriott, Nicholas Nethercote, Reza Rafeh, Peter J. Stuckey, Maria Garcia de la
Banda, and Mark Wallace. The design of the Zinc modelling language. Constraints,
13(3):229-267, 2008.

David G. Mitchell and Eugenia Ternovska. A framework for representing and solving NP
search problems. In Manuela M. Veloso and Subbarao Kambhampati, editors, AAAI pages
430-435. AAAT Press / The MIT Press, 2005.

T. Roos and T. Heikkild. Evaluating methods for computer-assisted stemmatology using
artificial benchmark data sets. Literary and Linguistic Computing, 24(4):417-433, 20009.
The StaMinA competition, Learning regular languages with large alphabets. http:
//stamina.chefbe.net/, 2010.

Stemmaweb, a collection of tools for analysis of collated texts. http://byzantini.st/
stemmaweb/, 2012.


http://dtai.cs.kuleuven.be/krr/software/idp3/documentation
http://www.atgc-montpellier.fr/phylnet
http://stamina.chefbe.net/
http://stamina.chefbe.net/
http://byzantini.st/stemmaweb/
http://byzantini.st/stemmaweb/

H. Blockeel et. al. 25

21 Tommi Syrjanen and Ilkka Niemeld. The smodels system. In Thomas Eiter, Wolfgang
Faber, and Mirostaw Truszczynski, editors, LPNMR, volume 2173 of LNCS, pages 434-438.
Springer, 2001.

22 Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620-650, 1991.

23 Johan Wittocx, Maarten Marién, and Marc Denecker. The IDP system: a model expansion
system for an extension of classical logic. In Marc Denecker, editor, LaSh, pages 153-165,
2008.

ICLP’12



Answering Why and How questions with respect
to a frame-based knowledge base: a preliminary
report

Chitta Baral, Nguyen Ha Vo, and Shanshan Liang

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, Arizona, USA
chitta@asu.edu, nguyen.h.vo@asu.edu, shanshan.liang@asu.edu

—— Abstract

Being able to answer questions with respect to a given text is the cornerstone of language un-
derstanding and at the primary school level students are taught how to answer various kinds of
questions including why and how questions. In the building of automated question answering
systems the focus so far has been more on factoid questions and comparatively little attention

has been devoted to answering why and how questions. In this paper we explore answering
why and how questions with respect to a frame-based knowledge base and give algorithms and
ASP (answer set programming) implementation to answer two classes of questions in the Biology
domain. They are of the form: “How are X and Y related in the process Z?” and “Why is X
important to Y?”

1998 ACM Subject Classification D.1.6 Logic Programming, H.3.4 Question-answering (fact
retrieval) systems, 1.2.4 Frames and scripts

Keywords and phrases answer set programming, frame based knowledge representation, question
answering.

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.26

1 Introduction

In recent years question answering (QA) has become more prominent via efforts such as
the Google Knowledge Graph [11] and systems such as Watson [7]. However, most question
answering efforts remain focused on factoid questions; a notable exception being navigational
“How” questions answered by Siri.

“How” and “Why” questions are important types of questions that are introduced to
students at primary school level in their reading and comprehension classes. At the school
level answering why questions involves finding the reason or cause of a thing that happened
and answering how questions involves finding the way something is done. Answering such
questions become more elaborate in Biology where some researchers suggest [15] three kinds
of answers to “Why” questions: teleological answer about effects, proximate answers about
immediate causes and evolutionary answers based on natural selection; while others [16]
propose an even more elaborate categorization of questions and answers such as: How is X used
(asked for the biological role/function), How does X work (asked for physiological explanation),
and Why does X has a certain item/behavior (asked for the functional significance of certain
biological roles). In the literature [1] “How” questions have been referred to as procedural
questions.

At present automatic answering of “Why” and “How” questions with respect to large
text corpuses [12] are based on factoid extraction where answers are located by looking for
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associate words and phrases such as “because of” and “causes”. In this paper we take a
different approach. Instead of answering “Why” and “How” questions with respect to natural
language text [3] , we explore answering them with respect to a frame based knowledge base.
Our motivation behind that is to first formalize the notion of answers to such questions; lLe.,
define what are answers to “Why” and “How” questions with respect to a knowledge base.

We use the frame based biology knowledge base AURA [5] and while identifying several
question forms we focus on two specific question forms as a start: “How are X and Y related
in the process Z?” and “Why is X important to Y?” Looking at examples in the frame based
knowledge representation in AURA we define the notion of an event description graph and
formalize the answers to our two question types with respect to such graphs. We then give
an answer set programming formalization of the reasoning process to find the answers (and
thus give an implementation) and conclude with future research directions. Our answer set
programming formalization builds up on our earlier work [4] to reason with frame based
knowledge using answer set programming.

2 Background

2.1 Frame-Based Knowledge Base

The basic aspects of a frame-based knowledge base (KB) is to represent classes and objects
(instances). For classes, the most important information is the class hierarchy. For example!,
the highest class in the AURA? [5] hierarchy is “Thing”, with two children classes “Entity”
and “Event”. “Entity” can have descendent classes such as “Cell”; “Sunlight”, “Sugar” that
are biological entities, while “Event” can have descendent classes such as “Photosynthesis”,
“Mitosis” that are biological processes. We also need to represent objects that may belong to
the same classes (share the same basic features), but have their own specific properties. To
represent the shared features amongst objects (in order to prevent repetitive encoding of the
same set of knowledge entries), “prototypes” of classes are encoded and during reasoning
they are cloned by all the objects from that class. The KB normally supports the encoding
of multiple inheritance, meaning that a class need to inherit from all of its ancestor classes
in the class hierarchy. In this case, in order to obtain the full information for an object,
the object needs to clone from all the prototypes of the class it belongs to, as well as the
prototypes of all its ancestor classes. When merging the information together, the process of
“unification” [6] is introduced to make sure that any conflicts are dealt with properly.

In general, although there is a large body of knowledge bases that use the frame based
approach [8], there hasn’t been much research on how to use the knowledge encoded in frames
declaratively, especially in the realm of question answering applications. In our earlier work
[4] we investigated how to utilize the KB for answering “what” questions in a declarative way,
as opposed to the procedural approach adopted by the original AURA system. There we give
an abstract definition of a KB, and a declarative implementation of “clone and unify”. From
here on, whenever we refer to an object we use the complete information for that object (after
the cloning and unification process), which is obtained by the declarative implementation
mentioned earlier.

Note that the various examples mentioned in this paper are from the AURA knowledge base, some with
slight modifications.

2 The AURA knowledge base is a frame-based KB developed manually by knowledge experts. AURA
contains large amount of frames describing biology concepts and biology processes, and has been used
to answer a wide variety of “what” questions [5].
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To the best of our knowledge, there has been little research on answering “How” and
“Why” questions with respect to frame-based knowledge bases. The main goal of this paper
is to provide insight on how frame based KB can be used to answer some “Why” and “How”
questions. To do that we use an “abstract view” of the KB that allows a better illustration
of the semantics behind the KB and how they can be used for QA purposes.

2.2 Answer Set Programming

We use Answer Set Programming (ASP) [10] as our knowledge representation language for its
strong theoretical foundation [2], expressiveness, the availability of various solvers [9, 14, 13]
and its earlier use in the declarative implementation of “clone and unify”.

An ASP program is a collection of rules of the form:

a4+ ai, ...,Qmy, not by, ..., not b,

where a, ay,...,a,, and by, ...,b, are atoms. The rule reads as “a is true if a;...a,, are all
known to be true and b;...b, can be assumed to be false”. The semantics of answer set
programs are defined using answer sets (earlier called stable models).

3 Answering two Why/How Questions

As mentioned earlier, in this paper we consider two particular types of Why and How
questions: “How are X and Y related in process Z7” and “Why is X important to Y?”.

Let us illustrate them with respect to a knowledge base about the process of photosynthesis.
The following component of an event description graph (to be formally defined later) expresses
the knowledge about photosynthesis.

Photosynthesis

subevent subevent
Light-reaction |---- enables----»  Calvin-cycle
raw_mfterial 7sult subevent
| Sunlight | [ sugar | Reduction_of_3_
N phosphoglycerate

\

Figure 1 The event description graph of photosynthesis. Events and processes are depicted by
rectangles and circles respectively. Compositional edges are represented by solid lines and behavioral
edges by dashed lines.

Now consider the “How” question: How are sunlight and sugar related in photosynthesis?

An intuitive answer to this question is: Photosynthesis has two subevents: light reaction
and calvin cycle. The light reaction needs sunlight as its raw material, and later enables the
calvin cycle which produces sugar as the result. This answer can be obtained from the graph
in Fig. 1 constructed from the frame based knowledge base AURA by using the information
that “raw material”, “enables”, and “result” are the key slots used by AURA.

Now let us consider the “Why” question: Why is sunlight important to photosynthesis?
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An intuitive answer to this question is: Sunlight is the raw material of light reaction
thus sunlight is important to light reaction; light reaction is an important sub-event of
photosynthesis; therefore sunlight is also important for photosynthesis. This answer can be
obtained from the graph in Fig. 1 when augmented with information about “importance”.
Following is such an augmented graph.

Photosynthesis

subevent subevent

Light-reaction |----- enables---- > Calvin-cycle
[— |

| A

raw_material result subevent

-/ N

o) \ Reduction_of_3_p
| Sunlight | Ol
E | Sugar hosphoglycerate

Figure 2 The event description graph of photosynthesis with the “important edges” marked by
bold arrow.

Using the augmented graph we need to follow the “important” edges that link “sunlight”
to photosynthesis.

The above examples suggest close relationships between the answers of why and how
questions and the graph representation of processes. In the following we give a formal
representation of processes as graphs, define some generic operations on the graphs and use
them in formulating answers to our two kinds of why and how questions.

3.1 Knowledge Bases of Biological Processes

In the frame representation that we use in [4] the Knowledge Base has the generic encoding
format: has(X,S,V), where X can be either a class or an object, S refers to a “slot”, which
describes the property of X, and V is the value for that slot. While the KB may contain a
large amount of information, we do not need all of that for our specific types of question
answering. Thus we consider and define a simplified view of the KB through the notion of
Event Description Graphs.

There are two important aspects of a Knowledge Base of Biological Processes: Events
and Entities. Each biological process is a event, which can often be broken down to several
sub-events (and sub-events of sub-events). Entities can be involved in the processes as raw
materials, results, bases, objects, etc.? Using that we now define Event Description Graphs.

» Definition 1. An Event Description Graph is a directed graph with two types of nodes:
event nodes and entity nodes; two types of directed edges: compositional edges and behavioral
edges; and a special node referred as main event node or root node which has no incoming
edge. An Event Description Graph satisfies the following conditions:

1. All other nodes beside the root are reachable from the root via compositional edges.

2. There are no directed cycle of only compositional edges.

3 For a complete list such relations (slot names), please refer to the Slot Dictionary in the Component
Library (http://www.cs.utexas.edu/ mfkb/RKF /tree/).
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3. There are no directed cycle of only behavioral edges.
4. There are no outgoing edges from the entity nodes.
We use EDG(Z) to denote the Event Description Graph with root Z.

“Event nodes” and “entity nodes” represent biological entities and biological processes,
respectively. The “compositional edges” and “behavioral edges” are categorized based on
specific event-event and event-entity relations. Table 1 shows some example relations that
can be viewed as compositional and behavioral edges. For event-to-event relation, only the
“sub-event” relation is viewed as a compositional edge, while others are viewed as behavioral
edges. All the event-to-entity relations are considered compositional edges.

Each Event Description Graph describes its root event which is a biological process
defined in the KB. As all the sub-events are also biological processes, the subgraph with a
sub-event as root and that contains all the accessible nodes/edges from that sub-event is
considered the Event Description Graph for that sub-event.

Table 1 The slot names indicating “compositional”/“behavioral” edges.

Category Type Slot names

Event-to-Event  compositional sub-event

Event-to-Event  behavioral next__event, enables, causes, prevents...
Event-to-Entity compositional raw_ material, result, site, location, base, agent...
Event-to-Entity ~ behavioral (null)

A cpath from a node X to a node Y in EDG(Z), denoted as cpath(X,Y), is a path
consisting of only compositional edges. Similarly, a bpath(X,Y’) is a path consisting of
only behavioral edges, and an ipath(X,Y), is a path consisting of only “important edges”.
While cpath(X,Y) and bpath(X,Y) reflect how X and Y are connected compositionally or
behaviorally, sometimes we need to add richer semantic information such as an edge being
important which is then used to define ipath(X,Y). Intuitively we say that there is an
“important edge” from X to Y iff Y can not function properly without X. The following
Table 2 shows several functionally important relations.

Table 2 The slot names indicating “functional importance”.

Category Slot names

Entity-to-Event raw__material, site, base

Event-to-Event (explicit) enables, causes, regulates, prevents, subevent
Event-to-Event (implicit)  (sample rule) the result of E1 is the raw_ material of E2
Event-to-Entity result

3.2 Answers to two types of Why/How Questions

In this subsection we will formally define the answers to two types of Why and How questions.
We will illustrate the definitions and algorithms using the following event description graph.

Given the event description graph of process 1 in Figure 3 consider answering the question
“How are process 8 and entity 10 related in process 17”. Intuitively, it seems the answer
should only contain important information to understand the relation between 8 and 10 such
as: compositional path from process 3 to process 8 through process 5 and compositional
path from 3 to 10 through 7 to explain compositional relations between 8 and 10; behavioral
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14

Figure 3 Event Description Graph of process 1. Events and processes are depicted by rectangles
and circles respectively. Compositional edges are represented by solid lines and behavioral edges by
dashed lines.

path from 5 to 7 through 6 to explain behavioral relations; and compositional edge from 1
to 3 and then to 6 to clarify process 6. Information about process/entity 2, 4, 9, 11, 12, 13
and 14 can be omitted since they are not important for the connection between 8 and 10.
Following the above intuition, we formally define the answer for question “How are X and
Y related in process Z” as the graph denoted by MIN 7EDG)Z(7Y defined as follows. First,
LCA(X,Y)in EDG(Z), denotes the lowest common ancestor of X and Y in EDG(Z) .

» Definition 2. Given an event description graph EDG(Z) and two nodes X and Y in that
graph, MINﬁEDG)Z(’Y is the subgraph of EDG(Z) consisting of the following:
The set of nodes Vx U Vy U Viehaviorar U Vzr, where T' = LCA(X,Y) in EDG(Z); V,, and
V, are the set of nodes in cpath(T, X) and cpath(T,Y) respectively; Viehaviorar i the set
of nodes on any bpath(X’,Y"), where X’ € V,,, and Y’ € V;; and V7 is the set of nodes
in cpath(Z,T).
The set of edges consisting of the union of the edges obtained from EDG(T) by removing
all edges that connect to the nodes in EDG(T) \ V and the edges in cpath(Z,T) from Z
to T in EDG(Z).

The path cpath(Z,T) from Z to T helps clarify what T is with respect to the process Z.
With respect to relating 8 and 10 in Figure 3, this cpath(Z,T) is the path from process 1 to
process 3.

» Example 3. Let us consider the photosynthesis example. LCA(sunlight, sugar) in
EDG(photosynthesis) is photosynthesis itself. Using definition 2 we have: V, = {pho-
tosynthesis, light reaction, sunlight}, V, = {photosynthesis, calvin_cycle, sugar}, and
‘/beha'uioral = {} .

MIN_EDG(photosynthesis)P"0losvrihesis s has nodes V= {photosynthesis,

sunlight,sugar
light__reaction, calvin__cycle, sunlight, sugar} and edges: E = {(photosynthesis, light__reaction),
(photosynthesis,  calvin__cycle),  (light _reaction, sunlight), (calvin_cycle, sugar),

(light__reaction, calvin__cycle)}.

This subgraph expresses the answer to the question “How are sunlight and sugar related
in photosynthesis?”. We can also answer the question “How are sunlight and sugar related?”,
by finding the MIN_EDG for sunlight and sugar in the entire KB, rather than in the Event
Description Graph of photosynthesis.
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Now let us consider the question: “Why is X important to Y?” In order to answer it we
need both MIN_EDG(event)% ) and the notion of path, where event is the ancestor of all
events in the KB. Using them we have the following definition.

» Definition 4. The answer for “Why is X important to Y?” is the combination of: (i)
M[N_EDG(@U@M)?Y where T'= LCA(X,Y ) in EDG(event) and (ii) ipath(X,Y).

4 ASP Encodings for General Reasoning Rules

In this section we discuss the encoding for all the defined components discussed in the
previous section.

4.1 Encoding the Semantics of Slots

We encode the slot names that indicates a compositional/behavioral edges (Table 1) as
follows:

cedge(subevent; raw_material; result; site; location; base; agent).
bedge(next_event; enables; causes; prevents).

iedge(raw_material; site; base; subevent).

iedge(enables; causes; regulates; supports; prevents; result).

4.2 Compositional-Connected, Behavioral-Connected, and
Importantly-Connected

The following rules define “directly-compositionally-connected” (dcconnects), “directly-
behaviorally-connected” (dbconnects) and “directly-importantly-connected” (diconnects).

dcconnects(X, Y) :- has(X, S, Y), event(X), cedge(S).
dbconnects(X, Y) :- has(X, S, Y), event(X), event(Y), bedge(S).
diconnects(X, Y) :- has(X, S, Y), iedge(S).

The predicates cconnect, bconnect and iconnect denoting “compositionally-connected”,
“behaviorally-connected” and “importantly-connected” are transitive closures of “dcconnects”,
“dbconnects”, and “dcconnects” respectively and are defined in the standard way.

4.3 Cpath, Bpath, and Ipath

We can utilize the above defined relations to enumerate all the nodes on the composition-
al/behavioral path from a node to another. We define cpath(A, Z, I,C) which means C is
the Ith node in the path from A to Z.

cpath(A, Z, 0, A) :— cconnects(A, Z).
cpath(A, Z, T+1, C) :- cpath(A, Z, T, B), dcconnects(B,C), step(T),

cconnects(C, Z).

We similarly define bpath and ipath and use them.
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4.4 Finding Common Ancestor

Now we encode the rules for finding common ancestor for X and Y. The first two rules
encode the special cases where either X is the ancestor of Y or Y is the ancestor of X. The
3rd rule means that Z is a common ancestor of X and Y if Z cconnects to both X and Y.

common_ancestor(X,X,Y) :- cconnects(X, Y), X != Y.
common_ancestor(Y,X,Y) :- cconnects(Y, X), X != Y.
common_ancestor(Z,X,Y) :- cconnects(Z, X), cconnects(Z, Y), X !'= Y.

Following the algorithm, the next step is to find the lowest-common-ancestor. We say
that Z1 is not a lowest common ancestor if there exist another common ancestor Z2 which
is a descendant of Z1 (Z1 cconnects to Z2). And then we can define the lowest-common-
ancestor(lcs) using default negation.

not_lcs(Z1, X, Y) :- common_ancestor(Z1,X,Y), common_ancestor(Z2,X,Y),
Z1 '= Z2, cconnects(Z1, Z2).
lcs(Z, X, Y) :— common_ancestor(Z, X, Y), not not_lcs(Z, X, Y).

4.5 Correctness of the General Reasoning Rules

Proposition 1. Z is the lowest common ancestor of X and Y w.r.t. the KB of process P
iff: les(Z, X,Y) is entailed by the program described above.

5 ASP Encoding of How/Why Question and Answering

In this section we present the encoding for the general reasoning rules used in answering the
how and why questions. We provide the template for encoding both the questions and the
answers in a generic and easy-to-expand fashion. Our encoding is sufficient for a large list of
questions. However, there are questions that themselves encompass a complicated semantic
meaning, which needs additional representations that are beyond the scope of this work.

5.1 Question Encoding

To encode the semantics in the questions properly, we use the following template. Each
question has a QID, Type, Category, two Parameters, and optionally the Scope.

question(QID). has(QID, type, Type).
has(QID, category, Category). has(QID, paraml, XClass).
has(QID, param2, YClass). has(QID, scope, ScopeClass).

In the following we illustrate the encodings for the questions “How are sunlight and sugar
related in photosynthesis?” and “Why is sunlight important to photosynthesis?”, respectively.

question(ql). question(q2) .

has(ql, type, how). has(q2, type, why).

has(ql, category, relation). has(q2, category, important_to).
has(ql, paraml, sunlight). has(q2, paraml, sunlight).
has(ql, param2, sugar). has(q2, param2, photosynthesis).

has(ql, scope, photosynthesis).
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5.2 Answer Graph

According to the definitions of the answers for how and why questions, we use
__answer__graph(Q, Z, X,Y) to denote the answer MIN _EDG(Scope)% - of question Q. The
rule head __answer__graph(Q, Z, X,Y) denotes the answer as a graph with root Z, and two
descendant X and Y, in which X, Y and Z are instances of XClass, YClass, and ScopeClass.
7 is the lowest common ancestor for X and Y.

_answer_graph(Q, Z, X, Y) :- _answer_graph(Q, Z, X, Y) :-
question(Q), question(Q),

has(Q, type, how), has(Q, type, why),

has(Q, category, relation), has(Q, category, important_to),
has(Q, paraml, XClass), has(Q, paraml, XClass),
has(Q, param2, YClass), has(Q, param2, YClass),
has(Q, scope, ScopeClass), XClass != YClass,

has(X, instance_of, XClass), has(X, instance_of, XClass),
has(Y, instance_of, YClass), has(Y, instance_of, YClass),
has(Z, instance_of, ScopeClass), iconnects(X, Y),

lcs(Z, X, Y). lcs(Z, X, Y).

Similar to the “How” question, for the “Why” question we also find the lowest common
ancestor (without the scope information) Z of X and Y to form the answer graph, while
enforcing that there must exist an ipath from X to Y.

5.3 Obtaining Complete Answer: Output All Nodes/Edges in the
Answer Graph and Answer Path

We use __answer_node(Q, AnswerGraph, node, E) to denote all the nodes E in the
AnswerGraph. The first two rules encode that if the question has a answer graph (Q, Z, X,Y),
then all the nodes E on the compositional path from both Z to X and Z to Y will be answer
nodes. The 3rd rule encodes that all the nodes on the behavioral paths linking every pair
of nodes on the compositional paths are also answer nodes. The last rule encodes that all
the nodes on compositional paths from the scope of the question to Z (to clarify the role of
Z with respect to the given scope) are also answer nodes. Note that Scope, a prototype of
ScopeClass, is the instance of the ScopeClass class. In our DB, prototype is always defined
for each class.

_answer_node(Q, _answer_graph(Q, Z, X, Y), node, E) :-
_answer_graph(Q, Z, X, Y), cpath(Z, X, T, E), step(T).

_answer_node(Q, _answer_graph(Q, Z, X, Y), node, E) :-
_answer_graph(Q, Z, X, Y), cpath(Z, Y, T, E), step(T).

_answer_node(Q, AnswerGraph, node, E) :-
_answer_node(Q, AnswerGraph, node, X),
_answer_node(Q, AnswerGraph, node, Y),
bpath(X, Y, T, E), step(T).

_answer_node(Q, _answer_graph(Q, Z, X, Y), node, E) :-
_answer_graph(Q, Z, X, Y), has(Q, scope, ScopeClass),
has(Scope, prototype_of, ScopeClass), cpath(Scope, Z, T, E), step(T).
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Next the final answer is the collection of nodes and edges in the answer graph and
appropriate rules are written for that. For lack of space we skip the propositions that relate
the earlier definition of an answer with the answer obtained using the ASP rules.

6 Conclusion, Discussion and Future work

With good progress in information retrieval, natural language processing, speech recognition
and associated fields, question answering systems are becoming a reality. However, most
question answering systems are about factoid questions. But various applications, such as
building intelligent tutoring systems need more general form of question answering, especially
involving why and how questions. To develop systems that can answer why and how questions
with respect to text, we first need to be clear about correct answers to why and how questions
in a more formal setting. In other words, we need to develop a formal theory of answers to
why and how questions. Towards that end, we made a start in this paper with focus on why
and how question answering with respect to a structured knowledge base. We developed
an abstract notion of an event description graph and used that to formalize answers with
respect to two kinds of why and how questions. We then gave an ASP implementation of
our formalization. The motivation behind using ASP is that as a prerequisite to answering
questions with respect to a frame based knowledge base we need to implement issues such
as inheritance and cloning in making inferences about facts of the form has(X,S,Y). In

an earlier paper we showed how ASP can be used to implement inheritance and cloning.

Hence our use of ASP in this paper. Moreover we are not aware of any other declarative
implementation or formalization of cloning in any other language.

Although, so far in this paper we only considered two kinds of why and how questions,
our approach generalizes beyond those two to additional types. Below, we give a couple of

examples on that. In the future we will consider additional types of why and how questions.

1. To answer questions of the form, “How does X occur?”, we just need to define an
answer graph as:

_answer_graph(Q, X, First_subevent_of_X, Last_subevent_of_X),

in which the first and last subevents of X can be easily obtained if all the subevents are
properly ordered using the “next_ event” relation.

2. Similarly, to answer questions of the form, “How does X produce Y?”, the answer
graph is defined as:

_answer_graph(Q, X, null, Y),

so that only the cpath from X to Y is in the answer graph, and this chain of reaction is “how
X produces Y7 if the last event in the chain has Y as result.

3. Similarly, to answer questions of the form, “Why does X have Property Y?”, the
answer graph is defined as:

_answer_graph(Q, X, Y, Subevent_of_X_that_involves_Y),

where for each subevents of X that involves Y, we generate an answer graph and output
“why is Y important for that subevent”.
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—— Abstract

Having in mind the task of improving the solving methods for Answer Set Programming (ASP),
there are two usual ways to reach this goal: (i) extending state-of-the-art techniques and ASP
solvers, or (ii) designing a new ASP solver from scratch. An alternative to these trends is to
build on top of state-of-the-art solvers, and to apply machine learning techniques for choosing
automatically the “best” available solver on a per-instance basis.

In this paper we pursue this latter direction. We first define a set of cheap-to-compute
syntactic features that characterize several aspects of ASP programs. Then, given the features
of the instances in a training set and the solvers performance on these instances, we apply a
classification method to inductively learn algorithm selection strategies to be applied to a test
set. We report the results of an experiment considering solvers and training and test sets of
instances taken from the ones submitted to the “System Track” of the 3rd ASP competition.
Our analysis shows that, by applying machine learning techniques to ASP solving, it is possible
to obtain very robust performance: our approach can solve a higher number of instances compared
with any solver that entered the 3rd ASP competition.
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1 Introduction

Having in mind the task of improving the robustness, i.e., the ability to perform well across
a wide set of problem domains, and the efficiency, i.e., the quality of solving a high number
of instances, of solving methods for Answer Set Programming (ASP) [13, 27, 30, 26, 14, 3],
it is possible to extend existing state-of-the-art techniques implemented in ASP solvers,
or design from scratch a new ASP system with powerful techniques and heuristics. An
alternative to these trends is to build on top of state-of-the-art solvers, leveraging on a
number of efficient ASP systems, e.g., [36, 22, 24, 10, 28, 21, 36], and applying machine
learning techniques for inductively choosing, among a set of available ones, the “best” solver
on the basis of the characteristics, called features, of the input program. This approach falls
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in the framework of the algorithm selection problem [34]. Related approaches, following
a per-instance selection, have been exploited for solving propositional satisfiability (SAT),
e.g., [40], and Quantified SAT (QSAT), e.g., [32] problems. In ASP, an approach for selecting
the “best” CLASP internal configuration is followed in [9], while another approach that imposes
learned heuristics ordering to SMODELS is [2].

In this paper we pursue this direction, and design a multi-engine approach to ASP
solving. We first define a set of cheap-to-compute syntactic features that describe several
characteristics of ASP programs, paying particular attention to ASP peculiarities. We then
compute such features for the grounded version of all benchmark submitted to the “System
Track” of the 3rd ASP Competition [5] falling in the “NP” and “Beyond NP’ categories of
the competition: this track is well suited for our study given that (¢) contains many ASP
instances, (i) the language specification, ASP-Core, is a common ASP fragment such that
(7i7) many ASP systems can deal with it.

Then, starting from the features of the instances in a training set, and the solvers
performance on these instances, we apply the “Nearest-neighbor” classification method to
inductively learn general algorithm selection strategies to be applied to a test set. We perform
an analyses that consider as test set the instances evaluated to the 3rd ASP competition.

Our experiments show that it is possible to obtain a very robust performance, by solving
a higher number of instances than all the solvers that entered the 3rd ASP competition and
DLV [22].

The paper is structured as follow. Section 2 contains preliminaries about ASP and
classification methods. Section 3 then describes our benchmarks setting, in terms of dataset
and solvers employed. Section 4 defines how features and solvers have been selected, and
presents the classification methods employed. Section 5 shows the performance analysis,
while Section 6 and 7 end the paper with discussion about related work and conclusions,
respectively.

2 Preliminaries

In this section we recall some preliminary notions concerning answer set programming and
machine learning techniques for algorithm selection.

2.1 Answer Set Programming

Answer Set Programming (ASP) [13, 27, 30, 26, 14, 3] is a declarative programming formalism
proposed in the area of non-monotonic reasoning and logic programming. The idea of ASP is
to represent a given computational problem by a logic program whose answer sets correspond
to solutions, and then use a solver to find those solutions [26].

In the following, we recall both the syntax and semantics of ASP. The presented constructs
are included in ASP-Core [5], which is the language specification that was originally introduced
in the 3rd ASP Competition [5] as well as the one employed in our experiments (see Section 3).
Hereafter, we assume the reader is familiar with logic programming conventions, and refer
the reader to [14, 3, 12] for complementary introductory material on ASP, and to [4] for
obtaining the full specification of ASP-Core.

2.1.1 Syntax

A variable or a constant is a term. An atom is p(ti,...,t,), where p is a predicate of arity n
and ty,...,t, are terms. A literal is either a positive literal p or a negative literal not p, where
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p is an atom. A (disjunctive) rule r is of the form:
a; V -V oa, — by, by, not bgy1,---, not by,.

where ay,...,a,,b1,...,b, are atoms. The disjunction a1 V...V a,, is the head of r, while
the conjunction by, ...,bg,not bgy1,...,not by, is the body of r. We denote by H(r) the set
of atoms occurring in the head of r, and we denote by B(r) the set of body literals. A rule
s.t. |[H(r)| =1 (i.e., n =1) is called a normal rule; if the body is empty (i.e., k =m = 0) it

is called a fact (and the :— sign is omitted); if |[H(r)| =0 (i.e., n = 0) is called a constraint.
A rule 7 is safe if each variable appearing in r appears also in some positive body literal of r.

An ASP program P is a finite set of safe rules. A not-free (resp., V-free) program is
called positive (resp., normal). A term, an atom, a literal, a rule, or a program is ground if
no variable appears in it.

2.1.2 Semantics

Given a program P, the Herbrand Universe Up is the set of all constants appearing in P,
and the Herbrand Base Bp is the set of all possible ground atoms which can be constructed
from the predicates appearing in P with the constants of Up. Given a rule r, Ground(r)
denotes the set of rules obtained by applying all possible substitutions from the variables
in r to elements of Up. Similarly, given a program P, the ground instantiation of P is
Ground(P) =, cp Ground(r).

An interpretation for a program P is a subset I of Bp. A ground positive literal A is
true (resp., false) w.r.t. I if A €I (resp., A & I). A ground negative literal not A is true
w.r.t. I if A is false w.r.t. I; otherwise not A is false w.r.t. I.

The answer sets of a program P are defined in two steps using its ground instantiation:
First the answer sets of positive disjunctive programs are defined; then the answer sets of
general programs are defined by a reduction to positive ones and a stability condition.

Let r be a ground rule, the head of r is true w.r.t. I if H(r) NI # (. The body of r is
true w.r.t. I if all body literals of r are true w.r.t. I, otherwise the body of r is false w.r.t. I.
The rule r is satisfied (or true) w.r.t. I if its head is true w.r.t. I or its body is false w.r.t. I.

Given a ground positive program P,, an answer set for P, is a subset-minimal interpretation
A for P, such that every rule r € P, is true w.r.t. A (i.e., there is no other interpretation
I C A that satisfies all the rules of Py).

Given a ground program P, and an interpretation I, the (Gelfond-Lifschitz) reduct [14]
of Py w.r.t. I is the positive program PgI, obtained from P, by (i) deleting all rules r € P,
whose negative body is false w.r.t. I, and (ii) deleting the negative body from the remaining
rules of P,.

An answer set (or stable model) of a general program P is an interpretation I of P such
that I is an answer set of Ground(P)!.

As an example consider the program P = { a Vb:—c., b:—not a,not ¢., a V ¢:—not b.,
k:a., k:b. }and I = {b,k}. The reduct P’ is {aVb:—c., b. k:~a., k:~b.}. I is an answer
set of P!, and for this reason it is also an answer set of P.

2.2 Multinomial classification for Algorithm Selection

With regard to empirically hard problems, there is rarely a best algorithm to solve a given
combinatorial problem, while it is often the case that different algorithms perform well on
different problem instances. Among the approaches for solving this problem, in this work
we rely on a per-instance selection algorithm in which, given a set of features —i.e., numeric
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Table 1 Problems and instances considered, coming from the NP and Beyond NP classes of the
3rd ASP competition.

Problem Class ‘ #Instances
DisjunctiveScheduling NP 10
GraphColouring NP 60
HanoiTower NP 59
KnightTour NP 10
MazeGeneration NP 50
Labyrinth NP 261
MultiContextSystemQuerying | NP 73
Numberlink NP 150
PackingProblem NP 50
SokobanDecision NP 50
Solitaire NP 25
Weight AssignmentTree NP 62
MinimalDiagnosis Beyond NP 551
StrategicCompanies Beyond NP 51

values that represent particular characteristics of a given instance—, it is possible to choose
the best algorithm among a pool of them —in our case, tools to solve ASP instances. In
order to make such a selection in an automatic way, we model the problem using multinomial
classification algorithms, i.e., machine learning techniques that allow automatic classification
of a set of instances, given instance features.

More in detail, in multinomial classification we are given a set of patterns, i.e., input
vectors X = {z;,...2;} with z; € R", and a corresponding set of labels, i.e., output values
Y €{1,...,m}, where Y is composed of values representing the m classes of the multinomial
classification problem. In our modeling, the m classes are m ASP solvers. We think of the
labels as generated by some unknown function f : R™ — {1,...,m} applied to the patterns,
ie, f(z;) =y fori € {1,...,k} and y; € {1,...,m}. Given a set of patterns X and a
corresponding set of labels Y, the task of a multinomial classifier ¢ is to extrapolate f given
X and Y, i.e., construct ¢ from X and Y so that when we are given some x* € X we should
ensure that c(z*) is equals to f(z*). This task is called ¢raining, and the pair (X,Y") is called
the training set.

3 Benchmark data and Settings

In this section we report some information concerning the benchmark settings employed in
this work, which is needed for properly introducing the techniques described in the remainder
of the paper. In particular, we report some data concerning: benchmark problems, instances
and ASP solvers employed, as well as the hardware platform, and the execution settings for
reproducibility of experiments.

3.1 Dataset

The benchmarks considered for the experiments belong to the suite of the 3rd ASP Compe-
tition [5]. This is a large and heterogeneous suite of hard benchmarks, which was already
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employed for evaluating the performance of state-of-the-art ASP solvers, which are encoded in
ASP-Core. That suite includes planning domains, temporal and spatial scheduling problems,
combinatorial puzzles, graph problems, and a number of application domains i.e., database,
information extraction and molecular biology field.! More in detail, we have employed the
encodings used in the System Track of the competition, and all the problem instances made
available (in form of facts) from the contributors of the problem submission stage of the
competition, which are available from the competition website [4]. Note that this is a superset
of the instances actually selected for running (and, thus evaluated in) the competition itself.
Hereafter, with instance we refer to the complete input program (i.e., encoding+facts) to be
fed to a solver for each instance of the problem to be solved.

The techniques presented in this paper are conceived for dealing with propositional
programs, thus we have grounded all the mentioned instances by using GRINGO (v.3.0.3) [11]
to obtain a setup very close to the one of the competition.We considered only computationally-
hard benchmarks, corresponding to all problems belonging to the categories NP and Beyond
NP of the competition. The dataset is summarized in Table 1, which also reports the
complexity classification and the number of available instances for each problem.

3.2 Executables and Hardware Settings

We have run all the ASP solvers in our experiments that entered the System Track of the
3rd ASP Competition [4] with the addition of DLV [22] (which did not participate in the
competition since it is developed by the organizers of the event). In this way we have covered
—to the best of our knowledge— all the state-of-the-art solutions fitting the benchmark settings.
In detail, we have run: CLASP [10], CLASPD [7], CLASPFOLIO [9], IDP [39], CMODELS [24],
SUP [25], SMODELS [36], and several solvers from both the LP2SAT [20] and LP2DIFF [21]
families, namely: LP2GMINISAT, LP2LMINISAT, LP2LGMINISAT, LP2MINISAT, LP2DIFFGZ3,
LP2DIFFLGZ3, LP2DIFFLZ3, and LP2DIFFZ3. More in detail, CLASP is a native ASP solver
relying on conflict-driven nogood learning; CLASPD is an extension of CLASP that is able to
deal with disjunctive logic programs, while CLASPFOLIO exploits machine-learning techniques
in order to choose the best-suited execution options of CLASP; IDP is a finite model generator
for extended first-order logic theories, which is based on MiniSatID [28]; SMODELS is one
of the first robust native ASP solvers that have been made available to the community;
DLV [22] is one of the first systems able to cope with disjunctive programs; CMODELS exploits
a SAT solver as a search engine for enumerating models, and also verifying model minimality
whenever needed; SUP exploits nonclausal constraints, and can be seen as a combination
of the computational ideas behind ¢CMODELS and SMODELS; the LP2SAT family employs
several variants (indicated by the trailing G, L and LG) of a translation strategy to SAT
and resorts on MINISAT [8] for actually computing the answer sets; the LP2DIFF family
translates programs in difference logic over integers [37] and exploit Z3 [6] as underlying
solver (again, G, L and LG indicate different translation strategies). Solvers were run on the
same configuration (i.e., parameter settings) as in the competition.

Concerning the hardware employed and the execution settings, all the experiments were
carried out on CyberSAR [29], a cluster comprised of 50 Intel Xeon E5420 blades equipped
with 64 bit Gnu Scientific Linux 5.5. Unless otherwise specified, the resources granted to the
solvers are 600s of CPU time and 2GB of memory. Time measurements were carried out
using the time command shipped with Gnu Scientific Linux 5.5.

! An exhaustive description of the benchmark problems can be found in [4].
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4 Designing a Multi-Engine ASP Solver

The design of a multi-engine solver involves several steps: (i) design of (syntactic) features
that are both significant for classifying the instances and cheap-to-compute (so that the
classifier can be fast and accurate); (i) selection of solvers that are representative of the state
of the art (to be able to obtain the best possible performance in any considered instance);
and (7i%) selection of the classification algorithm, and fair design of training and test sets, to
obtain a robust and unbiased classifier.

In the following we describe the choices we have made for designing ME-ASP, which is our
multi-engine solver for ground ASP programs.

4.1 Features

We consider syntactic features that are cheap-to-compute, i.e., computable in linear time
in the size of the input, given that in previous work (e.g., [32]) syntactic features have
been profitably used for characterizing (inherently) ground instances. The features that
we compute for each ground program are divided into four groups: problems size, balance,
“proximity to horn” and ASP-based peculiar features. This categorization is borrowed
from [31]. The problem size features are: number of rules r, number of atoms a, ratios
r/a, (r/a)?, (r/a)® and ratios reciprocal a/r, (a/r)* and (a/r)’. The balance features are:
fraction of unary, binary and ternary rules. The “proximity to horn” features are: fraction of
horn rules and number of occurrences in a horn rule for each atom. We have added a number
of ASP peculiar features, namely: number of true and disjunctive facts, fraction of normal
rules and constraints ¢. Also some combinations, e.g., ¢/r, are considered for a total of 52
features.

We were able to ground with GRINGO 1425 instances out of a total of 1462 in less than
600s.2 Our system for extracting features from ground programs can then compute all
features (in less than 600s) for 1371 programs: to have an idea of its performance, it can
compute all features of a ground program of approximately 20MB in about 4s.

4.2 Solvers selection

The target of our selection is to collect a pool of solvers that is representative of the state-of-
the-art solver (SOTA), i.e., considering a problem instance, the oracle that always fares the
best among available solvers. In order to do that, we ran preliminary experiments, and we
report the results (regarding the NP class) in Table 2. Looking at the table, first we notice
that we do not report results related to both cLASPD and CLASPFOLIO. Concerning the
results of CLASPD, we report that —considering the NP class— its performance is subsumed
by the performance of CLASP. Considering the performance of CLASPFOLIO, we exclude such
system from this analysis because we consider it as a yardstick system, i.e., we will compare
its performance against the ones related to ME-ASP.

Looking at Table 2, we can see that only 4 solvers out of 16 are able to solve a noticeable
amount of instances uniquely, namely CLASP, CMODELS, DLV, and 1DP. Concerning Beyond
NP instances, we report that only three solvers are able to cope with such class of problems,
name CLASPD, CMODELS, and DLV. Considering that both ¢cMODELS and DLV are involved
in the previous selection, the pool of engines used in ME-ASP will be composed of 5 solvers,
namely CLASP, CLASPD, CMODELS, DLV, and IDP.

2 The exceptions are 10 and 27 instances of DisjunctiveScheduling and PackingProblem, respectively.



M. Maratea, L. Pulina, and F. Ricca

Table 2 Results of a pool of ASP solvers on the NP instances of the 3rd ASP Competition.
The table is organized as follows: Column “Solver” reports the solver name, column “Solved”
reports the total amount of instances solved with a time limit of 600 seconds, and, finally, in column
“Unique” we report the total amount of instances solved uniquely by the corresponding solver.

Solver Solved | Unique H Solver Solved | Unique
CLASP 445 26 LP2DIFFZ3 307 -
CMODELS 333 6 LP2SAT2GMINISAT 328 -
DLV 241 37 LP2SAT2LGMINISAT 322 -
IDP 419 15 LP2SAT2LMINISAT 324 -
LP2DIFFGZ3 254 - LP2SAT2MINISAT 336 -
LP2DIFFLGZ3 242 - SMODELS 134 -
LP2DIFFLZ3 248 - SUP 311 1

4.3 Classification algorithms and training

The classification method employed in our analysis is Nearest-neighbor (NN), already
considered in [32] in QBF solving: it is a classifier yielding the label of the training instance
which is closer to the given test instance, whereby closeness is evaluated using some proximity
measure, e.g., Euclidean distance; we use the method described in [1] to store the training
instances for fast look-up.

As mentioned in Section 2.2, in order to train the classifier, we have to select a pool of
instances for training purpose, i.e., the training set. Concerning such selection, our aim is
twofold. On the one hand, we want to compose a training set in order to train a robust
model.

As result of the considerations above, we design a training set—Tsl in the following—
composed of the 320 instances solved uniquely —without taking into account the instances
involved in the competition— by the pool of engines selected in Section 4.2. The rational of
this choice is to try to “mask” noisy information during model training.

Our next experiment is devoted to training the classifier, and to assessing its accuracy.
Referring to the notation introduced in Section 2.2, even assuming that a training set is
sufficient to learn f, it is still the case that different sets may yield a different f. The problem
is that the resulting trained classifier may underfit the unknown pattern —i.e., its prediction
is wrong— or overfit —i.e., be very accurate only when the input pattern is in the training
set. Both underfitting and overfitting lead to poor generalization performance, i.e., ¢ fails to
predict f(z*) when z* # z. However, statistical techniques can provide reasonable estimates
of the generalization error. In order to test the generalization performance, we use a technique
known as stratified 10-times 10-fold cross validation to estimate the generalization in terms
of accuracy, i.e., the total amount of correct predictions with respect to the total amount
of patterns. Given a training set (X,Y"), we partition X in subsets X; with ¢ € {1,...10}
such that X = Ugl X; and X; N X; = 0 whenever i # j; we then train c(;y on the patterns
Xy = X'\ X; and corresponding labels Y{;). We repeat the process 10 times, to yield 10
different ¢ and we obtain the global accuracy estimate.

We finally report the accuracy results related to the experiment described above for our
classification method: 92.81%.
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Table 3 Results of the various solvers on the grounded instances evaluated at the 3rd ASP
competition. ME-ASP(NN) has been trained on the TS1 training set.

Solver NP Beyond NP Total
#Solved ‘ Time #Solved ‘ Time #Solved ‘ Time
CLASP 60 | 5132.45 - - - -
CLASPD - - 13 | 2344.00 - -
CMODELS 56 | 5092.43 9 | 2079.79 65 | 7172.22
DLV 37 | 1682.76 15 | 1359.71 52 | 3042.47
IDP 61 | 5010.79 - - - -
ME-ASP (NN) 66 | 4854.78 15 | 3187.31 81 | 8042.09
CLASPFOLIO 62 | 4824.06 - - - -
SOTA 71 | 5403.54 15 | 1221.01 86 | 6624.55

5 Performance analysis

In this section we present the results of the analysis we have performed. We consider the
training sets TS1 introduced in Section 4, composed of uniquely solved instances, and as test
set the successfully grounded instances evaluated at the 3rd ASP Competition (a total of
88 instances): the goal of this analysis is to test the efficiency of our approach on all the
evaluated instances when the model is trained on the whole space of the uniquely solved
instances.

The results are reported in a table structured as follows: the first column reports the
name of a solver, the second, third and fourth columns report the results of each solver on
NP, Beyond NP classes, and on both classes, respectively, in terms of the number of solved
instances within the time limit and sum of their solving times (a sub-column is devoted
to each of these numbers). About the last column, numbers are reported only for ME-ASP
and the engines that have been selected on both classes in Section 4.2 (note that cLASPD
always performs worse than CLASP on NP instances, and CLASPFOLIO can only handle NP
instances).

We report the results obtained by running: ME-ASP with the NN classification method
introduced in Section 4.3, denoted with ME-ASP(NN) the component engines employed by
ME-ASP on each class as explained in Section 4.2, CLASPFOLIO and SOTA, which is the ideal
multi-engine solver (considering the engines employed).

We remind the reader that, for ME-ASP, the number of instances on which ME-ASP is run
is further limited to the ones for which we were able to compute all features, and its timings
include both the time spent for extracting the features from the ground instances, and the
time spent by the classifier.

Results are shown in Table 3. We can see that, on problems of the NP class, ME-ASP(NN)
solves the highest number of instances, 5 more than IDP, 6 more than CLASP and 4 more
than CLASPFOLIO, that we remind the fastest solver in the NP class that entered the System
Track of the competition. On the Beyond NP problems, instead, ME-ASP(NN) and DLV solve
15 instances (DLV having best mean CPU time), followed by cLASPD and CMODELS, which
solve 13 and 9 instances, respectively. It is interesting to report the overall result of CLASPD,
i.e., the overall winner of the System Track of the competition on both NP and Beyond NP
classes: it solves a total of 62 instances (i.e., 52 NP instances and 13 Beyond NP instances),
thus a total of 19 instances less than ME-ASP(NN).
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Summarizing, ME-ASP(NN) is the solver that solves the highest number of instances in
comparison with (i) its engines, (ii) CLASPFOLIO, i.e., the fastest solver in the NP class that
entered the System Track of the competition, and (iii) CLASPD, i.e., the overall winner of the
System Track of the competition. It is further very interesting to note that its performance
is very close to the SOTA solver which, we remind, has the ideal performance that we could
expect in these instances with these engines.

6 Related Work

Starting from the consideration that, on empirically hard problems, there is rarely a “global”
best algorithm, while it is often the case that different algorithms perform well on different
problem instances, Rice [34] defined the algorithm selection problem as the problem of finding
an effective, or good, or best algorithm, based on an abstract model of the problem at hand.
Along this line, several works have been done to tackle combinatorial problems efficiently.
[16, 23] described the concept of “algorithm portfolio” as a general method for combining
existing algorithms into new ones that are unequivocally preferable to any of the component
algorithms. Most related papers to our work are [40, 32| for solving SAT and QSAT problems.
Both [40] and [32] rely on a per-instance analysis, like the one we have performed in this
paper: in [32], which is the work closest to our, the goal is to design a multi-engine solver,
i.e. a tool that can choose among its engines the one which is more likely to yield optimal
results. The approach in [40] has also the ability to compute features on-line, e.g., by running
a solver for an allotted amount of time and looking “internally” to solver statistics, with the
option of changing the solver on-line: this is a per-instance algorithm portfolio approach.
The algorithm portfolio approach is employed also in, e.g., [16] on Constraint Satisfaction
and MIP, [35] on QSAT and [15] on planning problems. The advantage of the algorithm
portfolio over a multi-engine is that it is possible, by combining algorithms, to reach, in each
instance, better performance than the best engine, while this is the bound for a multi-engine
solver. On the other hand, an algorithm portfolio needs internal changes in the code of the
engines, while the multi-engine treats the engines as black-box, thus no internal modification,
even minor, is requested, resulting in higher modularity for this approach: when a new engine
is added, there is just the need to update the model. It has to be noticed that both [32]
and [40] reached very good results, e.g., AQME, the multi-engine solver implementing the
approach in [32] had top performance at the 2007 QBF competition.? [33] extends [32] by
introducing a self-adaptation of the learned selection policies when the approach fails to give
a good prediction.

Other approaches work by designing methods for automatically tuning and configuring
the solver parameters: this approach is followed in, e.g., [19, 18] for solving SAT and MIP
problems, and [38] for planning problems. An overview can be found in [17]. In ASP, the
approach implemented in CLASPFOLIO [9] mixes characteristics of the algorithm portfolio
approach with others more similar to this second trend: it works by selecting the most
promising CLASP internal configuration on the basis of both static and dynamic features of
the input program, the latter obtained by running CLASP for a given amount of time. In
CLASPFOLIO, features are extracted by means of the CLASPRE tool. Thus, like the algorithms
portfolio approaches, it can compute both static and dynamic features, while trying to
automatically configure the “best” CLASP configuration on the basis of the computed features.
An alternative approach is followed in the DORS framework of [2], where in the off-line

3 http:www.qbflib.org/qbfeval.
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learning phase, carried out on representative programs from a given domain, a heuristic
ordering is selected to be then used in SMODELS when solving other programs from the same
domain. The target of this work seems to be real-world problem domains where instances
have similar structures, and heuristic ordering learned in some (possibly small) instances in
the domain can help to improve the performance on other (possibly big) instances.

7 Conclusion

In this paper we have applied machine learning techniques to ASP solving with the goal of
developing a fast and robust multi-engine ASP solver. To this end, we have: (¢) specified a
number of cheap-to-compute syntactic features that allow for accurate classification of ground
ASP programs; (i7) applied a multinomial classification method to learning algorithm selection
strategies; (i7¢) implemented these techniques in our multi-engine solver ME-ASP, which is
available for download at http://www.mat.unical.it/ricca/me-asp. The performance of
ME-ASP was assessed on an experiment, which was conceived for checking efficiency of our
approach, involving training and test sets of instances taken from the ones submitted to the
System Track of the 3rd ASP competition. Our analysis shows that, our multi-engine solver
ME-ASP is very robust and efficient, and outperforms both its component engines and state
of the art solvers.
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—— Abstract

In this paper we propose an extension of Answer Set Programming (ASP) by non-Herbrand
functions, i.e. functions over non-Herbrand domains, and describe a solver for the new language.
Our approach stems for our interest in practical applications, and from the corresponding need
to compute the answer sets of programs with non-Herbrand functions efficiently. Our extension
of ASP is such that the semantics of the new language is obtained by a comparatively small
change to the ASP semantics from [8]. This makes it possible to modify a state-of-the-art ASP
solver in an incremental fashion, and use it for the computation of the answer sets of (a large
class of) programs of the new language. The computation is rather efficient, as demonstrated by
our experimental evaluation.
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1 Introduction

In this paper we describe an extension of Answer Set Programming (ASP) [8, 12, 2] called
ASP{f}, and a solver for the new language.

In logic programming, functions are typically interpreted over the Herbrand Universe, with
each functional term f(x) mapped to its own canonical syntactical representation. That is,
in most logic programming languages, the value of an expression f(z) is f(z) itself, and thus
strictly speaking f(x) = 2 is false. This type of functions, the corresponding languages and
efficient implementation of solvers is the subject of a substantial amount of research (we refer
the reader to e.g. [5, 3, 13]).

When representing certain kinds of knowledge, however, it is sometimes convenient to use
functions with non-Herbrand domains (non-Herbrand functions for short), i.e. functions
that are interpreted over domains other than the Herbrand Universe. For example, when
describing a domain in which people enter and exit a room over time, it may be convenient
to represent the number of people in the room at step s by means of a function occupancy(s)
and to state the effect of a person entering the room by means of a statement such as

occupancy(S + 1) = O + 1 « occupancy(S) = O

where S is a variable ranging over the possible time steps in the evolution of the domain.
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Of course, in most logic programming languages, non-Herbrand functions can still be
represented, but the corresponding encodings are not as natural and declarative as the one
above. For instance, a common approach consists in representing the functions of interest
using relations, and then characterizing the functional nature of these relations by writing
auxiliary axioms. In ASP, one would encode the above statement by (1) introducing a
relation occupancy’(s, o), whose intuitive meaning is that occupancy’(s,o0) holds iff the value
of occupancy(s) is o; and (2) re-writing the original statement as a rule

occupancy' (S + 1,0 + 1) < occupancy’ (S, O). (1)

The characterization of the relation as representing a function would be completed by an
axiom such as

—occupancy' (S,0") < occupancy'(S,0), O # O'. (2)

which intuitively states that occupancy(s) has a unique value. The disadvantage of this
representation is that the functional nature of occupancy’(s,o) is only stated in (2). When
reading (1), one is given no indication that occupancy’(s, o) represents a function — and, before
finding statements such as (2), one can make no assumption about the functional nature
of the relations in a program when a combination of (proper) relations and non-Herbrand
functions are present.

Various extensions of ASP with non-Herbrand functions exist in the literature. In [4],
Quantified Equilibrium Logic is extended with support for equality. A subset of the general
language, called FLP, is then identified which can be translated into normal logic programs.
Such translation makes it possible to compute the answer sets of FLP programs using
ASP solvers. [10] proposes instead the use of second-order theories for the definition of the
semantics of the language. Again, a transformation is described, which removes non-Herbrand
functions and makes it possible to use ASP solvers for the computation of the answer sets
of programs in the extended language. In [11, 14] the semantics is based on the notion
of reduct as in the original ASP semantics [8]. For the purpose of computing answer sets,
a translation is defined, which maps programs of the language from [11, 14] to constraint
satisfaction problems, so that CSP solvers can be used for the computation of the answer
sets of programs in the extended language. Finally, the language of CLINGCON [7] extends
ASP with elements from constraint satisfaction. The CLINGCON solver finds the answer sets
of a program by interleaving the computations of an ASP solver and of a CSP solver.

Our investigation stems for our interest in practical applications, and in particular from the
need for a knowledge representation language with non-Herbrand functions that can be used
for such applications and that allows for an efficient computation of answer sets. From this
point of view, the existing approaches have certain limitations.

The transformations to constraint satisfaction problems used in [11, 14] certainly allow for
an efficient computation of answer sets using constraint solving techniques, as demonstrated
by the experimental results in [14]. On the other hand, the recent successes of CDCL-based
solvers (see e.g. [9]) such as CLASP [6] have shown that for certain domains CSP solvers
perform poorly compared to CDCL-based solvers. For practical applications it is therefore
important to ensure the availability of a CDCL-based solver as well. Furthermore, as observed
in [4], the requirement made in [11, 14] that non-Herbrand functions be total yields some
counterintuitive results in certain knowledge representation tasks, which, from our point
of view, limits the practical applications of the language. This arguments also holds for
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CLINGCON. An additional limitation of CLINGCON is the fact that the interleaved computation
it performs carries some overhead.

In both [4] (where functions are partial) and [10] (where functions are total) the computation
of the answer sets of a program is obtained by translating the program into a normal logic
program, and then using state-of-the-art ASP solving techniques and solvers. Unfortunately,
in both cases the translation to normal logic programs causes a substantial growth of the
size of the translated (ground) program compared to the original (ground) program. Two,
similar and often concurrent reasons exist for this growth. First of all, when a non-Herbrand
function is removed and replaced by a relation-based representation, axioms that ensure
the uniqueness of value of the function have to be introduced. In [4], for example, when a
function f(-) is removed, the following constraint is introduced:

+— holds__ f(X, V), holds_ f(X, W),V £ W. (3)

As usual, before an ASP solver can be used, this constraint must in turn be replaced by its
ground instances, obtained by substituting every variable in it by a constant. This process
causes the appearance of |Dy|? - |C¢| ground instances, where Dy and Cy are respectively the
domain and the co-domain of function f. In the presence of functions with a sizable domain
and/or co-domain, the number of ground instances of (3) can grow quickly and impact the
performance of the solver rather substantially. Secondly, certain syntactic elements of these
extended languages, once mapped to normal logic programs, can also yield translations with
large ground instances. Taking again [4] as an example (the transformation in [10] appears
to follow the same pattern), consider the FLP rule:

p(z) « f(z) # g(x). (4)

which intuitively says that p(z) must hold if f and g are defined for z and have different
values. During the transformation to normal logic programs, this rule is translated into:

p(x) <Y # Z, holds__f(x,Y), holds_g(z, Z).

Similarly to the previous case, the number of ground instances of this rule grows proportionally
with [Df|?, and in the presence of non-Herbrand functions with sizable domains, solver
performance can be affected quite substantially. Although one might argue that it is possible
to modify an ASP solver to guarantee that (3) is enforced without the need to explicitly
specify it in the program, such a solution is unlikely to be applicable in the case of an
arbitrary rule such as (4).

In response to these issues, in this paper we define an extension of ASP with non-Herbrand
functions, called ASP{f}, that is obtained with a comparatively small modification to the
semantics from [8]. The nature of this change makes it possible to modify a state-of-the-art
ASP solver in an incremental fashion, and to use it directly for the computation of the answer
sets of (a large class of) ASP{f} programs. This prevents the phenomenon of the quadratic
growth of the ground instance described above and results in a rather efficient computation,
as demonstrated later in the paper.

The rest of the paper is organized as follows. The next two sections describe the syntax
and the semantics of the proposed language. In the following section we discuss the topic of
knowledge representation with non-Herbrand functions. Next, we describe our ASP{f} solver
and report experimental results. Finally, we draw conclusions and discuss future work.
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2 The Syntax of ASP{f}

In this section we define the syntax of ASP{f}. To keep the presentation simple, in this
paper the version of ASP{f} described here does not allow for Herbrand functions, and thus
from now on we drop the “non-Herbrand” attribute. (Allowing for Herbrand functions is
straightforward.)

The syntax of ASP{f} is based on a signature ¥ = (C, F, R) whose elements are, respectively,
finite sets of comstants, function symbols and relation symbols. A term is an expression
f(er,...,cn) where f € F, and ¢;’s are 0 or more constants. An atom is an expression
r(c1,...,¢y), where r € R, and ¢;’s are constants. The set of all terms (resp., atoms) that can
be formed from ¥ is denoted by 7T (resp., A). A t-atom is an expression of the form f =g,
where f is a term and ¢ is either a term or a constant. We call seed t-atom a t-atom of the
form f = v, where v is a constant. Any t-atom that is not a seed t-atom is a dependent t-atom.
Thus, given a signature with C = {a, 5,0, 1,2, 3,4} and F = {occupancy, seats}, expressions
occupancy(a) = 2 and seats(b) = 4 are seed t-atoms, while occupancy(b) = seats(b) is a
dependent t-atom.

A regular literal is an atom a or its strong negation —a. A t-literal is a t-atom f = g or its
strong negation —=(f = g), which we abbreviate f # g. A dependent t-literal is any t-literal that
is not a seed t-atom. A literal is a regular literal or a t-literal. A seed literal is a regular literal
or a seed t-atom. Given a signature with R = {room__evacuated}, F = {occupancy, seats}
and C = {a,b,0,...,4}, room__evacuated(a), —-room__evacuated(b) and occupancy(a) = 2
are seed literals (as well as literals); room__evacuated(a) and —room__evacuated(b) are also
regular literals; occupancy(b) # 1 and occupancy(b) = seats(b) are dependent t-literals, but
they are not regular or seed literals.

A rule r is a statement of the form:
h< i, lm,not by, ..., not Iy (5)

where h is a seed literal and [;’s are literals. Similarly to ASP, the informal reading of r
is that a rational agent who believes [;,...,[,, and has no reason to believe l,,4+1,...,1,
must believe h. Given a signature with R = {room__evacuated, door__stuck, room__occupied,
room_maybe__occupied}, F = {occupancy} and C = {0}, the following is an example of
ASP{f} rules encoding knowledge about the occupancy of a room:

71 : occupancy = 0 <— room__evacuated, not door__stuck.
ro @ room__occupied <— occupancy # 0.
r3 : room_ maybe__occupied < not occupancy = 0.

Intuitively, rule r; states that the occupancy of the room is 0 if the room has been evacuated
and there is no reason to believe that the door is stuck. Rule r5 says that the room is
occupied if its occupancy is different from 0. On the other hand, r3 aims at drawing a weaker
conclusion, stating that the room may be occupied if there is no explicit knowledge (i.e.
reason to believe) that its occupancy is 0.

Given rule r from (5), head(r) denotes {h}; body(r) denotes {l1, ..., not l,}; pos(r) denotes
{li,...,lin}; meg(r) denotes {l41,...,0ln}

A constraint is a special type of rule with an empty head, informally meaning that the
condition described by the body of the constraint must never be satisfied. A constraint is
considered a shorthand of L < Iy,... 0, not lyt1,...,n0t l,,not L, where L is a fresh
atom.
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A program is a pair I1 = (X, P), where ¥ is a signature and P is a set of rules. Whenever
possible, in this paper the signature is implicitly defined from the rules of II, and II is
identified with its set of rules. In that case, the signature is denoted by X(II) and its elements
by C(II), F(IT) and R(II). A rule r is positive if neg(r) = (. A program II is positive if every
r € II is positive. A program II is also t-literal free if no t-literals occur in the rules of II.

Like in ASP, in ASP{f} too variables can be used in place of constants and terms. The
grounding of a rule r is the set of all the syntactically valid rules (its ground instances)
obtained by replacing every variable of r with an element of C. The grounding of a program
II is the set of the groundings of the rules of II. A syntactic element of the language is ground
if it is variable-free and non-ground otherwise.

3 Semantics of ASP{f}

The semantics of a non-ground program is defined to coincide with the semantics of its
grounding. The semantics of ground ASP{f} programs is defined below. It is worth noting
that the semantics of ASP{f} is obtained from that of ASP in [8] by simply extending
entailment to t-literals.

In the rest of this section, we consider only ground terms, literals, rules and programs and
thus omit the word “ground.” A set S of seed literals is consistent if (1) for every atom a € A,

{a,—a} Z S; (2) for every term ¢t € T and vy, v2 € C such that v1 # vg, {t =v1,t =v2} € S.

Hence, S1 = {p,~q, f = 3} and Sy = {q, f = 3,9 = 2} are consistent, while {p, -p, f = 3}
and {q, f = 3, f = 2} are not. Incidentally, {p, —q, f = g,g9 = 2} is not a set of seed literals,
because f = g is not a seed literal.

The value of a term ¢t w.r.t. a consistent set S of seed literals (denoted by valg(t)) is v iff
t=veS. If forevery v € C, t = v € S, the value of t w.r.t. S is undefined. The value
of a constant v € C w.r.t. S (valg(v)) is v itself. For example given S; and Sy as above,
vals, (f) is 3 and valg, (g) is 2, whereas valg, (g) is undefined. Given S; and a signature with
C =10,1}, valg, (1) = 1.

A seed literal [ is satisfied by a consistent set S of seed literals iff [ € S. A dependent t-literal
f =g (resp., f # g) is satisfied by S iff both valg(f) and valg(g) are defined, and valg(f) is
equal to valg(g) (resp., valg(f) is different from vals(g)). Thus, seed literals ¢ and f =3
are satisfied by Sa; f # g is also satisfied by Sa because valg, (f) and valg, (g) are defined,
and valg, (f) is different from valg,(g). Conversely, f = g is not satisfied, because valsg, (f)
is different from valg,(g). The t-literal f # h is also not satisfied by Sz, because valg, (h)
is undefined. When a literal [ is satisfied (resp., not satisfied) by S, we write S =1 (resp.,

S D).

An extended literal is a literal [ or an expression of the form not I. An extended literal not [
is satisfied by a consistent set S of seed literals (S |= not 1) if S = [. Similarly, S = not [ if
S = I. Considering set So again, extended literal not f = h is satisfied by S, because f = h
is not satisfied by Ss.

Finally, a set E of extended literals is satisfied by a consistent set S of seed literals (S = F)
if S |=e for every e € E.

We begin by defining the semantics of ASP{f} programs for positive programs.

A set S of seed literals is closed under positive rule r if S = h, where head(r) = {h},
whenever S |= pos(r). Hence, set Sy described earlier is closed under f = 3 + g # 1 and
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(trivially) under f = 2 « r, but it is not closed under p + f = 3, because Sy = f = 3 but
Sy Ep. S is closed under 1T if it is closed under every rule r € II.

Finally, a set S of seed literals is an answer set of a positive program II if it is consistent and
closed under II, and is minimal (w.r.t. set-theoretic inclusion) among the sets of seed literals
that satisfy such conditions. Thus, the program {p + f = 2. f=2. q < ¢.} has one
answer sets, {f = 2,p}. The set {f = 2} is not closed under the first rule of the program, and
therefore is not an answer set. The set {f = 2,p, ¢} is also not an answer set, because it is not
minimal (it is a proper superset of another answer set). Notice that positive programs may
have no answer set. For example, the program {f = 3 < not p. f =2+« not ¢q.} has
no answer set. Programs that have answer sets (resp., no answer sets) are called consistent
(resp., inconsistent).

Positive programs enjoy the following property:

» Proposition 1. Every consistent positive ASP{f} program II has a unique answer set.

Next, we define the semantics of arbitrary ASP{f} programs.

The reduct of a program II w.r.t. a consistent set S of seed literals is the set II¥ consisting
of a rule head(r) + pos(r) (the reduct of r w.r.t. S) for each rule » € II for which

S E body(r) \ pos(r).
» Example 1. Consider a set of seed literals S5 = {g = 3, f = 2, p, ¢}, and program II;:

r:p+ f=2,not g=1,not h=0. ro 1 q < p,not g # 2.
r3:g=3. rg: f=2.

and let us compute its reduct. For ry, first we have to check if S5 = body(r1) \ pos(r1),
that is if S3 = not g = 1,not h = 0. Extended literal not g = 1 is satisfied by S3 only
if S5 £ g = 1. Because g = 1 is a seed literal, it is satisfied by S3 if ¢ = 1 € S3. Since
g =1¢ Sz, we conclude that S3 = g =1 and thus not g = 1 is satisfied by S3. In a similar
way, we conclude that S |= not h = 0. Hence, S3 |= body(r1) \ pos(r1). Therefore, the reduct
of r1 is p « f = 2. For the reduct of 7o, notice that not g # 2 is not satisfied by S3. In fact,
S3 | not g # 2 only if S5 }= g # 2. However, it is not difficult to show that S3 = g # 2:
in fact, valg,(g) is defined and wvalg,(g) # 2. Therefore, not g # 2 is not satisfied by Ss,
and thus the reduct of II; contains no rule for ro. The reducts of r3 and ry are the rules
themselves. Summing up, Hf3 is{ri:p—f=2rL:9g=3,ry:f=2}

Finally, a consistent set S of seed literals is an answer set of II if S is the answer set of IT°.

» Example 2. By applying the definitions given earlier, it is not difficult to show that an
answer set of Hfg is {f =2,9 = 3,p} = S35. Hence, S5 is an answer set of Hf"’. Consider
instead Sy = S3 U {h = 1}. Clearly II{* = II?*. From the uniqueness of the answer sets of
positive programs, it follows immediately that Sy is not an answer set of Hf 4. Therefore, Sy
is not an answer set of II;.

4 Knowledge Representation with ASP{f}
In this section we demonstrate the use of ASP{f} for the formalization of key types of
knowledge. We start our discussion by addressing the encoding of defaults.

Consider the statements: (1) the value of f(z) is a unless otherwise specified; (2) the value of
f(z) is b if p(z) (this example is similar to, and inspired by, one from [10]). These statements
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can be encoded in ASP{f} by P, = {r1 : f(z) = a + not f(x) # a., r2: f(x) = b+ p(z).}.
Rule 1 encodes the default, and ro encodes the exception. The informal reading of rq,
according to the description given earlier in this paper, is “if there is no reason to believe
that f(z) is different from a, then f(2) must be equal to a”.

Extending a common ASP methodology, the choice of value for a non-Herbrand function can
be encoded in ASP{f} by means of default negation. Consider the statements (adapted from
[10]): (1) the value f(X) is a if p(X); (2) otherwise, the value of f(X) is arbitrary. Let the
domain of variable X be given by a relation dom(X), and let the possible values of f(X) be
encoded by a relation val(V'). A possible ASP{f} encoding of these statements is {ry : f(X) =
a < p(X), dom(X)., r2 : f(X) =V « dom(X), val(V), not p(X), not f(X) # V.}.
Rule r; encodes the first statement. Rule r, formalizes the arbitrary selection of values for
f(X) in the default case.

A similar use of defaults is typically associated, in ASP, with the representation of dynamic
domains. In this case, defaults are a key tool for the encoding of the law of inertia. Let us
show how dynamic domains involving functions can be represented in ASP{f}. Consider a
domain including a button b;, which increments a counter ¢, and a button b,., which resets
it. At each time step, the agent operating the buttons may press either button, or none. A
possible ASP{f} encoding of this domain is:

r1:val(e, S+ 1) =0« pressed(by,S).
rg tval(c,S+1) = N+ 1+« pressed(b;, S), val(c,S) = N.
rs3 :val(c, S+ 1) = N < wal(c,S) = N, not val(c,S + 1) # val(c, S).

Rules m and 79 are a straightforward encoding of the effect of pressing either button (variable
S denotes a time step). Rule r3 is the ASP{f} encoding of the law of inertia for the value
of the counter, and states that the value of ¢ does not change unless it is forced to. For
simplicity of presentation, it is instantiated for a particular function, but could be as easily
written so that it applies to arbitrary functions from the domain.

Formal results about ASP{f} that are useful for knowledge representation tasks can be found
in [1].

5 Computing the Answer Sets of ASP{f} Programs

In this section we describe an algorithm, cLASP{f}, which computes the answer sets of ASP{f}
programs. Although cLAsSP{f} is based on the CLASP algorithm [6], the approach can be
easily extended to other ASP solvers. In our description we follow the notation of [6], to
which the interested reader can refer for more details on the CLASP algorithm.

As customary, the algorithm operates on ground programs. To keep the presentation simple,
we further assume that every program II considered in this section contains, for every atom a
from II, a constraint <— a, —a (usually this constraint is added automatically by the solver).

Given a literal [, a signed literal is an expression of the form T/ or FI. Given a signed literal
o, 7, called the complement of o, denotes F if o is TI, and TI otherwise. An assignment A
over some domain D is a sequence (o1,...,0,) of signed literals for literals from D. The
domain of A is denoted by dom(A). The expression A o B denotes the concatenation of
assignments A and B. For an assignment A, we denote by A” the set of literals [ such that
T! occurs in A; AF is instead the set of literals ! such that FI occurs in A.

A nogood is a set {o1,...,0,} of signed literals. An assignment A is a solution for a set A of
nogoods if (1) AT U AF = dom(A); (2) AT N AT = (); and (3) for every § € A, § € A. Given
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a nogood 9, a signed literal o € § and an assignment A, & is called unit-resulting for 6 w.r.t.
Aif 6\ A={o} and T & A. Unit propagation is the process of iteratively extending A with
unit-resulting signed literals until no signed literal is unit-resulting for any nogood in A.

At the core of the computation of the answer sets of a program in cLASP{f} is the process of
mapping the program to a suitable set of nogoods. Such mapping is described next, beginning
with the nogoods already used in CLASP.

Given a program II, let [it(IT) be the set of literals that occur in II, seed(II) the set of
seed literals that occur in II, and body(IT) be the collection of the bodies of the rules of II.
Furthermore, let the expression body(l) denote the set of rules of IT whose head is .

Given a rule’s body 8 = {ly,...,lm, not lyt1,...,not 1}, the expression §(3) denotes the
nogood {Ff3, Ty, ..., Tly,Flyy1,...,Fl,}. The expression A(S) denotes instead the set of

nogoods {{{TB,Fl1},...,{TB,Fl,,}, {TB, Tlns1},...,{TB, Tl }}}.

Next, given a literal [ such that body(l) = {f1, ..., Bk}, the expression A(l) denotes the set
of nogoods {{FI, Tp1},...,{FI,TB}}. Finally, 5(1) = {Tl,Fp1,...,FG}.

Given a program II, let A denote {{3(5) |5 € body(II)} U {6 € A(B)| B € body(I)} U
{6(1) |1 € seedID)}U {6 € A(l) |1 € lit(I])}}. Intuitively, in A, §(1) is applied only to seed
t-atoms because dependent t-literals do not occur in the head of rules.

It can be shown [6] that Ay can be used to find the answer sets of tight, t-literal free,
programs. To find the answer sets of non-tight programs, one needs to introduce loop nogoods.
For a program IT and some U C lit(II), expression EB(U) denotes the collection of the
external bodies of U, i.e. {body(r)|r € II, head(r) € U,body(r) NU = 0}. Given a literal
l €U and EBn(U) ={pu,..., Bk}, the loop nogood of 1 is \(I,U) = {Fpy,...,FpB, Tl}. The
set of loop nogoods for program II is A = Uy i), r20fA U) [1 € U} The following
property follows from a similar result from [6]:

» Theorem 3. For every ASP{f} program II that contains no dependent t-literals, X C lit(II)
is an answer set of Il iff X = AT N1it(I1) for a solution A for Ap U Ag.

Next, we introduce nogoods for the computation of the answer sets of programs containing
dependent t-literals. Given a dependent t-literal [ of the form f = g (resp., f # g), a pair of
seed t-atoms f = v and g = w formed from X(II) is a satisfying pair for l if v = w (resp.,
v # w) and a falsifying pair for | otherwise. Let {(f = v1,9 = w1),...{f = vk, g = wi)} be
the set of satisfying pairs for . The expression p*(I) denotes the set of nogoods {{FI, Tf =
vy, Tg=wi},....{Fl,Tf = v, Tg = v }}. Let {(f =v1,9=w1),...{f = vk, g =w)} be
the set of falsifying pairs for [. The expression p~(l) denotes the set of nogoods {{TI, Tf =
v1,Tg = wi},...,{T, Tf = vk, Tg = vi}}. Intuitively the nogoods in p*(I) and p~(I)
enforce the truth or falsity of a dependent t-literal when suitable seed t-atoms are true.

Finally, given a dependent t-literal [, let terms(l) denote the set of terms that occur in [, and,
for every term f that occurs in [, let rel(f) denote the set of seed t-atoms of the form f =wv
for some v € C(IT). Intuitively rel(f) is the set of seed t-atoms that are relevant to the value of
term f. The expression «(l) denotes the set of nogoods U sesepms@y ({TH U{Fs|s € rel(f)}).
Intuitively x() states that [ cannot be true if one of its terms is undefined.

Let dep(IT) be the set of dependent t-literals in a program II. O denotes {p*(I)|l €
dep(I)} U {p (1) |1 € dep(ID} U {5~ (1) |1 € dep(TD)}.

The following condition defines a (rather large) class of ASP{f} programs whose answer sets
can be found using ©p. Given a program II, we say that I contains a ¢-loop for seed t-atom
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1 if, in the dependency graph for II, there is a positive path from [ to a t-literal I’ such that
terms(l) Nterms(l') # 0. A program containing a t-loop is for example f =2+ f #3.In
practice, for most domains from the literature there appear to be t-loop free encodings. The
following result characterizes the answer sets of t-loop free programs.

» Theorem 4. For every t-loop free ASP{f} program II, X C seed(Il) is an answer set of 11
iff X = AT N seed(I1) for a solution A for Ap U Ay U Opy.

From a high-level perspective, in the CLASP algorithm the answer sets of ASP programs are
computed by iteratively (1) performing unit propagation on the nogoods for the program
and (2) non-deterministically assigning a truth value to a signed literal. Unfortunately,
performing unit propagation on the nogoods in Oy is inefficient, because in the worst case
sets p*(1) and p~(I) exhibit quadratic growth. However, the conditions expressed by those
nogoods can be easily checked algorithmically. Let VALUE(f, A) be a function that returns v
if signed literal T f = v occurs in assignment A. Given A and a dependent t-literal f = g,
unit propagation on p*(f = g) can be performed by checking if VALUE(f, A) = VALUE(g, A)
and, if so, by adding Tf = ¢g to A. A similar approach applies to the unit propagation for
the other elements of Or.

Using this technique, unit propagation on the nogoods of O can be performed in constant
time w.r.t. the number of seed t-atoms in the program. (The reader may be wondering
about the cases such as the one in which the truth of Tf = v together with VALUE(f, A) can
be used to infer VALUE(g, A). It can be shown that support for this type of scenario can be
dropped without affecting the soundness and completeness of the solver.)

Function FLOCALPROPAGATION(II, V, A), shown below, iteratively augments the result
of unit propagation from CLASP’s function LOCALPROPAGATION(II, V, A) with the unit-
resulting dependent t-literals derived from ©p;. The iterations continue until a fixpoint is
reached. (Function LOCALPROPAGATION(II, V, A) in CLASP computes a fixpoint of unit
propagation by adding to assignment A the unit-resulting literals derived from nogoods in
A and in V.)

Function: FLOCALPROPAGATION
Input: program II, set V of nogoods, assignment A
Output: an extended assignment and a set of nogoods
U+ 0
loop

B <+ LOCALPROPAGATION(IL, V, A)

A < LOCALPROPAGATIONg(II, V, B)

if A = B then return A

The algorithm for nogood propagation from [6] is modified by replacing the call to Lo-
CALPROPAGATION by a call to FLOCALPROPAGATION. The main algorithm of cLAsSP{f} is
obtained in a similar way from algorithm CDNL-ASP from [6].

6 Experimental Results

To evaluate the performance of the CLASP{f} algorithm, we have compared it with the method
for computing the answer sets of programs with non-Herbrand functions used in [4] and
[10]. In that method, given a program II with non-Herbrand functions, (1) all occurrences of
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t-literals are replaced by regular ASP literals (e.g. f = g is replaced by eq(f,g)), and (2)
suitable equality and inequality axioms are added to II. The answer sets of the resulting
program are then computed using an ASP solver. It can be shown that the answer sets of
the translation encode the answer sets of II.

For our comparison we have chosen a planning task in which an agent starts at (0,0) on a
n X n grid and has the goal of reaching a given position in k steps. The agent can move
either up or to the right, by one cell at a time. Concurrent actions are not allowed. To make
the task more challenging, the goal position is chosen so that the minimum number of actions
needed to achieve the goal is equal to number of steps k. This domain has been selected
because, in our experience on practical applications of ASP, solver performance decreases
rapidly when parameter n is increased. This decrease in performance is due to the growth
in the size of the grounding of the inertia axiom, and we are aware of no general-purpose
technique to alleviate this issue in ASP programs.

The ASP{f} formalization, ITgp (fy is show below. Constants k and n are specified at

run-time. Symbol / used in the second-to-last rule denotes integer division in the dialect of
CLASP.

step(0..k). loc(0..n — 1). posz(0) = 0. posy(0) = 0.
posz(S+1)=X 41+
step(S), step(S + 1), loc(X), loc(X + 1), posz(S) = X, o(plusz, S).
« o(plusz, S),posz(S) =n — 1.
posy(S+1)=Y + 1+«
step(S), step(S + 1), loc(Y), loc(Y + 1), posy(S) =Y, o(plusy, S).
« o(plusy, S), posy(S) =n — 1.
posz(S+1) =X
step(S), step(S + 1), loc(X), posz(S)= X, not posz(S + 1) # posz(S).
posy(S+1) =Y «
step(S), step(S + 1), loc(Y), posy(S) =Y, not posy(S + 1) # posy(S).
1{o(plusx, S), o(plusy, S)}1 «+ step(S), S < k.
goal < posz(k) = k/2, posy(k) =k — k/2.
< not goal.

Program ITpgp, omitted to save space, is an ASP encoding of the problem obtained by
the usual formalization techniques; it is also equivalent, modulo renaming and reification
of relations, to the translation of the formalizations in the languages of [4] and [10]. Table
1 shows a comparison of the time, in seconds, to find one answer set using II ASP{f} and
using ITpqp. The results have been obtained for various values of parameters k and n. As
the table shows, the time for II ASP{f} is consistently more than an order of magnitude
better than of II5 gp, even though the code for the support of non-Herbrand functions in the
implementation of cLASP{f} is still largely unoptimized. The cLASP{f} solver used here is an
extension of CLINGO 2.0.2. To ensure the fairness of the comparison, the answer sets of the
ASP encoding have been computed using CLINGO 2.0.2. The experiments were performed
on a computer with an Intel Q6600 processor at 2.4GHz, 1.5GB RAM and Linux Fedora
Core 11.

7 Conclusions and Future Work

In this paper we have defined the syntax and semantics of an extension of ASP by non-
Herbrand functions. Although the semantics of our language is a comparatively small
modification of the semantics of ASP from [8], it allows for an efficient implementation in
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Table 1 Performance comparison between HASP{f} + cLAsP{f} and TTpgp + CLINGO.

k=3 k=5 k=1
n Uagpgry Uasp  Uagpyry Hasp Hagp{p  Hasp
100 0.000  0.045 0.011  0.063 0.018  0.108
200 0.016  0.282 0.044  0.467 0.076  0.555
500 0.115 1.919 0.212 3.149 0.458 4.530
1000 0.513 8.273 1.012  13.787 1.766 21.432
1500 1.203  21.300 2.515 37.024 4.626 56.341
2000 2.429  43.092 4.283 70.591 7712  103.737

ASP solvers, as demonstrated by our experimental comparison with the solving techniques
for other languages supporting non-Herbrand functions. Although the language of [11, 14] is
also supported by an efficient solver, that solver uses CSP solving techniques rather than ASP
solving techniques. Currently, the ASP{f} solving algorithm is only applicable to a (large)
subclass of ASP{f} programs. We expect that it will be possible to extend our algorithm to
arbitrary programs by introducing additional nogoods.
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—— Abstract

Applications of answer set programming motivated various extensions of the stable model seman-
tics, for instance, to allow aggregates or to facilitate interface with external ontology descriptions.
We present a uniform, reductive view on these extensions by viewing them as special cases of
formulas with generalized quantifiers. This is done by extending the first-order stable model se-
mantics by Ferraris, Lee and Lifschitz to account for generalized quantifiers and then by reducing
the individual extensions to this formalism.
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1 Introduction

Applications of answer set programming motivated various recent extensions of the stable
model semantics, for instance, to allow aggregates [4, 8, 15], or to facilitate interface with
external ontology descriptions [3]. While the extensions were driven by different motivations
and applications, a common underlying issue is how to extend the stable model semantics
to incorporate “complex atoms,” such as “aggregate atoms” and “dl-atoms.”

Most extensions involve grounding. For instance, assuming that the domain is {1,2,...}
the rule

q(y) = #count{w.p(z,y)} > 2 (1)
can be understood as a schema for ground instances

q(1) « #count{1.p(1,1),2.p(2,1),...} > 2
q(2) « #count{1.p(1,2),2.p(2,2),...} > 2

Here y is called a “global” variable, and «x is called a “local” variable. Replacing a global
variable by ground terms increases the number of rules; replacing a local variable by ground
terms increases the size of each rule.

Instead of involving grounding, in [10], a simple approach to understanding the meaning
of the count aggregate in answer set programming was provided by reduction to first-order
formulas under the stable model semantics [6, 7]. For instance, rule (1) can be understood
as the first-order formula

Vy(Fz1z2(p(z1) A p(z2) A (21 = 22)) — q(Y)) »

in which quantifiers are introduced to account for local variables in aggregates.
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An attempt to extend this approach to handle arbitrary nonmonotone aggregates en-
counters some difficulty, as the quantifiers V and 3, like its propositional counterpart A and
V, are “monotone.”

It is hinted in [5] that aggregates may be viewed in terms of generalized quantifiers—a
generalization of the standard quantifiers, V and 3, introduced by Mostowski [13]. We follow
up on that suggestion, and extend the stable model semantics by [7] to allow generalized
quantifiers.

It turns out that generalized quantifiers are not only useful in explaining the meaning
of arbitrary aggregates, but also useful in explaining other recent extensions of the stable
model semantics, such as nonmonotonic dl-programs [3]. This allows us to combine the
individual extensions in a single language as in the following example.

» Example 1. We consider an extension of nonmonotonic dl-programs (7,1I) that allows
aggregates. For instance, the ontology description 7 specifies that every married man has
a spouse who is a woman, and similarly for a married woman:

Man 1 Married & ISpouse. Woman.
Woman M Married T 3Spouse.Man.

The following program II counts the number of people who are eligible for an insurance
discount:

discount(x) < not accident(x),

#dl[Man & mm, Married & mm, Woman & mw, Married & mw; 3Spouse.T](z).
discount(x) + discount(y), family(y, z), not accident(x).
numOfDiscount(z) < COUNT(x.discount(z)) = z.

The first rule asserts that everybody who has a spouse and has no accident is eligible for
a discount. The second rule asserts that everybody who has no accident and has a family
member with a discount is eligible for a discount.

The paper is organized as follows. We first review the syntax and the semantics of
formulas with generalized quantifiers (GQ-formulas). Next we define stable models of GQ-
formulas, and then show the individual extensions of the stable model semantics, such as
logic programs with aggregates and/or nonmonotonic dl-atoms, can be viewed as special
cases of GQ-formulas.

2 Preliminaries

2.1 Syntax of Formulas with Generalized Quantifiers

We follow the definition of a GQ-formula from [16, Section 5] (that is to say, with Lindstrém
quantifiers [12] without the isomorphism closure condition).

As in first-order logic, a signature o is a set of symbols consisting of function constants
and predicate constants. Each symbol is assigned a nonnegative integer, called the arity.
Function constants with arity 0 are called object constants, and predicate constants with
arity 0 are called propositional constants. A term is an object variable or f(t1,...,t,), where
f is a function constant in ¢ of arity n, and t; are terms. An atomic formula is an expression
of the form p(ty,...,t,) or t; = to, where p is a predicate constant in ¢ of arity n.

We assume a set Q of symbols for generalized quantifiers. Each symbol in Q is associated
with a tuple of nonnegative integers (ny,...,ng) (k > 0, and each n; is > 0), called the type.
A GQ-formula (with the set Q of generalized quantifiers) is defined in a recursive way:
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an atomic formula is a GQ-formula;
if Fy,..., F (k > 0) are GQ-formulas and @ is a generalized quantifier of type (nq, ..., ng)
in Q, then

Qx1] .. [xk])(F1(x1), .-, Fr(xx)) (2)

is a GQ-formula, where each x; (1 < i < k) is a list of distinct object variables whose
length is n;.

We say that an occurrence of a variable x in a GQ-formula F' is bound if it belongs
to a subformula of F' that has the form Q[x1]... [xx](F1(X1),..., Fx(xx)) such that x is in
some x;. Otherwise the occurrence is free. We say that z is free in F' if F' contains a free
occurrence of z. A GQ-sentence is a GQ-formula with no free variables. Notice that the
distinction between free and bound variables is similar to that of global and local variables
informally described in the introduction.

We assume that Q contains a type () quantifier @, a type (0) quantifier Q—, type (0, 0)
quantifiers Qa, Qv, @—, and type (1) quantifiers Qv, Q3. Each of them corresponds to the
standard propositional connectives and quantifiers, |, -, A,V,— V,3. These generalized
quantifiers will often be written in the familiar form. For example, we write F' A G in place
of QA[J[J(F, G), and write VzF(x) in place of Qv|[x](F(x)).

2.2 Models of GQ-Formulas

As in first-order logic, an interpretation I of a signature ¢ consists of a nonempty set U,
called the universe of I, and a mapping ¢! for each constant ¢ in o. For each function
constant f of o whose arity is n, f! is an element of U if n is 0, and is a function from U™ to
U otherwise. For each predicate constant p of o whose arity is n, p! is an element of {t, f}
if n is 0, and is a function from U™ to {t,f} otherwise. For each generalized quantifier Q)
of type (ni,...,nx), QU is a function from P(U™) x --- x P(U™) to {t, f}, where P(U™)
denotes the power set of U™:.

» Example 2. Besides the standard propositional connectives and quantifiers, the following
are other examples of generalized quantifiers.

type (1) quantifier Q<o such that QY,(R) = t iff the cardinality of Ris <2; !

type (1) quantifier Qnq;jority such that QY ajority(R) = tiff the cardinality of R is greater
than the cardinality of U \ R;

type (2,1, 1) reachability quantifier Q,eqch such that QU , (R1, Ra, R3) = t iff there are

some u,v € U such that Ry = {u}, R3 = {v}, and (u,v) belongs to the transitive closure
of Rl.

By o! we mean the signature obtained from ¢ by adding new object constants £*, called
names, for every element £ in the universe of I. We identify an interpretation I of ¢ with its
extension to ! defined by I(£*) = £. For any term ¢ of o that does not contain variables,
we define recursively the element ¢/ of the universe that is assigned to ¢ by I. If ¢ is an
object constant then ¢! is an element of U. For other terms, ¢! is defined by the equation

flt, ..t = I, )

for all function constants f of arity n > 0.
Given a GQ-sentence F of ¢!, F! is defined recursively as follows:

1 Tt is clear from the type that R is any subset of U. We will skip such explanation.
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plte, .. tn) =pl(H, . D),
(ti =t2)! = (t{ = 13),
For a generalized quantifier @ of type (nq,...,ng),

(Qx1]. . [xe](Fi(x1), -, Fr(xx))) = QV((x1-Fi(x1)) ., (% Fr(xx))"),
where (x;.F;(x;))! = {€ € U™ | (F;(£%)) =t}.

We assume that, for the standard propositional connectives and quantifiers @, functions
QU have the standard meaning:

QYR =tif R=U; QYR)=tif RNU # 0;

Q/[\](Rl,RQ) =t iff R1 = R2 = {6};2 Qg(Rl,Rg) =t iff R1 = {6} or R2 = {6};

Qg(Rl,Rg) =t iff R1 = @ or R2 = {E};

QY(R) =t iff R=0;

QU) = £

We say that an interpretation I satisfies a GQ-sentence F', or is a model of F', and write
I F,if FT =t. A GQ-sentence F is logically valid if every interpretation satisfies F. A
GQ-formula with free variables is said to be logically valid if its universal closure is logically
valid.

» Example 3. Let I; be an interpretation whose universe is {1,2,3,4} and let p be a
unary predicate constant such that p(¢*)t = t iff € € {1,2,3}. We check that I; satisfies
GQ-sentence F = —Q<s[z] p(z) = Qmajority[y] P(y) (“if p does not contain at most two
elements in the universe, then p contains a majority”). Let Iy be another interpretation
with the same universe such that p(¢*)%2 = ¢ iff £ € {1}. It is clear that Iy also satisfies F'.

We say that a generalized quantifier () is monotone in the i-th argument position if
the following holds for any universe U: if QV(Ry,...,Rx) =t and R; C R, C U™, then
QY(Ry,...,Ri_1,R.Riy1,...,R) = t. Similarly, we say that Q is anti-monotone in the
i-th argument position if the following holds for any universe U: if QV(Ry,...,Ry) = t
and R, C R; C U™, then QY(Ry,...,Ri_1, R}, Ri1,...,Rx) = t. We call an argument
position of ) monotone (anti-monotone) if () is monotone (anti-monotone) in that argument
position.

Let M be a subset of {1,...,k}. We say that @ is monotone in M if @) is monotone
in the i-th argument position for all ¢ in M. It is easy to check that both Q. and @y are
monotone in {1,2}. @ is anti-monotone in {1} and monotone in {2}; Q- is anti-monotone
in {1}. In Example 2, Q<2 is anti-monotone in {1} and Qmajority is monotone in {1}.

Predicate variables can be added to the language in the usual way as we define the
standard second-order logic. Syntactically, n-ary predicate variables are used to form atomic
formulas in the same way as n-ary predicate constants. Semantically, these variables range
over arbitrary truth-valued functions on U™.

3 Stable Models of GQ-Formulas

We now define the stable model operator SM with a list of intensional predicates. Let p
be a list of distinct predicate constants p1,...,p,, and let u be a list of distinct predicate

2 ¢ denotes the empty tuple. For any interpretation I, U° = {e}. For I to satisfy QA[][](F,G), both
(e.F)" and (e.G)T have to be {€}, which means that F' = G = t.
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variables u1, ..., u,. By u < p we denote the conjunction of the formulas Vx(u;(x) — p;(x))
for all ¢ = 1,...,n, where x is a list of distinct object variables of the same length as the
arity of p;, and by u < p we denote (u < p) A =(p < u). For instance, if p and ¢ are unary
predicate constants then (u,v) < (p,q) is

Va(u(x) = p(x)) AVa(v(z) = q(z)) A ﬁ<Vx(p(ac) — u(x)) AVx(q(z) — v(m)))

For any GQ-formula F' and any list of predicates p = (p1,...,pn), expression SM[F’; p]
is defined as

F A =Fu((u < p)AF*(u)), (3)

where F*(u) is defined recursively:
p;(t)* = w;(t) for any list t of terms;
F* = F for any atomic formula F' that does not contain members of p;

(Qlx1] ... [xe)(Fi(x1), ..., Fr(xz)))* = "

Qx1]. .- [Xk](Ff (x1), .-, Fi(xx)) A Q[x1] - - - [xk] (F1(x1), . - -, Fe(Xx))-

When F is a GQ-sentence, the models of SM[F'; p] are called the p-stable models of F:
they are the models of F' that are “stable” on p. We often simply write SM[F] in place
of SM[F;p] when p is the list of all predicate constants occurring in F', and call p-stable
models simply stable models.

» Proposition 1. Let Q[x1]...[xk](F1(x1),..., Fr(xr)) be a GQ-formula and let M be a
subset of {1,...,k} such that every predicate constant from p occurs in some Fj; where
j€eM.
(a) If @ is monotone in M, then

u<p = (Qbal... [xp](Fr(xa), -, Fr(xk)))™ € Qxal - pra] (F7 (1), -, B (xx)))

is logically valid.
(b) If @ is anti-monotone in M, then

u<p— (Qx1]...[xe](Fi(x1),..., Fr(xp)))* ¢+ Qx1] ... [xx](F1(x1),..., Fr(xx)))
is logically valid.

Proposition 1 allows us to simplify the formula F*(u) in (3) without affecting the models
of (3). In formula (4), if @ is monotone in all argument positions, we can drop the second
conjunctive term in view of Proposition 1 (a). If @ is anti-monotone in all argument po-
sitions, we can drop the first conjunctive term in view of Proposition 1 (b). For instance,
recall that each of Qa, @Qv, Qv, @3 is monotone in all its argument positions, and Q- is
anti-monotone in {1}. If F is a standard first-order formula, then (4) can be equivalently
rewritten as

(~F)* = ~F;

(FAG)*=F*NG*; (FVG)*=F*VvVG*

(F=> Q) =(F*—> G )\ (F— G);

(Ve F)* =VzF*;, (JzF)* = JzF*.
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This is almost the same as the definition of F* given in [7], except for the case (—F)*, which
is a bit more concise.?> The only propositional connective which is neither monotone nor
anti-monotone in all argument positions is @), for which the simplification does not apply.

Example 3 continued. For the GQ-sentence F considered earlier, SM[F] is
FA—Ju(u <pAF*(u)), (5)
where F*(u) is equivalent to the conjunction of F and

—Q<2lz] p(r) = Qmajority[y] u(y). (6)

I, considered earlier satisfies (5): it satisfies F', and, for any proper “subset” u of p, it
satisfies the antecedent of (6) but not the consequent. Thus it is a stable model of F. On
the other hand, we can check that Iy does not satisfy (5), and is not a stable model.

4 Aggregates as GQ-Formulas

4.1 Formulas with Aggregates

The following definition of a formula with aggregates is from [5], which extends the one
from [9] to allow nested aggregates. By a number we understand an element of some fixed
set Num. For example, Num is Z U {400, —oco}, where Z is the set of integers. A multiset
is usually defined as a set of elements along with a function assigning a positive integer,
called the multiplicity, to each of its elements. An aggregate function is a partial function
from the class of multisets to Num. We assume the presence of some fixed background
signature oy, that contains all numbers. Furthermore, we assume that the interpretation
Iy, of the background signature is fixed, and interpretes each number as itself.

We consider a signature o as a superset of op,. An expansion I of I, to o is an
interpretation of ¢ such that

the universe of I is the same as the universe of I;4, and

I agrees with Ij, on all the constants in oy,.

First-order formulas with aggregates are defined as an extension of standard first-order
formulas by adding the following clause:

OP<X1.F1,...,Xn.Fn> b (7)

is a first-order formula with aggregates, where
OP is a symbol for an aggregate function (not from o);
X1,...,X, are nonempty lists of distinct object variables;
Fy, ..., F, are arbitrary first-order formulas with aggregates of signature o;
> is a symbol for a comparison operator (may not necessarily be from o);
b is a term of o.

—F is understood as F' — L in [7], but this difference does not affect stable models. When - is a
primitive propositional connective as above,

u<p— ((F—=L1)"(a) < (=F)" ()

is logically valid.
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4.2 Aggregates as GQ-Formulas

Due to the space limit, we refer the reader to [5] for the stable model semantics of formulas
with aggregates. We can explain their semantics by viewing it as a special case of the
stable model semantics presented here. Following [5], for any set X of n-tuples (n > 1),
let msp(X) (“the multiset projection of X”) be the multiset consisting of all & such that
(&1,...,&,) € X for at least one (n—1)-tuple (&2,...,&,), with the multiplicity equal to
the number of such (n — 1)-tuples (and to +oc if there are infinitely many of them). For
example, msp({(a,a), (a,b), (b,a)}) = {a,a,b}.
We identify expression (7) with the GQ-formula

Qor, = [x1] - .- [xn][y](F1(x1), ..., Fr(xn),y = b) , (8)

where, for any interpretation I, QE{)P,E) is a function that maps P(UX1l) x ... x P(U*nl) x
P(U) to {t,f} such that Q%Pz)(Rl, oty Ry, Ryy1) = tiff

OP(«) is defined, where « is the join of the multisets msp(Ry),. .., msp(R,),

R, 41 = {n}, where n is an element of Num, and

OoP(a) = n.

» Example 4. {discount(alice), discount(carol), numOfDiscounts(2)} is an Herbrand stable
model of the formula
discount(alice) A discount(carol)
A Vz(COUNT(z.discount(x)) = z = numOfDiscounts(z)).
The following proposition states that this definition is equivalent to the definition from [5].

» Proposition 2. Let F be a first-order sentence with aggregates whose signature is o, and
let p be a list of predicate constants. For any expansion I of op4 to o, I is a p-stable model
of F in the sense of [5] iff T is a p-stable model of F' in our sense.

5 Nonmonotonic dI-Programs as GQ-Formulas

5.1 Review of Nonmonotonic dI-Programs

Let C be a set of object constants, and let Py and Py be disjoint sets of predicate constants.
A nonmonotonic dl-program [3] is a pair (7,II), where 7 is a theory in description logic
of signature (C, Pr) and II is a generalized normal logic program of signature (C, Prr) such
that PN Pg = (. We assume that II contains no variables by applying grounding w.r.t. C.
A generalized normal logic program is a set of nondisjunctive rules that can contain queries
to T using “dl-atoms.” A dl-atom is of the form

DL[Si0p1p1,- - ., Skoprpr; Query](t) (k> 0), (9)

where S; € Py, p; € P, and op; € {W,U,A}. Query(t) is a dl-query as defined in [3]. A
dl-rule is of the form

a < bi,...,bm,n0t bypa,...,not by, (10)
where a is an atom and each b; is either an atom or a dl-atom. We identify rule (10) with
a + BN, (11)

where B is by, ..., b, and N is not by, 41,. .., not b,. An Herbrand interpretation I satisfies
a ground atom A relative to T if I satisfies A. An Herbrand interpretation I satisfies a
ground dl-atom (9) relative to T if T U Ule A;(I) entails Query(t), where A;(I) is
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| pi(e) € I}if op; is W,
(e)| pi(e) € I}if op;is Y,
(e) | pi(e) &I} if op;isA.

A ground dl-atom A is monotonic relative to T if, for any two Herbrand interpretations
I'and I’ such that I C I’ and I =7 A, we have that I’ =7 A. Similarly, A is anti-monotonic
relative to T if, for any two Herbrand interpretations I and I’ such that I’ C I and I =7 A,
we have that I’ =7 A.

Given a dl-program (7,1II) and an Herbrand interpretation I of (C, Py), the weak dI-
transform of II relative to 7, denoted by wIIf-, is the set of rules

a + B (12)

where a «+— B, N isin II, I =7 BA N, and B’ is obtained from B by removing all dl-atoms
in it. Similarly, the strong dI-transform of II relative to 7, denoted by sH%—, is the set of
rules (12), where a « B, N isin I, I 7 BA N, and B’ is obtained from B by removing all
nonmonotonic dl-atoms in it. The only difference between these two transforms is whether
monotonic dl-atoms remain in the positive body or not. Both transforms do not retain
nonmonotonic dl-atoms.

An Herbrand interpretation I is a weak (strong, respectively) answer set of (T,1I) if T
is minimal among the sets of atoms that satisfy wIli-(sII-, respectively).

5.2 Nonmonotonic dl-program as GQ-Formulas

We can view dl-programs as a special case of GQ-formulas. Consider a dl-program (7, 1I)
such that IT is ground. Under the strong answer set semantics we identify every dl-atom (9)
in IT with

Qeoy[x1] - [x&](p1(x1), - - -, P (Xk)) (13)

if it is monotonic relative to 7, and

Qo) [X1] - . - [xk](p1(x1), - -, pr(Xk)) (14)

otherwise. Since — is an anti-monotone GQ, prepending —— in front of the quantified formula
in (14) means that, under the strong answer set semantics, every nonmonotonic dl-atom is
understood in terms of an anti-monotone GQ.

Given an interpretation I, Q%) is a function that maps P(UX1) x ... x P(U**]) to {t, f}
such that, Q) (R, ..., Re) =t iff T UL, Ai(R;) entails Query(t), where A;(R;) is

{5:(&:) 1 & € Ri} if op; is

{=Si(&) 1€ € Ri}ifop; is b,

{=5i(&) | & € UXI\ Ry} if op; is A

We say that I is a strong answer set of (T,1I) if I satisfies SM[IT; Pry].

Similarly, a weak answer set of (7,II) is defined by identifying every dl-atom (9) in IT
with (14) regardless of A being monotonic or not. This means that, under the weak answer
set semantics, every dl-atom is understood in terms of an anti-monotone GQ.

Example 1 continued. The dl-atom

#dl[Man & mm, Married & mm, Woman & mw, Married & mw; 3Spouse.T|(alice)  (15)
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is identified with the generalized quantified formula

Q) [z1][z2][zs][z4] (MM(21), mm(22), mw(z3), mw(xs)) (16)

where, for any interpretation I, Qgg)) is a function that maps P(U) x P(U)x P(U)xP(U) to
{t, £} such that QEJB) (R1, R2, R3, Ry) = t iff TU{Man(c) | ¢ € R1} U{Woman(c) | ¢ € Rs}U
{Married(c) | ¢ € Ry U Ry} entails JxSpouse(alice, ).

Consider an Herbrand interpretation I = {muw(alice)}, which satisfies (15). I also
satisfies (16) since (z.mw(z))! = {alice} and T U {Woman(alice), Married(alice)} entails
JzSpouse(alice, x).

The following proposition tells us that the definitions of a strong answer set and a weak
answer set given here are reformulations of the original definitions from [3].

» Proposition 3. For any dl-program (7,1I), an Herbrand interpretation is a strong (weak,
respectively) answer set of (7,II) in the sense of [3] iff it is a strong (weak, respectively)
answer set of (7,1I) in our sense.

5.3 Another Semantics of Nonmonotonic dl-programs

Shen [14] notes that both strong and weak answer set semantics suffer from circular justifi-
cations.

» Example 5. [14] Consider (7,1II), where 7 = () and II is the program
pla)  #dllc¥p,bAg; cN-bl(a) (17)

in which the dl-atom is neither monotonic nor anti-monotonic. This dl-program has two
strong (weak, respectively) answer sets: § and {p(a)}. According to [14], the second answer
set is circularly justified:

p(a) < #dl[cWp,bAg;ecM=bl(a) < pla) A —g(a).
Indeed, sHéf(a)} (wHéf’(a)}, respectively) is p(a) +, and {p(a)} is its minimal model.

As we hinted in the previous section, this kind of circular justifications is related to the
treatment that understands every nonmonotonic dl-atom in terms of an anti-monotone GQ,
regardless of the nonmonotonic dl-atom’s being anti-monotonic or not. In this case, in view
of Proposition 1, predicates in a nonmonotonic dl-atom are exempt from the minimality
checking. This is different from how we treat nonmonotone aggregates, where we simply
identify them with nonmonotone GQs. This observation suggests the following alternative
semantics of dl-programs, in which we understand only anti-monotonic dl-atoms in terms of
anti-monotone GQs, unlike in the strong and the weak answer set semantics. We say that
an Herbrand interpretation I is an answer set of (7,1I) if I satisfies SM[II; Py], where we
simply identify every dl-atom (9) in IT with (13).

This definition of an answer set has a reduct-based characterization as well. Just like
we form a strong dl-transform, we first remove the negative body, but instead of removing
all nonmonotonic dl-atoms in the positive body, we remove only anti-monotonic dl-atoms
from the positive body. In other words, the reduct of II relative to 7 and an Herbrand
interpretation I of (C, Prr), denoted by T4, is the set of rules (12), where a + B, N is in II,
I =7 BAN, and B’ is obtained from B by removing all anti-monotonic dl-atoms in it. The
following proposition shows that this modified definition of a reduct can capture the new
answer set semantics of dl-programs.
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» Proposition 4. For any dl-program (7,1I) and any Herbrand interpretation I of (C, Pr),
I is an answer set of (7,1II) according to the new definition iff I is minimal among the sets
of atoms that satisfy H%—.

The new semantics does not have the circular justification problem described in Exam-
ple 5.

Example 5 continued. {p(a)} is not an answer set of (T,II) according to the new
definition. The reduct Hgf’ @} i (17) itself retaining the dl-atom unlike under the strong
and the weak answer set semantics. We check that ), a proper subset of {p(a)}, satisfies it,
which means that {p(a)} is not an answer set.

6 Related Work

We refer the reader to [2] for the semantics of HEX programs. It is not difficult to see that
an external atom in a HEX program can be represented in terms of a generalized quantifier.
Eiter et al. show how dl-atoms can be simulated by external atoms #dl[](z). The treatment
is similar to ours in terms of generalized quantifiers. For another example, rule

reached(z) + #reachledge, a](x)

defines all the vertices that are reachable from the vertex a in the graph with edge. The
external atom #reachledge, a](x) can be represented by a generalized quantified formula

Qreach[r122][13][14](edge(x1, 22), 03 = a, x4 = x),

where Qrcqcn is as defined in Example 2.

In fact, incorporation of generalized quantifiers in logic programming was considered
earlier in [1], but the treatment there was not satisfactory because they understood general-
ized quantifiers simply as anti-monotone GQs in our sense. Without going into detail, this
amounts to modifying our definition of F'* as

(Qx1] .. [xu] (Fi(x1), + - Fi(x)))* = Qlxa] ... [xu] (Fy(x1),s - . ., Fio(x1)) -

This approach does not allow recursion through generalized quantified formulas, and
often yields an unintuitive result. According to [1], program p(a) + Va p(z) has two answer
sets, 0 and {p(a)}. The latter is “unfounded.” This is not the case with the semantics
that we introduced in this note. According to our semantics, which properly extends the
semantics from [7], {p(a)} is not an answer set.

7 Conclusion

We presented the stable model semantics for formulas containing generalized quantifiers, and
showed that some recent extensions of the stable model semantics with “complex atoms”
can be viewed as special cases of this formalism. We expect that the generality of the
formalism will be useful in providing a principled way to study and compare the different
extensions of the stable model semantics. As we observed, distinguishing among monotone,
anti-monotone, and neither monotone nor anti-monotone GQs is essential in defining the
semantics of such extensions, whereas the last group of GQs was not considered in the
traditional stable model semantics.
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National Science Foundation under Grant 11S-0916116.
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—— Abstract

Software forms a key component of many modern safety and security critical systems. One
approach to achieving the required levels of assurance is to prove that the software is free from
bugs and meets its specification. If a proof cannot be constructed it is important to identify
the root cause as it may be a flaw in the specification or a bug. Novice users often find this

process frustrating and discouraging, and it can be time-consuming for experienced users. The
paper describes a commercial application based on Answer Set Programming called Riposte. It
generates simple counter-examples for false and unprovable verification conditions (VCs). These
help users to understand why problematic VC are false and makes the development of verified
software easier and faster.
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1 Introduction

A critical system is one whose failure would cause serious injury, one or more fatalities, major
environmental damage or significant damage to other assets. Software is a component of
many critical systems and is playing an ever increasing role in their monitoring and control.
For example in modern aircraft, both civil and military, there are complex flight control
systems which must never ‘go wrong’. Errors in algorithms may cause wrong behaviour;
software crashes may result in catastrophic failures. Part of the argument for the safety of a
system is verification — showing that the system meets its specification. For software the
specification may include functional properties (things the system must do) and erroneous
behaviour (things that the system must not do). Testing may be sufficient to show functional
properties (i.e. the system can track flights) but is not able to guarantee the absence of errors
— for example testing alone cannot show that a system will never crash. Critical systems
require a higher level of assurance, formal verification systems, such as SPARK! can provide
this kind of certainty.
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One of the major barriers to increasing the commercial adoption of formal verification
is the perception that it is too expensive. Although formal development practices and
verification have been shown to reduce total project costs [13, 21] as well as to increase levels
of assurance, many companies focus only on the initial development time. “Programmers

find verification hard, so it takes them longer and thus costs us more” is a common objection.

This misses the wider context, but addressing this misapprehension is crucial to improving

adoption. One route to doing so is to improve support tools for developing verified software.

Given that developer time is at least 100 to 1000 times more expensive than CPU time,
significant computation resources can be justified if they save developers’ time.

The current proof tools for SPARK focus on the primary goal of quickly and easily
discharging verification conditions (VCs). The proof of all verification conditions shows a
number of properties about the system: for example that certain kinds of error cannot occur
(for example buffer overruns), or that some security property holds (for example: only one
door of an airlock must be open at any time).

There is only limited support for distinguishing between VCs that are unprovable due

to incompleteness in the proof tools and those that are unprovable because they are false.

When verifying finished and correct software, this is of little importance. However during
development a significant minority of VCs may be unprovable. Distinguishing bugs (in
specification or implementation) from areas of incompleteness is vital as the resolutions for
each are very different and incorrectly classifying a verification failure can waste time and

potentially introduce unsoundness (depending on the processes around the usage of the tool).

Riposte is a tool based on Answer Set Programming (ASP) that supports developers in
classifying and resolving verification failures by generating concrete counter-examples to false
verification conditions. This paper:

Overviews the architecture of Riposte and its usability features which are intended to
produce more insightful counter-examples (Section 3).

Describes the methodology used and experience gained in developing a commercial tool
using ASP and the more unusual features of the problem encodings used by Riposte
(Section 4).

Gives statistics for the typical problem instances generated by Riposte and compares

Riposte’s performance to that of SMT solvers for analysing erroneous programs (Section 5).

2 SPARK

SPARK is a language and supporting toolset?; the primary design goal is the provision of an
unambiguous language semantics and a sound verification system based on Hoare logic and
theorem proving. The executable part of the language is a subset of Ada (83, 95 and 2005)
and data flow and correctness contracts are given in Ada comments. Figure 2 shows a very
simple SPARK program which will serve as an example throughout this paper, and Figure 1
illustrates the current architecture of the tool chain, with the phases of computation, flow
of information and outputs. There are three key phases, referred to as examine, prove and
summarise.

The ‘front end’ of the SPARK toolset is the Examiner. It checks the program for compliance
with the SPARK subset, performs data flow analysis and generates VCs for each path between
cut points (subprogram start and end, loops and assertions). VCs check contracts specified

2 Available under the GPL from http://libre.adacore.com/
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Figure 1 The SPARK tool chain.

by the user and freedom from run time exceptions such as integer overflow, array bounds
checks and division by zero. Figure 3 shows a VC generated from the previous example
program. VCs are expressed in functional description language (FDL), a simple intermediate
language, and a variety of proof tools are available to discharge them. These include the
Simplifier, a rewrite based automatic theorem prover; Victor, an SMT translator and prover
driver [22] and the Checker, an interactive theorem prover. An Isabelle plug-in to read SPARK
VCs [3] is also available. Finally the POGS tool is used to summarise the state of the proof
of the entire system, giving statistics such as how many VCs there are in the system and
how many of them are discharged.

SPARK is a mature system with the first version released in March 1987, and the SPARK
tools have been used on a variety of industrial projects including applications such as flight
control, rail signalling, and high-grade cryptographic systems.

SPARK places particular emphasis on modularity; this means it is common to verify
software as it is being written, well before it is completed. Thus subprograms first analysed
by the Examiner often contain errors and give undischarged VCs. Proof tools in earlier
versions of SPARK did not distinguish between those VCs that are undischarged due to
incompleteness and those undischarged because they are false. The resolution for these
two kinds of failure are very different and misclassification can waste time and potentially
introduce unsoundness. So there is a need for a counter-example generation tool to support
users in locating the causes of verification failures.

3 Riposte architecture

Riposte consists of a front-end (implementing the parsing of FDL, interval reasoning, simple
rewrite and the user interface) and a back-end (that is used to perform the actual search
for counter-examples). The front-end generates an AnsProlog program for each conclusion
analysed. The back-end is a further set of rules included by each program which encode
the semantics of FDL. This program is then passed to an answer-set solver and any model
returned by the answer-set solver represents a counter-example, which is then interpreted by
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type Unsigned_Byte is new Integer range 0 .. 255;

function Add_UB (A, B: Unsigned_Byte)
return Unsigned_Byte
--# return Value => (Value > A);
is
begin
return A + B;
end Add_UB;

Figure 2 Example SPARK subprogram with several bugs. The line starting with —# is a SPARK
contract specifying a postcondition for the function.

function_add__ub_ 2.
H1: true

H2: a >= unsigned__byte___ first

H3: a <= unsigned__byte___ last

H4: b >= unsigned__byte___ first

H5: b <= unsigned_byte_ _ last .

H6: a + b >= unsigned__byte___ base___ first

H7: a + b <= unsigned__byte__ base___ last
—>

Cl: a+ b>a .

C2 a + b >= unsigned_byte_ _ first

C3: a + b <= unsigned__byte___ last

Figure 3 An interesting VC for the code from Figure 2. H2 - H5 are the hypotheses that give the
bounds for a and b. H6 and H7 state that a4+ b will not overflow the base type for Unsigned_ Byte, in
our case this is a 32-bit signed integer. C1 is the proof obligation required to show the postcondition
of the function (as specified by the user); C2 and C3 are required to show absence of run-time
errors as the addition may overflow the range allowed for Unsigned_ Byte (this proof obligation is
automatically generated by the Examiner).

the front-end and expressed in a user-friendly way. Figure 4 shows the overall architecture of
Riposte, where gringo is the grounder and clasp the answer-set solver of the Potassco [18]
tool-chain.

Riposte is designed to be sound but not complete, thus an absence of a model guarantees
that a given conclusion is necessarily true. However, there may be spurious counter-examples
generated by Riposte (in particular in the presence of complex quantified expressions). To
mitigate this Riposte also attempts to check each counter-example to determine if it is a
valid counter-example.

The back-end of Riposte contains approximately 4,700 lines of AnsPrologdescribing 1,000
rules; the front-end is around 12,000 lines of Python. To our knowledge it is one of the
largest commercial deployment of an answer set program to date.

3.1 Rewrite

After parsing, Riposte performs a number of rewrites and simplifications. These include
putting the hypotheses and conclusions in prenex normal form, Skolemisation to remove
existential quantifiers and elimination of redundant quantifiers. Normalising expressions
makes the subsequent processing simpler and can make the problems easier.

3.2 Interval reasoning

The integers in FDL are mathematical and thus ‘infinite precision’. However in the VCs
generated from SPARK programs every program variable is bounded. These bounds are
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Figure 4 Architecture of Riposte.

found and interval reasoning techniques similar to bounds propagation algorithms used in
CSP (Constraint Satisfaction Problem) solvers [16] are used to soundly refine the bounds.
Sometimes this reasoning is sufficient to show a conclusion must always be true, in which
case it can be discharged.

For example in Figure 3, Riposte can determine that the range of both a and b is [0; 255],
and the range for a + b is [0;510]. Riposte can now immediately rewrite conclusion 2 to ‘true’
as unsigned_ byte  first is 0.

3.3 Program generation

Once bounds are established for all program variables and the formulae simplified, Riposte
handles each conclusion individually. Although this requires more calls to the solver, the
program variables and hypotheses used in each search can be reduced to only those that
are necessary for a given conclusion. This not only makes the search faster, it significantly
simplifies the counter-examples generated, as assignments for irrelevant program variables
are not generated.
We now present a few interesting lines from the program generated for conclusion 3. Note
that more of the encoding is described in Section 4, but most names should be fairly obvious.
A few important background literals required by the rest of the encoding are defined, the
only one relevant for our example is wordLength; from interval arithmetic we know that the
largest values (the base types for a and b) can fit into a signed 32-bit integer in our example.
%%% Background
wordLength (32).
literallntegerLow (0).

literallntegerHigh (1).
optimisationLength (8).

For each program variable present in the VC, Riposte generates an ‘input variable’; this

defines the search space for the program.

variable (a, bitInteger ,input ).
variable (b, bitInteger ,input ).
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Each VC may also make use of some numeric constants (0 and 255 in our example); the
bit-patterns for those are also defined in the program, a snippet for the first 3 bits of constant
255 is shown below:

variable (bi_const 255, bitInteger ,constant).
bitValue (bi_const_255,0,1).
bitValue (bi_const_255,1,1).
bitValue (bi_const_255,2,1).
bitValue (bi_const_255,3,1).

Riposte then encodes each hypothesis and the currently analysed conclusion. The encoding
of a hypotheses (H2) is as follows:

%%% H2: a >= 0
variable (bi_leq_s(bi_const_0,a),boolean ,expression ).
computation(bi_leq s(bi_const_0,a),

bi_leq_s,

bi_const_ 0,

a).

hypothesis(bi_leq s(bi_const_0,a)).

The variable literal declares the Boolean expression bi_leq_s(bi_const_0, a) with the
computation literal generates the rules that compute its value and the hypothesis literal
denotes that it is a hypothesis and thus must be true in all models.

Finally, the encoding of the conclusion analysed, C3, is shown below. Note the naming
of the variables for expressions, such as bi_plus_s(a, b); this avoids generating two
calculations for the same expression twice and it also allows easy identification of what a
variable represents from the name only.

%%% C3: a + b <= 255
variable (bi_plus_s(a,b),bitInteger ,expression ).
computation(bi_plus_s(a,b),

bi_plus_s,

a,

b).

variable (bi_leq_s(bi_plus_s(a,b),bi_const_ 255),boolean ,expression).
computation(bi_leq s(bi_plus_s(a,b),bi_const_ 255),

bi_leq_s,

bi_plus_s(a,b),

bi_const_255).

conclusion (bi_leq_s(bi_plus_s(a,b),bi_const_255)).

3.4 Interpretation

After the program has been generated and passed to gringo and clasp, a model may be
returned. Each model contains a valuation for each input variable (bitValue for each bit of
a bitIntegers, boolenValue for booleans, etc.).

%% Found a counter—example to function_add_ub_2, conclusion C3:
(For path(s) from start to finish:)

H2: a >= 0

H3: a <= unsigned__byte___ last

H4: b >= 0

H5: b <= unsigned_byte___ last
==

C3: a + b <= unsigned__byte___ last

This conclusion is false if:
a = unsigned__byte___ last
b 1

A number of basic, but effective, usability features have been implemented in order to assist
the user with understanding the counter-example. In the output reproduced above for
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conclusion 3 of our example, large numbers are translated back to the original constants or
an easier expression®; in this case unsigned_byte_last is really 255, but it is shown using
the original name used in the VC. Furthermore, in order to reduce visual clutter only the
hypotheses which are relevant to our conclusion are printed.

Riposte also checks that the counter-example given does actually make all hypotheses
true and the conclusion false. This currently functions as an integrity check but will be used
to refine the modelling if spurious counter-examples are generated.

Caching of previous results using Memcached is also performed to allow incremental and
distributed computation [8].

4 Methodology and Modelling

The experience of developing a commercial scale application using ASP has yielded some
insights into the development process and some useful encoding techniques.

4.1 Methodology

Riposte was developed using the methodology described in [6]. The map from informal
concepts (such as “the B’th bit of variable N has value V”) to literals was the first thing
developed. Using this a number of simple programs were encoded manually and an interpret-
ation script was developed. This allowed models to be understood in terms of the informal
concepts rather than as a set of literals, and was invaluable in locating faults. The search
space (each possible assignment to the variables in the FDL) was modelled and manually
checked. Then the program was developed incrementally, one instruction at a time, with the
behaviour of each section checked before proceeding. This greatly simplified debugging as the
faults were almost always in the most recently added rules and their effects, in terms of the
concepts they were supposed to represent, were easily visible. Three additional techniques
were used to locate and prevent faults: random testing of individual instructions, system
level regression testing and test driven development, and explicit modelling of assumptions
about the model.

To test the individual instructions, a simple application was written that picked input
values (covering all of the combinations of common ‘edge’ and extreme values and some
random values), emulated the instruction and then produced a program that checked that the
AnsProlog model gave the correct result. This proved useful while modelling the instruction
as it allowed the partially completed model to be checked. In at least one case a discrepancy
between the declarative AnsProlog and the procedural emulation in the test system was
found to be a fault in the emulation!

At a higher level, system level test cases (VCs with annotations of which conclusions were
supposed to have counter examples) were extensively used. Often suites of tests for a feature
were written before they were implemented; in a fashion similar to test driven development.
Once features were implemented, these test suites were used as whole system regression tests.
This approach proved very effective and when the system was used on commercial code bases,
very few faults were found.

The third technique for fault minimisation is more specific to AnsProlog. When developing
a model there are normally a number of undocumented assumptions about the programs

3 For example instead of printing 4503599627370495, Riposte will print 2 * *52 — 1, which we contend is
much more helpful.
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and encodings. For example that each FDL program variable modelled is given only one
type or that any bit is either 1 or 0. In the case of the program, these are normally regarded
to be obvious from the informal meaning of the predicates and it is left to the programmer
to generate valid programs. Implicit properties of the encoding can be given as auxiliary
constraints if that helps inference. In Riposte assumptions about programs and the encoding
are explicitly stated using rules that derive a “model error” literal. For example, separate
literals are used to state when a bit is 1 or when it is 0 and the following rules are used to
express the link between them.

%% Each bit of bitIntegers must be 1 (z)or 0
modelError (bit_is both 1 and O0(N,B)) :—

bitValue (N,B,1), bitValue(N,B,0), variable (N, bitInteger ,R).
modelError (bit_is_ neither 1 nor_ 0(N,B)) :—

not bitValue(N,B,1), not bitValue(N,B,0), variable(N, bitInteger ,R), bit(B).

There are two uses for these rules. During development it is possible to search for answer sets
with model errors. This gives meaningful explanations of which implicit properties of the
model have been broken, rather than yielding models. When Riposte is run in production
mode, a constraint is added stating there are no modelling errors. Thus all of the rules
describing modelling errors effectively become constraints, allowing equivalence preprocessing
[19] to collapse the separate literals to one. This is an evolution of the techniques for error
diagnosis used in Anton [5].

4.2 Encoding

A number of encoding techniques were developed to improve the performance and capacity
of Riposte.

Variables are a central part of the model used in Riposte. They model FDL variables,
constants and the values of expressions. For example, if the expression a + b > 0 appears in a
hypothesis or conclusion, there will be five variables modelled; two FDL, or input integers, a
and b, one integer constant, 0, and two expression variables, an integer for a+b and a Boolean
for a + b > 0. Choice rules are used so that FDL variables are assigned non-deterministic
values. Constants are assigned direct values and the values of expression variables are
given by the rules modelling their instruction. One key innovation was to name expression
variables by the expression they compute. For example the variable corresponding to the
expression a + b would be named bi_plus_s(a,b). This meant that all of the hypotheses
and conclusions that referred to a + b would automatically use the same variable and thus
the same literals. Not only did this reduce the size of the programs generated, it also helped
eliminate symmetries introduced by having multiple variables record the value of the same
expression, and thus improved propagation.

One of the key challenges in modelling was how to deal with quantified expressions. As
soon as the target application contains arrays, quantified hypotheses are unavoidable as
even the simplest statement of type safety about arrays requires quantifiers. To illustrate
Riposte’s handling of quantifiers, consider the following (contrived) example:

function Contrived (A : Unsigned_Byte)
return Boolean

--# pre for all I in Unsigned_Byte range 50 .. 100 => (A /= I);
--# return A > 60 -> A > 150;
is
begin

return True;
end Contrived;

The hypotheses which represents the precondition (effectively a ¢ [50,100]) is expressed in
FDL translated as follows (note that the identifier I has been renamed by Riposte).
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%%% H1: for__all(riposte_____qid _1: wunsigned__byte ,
%%% riposte_____qid__1 >= 50 and riposte_____qid_1 <= 100 —>
%%% not a = riposte_ ____qid_ 1)

Riposte handles quantifiers using the sound but not complete technique of instantiation.
Every quantified hypothesis is replaced by a number of copies representing a subset of
the possible bindings for the quantifier. Omitting particular bindings can fail to remove
models (giving incompleteness) but cannot add models to a problem with no models (thus
giving soundness). Due to space constraints we show this only for part of the statement,
not a = riposte_____qid__1. Note that RIPOSTE___ QID 1 is variable whose instantiation
is determined by the literal hypothesisInstantiation. qi_h1l is an arbitrary constant
identifying the relevant expression.

variable (bi_equal 1(a,RIPOSTE _ QID 1),boolean ,expression)

:— hypothesisInstantiation (qi_hl ,RIPOSTE _ QID 1).

computation (bi__equal 1(a,RIPOSTE QID_1),
bi__equal_ 1,

a k)
RIPOSTE___ QID_1)

:— hypothesisInstantiation (qi_hl,RIPOSTE QD 1).

variable (b_not_I(bi_equal 1(a,RIPOSTE QID_1)),boolean ,expression)
:— hypothesisInstantiation (qi_hl ,RIPOSTE QID _1).
computation (b_not_1(bi_equal_1(a,RIPOSTE QID_1)),
b_not_1,
bi__equal_1(a,RIPOSTE QID_1))
:— hypothesisInstantiation (qi_hl ,RIPOSTE QID_1).

And finally the rule which encodes our simple but surprisingly effective instantiation heuristic.
We essentially instantiate the quantified expression for all variables which are not expressions
(i.e. for constants and input variables only).

hypothesisInstantiation (gi__hl,RIPOSTE QID_1) :—
variable (RIPOSTE QID_1,bitInteger ,R1), R1 != expression.

For our example this means that the quantified hypothesis is instantiated for {a,0, 1,50, 60,
100, 150,255} and Riposte gives i = 101 as a counter-example.

The last two encoding techniques improved the performance and completeness of Riposte,
the next technique is focused on improving usability. Considering the program given in
Figure 3, a = 91 and b = 214 is a counter example to conclusion 3. While this is an entirely
correct counter-example it is perhaps not the most informative. To produce more helpful
counter examples, Riposte makes use of the optimisation features of the answer set solver.
This is used to produce counter examples in which the FDL or input variables are as close
to zero as possible. By using an arbitrary order across the input variables and individual
optimise statements for each variable, counter examples will often end up minimising some
program variables and maximising other. For example in the case above, a = 255 and b = 1
is given. One of the advantages of using an answer set solver is being able to perform this
optimisation.

5 Evaluation

This section gives two evaluations of Riposte. The first focuses on false VCs and compares
Riposte with Victor and a variety of different SMT solvers. This evaluates Riposte in its
intended usage scenario — finding counter examples to individual false VCs. The second
experiment uses a large set of true VCs for a number of commercial applications and shows
the distribution of problem size and run-time across real applications.
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5.1 Comparison

As Riposte is a developer support tool, a key requirement is that it produces responses quickly
and consistently across a range of real world programs. To test this a set of programs with
undischarged VCs was created from publicly available SPARK applications: libsparkcrypto
[26], Tokeneer [1] and SPARKSkein [9]. A number of subprograms whose proofs require
non-formalised background information (for example, the number of certificates that can fit
on the removable storage) were taken from Tokeneer. Subprograms taken from libsparkcrypto
and SPARKSkein were modified to contain common bugs such as off by one errors, missing
preconditions, indexing errors and insufficient loop invariants. The Examiner was used to
generate VCs for these subprograms and the Simplifier used to remove simple true VCs,
leaving a test set of 45 VCs. All experiments were run on an Intel i7 860 (2.8 GHz, 4 cores)
desktop computer running Debian GNU/Linux, using a 20 minutes time limit per VC.

Figure 5 gives a graph of the cumulative time taken for Riposte to produce answers for
the benchmark VCs. Results are also given for Victor, the SMT based prover for SPARK,
using a variety of back end SMT solvers: Alt-Ergo [12], CVC3 [14] and Z3 [15]. These are
included to give an idea of what constituted reasonable amounts of time and completeness,
rather than for direct comparison.

Although the SMT solvers outperform Riposte for the easy VCs, the more complex VCs
containing bugs are resolved much more quickly by Riposte; resulting in the overall fastest
time to process all VCs. Riposte is the only tool that renders a verdict on all benchmark
VCs within the time limit. The division between grounder and solver causes slightly higher
overheads for Riposte, giving the lower results on the left hand side of the graph. However the
total time taken by Riposte on all resolved VCs is significantly lower (Riposte 1600s, CVC3
9000s, Alt-Ergo 11100s, Z3 20800s; to the nearest 100s) even though coverage is higher.

Riposte’s performance on these benchmarks is fairly typical. During development it has
been used on over 22,500 VCs (including four industrial applications, one unknown to the
tools authors) resolving 95% or more. When counter examples are found, they are typically
found rapidly and within the time developers are willing to wait.

5.2 Program statistics

We have also used Riposte to analyse the three code-bases mentioned above in their original
form to generate some statistics on the size and run-times of programs generated. Figure 6
shows the distribution of sizes the ground programs in terms of atoms and rules. It can be
seen that most of the programs are small (< 25000 atoms/rules), but a few are very large
(> 1,1 million atoms and > 1,2 million rules).

Figure 7 plots the time taken to ground each program against the time taken to solve. It
can be seen that most programs take longer to ground than to actually solve and even then
the combined time is usually significantly less than around 10 seconds.

6 Related work

A key precedent for using ASP to reason about programs is the TOAST superoptimiser [7].

Its model of instructions was somewhat simpler as it was modelling hardware and thus only
had the register ‘type’ to consider. In comparison, Riposte’s models include a much richer
type system (as it is modelling a typed language) and supports both quantifiers and axioms
for reasoning about more complex types.
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The closest system to Riposte, both in terms of architecture and approach, is Nitpick
[4], Isabelle’s counter-example generator. It uses KodKod to generate counter-examples to
HOL theorems. Although the theoretical foundations of answer set semantics and KodKod’s
FORL are very different, there are many parallels between the two systems, making KodKod
effectively an equivalent approach. The one key difference is that Nitpick has to deal with
infinite objects, making the encoding significantly more complex.

Systems that use SAT, SMT or other model generation solvers to discharge VCs (for
example [11]) can potentially generate counter-examples directly from failed proof attempts.
However there are a number of practical problems involving the size and complexity of the
counter-examples generated [25].

A key problem is that compact VC generation algorithms [2] make it difficult to identify
the root cause of a counter-example (as well as potentially significantly increasing the cost of
verification [24]). One option is to ‘tag’ the VC with explanations. Tags can be additional
propositions [23] or meta-information annotations [17]. As SPARK uses a more verbose but
significantly simpler VC generation system (see Section 2), these are not needed in Riposte,
since the failing condition (and why it is generated) is already available to the user.

Another area of research concerns the development of user interfaces to view and explore
counter-examples once they have been generated. The VCC Model Viewer [11] and its
successor, the Boogie Verification Debugger [20], show the power of integrating counter-
example display into an IDE. An innovative approach to doing this is generating a program
that triggers a bug corresponding to the counter-example [25] and then using a conventional
debugger interface.

Finally, counter-examples play a key role in checking and refining abstraction in model
checking systems, although this tends to be automatic (for example systems based on CEGAR
[10]) rather than aimed at supporting end-users.

7 Conclusion and Future Work

This paper presents Riposte, a successful commercial application of answer set programming.
Its performance is state of the art, as shown in Section 5. Furthermore it validates previous
work on development methodologies [6] by showing it is possible to develop large application
using them.

The next step for Riposte is integration into the next commercially supported release
of the SPARK tools. This will definitely yield challenging examples generated from VCs for
real world systems. It is hoped that these will be useful in improving the performance and
capacity of answer set programming tools. One area of particular interest is improvement in
the performance of grounders. As shown in Figure 7, grounding time is often the dominant
factor in Riposte’s performance. This is unusual as when the grounding is a bottleneck it is
normally a space issue rather than run-time.

Another challenging area is moving counter examples beyond assignments of values to
program variables. In some cases it is possible to produce expressions that describe a set
of counter examples and are more informative than a single counter example. It may be
possible to use the skeptical query mode of answer set solvers to find expressions that hold
for every counter example. More generally, techniques for summarising the answer sets of a
program would be of use.
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—— Abstract

The effective use of ASP solvers is essential for enhancing efficiency and scalability. The incidence
matrix is a simple representation used in Constraint Programming (CP) and Integer Linear
Programming for modeling combinatorial problems. Generating test cases for event-sequence
testing is to find a sequence covering array (SCA). In this paper, we consider the problem of
finding optimal sequence covering arrays by ASP and CP. Our approach is based on an effective
combination of ASP solvers and the incidence matrix. We first present three CP models from
different viewpoints of sequence covering arrays: the naive matrix model, the event-position
matrix model, and the incidence matrix model. Particularly, in the incidence matrix model, an
SCA can be represented by a (0, 1)-matrix called the incidence matrix of the array in which
the coverage constraints of the given SCA can be concisely expressed. We then present an
ASP program of the incidence matrix model. It is compact and faithfully reflects the original
constraints of the incidence matrix model. In our experiments, we were able to significantly
improve the previously known bounds for many arrays of strength three. Moreover, we succeeded
either in finding optimal solutions or in improving known bounds for some arrays of strength four.

1998 ACM Subject Classification D.1.6 Logic Programming; D.2.5 Testing and Debugging

Keywords and phrases Event-Sequence Testing, Answer Set Programming, Matrix Model,
Constraint Programming, Propositional Satisfiability (SAT)

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.86

1 Introduction

Recent development of Answer Set Programming (ASP) [3, 15, 21] suggests a successful
direction to extend logic programming to be more expressive and more efficient. ASP provides
a rich modeling language and can be well suited for modeling combinatorial problems in
Computer Science and Artificial Intelligence: multi-agent systems, systems biology, planning,
scheduling, semantic web, and Constraint Satisfaction Problems (CSPs). Remarkable
improvements in the efficiency of ASP solvers have been made over the last decade, through
the adoption of advanced techniques of Constraint Programming (CP) and Propositional
Satisfiability (SAT). Such improvements encourage researchers to solve hard combinatorial
problems by using ASP.

Combinatorial testing is an effective black-box testing method to detect elusive failures of
hardware/software. The basic idea is based on the observations that most failures are caused
by interactions of multiple components. The number of test cases is therefore much smaller
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than exhaustive testing. Generating test cases for combinatorial testing is to find a Covering
Array (CA) in Combinatorial Designs [2, 4, 5, 6, 7, 8, 9, 17, 18, 20, 22, 23, 27, 28]. However,
these C' A-based combinatorial testing methods can not be directly applied to detect failures
that are caused by a particular event sequence, an ordering of multiple events to be processed.

Event-sequence testing is a combinatorial testing method focusing on event-driven hard-
ware/software. Suppose we want to test a system with 10 events. We have 10! = 3,628, 800
test cases for exhaustive testing. Instead, we might be satisfied with test cases that exercise
all possible 3-sequences of 10 events (strength three event-sequence testing). Naively, we
need 19P3 =8 x 9 x 10 = 720 test cases. We can reduce to less than 240 since one test case
covers at least three 3-sequences. The question is “what is the smallest number of test cases
that we need now?”. It comes down to an instance of the problem of finding optimal Sequence
Covering Array (SCA) proposed by Kuhn et al [19]. A sequence covering array provides a
set of test cases, where each row of the array can be regarded as an event sequence for an
individual test case. Fig.1 shows an optimal sequence covering array of 11 rows, an answer
of the question above.

ASP solvers have an important role in the latest ASP technology. The effective use
of them is essential for enhancing efficiency and scalability. The incidence matriz is a
simple representation used in CP and integer linear programming for modeling combinatorial
problems such as balanced incomplete block designs [9]. Our approach is based on an effective
combination of ASP solvers and the incidence matrix.

In this paper, we consider the problem of finding optimal sequence covering arrays
by ASP and CP. We first present three CP models from different viewpoints of sequence
covering arrays: naive matrix model, event-position matriz model, and incidence matrix model.
Particularly, in the incidence matrix model, an SC A can be represented by a (0, 1)-matrix
called the incidence matrix of the array in which the coverage constraints of the given SC A
can be concisely expressed. We then present an ASP program of the incidence matrix model.
It is compact and faithfully reflects the original constraints of the incidence matrix model.
For example, it requires only 8 rules for the arrays of strength three. From the perspective of
ASP, Erdem et al. recently proposed an ASP-based approach for event-sequence testing [11],
and have shown that it enables a tester to rapidly specify problems and to experiment with
different formulations at a purely declarative level.

In our experiments, we were able to significantly improve the previously known bounds
obtained by a greedy algorithm [19] and an ASP-based approach [11] for many arrays of
strength three with small to large sizes of events. Moreover, we succeeded either in finding
optimal solutions or in improving known bounds for some arrays of strength four.

2 Sequence Covering Arrays and Related Work

» Definition 1. A sequence covering array SC A(n; S, t) is an n x |S| (n rows and |S| columns)
array A = (a;;) over a finite set S of symbols with the property that
each row of A is a permutation of S, and
for each t-sequence o = (eg, ea,...,e;) over S, there exists at least one row r with column
indices 1 < ¢1 < c¢g < -+- < ¢ < |5] such that e; = a,., for all 1 <i <t.
The parameter n is the size of the array, S is the set of events, and ¢ is the strength of the
array. Then trivial case when ¢t = 2 is excluded from further consideration.

» Definition 2. The sequence covering array number SCAN (S, t) is the smallest n for which
an SCA(n; S,t) exists.

» Definition 3. A sequence covering array SCA(n;S,t) is optimal if SCAN(S,t) = n.
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Figure 1 An optimal sequence covering array SCA(11;10, 3).

» Notation 4. Let s be an integer. SCA(n;s,t) and SCAN(s,t) are intended to denote,
respectively, SCA(n;{1,...,s},t) and SCAN({1,...,s},¢t).

Fig. 1 shows an example of SCA(11;10,3), a sequence covering array of strength ¢t = 3
with s = 10 events. It is an optimal sequence covering array which has n = 11 rows.

In this paper, we define two kinds of problems to make our approach more understand-
able. For a given tuple (n, s, t), SCA decision problem is the problem to decide whether an
SCA(n; s, t) exists or not, and find it if exists. For a given pair (s,t), SCA optimization prob-
lem is the problem to find an optimal covering array SC A(n; s,t). Oetsch et al. have recently
proved that the Generalised Event Sequence Testing (GEST) problem is NP-complete !.
Most SC A decision problems studied in this paper are special cases of GEST.

Kuhn et al. proposed a greedy algorithm for solving the SC'A optimization problems [19].
The practical effectiveness, especially scalability, of their algorithm has been shown by the
fact that they succeeded in finding upper bounds for the arrays of strength 3 <t <4 with
s < 80 events. We refer to their algorithm [19] as Kuhn’s encoding.

Erdem et al. proposed ASP encodings and an ASP-based greedy algorithm for solving
the SC'A optimization problems [11]. They have found and proved optimal solutions for
the arrays of strength ¢t = 3 with 5 < s < 8 events through their exact ASP encodings.
Moreover, their ASP-based greedy algorithm that synergistically integrates ASP with a
greedy method is designed to improve the scalability issue of the ASP encodings. We refer to
their encodings [11] as Erdem’s encoding. When we need to distinguish between their exact
ASP encodings and greedy algorithm, we refer to the former as Erdem’s exact encoding and
the latter as Erdem’s greedy encoding.

3 Constraint Programming Models

We propose three different CP models for solving the SC'A decision problems: the naive
matrix model, the event-position matrix model, and the incidence matrix model. We assume
throughout that we have an SC A(n; s, 3), a sequence covering array of strength ¢ = 3, for
the sake of clarity. Note that our models can be extended in a straightforward way to the
case of any strength ¢ > 3. We also use a sequence covering array SCA(6;{a,b, c,d},3) of
Fig. 2 as a running example.

1 Qetsch et al. personal communication
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1 2 3 4 a b ¢ d
a d b c 1 3 4 2
d ¢ b a 4 3 2 1
c d a b 3 4 1 2
a ¢ b d 1 3 2 4
b d a c 3 1 4 2
b ¢ a d 31 2 4
Figure 2 A sequence covering array Figure 3 The event-position matrix of
SCA(6;{a,b,c,d},3). SCA(6;{a,b,c,d},3) shown in Fig. 2.

3.1 Naive Matrix Model

For a given SC A decision problem for SC A(n; s, 3), the most direct model would be using
an n X s (n rows and s columns) matrix of integer variables m,; (1 <r <n,1 <4 <s). The

domain of each variable is {1,2,...,s}. This matrix identifies a sequence covering array itself.

We also use the auxiliary binary variables a,.(; j.x),(p,qu) With 1 <7 <n, 1 <i<j <k <s,
1<p,qu<s,p#q,p#u,and q # u. The variable a, (; j i) (p,q,u) is intended to denote
My =P, My ; = ¢, and M, = u in the matrix.

A global constraint is a constraint that can specify a relation between an arbitrary
number of variables [26]. In the naive matrix model, we use the alldifferent constraint
that is one of the best known and most studied global constraint in CP. The constraint
alldifferent(X7, Xo, ..., X;) ensures that the values assigned to the variables X7, Xo,..., X,
must be pairwise distinct.

The constraints for SC A(n; s,3) are defined as follows.

Permutation constraints:

alldifferent(my 1, my2, ..., My ) (1)

Channeling constraints:

Qr (i,5,k),(p,q,u) = l< (mrti = p) A (mT7j = q) A (mnk = u) (2)

Coverage constraints:

D (i) g > 1 (3)

1<r<n
1<i<j<k<s

where 1 <r<mn, 1<i<j<k<s, 1<pqu<s,p#q,p+#u,and q# u.

The permutation constraints can be easily expressed by using alldifferent constraints of
(1). That is, for every row, one alldifferent is enforced to ensure that every event in the range
1 to s occurs exactly once. The constraints (2) express the channeling constraints. The
constraints (3) express the coverage constraints such that every 3-sequence of the events
{1,...,s} occurs at least once in the matrix.

Note that the constraints of leftward arrows in (2) can be omitted. Even if they may be
omitted, we can still get a solution. For any solution, the constraints (3) ensure that every
3-sequence of the events occurs at least once. For each such an occurrence, the corresponding
entries (i.e. a 3-tuple of variables) of the matrix are derived from the constraints (2). The
condition that each row is a permutation of the events is ensured by the constraints (1).

The drawback of this model is not only the number of instances required for the coverage

constraints (3), but also the number of variables contained within each cardinality constraint
S
3

To avoid this problem, we propose another matrix model, called the event-position matrix
model.

in (3). We need in total ;P3 cardinality constraints, and each of them contains n( ) variables.
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Figure 4 The incidence matrix of SCA(6; {a,b, ¢, d},3) shown in Fig.

3.2 Event-Position Matrix Model

We give another view of sequence covering arrays. For a given sequence covering array
A = (aij), we can represent it by the event-position matriz of the array. The event-
position matrix B = (b;e) of A is defined so that b;e = j if a;; = e. That is, the rows are
the same as before but the columns are labeled with the distinct events, and each entry
represents the position of its corresponding event. Fig. 3 shows the event-position matrix of
SCA(6;{a,b,c,d},3) shown in Fig. 2.

For a given SC'A decision problem for SC A(n; s, 3), in the event-position matrix model,
we use again an n X s matrix of integer variables x,; (1 <r <n,1 <i <s). It identifies an
event-position matrix instead of a sequence covering array. The domain of each variable is
{1,2,...,s}. Wealso use the auxiliary binary variables y,. (; j ) with 1 <7 <n,1 <45,k <,
i#j,i#k,and j # k. The variable y, (; j ») is intended to denote z,; < z,; <z} in the
event-position matrix.

The constraints for SC A(n; s,3) are defined as follows.

Permutation constraints:

alldifferent(z,.1, Zr2, ..., @rs) )

Channeling constraints:
Yr,Gigik) = 1€ (Tri < Tpj) A(Tri < Trp) A(Trj < Trk) (5)

Coverage constraints:
> Urigw =1 (6)

where 1 <r <n,1<4,j,k<s,i#j,i#k,and j # k.

The constraints (4) is the same as (1) of the previous model except that each argument
represents the position of the event. The constraints (5) express the channeling constraints.
The coverage constraints can be concisely expressed by the constraints (6). That is, for every
3-sequence (i, j, k) of the events, one cardinality constraint is enforced to ensure that there is
at least one row r that satisfies the condition z,; < x, ; < @, . This means that we cover
all possible 3-sequence.

The comparisons z,; < z,j in (5) are clearly redundant and can be omitted, but we
leave them because of efficiency improvements. The constraints of leftward arrows in (5) can
be also omitted for the same reason as before.
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3.3 Incidence Matrix Model

We now give yet another view of sequence covering arrays. For a given sequence covering
array, we can represent it by the incidence matrixz of the array. Each row is labeled with one
row (i.e. an event sequence) of the array. Each column is labeled with one of all possible
t-sequences of the events. The incidence matrix C' = (¢;;) of SCA(n;s,t) is a (0, 1)-matrix
with n rows and ,P; columns such that c;; = 1 if the t-sequence j is a sub-sequence of the
event sequence ¢, and ¢;; = 0 otherwise.

Fig. 4 shows the incidence matrix of SC A(6;{a, b, c,d},3) shown in Fig. 2. Each row is
labeled with one row of the SC A(6;{a, b, c,d},3). Each of 4P3 = 24 columns is labeled with
one of all possible 3-sequences of the events {a, b, ¢, d}. The labels of the columns are written
vertically. For example, the entry in the first row and first column is a 1 since “a b ¢” is a
sub-sequence of “a d b ¢”.

In contrast, on the incidence matrix, let us consider the constraints that must be satisfied
for SCA(6;{a,b,c,d},3). Each column has at least one 1 (coverage constraints). From a
viewpoint of 3-combinations of the events {a,b,c,d}, there are 6 x (g) = 24 sub-matrices
with one row and six columns. Each sub-matrix sharing the same three events in the columns
has exactly one 1. Furthermore, for each row, such occurrences of 1’s are consistent with
each other in terms of the ordering of the events.

For a given SCA decision problem for SC' A(n; s, 3), in the incidence matrix model, we
use an n X ¢ P3 matrix of binary variables y,. ; jr) with 1 <r <n, 1 <4,5,k < 5,1 # j, 1 # k,
and j # k. We can express the permutation constraints by using only the y,. (; j ) variables,
but it requires a large number of constraints that are very costly to deal with. To avoid this
problem, we introduce the auxiliary binary variables pr; ; ;) with 1 <r <n, 1 <4,5 <s,
and 7 # j. The variable pr,.(; ;) is intended to denote the event i precedes the event j in the
row T.

The constraints for SCA(n; s, 3) are defined as follows.

Permutation constraints:

((re gy =D A (re Gy = 1)) = progig =1
=(prrg) = DV 20regay = 1)
(preiyy =1V @regan =1)

Channeling constraints:

Yr,(i,5,k) = 1< (prr,(i,j) = 1) A (prr,(i,k) = 1) A (prr,(j,k) = 1) (10)

Coverage constraints:

Zyr,(i,j,k) >1 (11)

.
where 1 <r <mn, 1<i,j,k<s,i#j,i1#k,and j # k.

The permutation constraints can be expressed by enforcing total ordering on the events:
(7) for transitivity, (8) for asymmetry, and (9) for comparability (totality). Note that the
constraints (7) can be replaced with the following arithmetic constraints (12), and the
constraints (8) and (9) with (13).

—~ o~
© oo
= T =

Drr (i) T PTr (k) — Preyik) <1 (12)
Pre(ig) + PTG = 1 (13)

The channeling constraints are expressed by the constraints (10) that are slightly modified
to adjust the pr variables compared with (5). The coverage constraints (11) are the same as
(6). The equations pry. (; x) = 1 in (10) and the constraints of leftward arrows in (10) can be
omitted for the same reason as before.
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Table 1 Benchmark results of different CP models for SCA(n; s, t).

n s t | Result | Incidence Incidence E-Position E-Position E-Position

(lex-row) (snake lex)  (double lex)
6 5 3 | UNSAT 1.320 < 0.000 5.457 0.008 0.011
7 5 3 SAT < 0.000 < 0.000 0.005 0.010 0.010
7 6 3 | UNSAT 1327.350 0.110 T.0 0.383 0.588
8" 6 3 SAT 0.005 0.006 0.012 0.016 0.022
7 7 3 | UNSAT 1442.410 0.180 T.0 1.921 5.509
8" 7 3 SAT 0.008 0.015 0.032 0.077 0.027
7 8 3 | UNSAT T.0 0.390 T.0 8.280 28.870
8" 8 3 SAT 0.070 0.094 7.870 2.815 18.160
9 9 3 SAT 0.075 0.242 6.139 6.070 64.570
9 10 3 SAT 11.896 5.890 982.580 1188.240 T.0
10 11 3 SAT 0.047 0.052 59.670 30.216 67.031
10 12 3 SAT 0.046 0.456 774.338 117.258 T.0
10 13 3 SAT 0.980 0.371 T.0 T.0 T.0
10 14 3 SAT 5.546 25.880 T.0 T.0 T.0
10 15 3 SAT 541.480 443.012 T.0 T.0 T.0
11 16 3 SAT 89.580 107.334 T.0 T.0 T.0
11 17 3 SAT 62.560 T.0 T.0 T.0 T.0
12 18 3 SAT 3.603 3.830 T.0 T.0 T.0
12 19 3 SAT 2.851 18.840 T.0 T.0 T.0
12 20 3 SAT 22.500 180.256 T.0 T.0 T.0
12 21 3 SAT 1353.810 824.680 T.0 T.0 T.0
13 22 3 SAT 29.660 9.783 T.0 T.0 T.0
13 23 3 SAT T.0 898.820 T.0 T.0 T.0
14 24 3 SAT 4.838 13.962 T.0 T.0 T.0
14 25 3 SAT 25.600 7.763 T.0 T.0 T.0
14 26 3 SAT 67.850 8.864 T.0 T.0 T.0
14 27 3 SAT 1126.390 251.660 T.0 T.0 T.0
14 28 3 SAT T.0 641.320 T.0 T.0 T.0
15 29 3 SAT 127.470 18.955 T.0 T.0 T.0
15 30 3 SAT 673.210 190.200 7.0 T.0 T.0
17 40 3 SAT 771.990 T.0 M.O M.O M.O
23 5 4 | UNSAT T.0 0.046 T.0 3.554 4.980
24~ 5 4 SAT 0.100 0.081 94.488 1.150 0.690
23 6 4 | UNSAT T.0 0.260 T.0 T.0 T.0
24~ 6 4 SAT 0.230 0.460 376.184 T.0 T.0
38 7 4 SAT T.0 40.390 T.0 T.0 T.0
47 8 4 SAT T.0 688.400 T.0 T.0 T.0
52 9 4 SAT T.0 51.950 T.0 T.0 T.0
58 10 4 SAT 341.420 659.830 T.0 T.0 T.0
65 11 4 SAT T.0 159.330 T.0 T.0 T.0
69 12 4 SAT T.0 243.590 T.0 T.0 T.0

4 Experiments

To evaluate the effectiveness of our CP models, we solve SC A optimization problems (35
problems in total) of strength 3 < ¢ < 4 with small to moderate sizes of events. For each
problem, we solve multiple SC' A decision problems of SCA(n;s,t) with varying the value
of n. Such decision problems contain both satisfiable and unsatisfiable problems and their
optimal solutions exist on the boundaries.

For each SC A decision problem, we represent it by using our models with and without
breaking the symmetries. More precisely, we apply the lexicographic ordering constraints for
breaking the row symmetry in the naive matrix model and the incidence matrix model. In
the event-position matrix model, for breaking the row and column symmetry, we apply the
double lex [12] and the snake lex [16] separately. In addition, we constrain every entry in the
first row to be “1 2 ... s” for the naive matrix model and the event-position matrix model
with double lex. We note that applying these constraints for breaking the symmetries does
not lose any solutions. For every model, we omit the constraints of leftward arrows in the
channeling constraints.
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For solving every model of each decision problem, we use a SAT-based CSP solver
Sugar 2, an award-winning system in GLOBAL category (including global constraints such
as alldifferent) of the 2008 and 2009 International CSP Solver Competitions. Sugar solves a
finite linear CSP by encoding it into SAT and then solving the SAT-encoded problem by
using an external SAT solver at the back-end. The SAT encoding that Sugar adopted is
called the order encoding [24, 25]. Tt is efficient in the sense that unit propagation keeps
the bounds consistency in original CSPs. We use MiniSat 2.2.0 (core) [10], Glucose 2 [1], and
clasp 2.0.2 [13, 14] as back-end SAT solvers. The first two are efficient CDCL SAT solvers.
The last one clasp is not only a state-of-the-art ASP solver, but also an efficient SAT solver.
In particular, Glucose and clasp are award-winning solvers in the 2011 SAT Competition.

Table 1 shows the best CPU time in seconds of three SAT solvers for solving SC A(n; s, t).
We only shows our best lower and/or upper bounds of n for each SC' A optimization problem.
We use the symbol “x” to indicate that the value of n is optimal. The column “Result”
indicates whether it is satisfiable (SAT) or unsatisfiable (UNSAT). The columns “Incidence”
and “E-Position” indicate the incidence matrix model and the event-position matrix model
respectively. Note that we exclude the results of the naive matrix model from Table 1 since
it was quite inefficient. All times were collected on Mac OS X with Intel Xeon 3.2GHz and
16GB memory. We set a timeout (“7T.0”) including the encoding time of Sugar to 1800
seconds for each SC'A decision problem. The “M.O” indicates a memory error of SAT solvers.

We observe in Table 1 that the incidence matrix based models (“Incidence” and “Incidence
with lex-row”) are faster and much more scalable to the number of events than the event-
position matrix based models (“E-Position”, “E-Position with snake lex” and “E-Position
with double lex”). “Incidence with lex-row” solved 39 SC A decision problems out of 41,
rather than 31 of “Incidence”, 14 of “E-Position with snake lex”, 12 of “E-Position with
double lex”, and 11 of “E-Position”. The main difference between two incidence matrix based
models is that “Incidence with lex-row” were able to give solutions for 7 arrays of strength
t = 4 not solved in timeout by “Incidence”.

Our models reproduced and re-proved 4 previously known optimal solutions. Moreover,
we found optimal solutions for SCAN(5,4) and SCAN(6,4). We also improved on previously
known upper bounds [11, 19] for the arrays of strength ¢t = 3 with 18 < s < 40 events and
strength ¢t = 4 with 5 < s < 12 events except s = 10.

5 An ASP Program of the Incidence Matrix Model

We present an ASP program of our best incidence matrix model. It is compact and faithfully
reflects the original constraints of the incidence matrix model. Our program has (;) + 5 rules
for the SC'A decision problem of SCA(n;s,t). For example, Fig. 5 shows the ASP program
sca3.1p for SCA(n;s,3), which has only (g) + 5 = 8 rules. Note that this program can be
extended in a straightforward way to the case of any strength ¢ > 3. We use the syntax
supported by the solver clasp and the grounder gringo [13, 14].

In Fig. 5, the first two rules row(1..n) and col(1l..s) express that the row indices are
integers in the range 1 to n, and the events are integers in the range 1 to s. The constants
n and s are replaced with given values by a grounder. The third rule corresponds to the
coverage constraints (11) where the predicate y(R,I,J,K) expresses the binary variable
Yr,(i,j,k)- L0 express the coverage constraints, it uses special constructs called cardinality
expressions of the form ¢{ay, ..., a)}u where each a; is an atom and ¢ and u are non-negative

2 http://bach.istc.kobe-u.ac.jp/sugar/
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% SCA(n;s,3)
row(l..n). col(l..s).

% coverage constraints
1{ y(R,I,J,K) : row(R) } :- col(I;J;K), I!=J, I!=K, J!=K.

% channeling constraints
pr(R,I,J) :- y(R,I,J,K).
pr(R,I,K) :- y(R,I,J,K).
pr(R,J,K) :- y(R,I,J,K).

% asymmetry & comparability constraints
1{ pr(R,I,J), pr(R,J,I) }1 :- row(R), col(I;J), I<J.

% transitivity constraints
pr(R,I,K) :- pr(R,I,J), pr(R,J,K), row(R), col(I;J;K), I!=J, I'!'=K, J!=K.

Figure 5 sca3.1p: An ASP program for SCA(n;s, 3).

integers denoting the lower bound and the upper bound of the cardinality expression. The
third rule first generates a candidate for the incidence matrix, and then constrains a lower
bound on the number of atoms is 1 for each column (i.e. each 3-sequence of the events).
From the fourth to the sixth rule, the predicate pr(R,I,J) expresses the auxiliary binary
variable pr,. ; ;). These three rules correspond to the constraints of rightward arrows in
the channeling constraints (10). The seventh rule again uses cardinality expressions to
express the asymmetry and comparability constraints (13). The transitivity constraints (7)
are expressed by the last rule. The command “gringo sca3.lp -c n=n -c s=s | clasp”
gives an answer set of an SC' A(n; s, 3) decision problem. We can get a solution of the original
problem by decoding the resulting answer set.

6 Comparison

We compare our ASP program with different approaches. We use Kuhn’s benchmark set
that consists of 62 SC' A optimization problems for SCAN (s,t) of strength 3 <t <4 with
5 < s < 80 events. We execute our ASP program by using clasp 2.0.4 and gringo 2.0.5 to
solve multiple SC' A decision problems of SC A(n; s,t) with varying the value of n for each
optimization problem. All times were measured on Mac OS X with Intel Xeon 2.66GHz and
24GB memory. We set a timeout for clasp to 3600 seconds for each SC' A(n;s,t).

Table 2 shows the comparison results of different approaches on the best known upper
bounds of SCAN (s, t). Our comparison includes our ASP program with clasp, our CP models
with Sugar, Erdem encoding [11], and Kuhn encoding [19]. We note that Erdem encoding is
closely related to the event-position matrix model of our CP models. We highlight the best
value of different approaches for each SCAN (s, t). The symbol “-” is used to indicate that
the result is not available in either our experiments or published literature.

In the case of strength t = 3, our ASP program with clasp were able to produce significantly
improved bounds compared with those in Erdem greedy encoding and Kuhn encoding. The
more events are considered, the more significant are the improvements. For example, when
s = 80 events, it produced an array of n = 24 rows compared with 38 of Erdem and 42 of
Kuhn. On average, it improved every bound of Erdem greedy encoding and Kuhn encoding
by 10 and 9 rows respectively. Compared with Erdem exact encoding, our ASP program can
be more scalable. In the case of strength ¢t = 4, although not able to match Erdem greedy
encoding for SCAN(10,4) and SCAN(20,4), our ASP program were able to improve every
bound of Kuhn encoding for the arrays with s < 23 events by 19 rows on average.
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Table 2 Comparison of different approaches on the best known upper bounds of SCAN (s, t).

Our ASP Our CP Erdem exact Erdem greedy | Kuhn encoding [19]

s with clasp with Sugar | encoding [11]  encoding [11]

t=3 t=4 t=3 t=4|t=3 t=4 t=3 t=4 |t=3 t=14
5 7 24 7 24 7 — — — 8 29
6 8 24 8 24 8 - - - 10 38
7 8 40 8 38 8 — — — 12 50
8 8 44 8 47 8 — - - 12 56
9 9 53 9 52 9 - — — 14 68
10 9 59 9 58 9 - 11 55 14 72
11 10 65 10 65 10 - - - 14 78
12 10 73 10 69 10 — - - 16 86
13 10 7 10 — 10 — - - 16 92
14 10 81 10 - 10 - - - 16 100
15 10 84 10 — 10 — - - 18 108
16 11 89 11 — 11 — - - 18 112
17 11 91 11 - 11 - - — 20 118
18 12 97 12 — - — - - 20 122
19 12 100 12 - - — — - 22 128
20 12 105 12 - — - 19 104 22 134
21 12 104 12 — - — - - 22 134
22 13 111 13 - - - - - 22 140
23 14 112 13 — — — - - 24 146
24 14 - 14 - - - - - 24 146
25 14 — 14 - — - - — 24 152
26 14 — 14 — - — - - 24 158
27 14 - 14 — - — - - 26 160
28 14 — 14 - — - - - 26 162
29 15 — 15 — - — — - 26 166
30 15 - 15 - — - 23 149 26 166
40 17 — 17 — — — 27 181 32 198
50 19 — — — - — 31 - 34 214
60 21 — - - - - 34 - 38 238
70 22 - - - — — 36 — 40 250
80 24 — — — — — 38 — 42 264

7 Conclusion

In this paper, we considered the problem of finding optimal sequence covering arrays by
ASP and CP. We presented three CP models from different viewpoints of sequence covering
arrays. Among them, the incidence matrix model is efficient in the sense that an SC'A can
be represented by the incidence matrix of the array in which the coverage constraints of the
given SCA can be concisely expressed. We presented a new ASP program that is compact
and faithfully reflects the incidence matrix model. To evaluate the effectiveness of our ASP
program, we solved Kuhn’s benchmark set that consists of 62 SC'A optimization problems
for SCAN (s,t) of strength 3 <t <4 with 5 < s < 80 events. We were able to significantly
improve the previously known bounds for many arrays, as shown in Table 2. Moreover, we
found optimal solutions for SCAN(5,4) and SCAN(6,4). However, we were still not able to
find any solutions for SCAN (s, 4) with 24 < s < 80 events because of expensive grounding,
which shows a limitation of our approach at present. To overcome this problem, hybrid
approaches to SC A, like Erdem greedy encoding, can be promising.

Our approach is based on an effective combination of ASP solvers and the incidence
matrix. It can be applied to a wide range of combinatorial search problems such as balanced
incomplete block designs [9] and SAT-based standard combinatorial testing [2].
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