
Technical Communications of the
28th International Conference on
Logic Programming

ICLP 2012, September 4–8, 2012, Budapest, Hungary

Edited by

Agostino Dovier
Vítor Santos Costa

LIPIcs – Vo l . 17 – ICLP 2012 www.dagstuh l .de/ l ip i c s

Editors
Agostino Dovier Vítor Santos Costa
Dipartimento di Matematica e Informatica DCC/Faculdade de Ciências
Università di Udine Universidade do Porto
agostino.dovier@uniud.it vsc@dcc.fc.up.pt

ACM Classification 1998
D.1.6 Logic Programming, D.2 Software Engineering, F.4.1 Mathematical Logic, I.2.4 Knowledge
Representation Formalisms and Methods, I.2.8 Problem Solving, Control Methods, and Search

ISBN 978-3-939897-43-9

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-43-9.

Publication date
September, 2012

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at .

License
This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported license:
http://creativecommons.org/licenses/by-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ICLP.2012.i

ISBN 978-3-939897-43-9 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-939897-43-9
http://www.dagstuhl.de/dagpub/978-3-939897-43-9
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.i
http://www.dagstuhl.de/dagpub/978-3-939897-43-9
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (Humboldt University Berlin)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Wolfgang Thomas (RWTH Aachen)
Vinay V. (Chennai Mathematical Institute)
Pascal Weil (Chair, University Bordeaux)
Reinhard Wilhelm (Saarland University, Schloss Dagstuhl)

ISSN 1868-8969

www.dagstuhl.de/lipics

ICLP’12

http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

To the Association for Logic Programming

Contents

Introduction to the Technical Communications of the 28th International Conference on
Logic Programming Special Issue

Agostino Dovier and Vítor Santos Costa . xvii

Invited Contribution

Simulation Unification: Beyond Querying Semistructured Data
François Bry and Sebastian Schaffert . 1

Knowledge Representation, Learning, and ASP

Modeling Machine Learning and Data Mining Problems with FO(·)
Hendrik Blockeel, Bart Bogaerts, Maurice Bruynooghe, Broes De Cat,
Stef De Pooter, Marc Denecker, Anthony Labarre, Jan Ramon, and
Sicco Verwer . 14

Answering Why and How questions with respect to a frame-based knowledge base: a
preliminary report

Chitta Baral, Nguyen Ha Vo, and Shanshan Liang . 26
Applying Machine Learning Techniques to ASP Solving

Marco Maratea, Luca Pulina, and Francesco Ricca . 37
An Answer Set Solver for non-Herbrand Programs: Progress Report

Marcello Balduccini . 49
Stable Models of Formulas with Generalized Quantifiers (Preliminary Report)

Joohyung Lee and Yunsong Meng . 61
Using Answer Set Programming in the Development of Verified Software

Florian Schanda and Martin Brain . 72
Generating Event-Sequence Test Cases by Answer Set Programming with the Incidence
Matrix

Mutsunori Banbara, Naoyuki Tamura, and Katsumi Inoue . 86

Concurrency and FLP

Towards Testing Concurrent Objects in CLP
Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa . 98

Visualization of CHR through Source-to-Source Transformation
Slim Abdennadher and Nada Sharaf . 109

Static Type Inference for the Q language using Constraint Logic Programming
Zsolt Zombori, János Csorba, and Péter Szeredi . 119

Improving Lazy Non-Deterministic Computations by Demand Analysis
Michael Hanus . 130

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

viii Contents

The additional difficulties for the automatic synthesis of specifications posed by logic
features in functional-logic languages

Giovanni Bacci, Marco Comini, Marco A. Feliú, and Alicia Villanueva 144
A Concurrent Operational Semantics for Constraint Functional Logic Programming

Rafael del Vado Vírseda, Fernando Pérez Morente, and
Marcos Miguel García Toledo . 156

Answer Set Programming

Surviving Solver Sensitivity: An ASP Practitioner’s Guide
Bryan Silverthorn, Yuliya Lierler, and Marius Schneider . 164

aspeed: ASP-based Solver Scheduling
Holger Hoos, Roland Kaminski, Torsten Schaub, and Marius Schneider 176

Answer Set Solving with Lazy Nogood Generation
Christian Drescher and Toby Walsh . 188

Lazy Model Expansion by Incremental Grounding
Broes De Cat, Marc Denecker, and Peter Stuckey . 201

Unsatisfiability-based optimization in clasp
Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub 212

An FLP-Style Answer-Set Semantics for Abstract-Constraint Programs with
Disjunctions

Johannes Oetsch, Jörg Pührer, and Hans Tompits . 222
Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

Jia-Huai You, John Morris, and Yi Bi . 235
Preprocessing of Complex Non-Ground Rules in Answer Set Programming

Michael Morak and Stefan Woltran . 247

Foundations

Two-Valued Logic Programs
Vladimir Lifschitz . 259

Possibilistic Nested Logic Programs
Juan Carlos Nieves and Helena Lindgren . 267

A Tarskian Informal Semantics for Answer Set Programming
Marc Denecker, Yuliya Lierler, Miroslaw Truszczynski, and Joost Vennekens 277

Paving the Way for Temporal Grounding
Felicidad Aguado, Pedro Cabalar, Martín Diéguez, Gilberto Pérez, and
Concepción Vidal . 290

Logic + control: An example
Włodzimierz Drabent . 301

Deriving a Fast Inverse of the Generalized Cantor N-tupling Bijection
Paul Tarau . 312

On the Termination of Logic Programs with Function Symbols
Sergio Greco, Francesca Spezzano, and Irina Trubitsyna . 323

Contents ix

Logic Programming in Tabular Allegories
Emilio Jesús Gallego Arias and James B. Lipton . 334

Applications

Tabling for infinite probability computation
Taisuke Sato and Philipp Meyer . 348

ASP at Work: An ASP Implementation of PhyloWS
Tiep Le, Hieu Nguyen, Enrico Pontelli, and Tran Cao Son . 359

CHR for Social Responsibility
Veronica Dahl, Bradley Coleman, J. Emilio Miralles, and Erez Maharshak 370

A Logic Programming approach for Access Control over RDF
Nuno Lopes, Sabrina Kirrane, Antoine Zimmermann, Axel Polleres, and
Alessandra Mileo . 381

LOG-IDEAH: ASP for Architectonic Asset Preservation
Viviana Novelli, Marina De Vos, Julian Padget, and Dina D’Ayala 393

Extending C+ with Composite Actions for Robotic Task Planning
Xiaoping Chen, Guoqiang Jin, and Fangkai Yang . 404

Improving Quality and Efficiency in Home Health Care: an application of
Constraint Logic Programming for the Ferrara NHS unit

Massimiliano Cattafi, Rosa Herrero, Marco Gavanelli, Maddalena Nonato,
Federico Malucelli, and Juan José Ramos . 415

A Flexible Solver for Finite Arithmetic Circuits
Nathaniel Wesley Filardo and Jason Eisner . 425

Doctoral Consortium

Software Model Checking by Program Specialization
Emanuele De Angelis . 439

Temporal Answer Set Programming
Martín Diéguez . 445

A Gradual Polymorphic Type System with Subtyping for Prolog
Spyros Hadjichristodoulou . 451

ASP modulo CSP: The clingcon system
Max Ostrowski . 458

An ASP Approach for the Optimal Placement of the Isolation Valves in a Water
Distribution System

Andrea Peano . 464
Answer Set Programming with External Sources

Christoph Redl . 469
Together, Is Anything Possible? A Look at Collective Commitments for Agents

Ben Wright . 476

ICLP’12

List of Authors

Slim Abdennadher
German University in Cairo
Egypt
slim.abdennadher@guc.edu.eg

Felicidad Aguado
Coruña University
Spain
aguado@udc.esn

Elvira Albert
Complutense University of Madrid
Spain
elvira@clip.dia.fi.upm.es

Benjamin Andres
University of Potsdam
Germany
bandres@cs.uni-potsdam.de

Puri Arenas-Sanchez
Complutense University of Madrid
Spain
puri@sip.ucm.es

Giovanni Bacci
Univ. of Udine, DIMI
Italy
giovanni.bacci@uniud.it

Marcello Balduccini
Kodak Research Laboratories
USA
marcello.balduccini@gmail.com

Mutsunori Banbara
Information Science and Technology Center,
Kobe University, Japan
banbara@kobe-u.ac.jp

Chitta Baral
Arizona State University
AZ, USA
chitta@asu.edu

Yi Bi
Tianjin University
China
thalian.bi@gmail.com

Hendrik Blockeel
Department of Computer Science,
KU Leuven, Belgium
hendrik.blockeel@cs.kuleuven.be

Bart Bogaerts
Department of Computer Science,
KU Leuven Belgium
bart.bogaerts@cs.kuleuven.be

Martin Brain
University of Bath
UK
mjb@cs.bath.ac.uk

Maurice Bruynooghe
Department of Computer Science,
KU Leuven, Belgium
maurice.bruynooghe@cs.kuleuven.be

François Bry
Institute for Informatics,
Ludwig-Maximilians University of Munich
Germany
bry@lmu.de

Pedro Cabalar
Coruña University
Spain
cabalar@udc.es

Massimiliano Cattafi
University of Ferrara
Italy
massimiliano.cattafi@unife.it

Xiaoping Chen
University of Science and Technology
of China
xpchen@ustc.edu.cn

Bradley Coleman
Simon Fraser University
Canada
bradley@proxydemocracy.org

Marco Comini
University of Udine, DIMI
Italy
marco.comini@uniud.it

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

xii Authors

János Csorba
Budapest University of Technology and
Economics, Hungary
csorba@cs.bme.hu

Dina D’Ayala
University of Bath
UK
d.f.d’ayala@bath.ac.uk

Veronica Dahl
Simon Fraser University
Canada
veronica@cs.sfu.ca

Emanuele de Angelis
University “G. d’Annunzio” of
Chieti-Pescara,
Italy
deangelis@sci.unich.it

Broes De Cat
Department of Computer Science,
KU Leuven, Belgium
Broes.DeCat@cs.kuleuven.be

Stef De Pooter
Department of Computer Science,
KU Leuven, Belgium
stef.depooter@cs.kuleuven.be

Marina De Vos
University of Bath
UK
mdv@cs.bath.ac.uk

Rafael del Vado Vírseda
Universidad Complutense de Madrid. Spain
rdelvado@sip.ucm.es

Marc Denecker
KU Leuven
Belgium
marcd@cs.kuleuven.be

Martín Diéguez
Coruña University
Spain
martin.dieguez@udc.es

Włodzimierz Drabent
IPI PAN Warszawa
Poland
drabent@ipipan.waw.pl

Christian Drescher
NICTA and UNSW
Australia
christian.drescher@nicta.com.au

Jason Eisner
Johns Hopkins University
USA
jason@cs.jhu.edu

Marco A. Feliú
Universitat Politécnica de Valéncia, DSIC
Spain
mfeliu@dsic.upv.es

Nathaniel Wesley Filardo
Johns Hopkins University
USA
nwf@cs.jhu.edu

Emilio Jesús Gallego Arias
Universidad Politécnica de Madrid
Spain
egallego@babel.ls.fi.upm.es

Marcos Miguel García Toledo
Complutense University of Madrid
Spain
solomiyo@gmail.com

Marco Gavanelli
University of Ferrara
Italy
marco.gavanelli@unife.it

Miguel Gómez-Zamalloa
Complutense University of Madrid
Spain
mzamalloa@clip.dia.fi.upm.es

Sergio Greco
University of Calabria
Italy
greco@deis.unical.it

Spyros Hadjichristodoulou
Computer Science Department,
Stony Brook University
NY, USA
shadjichrist@cs.stonybrook.edu

Authors xiii

Nguyen Ha Vo
Arizona State University
AZ, USA
Nguyen.H.Vo@asu.edu

Michael Hanus
CAU Kiel
Germany
mh@informatik.uni-kiel.de

Rosa Herrero
Universitat Autònoma de Barcelona
Spain
rherrero.math@gmail.com

Holger Hoos
University of British Columbia
Canada
hoos@cs.ubc.ca

Katsumi Inoue
National Institute of Informatics
Japan
ki@nii.ac.jp

Guoqiang Jin
University of Science and Technology
of China
abxeeled@mail.ustc.edu.cn

Roland Kaminski
University of Potsdam
Germany
kaminski@cs.uni-potsdam.de

Benjamin Kaufmann
University of Potsdam
Germany
kaufmann@cs.uni-potsdam.de

Sabrina Kirrane
Digital Enterprise Research Institute and
Storm Technology
Ireland
sabrina.kirrane@deri.org

Anthony Labarre
Department of Computer Science,
KU Leuven, Belgium
anthony.labarre@cs.kuleuven.be

Tiep Le
New Mexico State University
NM, USA
tile@cs.nmsu.edu

Joohyung Lee
Arizona State University
AZ, USA
joolee@asu.edu

Shanshan Liang
Arizona State University
AZ, USA
Shanshan.Liang@asu.edu

Yuliya Lierler
The University of Texas at Austin
TX, USA
yuliya@cs.utexas.edu

Vladimir Lifschitz
University of Texas
TX, USA
vl@cs.utexas.edu

Helena Lindgren
Department of Computing Science, Umeå
University
Sweden
helena@cs.umu.se

James B. Lipton
Wesleyan University
USA
jlipton@wesleyan.edu

Nuno Lopes
Digital Enterprise Research Institute
Ireland
nuno.lopes@deri.org

Erez Maharshak
Simon Fraser University
Canada
erez@proxydemocracy.org

Federico Malucelli
Politecnico di Milano, DEI
Italy
malucell@elet.polimi.it

ICLP’12

xiv Authors

Marco Maratea
DIST, University of Genova
Italy
marco@dist.unige.it

Oliver Matheis
University of Potsdam
Germany
ollbert@gmx.de

Yunsong Meng
Arizona State University
AZ, USA
Yunsong.Meng@asu.edu

Philipp Meyer
Technical University Munich
Germany
meyerphi@in.tum.de

Alessandra Mileo
Digital Enterprise Research Institute
Ireland
alessandra.mileo@deri.org

Emilio Miralles
Simon Fraser University
Canada
emiralle@sfu.ca

Michael Morak
University of Oxford
UK
michael.morak@gmail.com

John Morris
University of Alberta
Canada
morris2@ualberta.ca

Hieu Nguyen
New Mexico State University
NM, USA
nhieu@cs.nmsu.edu

Juan Carlos Nieves
Department of Computing Science, Umeå
University
Sweden
jcnieves@cs.umu.se

Maddalena Nonato
University of Ferrara
Italy
maddalena.nonato@unife.it

Vivana Novelli
University of Bath
UK
v.i.novelli@bath.ac.uk

Johannes Oetsch
Vienna University of Technology
Austria
oetsch@kr.tuwien.ac.at

Max Ostrowski
Institut für Informatik, Universität Potsdam
Germany
ostrowsk@cs.uni-potsdam.de

Julian Padget
University of Bath
UK
jap@cs.bath.ac.uk

Andrea Peano
Università degli Studi di Ferrara, EnDiF
Italy
andrea.peano@unife.it

Gilberto Pérez
University of Corunna
Spain
gperez@udc.es

Fernando Pérez Morente
Universidad Complutense de Madrid, DSIC
Spain
fperezmo@fdi.ucm.es

Axel Polleres
Siemens AG Österreich
DERI, National University of Ireland,
Galway
Austria and Ireland
axel@polleres.net

Enrico Pontelli
New Mexico State University
NM, USA
epontell@cs.nmsu.edu

Authors xv

Jörg Pührer
Vienna University of Technology
Austria
puehrer@kr.tuwien.ac.at

Luca Pulina
Univ. of Sassari, POLCOMING
Italy
lpulina@uniss.it

Jan Ramon
Department of Computer Science
KU Leuven, Belgium
jan.ramon@cs.kuleuven.be

Juan José Ramos Gonzalez
Universitat Autònoma de Barcelona
Spain
JuanJose.Ramos@uab.es

Christoph Redl
Institute of Information Systems, TU Vienna
Austria
redl@kr.tuwien.ac.at

Francesco Ricca
Department of Mathematics,
University of Calabria, Italy
ricca@mat.unical.it

Taisuke Sato
Tokyo Institute of Technology
Japan
sato@mi.cs.titech.ac.jp

Florian Schanda
Altran Praxis
UK
florian.schanda@altran-praxis.com

Torsten Schaub
University of Potsdam
Germany
torsten@cs.uni-potsdam.de

Sebastian Schaffert
Salzburg Research Forschungsgesellschaft
Austria
sebastian.schaffert@salzburgresearch.at

Marius Schneider
University of Potsdam
Germany
manju@cs.uni-potsdam.de

Nada Sharaf
German University in Cairo
Egypt
nada.hamed@guc.edu.eg

Bryan Silverthorn
The University of Texas at Austin
TX, USA
bsilvert@cs.utexas.edu

Tran Cao Son
New Mexico State University
NM, USA
tson@cs.nmsu.edu

Francesca Spezzano
University of Calabria, DEIS
Italy
fspezzano@deis.unical.it

Peter Stuckey
National ICT Australia, Victoria Laboratory
Australia
peter.stuckey@nicta.com.au

Péter Szeredi
Budapest University of Technology
and Economics, Hungary
szeredi@gmail.com

Naoyuki Tamura
Information Science and Technology Center,
Kobe University, JAPAN
tamura@kobe-u.ac.jp

Paul Tarau
University of North Texas
TX, USA
ptarau@gmail.com

Hans Tompits
Vienna University of Technology
Austria
tompits@kr.tuwien.ac.at

Irina Trubitsyna
University of Calabria, DEIS
Italy
irina@deis.unical.it

ICLP’12

xvi Authors

Mirek Truszczynski
Computer Science Department,
University of Kentucky
KY, USA
mirek@cs.uky.edu

Joost Vennekens
KU Leuven
Belgium
joost.vennekens@cs.kuleuven.be

Sicco Verwer
Radboud Universiteit Nijmegen,
Institute for Computing and
Information Sciences
Belgium
siccoverwer@gmail.com

Concepcion Vidal
University of Coruña
Spain
concepcion.vidalm@udc.es

Alicia Villanueva
Universitat Politécnica de Valéncia, DSIC
Spain
villanue@dsic.upv.es

Toby Walsh
NICTA and UNSW
Australia
toby.walsh@nicta.com.au

Stefan Woltran
Vienna University of Technology
Austria
woltran@dbai.tuwien.ac.at

Ben Wright
Department of Computer Science, New
Mexico State University
NM, USA
bwright@cs.nmsu.edu

Fangkai Yang
Department of Computer Science,
The University of Texas at Austin
TX, USA
fkyang@cs.utexas.edu

Jia-Huai You
Department of Computing Science,
University of Alberta, Edmonton
Canada
you@cs.ualberta.ca

Antoine Zimmermann
École des Mines de Saint-Étienne
France
antoine.zimmermann@emse.fr

Zsolt Zombori
Budapest University of Technology
and Economics, Hungary
zombori@cs.bme.hu

Introduction to the Technical Communications of
the 28th International Conference on Logic
Programming Special Issue
Agostino Dovier1 and Vítor Santos Costa2

1 Dipartimento di Matematica e Informatica
University of Udine (Italy)
agostino.dovier@uniud.it

2 CRACS-INESC TEC & Dep. de Ciência de Computadores, FCUP,
Universidade do Porto, Portugal
vsc@dcc.fc.up.pt

Abstract
We are proud to introduce this special issue of LIPIcs — Leibniz International Proceedings
in Informatics, dedicated to the technical communications accepted for the 28th International
Conference on Logic Programming (ICLP).

1998 ACM Subject Classification D.1.6 Logic Programming, I.2.3 Deduction and Theorem
proving/Logic programming

Keywords and phrases Logic Programming, Organization Details

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.xvii

The ICLP meetings started in Marseille in 1982 and since then constitute the main
venue for presenting and discussing work in the area of logic programming. We contributed
to ICLP for the first time in 1991. The first guest-editor had a paper on logic programming
with sets, and the second had two papers on the parallel implementation of the Andorra
model. Since then, we continued pursuing research in this exciting area and ICLP has always
been the major venue for our work. Thus, when the ALP EC committee kindly invited us
for chairing the 2012 edition we were delighted to accept.

We particularly appreciate the honor and responsability of organising ICLP in Budapest.
Hungary has had a central role both in implementation and in the application of logic pro-
gramming. Indeed, the role of Hungary in general in Computer Science is widely recognized,
and organizing this meeting in the town of John von Neumann, one of the “talent-scouts”
of Turing, in the centenary of the birth of the latter, is just another reason for justifying the
fact that the fascinating Budapest is the unique town to host ICLP twice.

Publishing the technical communications as LIPIcs paper is a joint initiative taken by the
Association for Logic Programming and of the Dagstuhl Research Online Publication Server
(DROPS). The goal is to allow a fast preliminary publication for research contributions that
are not yet ready for a journal publication but, on the other hand, deserves to be presented
at the ICLP. Quality is ensured by an anonymous refereeing process (at least three reviewers
per paper), and by an active and very much participating program committee. The approach
was first experimented in 2010, and has had favorable feedback since.

This year, ICLP sought contributions in all areas of logic programming, including but
not restricted to:

© Agostino Dovier and Vítor Santos Costa;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. xvii–xxi

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.xvii
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

xviii Introduction to ICLP 2012 Technical Communications

Theory: Semantic Foundations, Formalisms, Non-monotonic Reasoning, Knowledge Rep-
resentation.
Implementation: Compilation, Memory Management, Virtual Machines, Parallelism.
Environments: Program Analysis, Transformation, Validation, Verification, Debugging,
Profiling, Testing.
Language Issues: Concurrency, Objects, Coordination, Mobility, Higher Order, Types,
Modes, Assertions, Programming Techniques.
Related Paradigms: Abductive Logic Programming, Inductive Logic Programming, Con-
straint Logic Programming, Answer-Set Programming.
Applications: Databases, Data Integration and Federation, Software Engineering, Natu-
ral Language Processing, Web and Semantic Web, Agents, Artificial Intelligence, Bioin-
formatics.

In response to the call for papers we received 102 abstracts, 90 of which remained as
complete submissions. Of these, 81 were submitted as full papers and 9 as technical com-
munications. Each paper was reviewed by at least three anonymous program committee
members, selected by the program chairs. Sub-reviewers were allowed. After discussion,
involving the whole program committee, and a second round of revision for some papers,
20 papers have been selected for immediate journal publication in a special issue of Theory
and Practice of Logic Programming (TPLP). 37 papers instead have been judged to deserve
a slot for a short presentation at the Meeting and a “technical communication” publica-
tion in this Volume of the Leibniz International Proceedings in Informatics (LIPIcs) series,
published on-line through the Dagstuhl Research Online Publication Server (DROPS).

The whole set of accepted papers includes 36 technical papers, 12 application papers, 5
system and tool papers, and 4 papers submitted directly as technical communications.

The Conference program was honored to include contributions from three keynote speak-
ers and from a tutorialist. Two invited speakers come from industry, namely Ferenc Darvas
from CompuDrug International, Inc. Sedona, Arizona, and ComGrid Kft, Budapest (two
companies using computer science techniques for chemistry), and Mike Elston from Secu-
ritEase (an Australian company developing stock brokering tools). Moreover, Jan Wiele-
maker, of the VU University Amsterdam, presented an history of the first 25 years of SWI
Prolog, one of the major (and free) Prolog releases. Tutorialist Viviana Mascardi from Uni-
versity of Genova (Italy) introduced us to the hot topic of “Logic-based Agents and the
Semantic Web”.

The first ICLP Conference was organized 30 years to this year, in Marseille. During
those 30 years, ICLP has been a major venue in Computer Science. In order to acknowledge
some of the major contributions that have been fundamental to the success of LP as a
field, the ALP executive committee decided that ICLP should recognize the most influential
papers presented in the ICLP and ILPS conferences (ILPS was another major meeting in
logic programming, organized until 1998), that, 10 and 20 years onwards, have been shown
to be a major influence in the field. As program co-chairs of ICLP2012, we were the first
to be charged with this delicate task. We included papers from ICLP 1992 and ILPS 1992,
20 years onwards, and of ICLP 2002, 10 years onwards. Our procedure was to use biblio-
metric information in a first stage, and to use our own personal criteria in a second stage,
if necessary. Given that this is the first time this award was given we also considered 1991,
and 2001 papers. Although there are an impressive number of excellent papers in 1991 and
1992, one paper emerges with an outstanding record of roughly 600 citations. Further, the
paper clearly has a very major influence in the field. The paper is

Agostino Dovier and Vítor Santos Costa xix

Michael Gelfond and Vladimir Lifschitz: Representing Actions in Extended Logic Pro-
gramming. JICSLP 1992: 559-573

The 10 years onward analysis again produced a group of excellent papers (as expected,
the number of citations was stricly less than for 20 years old papers). In this case choosing
the winner in a very short list was more difficult. Ackowledging their influence over the very
active field of Web Databases and Semantic Web, our selection went to:

François Bry and Sebastian Schaffert: Towards a Declarative Query and Transformation
Language for XML and Semistructured Data: Simulation Unification. ICLP 2002: 255-
270

We therefore invited these authors for an invited talk in a special session at the meeting.
François Bry and Sebastian Schaffert also contributed to this iussue with a survey paper,
entitled Simulation Unication: Beyond Querying Semistructured Data.

Since the first edition in 2005, organized by Enrico Pontelli, the Doctoral Consortium has
been organized at each ICLP meeting. This event is designed for doctoral students working
in areas related to logic programming, with a particular emphasis to students interested in
pursuing a career in academia. The Doctoral Consortium aims to provide students with
an opportunity to present and discuss their research directions, their thesis proposal, and
to obtain feedback from the major experts in the field. This year the doctoral consortium
organization has been coordinated by Marco Gavanelli and Stefan Woltran, and seven thesis
proposals have been considered deserving of presentation. A survey of these proposals is
part of this volume.

Together, this LIPIcs volume and the TPLP special issue constitute the proceedings of
ICLP12. The list of the 20 accepted full papers appearing (sorted by alphabetical order) in
the corresponding TPLP special issue follows:

Disjunctive Datalog with Existential Quantifiers: Semantics, Decidability, and Complex-
ity Issues. Mario Alviano, Wolfgang Faber, Nicola Leone, and Marco Manna
Towards Multi-Threaded Local Tabling Using a Common Table Space. Miguel Areias
and Ricardo Rocha
Module Theorem for the General Theory of Stable Models. Joseph Babb and Joohyung
Lee
Typed Answer Set Programming Lambda Calculus and Corresponding Inverse Lambda
Algorithms. Chitta Baral, Juraj Dzifcak, Marcos Gonzalez, and Aaron Gottesman
D-FLAT: Declarative Problem Solving Using Tree Decompositions and Answer-Set Pro-
gramming. Bernhard Bliem, Michael Morak, and Stefan Woltran
An Improved Proof-Theoretic Compilation of Logic Programs. Iliano Cervesato
Annotating Answer-Set Programs in LANA. Marina De Vos, Doga Gizem Kisa, Jo-
hannes Oetsch, Jörg Pührer, and Hans Tompits
SMCHR: Satisfiability Modulo Constraint Handling Rules. Gregory Duck
Conflict-driven ASP Solving with External Sources. Thomas Eiter, Michael Fink,
Thomas Krennwallner, and Christoph Redl
Multi-threaded ASP Solving with clasp. Martin Gebser, Benjamin Kaufmann, and
Torsten Schaub
Model Checking with Probabilistic Tabled Logic Programming. Andrey Gorlin, C. R.
Ramakrishnan, and Scott Smolka
Diagrammatic confluence for Constraint Handling Rules. Rémy Haemmerlé

ICLP’12

xx Introduction to ICLP 2012 Technical Communications

Inference in Probabilistic Logic Programs with Continuous Random Variables. Muham-
mad Islam, C.R. Ramakrishnan, and I.V. Ramakrishnan
Relational Theories with Null Values and Non-Herbrand Stable Models. Vladimir Lif-
schitz, Karl Pichotta, and Fangkai Yang
The Relative Expressiveness of Defeasible Logics. Michael Maher
Compiling Finite Domain Constraints to SAT with BEE. Amit Metodi and Michael
Codish
Lightweight Compilation of (C)LP to JavaScript. Jose F. Morales, Rémy Haemmerlé,
Manuel Carro, and Manuel Hermenegildo
ASP modulo CSP: The clingcon system. Max Ostrowski and Torsten Schaub
Annotation of Logic Programs for Independent AND-Parallelism by Partial Evaluation.

German Vidal
Efficient Tabling of Structured Data with Enhanced Hash-Consing. Neng-Fa Zhou and
Christian Theil Have

We would like to take this opportunity to acknowledge and thank the other ICLP organ-
isers. Without their work and support this event would not have been possible. We would
like to start with the General chair Péter Szeredi (Budapest Univ. of Technology and Eco-
nomics), and all the organizing chairs, namely the Workshop Chair Mats Carlsson (SICS,
Sweden), the Doctoral Consortium Chairs Marco Gavanelli (Univ. of Ferrara) and Stefan
Woltran (Vienna University of Technology), the Prolog Programming Contest Chair Tom
Schrijvers (Universiteit Gent), the Publicity Chair Gergely Lukácsy (Cisco Systems Inc.),
and the Web Manager: János Csorba (Budapest Univ. of Technology and Economics).
Thanks also to Alessandro Dal Palù for allowing us to publish his pictures of Budapest on
the website. We benefited from material and advice kindly given by last year’s program
chairs Michael Gelfond and John Gallagher. Thank you very much!

On behalf of the whole LP community, we would like to thank all authors who have sub-
mitted a paper, the 41 members of the program committee: Elvira Albert (U.C. Madrid),
Sergio Antoy (Portland State Univ.), Marcello Balduccini (Kodak Research Laboratories),
Manuel Carro (Technical University of Madrid (UPM)), Michael Codish (Ben Gurion Univ.),
Veronica Dahl (Simon Fraser Univ.), Marina De Vos (Univ. of Bath), Alessandro Dal Palù
(Universita degli Studi di Parma), Bart Demoen (K.U. Leuven), Thomas Eiter (T.U. Wien),
Esra Erdem (Sabanci University), Thom Frḧwirth (Univ. of Ulm), Andrea Formisano (Univ.
of Perugia), Maria Garcia de la Banda (Monash Univ.), Marco Gavanelli (University of Fer-
rara), Hai-Feng Guo (Univ. of Nebraska, Omaha), Gopal Gupta (Univ. of Texas, Dallas),
Katsumi Inoue (National Inst. of Informatics, Japan), Angelika Kimmig (K.U. Leuven),
Joohyung Lee (Arizona State University), Evelina Lamma (Univ. of Ferrara), Nicola Leone
(University of Calabria), Yuliya Lierler (Univ. of Kentucky), Boon Thau Loo (Univ. of
Pennsylvania), Michael Maher (R.R.I., Sydney), Alessandra Mileo (DERI Galway), Jose
Morales (U.P. Madrid), Enrico Pontelli (New Mexico State Univ.), Gianfranco Rossi (Univ.
of Parma), Beata Sarna-Starosta (Cambian, Vancouver), Torsten Schaub (Univ. of Pots-
dam), Tom Schrijvers (Universiteit Gent), Fernando Silva (Univ. of Porto), Tran Cao Son
(New Mexico State University), Terrance Swift (Univ. Nova de Lisboa), Péter Szeredi (Bu-
dapest Univ. of Technology and Economics), Francesca Toni (Imperial College London),
Mirek Truszczynski (University of Kentucky), Germán Vidal (U.P. of Valencia), Stefan
Woltran (Vienna University of Technology), and Neng-Fa Zhou (CUNY, New York).

A particular thanks goes to the 96 external referees, namely: Alicia Villanueva, Amira
Zaki, Ana Paula Tomás, Andrea Bracciali, Antonis Bikakis, Antonis Kakas, Brian De-
vries, C. R. Ramakrishnan, Chiaki Sakama, Christoph Redl, Christopher Mears, Dale

Agostino Dovier and Vítor Santos Costa xxi

Miller, Daniel De Schreye, Daniela Inclezan, David Brown, Demis Ballis, Dimitar Shte-
rionov, Dragan Ivanovic, Evgenia Ternovska, Fabio Fioravanti, Fabrizio Riguzzi, Fangkai
Yang, Fausto Spoto, Feliks Kluźniak, Francesco Calimeri, Francesco Ricca, Fred Mesnard,
Gianluigi Greco, Giovanni Grasso, Gregory Duck, Gregory Gelfond, Inês Dutra, Jesus M.
Almendros-Jimenez, Joost Vennekens, Juan Manuel Crespo, Julio Mariño, Kyle Marple,
Marco Alberti, Marco Maratea, Mario Alviano, Mário Florido, Marius Schneider, Martin
Gebser, Masakazu Ishihata, Massimiliano Cattafi, Matthias Knorr, Maurice Bruynooghe,
Max Ostrowski, Michael Bartholomew, Michael Hanus, Michael Morak, Minh Dao-Tran,
Mutsunori Banbara, Naoki Nishida, Naoyuki Tamura, Neda Saeedloei, Nicola Capuano,
Nicolas Schwind, Noson Yanofsky, Nysret Musliu, Orkunt Sabuncu, Pablo Chico De Guzmán
Paolo Torroni, Paul Tarau, Peter James Stuckey, Peter Schüller, Philipp Obermeier, Puri
Arenas-Sanchez, Rémy Haemmerlé, Rafael Del Vado Virsela, Ricardo Rocha, Richard Min,
Robert Craven, Roland Kaminski, Samir Genaim, Sandeep Chintabathina, Santiago Esco-
bar, Sara Girotto, Sean Policarpio, Simona Perri, Slim Abdennadher, Sofia Gomes, Stefania
Costantini, Stefano Bistarelli, Thomas Krennwallner, Thomas Ströder, Tomoya Tanjo, Tor-
ben Mogensen, Umut Oztok, Valerio Senni, Victor Marek, Victor Pablos Ceruelo, Wolfgang
Dvořák, Wolfgang Faber, Yana Todorova, and Yunsong Meng.

Throughout this period, we could always rely on ALP. Our gratitude goes to the ALP
president Gopal Gupta, to the Conference chair Manuel (Manolo) Carro, and to all the ALP
Executive committe members. We already thanked the invited speakers and the tutorialist
above, but we would like to stress here our thank to them. A particular thank goes to Marc
Herbstritt from Dagstuhl, for the support in publication of this special issue. Similarly,
David Tranah and Ilkka Niemelä deserve our thanks for their kindness and their precious
support in all TPLP publication stages.

Our thanks also go to the the sponsors of the meeting, namely the Association for Logic
Programming (ALP), the Artificial Intelligence Section of the John von Neumann Computer
Society, the Aquincum Institute of Technology (AIT) of Budapest, Alerant System Inc, and
Google (female researchers grant). VSC would like to acknowledge funding by the ERDF
(European Regional Development Fund) through the COMPETE Programme and by FCT
(Portuguese Foundation for Science and Technology) within projects HORUS (PTDC/EIA-
EIA/100897/2008) and LEAP (PTDC/EIA-CCO/112158/2009). Finally, a well-deserved
thank you goes to Easychair developers and managers. This amazing free software allowed
us to save days of low level activities. Similarly, the joint work of the two co-chairs would
have been extremely more difficult and expensive without the Dropbox and Skype services.

September 2012
Agostino Dovier and Vítor Santos Costa

Program Committee Chairs and Guest Editors

ICLP’12

Simulation Unification: Beyond Querying
Semistructured Data
François Bry1 and Sebastian Schaffert2

1 Institute for Informatics, Ludwig-Maximilians University of Munich, Germany
http://pms.ifi.lmu.de

2 Salzburg Research Forschungsgesellschaft, Austria
http://www.salzburgresearch.at/

Abstract
This article first reminds of simulation unification, a non-standard unification proposed at the
18th International Conference on Logic Programming (ICLP 2002) for making logic programming
capable of querying semistructured data on the Web. This article further argues that, beyond
querying semistructured data on the Web, simulation unification has a potential for Web querying
of multimedia data and semantic metadata and for Web searching of data of all kinds.

1998 ACM Subject Classification D3.3 Language Constructs and Features

Keywords and phrases Simulation Unification, (Semantic) Web Querying

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.1

1 Introduction

This article is devoted to simulation unification, a non-standard unification which has been
introduced in 2002 at the 18th International Conference on Logic Programming (ICLP 2002)
with the article titled “Towards a Declarative Query and Transformation Language for XML
and Semistructured Data: Simulation Unification” [15] and the long version [16] of that
article. Simulation unification has been specified in more detail two years later, in 2004, in
the doctoral thesis “Xcerpt: A Rule-Based Query and Transformation Language for the Web”
[30] of Sebastian Schaffert.

This article recalls simulation unification and argues that it has a so far unexploited
potential for Web querying of multimedia and semantic data as well as for Web searching of
data of all kinds.

This article is structured as follows. After this introduction, Section 2 describes the
context in which and why we developed simulation unification. Section 3 is a brief, and
simplified, reminder of simulation unification. Section 4 is devoted to works related to
simulation unification. Section 5 discusses how simulation unification could be applied to
querying multimedia and semantic data and to searching. Section 6 is a conclusion.

2 What Led to Simulation Unification

At the beginning of the 90es of the 20th century, as the Web became a common medium,
many computer scientists first did not fully realised what impact the Web would have on their
areas of research. This was the case amongst others of the query answering community. At
the end of the 90es, that community hastily investigated Web query languages, what resulted
in XQuery [10], a “recommendation” of the W3C, so as to keep an hold on data access.
This community celebrated XQuery amongst others for its roots in functional programming,

© François Bry and Sebastian Schaffert;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 1–13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.1
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Simulation Unification: Beyond Querying Semistructured Data

and promoted it as a worthy descendant of SQL [20], the query language which had greatly
contributed to the success of relational databases.

We took the enthusiasm for XQuery with a skepticism rooted at a logic programming
practice. We found that XQuery was difficult to program with; we thought it would often
yield inelegant and therefore costly to maintain programms and we guessed that it would
require complicated runtime systems. Since, these intuitions have been amply confirmed and
XQuery is no longer the subject of much enthusiasm.

The study reported about in [28] had hinted at the potential of logic programming for
querying semistructured data. That article shows that restricting XPath [21], the data
selection sub-language of XQuery, to its forwards axes, that is, to so-called Forward XPath,
does not restrict the data selection language’s expressivity. Since a Forward XPath expression
basically amounts to a logic atom, a link between logic programming an Web querying was
established. The afore mentioned article [28] has received some attention because it makes
it possible to restrict formal investigations on XPath to XPath Forward what gives rise to
significant simplifications. Surprisingly, that the restriction to XPath Forward also, and for
the same reasons, gives rise to simpler queries and therefore eases both, programming and
query evaluation, has been rarely noticed.

Pattern-based queries for Web data had been proposed with the Web query languages
UnQL [19] and XML-QL [22] what suggested a full unification binding variables in the two
terms considered instead of a pattern matching binding variables in only in the pattern.

These two observations led us to simulation unification, a technique that makes logic
programming as convenient for querying semistructured data as for querying relational data.

Since, search engines, other tools the importance of which has not been immediately
understood within the query answering community, have considerably reduced the need for
Web query languages. Indeed, data are no longer only queried for but also, and mostly,
search for. In this article, we arge that, beyond querying semistructured data, simulation
unification also has a potential for both, Web querying of multimedia and semantic data and
Web searching of data of all kinds.

3 What is Simulation Unification?

Given two terms t1 and t2 simulation unification [15, 16, 30] determines, if possible, a most
general unifier σ for the variables in t1 and t2 such that every ground instances of t1σ
simulates in a ground instance of t2σ.

Simulation unification is based on an adaption of graph simulation to terms aimed at
representing, selecting (or querying) and constructing XML data. Simulation unification’s
principles are relatively simple. The syntactical richness necessary for an easy expression of
data selections and construction makes it, however, complicated.

In the remainder of the current section 3, rooted graph simulation is introduced in Section
3.1, database terms, query terms and construct terms in Section 3.2, term simulation and
answers to query terms in Section 3.3 and simulation unification in Section 3.4.

3.1 Rooted Graph Simulation
Simulation, also called graph simulation, has been studied in [26, 27]. A term t1 (seen as a
graph G1) simulates in a term t2 (seen as a graph G2) if there is a mapping of the nodes
of G1 (that is of the subterms of t1) in the nodes of G2 (that is, the subterms of t2) which
preserves the edges (that is, subterm nesting). Simulation is similar to, though more general

F. Bry and S. Schaffert 3

Figure 1 Two simulations (with respect to node label equality) [15].

than, graph homomorphism because it allows two nodes of the one graph being mapped to a
single node of the other graph and vice versa.

In general, there might be more than one simulation between two graphs. Therefore,
so-called minimal simulations are considered.

Figure 1 from [15] gives two examples of simulations. In each of these two examples a
node of the left graph is mapped into a node of the right graph if their labels are identical.
Such simulations are simulations with respect to label identity. More generally, a simulation
can be defined with respect to any preorder relation (amongst other order and equivalence
relations). In Section 5, we argue that considering other relations than label equality makes
simulation unification convenient for querying multimedia and semantic data on the Web as
well as for searching for data of all kinds on the Web.

The following definition from [30] which refines that of [15] is inspired from [26, 27]. A
(directed) rooted graph G = (V,E, r) consists in a set V of vertices (or nodes), a set E of
edges (that is, ordered pairs of vertices), and a selected vertex r, called the root of G, from
which each vertex of G is accessible.

I Definition 1 (Rooted graph simulation with respect to a preorder relation ∼ [30]). Let
G1 = (V1, E1, r1) and G2 = (V2, E2, r2) be rooted graphs and ∼ ⊆ V1×V2 a preorder relation.
A relation S ⊆ V1 × V2 is a rooted simulation of G1 in G2 with respect to ∼ if:
1. r1 S r2.
2. If v1 S v2, then v1 ∼ v2.
3. If v1 S v2 and (v1, v

′
1, i) ∈ E1, then there exists v′2 ∈ V2 such that v′1 S v′2 and (v2, v

′
2, j) ∈

E2

A rooted simulation S of G1 in G2 with respect to ∼ is minimal if there are no rooted
simulations S ′ of G1 in G2 with respect to ∼ such that S ′ ⊂ S (and S 6= S′).

Graph simulation conveys well how the Web is queried. Web queries are mostly incomplete
specifications of data striven for that are convenientely answered by data items containing
more than the query specifies and allowing that distinct parts of the query are answered by
the same data. The relevance of graph simulation for Web querying has been first pointed
out in [19, 22].

3.2 Database Terms, Query Terms and Construct Terms

3.2.1 Database terms

Database terms are an abstraction of XML documents and a generalisation of the ground
terms of logic. Database terms are similar to logic ground terms except that the arity of a
function symbol, called “label”, is not fixed but variable, and that the order of the arguments
of a function symbol might not be compelling.

ICLP’12

4 Simulation Unification: Beyond Querying Semistructured Data

A database term whith a root labelled l and ordered children t1, . . . , tn is denoted
l[t1, . . . , tn]. A databasse term with a root labelled l and unordered children t1, . . . , tn is
denoted l{t1, . . . , tn}.

Cyles, possible in XML documents though hypertext links and ID-IDREF references, are
allowed in database terms but not considered in the following for the sake of briefness. A
database terms without cycles can be seen as a tree, a database term with cycles as a rooted
graph.

3.2.2 Query terms
Query terms are patterns specifying selections of ground terms terms. They are similar to
logic atoms except that they can express incompleteness in breath and depth and that a
variable X in a query term can be restricted.

In a query term,
the brackets [] and { } require answers with no more ordered respectively unordered
subterms than the query term;
double brackets [[]] and {{ }} accept answers having more ordered respectively unordered
subterms than the query term;
a variable X can be constrained to some query terms Q using X ; Q, where ; is read
“as";
X ; desc t, read “X descendant t”, is used to express that X is bound to a term
containing a subterm t at an unspecified depth.

Multiple constraints for a a same variable are allowed. Figure 2 hints at the semantics of
query terms formally specified in [17, 18, 30].

Constraining variables (with ;) might results in cyclic constraints that cannot be
answered by database terms because database terms are finite. A variable X is said to
depend on a variable Y in a query term t if X ; t1 is a subterm of t and Y is a subterm of
t1. A query term t is said to be variable well-formed if it contains no variables X0, . . . , Xn

(n ≥ 1) such that X0 = Xn and for all i = 1, . . . n Xi depends on Xi−1 in t. Only variable
well-formed query terms are considered in the following.

A query term is ground if it contains no variables (and therefore no ; and no desc).
Further constructs such as “option” and “except” might occur in query terms so as to

ease the expression of some queries [30, 11, 31]. They are not considered in the following for
the sake of briefness.

3.2.3 Construct terms
Construct terms serve to re-assemble the values which are specified in query terms by
variables, so as to form new database terms. Thus,[], { } and variables may occur in
construct terms but neither [[]], nor {{ }}, nor ;. In a construct term, a variable might be
preceded by “all” meaning that all values, or bindings, for this variables are to be gathered.

Rules combine construct terms and query terms in the manner of logic programming:
A rule head is a construct term; a rule body is build up from query terms, conjunctions,
disjunctions, and negations.

Like in [15], simulation unification is defined below under the simplifying assumption
that {} and {{}} are the only kinds of braces. The complete definition is given in [30].

F. Bry and S. Schaffert 5

Query terms Possible answers No answers

a[[b, c{d, e}, f]] a[b, c{d, e, g}, f] a{b, c{d, e}, f, g}
a[b, c{d, e, g}, f{g, h}] a[b, c{d, e}, f, g]
a[b, c{d, e{g, h}, g}, f{g, h}] a{b, c{d, e}, f}
a[b, c[d, e], f]

a[desc f [c, d], b] a[f [c, d], b] a[b]
a[g[f [c, d]], b] a[g, b[f [c, d]]]
a[g[f [c, d], h], b]
a[g[g[f [c, d]]], b]
a[g[g[f [c, d], h], i], b]

a[X ; b[c, d], Y, e] a[b[c, d], f, e] a[c, f, e]
X bound to b[c, d] a[b[c], f, e]
Y bound to f a[h[b, c], f, e]

a[b[c, d], f [g, h], e]
X bound to b[c, d]
Y bound to f [g, h]

a{X ; b{c}, X ; b{d}} a{b{c, d}} a{b{c}}
X bound to b{c, d} a[b[c], f, e]

a[X ; b{c}, X ; f{d}] none a[b{c}]
a[f{d}]
a[b{c}, f{d}]

a{{}} a a{b}
a{b, c}
a[b]
a[b, c]

Figure 2 Query terms.

3.3 Term Simulation and Answers

Substitutions and grounding substitutions are defined as usual except that they assign
construct terms, but no query terms, to variables. Instances and ground instances of query
and construct terms are defined as usual except that an instance of X ; t is defined as
an instance of X (that is, ignoring ; t). ; and desc induce constraints on variables and
subterms of a query term. Instances of a query that fulfill these constraints are called allowed
instances. Only allowed instances are considered in the following.

Simulation of a graph G1 into a graph G2 is adapted into the simulation of a ground query
term Q into a ground construct term t by paying the necessary attention to the brackets
{} and {{}}. Ground term simulation is then extended to query and construct terms with
variables as follows: A query term Q simulates into a construct term t, denote Q � t, if
there exists a substitution σ such that every ground instance of Qσ simulates into a ground
instance of tσ.

An answer to a query term Q is a database term t such that an allowed instance of
Q simulates in t. As usual, substitution (so-called answer substitutions) are associated
with term answers. Because of the construct desc serving to express subterm constraints
and in contrast to classical logic programming, answers cannot be fully defined by answer
substitutions.

ICLP’12

6 Simulation Unification: Beyond Querying Semistructured Data

3.4 Simulation Unification
Simulation unification is a non-deterministic algorithm for solving equations of the form
Q � t, read Q simulates in t, on query terms Q and construct terms t. It is based on
the following term decomposition rules – see [15, 16, 30] for a detailed description of the
non-deterministic algorithm. The outcome of simulation unification, if it succeeds, is a finite
set of substitutions called simulation unifier.

I Definition 2 (Term Decomposition Rules). Let l (with or without indices) denote a label.
Let t1 and t2 (with or without indices) denote query terms.

Root Elimination:
(1) l � l{t21, . . . , t2m} ⇔ true if m ≥ 1

l � l{{}} ⇔ true

(2) l{t11, . . . , t1n} � l⇔ false if n ≥ 1
l{t11, . . . , t1n} � l{{}} ⇔ false if n ≥ 1

(3) Let Π be the set of (total) functions {t11, . . . , t1n} → {t21, . . . , t2m}:
l{t11, . . . , t1n} � l{t21, . . . , t2m} ⇔

∨
π∈Π

∧
1≤i≤n t

1
i � π(t1i)

if n ≥ 1 and m ≥ 1

(4) l1{t11, . . . , t1n} � l2{t21, . . . , t2m} ⇔ false if l1 6= l2 and n ≥ 0 and m ≥ 0

; Elimination:
X ; t1 � t2 ⇔ t1 � t2 ∧ t1 � X ∧ X � t2

Descendant Elimination:
desc t1 � l2{t21, . . . , t2m} ⇔ t1 � l2{t21, . . . , t2m} ∨

∨
1≤i≤m desc t1 � t2i

if m ≥ 0

Simulation unification is sound and complete for the notion of answer recalled above
[15, 16, 30] . Like standard unification, simulation unification is symmetric since it can bind
variables in the two terms considered. Unlike standard unification, however, it is asymmetric
in the sense that it does not make the two terms considered equal, but instead makes the
one simulate into the other what in general is no symmetrical relationship.

4 Work Related to Simulation Unification

How simulation unification relates to classical involved forms of unifications is addressed in
[15] as follows:

Several unification methods have been proposed that, like simulation unification,
process flexible terms or structures, notably feature unification [1, 34] and associative-
commutative-unification, short AC-unification, [23]. Simulation unification differs
from feature unification in several aspects (discussed in [16]). Simulation unification
might remind of theory unification [2]. The significant difference between both is that
simulation unification is based upon an order relation, while theory unification refers
to a congruence relation.

Simulation unification offers a decidable alternative to equational unification [2]. We
argue in the following Section 5 that novel forms of simulation unification based on verious

F. Bry and S. Schaffert 7

embedding or similarity relationships would be useful in querying multimedia and semantic
data as well as in searching data of all kinds.

Simulation unification has been developed for the textual query language and its visual
companion visXcerpt. Between 2002 and 2006, research prototypes of Xcerpt and visXcerpt
have been presented at database, Web, Semantic Web, logic programming and visual
programming conferences [14, 6, 7, 31, 3, 13, 4, 5].

A subsumption referring to simulation unification, called simulation subsumption, and its
use for query optimization have been introduced in [12]. Simulation subsumption expreses
query containement for queries based on simulation unification. Simulation subsumption
is useful for the query optimization, in particular for verifying the termination of recursive
queries.

5 Beyond Querying Semistructured Data

Since the publication of our original article in 2002, the Web has undergone several major
developments. First, the Semantic Web effort with its underlying technologies RDF and OWL
has gained much momentum with the emergence of “Linked Data” as a means to publish
semi-structured data using a uniform model for data representation and interlinking between
datasets. Second, while the Web of 2002 was still mainly a static, text-based Web, the Web
of 2012 is interactive and mostly consists of multimedia content. And third, with the success
of Social Software, the amount of content and data on the Web has grown tremendously,
making effective and efficient Web search more and more important. In the following, we will
briefly describe how our ideas concerning simulation unification are more important than
ever for addressing typical problems in these areas.

5.1 Generalising Simulation Unification
Simulation unification gives rise to queries retrieving structural sub-patterns within XML
data. This can be generalized to other kind of data in two complementary ways:

The first generalisation would build upon an “embedding” relationship on the data
considered which, like simulation unification, would not be symmetric.
The second generalisation would build upon a “similarity” relationship on the data
considered which, in contrast to simulation unification, would be symmetric.

In the following sections, we describe how these two generalisations could help addressing
open problems in several other areas.

5.2 RDF, RDFS and OWL
The Resource Description Framework, or “RDF“ [37], is the primary model for publishing
data on the Semantic Web. At its core, it defines a graph model where vertices represent
Web resources (identified by URIs) or literal values and edges (so-called “triples”) represent
typed relations between Web resources. RDF also defines a number of different serialization
formats for this graph data, e.g. RDF/XML, Turtle, or N-Triples. Schema information about
an RDF graph can be defined using the schema languages RDFS [36] or OWL [35]. Both are
capable of representing ontological knowledge about the schema in addition to specifying
possible relations and are based on some form of logics.

Querying RDF Data. An important aspect of RDF is querying the graph data
contained in a dataset. Typical RDF queries for example express RDF subgraphs to be
found in the data queried. Given the graph model underlying RDF, pattern-based querying

ICLP’12

8 Simulation Unification: Beyond Querying Semistructured Data

of RDF is natural. In fact, the most widely used RDF query language SPARQL [39] uses
so-called “triple patterns” specifying edges to look for in the dataset. Variables in triple
patterns are bound to values when matching a pattern in the same style as in other logic
programming languages.

While SPARQL is already a well designed and widely established query language, it
is currently only defined in terms of a query algebra similar to the relational algebra and
is not offering a declarative calculus. A query approach based on (unrooted) simulation
unification could provide such a calculus for SPARQL in a style similar to the relational
calculus behind SQL and Datalog. It would thus allow for a more declarative semantics and
advanced reasoning services over RDF by opening up RDF querying to logic programming
approaches. Note that this would also give rise to expressing RDFS and OWL ontology
semantics in terms of logic programming rules. Querying RDF data corresponds to the
“embedding relationship” of simulation unification described above.

Matching RDF Datasets. On the Semantic Web with many independent data publish-
ers a common challenge is so-called “schema alignment” or “data alignment”. In schema (or
data) alignment, the goal is to create mappings between two different schemas (or datasets)
to allow better interoperability and exchange of the data. A common way of doing schema
alignment is to map concepts from the two schemas that are “similar” regarding different
criteria.

For example, both schemas might define their own “Student” concept but with slightly
different properties:

Schema 1 defines a Student with full name, email and inscription number
Schema 2 defines a Student with first name and last name, as well as email

Schema alignment could map between the Students of Schema 1 and 2 based on the name of
the concept, the shared property email, and the similarity between first name/last name on
the one hand and full name on the other hand.

A lot of research has been undertaken to investigate automatic means to carry out schema
alignment. Nevertheless, many problems in this area today remain unsolved [33]. When
representing the different attributes of a concept in terms of a graph structure, simulation
unification in the second generalisation (“similarity relationship”) could offer a new option
for identifying similar concepts by trying to find a maximal simulation between the graphs
representing two concepts.

5.3 Linked Data
Linked Data [8, 25] is a recent development within the Semantic Web effort to publish
datasets of various sizes on the Web for anyone to use and combine, using the technologies
developed in the Semantic Web context (mainly URIs and RDF). In his initial announcement,
Tim Berners-Lee described four “Linked Data Principles” [8]:
1. Use URIs as names for things
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the standards (RDF,

SPARQL)
4. Include links to other URIs. so that they can discover more things.
Since then, numerous datasets have been made available under these principles. As of
September 2011, the known part of the “Web of Data” consists of about 300 datasets from
various domains with more than 30 billion triples. Moreover, these datasets are connected
with each other with about 500 million RDF links [9].

F. Bry and S. Schaffert 9

Conceptually, the Linked Data Cloud (or “Web of Data”) can be seen as an RDF graph
structure over distributed information systems. Since no dataset has information about the
full graph, non-local parts can only be discovered by following RDF links that span across
different servers.

Even though resources on Linked Data servers are typically interlinked and thus conceptu-
ally integrate data from many different sources, querying such data is still very cumbersome.
The main reason is that existing query languages for RDF like SPARQL are rather dataset-
centric and do not easily query over distributed or even unknown sources. There are currently
four approaches to address this issue:

a central index harvests the Web for RDF data and stores it in a central repository and
offers it for querying, e.g. using SPARQL. This approach is followed e.g. by Sindice,1
which offers a public SPARQL endpoint.
a query is distributed over several query endpoints and the results are then combined.
This approach is proposed in the SPARQL 1.1 Federation Extension [38].
accepting the incompleteness of the results returned by the query and trying to improve
the recall by different heuristics, as proposed e.g. by Hartig et.al. [24]

The first two approaches have obvious disadvantages: a central repository is not always
recent and a single point of failure, while explicit federated queries are cumbersome to write
and need exact information on how and where to access the SPARQL endpoint. They also
require that all queried servers implement the SPARQL 1.1 Federation Extensions. The
third approach is in our opinion not very user friendly, since the user cannot easily determine
whether the results he will get are complete or not and important enterprise decisions might
depend on that information.

In [32], we therefore proposed a path-based approach that is more suitable for querying
Linked Data. However, a path language only allows binding one variable at a time (the “end”
of the path) and is therefore rather limited in its expressivity and performance. Rooted
simulation unification as described previously for XML could give rise to a novel kind of
query language for Linked Data that does not share the problems of SPARQL and goes
beyond the expressivity of simple path navigations. A query pattern could use a context
resource from a local dataset as query root, follow links to other remote datasets and then
bind multiple variables at the same time, reducing the number of network requests and
providing a convenient way for formulating a query.

As an example, consider users publishing their basic profile information using the FOAF
(friend-of-a-friend) vocabulary. Each user publishes on his website an RDF file with his
name and email address, as well as links (foaf:knows) to the FOAF files of his friends.
A query based on simulation unification could then select the first name, last name and
email addresses of each friend in a single query by starting at the local FOAF file, following
foaf:knows, and binding the three variables at the same time. Such a query is currently
neither possible using SPARQL nor using a path-based approach.

5.4 Multimedia
An embedding realtionship can be specified for multimedia data expressing that, for example,
a given visual pattern can be found in a picture or in a video. Such a relationship can be
defined in terms of either geometrical image recognition algorithms, of features extracted
from the multimedia content, or of symbolic metadata associated with picture. Rather

1 http://sindice.com/

ICLP’12

http://sindice.com/

10 Simulation Unification: Beyond Querying Semistructured Data

different embedding relationships can be thought of that would fullfil the needs of different
applications. For example:

Existing metadata could be queried. In the scenario described in [32], we are working with
cliff-diving videos provided by Red Bull that are accompanied with precise descriptions
of the scene, transcripts of interviews, as well as music cue sheets and general metadata
about a video (persons, locations, editor, description). A query based on Simulation
Unification could query for all videos with a certain person at a certain location.

Multimedia information extraction could automatically extract faces of persons (e.g. using
an Eigenfaces algorithm) as well as prominent structures (e.g. edges with sharp contrast)
from a large collection of images and videos and store them as features. Simulation
Unification could be used to provide a query with some sample features (the face of a
person and a tower in the background) and the be evaluated over the image collection to
retrieve matching images.

Similarity relationships are often used in retrieving multimedia data. Indeed, multimedia
applications require to retrieve images similar to some given images. Image similarity can be
specified in many different manners, with and without simliarity threshold to be fulfiled by
the selected data.

5.5 Web Search and Enterprise Search

With the tremendous increase in content, Web Search and Enterprise Search are nowadays
the most important way of finding and accessing information. The most important difference
between Web Search and Enterprise Search is that Web Search can make use of the hyperlinks
between documents (e.g. in Google’s PageRank [29]) and the novelty of documents, while
enterprise content is typically not connected and novelty is not necessarily a good measure
for relevance.

Web Search and Enterprise Search could benefit from generalisations of simulation based
on emebedding or similarity relationships in the following typical search tasks:

Search: Both Web and Enteprise Search build in its core build upon the occurring of
a words, or phrase, or of an ordered list of words or phrases in documents. Such a
relationship could be replaced by embedding or similarity relationships for multimedia or
semantic data of the afore mentioned kind. This would result in multimedia and semantic
search engines at the the cost of indexing a well-chosen selection of patterns. For example,
this would allow searches like “the fantasy book with the blue cover”.

Grouping: Search results often contain many similar documents, e.g. different versions of
the same document in an enterprise setting. When displaying the search results, such
documents should be grouped and displayed together. Detecting such groups can be a
very hard task. A simulation unification for similarity relationships could be used for
clustering similar documents based on various document properties.

Ranking: Ranking of search results in the result list is the real art of search engines.
For example, Google considers over 300 features in their ranking algorithm to determine
the relevance of documents with respect to the search query and the user context (e.g.
location, previous searches, social networking profile). When so many aspects are taken
into account, simulation unification could provide a conceptual framework for calculating
the similarity between search results and the query and user context.

F. Bry and S. Schaffert 11

6 Conclusion

Thias article has first recalled what led its authors to develop simulation unification for
querying semistructured data on the Web. Simulation unification has been presenteed in
2002 at the 18th International Conference on Logic Programming (ICLP 2002) [15], in the
long version [16] of that article, and in more detail in the doctoral thesis [30].

This article then has given a brief reminder of simulation unification as presented in the
afore mentioned ICLP 2002 article.

Finally, this article has suggested novel directions for Web and Semantic Web research
building upon the idea of simulation unification and generalising it in various manners.

Generalising simulation unification as suggested in this article would anchor logic pro-
gramming in promising fields of research of considerable practical importance: Querying and
Web search for multimedia and semantic data.

Acknowledgements

The authors are thanksful to the program comittee of the 28th International Conference on
Logic Programming (ICLP 2012) and to its chairs, Agostino Dovier and Vitor Vitor Santos
Costa, for having selected their article [15] amongst the mot influencial logic programming
publications of the last decade and for their invitation to present the content of the present
article at ICLP 2012.

References
1 Hassan Aït-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order-Sorted Theory Uni-

fication. Technical report, digital – Paris Research Laboratory, 1993.
2 Franz Baader and Wayne Snyder. Unification theory. In Alan Robinson and Andrei

Voronkov, editors, Handbook of Automated Reasoning. Elsevier Science Publishers, 1999.
3 Sacha Berger, François Bry, Oliver Bolzer, Tim Furche, Sebastian Schaffert, and Christoph

Wieser. Xcerpt and visXcerpt: Twin Query Languages for the Semantic Web (Demon-
stration). In Proceedings of 3rd International Semantic Web Conference (ISWC), 2004.
http://pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2004-23.pdf.

4 Sacha Berger, François Bry, Oliver Bolzer, Tim Furche, Sebastian Schaffert, and Christoph
Wieser. Querying the standard and Semantic Web using Xcerpt and visXcerpt (Demon-
stration). In Proceedings of the 2nd European Semantic Web Conference (ESWC), 2005.

5 Sacha Berger, François Bry, Tim Furche, Benedikt Linse, and Andreas Schröder.
Beyond XML and RDF: The Versatile Web Query Language Xcerpt (Poster Pa-
per). In Proceedings of 15th International World Wide Web Conference (WWW),
pages 1053–1054, 2006. http://pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2006-
21/PMS-FB-2006-21.pdf.

6 Sacha Berger, François Bry, and Sebastian Schaffert. A Visual Language for Web
Querying and Reasoning. In Proceedings of Workshop on Principles and Prac-
tice of Semantic Web Reasoning (PPSWR), number 2901 in LNCS. Springer, 2003.
http://pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2003-6.pdf.

7 Sacha Berger, François Bry, Sebastian Schaffert, and Christoph Wieser. Xcerpt and visX-
cerpt: From Pattern-Based to Visual Querying of XML and Semistructured Data (Demon-
stration). In Proceedings of 29th Intl. Conference on Very Large Data Bases (VLDB).
http://pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2003-2.pdf.

8 Tim Berners-Lee. Linked Data, 2006.

ICLP’12

12 Simulation Unification: Beyond Querying Semistructured Data

9 Chris Bizer, Anja Jentzsch, and Richard Cyganiak. State of the lod cloud. Tech-
nical report, Freie Universität Berlin / DERI, NUI Galway, http://www4.wiwiss.fu-
berlin.de/lodcloud/state/, September 2011.

10 Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Robie, and
Jérôme Siméon. XQuery 1.0: An XML Query Language (Second Edition). W3C Recom-
mendation, December 2010. http://http://www.w3.org/TR/xquery/.

11 Oliver Bolzer, François Bry, Tim Furche, Sebastian Kraus, and Sebastian Schaffert. De-
velopment of Use Cases, Part I – Illustrating the Functionality of a Versatile Web Query
Language. Technical report, Institute for Informatics, Ludwig-Maximilian University of
Munich, 2004. http:/pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2005-23.pdf.

12 François Bry, Tim Furch, and Benedikt Linse. Simulation Subsumption or Déjà vu on
the Web. In Diego Calvanese and Georg Lausen, editors, Proceedings of the 2nd Interna-
tional Conference on Web Reasoning and Rule Systems (RR), number 5341 in LNCS, pages
28–42. Springer, 2008. http://pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2008-
8/PMS-FB-2008-8-paper.pdf.

13 François Bry, Paula-Lavinia Pătrânjan, and Sebastian Schaffert. Poster Present-
ation: Xcerpt and XChange: Logic Programming Languages for Querying
and Evolution on the Web. In Proceedings of the 20th International Con-
ference on Logic Programming (ICLP), number 3132 in LNCS. Springer, 2004.
http://pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2004-11.pdf.

14 François Bry and Sebastian Schaffert. A Gentle Introduction into Xcerpt, a Rule-based
Query and Transformation Language for XML. In Proceedings of International Work-
shop on Rule Markup Languages for Business Rules on the Semantic Web (RuleML), 2002.
http:/pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2002-11.pdf.

15 François Bry and Sebastian Schaffert. Towards a Declarative Query and Transforma-
tion Language for XML and Semistructured Data: Simulation Unification. In Peter J.
Stuckey, editor, Proceedings of the 18th International Conference on Logic Programming
(ICLP), number 2401 in LNCS, pages 255–270. Springer, 2002. Short version of [16],
http://pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2002-2_short.pdf.

16 François Bry and Sebastian Schaffert. Towards a Declarative Query and
Transformation Language for XML and Semistructured Data: Simula-
tion Unification. Research Report PMS-FB-2002-2, Institute for Informat-
ics, Ludwig-Maximilian University of Munich, 2002. Long version of [15],
http:/pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2002-2.pdf.

17 François Bry and Sebastian Schaffert. An Entailment Relation for Reasoning on the Web. In
Proceedings of Rules and Rule Markup Languages for the Semantic Web (RuleML). Springer,
2003. http://pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2003-5.pdf.

18 François Bry, Sebastian Schaffert, and Andreas Schröder. A contribution to
the Semantics of Xcerpt, a Web Query and Transformation Language. In Ap-
plications of Declarative Programming and Knowledge Management – Proceedings
of 15th International Conference on Applications of Declarative Programming and
Knowledge Management and 18th Workshop on Logic Programming (INAP/WLP).
http:/pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2004-5.pdf.

19 Peter Buneman, Mary Fernandez, and Dan Suciu. UnQL: A Query Language and Algebra
for Semistructured Data Based on Structural Recursion. VLDB Journal, 9(1):76–110, 2000.

20 Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A Structured English Query
Language. In Proceedings of the SIGMOD Workshop (SIGMOD), volume 1. ACM.

21 James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0. W3C Recom-
mendation, November 1999. http://www.w3.org/TR/xpath/.

F. Bry and S. Schaffert 13

22 Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan Suciu. XML-QL: A
Query Language for XML. W§C Submission, 1998.

23 François Fages. Associative-commutative Unification. In R. E. Shostak, editor, Proceedings
of the Seventh International Conference on Automated Deduction (Napa, CA), volume 170,
pages 194–208, Berlin, 1984. Springer-Verlag.

24 Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing SPARQL Quer-
ies over the Web of Linked Data. In Proc. 8th International Semantic Web Conference
(ESWC20099), Washington DC, USA, 2009.

25 Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web: Theory and Technology, 1:1. Morgan & Claypool,
1st edition, 2011.

26 Monika R. Henzinger, Thomas A. Henzinger, and Peter W. Kopke. Computing Simulations
on Finite and Infinite Graphs. Technical report, Computer Science Department, Cornell
University, July 1996.

27 Robin Milner. An Algebraic Definition of Simulation between Program. Technical Re-
port CS-205, Computer Science Department, Stanford University, 1971. Stanford Aritifical
Intelligence Project, Memo AIM-142.

28 Dan Olteanu, Holger Meuss, Tim Furche, and François Bry. Xpath: Looking for-
ward. In XML-Based Data Management and Multimedia Engineering – Proceedings
of the EDBT EDBT 2002 Workshops XMLDM, MDDE, and YRWS, Revised Papers,
volume 2490 of Lecture Notes in Computer Science, pages 109–127. Springer, 2002.
http://pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2002-4.pdf.

29 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, November
1999. Previous number = SIDL-WP-1999-0120.

30 Sebastian Schaffert. Xcerpt: A Rule-Based Query and Transforma-
tion Language for the Web. Doctoral dissertation, Institute for In-
formatics, Ludwig-Maximilian University of Munich, October 2004.
http://pms.ifi.lmu.de/publikationen/dissertationen/PMS-DISS-2004-1/
Schaffert_Sebastian.pdf.

31 Sebastian Schaffert and François Bry. Querying the Web Reconsidered: A Practical
Introduction to Xcerpt. In Proceedings of Extreme Markup Languages 2004, 2004.
http:/pms.ifi.lmu.de/publikationen/PMS-FB/PMS-FB-2004-7.pdf.

32 Sebastian Schaffert, Thomas Kurz, Dietmar Glachs, Christoph Bauer, Fabian Dorschel, and
Manuel Fernandez. The linked media framework: Integrating and interlinking enterprise
media content and data. In Proceedings of I-Semantics 2012, 2012.

33 Pavel Shvaiko and Jérôme Euzenat. Ontology matching: state of the art and future chal-
lenges. In IEEE Transactions on knowledge and data engineering, 2012.

34 Gert Smolka. Feature Constraint Logics for Unification Grammars. Journal of Logic
Programming, 12:51–87, 1992.

35 W3 Consortium. OWL Web Ontology Language, February 2004. W3C Recommendation,
http://www.w3.org/TR/owl-ref/.

36 W3 Consortium. RDF Vocabulary Description Language 1.0: RDF Schema, February 2004.
W3C Recommendation, http://www.w3.org/TR/rdf-schema/.

37 W3 Consortium. Resource Description Framework, February 2004. W3C Recommendation,
http://www.w3.org/TR/rdf-primer/.

38 W3 Consortium. SPARQL 1.1 Federation Extensions (W3C Working Draft), June 2010.
http://www.w3.org/TR/sparql11-federated-query/.

39 W3 Consortium. SPARQL 1.1 Query (W3C Working Draft), May 2011. http://www.w3.
org/TR/sparql11-query/.

ICLP’12

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

Modeling Machine Learning and Data Mining
Problems with FO(·)∗

Hendrik Blockeel, Bart Bogaerts, Maurice Bruynooghe,
Broes De Cat, Stef De Pooter, Marc Denecker, Anthony Labarre,
Jan Ramon,1 and Sicco Verwer2

1 Department of Computer Science, KU Leuven
firstname.secondname@cs.kuleuven.be

2 Radboud Universiteit Nijmegen, Institute for Computing and Information
Sciences
siccoverwer@gmail.com

Abstract
This paper reports on the use of the FO(·) language and the IDP framework for modeling and
solving some machine learning and data mining tasks. The core component of a model in the
IDP framework is an FO(·) theory consisting of formulas in first order logic and definitions; the
latter are basically logic programs where clause bodies can have arbitrary first order formulas.
Hence, it is a small step for a well-versed computer scientist to start modeling. We describe
some models resulting from the collaboration between IDP experts and domain experts solving
machine learning and data mining tasks. A first task is in the domain of stemmatology, a domain
of philology concerned with the relationship between surviving variant versions of text. A second
task is about a somewhat similar problem within biology where phylogenetic trees are used to
represent the evolution of species. A third and final task is about learning a minimal automaton
consistent with a given set of strings. For each task, we introduce the problem, present the IDP
code and report on some experiments.

1998 ACM Subject Classification D.1.6 [Logic Programming], F.4.1 [Mathematical Logic]: Com-
putational logic, I.2.4 [Knowledge Representation Formalisms and Methods]

Keywords and phrases Knowledge representation and reasoning, declarative modeling, logic
programming, knowledge base systems, FO(·), IDP framework, stemmatology, phylogenetic tree,
deterministic finite state automaton.

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.14

1 Introduction

Researchers in machine learning and data mining are often confronted with problems for
which no standard algorithms are applicable. Here we explore a few of these problems. They
can be abstracted as graph problems and are NP-complete. This means that algorithms
inherently involve search and that heuristics are needed to guide the search towards solutions.
Doing this in a procedural language is complex and cumbersome; this is the kind of application
for which high level modeling languages can be very useful. Under such a paradigm, a model
specifies the format of the data, the function to be optimized and a set of constraints to be
satisfied. The model together with a given problem instance is handed over to a solver which

∗ This work was supported by BOF project GOA/08/008 and by FWO Vlaanderen.

© Hendrik Blockeel, Bart Bogaerts, Maurice Bruynooghe, Broes De Cat, Stef De Pooter,
Marc Denecker, Anthony Labarre, Jan Ramon, and Sicco Verwer;

licensed under Creative Commons License ND
Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 14–25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.14
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

H. Blockeel et. al. 15

produces a solution. Several modeling languages exist in the field of Constraint Programming;
the Zinc language [16] is a good example. The Answer Set Programming (ASP) paradigm
can also be considered a modeling language; many solvers exist, examples are the systems
described in [15, 9, 21]. Another such modeling language is FO(·) [6]. Problem solving with
such modeling languages makes use of powerful solvers that perform propagation to squeeze
the search space each time a choice is made. They relieve the programmer from encoding
such propagation in procedural code. By default, these solvers use heuristics which are not
problem-specific, but even so they often outperform procedural solutions.

This paper explores the use of the FO(·) language and its incarnation in the IDP framework
for solving some machine learning and data mining problems. The core component of a
model in the IDP framework is an FO(·) theory consisting of formulas in first order logic
and definitions; the latter are basically logic programming clauses with arbitrary first order
formulas in the body. The necessary background on FO(·) is given in Section 2.

Section 3 solves a task in the domain of a stemmatology, a part of philology that studies
the relationship between surviving variant versions of a text. Section 4 discusses a problem
about phylogenetic trees as used in biology. Whereas the first two tasks are new, in Section 5,
it is investigated how well FO(·) performs on a standard machine learning task, namely the
learning of a minimal deterministic finite state automaton (DFA) that is consistent with a
given set of accepted and rejected strings.

In all of these problems, model expansion [17] —expanding a partially given structure into
a complete structure that is a model of a theory— is the core computational task. Sometimes,
a model that is minimal according to some criterion is required.

2 FO(·) and the IDP framework

2.1 FO(·)

The term FO(·) is used to denote a family of extensions of first order logic (FO). In this text,
the focus lies on FO(·)IDP, the instances supported by the IDP framework. FO(·)IDP extends
FO with (among others) types, arithmetic, aggregates, partial functions and inductive defini-
tions. This section recalls the aspects of FO(·) that are necessary for a good understanding
of the rest of the paper; more information can be found in [23] and [3].

A specification in FO(·)IDP consists of a number of logical components, namely vocabularies,
structures, terms, and theories. A vocabulary declares the symbols to be used (contrary
to Prolog, the first character of a symbol has no bearing on its kind); a structure is a
database with input knowledge; a term declared as a separate component represents a value
to be optimized; a theory consists of FO formulas and inductive definitions. An inductive
definition is a set of rules of the form ∀x̄ : P (x̄) ← ϕ(x̄). where ϕ is an FO(·)IDP formula.
As argued in [6], the intended meaning of all common forms of definitions is captured by
the well-founded semantics [22] which extends the least model semantics of Prolog’s definite
clauses to rule sets with negation. An FO(·)IDP formula differs from FO formulas in several
ways. Firstly, FO(·)IDP is a many-sorted logic: every variable has an associated type and
every type an associated domain. Moreover, it is order-sorted: types can be subtypes of
others. Secondly, besides the standard terms of FO, FO(·)IDP also has aggregate terms:
functions over a set of domain elements and associated numeric values which map to the
sum, product, cardinality, maximum or minimum value of the set.

We writeM |= T to denote that structureM satisfies theory T . With xM, we denote
the interpretation of x underM, where x can be a formula or a term.

ICLP’12

16 Modeling Machine Learning and Data Mining Problems with FO(·)

2.2 The IDP framework
The IDP framework [5] combines a declarative specification, in FO(·)IDP, with imperative
manipulation of the specification via the Lua [13] scripting language. Such an interaction
makes it a Knowledge Base System (KBS), as it allows one to reuse the same declarative
knowledge for a range of inference tasks such as model expansion, optimization, verification,
symmetry breaking, grounding, etc. For an in-depth treatment of the framework and the
supported inferences, we refer to [3].

In this paper, we focus on the inference tasks model expansion and model minimization.
The task of model expansion is, given a vocabulary V , a theory T over V and a partial
structure S over V (at least interpreting all types), to find an interpretationM that satisfies
T and expands S, i.e.,M is a model of the theory and the input structure S is a subset of
the model. Such a task is represented as 〈V, T, S〉.

The task of model minimization, represented as 〈V, T, S, t〉 with V , T and S as above
and t a term, is to find a modelM of T that expands S such that for all other modelsM’
expanding S, tM ≤ tM

′ .
The IDP framework allows users to specify FO(·)IDP problem descriptions. Such a problem

description consists of logical and procedural components. The basic overall structure of the
various logical components is as in the following schema.

vocabulary V { . . . } theory T: V { . . . }
term t : V { . . . } structure S : V { . . . }

The first component defines a vocabulary V. The other components define respectively a
theory T, a term t and a structure S. They all refer to the vocabulary V for the symbols they
use. In general, several vocabularies can be defined, eventually, one vocabulary extending
another.

We use IDP syntax in the examples throughout the paper. Each IDP operator has an
associated logical operator, the main (non-obvious) operators being: &(∧), |(∨), ∼(¬), !(∀),
?(∃), <=>(≡), ∼=(6=).

The procedural component consists of procedures, coded in Lua, that provide the interface
between the user and the logical components. Examples will be shown in the next sections.

3 Stemmatology

3.1 The task
The Oxford English Dictionary defines stemmatics, or stemmatology, as “the branch of
study concerned with analyzing the relationship of surviving variant versions of a text to
each other, especially so as to reconstruct a lost original.” A stemma is a kind of “family
tree” of a set of manuscripts that indicates which manuscripts have been copied from which
other manuscripts, and which manuscript is the original source. It may include both extant
(currently existing and available) and non-extant (“lost”) manuscripts. The stemma is not
necessarily a tree: sometimes a manuscript has been copied partially from one manuscript,
and partially from another, in which case the manuscript has multiple parents. Hence, a
stemma is in general a connected directed acyclic graph with a single root [1]; we use the
term CRDAG (connected rooted DAG) for it.

While constructing a stemma has some similarities with constructing a phylogenetic tree
in biology, the algorithms of that domain do not fit the stemmatological context well and
specific algorithms are developed [2].

H. Blockeel et. al. 17

The problem studied here assumes that a CRDAG representing a stemma is given, as well
as feature data about (some of) the manuscripts. More specifically, for each location where
variation is observed in the manuscripts, the data includes a feature that indicates which
variant a particular manuscript has. Note that, in practice, it is highly unlikely that exactly
the same variant originated multiple times independently; when a variant occurs in multiple
manuscripts, it is reasonable to assume there was one ancestor, common to all of these, where
the variant occurred for the first time (the “source” of the variant)1. Therefore, we say that
the feature is consistent with the stemma if it is possible to indicate for each variant a single
manuscript that may have been the origin of that variant. Since for some manuscripts the
value of the feature is not known, checking consistency boils down to assigning a variant to
each node in the CRDAG in such a way that, for each variant, the nodes having that variant
form a CRDAG themselves. Using colors to denote the value of a variant, this property is
captured by the following definition.

I Definition 1 (Color-connected). Two nodes x and y in a colored CRDAG are color-connected
if a node z exists (z can be one of x and y) such that there is a directed path from z to x,
and one from z to y, and all nodes on these paths (including z, x, y) have the same color.

Given a partially colored CRDAG, the color-connected problem is to complete the coloring
such that every pair of nodes of the same color is color-connected.

3.2 An IDP solution
A pair of researchers in stemmatology attempted to develop a search free algorithm. They
wrote 370 lines of perl and used a graph library in the background. While it worked for their
benchmarks, they were worried about the completeness of their approach. After abstracting
the problem as the color-connected problem, we proved that it was NP-complete (hence
requires search) and constructed a solvable example for which their algorithm claimed no
solution exists. We also worked on an IDP solution. After several iterations, we arrived at
the following simple solution which turned out to be faster than the (incomplete) procedural
algorithm on the benchmark set. It is shown in Listing 1.

The vocabulary part introduces two types (manuscript and color), two functions and
one predicate. The function colorOf maps a manuscripts to its color and the function
sourceOf maps a color to the manuscript that is the source of the feature. The predicate
copiedBy is used to represent the CRDAG of the stemma in the input structure.

The theory part compactly represents the color-connectedness property by a single
constraint: when the source of the color of a manuscript (x) is not equal to the manuscript
itself then there must exist a manuscript (y) with the same color that has been copied by x.

The Lua code of the procedure process (omitted, 60 lines) processes the stemma data
and builds the input structure for copiedBy. It then iterates over the features, partially
builds the structure for the function colorOf and calls the procedure check, passing all
structures in the variable feature. The latter procedure calls the model expansion and
returns the result to process which reports them to the user.

Our largest benchmark so far is the Heinrichi data set [18]. This stemma about old
Finnish texts includes 48 manuscripts, 51 copiedBy tuples and information about 1042
features. Processing all features takes 12 seconds with the IDP system while it took 25
seconds with the original procedural code. Our solution is integrated in the toolset of [20].

1 For some features, e.g., the spelling of a particular word, this does not hold.

ICLP’12

18 Modeling Machine Learning and Data Mining Problems with FO(·)

Listing 1 Description of the connected-coloring problem using IDP.
vocabulary V {

type manuscript
type c o l o r
copiedBy (manuscript , manuscript)
co lo rOf (manuscript) : c o l o r
sourceOf (c o l o r) : manuscript

}
theory T : V {

! x : x ∼= sourceOf (co lo rOf (x))
=> ? y : copiedBy (y , x) & co lorOf (x) = co lorOf (y) .

}
procedure check (f e a tu r e) {

re turn sa t (T, f e a tu r e) // checks e x i s t e n c e o f a model
}
procedure proce s s (stemmafilename , sample f i l ename) {
read the stemma data and bu i ld a s t ruc tu r e f or copiedBy
for each f e a tu r e {

read the g iven c o l o r s and bu i ld a p a r t i a l s t ruc tu r e f or co lo rOf
c a l l check (f e a tu r e)
r epor t the r e s u l t s }

}

4 Minimum common supergraphs of partially labelled trees

Phylogenetic trees, extensively surveyed by [7], are the traditional tool for representing
the evolution of a given set of species. However, there exist situations in which a tree
representation is inadequate. One reason is the presence of evolutionary events that cannot
be displayed by a tree: genes may be duplicated, transferred or lost, and recombination
events (i.e., the breaking of a DNA strand followed by its reinsertion into a different DNA
molecule) as well as hybridisation events (i.e., the combination of genetic material from
several species) are known to occur. A second reason is that even when evolution is indeed
tree-like, there are cases in which a relatively large number of tree topologies might be
“equally good” according to some chosen criteria, and not enough information is available
to discriminate between those trees. One solution that has been proposed to address the
latter issue is the use of consensus trees, where the idea is to find a tree that represents a
compromise between the given topologies; another approach, on which we focus here, consists
in building a network that is compatible with all topologies of interest. A somewhat loose
description of the variant we are interested in, which will be stated in a more formal way
below, is to find the smallest graph that contains a given set of evolutionary trees. For more
information about those phylogenetic networks, see the recent book by [12] and the online,
up-to-date annotated bibliography maintained by [8].

4.1 The problem
The studied problem is about the evolution of a fixed set of m given species. The input is a
set of phylogenetic trees, each tree showing a plausible relationship between the species. All
trees have n (> m) nodes, m of them are labeled with the name of the species (typically, in
the leaves, but also internal nodes can be labeled). Given n−m extra names, the labeling of
each tree can be extended into a full labeling. The completely labeled trees then induce pairs

H. Blockeel et. al. 19

of labels, whose union yields a graph over the set of n names. The task is to find a network
with a minimum number of edges. Here, we formulate the problem as a slightly more general
graph problem where we do not fix the size of the initial labeling.

I Definition 2 (Common supergraph of partially labeled n-graphs). Given is a set S of n

names and a set of graphs {G1, G2, . . . , Gt} where each graph Gi = (V, Ei,Li) has n vertices
and is partially labeled with an injective function Li : V → S. A graph (S, ES) is a common
supergraph of {G1, G2, . . . , Gt} if there exists, for each i, a bijection L′i : V → S that extends
Li and such that, for each edge {v, w} of Ei: {L′i(v),L′i(w)} ∈ ES.

A minimum common supergraph (S, ES) is a common supergraph such that |ES′| ≥ |ES|
for all common supergraphs (S, ES′).

Note that every labeling function L′i induces an injection Ei → ES, hence the name common
supergraph. Figure 1 shows two partially labeled 7-graphs, along with two of their common
supergraphs. G1 is a minimum common supergraph since T1 and T2 are not isomorphic
and G1 has only one more edge than each of T1 and T2. G2 is not a minimum common
supergraph since it has more edges than G1.

1 3

4

2

1 3

4

2

1 3

4

2

1

3

4 2

T1 T2 G1 G2

Figure 1 Two 7-graphs T1 and T2, a minimum common supergraph G1, and a common supergraph
G2 that is not minimum.

Now, we can consider the following decision problem: Given a set of partially labeled
n-graphs, can the labelings be completed such that the n-graphs have a common supergraph
with at most k edges? It is proven in [14] that this problem is NP-hard, even if the n-graphs
are trees with all leaves labeled.

4.2 The IDP solution
Listing 2 shows a simple model inspired by [14]. The labeling is declared as a function from
nodes to the names (it is partly specified in the input structure). The only constraint of the
theory forces the function to be bijective. The common supergraph over the names induced
by the labeling is given by the arc atoms. As the minimization is on the number of such
atoms, some care is required. Either one should make arc a symmetric relation or one should
pay attention to the direction, e.g., by ensuring x < y in arc(x,y) (every type is ordered
in FO(·)IDP and provided of a < predicate). The latter is done here as the former gives a
somewhat larger grounding.

A feature of the shown solution is that the terms label(t ,x) and label (t ,y) each have two
occurrences in the rules defining arc. The current grounder associates a distinct variable with
each occurrence. One can avoid this by replacing the head of the definition by arc(lx , ly) and
by adding lx=label(t,x) and ly=label(t,y) to the body. This has a dramatic effect on the size
of the grounding and on the solving time; e.g., the grounding is reduced from 620798 to 6024
lines and the solving time from 144s to 8 s on a problem with 5 trees of 8 vertices (4 leaves).

ICLP’12

20 Modeling Machine Learning and Data Mining Problems with FO(·)

Listing 2 Modelling cs-plt in the IDP format.
vocabulary CsPltVoc {

type t r e e
type ver tex
type name // Isomorphic to ver tex
edge (t ree , node , node) // t r e e s , g iven in input s t r u c tu r e
arc (name , name) // The induced network
l a b e l (t ree , node) : name // the l abe l i ng ,

// p a r t i a l l y g iven in the input s t r u c tu r e
}
theory CsPltTheory : CsPltVoc {

{ // induced network
arc (l a b e l (t , x) , l a b e l (t , y)) <− edge (t , x , y) &

l a b e l (t , x) < l a b e l (t , y) .
arc (l a b e l (t , x) , l a b e l (t , y)) <− edge (t , y , x) &

l a b e l (t , x) < l a b e l (t , y) .
}
! t c : ?1 n : l a b e l (t , n) = c . // l a b e l f unc t i on i s b i j e c t i v e

}
term SizeOfSupergraph : CsPltVoc { #{ x y : arc (x , y) } }
procedure main () {

p r i n t (minimize (CsPltTheory , CsPltStructure , SizeOfSupergraph) [1])
}

The solving time is exponential in the number of nodes and the program becomes
impractical on real-world problems, even if the best solution found so far is returned when
some time budget is exceeded. However, the versatility of the IDP system allowed us to
experiment with various strategies for greedily searching an approximate solution. This led
to the following quite natural solution that performed very well, with respect to both running
time and quality of the solution.
1. Find a minimum common supergraph (MCS) for every pair of trees.
2. Pick the smallest MCS (say G) and remove the two trees that are the input for G.
3. Find an MCS between G and every remaining tree.
4. Replace G by an MCS with minimum size, remove the tree that is the input for this MCS

and go back to step 3 if any tree remains.

Steps 1 and 3 of this simple procedure are performed by IDP using a model very similar
to that of Listing 2 (see [14] for the actual model). This greedy approach works very well.
Indeed, for large instances and a fixed time budget, the exact method runs out of time and
returns a suboptimal solution while the greedy method completes and returns a solution
that, although suboptimal, is typically much smaller.

5 Learning deterministic finite state automata

A third task is about learning a deterministic finite state automaton (DFA). The goal is to
find a (non-unique) smallest DFA that is consistent with a given set of positive and negative
examples. It is one of the best studied problems in grammatical inference [4], has many
application areas, and is known to be NP-complete [10]. Recently [11] won the 2010 Stamina
DFA learning competition [19] by reducing the DFA learning problem to a SAT problem and
running an off-the-shelf SAT solver. Here we explore whether an FO(·)IDP formalization can
compete with this competition winner.

H. Blockeel et. al. 21

b

b

a a
a

b

b accepting
rejecting

Figure 2 An augmented prefix tree acceptor (APTA) for S = (S+ = {a, abaa, bb}, S− = {abb, b}).
The start state is the root of the APTA.

5.1 The problem
A deterministic finite state automaton (DFA) is a directed graph consisting of a set of states
Q (nodes) and labeled transitions T (directed edges). The root is the start state and any
state can be an accepting state. In each state, there is exactly one transition for each symbol.
A DFA can be used to generate or accept sequences of symbols (strings) using a process
called DFA computation. When accepting strings, the symbols of the input string determine
a path through the graph. When the final state is an accepting state, the string is accepted,
otherwise it is rejected.

Given a pair of finite sets of positive example strings S+ and negative example strings
S−, (the input sample), the goal of DFA identification (or learning) is to find a (non-unique)
smallest DFA A that is consistent with S = {S+, S−}, i.e., every string in S+ is accepted,
and every string in S− is rejected by A. Typically, the size of a DFA is measured by |Q|, the
number of states it contains.

5.2 The solution
Most DFA learning algorithms use a form of state-merging. First, a a tree-shaped automaton
called the augmented prefix tree acceptor (APTA), is constructed. As can be seen in Figure 2,
the APTA accepts the positive examples and rejects the negative ones. State-merging
merges states under the constraint that the automaton remains deterministic (at most one
transition/label in each state) and that accepting and rejecting states cannot be merged.

States of the final automaton are thus equivalence classes of states of the APTA. Calling
the states of the final automaton colors, the problem becomes that of finding a coloring of
the states of the APTA that is consistent with the input sample. This is also the approach
taken by [11]; they formulate constraints expressing which pairs of states are incompatible,
and abstract the problem as a graph, with as states the states of the APTA and as links the
incompatible pairs. The problem is now a conventional graph coloring problem and they
use a clever SAT encoding to solve it. Here we construct a direct model in FO(·)IDP. But
before doing so, we have to consider one more aspect. For really large problems, the SAT
formulation was too big (hundreds of colors, resulting in over 100.000.000 clauses) [11]. To
get around such problems, they used a greedy heuristic procedural method to identify a
clique of pairwise incompatible states in the APTA. For states in such a clique, the colors
can be fixed in advance. The effect is to break some symmetries and to reduce the size of
the problem. We assume here that the states of the clique are already colored in the input
structure.

The FO(·)IDP DFA learning theory is depicted in Listing 3. The types state, label, the
function trans, and the predicates acc and rej describe the given input samples (and hence
the APTA). Note that trans is partial as the input samples do not define all transitions.

ICLP’12

22 Modeling Machine Learning and Data Mining Problems with FO(·)

Listing 3 Modelling DFA in the IDP format.
vocabulary dfaVoc {

type s t a t e // s t a t e s used in APTA
type l a b e l // symbols t r i g g e r i n g t r a n s i t i o n s
type c o l o r // a v a i l a b l e s t a t e s f o r r e s u l t i n g automaton
partial t rans (s ta te , l a b e l) : s t a t e // t r a n s i t i o n s d e f i n i n g APTA
acc (s t a t e) // accept ing s t a t e s o f APTA
r e j (s t a t e) // r e j e c t i n g s t a t e s o f APTA
co lorOf (s t a t e) : c o l o r // f i x ed in input f o r c o l o r s in c l i q u e
// the r e s u l t i n g automaton :
partial co lorTrans (co lo r , l a b e l) : c o l o r // t r a n s i t i o n s
accColor (c o l o r) // accept ing s t a t e s

}
theory dfaTheory : dfaVoc {

! x : acc (x) => accColor (co lo rOf (x)) .
! x : r e j (x) => ∼accColor (co lo rOf (x)) .
// t rans induces co lorTrans :
! x l z : t rans (x , l)=z => colorTrans (co lo rOf (x) , l)=co lo rOf (z) .

}
term nbColorsUsed : dfaVoc { #{ x : (? y : ColorOf (y) = x) } }
procedure main () {

s tdopt i on s . symmetry = 1 // de t e c t and break symmetries
p r i n t (minimize (dfaTheory , s imple , nbColorsUsed) [1])

}

The states of the resulting automaton are elements of the type color. Its transitions are
described by the function colorTrans. This function is also declared as a partial function.
To construct a complete DFA from the result, colorTrans has to be made total by mapping
the missing transitions to a hidden “sink” state. The function colorOf maps the states of
the APTA on the states (colors) of the final automaton. Finally, the predicate accColor
describes the accepting states of the resulting automaton.

The theory expresses two constraints on accColor: accepting states of the APTA must
and rejecting states cannot be mapped to an accepting state of the final automaton. The
third constraint states that each transition on the APTA induces a transition between colors.
The term nbColorsUsed counts the number of states (colors) of the resulting automaton
and is used for minimization. Instead of minimizing the number of states, one could as well
minimize other properties such as the number of transitions, depth of the model, the size
of loops, etc. They are also easy to formalize in FO(·)IDP. This makes the resulting DFA
learning tool very suitable for application in different problem domains such as software
engineering or bioinformatics where other optimization criteria are preferred.

In order to test the performance of the IDP translation, we ran it on the benchmark
set of [11]. We compare IDP with two versions of the encoding in [11]: an unoptimized
plain encoding (but with the symmetry breaking clique), and an optimized version (with
extra symmetry breaking, unit literal propagation, but without redundant clauses). The
experiment is not on the minimization problem but on the problem of constructing a DFA
with a fixed set of states.

IDP, with the symmetry breaking option on, is significantly faster than the plain SAT
encoding (not for the easy problems where the IDP time is dominated by the approximately
one second grounding time, a time not needed when the problem is directly encoded in
SAT). For example the maximum runtime of an instance in IDP is approximately 1400
seconds while one instance takes over 70000 seconds to solve in the plain encoding. The IDP

H. Blockeel et. al. 23

translation is however outperformed by the optimized version of the direct SAT translation.
In the optimized encoding, the longest recorded runtime is slightly above 100 seconds. In [11]
an even better time is obtained by including extra redundant clauses. It is an interesting
question whether the performance gap can be closed by adding redundant constraints or by
parameter tuning of the SAT solver.

6 Conclusion

We have described three NP-hard problems together with their solution with FO(·) and the
IDP framework. The first problem is in the domain of stemmatology. We developed an IDP
solution that outperformed the dedicated procedural code of a researcher in the field. We
proved the problem is NP-complete and constructed problem instances on which the original
code errs. The resulting program is a useful tool for the researchers and is integrated in [20].
In a trivial extension we made the colorOf function partial; then only those manuscripts
are colored as necessary for making the coloring consistent. This gives useful insight to the
philologist. Another planned variation does not enforce a unique source for each color, but
minimizes the number of sources. This can provide additional insight when the data are in
disagreement with the hypothesized stemma.

The second problem addressed the construction of a minimal common supergraph out of
a given set of phylogenetic trees. The use of FO(·)IDP allowed the authors of [14] to quickly
explore various approaches and to arrive at an approximate method that gives good results.

These two applications illustrate the versatility of FO(·) for solving a new problem. The
third application compares an FO(·) formalization with a state of the art solution for the
NP-complete problem of learning a DFA. While we observe a performance gap with a highly
tuned competition winner, our solution performs better than the initial encoding of [11]. On
the other hand, the FO(·) formalization took much less effort to develop and offers a lot
more flexibility, e.g., to change the optimization criterion. The application is also a good
benchmark for further improving the IDP system.

We hope these applications inspire others to try out the IDP framework. It is a small
step for computer scientists knowledgeable about logic and Prolog. While our solutions look
deceivingly simple, a word of caution is in place. A first solution is hardly ever the best
solution; be convinced that it can be done simpler. Simpler not only means a more concise
and elegant model but also, almost always, a better performance. Try to break up complex
constraints in simpler ones, requiring less variables.

A common beginners misconception we observed, is to use one function (or relation) for
information partially given in the input structure and to use another function that extends
the partial function into a total one while that same function can serve by declaring it total
(the default for functions) and stating that the input structure is partial.

We also observed a very useful programming pattern. In each of our applications,
some equivalence class over some given elements is to be constructed. Representing this
relationships as a function from the elements to the set of equivalence classes is an excellent
choice (the function colorOf in stemmatology and in DFA learning, the function label in
the phylogenetic trees).

Acknowledgements Caroline Macé and Tara Andrews brought some of the authors in
touch with stemmatology and Tara explained them the working of the procedural code.

ICLP’12

24 Modeling Machine Learning and Data Mining Problems with FO(·)

References

1 T. Andrews and C. Macé. Beyond the tree of texts: Graph methods for stemmatic analysis.
In preparation, 2012.

2 P. Baret, C. Macé, P. Robinson, C. Peersman, R. Mazza, J. Noret, E. Wattel, Van Mulken
M., Robinson P., A. Lantin, P. Canettieri, V. Loreto, H. Windram, M. Spencer, C. Howe,
M. Albu, and A. Dress. Testing methods on an artificially created textual tradition. In
The evolution of texts: Confronting stemmatological and genetical methods, pages 255–283.
Istituti editoriali e poligrafici internazionali, Pisa, 2006.

3 Bart Bogaerts, Broes De Cat, Stef De Pooter, and Marc Denecker. The idp framework
reference manual. http://dtai.cs.kuleuven.be/krr/software/idp3/documentation.

4 Colin de la Higuera. A bibliographical study of grammatical inference. Pattern Recognition,
38(9):1332–1348, 2005.

5 Stef De Pooter, Johan Wittocx, and Marc Denecker. A prototype of a knowledge-based
programming environment. In International Conference on Applications of Declarative
Programming and Knowledge Management, 2011.

6 Marc Denecker and Eugenia Ternovska. A logic of nonmonotone inductive definitions. ACM
Transactions on Computational Logic (TOCL), 9(2):Article 14, 2008.

7 Joseph Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, MA, 2004.
8 Philippe Gambette. Who is who in phylogenetic networks: Articles, authors and programs.

Published electronically at http://www.atgc-montpellier.fr/phylnet, 2010.
9 Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp: A

conflict-driven answer set solver. In Chitta Baral, Gerhard Brewka, and John S. Schlipf,
editors, LPNMR, volume 4483 of LNCS, pages 260–265. Springer, 2007.

10 E. Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302–320, 1978.

11 Marijn Heule and Sicco Verwer. Exact DFA identification using SAT solvers. In Grammat-
ical Inference: Theoretical Results and Applications, ICGI 2010, pages 66–79, 2010.

12 Daniel H. Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic Networks: Concepts,
Algorithms and Applications. Cambridge University Press, November 2010.

13 Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. Lua – an ex-
tensible extension language. Software: Practice and Experience, 26(6):635–652, 1996.

14 Anthony Labarre and Sicco Verwer. Merging partially labelled trees: hardness and an
efficient practical solution. In preparation, 2012.

15 Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7:499–562, 2002.

16 Kim Marriott, Nicholas Nethercote, Reza Rafeh, Peter J. Stuckey, Maria Garcia de la
Banda, and Mark Wallace. The design of the Zinc modelling language. Constraints,
13(3):229–267, 2008.

17 David G. Mitchell and Eugenia Ternovska. A framework for representing and solving NP
search problems. In Manuela M. Veloso and Subbarao Kambhampati, editors, AAAI, pages
430–435. AAAI Press / The MIT Press, 2005.

18 T. Roos and T. Heikkilä. Evaluating methods for computer-assisted stemmatology using
artificial benchmark data sets. Literary and Linguistic Computing, 24(4):417–433, 2009.

19 The StaMinA competition, Learning regular languages with large alphabets. http:
//stamina.chefbe.net/, 2010.

20 Stemmaweb, a collection of tools for analysis of collated texts. http://byzantini.st/
stemmaweb/, 2012.

http://dtai.cs.kuleuven.be/krr/software/idp3/documentation
http://www.atgc-montpellier.fr/phylnet
http://stamina.chefbe.net/
http://stamina.chefbe.net/
http://byzantini.st/stemmaweb/
http://byzantini.st/stemmaweb/

H. Blockeel et. al. 25

21 Tommi Syrjänen and Ilkka Niemelä. The smodels system. In Thomas Eiter, Wolfgang
Faber, and Mirosław Truszczyński, editors, LPNMR, volume 2173 of LNCS, pages 434–438.
Springer, 2001.

22 Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for
general logic programs. Journal of the ACM, 38(3):620–650, 1991.

23 Johan Wittocx, Maarten Mariën, and Marc Denecker. The idp system: a model expansion
system for an extension of classical logic. In Marc Denecker, editor, LaSh, pages 153–165,
2008.

ICLP’12

Answering Why and How questions with respect
to a frame-based knowledge base: a preliminary
report
Chitta Baral, Nguyen Ha Vo, and Shanshan Liang

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, Arizona, USA
chitta@asu.edu, nguyen.h.vo@asu.edu, shanshan.liang@asu.edu

Abstract
Being able to answer questions with respect to a given text is the cornerstone of language un-
derstanding and at the primary school level students are taught how to answer various kinds of
questions including why and how questions. In the building of automated question answering
systems the focus so far has been more on factoid questions and comparatively little attention
has been devoted to answering why and how questions. In this paper we explore answering
why and how questions with respect to a frame-based knowledge base and give algorithms and
ASP (answer set programming) implementation to answer two classes of questions in the Biology
domain. They are of the form: “How are X and Y related in the process Z?” and “Why is X
important to Y?”

1998 ACM Subject Classification D.1.6 Logic Programming, H.3.4 Question-answering (fact
retrieval) systems, I.2.4 Frames and scripts

Keywords and phrases answer set programming, frame based knowledge representation, question
answering.

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.26

1 Introduction

In recent years question answering (QA) has become more prominent via efforts such as
the Google Knowledge Graph [11] and systems such as Watson [7]. However, most question
answering efforts remain focused on factoid questions; a notable exception being navigational
“How” questions answered by Siri.

“How” and “Why” questions are important types of questions that are introduced to
students at primary school level in their reading and comprehension classes. At the school
level answering why questions involves finding the reason or cause of a thing that happened
and answering how questions involves finding the way something is done. Answering such
questions become more elaborate in Biology where some researchers suggest [15] three kinds
of answers to “Why” questions: teleological answer about effects, proximate answers about
immediate causes and evolutionary answers based on natural selection; while others [16]
propose an even more elaborate categorization of questions and answers such as: How is X used
(asked for the biological role/function), How does X work (asked for physiological explanation),
and Why does X has a certain item/behavior (asked for the functional significance of certain
biological roles). In the literature [1] “How” questions have been referred to as procedural
questions.

At present automatic answering of “Why” and “How” questions with respect to large
text corpuses [12] are based on factoid extraction where answers are located by looking for

© Chitta Baral, Nguyen HaVo, and S.Liang;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 26–36

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.26
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

C. Baral, N.H. Vo, and S. Liang 27

associate words and phrases such as “because of” and “causes”. In this paper we take a
different approach. Instead of answering “Why” and “How” questions with respect to natural
language text [3] , we explore answering them with respect to a frame based knowledge base.
Our motivation behind that is to first formalize the notion of answers to such questions; I.e.,
define what are answers to “Why” and “How” questions with respect to a knowledge base.

We use the frame based biology knowledge base AURA [5] and while identifying several
question forms we focus on two specific question forms as a start: “How are X and Y related
in the process Z?” and “Why is X important to Y?” Looking at examples in the frame based
knowledge representation in AURA we define the notion of an event description graph and
formalize the answers to our two question types with respect to such graphs. We then give
an answer set programming formalization of the reasoning process to find the answers (and
thus give an implementation) and conclude with future research directions. Our answer set
programming formalization builds up on our earlier work [4] to reason with frame based
knowledge using answer set programming.

2 Background

2.1 Frame-Based Knowledge Base
The basic aspects of a frame-based knowledge base (KB) is to represent classes and objects
(instances). For classes, the most important information is the class hierarchy. For example1,
the highest class in the AURA2 [5] hierarchy is “Thing”, with two children classes “Entity”
and “Event”. “Entity” can have descendent classes such as “Cell”, “Sunlight”, “Sugar” that
are biological entities, while “Event” can have descendent classes such as “Photosynthesis”,
“Mitosis” that are biological processes. We also need to represent objects that may belong to
the same classes (share the same basic features), but have their own specific properties. To
represent the shared features amongst objects (in order to prevent repetitive encoding of the
same set of knowledge entries), “prototypes” of classes are encoded and during reasoning
they are cloned by all the objects from that class. The KB normally supports the encoding
of multiple inheritance, meaning that a class need to inherit from all of its ancestor classes
in the class hierarchy. In this case, in order to obtain the full information for an object,
the object needs to clone from all the prototypes of the class it belongs to, as well as the
prototypes of all its ancestor classes. When merging the information together, the process of
“unification” [6] is introduced to make sure that any conflicts are dealt with properly.

In general, although there is a large body of knowledge bases that use the frame based
approach [8], there hasn’t been much research on how to use the knowledge encoded in frames
declaratively, especially in the realm of question answering applications. In our earlier work
[4] we investigated how to utilize the KB for answering “what” questions in a declarative way,
as opposed to the procedural approach adopted by the original AURA system. There we give
an abstract definition of a KB, and a declarative implementation of “clone and unify”. From
here on, whenever we refer to an object we use the complete information for that object (after
the cloning and unification process), which is obtained by the declarative implementation
mentioned earlier.

1 Note that the various examples mentioned in this paper are from the AURA knowledge base, some with
slight modifications.

2 The AURA knowledge base is a frame-based KB developed manually by knowledge experts. AURA
contains large amount of frames describing biology concepts and biology processes, and has been used
to answer a wide variety of “what” questions [5].

ICLP’12

28 Answering Why and How questions with respect to a frame-based knowledge base

To the best of our knowledge, there has been little research on answering “How” and
“Why” questions with respect to frame-based knowledge bases. The main goal of this paper
is to provide insight on how frame based KB can be used to answer some “Why” and “How”
questions. To do that we use an “abstract view” of the KB that allows a better illustration
of the semantics behind the KB and how they can be used for QA purposes.

2.2 Answer Set Programming
We use Answer Set Programming (ASP) [10] as our knowledge representation language for its
strong theoretical foundation [2], expressiveness, the availability of various solvers [9, 14, 13]
and its earlier use in the declarative implementation of “clone and unify”.

An ASP program is a collection of rules of the form:

a← a1, ... , am, not b1, ... , not bn

where a, a1, ..., am and b1, ..., bn are atoms. The rule reads as “a is true if a1...am are all
known to be true and b1...bn can be assumed to be false”. The semantics of answer set
programs are defined using answer sets (earlier called stable models).

3 Answering two Why/How Questions

As mentioned earlier, in this paper we consider two particular types of Why and How
questions: “How are X and Y related in process Z?” and “Why is X important to Y?”.

Let us illustrate them with respect to a knowledge base about the process of photosynthesis.
The following component of an event description graph (to be formally defined later) expresses
the knowledge about photosynthesis.

Figure 1 The event description graph of photosynthesis. Events and processes are depicted by
rectangles and circles respectively. Compositional edges are represented by solid lines and behavioral
edges by dashed lines.

Now consider the “How” question: How are sunlight and sugar related in photosynthesis?
An intuitive answer to this question is: Photosynthesis has two subevents: light reaction

and calvin cycle. The light reaction needs sunlight as its raw material, and later enables the
calvin cycle which produces sugar as the result. This answer can be obtained from the graph
in Fig. 1 constructed from the frame based knowledge base AURA by using the information
that “raw material”, “enables”, and “result” are the key slots used by AURA.

Now let us consider the “Why” question: Why is sunlight important to photosynthesis?

C. Baral, N.H. Vo, and S. Liang 29

An intuitive answer to this question is: Sunlight is the raw material of light reaction
thus sunlight is important to light reaction; light reaction is an important sub-event of
photosynthesis; therefore sunlight is also important for photosynthesis. This answer can be
obtained from the graph in Fig. 1 when augmented with information about “importance”.
Following is such an augmented graph.

Figure 2 The event description graph of photosynthesis with the “important edges” marked by
bold arrow.

Using the augmented graph we need to follow the “important” edges that link “sunlight”
to photosynthesis.

The above examples suggest close relationships between the answers of why and how
questions and the graph representation of processes. In the following we give a formal
representation of processes as graphs, define some generic operations on the graphs and use
them in formulating answers to our two kinds of why and how questions.

3.1 Knowledge Bases of Biological Processes
In the frame representation that we use in [4] the Knowledge Base has the generic encoding
format: has(X, S, V), where X can be either a class or an object, S refers to a “slot”, which
describes the property of X, and V is the value for that slot. While the KB may contain a
large amount of information, we do not need all of that for our specific types of question
answering. Thus we consider and define a simplified view of the KB through the notion of
Event Description Graphs.

There are two important aspects of a Knowledge Base of Biological Processes: Events
and Entities. Each biological process is a event, which can often be broken down to several
sub-events (and sub-events of sub-events). Entities can be involved in the processes as raw
materials, results, bases, objects, etc.3 Using that we now define Event Description Graphs.

I Definition 1. An Event Description Graph is a directed graph with two types of nodes:
event nodes and entity nodes; two types of directed edges: compositional edges and behavioral
edges; and a special node referred as main event node or root node which has no incoming
edge. An Event Description Graph satisfies the following conditions:
1. All other nodes beside the root are reachable from the root via compositional edges.
2. There are no directed cycle of only compositional edges.

3 For a complete list such relations (slot names), please refer to the Slot Dictionary in the Component
Library (http://www.cs.utexas.edu/ mfkb/RKF/tree/).

ICLP’12

30 Answering Why and How questions with respect to a frame-based knowledge base

3. There are no directed cycle of only behavioral edges.
4. There are no outgoing edges from the entity nodes.
We use EDG(Z) to denote the Event Description Graph with root Z.

“Event nodes” and “entity nodes” represent biological entities and biological processes,
respectively. The “compositional edges” and “behavioral edges” are categorized based on
specific event-event and event-entity relations. Table 1 shows some example relations that
can be viewed as compositional and behavioral edges. For event-to-event relation, only the
“sub-event” relation is viewed as a compositional edge, while others are viewed as behavioral
edges. All the event-to-entity relations are considered compositional edges.

Each Event Description Graph describes its root event which is a biological process
defined in the KB. As all the sub-events are also biological processes, the subgraph with a
sub-event as root and that contains all the accessible nodes/edges from that sub-event is
considered the Event Description Graph for that sub-event.

Table 1 The slot names indicating “compositional”/“behavioral” edges.

Category Type Slot names
Event-to-Event compositional sub-event
Event-to-Event behavioral next_event, enables, causes, prevents...
Event-to-Entity compositional raw_material, result, site, location, base, agent...
Event-to-Entity behavioral (null)

A cpath from a node X to a node Y in EDG(Z), denoted as cpath(X, Y), is a path
consisting of only compositional edges. Similarly, a bpath(X, Y) is a path consisting of
only behavioral edges, and an ipath(X, Y), is a path consisting of only “important edges”.
While cpath(X, Y) and bpath(X, Y) reflect how X and Y are connected compositionally or
behaviorally, sometimes we need to add richer semantic information such as an edge being
important which is then used to define ipath(X, Y). Intuitively we say that there is an
“important edge” from X to Y iff Y can not function properly without X. The following
Table 2 shows several functionally important relations.

Table 2 The slot names indicating “functional importance”.

Category Slot names
Entity-to-Event raw_material, site, base
Event-to-Event(explicit) enables, causes, regulates, prevents, subevent
Event-to-Event (implicit) (sample rule) the result of E1 is the raw_material of E2
Event-to-Entity result

3.2 Answers to two types of Why/How Questions
In this subsection we will formally define the answers to two types of Why and How questions.
We will illustrate the definitions and algorithms using the following event description graph.

Given the event description graph of process 1 in Figure 3 consider answering the question
“How are process 8 and entity 10 related in process 1?”. Intuitively, it seems the answer
should only contain important information to understand the relation between 8 and 10 such
as: compositional path from process 3 to process 8 through process 5 and compositional
path from 3 to 10 through 7 to explain compositional relations between 8 and 10; behavioral

C. Baral, N.H. Vo, and S. Liang 31

Figure 3 Event Description Graph of process 1. Events and processes are depicted by rectangles
and circles respectively. Compositional edges are represented by solid lines and behavioral edges by
dashed lines.

path from 5 to 7 through 6 to explain behavioral relations; and compositional edge from 1
to 3 and then to 6 to clarify process 6. Information about process/entity 2, 4, 9, 11, 12, 13
and 14 can be omitted since they are not important for the connection between 8 and 10.
Following the above intuition, we formally define the answer for question “How are X and
Y related in process Z” as the graph denoted by MIN_EDGZ

X,Y defined as follows. First,
LCA(X, Y) in EDG(Z), denotes the lowest common ancestor of X and Y in EDG(Z) .

I Definition 2. Given an event description graph EDG(Z) and two nodes X and Y in that
graph, MIN_EDGZ

X,Y is the subgraph of EDG(Z) consisting of the following:
The set of nodes VX ∪VY ∪Vbehavioral ∪VZT , where T = LCA(X, Y) in EDG(Z); Vx and
Vy are the set of nodes in cpath(T, X) and cpath(T, Y) respectively; Vbehavioral is the set
of nodes on any bpath(X ′, Y ′), where X ′ ∈ Vx, and Y ′ ∈ Vy; and VZT is the set of nodes
in cpath(Z, T).
The set of edges consisting of the union of the edges obtained from EDG(T) by removing
all edges that connect to the nodes in EDG(T) \ V and the edges in cpath(Z, T) from Z

to T in EDG(Z).

The path cpath(Z, T) from Z to T helps clarify what T is with respect to the process Z.
With respect to relating 8 and 10 in Figure 3, this cpath(Z, T) is the path from process 1 to
process 3.

I Example 3. Let us consider the photosynthesis example. LCA(sunlight, sugar) in
EDG(photosynthesis) is photosynthesis itself. Using definition 2 we have: Vx = {pho-
tosynthesis, light_reaction, sunlight}, Vy = {photosynthesis, calvin_cycle, sugar}, and
Vbehavioral = {}.

MIN_EDG(photosynthesis)photosynthesis
sunlight,sugar thus has nodes V = {photosynthesis,

light_reaction, calvin_cycle, sunlight, sugar} and edges: E = {(photosynthesis, light_reaction),
(photosynthesis, calvin_cycle), (light_reaction, sunlight), (calvin_cycle, sugar),
(light_reaction, calvin_cycle)}.

This subgraph expresses the answer to the question “How are sunlight and sugar related
in photosynthesis?”. We can also answer the question “How are sunlight and sugar related?”,
by finding the MIN_EDG for sunlight and sugar in the entire KB, rather than in the Event
Description Graph of photosynthesis.

ICLP’12

32 Answering Why and How questions with respect to a frame-based knowledge base

Now let us consider the question: “Why is X important to Y?” In order to answer it we
need both MIN_EDG(event)T

X,Y and the notion of path, where event is the ancestor of all
events in the KB. Using them we have the following definition.

I Definition 4. The answer for “Why is X important to Y?” is the combination of: (i)
MIN_EDG(event)T

X,Y where T = LCA(X, Y) in EDG(event) and (ii) ipath(X, Y).

4 ASP Encodings for General Reasoning Rules

In this section we discuss the encoding for all the defined components discussed in the
previous section.

4.1 Encoding the Semantics of Slots

We encode the slot names that indicates a compositional/behavioral edges (Table 1) as
follows:

cedge(subevent; raw_material; result; site; location; base; agent).
bedge(next_event; enables; causes; prevents).
iedge(raw_material; site; base; subevent).
iedge(enables; causes; regulates; supports; prevents; result).

4.2 Compositional-Connected, Behavioral-Connected, and
Importantly-Connected

The following rules define “directly-compositionally-connected” (dcconnects), “directly-
behaviorally-connected” (dbconnects) and “directly-importantly-connected” (diconnects).

dcconnects(X, Y) :- has(X, S, Y), event(X), cedge(S).
dbconnects(X, Y) :- has(X, S, Y), event(X), event(Y), bedge(S).
diconnects(X, Y) :- has(X, S, Y), iedge(S).

The predicates cconnect, bconnect and iconnect denoting “compositionally-connected”,
“behaviorally-connected” and “importantly-connected” are transitive closures of “dcconnects”,
“dbconnects”, and “dcconnects” respectively and are defined in the standard way.

4.3 Cpath, Bpath, and Ipath

We can utilize the above defined relations to enumerate all the nodes on the composition-
al/behavioral path from a node to another. We define cpath(A, Z, I, C) which means C is
the Ith node in the path from A to Z.

cpath(A, Z, 0, A) :- cconnects(A, Z).
cpath(A, Z, T+1, C) :- cpath(A, Z, T, B), dcconnects(B,C), step(T),

cconnects(C, Z).

We similarly define bpath and ipath and use them.

C. Baral, N.H. Vo, and S. Liang 33

4.4 Finding Common Ancestor
Now we encode the rules for finding common ancestor for X and Y . The first two rules
encode the special cases where either X is the ancestor of Y or Y is the ancestor of X. The
3rd rule means that Z is a common ancestor of X and Y if Z cconnects to both X and Y .

common_ancestor(X,X,Y) :- cconnects(X, Y), X != Y.
common_ancestor(Y,X,Y) :- cconnects(Y, X), X != Y.
common_ancestor(Z,X,Y) :- cconnects(Z, X), cconnects(Z, Y), X != Y.

Following the algorithm, the next step is to find the lowest-common-ancestor. We say
that Z1 is not a lowest common ancestor if there exist another common ancestor Z2 which
is a descendant of Z1 (Z1 cconnects to Z2). And then we can define the lowest-common-
ancestor(lcs) using default negation.

not_lcs(Z1, X, Y) :- common_ancestor(Z1,X,Y), common_ancestor(Z2,X,Y),
Z1 != Z2, cconnects(Z1, Z2).

lcs(Z, X, Y) :- common_ancestor(Z, X, Y), not not_lcs(Z, X, Y).

4.5 Correctness of the General Reasoning Rules
Proposition 1. Z is the lowest common ancestor of X and Y w.r.t. the KB of process P
iff: lcs(Z, X, Y) is entailed by the program described above.

5 ASP Encoding of How/Why Question and Answering

In this section we present the encoding for the general reasoning rules used in answering the
how and why questions. We provide the template for encoding both the questions and the
answers in a generic and easy-to-expand fashion. Our encoding is sufficient for a large list of
questions. However, there are questions that themselves encompass a complicated semantic
meaning, which needs additional representations that are beyond the scope of this work.

5.1 Question Encoding
To encode the semantics in the questions properly, we use the following template. Each
question has a QID, Type, Category, two Parameters, and optionally the Scope.

question(QID). has(QID, type, Type).
has(QID, category, Category). has(QID, param1, XClass).
has(QID, param2, YClass). has(QID, scope, ScopeClass).

In the following we illustrate the encodings for the questions “How are sunlight and sugar
related in photosynthesis?” and “Why is sunlight important to photosynthesis?”, respectively.

question(q1). question(q2).
has(q1, type, how). has(q2, type, why).
has(q1, category, relation). has(q2, category, important_to).
has(q1, param1, sunlight). has(q2, param1, sunlight).
has(q1, param2, sugar). has(q2, param2, photosynthesis).
has(q1, scope, photosynthesis).

ICLP’12

34 Answering Why and How questions with respect to a frame-based knowledge base

5.2 Answer Graph
According to the definitions of the answers for how and why questions, we use
_answer_graph(Q, Z, X, Y) to denote the answer MIN_EDG(Scope)Z

X,Y of question Q. The
rule head _answer_graph(Q, Z, X, Y) denotes the answer as a graph with root Z, and two
descendant X and Y , in which X, Y and Z are instances of XClass, YClass, and ScopeClass.
Z is the lowest common ancestor for X and Y .

_answer_graph(Q, Z, X, Y) :- _answer_graph(Q, Z, X, Y) :-
question(Q), question(Q),
has(Q, type, how), has(Q, type, why),
has(Q, category, relation), has(Q, category, important_to),
has(Q, param1, XClass), has(Q, param1, XClass),
has(Q, param2, YClass), has(Q, param2, YClass),
has(Q, scope, ScopeClass), XClass != YClass,
has(X, instance_of, XClass), has(X, instance_of, XClass),
has(Y, instance_of, YClass), has(Y, instance_of, YClass),
has(Z, instance_of, ScopeClass), iconnects(X, Y),
lcs(Z, X, Y). lcs(Z, X, Y).

Similar to the “How” question, for the “Why” question we also find the lowest common
ancestor (without the scope information) Z of X and Y to form the answer graph, while
enforcing that there must exist an ipath from X to Y .

5.3 Obtaining Complete Answer: Output All Nodes/Edges in the
Answer Graph and Answer Path

We use _answer_node(Q, AnswerGraph, node, E) to denote all the nodes E in the
AnswerGraph. The first two rules encode that if the question has a answer graph (Q, Z, X, Y),
then all the nodes E on the compositional path from both Z to X and Z to Y will be answer
nodes. The 3rd rule encodes that all the nodes on the behavioral paths linking every pair
of nodes on the compositional paths are also answer nodes. The last rule encodes that all
the nodes on compositional paths from the scope of the question to Z (to clarify the role of
Z with respect to the given scope) are also answer nodes. Note that Scope, a prototype of
ScopeClass, is the instance of the ScopeClass class. In our DB, prototype is always defined
for each class.

_answer_node(Q, _answer_graph(Q, Z, X, Y), node, E) :-
_answer_graph(Q, Z, X, Y), cpath(Z, X, T, E), step(T).

_answer_node(Q, _answer_graph(Q, Z, X, Y), node, E) :-
_answer_graph(Q, Z, X, Y), cpath(Z, Y, T, E), step(T).

_answer_node(Q, AnswerGraph, node, E) :-
_answer_node(Q, AnswerGraph, node, X),
_answer_node(Q, AnswerGraph, node, Y),
bpath(X, Y, T, E), step(T).

_answer_node(Q, _answer_graph(Q, Z, X, Y), node, E) :-
_answer_graph(Q, Z, X, Y), has(Q, scope, ScopeClass),
has(Scope, prototype_of, ScopeClass), cpath(Scope, Z, T, E), step(T).

C. Baral, N.H. Vo, and S. Liang 35

Next the final answer is the collection of nodes and edges in the answer graph and
appropriate rules are written for that. For lack of space we skip the propositions that relate
the earlier definition of an answer with the answer obtained using the ASP rules.

6 Conclusion, Discussion and Future work

With good progress in information retrieval, natural language processing, speech recognition
and associated fields, question answering systems are becoming a reality. However, most
question answering systems are about factoid questions. But various applications, such as
building intelligent tutoring systems need more general form of question answering, especially
involving why and how questions. To develop systems that can answer why and how questions
with respect to text, we first need to be clear about correct answers to why and how questions
in a more formal setting. In other words, we need to develop a formal theory of answers to
why and how questions. Towards that end, we made a start in this paper with focus on why
and how question answering with respect to a structured knowledge base. We developed
an abstract notion of an event description graph and used that to formalize answers with
respect to two kinds of why and how questions. We then gave an ASP implementation of
our formalization. The motivation behind using ASP is that as a prerequisite to answering
questions with respect to a frame based knowledge base we need to implement issues such
as inheritance and cloning in making inferences about facts of the form has(X, S, Y). In
an earlier paper we showed how ASP can be used to implement inheritance and cloning.
Hence our use of ASP in this paper. Moreover we are not aware of any other declarative
implementation or formalization of cloning in any other language.

Although, so far in this paper we only considered two kinds of why and how questions,
our approach generalizes beyond those two to additional types. Below, we give a couple of
examples on that. In the future we will consider additional types of why and how questions.

1. To answer questions of the form, “How does X occur?”, we just need to define an
answer graph as:

_answer_graph(Q, X, First_subevent_of_X, Last_subevent_of_X), ...

in which the first and last subevents of X can be easily obtained if all the subevents are
properly ordered using the “next_event” relation.

2. Similarly, to answer questions of the form, “How does X produce Y?”, the answer
graph is defined as:

_answer_graph(Q, X, null, Y), ...

so that only the cpath from X to Y is in the answer graph, and this chain of reaction is “how
X produces Y” if the last event in the chain has Y as result.

3. Similarly, to answer questions of the form, “Why does X have Property Y?”, the
answer graph is defined as:

_answer_graph(Q, X, Y, Subevent_of_X_that_involves_Y), ...

where for each subevents of X that involves Y, we generate an answer graph and output
“why is Y important for that subevent”.

ICLP’12

36 Answering Why and How questions with respect to a frame-based knowledge base

References
1 F. Aouladomar. Towards answering procedural questions. page 21. Proc. of KRAQ’05, an

IJCAI05 workshop., 2005.
2 C. Baral. Knowledge representation, reasoning and declarative problem solving. Cambridge

University Press, 2003.
3 C. Baral, S. Liang, and V. Nguyen. Towards deep reasoning with respect to natural language

text in scientific domains. DeepKR Workshop, 2011.
4 Chitta Baral and Shanshan Liang. From knowledge represented in frame-based languages

to declarative representation and reasoning via asp. 13th International Conference on
Principles of Knowledge Representation and Reasoning, 2012.

5 Vinay K. Chaudhri, Peter E. Clark, Sunil Mishra, John Pacheco, Aaron Spaulding, and Jing
Tien. Aura: Capturing knowledge and answering questions on science textbooks. Technical
report, SRI International, 2009.

6 P. Clark, B. Porter, and B.P. Works. Km: The knowledge machine 2.0: Users manual,
2004.

7 D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A.A. Kalyanpur, A. Lally, J.W.
Murdock, E. Nyberg, J. Prager, et al. Building watson: An overview of the deepqa project.
AI Magazine, 31(3):59–79, 2010.

8 R. Fikes and T. Kehler. The role of frame-based representation in reasoning. Communica-
tions of the ACM, 28(9):904–920, 1985.

9 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. A user’s
guide to gringo, clasp, clingo, and iclingo. November, 77:78–80, 2008.

10 M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R. Kowalski and K. Bowen, editors, Logic Programming: Proc. of the Fifth Int’l Conf. and
Symp., pages 1070–1080. MIT Press, 1988.

11 Google Knowledge Graph. http://www.google.com/insidesearch/features/search/
knowledge.html.

12 R. Higashinaka and H. Isozaki. Corpus-based question answering for why-questions. Proc.
of IJCNLP, 1:418–425, 2008.

13 N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The dlv
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic (TOCL), 7(3):499–562, 2006.

14 I. Niemelä and P. Simons. Smodels—an implementation of the stable model and well-
founded semantics for normal logic programs. Logic Programming and Nonmonotonic
Reasoning, pages 420–429, 1997.

15 Tom Shellberg. Teaching how to answer ‘why’questions about biology. The American
Biology Teacher, 63(1):16–19, 2012/06/17 2001.

16 A. Wouters. The functional perspective of organismal biology. Current Themes in Theor-
etical Biology, pages 33–69, 2005.

http://www.google.com/insidesearch/features/search/knowledge.html
http://www.google.com/insidesearch/features/search/knowledge.html

Applying Machine Learning Techniques to ASP
Solving
Marco Maratea1, Luca Pulina2, and Francesco Ricca3

1 DIBRIS, Università degli Studi di Genova
Viale F.Causa 15, 16145 Genova, Italy
marco@dist.unige.it

2 POLCOMING, Università degli Studi di Sassari
Viale Mancini 5, 07100 Sassari, Italy
lpulina@uniss.it

3 Dipartimento di Matematica, Università della Calabria
Via P. Bucci, 87030 Rende, Italy
ricca@mat.unical.it

Abstract
Having in mind the task of improving the solving methods for Answer Set Programming (ASP),
there are two usual ways to reach this goal: (i) extending state-of-the-art techniques and ASP
solvers, or (ii) designing a new ASP solver from scratch. An alternative to these trends is to
build on top of state-of-the-art solvers, and to apply machine learning techniques for choosing
automatically the “best” available solver on a per-instance basis.

In this paper we pursue this latter direction. We first define a set of cheap-to-compute
syntactic features that characterize several aspects of ASP programs. Then, given the features
of the instances in a training set and the solvers performance on these instances, we apply a
classification method to inductively learn algorithm selection strategies to be applied to a test
set. We report the results of an experiment considering solvers and training and test sets of
instances taken from the ones submitted to the “System Track” of the 3rd ASP competition.
Our analysis shows that, by applying machine learning techniques to ASP solving, it is possible
to obtain very robust performance: our approach can solve a higher number of instances compared
with any solver that entered the 3rd ASP competition.

1998 ACM Subject Classification D.1.6 Logic Programming, I.2.4 Knowledge Representation
Formalisms and Methods, I.2.6 Learning

Keywords and phrases Answer Set Programming, Automated Algorithm Selection, Multi-Engine
solvers

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.37

1 Introduction

Having in mind the task of improving the robustness, i.e., the ability to perform well across
a wide set of problem domains, and the efficiency, i.e., the quality of solving a high number
of instances, of solving methods for Answer Set Programming (ASP) [13, 27, 30, 26, 14, 3],
it is possible to extend existing state-of-the-art techniques implemented in ASP solvers,
or design from scratch a new ASP system with powerful techniques and heuristics. An
alternative to these trends is to build on top of state-of-the-art solvers, leveraging on a
number of efficient ASP systems, e.g., [36, 22, 24, 10, 28, 21, 36], and applying machine
learning techniques for inductively choosing, among a set of available ones, the “best” solver
on the basis of the characteristics, called features, of the input program. This approach falls

© Marco Maratea, Luca Pulina, and Francesco Ricca;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 37–48

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.37
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38 Applying Machine Learning Techniques to ASP Solving

in the framework of the algorithm selection problem [34]. Related approaches, following
a per-instance selection, have been exploited for solving propositional satisfiability (SAT),
e.g., [40], and Quantified SAT (QSAT), e.g., [32] problems. In ASP, an approach for selecting
the “best” clasp internal configuration is followed in [9], while another approach that imposes
learned heuristics ordering to smodels is [2].

In this paper we pursue this direction, and design a multi-engine approach to ASP
solving. We first define a set of cheap-to-compute syntactic features that describe several
characteristics of ASP programs, paying particular attention to ASP peculiarities. We then
compute such features for the grounded version of all benchmark submitted to the “System
Track” of the 3rd ASP Competition [5] falling in the “NP” and “Beyond NP” categories of
the competition: this track is well suited for our study given that (i) contains many ASP
instances, (ii) the language specification, ASP-Core, is a common ASP fragment such that
(iii) many ASP systems can deal with it.

Then, starting from the features of the instances in a training set, and the solvers
performance on these instances, we apply the “Nearest-neighbor” classification method to
inductively learn general algorithm selection strategies to be applied to a test set. We perform
an analyses that consider as test set the instances evaluated to the 3rd ASP competition.

Our experiments show that it is possible to obtain a very robust performance, by solving
a higher number of instances than all the solvers that entered the 3rd ASP competition and
DLV [22].

The paper is structured as follow. Section 2 contains preliminaries about ASP and
classification methods. Section 3 then describes our benchmarks setting, in terms of dataset
and solvers employed. Section 4 defines how features and solvers have been selected, and
presents the classification methods employed. Section 5 shows the performance analysis,
while Section 6 and 7 end the paper with discussion about related work and conclusions,
respectively.

2 Preliminaries

In this section we recall some preliminary notions concerning answer set programming and
machine learning techniques for algorithm selection.

2.1 Answer Set Programming
Answer Set Programming (ASP) [13, 27, 30, 26, 14, 3] is a declarative programming formalism
proposed in the area of non-monotonic reasoning and logic programming. The idea of ASP is
to represent a given computational problem by a logic program whose answer sets correspond
to solutions, and then use a solver to find those solutions [26].

In the following, we recall both the syntax and semantics of ASP. The presented constructs
are included in ASP-Core [5], which is the language specification that was originally introduced
in the 3rd ASP Competition [5] as well as the one employed in our experiments (see Section 3).
Hereafter, we assume the reader is familiar with logic programming conventions, and refer
the reader to [14, 3, 12] for complementary introductory material on ASP, and to [4] for
obtaining the full specification of ASP-Core.

2.1.1 Syntax
A variable or a constant is a term. An atom is p(t1, ..., tn), where p is a predicate of arity n

and t1, ..., tn are terms. A literal is either a positive literal p or a negative literal not p, where

M. Maratea, L. Pulina, and F. Ricca 39

p is an atom. A (disjunctive) rule r is of the form:

a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm.

where a1, . . . , an, b1, . . . , bm are atoms. The disjunction a1 ∨ . . . ∨ an is the head of r, while
the conjunction b1, . . . , bk, not bk+1, . . . , not bm is the body of r. We denote by H(r) the set
of atoms occurring in the head of r, and we denote by B(r) the set of body literals. A rule
s.t. |H(r)| = 1 (i.e., n = 1) is called a normal rule; if the body is empty (i.e., k = m = 0) it
is called a fact (and the :– sign is omitted); if |H(r)| = 0 (i.e., n = 0) is called a constraint.
A rule r is safe if each variable appearing in r appears also in some positive body literal of r.

An ASP program P is a finite set of safe rules. A not -free (resp., ∨-free) program is
called positive (resp., normal). A term, an atom, a literal, a rule, or a program is ground if
no variable appears in it.

2.1.2 Semantics
Given a program P, the Herbrand Universe UP is the set of all constants appearing in P,
and the Herbrand Base BP is the set of all possible ground atoms which can be constructed
from the predicates appearing in P with the constants of UP . Given a rule r, Ground(r)
denotes the set of rules obtained by applying all possible substitutions from the variables
in r to elements of UP . Similarly, given a program P, the ground instantiation of P is
Ground(P) =

⋃
r∈P Ground(r).

An interpretation for a program P is a subset I of BP . A ground positive literal A is
true (resp., false) w.r.t. I if A ∈ I (resp., A 6∈ I). A ground negative literal not A is true
w.r.t. I if A is false w.r.t. I; otherwise not A is false w.r.t. I.

The answer sets of a program P are defined in two steps using its ground instantiation:
First the answer sets of positive disjunctive programs are defined; then the answer sets of
general programs are defined by a reduction to positive ones and a stability condition.

Let r be a ground rule, the head of r is true w.r.t. I if H(r) ∩ I 6= ∅. The body of r is
true w.r.t. I if all body literals of r are true w.r.t. I, otherwise the body of r is false w.r.t. I.
The rule r is satisfied (or true) w.r.t. I if its head is true w.r.t. I or its body is false w.r.t. I.

Given a ground positive program Pg, an answer set for Pg is a subset-minimal interpretation
A for Pg such that every rule r ∈ Pg is true w.r.t. A (i.e., there is no other interpretation
I ⊂ A that satisfies all the rules of Pg).

Given a ground program Pg and an interpretation I, the (Gelfond-Lifschitz) reduct [14]
of Pg w.r.t. I is the positive program P I

g , obtained from Pg by (i) deleting all rules r ∈ Pg

whose negative body is false w.r.t. I, and (ii) deleting the negative body from the remaining
rules of Pg.

An answer set (or stable model) of a general program P is an interpretation I of P such
that I is an answer set of Ground(P)I .

As an example consider the program P = { a ∨ b :– c., b :– not a, not c., a ∨ c :– not b.,
k :– a., k :– b. } and I = {b, k}. The reduct PI is {a∨ b :– c., b. k :– a., k :– b.}. I is an answer
set of PI , and for this reason it is also an answer set of P.

2.2 Multinomial classification for Algorithm Selection
With regard to empirically hard problems, there is rarely a best algorithm to solve a given
combinatorial problem, while it is often the case that different algorithms perform well on
different problem instances. Among the approaches for solving this problem, in this work
we rely on a per-instance selection algorithm in which, given a set of features –i.e., numeric

ICLP’12

40 Applying Machine Learning Techniques to ASP Solving

Table 1 Problems and instances considered, coming from the NP and Beyond NP classes of the
3rd ASP competition.

Problem Class #Instances

DisjunctiveScheduling NP 10
GraphColouring NP 60
HanoiTower NP 59
KnightTour NP 10
MazeGeneration NP 50
Labyrinth NP 261
MultiContextSystemQuerying NP 73
Numberlink NP 150
PackingProblem NP 50
SokobanDecision NP 50
Solitaire NP 25
WeightAssignmentTree NP 62
MinimalDiagnosis Beyond NP 551
StrategicCompanies Beyond NP 51

values that represent particular characteristics of a given instance–, it is possible to choose
the best algorithm among a pool of them –in our case, tools to solve ASP instances. In
order to make such a selection in an automatic way, we model the problem using multinomial
classification algorithms, i.e., machine learning techniques that allow automatic classification
of a set of instances, given instance features.

More in detail, in multinomial classification we are given a set of patterns, i.e., input
vectors X = {x1, . . . xk} with xi ∈ Rn, and a corresponding set of labels, i.e., output values
Y ∈ {1, . . . , m}, where Y is composed of values representing the m classes of the multinomial
classification problem. In our modeling, the m classes are m ASP solvers. We think of the
labels as generated by some unknown function f : Rn → {1, . . . , m} applied to the patterns,
i.e., f(xi) = yi for i ∈ {1, . . . , k} and yi ∈ {1, . . . , m}. Given a set of patterns X and a
corresponding set of labels Y , the task of a multinomial classifier c is to extrapolate f given
X and Y , i.e., construct c from X and Y so that when we are given some x? ∈ X we should
ensure that c(x?) is equals to f(x?). This task is called training, and the pair (X, Y) is called
the training set.

3 Benchmark data and Settings

In this section we report some information concerning the benchmark settings employed in
this work, which is needed for properly introducing the techniques described in the remainder
of the paper. In particular, we report some data concerning: benchmark problems, instances
and ASP solvers employed, as well as the hardware platform, and the execution settings for
reproducibility of experiments.

3.1 Dataset
The benchmarks considered for the experiments belong to the suite of the 3rd ASP Compe-
tition [5]. This is a large and heterogeneous suite of hard benchmarks, which was already

M. Maratea, L. Pulina, and F. Ricca 41

employed for evaluating the performance of state-of-the-art ASP solvers, which are encoded in
ASP-Core. That suite includes planning domains, temporal and spatial scheduling problems,
combinatorial puzzles, graph problems, and a number of application domains i.e., database,
information extraction and molecular biology field.1 More in detail, we have employed the
encodings used in the System Track of the competition, and all the problem instances made
available (in form of facts) from the contributors of the problem submission stage of the
competition, which are available from the competition website [4]. Note that this is a superset
of the instances actually selected for running (and, thus evaluated in) the competition itself.
Hereafter, with instance we refer to the complete input program (i.e., encoding+facts) to be
fed to a solver for each instance of the problem to be solved.

The techniques presented in this paper are conceived for dealing with propositional
programs, thus we have grounded all the mentioned instances by using GrinGo (v.3.0.3) [11]
to obtain a setup very close to the one of the competition.We considered only computationally-
hard benchmarks, corresponding to all problems belonging to the categories NP and Beyond
NP of the competition. The dataset is summarized in Table 1, which also reports the
complexity classification and the number of available instances for each problem.

3.2 Executables and Hardware Settings
We have run all the ASP solvers in our experiments that entered the System Track of the
3rd ASP Competition [4] with the addition of DLV [22] (which did not participate in the
competition since it is developed by the organizers of the event). In this way we have covered
–to the best of our knowledge– all the state-of-the-art solutions fitting the benchmark settings.
In detail, we have run: clasp [10], claspD [7], claspfolio [9], idp [39], cmodels [24],
sup [25], Smodels [36], and several solvers from both the lp2sat [20] and lp2diff [21]
families, namely: lp2gminisat, lp2lminisat, lp2lgminisat, lp2minisat, lp2diffgz3,
lp2difflgz3, lp2difflz3, and lp2diffz3. More in detail, clasp is a native ASP solver
relying on conflict-driven nogood learning; claspD is an extension of clasp that is able to
deal with disjunctive logic programs, while claspfolio exploits machine-learning techniques
in order to choose the best-suited execution options of clasp; idp is a finite model generator
for extended first-order logic theories, which is based on MiniSatID [28]; Smodels is one
of the first robust native ASP solvers that have been made available to the community;
DLV [22] is one of the first systems able to cope with disjunctive programs; cmodels exploits
a SAT solver as a search engine for enumerating models, and also verifying model minimality
whenever needed; sup exploits nonclausal constraints, and can be seen as a combination
of the computational ideas behind cmodels and Smodels; the lp2sat family employs
several variants (indicated by the trailing g, l and lg) of a translation strategy to SAT
and resorts on MiniSat [8] for actually computing the answer sets; the lp2diff family
translates programs in difference logic over integers [37] and exploit Z3 [6] as underlying
solver (again, g, l and lg indicate different translation strategies). Solvers were run on the
same configuration (i.e., parameter settings) as in the competition.

Concerning the hardware employed and the execution settings, all the experiments were
carried out on CyberSAR [29], a cluster comprised of 50 Intel Xeon E5420 blades equipped
with 64 bit Gnu Scientific Linux 5.5. Unless otherwise specified, the resources granted to the
solvers are 600s of CPU time and 2GB of memory. Time measurements were carried out
using the time command shipped with Gnu Scientific Linux 5.5.

1 An exhaustive description of the benchmark problems can be found in [4].

ICLP’12

42 Applying Machine Learning Techniques to ASP Solving

4 Designing a Multi-Engine ASP Solver

The design of a multi-engine solver involves several steps: (i) design of (syntactic) features
that are both significant for classifying the instances and cheap-to-compute (so that the
classifier can be fast and accurate); (ii) selection of solvers that are representative of the state
of the art (to be able to obtain the best possible performance in any considered instance);
and (iii) selection of the classification algorithm, and fair design of training and test sets, to
obtain a robust and unbiased classifier.

In the following we describe the choices we have made for designing me-asp, which is our
multi-engine solver for ground ASP programs.

4.1 Features
We consider syntactic features that are cheap-to-compute, i.e., computable in linear time
in the size of the input, given that in previous work (e.g., [32]) syntactic features have
been profitably used for characterizing (inherently) ground instances. The features that
we compute for each ground program are divided into four groups: problems size, balance,
“proximity to horn” and ASP-based peculiar features. This categorization is borrowed
from [31]. The problem size features are: number of rules r, number of atoms a, ratios
r/a, (r/a)2, (r/a)3 and ratios reciprocal a/r, (a/r)2 and (a/r)3. The balance features are:
fraction of unary, binary and ternary rules. The “proximity to horn” features are: fraction of
horn rules and number of occurrences in a horn rule for each atom. We have added a number
of ASP peculiar features, namely: number of true and disjunctive facts, fraction of normal
rules and constraints c. Also some combinations, e.g., c/r, are considered for a total of 52
features.

We were able to ground with GrinGo 1425 instances out of a total of 1462 in less than
600s.2 Our system for extracting features from ground programs can then compute all
features (in less than 600s) for 1371 programs: to have an idea of its performance, it can
compute all features of a ground program of approximately 20MB in about 4s.

4.2 Solvers selection
The target of our selection is to collect a pool of solvers that is representative of the state-of-
the-art solver (sota), i.e., considering a problem instance, the oracle that always fares the
best among available solvers. In order to do that, we ran preliminary experiments, and we
report the results (regarding the NP class) in Table 2. Looking at the table, first we notice
that we do not report results related to both claspD and claspfolio. Concerning the
results of claspD, we report that –considering the NP class– its performance is subsumed
by the performance of clasp. Considering the performance of claspfolio, we exclude such
system from this analysis because we consider it as a yardstick system, i.e., we will compare
its performance against the ones related to me-asp.

Looking at Table 2, we can see that only 4 solvers out of 16 are able to solve a noticeable
amount of instances uniquely, namely clasp, cmodels, DLV, and idp. Concerning Beyond
NP instances, we report that only three solvers are able to cope with such class of problems,
name claspD, cmodels, and DLV. Considering that both cmodels and DLV are involved
in the previous selection, the pool of engines used in me-asp will be composed of 5 solvers,
namely clasp, claspD, cmodels, DLV, and idp.

2 The exceptions are 10 and 27 instances of DisjunctiveScheduling and PackingProblem, respectively.

M. Maratea, L. Pulina, and F. Ricca 43

Table 2 Results of a pool of ASP solvers on the NP instances of the 3rd ASP Competition.
The table is organized as follows: Column “Solver” reports the solver name, column “Solved”
reports the total amount of instances solved with a time limit of 600 seconds, and, finally, in column
“Unique” we report the total amount of instances solved uniquely by the corresponding solver.

Solver Solved Unique Solver Solved Unique

clasp 445 26 lp2diffz3 307 –
cmodels 333 6 lp2sat2gminisat 328 –
dlv 241 37 lp2sat2lgminisat 322 –
idp 419 15 lp2sat2lminisat 324 –
lp2diffgz3 254 – lp2sat2minisat 336 –
lp2difflgz3 242 – smodels 134 –
lp2difflz3 248 – sup 311 1

4.3 Classification algorithms and training

The classification method employed in our analysis is Nearest-neighbor (nn), already
considered in [32] in QBF solving: it is a classifier yielding the label of the training instance
which is closer to the given test instance, whereby closeness is evaluated using some proximity
measure, e.g., Euclidean distance; we use the method described in [1] to store the training
instances for fast look-up.

As mentioned in Section 2.2, in order to train the classifier, we have to select a pool of
instances for training purpose, i.e., the training set. Concerning such selection, our aim is
twofold. On the one hand, we want to compose a training set in order to train a robust
model.

As result of the considerations above, we design a training set–ts1 in the following–
composed of the 320 instances solved uniquely –without taking into account the instances
involved in the competition– by the pool of engines selected in Section 4.2. The rational of
this choice is to try to “mask” noisy information during model training.

Our next experiment is devoted to training the classifier, and to assessing its accuracy.
Referring to the notation introduced in Section 2.2, even assuming that a training set is
sufficient to learn f , it is still the case that different sets may yield a different f . The problem
is that the resulting trained classifier may underfit the unknown pattern –i.e., its prediction
is wrong– or overfit –i.e., be very accurate only when the input pattern is in the training
set. Both underfitting and overfitting lead to poor generalization performance, i.e., c fails to
predict f(x∗) when x∗ 6= x. However, statistical techniques can provide reasonable estimates
of the generalization error. In order to test the generalization performance, we use a technique
known as stratified 10-times 10-fold cross validation to estimate the generalization in terms
of accuracy, i.e., the total amount of correct predictions with respect to the total amount
of patterns. Given a training set (X, Y), we partition X in subsets Xi with i ∈ {1, . . . 10}
such that X =

⋃10
i=1 Xi and Xi ∩Xj = ∅ whenever i 6= j; we then train c(i) on the patterns

X(i) = X \Xi and corresponding labels Y(i). We repeat the process 10 times, to yield 10
different c and we obtain the global accuracy estimate.

We finally report the accuracy results related to the experiment described above for our
classification method: 92.81%.

ICLP’12

44 Applying Machine Learning Techniques to ASP Solving

Table 3 Results of the various solvers on the grounded instances evaluated at the 3rd ASP
competition. me-asp(nn) has been trained on the ts1 training set.

Solver NP Beyond NP Total
#Solved Time #Solved Time #Solved Time

clasp 60 5132.45 – – – –
claspD – – 13 2344.00 – –
cmodels 56 5092.43 9 2079.79 65 7172.22
DLV 37 1682.76 15 1359.71 52 3042.47
idp 61 5010.79 – – – –
me-asp (nn) 66 4854.78 15 3187.31 81 8042.09
claspfolio 62 4824.06 – – – –
sota 71 5403.54 15 1221.01 86 6624.55

5 Performance analysis

In this section we present the results of the analysis we have performed. We consider the
training sets ts1 introduced in Section 4, composed of uniquely solved instances, and as test
set the successfully grounded instances evaluated at the 3rd ASP Competition (a total of
88 instances): the goal of this analysis is to test the efficiency of our approach on all the
evaluated instances when the model is trained on the whole space of the uniquely solved
instances.

The results are reported in a table structured as follows: the first column reports the
name of a solver, the second, third and fourth columns report the results of each solver on
NP, Beyond NP classes, and on both classes, respectively, in terms of the number of solved
instances within the time limit and sum of their solving times (a sub-column is devoted
to each of these numbers). About the last column, numbers are reported only for me-asp
and the engines that have been selected on both classes in Section 4.2 (note that claspD
always performs worse than clasp on NP instances, and claspfolio can only handle NP
instances).

We report the results obtained by running: me-asp with the nn classification method
introduced in Section 4.3, denoted with me-asp(nn) the component engines employed by
me-asp on each class as explained in Section 4.2, claspfolio and sota, which is the ideal
multi-engine solver (considering the engines employed).

We remind the reader that, for me-asp, the number of instances on which me-asp is run
is further limited to the ones for which we were able to compute all features, and its timings
include both the time spent for extracting the features from the ground instances, and the
time spent by the classifier.

Results are shown in Table 3. We can see that, on problems of the NP class, me-asp(nn)
solves the highest number of instances, 5 more than idp, 6 more than clasp and 4 more
than claspfolio, that we remind the fastest solver in the NP class that entered the System
Track of the competition. On the Beyond NP problems, instead, me-asp(nn) and DLV solve
15 instances (DLV having best mean CPU time), followed by claspD and cmodels, which
solve 13 and 9 instances, respectively. It is interesting to report the overall result of claspD,
i.e., the overall winner of the System Track of the competition on both NP and Beyond NP
classes: it solves a total of 62 instances (i.e., 52 NP instances and 13 Beyond NP instances),
thus a total of 19 instances less than me-asp(nn).

M. Maratea, L. Pulina, and F. Ricca 45

Summarizing, me-asp(nn) is the solver that solves the highest number of instances in
comparison with (i) its engines, (ii) claspfolio, i.e., the fastest solver in the NP class that
entered the System Track of the competition, and (iii) claspD, i.e., the overall winner of the
System Track of the competition. It is further very interesting to note that its performance
is very close to the sota solver which, we remind, has the ideal performance that we could
expect in these instances with these engines.

6 Related Work

Starting from the consideration that, on empirically hard problems, there is rarely a “global”
best algorithm, while it is often the case that different algorithms perform well on different
problem instances, Rice [34] defined the algorithm selection problem as the problem of finding
an effective, or good, or best algorithm, based on an abstract model of the problem at hand.
Along this line, several works have been done to tackle combinatorial problems efficiently.
[16, 23] described the concept of “algorithm portfolio” as a general method for combining
existing algorithms into new ones that are unequivocally preferable to any of the component
algorithms. Most related papers to our work are [40, 32] for solving SAT and QSAT problems.
Both [40] and [32] rely on a per-instance analysis, like the one we have performed in this
paper: in [32], which is the work closest to our, the goal is to design a multi-engine solver,
i.e. a tool that can choose among its engines the one which is more likely to yield optimal
results. The approach in [40] has also the ability to compute features on-line, e.g., by running
a solver for an allotted amount of time and looking “internally” to solver statistics, with the
option of changing the solver on-line: this is a per-instance algorithm portfolio approach.
The algorithm portfolio approach is employed also in, e.g., [16] on Constraint Satisfaction
and MIP, [35] on QSAT and [15] on planning problems. The advantage of the algorithm
portfolio over a multi-engine is that it is possible, by combining algorithms, to reach, in each
instance, better performance than the best engine, while this is the bound for a multi-engine
solver. On the other hand, an algorithm portfolio needs internal changes in the code of the
engines, while the multi-engine treats the engines as black-box, thus no internal modification,
even minor, is requested, resulting in higher modularity for this approach: when a new engine
is added, there is just the need to update the model. It has to be noticed that both [32]
and [40] reached very good results, e.g., aqme, the multi-engine solver implementing the
approach in [32] had top performance at the 2007 QBF competition.3 [33] extends [32] by
introducing a self-adaptation of the learned selection policies when the approach fails to give
a good prediction.

Other approaches work by designing methods for automatically tuning and configuring
the solver parameters: this approach is followed in, e.g., [19, 18] for solving SAT and MIP
problems, and [38] for planning problems. An overview can be found in [17]. In ASP, the
approach implemented in claspfolio [9] mixes characteristics of the algorithm portfolio
approach with others more similar to this second trend: it works by selecting the most
promising clasp internal configuration on the basis of both static and dynamic features of
the input program, the latter obtained by running clasp for a given amount of time. In
claspfolio, features are extracted by means of the claspre tool. Thus, like the algorithms
portfolio approaches, it can compute both static and dynamic features, while trying to
automatically configure the “best” clasp configuration on the basis of the computed features.
An alternative approach is followed in the dors framework of [2], where in the off-line

3 http:www.qbflib.org/qbfeval.

ICLP’12

http:www.qbflib.org/qbfeval

46 Applying Machine Learning Techniques to ASP Solving

learning phase, carried out on representative programs from a given domain, a heuristic
ordering is selected to be then used in smodels when solving other programs from the same
domain. The target of this work seems to be real-world problem domains where instances
have similar structures, and heuristic ordering learned in some (possibly small) instances in
the domain can help to improve the performance on other (possibly big) instances.

7 Conclusion

In this paper we have applied machine learning techniques to ASP solving with the goal of
developing a fast and robust multi-engine ASP solver. To this end, we have: (i) specified a
number of cheap-to-compute syntactic features that allow for accurate classification of ground
ASP programs; (ii) applied a multinomial classification method to learning algorithm selection
strategies; (iii) implemented these techniques in our multi-engine solver me-asp, which is
available for download at http://www.mat.unical.it/ricca/me-asp. The performance of
me-asp was assessed on an experiment, which was conceived for checking efficiency of our
approach, involving training and test sets of instances taken from the ones submitted to the
System Track of the 3rd ASP competition. Our analysis shows that, our multi-engine solver
me-asp is very robust and efficient, and outperforms both its component engines and state
of the art solvers.

Acknowledgements The authors would like to thank Marcello Balduccini for usefuls dis-
cussion on his solver dors.

References
1 D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms. Machine

learning, 6(1):37–66, 1991.
2 Marcello Balduccini. Learning and using domain-specific heuristics in ASP solvers. AI

Communications – The European Journal on Artificial Intelligence, 24(2):147–164, 2011.
3 Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press, Tempe, Arizona, 2003.
4 Francesco Calimeri, Giovambattista Ianni, and Francesco Ricca. The third answer set pro-

gramming system competition, since 2011. https://www.mat.unical.it/aspcomp2011/.
5 Francesco Calimeri, Giovambattista Ianni, Francesco Ricca, Mario Alviano, Annamaria

Bria, Gelsomina Catalano, Susanna Cozza, Wolfgang Faber, Onofrio Febbraro, Nicola
Leone, Marco Manna, Alessandra Martello, Claudio Panetta, Simona Perri, Kristian Reale,
Maria Carmela Santoro, Marco Sirianni, Giorgio Terracina, and Pierfrancesco Veltri. The
Third Answer Set Programming Competition: Preliminary Report of the System Compe-
tition Track. In Proc. of LPNMR11., pages 388–403, Vancouver, Canada, 2011. LNCS
Springer.

6 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In
TACAS, pages 337–340, 2008.

7 Christian Drescher, Martin Gebser, Torsten Grote, Benjamin Kaufmann, Arne König, Max
Ostrowski, and Torsten Schaub. Conflict-Driven Disjunctive Answer Set Solving. In Ger-
hard Brewka and Jérôme Lang, editors, Proceedings of the Eleventh International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR 2008), pages 422–432,
Sydney, Australia, 2008. AAAI Press.

8 Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Theory and Applications
of Satisfiability Testing, 6th International Conference, SAT 2003, pages 502–518. LNCS
Springer, 2003.

http://www.mat.unical.it/ricca/me-asp
https://www.mat.unical.it/aspcomp2011/

M. Maratea, L. Pulina, and F. Ricca 47

9 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Torsten Schaub, Marius Thomas
Schneider, and Stefan Ziller. A portfolio solver for answer set programming: Preliminary
report. In James P. Delgrande and Wolfgang Faber, editors, Proc. of the 11th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), volume 6645
of LNCS, pages 352–357, Vancouver, Canada, 2011. Springer.

10 Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-
driven answer set solving. In Twentieth International Joint Conference on Artificial Intel-
ligence (IJCAI-07), pages 386–392, Hyderabad, India, January 2007. Morgan Kaufmann
Publishers.

11 Martin Gebser, Torsten Schaub, and Sven Thiele. GrinGo : A New Grounder for Answer
Set Programming. In Chitta Baral, Gerhard Brewka, and John S. Schlipf, editors, Logic
Programming and Nonmonotonic Reasoning, 9th International Conference, LPNMR 2007,
Tempe, AZ, USA, May 15-17, 2007, Proceedings, volume 4483 of Lecture Notes in Computer
Science, pages 266–271, Tempe, Arizona, 2007. Springer.

12 Michael Gelfond and Nicola Leone. Logic Programming and Knowledge Representation –
the A-Prolog perspective . Artificial Intelligence, 138(1–2):3–38, 2002.

13 Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic Program-
ming. In Logic Programming: Proceedings Fifth Intl Conference and Symposium, pages
1070–1080, Cambridge, Mass., 1988. MIT Press.

14 Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing, 9:365–385, 1991.

15 Alfonso Gerevini, Alessandro Saetti, and Mauro Vallati. An automatically configurable
portfolio-based planner with macro-actions: PbP. In Alfonso Gerevini, Adele E. Howe,
Amedeo Cesta, and Ioannis Refanidis, editors, Proc. of the 19th International Conference
on Automated Planning and Scheduling, Thessaloniki, Greece, 2009. AAAI.

16 Carla P. Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence, 126(1-2):43–
62, 2001.

17 Holger H. Hoos. Programming by optimization. Communucations of the ACM, 55(2):70–80,
2012.

18 Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Automated configuration of
mixed integer programming solvers. In Andrea Lodi, Michela Milano, and Paolo Toth, edi-
tors, Proc. of the 7th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, volume 6140 of LNCS,
pages 186–202, Bologna, Italy, 2010. Springer.

19 Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. ParamILS: An
automatic algorithm configuration framework. Journal of Artificial Intelligence Research,
36:267–306, 2009.

20 Tomi Janhunen. Some (in)translatability results for normal logic programs and proposi-
tional theories. Journal of Applied Non-Classical Logics, 16:35–86, 2006.

21 Tomi Janhunen, Ilkka Niemelä, and Mark Sevalnev. Computing stable models via reduc-
tions to difference logic. In Proceedings of the 10th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR), LNCS, pages 142–154, Postdam,
Germany, 2009. Springer.

22 Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV System for Knowledge Representation and Reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, July 2006.

23 K. Leyton-Brown, E. Nudelman, G. Andrew, J. Mcfadden, and Y. Shoham. A portfolio
approach to algorithm selection. In In IJCAI-03, 2003.

24 Yuliya Lierler. Disjunctive Answer Set Programming via Satisfiability. In Chitta Baral,
Gianluigi Greco, Nicola Leone, and Giorgio Terracina, editors, Logic Programming and

ICLP’12

48 Applying Machine Learning Techniques to ASP Solving

Nonmonotonic Reasoning — 8th International Conference, LPNMR’05, Diamante, Italy,
September 2005, Proceedings, volume 3662 of Lecture Notes in Computer Science, pages
447–451. Springer Verlag, September 2005.

25 Yuliya Lierler. Abstract Answer Set Solvers. In Logic Programming, 24th International
Conference (ICLP 2008), volume 5366 of Lecture Notes in Computer Science, pages 377–
391. Springer, 2008.

26 Vladimir Lifschitz. Answer Set Planning. In Danny De Schreye, editor, Proceedings of the
16th International Conference on Logic Programming (ICLP’99), pages 23–37, Las Cruces,
New Mexico, USA, November 1999. The MIT Press.

27 V. Wiktor Marek and Mirosław Truszczyński. Stable models and an alternative logic
programming paradigm. CoRR, cs.LO/9809032, 1998.

28 Maarten Mariën, Johan Wittocx, Marc Denecker, and Maurice Bruynooghe. SAT(ID):
Satisfiability of propositional logic extended with inductive definitions. In Proc. of the
11th International Conference on Theory and Applications of Satisfiability Testing (SAT),
LNCS, pages 211–224, Guangzhou, China, 2008. Springer.

29 A. Masoni, M. Carpinelli, G. Fenu, A. Bosin, D. Mura, I. Porceddu, and G. Zanetti. Cyber-
sar: A lambda grid computing infrastructure for advanced applications. In Nuclear Science
Symposium Conference Record (NSS/MIC), 2009 IEEE, pages 481–483. IEEE, 2009.

30 Ilkka Niemelä. Logic Programs with Stable Model Semantics as a Constraint Programming
Paradigm. In Ilkka Niemelä and Torsten Schaub, editors, Proceedings of the Workshop on
Computational Aspects of Nonmonotonic Reasoning, pages 72–79, Trento, Italy, May/June
1998.

31 Eugene Nudelman, Kevin Leyton-Brown, Holger H. Hoos, Alex Devkar, and Yoav Shoham.
Understanding random SAT: Beyond the clauses-to-variables ratio. In Mark Wallace, ed-
itor, Proc. of the 10th International Conference on Principles and Practice of Constraint
Programming (CP), Lecture Notes in Computer Science, pages 438–452, Toronto, Canada,
2004. Springer.

32 Luca Pulina and Armando Tacchella. A multi-engine solver for quantified boolean formulas.
In Christian Bessiere, editor, Proc. of the 13th International Conference on Principles and
Practice of Constraint Programming (CP), Lecture Notes in Computer Science, pages 574–
589, Providence, Rhode Island, 2007. Springer.

33 Luca Pulina and Armando Tacchella. A self-adaptive multi-engine solver for quantified
boolean formulas. Constraints, 14(1):80–116, 2009.

34 John R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.
35 Horst Samulowitz and Roland Memisevic. Learning to solve QBF. In Proc. of the 22th

AAAI Conference on Artificial Intelligence, pages 255–260, Vancouver, Canada, 2007.
AAAI Press.

36 Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and Implementing the Stable
Model Semantics. Artificial Intelligence, 138:181–234, June 2002.

37 smt-lib-web. The Satisfiability Modulo Theories Library, 2011. http://www.smtlib.org/.
38 Mauro Vallati, Chris Fawcett, Alfonso Gerevini, Holger Hoos, and Alessandro Saetti. Gen-

erating fast domain-specific planners by automatically configuting a generic parameterised
planner. Working notes of 21st International Conference on Automated Planning and
Scheduling (ICAPS-11) – Workshop on Planning and Learning, 2011.

39 Johan Wittocx, Maarten Mariën, and Marc Denecker. The idp system: a model expansion
system for an extension of classical logic. In Marc Denecker, editor, Logic and Search, Com-
putation of Structures from Declarative Descriptions (LaSh 2008), pages 153–165, Leuven,
Belgium, November 2008.

40 Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. SATzilla: Portfolio-based
algorithm selection for SAT. JAIR, 32:565–606, 2008.

http://www.smtlib.org/

An Answer Set Solver for non-Herbrand Programs:
Progress Report
Marcello Balduccini1

1 Kodak Research Laboratories
Eastman Kodak Company
Rochester, NY 14650-2102 USA
marcello.balduccini@gmail.com

Abstract
In this paper we propose an extension of Answer Set Programming (ASP) by non-Herbrand
functions, i.e. functions over non-Herbrand domains, and describe a solver for the new language.
Our approach stems for our interest in practical applications, and from the corresponding need
to compute the answer sets of programs with non-Herbrand functions efficiently. Our extension
of ASP is such that the semantics of the new language is obtained by a comparatively small
change to the ASP semantics from [8]. This makes it possible to modify a state-of-the-art ASP
solver in an incremental fashion, and use it for the computation of the answer sets of (a large
class of) programs of the new language. The computation is rather efficient, as demonstrated by
our experimental evaluation.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Answer Set Programming, non-Herbrand Functions, Answer Set Solving,
Knowledge Representation and Reasoning

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.49

1 Introduction

In this paper we describe an extension of Answer Set Programming (ASP) [8, 12, 2] called
ASP{f}, and a solver for the new language.

In logic programming, functions are typically interpreted over the Herbrand Universe, with
each functional term f(x) mapped to its own canonical syntactical representation. That is,
in most logic programming languages, the value of an expression f(x) is f(x) itself, and thus
strictly speaking f(x) = 2 is false. This type of functions, the corresponding languages and
efficient implementation of solvers is the subject of a substantial amount of research (we refer
the reader to e.g. [5, 3, 13]).

When representing certain kinds of knowledge, however, it is sometimes convenient to use
functions with non-Herbrand domains (non-Herbrand functions for short), i.e. functions
that are interpreted over domains other than the Herbrand Universe. For example, when
describing a domain in which people enter and exit a room over time, it may be convenient
to represent the number of people in the room at step s by means of a function occupancy(s)
and to state the effect of a person entering the room by means of a statement such as

occupancy(S + 1) = O + 1← occupancy(S) = O

where S is a variable ranging over the possible time steps in the evolution of the domain.
© Marcello Balduccini;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 49–60

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.49
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

50 An Answer Set Solver for non-Herbrand Programs: Progress Report

Of course, in most logic programming languages, non-Herbrand functions can still be
represented, but the corresponding encodings are not as natural and declarative as the one
above. For instance, a common approach consists in representing the functions of interest
using relations, and then characterizing the functional nature of these relations by writing
auxiliary axioms. In ASP, one would encode the above statement by (1) introducing a
relation occupancy′(s, o), whose intuitive meaning is that occupancy′(s, o) holds iff the value
of occupancy(s) is o; and (2) re-writing the original statement as a rule

occupancy′(S + 1, O + 1)← occupancy′(S,O). (1)

The characterization of the relation as representing a function would be completed by an
axiom such as

¬occupancy′(S,O′)← occupancy′(S,O), O 6= O′. (2)

which intuitively states that occupancy(s) has a unique value. The disadvantage of this
representation is that the functional nature of occupancy′(s, o) is only stated in (2). When
reading (1), one is given no indication that occupancy′(s, o) represents a function – and, before
finding statements such as (2), one can make no assumption about the functional nature
of the relations in a program when a combination of (proper) relations and non-Herbrand
functions are present.

Various extensions of ASP with non-Herbrand functions exist in the literature. In [4],
Quantified Equilibrium Logic is extended with support for equality. A subset of the general
language, called FLP, is then identified which can be translated into normal logic programs.
Such translation makes it possible to compute the answer sets of FLP programs using
ASP solvers. [10] proposes instead the use of second-order theories for the definition of the
semantics of the language. Again, a transformation is described, which removes non-Herbrand
functions and makes it possible to use ASP solvers for the computation of the answer sets
of programs in the extended language. In [11, 14] the semantics is based on the notion
of reduct as in the original ASP semantics [8]. For the purpose of computing answer sets,
a translation is defined, which maps programs of the language from [11, 14] to constraint
satisfaction problems, so that CSP solvers can be used for the computation of the answer
sets of programs in the extended language. Finally, the language of clingcon [7] extends
ASP with elements from constraint satisfaction. The clingcon solver finds the answer sets
of a program by interleaving the computations of an ASP solver and of a CSP solver.

Our investigation stems for our interest in practical applications, and in particular from the
need for a knowledge representation language with non-Herbrand functions that can be used
for such applications and that allows for an efficient computation of answer sets. From this
point of view, the existing approaches have certain limitations.

The transformations to constraint satisfaction problems used in [11, 14] certainly allow for
an efficient computation of answer sets using constraint solving techniques, as demonstrated
by the experimental results in [14]. On the other hand, the recent successes of CDCL-based
solvers (see e.g. [9]) such as clasp [6] have shown that for certain domains CSP solvers
perform poorly compared to CDCL-based solvers. For practical applications it is therefore
important to ensure the availability of a CDCL-based solver as well. Furthermore, as observed
in [4], the requirement made in [11, 14] that non-Herbrand functions be total yields some
counterintuitive results in certain knowledge representation tasks, which, from our point
of view, limits the practical applications of the language. This arguments also holds for

M. Balduccini 51

clingcon. An additional limitation of clingcon is the fact that the interleaved computation
it performs carries some overhead.

In both [4] (where functions are partial) and [10] (where functions are total) the computation
of the answer sets of a program is obtained by translating the program into a normal logic
program, and then using state-of-the-art ASP solving techniques and solvers. Unfortunately,
in both cases the translation to normal logic programs causes a substantial growth of the
size of the translated (ground) program compared to the original (ground) program. Two,
similar and often concurrent reasons exist for this growth. First of all, when a non-Herbrand
function is removed and replaced by a relation-based representation, axioms that ensure
the uniqueness of value of the function have to be introduced. In [4], for example, when a
function f(·) is removed, the following constraint is introduced:

← holds_f(X,V), holds_f(X,W), V 6= W. (3)

As usual, before an ASP solver can be used, this constraint must in turn be replaced by its
ground instances, obtained by substituting every variable in it by a constant. This process
causes the appearance of |Df |2 · |Cf | ground instances, where Df and Cf are respectively the
domain and the co-domain of function f . In the presence of functions with a sizable domain
and/or co-domain, the number of ground instances of (3) can grow quickly and impact the
performance of the solver rather substantially. Secondly, certain syntactic elements of these
extended languages, once mapped to normal logic programs, can also yield translations with
large ground instances. Taking again [4] as an example (the transformation in [10] appears
to follow the same pattern), consider the FLP rule:

p(x)← f(x) # g(x). (4)

which intuitively says that p(x) must hold if f and g are defined for x and have different
values. During the transformation to normal logic programs, this rule is translated into:

p(x)← Y 6= Z, holds_f(x, Y), holds_g(x, Z).

Similarly to the previous case, the number of ground instances of this rule grows proportionally
with |Df |2, and in the presence of non-Herbrand functions with sizable domains, solver
performance can be affected quite substantially. Although one might argue that it is possible
to modify an ASP solver to guarantee that (3) is enforced without the need to explicitly
specify it in the program, such a solution is unlikely to be applicable in the case of an
arbitrary rule such as (4).

In response to these issues, in this paper we define an extension of ASP with non-Herbrand
functions, called ASP{f}, that is obtained with a comparatively small modification to the
semantics from [8]. The nature of this change makes it possible to modify a state-of-the-art
ASP solver in an incremental fashion, and to use it directly for the computation of the answer
sets of (a large class of) ASP{f} programs. This prevents the phenomenon of the quadratic
growth of the ground instance described above and results in a rather efficient computation,
as demonstrated later in the paper.

The rest of the paper is organized as follows. The next two sections describe the syntax
and the semantics of the proposed language. In the following section we discuss the topic of
knowledge representation with non-Herbrand functions. Next, we describe our ASP{f} solver
and report experimental results. Finally, we draw conclusions and discuss future work.

ICLP’12

52 An Answer Set Solver for non-Herbrand Programs: Progress Report

2 The Syntax of ASP{f}

In this section we define the syntax of ASP{f}. To keep the presentation simple, in this
paper the version of ASP{f} described here does not allow for Herbrand functions, and thus
from now on we drop the “non-Herbrand” attribute. (Allowing for Herbrand functions is
straightforward.)

The syntax of ASP{f} is based on a signature Σ = 〈C,F ,R〉 whose elements are, respectively,
finite sets of constants, function symbols and relation symbols. A term is an expression
f(c1, . . . , cn) where f ∈ F , and ci’s are 0 or more constants. An atom is an expression
r(c1, . . . , cn), where r ∈ R, and ci’s are constants. The set of all terms (resp., atoms) that can
be formed from Σ is denoted by T (resp., A). A t-atom is an expression of the form f = g,
where f is a term and g is either a term or a constant. We call seed t-atom a t-atom of the
form f = v, where v is a constant. Any t-atom that is not a seed t-atom is a dependent t-atom.
Thus, given a signature with C = {a, b, 0, 1, 2, 3, 4} and F = {occupancy, seats}, expressions
occupancy(a) = 2 and seats(b) = 4 are seed t-atoms, while occupancy(b) = seats(b) is a
dependent t-atom.

A regular literal is an atom a or its strong negation ¬a. A t-literal is a t-atom f = g or its
strong negation ¬(f = g), which we abbreviate f 6= g. A dependent t-literal is any t-literal that
is not a seed t-atom. A literal is a regular literal or a t-literal. A seed literal is a regular literal
or a seed t-atom. Given a signature with R = {room_evacuated}, F = {occupancy, seats}
and C = {a, b, 0, . . . , 4}, room_evacuated(a), ¬room_evacuated(b) and occupancy(a) = 2
are seed literals (as well as literals); room_evacuated(a) and ¬room_evacuated(b) are also
regular literals; occupancy(b) 6= 1 and occupancy(b) = seats(b) are dependent t-literals, but
they are not regular or seed literals.

A rule r is a statement of the form:

h← l1, . . . , lm,not lm+1, . . . ,not ln (5)

where h is a seed literal and li’s are literals. Similarly to ASP, the informal reading of r
is that a rational agent who believes l1, . . . , lm and has no reason to believe lm+1, . . . , ln
must believe h. Given a signature with R = {room_evacuated, door_stuck, room_occupied,
room_maybe_occupied}, F = {occupancy} and C = {0}, the following is an example of
ASP{f} rules encoding knowledge about the occupancy of a room:

r1 : occupancy = 0← room_evacuated, not door_stuck.

r2 : room_occupied← occupancy 6= 0.

r3 : room_maybe_occupied← not occupancy = 0.

Intuitively, rule r1 states that the occupancy of the room is 0 if the room has been evacuated
and there is no reason to believe that the door is stuck. Rule r2 says that the room is
occupied if its occupancy is different from 0. On the other hand, r3 aims at drawing a weaker
conclusion, stating that the room may be occupied if there is no explicit knowledge (i.e.
reason to believe) that its occupancy is 0.

Given rule r from (5), head(r) denotes {h}; body(r) denotes {l1, . . . ,not ln}; pos(r) denotes
{l1, . . . , lm}; neg(r) denotes {lm+1, . . . , ln}.

A constraint is a special type of rule with an empty head, informally meaning that the
condition described by the body of the constraint must never be satisfied. A constraint is
considered a shorthand of ⊥ ← l1, . . . , lm,not lm+1, . . . ,not ln,not ⊥, where ⊥ is a fresh
atom.

M. Balduccini 53

A program is a pair Π = 〈Σ, P 〉, where Σ is a signature and P is a set of rules. Whenever
possible, in this paper the signature is implicitly defined from the rules of Π, and Π is
identified with its set of rules. In that case, the signature is denoted by Σ(Π) and its elements
by C(Π), F(Π) and R(Π). A rule r is positive if neg(r) = ∅. A program Π is positive if every
r ∈ Π is positive. A program Π is also t-literal free if no t-literals occur in the rules of Π.

Like in ASP, in ASP{f} too variables can be used in place of constants and terms. The
grounding of a rule r is the set of all the syntactically valid rules (its ground instances)
obtained by replacing every variable of r with an element of C. The grounding of a program
Π is the set of the groundings of the rules of Π. A syntactic element of the language is ground
if it is variable-free and non-ground otherwise.

3 Semantics of ASP{f}

The semantics of a non-ground program is defined to coincide with the semantics of its
grounding. The semantics of ground ASP{f} programs is defined below. It is worth noting
that the semantics of ASP{f} is obtained from that of ASP in [8] by simply extending
entailment to t-literals.

In the rest of this section, we consider only ground terms, literals, rules and programs and
thus omit the word “ground.” A set S of seed literals is consistent if (1) for every atom a ∈ A,
{a,¬a} 6⊆ S; (2) for every term t ∈ T and v1, v2 ∈ C such that v1 6= v2, {t = v1, t = v2} 6⊆ S.
Hence, S1 = {p,¬q, f = 3} and S2 = {q, f = 3, g = 2} are consistent, while {p,¬p, f = 3}
and {q, f = 3, f = 2} are not. Incidentally, {p,¬q, f = g, g = 2} is not a set of seed literals,
because f = g is not a seed literal.

The value of a term t w.r.t. a consistent set S of seed literals (denoted by valS(t)) is v iff
t = v ∈ S. If, for every v ∈ C, t = v 6∈ S, the value of t w.r.t. S is undefined. The value
of a constant v ∈ C w.r.t. S (valS(v)) is v itself. For example given S1 and S2 as above,
valS2(f) is 3 and valS2(g) is 2, whereas valS1(g) is undefined. Given S1 and a signature with
C = {0, 1}, valS1(1) = 1.

A seed literal l is satisfied by a consistent set S of seed literals iff l ∈ S. A dependent t-literal
f = g (resp., f 6= g) is satisfied by S iff both valS(f) and valS(g) are defined, and valS(f) is
equal to valS(g) (resp., valS(f) is different from valS(g)). Thus, seed literals q and f = 3
are satisfied by S2; f 6= g is also satisfied by S2 because valS2(f) and valS2(g) are defined,
and valS2(f) is different from valS2(g). Conversely, f = g is not satisfied, because valS2(f)
is different from valS2(g). The t-literal f 6= h is also not satisfied by S2, because valS2(h)
is undefined. When a literal l is satisfied (resp., not satisfied) by S, we write S |= l (resp.,
S 6|= l).

An extended literal is a literal l or an expression of the form not l. An extended literal not l
is satisfied by a consistent set S of seed literals (S |= not l) if S 6|= l. Similarly, S 6|= not l if
S |= l. Considering set S2 again, extended literal not f = h is satisfied by S2, because f = h

is not satisfied by S2.

Finally, a set E of extended literals is satisfied by a consistent set S of seed literals (S |= E)
if S |= e for every e ∈ E.

We begin by defining the semantics of ASP{f} programs for positive programs.

A set S of seed literals is closed under positive rule r if S |= h, where head(r) = {h},
whenever S |= pos(r). Hence, set S2 described earlier is closed under f = 3 ← g 6= 1 and

ICLP’12

54 An Answer Set Solver for non-Herbrand Programs: Progress Report

(trivially) under f = 2← r, but it is not closed under p← f = 3, because S2 |= f = 3 but
S2 6|= p. S is closed under Π if it is closed under every rule r ∈ Π.

Finally, a set S of seed literals is an answer set of a positive program Π if it is consistent and
closed under Π, and is minimal (w.r.t. set-theoretic inclusion) among the sets of seed literals
that satisfy such conditions. Thus, the program {p← f = 2. f = 2. q ← q.} has one
answer sets, {f = 2, p}. The set {f = 2} is not closed under the first rule of the program, and
therefore is not an answer set. The set {f = 2, p, q} is also not an answer set, because it is not
minimal (it is a proper superset of another answer set). Notice that positive programs may
have no answer set. For example, the program {f = 3← not p. f = 2← not q.} has
no answer set. Programs that have answer sets (resp., no answer sets) are called consistent
(resp., inconsistent).

Positive programs enjoy the following property:
I Proposition 1. Every consistent positive ASP{f} program Π has a unique answer set.

Next, we define the semantics of arbitrary ASP{f} programs.

The reduct of a program Π w.r.t. a consistent set S of seed literals is the set ΠS consisting
of a rule head(r) ← pos(r) (the reduct of r w.r.t. S) for each rule r ∈ Π for which
S |= body(r) \ pos(r).

I Example 1. Consider a set of seed literals S3 = {g = 3, f = 2, p, q}, and program Π1:

r1 : p← f = 2,not g = 1,not h = 0. r2 : q ← p,not g 6= 2.
r3 : g = 3. r4 : f = 2.

and let us compute its reduct. For r1, first we have to check if S3 |= body(r1) \ pos(r1),
that is if S3 |= not g = 1,not h = 0. Extended literal not g = 1 is satisfied by S3 only
if S3 6|= g = 1. Because g = 1 is a seed literal, it is satisfied by S3 if g = 1 ∈ S3. Since
g = 1 6∈ S3, we conclude that S3 6|= g = 1 and thus not g = 1 is satisfied by S3. In a similar
way, we conclude that S3 |= not h = 0. Hence, S3 |= body(r1)\pos(r1). Therefore, the reduct
of r1 is p← f = 2. For the reduct of r2, notice that not g 6= 2 is not satisfied by S3. In fact,
S3 |= not g 6= 2 only if S3 6|= g 6= 2. However, it is not difficult to show that S3 |= g 6= 2:
in fact, valS3(g) is defined and valS3(g) 6= 2. Therefore, not g 6= 2 is not satisfied by S3,
and thus the reduct of Π1 contains no rule for r2. The reducts of r3 and r4 are the rules
themselves. Summing up, ΠS3

1 is {r′1 : p← f = 2, r′3 : g = 3, r′4 : f = 2}

Finally, a consistent set S of seed literals is an answer set of Π if S is the answer set of ΠS .

I Example 2. By applying the definitions given earlier, it is not difficult to show that an
answer set of ΠS3

1 is {f = 2, g = 3, p} = S3. Hence, S3 is an answer set of ΠS3
1 . Consider

instead S4 = S3 ∪ {h = 1}. Clearly ΠS4
1 = ΠS3

1 . From the uniqueness of the answer sets of
positive programs, it follows immediately that S4 is not an answer set of ΠS4

1 . Therefore, S4
is not an answer set of Π1.

4 Knowledge Representation with ASP{f}

In this section we demonstrate the use of ASP{f} for the formalization of key types of
knowledge. We start our discussion by addressing the encoding of defaults.

Consider the statements: (1) the value of f(x) is a unless otherwise specified; (2) the value of
f(x) is b if p(x) (this example is similar to, and inspired by, one from [10]). These statements

M. Balduccini 55

can be encoded in ASP{f} by P1 = {r1 : f(x) = a← not f(x) 6= a., r2 : f(x) = b← p(x).}.
Rule r1 encodes the default, and r2 encodes the exception. The informal reading of r1,
according to the description given earlier in this paper, is “if there is no reason to believe
that f(x) is different from a, then f(x) must be equal to a”.

Extending a common ASP methodology, the choice of value for a non-Herbrand function can
be encoded in ASP{f} by means of default negation. Consider the statements (adapted from
[10]): (1) the value f(X) is a if p(X); (2) otherwise, the value of f(X) is arbitrary. Let the
domain of variable X be given by a relation dom(X), and let the possible values of f(X) be
encoded by a relation val(V). A possible ASP{f} encoding of these statements is {r1 : f(X) =
a ← p(X), dom(X)., r2 : f(X) = V ← dom(X), val(V), not p(X), not f(X) 6= V.}.
Rule r1 encodes the first statement. Rule r2 formalizes the arbitrary selection of values for
f(X) in the default case.

A similar use of defaults is typically associated, in ASP, with the representation of dynamic
domains. In this case, defaults are a key tool for the encoding of the law of inertia. Let us
show how dynamic domains involving functions can be represented in ASP{f}. Consider a
domain including a button bi, which increments a counter c, and a button br, which resets
it. At each time step, the agent operating the buttons may press either button, or none. A
possible ASP{f} encoding of this domain is:

r1 : val(c, S + 1) = 0← pressed(br, S).
r2 : val(c, S + 1) = N + 1← pressed(bi, S), val(c, S) = N.

r3 : val(c, S + 1) = N ← val(c, S) = N, not val(c, S + 1) 6= val(c, S).

Rules r1 and r2 are a straightforward encoding of the effect of pressing either button (variable
S denotes a time step). Rule r3 is the ASP{f} encoding of the law of inertia for the value
of the counter, and states that the value of c does not change unless it is forced to. For
simplicity of presentation, it is instantiated for a particular function, but could be as easily
written so that it applies to arbitrary functions from the domain.

Formal results about ASP{f} that are useful for knowledge representation tasks can be found
in [1].

5 Computing the Answer Sets of ASP{f} Programs

In this section we describe an algorithm, clasp{f}, which computes the answer sets of ASP{f}
programs. Although clasp{f} is based on the clasp algorithm [6], the approach can be
easily extended to other ASP solvers. In our description we follow the notation of [6], to
which the interested reader can refer for more details on the clasp algorithm.

As customary, the algorithm operates on ground programs. To keep the presentation simple,
we further assume that every program Π considered in this section contains, for every atom a

from Π, a constraint ← a,¬a (usually this constraint is added automatically by the solver).

Given a literal l, a signed literal is an expression of the form Tl or Fl. Given a signed literal
σ, σ, called the complement of σ, denotes Fl if σ is Tl, and Tl otherwise. An assignment A
over some domain D is a sequence 〈σ1, . . . , σn〉 of signed literals for literals from D. The
domain of A is denoted by dom(A). The expression A ◦ B denotes the concatenation of
assignments A and B. For an assignment A, we denote by AT the set of literals l such that
Tl occurs in A; AF is instead the set of literals l such that Fl occurs in A.

A nogood is a set {σ1, . . . , σn} of signed literals. An assignment A is a solution for a set ∆ of
nogoods if (1) AT ∪AF = dom(A); (2) AT ∩AF = ∅; and (3) for every δ ∈ ∆, δ 6⊆ A. Given

ICLP’12

56 An Answer Set Solver for non-Herbrand Programs: Progress Report

a nogood δ, a signed literal σ ∈ δ and an assignment A, σ is called unit-resulting for δ w.r.t.
A if δ \A = {σ} and σ 6∈ A. Unit propagation is the process of iteratively extending A with
unit-resulting signed literals until no signed literal is unit-resulting for any nogood in ∆.

At the core of the computation of the answer sets of a program in clasp{f} is the process of
mapping the program to a suitable set of nogoods. Such mapping is described next, beginning
with the nogoods already used in clasp.

Given a program Π, let lit(Π) be the set of literals that occur in Π, seed(Π) the set of
seed literals that occur in Π, and body(Π) be the collection of the bodies of the rules of Π.
Furthermore, let the expression body(l) denote the set of rules of Π whose head is l.

Given a rule’s body β = {l1, . . . , lm,not lm+1, . . . ,not ln}, the expression δ(β) denotes the
nogood {Fβ,Tl1, . . . ,Tlm,Flm+1, . . . ,Fln}. The expression ∆(β) denotes instead the set of
nogoods {{{Tβ,Fl1}, . . . , {Tβ,Flm}, {Tβ,Tlm+1}, . . . , {Tβ,Tln}}}.

Next, given a literal l such that body(l) = {β1, . . . , βk}, the expression ∆(l) denotes the set
of nogoods {{Fl,Tβ1}, . . . , {Fl,Tβk}}. Finally, δ(l) = {Tl,Fβ1, . . . ,Fβk}.

Given a program Π, let ∆Π denote {{δ(β) |β ∈ body(Π)} ∪ {δ ∈ ∆(β) |β ∈ body(Π)} ∪
{δ(l) | l ∈ seed(Π)} ∪ {δ ∈ ∆(l) | l ∈ lit(Π)}}. Intuitively, in ∆Π, δ(l) is applied only to seed
t-atoms because dependent t-literals do not occur in the head of rules.

It can be shown [6] that ∆Π can be used to find the answer sets of tight, t-literal free,
programs. To find the answer sets of non-tight programs, one needs to introduce loop nogoods.
For a program Π and some U ⊆ lit(Π), expression EBΠ(U) denotes the collection of the
external bodies of U , i.e. {body(r) | r ∈ Π, head(r) ∈ U, body(r) ∩ U = ∅}. Given a literal
l ∈ U and EBΠ(U) = {β1, . . . , βk}, the loop nogood of l is λ(l, U) = {Fβ1, . . . ,Fβk,Tl}. The
set of loop nogoods for program Π is ΛΠ =

⋃
U⊆lit(Π),U 6=∅{λ(l, U) | l ∈ U}. The following

property follows from a similar result from [6]:

I Theorem 3. For every ASP{f} program Π that contains no dependent t-literals, X ⊆ lit(Π)
is an answer set of Π iff X = AT ∩ lit(Π) for a solution A for ∆Π ∪ ΛΠ.

Next, we introduce nogoods for the computation of the answer sets of programs containing
dependent t-literals. Given a dependent t-literal l of the form f = g (resp., f 6= g), a pair of
seed t-atoms f = v and g = w formed from Σ(Π) is a satisfying pair for l if v = w (resp.,
v 6= w) and a falsifying pair for l otherwise. Let {〈f = v1, g = w1〉, . . . 〈f = vk, g = wk〉} be
the set of satisfying pairs for l. The expression ρ+(l) denotes the set of nogoods {{Fl,Tf =
v1,Tg = w1}, . . . , {Fl,Tf = vk,Tg = vk}}. Let {〈f = v1, g = w1〉, . . . 〈f = vk, g = wk〉} be
the set of falsifying pairs for l. The expression ρ−(l) denotes the set of nogoods {{Tl,Tf =
v1,Tg = w1}, . . . , {Tl,Tf = vk,Tg = vk}}. Intuitively the nogoods in ρ+(l) and ρ−(l)
enforce the truth or falsity of a dependent t-literal when suitable seed t-atoms are true.

Finally, given a dependent t-literal l, let terms(l) denote the set of terms that occur in l, and,
for every term f that occurs in l, let rel(f) denote the set of seed t-atoms of the form f = v

for some v ∈ C(Π). Intuitively rel(f) is the set of seed t-atoms that are relevant to the value of
term f . The expression κ(l) denotes the set of nogoods

⋃
f∈terms(l)({Tl}∪{Fs | s ∈ rel(f)}).

Intuitively κ(l) states that l cannot be true if one of its terms is undefined.

Let dep(Π) be the set of dependent t-literals in a program Π. ΘΠ denotes {ρ+(l) | l ∈
dep(Π)} ∪ {ρ−(l) | l ∈ dep(Π)} ∪ {κ−(l) | l ∈ dep(Π)}.

The following condition defines a (rather large) class of ASP{f} programs whose answer sets
can be found using ΘΠ. Given a program Π, we say that Π contains a t-loop for seed t-atom

M. Balduccini 57

l if, in the dependency graph for Π, there is a positive path from l to a t-literal l′ such that
terms(l) ∩ terms(l′) 6= ∅. A program containing a t-loop is for example f = 2← f 6= 3. In
practice, for most domains from the literature there appear to be t-loop free encodings. The
following result characterizes the answer sets of t-loop free programs.

I Theorem 4. For every t-loop free ASP{f} program Π, X ⊆ seed(Π) is an answer set of Π
iff X = AT ∩ seed(Π) for a solution A for ∆Π ∪ ΛΠ ∪ΘΠ.

From a high-level perspective, in the clasp algorithm the answer sets of ASP programs are
computed by iteratively (1) performing unit propagation on the nogoods for the program
and (2) non-deterministically assigning a truth value to a signed literal. Unfortunately,
performing unit propagation on the nogoods in ΘΠ is inefficient, because in the worst case
sets ρ+(l) and ρ−(l) exhibit quadratic growth. However, the conditions expressed by those
nogoods can be easily checked algorithmically. Let value(f,A) be a function that returns v
if signed literal Tf = v occurs in assignment A. Given A and a dependent t-literal f = g,
unit propagation on ρ+(f = g) can be performed by checking if value(f,A) = value(g,A)
and, if so, by adding Tf = g to A. A similar approach applies to the unit propagation for
the other elements of ΘΠ.

Using this technique, unit propagation on the nogoods of ΘΠ can be performed in constant
time w.r.t. the number of seed t-atoms in the program. (The reader may be wondering
about the cases such as the one in which the truth of Tf = v together with value(f,A) can
be used to infer value(g,A). It can be shown that support for this type of scenario can be
dropped without affecting the soundness and completeness of the solver.)

Function fLocalPropagation(Π,∇, A), shown below, iteratively augments the result
of unit propagation from clasp’s function LocalPropagation(Π,∇, A) with the unit-
resulting dependent t-literals derived from ΘΠ. The iterations continue until a fixpoint is
reached. (Function LocalPropagation(Π,∇, A) in clasp computes a fixpoint of unit
propagation by adding to assignment A the unit-resulting literals derived from nogoods in
∆Π and in ∇.)

Function: fLocalPropagation
Input: program Π, set ∇ of nogoods, assignment A
Output: an extended assignment and a set of nogoods
U ← ∅
loop

B ← LocalPropagation(Π,∇, A)
A← LocalPropagationΘ(Π,∇, B)
if A = B then return A

The algorithm for nogood propagation from [6] is modified by replacing the call to Lo-
calPropagation by a call to fLocalPropagation. The main algorithm of clasp{f} is
obtained in a similar way from algorithm cdnl-asp from [6].

6 Experimental Results

To evaluate the performance of the clasp{f} algorithm, we have compared it with the method
for computing the answer sets of programs with non-Herbrand functions used in [4] and
[10]. In that method, given a program Π with non-Herbrand functions, (1) all occurrences of

ICLP’12

58 An Answer Set Solver for non-Herbrand Programs: Progress Report

t-literals are replaced by regular ASP literals (e.g. f = g is replaced by eq(f, g)), and (2)
suitable equality and inequality axioms are added to Π. The answer sets of the resulting
program are then computed using an ASP solver. It can be shown that the answer sets of
the translation encode the answer sets of Π.

For our comparison we have chosen a planning task in which an agent starts at (0, 0) on a
n × n grid and has the goal of reaching a given position in k steps. The agent can move
either up or to the right, by one cell at a time. Concurrent actions are not allowed. To make
the task more challenging, the goal position is chosen so that the minimum number of actions
needed to achieve the goal is equal to number of steps k. This domain has been selected
because, in our experience on practical applications of ASP, solver performance decreases
rapidly when parameter n is increased. This decrease in performance is due to the growth
in the size of the grounding of the inertia axiom, and we are aware of no general-purpose
technique to alleviate this issue in ASP programs.

The ASP{f} formalization, ΠASP{f} is show below. Constants k and n are specified at
run-time. Symbol / used in the second-to-last rule denotes integer division in the dialect of
clasp.

step(0..k). loc(0..n− 1). posx(0) = 0. posy(0) = 0.

posx(S + 1) = X + 1←
step(S), step(S + 1), loc(X), loc(X + 1), posx(S) = X, o(plusx, S).

← o(plusx, S), posx(S) = n− 1.

posy(S + 1) = Y + 1←
step(S), step(S + 1), loc(Y), loc(Y + 1), posy(S) = Y, o(plusy, S).

← o(plusy, S), posy(S) = n− 1.

posx(S + 1) = X ←
step(S), step(S + 1), loc(X), posx(S) = X, not posx(S + 1) 6= posx(S).

posy(S + 1) = Y ←
step(S), step(S + 1), loc(Y), posy(S) = Y, not posy(S + 1) 6= posy(S).

1{o(plusx, S), o(plusy, S)}1← step(S), S < k.

goal← posx(k) = k/2, posy(k) = k − k/2.

← not goal.

Program ΠASP, omitted to save space, is an ASP encoding of the problem obtained by
the usual formalization techniques; it is also equivalent, modulo renaming and reification
of relations, to the translation of the formalizations in the languages of [4] and [10]. Table
1 shows a comparison of the time, in seconds, to find one answer set using ΠASP{f} and
using ΠASP. The results have been obtained for various values of parameters k and n. As
the table shows, the time for ΠASP{f} is consistently more than an order of magnitude
better than of ΠASP, even though the code for the support of non-Herbrand functions in the
implementation of clasp{f} is still largely unoptimized. The clasp{f} solver used here is an
extension of clingo 2.0.2. To ensure the fairness of the comparison, the answer sets of the
ASP encoding have been computed using clingo 2.0.2. The experiments were performed
on a computer with an Intel Q6600 processor at 2.4GHz, 1.5GB RAM and Linux Fedora
Core 11.

7 Conclusions and Future Work

In this paper we have defined the syntax and semantics of an extension of ASP by non-
Herbrand functions. Although the semantics of our language is a comparatively small
modification of the semantics of ASP from [8], it allows for an efficient implementation in

M. Balduccini 59

Table 1 Performance comparison between ΠASP{f} + clasp{f} and ΠASP + clingo.

k = 3 k = 5 k = 7
n ΠASP{f} ΠASP ΠASP{f} ΠASP ΠASP{f} ΠASP

100 0.000 0.045 0.011 0.063 0.018 0.108
200 0.016 0.282 0.044 0.467 0.076 0.555
500 0.115 1.919 0.212 3.149 0.458 4.530

1000 0.513 8.273 1.012 13.787 1.766 21.432
1500 1.203 21.300 2.515 37.024 4.626 56.341
2000 2.429 43.092 4.283 70.591 7.712 103.737

ASP solvers, as demonstrated by our experimental comparison with the solving techniques
for other languages supporting non-Herbrand functions. Although the language of [11, 14] is
also supported by an efficient solver, that solver uses CSP solving techniques rather than ASP
solving techniques. Currently, the ASP{f} solving algorithm is only applicable to a (large)
subclass of ASP{f} programs. We expect that it will be possible to extend our algorithm to
arbitrary programs by introducing additional nogoods.

References
1 Marcello Balduccini. Correct Reasoning: Essays on Logic-Based AI in Honour of Vladimir

Lifschitz, chapter 3. A “Conservative” Approach to Extending Answer Set Programming
with Non-Herbrand Functions, pages 23–39. Lecture Notes in Artificial Intelligence (LNCS).
Springer Verlag, Berlin, Jun 2012.

2 Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, Jan 2003.

3 Sabrina Baselice and Piero A. Bonatti. A Decidable Subclass of Finitary Programs. Journal
of Theory and Practice of Logic Programming (TPLP), 10(4–6):481–496, 2010.

4 Pedro Cabalar. Functional Answer Set Programming. Journal of Theory and Practice of
Logic Programming (TPLP), 11:203–234, 2011.

5 Francesco Calimeri, Susanna Cozza, Giovanbattista Ianni, and Nicola Leone. Enhancing
ASP by Functions: Decidable Classes and Implementation Techniques. In Proceedings of
the Twenty-Fourth Conference on Artificial Intelligence, pages 1666–1670, 2010.

6 Martin Gebser, Benjamin Kaufmann, Andre Neumann, and Torsten Schaub. Conflict-
Driven Answer Set Solving. In Manuela M. Veloso, editor, Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI’07), pages 386–392, 2007.

7 Martin Gebser, Max Ostrowski, and Torsten Schaub. Constraint Answer Set Solving. In
25th International Conference on Logic Programming (ICLP09), volume 5649, 2009.

8 Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing, 9:365–385, 1991.

9 Eugene Goldberg and Yakov Novikov. BerkMin: A Fast and Robust Sat-Solver. In Proceed-
ings of Design, Automation and Test in Europe Conference (DATE-2002), pages 142–149,
Mar 2002.

10 Vladimir Lifschitz. Logic Programs with Intensional Functions (Preliminary Report). In
ICLP11 Workshop on Answer Set Programming and Other Computing Paradigms (AS-
POCP11), Jul 2011.

11 Fangzhen Lin and Yisong Wang. Answer Set Programming with Functions. In Proceedings
of the International Conference on Principles of Knowledge Representation and Reasoning
(KR2008), pages 454–465, 2008.

ICLP’12

60 An Answer Set Solver for non-Herbrand Programs: Progress Report

12 Victor W. Marek and Miroslaw Truszczynski. The Logic Programming Paradigm: a 25-
Year Perspective, chapter Stable Models and an Alternative Logic Programming Paradigm,
pages 375–398. Springer Verlag, Berlin, 1999.

13 Tommi Syrjänen. Omega-Restricted Logic Programs. In Thomas Eiter, Wolfgang Faber,
and Miroslaw Truszczynski, editors, 6th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR01), volume 2173 of Lecture Notes in Artificial
Intelligence (LNCS), pages 267–279. Springer Verlag, Berlin, 2001.

14 Yisong Wang, Jia-Huai You, Li-Yan Yuan, and Mingyi Zhang. Weight Constraint Programs
with Functions. In Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors, 10th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR09),
volume 5753 of Lecture Notes in Artificial Intelligence (LNCS), pages 329–341. Springer
Verlag, Berlin, Sep 2009.

Stable Models of Formulas with Generalized
Quantifiers (Preliminary Report)
Joohyung Lee and Yunsong Meng

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, AZ, USA
joolee@asu.edu, Yunsong.Meng@asu.edu

Abstract
Applications of answer set programming motivated various extensions of the stable model seman-
tics, for instance, to allow aggregates or to facilitate interface with external ontology descriptions.
We present a uniform, reductive view on these extensions by viewing them as special cases of
formulas with generalized quantifiers. This is done by extending the first-order stable model se-
mantics by Ferraris, Lee and Lifschitz to account for generalized quantifiers and then by reducing
the individual extensions to this formalism.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases answer set programming, stable model semantics, generalized quantifiers

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.61

1 Introduction

Applications of answer set programming motivated various recent extensions of the stable
model semantics, for instance, to allow aggregates [4, 8, 15], or to facilitate interface with
external ontology descriptions [3]. While the extensions were driven by different motivations
and applications, a common underlying issue is how to extend the stable model semantics
to incorporate “complex atoms,” such as “aggregate atoms” and “dl-atoms.”

Most extensions involve grounding. For instance, assuming that the domain is {1, 2, . . . }
the rule

q(y)← #count{x.p(x, y)} ≥ 2 (1)

can be understood as a schema for ground instances

q(1)← #count{1.p(1, 1), 2.p(2, 1), . . . } ≥ 2
q(2)← #count{1.p(1, 2), 2.p(2, 2), . . . } ≥ 2
. . .

Here y is called a “global” variable, and x is called a “local” variable. Replacing a global
variable by ground terms increases the number of rules; replacing a local variable by ground
terms increases the size of each rule.

Instead of involving grounding, in [10], a simple approach to understanding the meaning
of the count aggregate in answer set programming was provided by reduction to first-order
formulas under the stable model semantics [6, 7]. For instance, rule (1) can be understood
as the first-order formula

∀y(∃x1x2(p(x1) ∧ p(x2) ∧ ¬(x1 = x2))→ q(y)) ,

in which quantifiers are introduced to account for local variables in aggregates.
© Joohyung Lee and Yunsong Meng;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 61–71

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.61
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62 Stable Models of Formulas with Generalized Quantifiers (Preliminary Report)

An attempt to extend this approach to handle arbitrary nonmonotone aggregates en-
counters some difficulty, as the quantifiers ∀ and ∃, like its propositional counterpart ∧ and
∨, are “monotone.”

It is hinted in [5] that aggregates may be viewed in terms of generalized quantifiers—a
generalization of the standard quantifiers, ∀ and ∃, introduced by Mostowski [13]. We follow
up on that suggestion, and extend the stable model semantics by [7] to allow generalized
quantifiers.

It turns out that generalized quantifiers are not only useful in explaining the meaning
of arbitrary aggregates, but also useful in explaining other recent extensions of the stable
model semantics, such as nonmonotonic dl-programs [3]. This allows us to combine the
individual extensions in a single language as in the following example.

I Example 1. We consider an extension of nonmonotonic dl-programs (T ,Π) that allows
aggregates. For instance, the ontology description T specifies that every married man has
a spouse who is a woman, and similarly for a married woman:

Man uMarried v ∃Spouse.Woman.
Woman uMarried v ∃Spouse.Man.

The following program Π counts the number of people who are eligible for an insurance
discount:

discount(x)← not accident(x),
#dl[Man]mm,Married]mm,Woman]mw,Married]mw;∃Spouse.>](x).

discount(x)← discount(y), family(y, x),not accident(x).
numOfDiscount(z)← count〈x.discount(x)〉 = z.

The first rule asserts that everybody who has a spouse and has no accident is eligible for
a discount. The second rule asserts that everybody who has no accident and has a family
member with a discount is eligible for a discount.

The paper is organized as follows. We first review the syntax and the semantics of
formulas with generalized quantifiers (GQ-formulas). Next we define stable models of GQ-
formulas, and then show the individual extensions of the stable model semantics, such as
logic programs with aggregates and/or nonmonotonic dl-atoms, can be viewed as special
cases of GQ-formulas.

2 Preliminaries

2.1 Syntax of Formulas with Generalized Quantifiers
We follow the definition of a GQ-formula from [16, Section 5] (that is to say, with Lindström
quantifiers [12] without the isomorphism closure condition).

As in first-order logic, a signature σ is a set of symbols consisting of function constants
and predicate constants. Each symbol is assigned a nonnegative integer, called the arity.
Function constants with arity 0 are called object constants, and predicate constants with
arity 0 are called propositional constants. A term is an object variable or f(t1, . . . , tn), where
f is a function constant in σ of arity n, and ti are terms. An atomic formula is an expression
of the form p(t1, . . . , tn) or t1 = t2, where p is a predicate constant in σ of arity n.

We assume a set Q of symbols for generalized quantifiers. Each symbol in Q is associated
with a tuple of nonnegative integers 〈n1, . . . , nk〉 (k ≥ 0, and each ni is ≥ 0), called the type.
A GQ-formula (with the set Q of generalized quantifiers) is defined in a recursive way:

J. Lee and Y. Meng 63

an atomic formula is a GQ-formula;
if F1, . . . , Fk (k ≥ 0) are GQ-formulas andQ is a generalized quantifier of type 〈n1, . . . , nk〉
in Q, then

Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)) (2)

is a GQ-formula, where each xi (1 ≤ i ≤ k) is a list of distinct object variables whose
length is ni.

We say that an occurrence of a variable x in a GQ-formula F is bound if it belongs
to a subformula of F that has the form Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)) such that x is in
some xi. Otherwise the occurrence is free. We say that x is free in F if F contains a free
occurrence of x. A GQ-sentence is a GQ-formula with no free variables. Notice that the
distinction between free and bound variables is similar to that of global and local variables
informally described in the introduction.

We assume that Q contains a type 〈〉 quantifier Q⊥, a type 〈0〉 quantifier Q¬, type 〈0, 0〉
quantifiers Q∧, Q∨, Q→, and type 〈1〉 quantifiers Q∀, Q∃. Each of them corresponds to the
standard propositional connectives and quantifiers, ⊥,¬,∧,∨,→,∀,∃. These generalized
quantifiers will often be written in the familiar form. For example, we write F ∧G in place
of Q∧[][](F,G), and write ∀xF (x) in place of Q∀[x](F (x)).

2.2 Models of GQ-Formulas
As in first-order logic, an interpretation I of a signature σ consists of a nonempty set U ,
called the universe of I, and a mapping cI for each constant c in σ. For each function
constant f of σ whose arity is n, f I is an element of U if n is 0, and is a function from Un to
U otherwise. For each predicate constant p of σ whose arity is n, pI is an element of {t, f}
if n is 0, and is a function from Un to {t, f} otherwise. For each generalized quantifier Q
of type 〈n1, . . . , nk〉, QU is a function from P(Un1)× · · · × P(Unk) to {t, f}, where P(Uni)
denotes the power set of Uni .

I Example 2. Besides the standard propositional connectives and quantifiers, the following
are other examples of generalized quantifiers.

type 〈1〉 quantifier Q≤2 such that QU
≤2(R) = t iff the cardinality of R is ≤ 2; 1

type 〈1〉 quantifier Qmajority such that QU
majority(R) = t iff the cardinality of R is greater

than the cardinality of U \R;
type 〈2, 1, 1〉 reachability quantifier Qreach such that QU

reach(R1, R2, R3) = t iff there are
some u, v ∈ U such that R2 = {u}, R3 = {v}, and (u, v) belongs to the transitive closure
of R1.

By σI we mean the signature obtained from σ by adding new object constants ξ∗, called
names, for every element ξ in the universe of I. We identify an interpretation I of σ with its
extension to σI defined by I(ξ∗) = ξ. For any term t of σI that does not contain variables,
we define recursively the element tI of the universe that is assigned to t by I. If t is an
object constant then tI is an element of U . For other terms, tI is defined by the equation

f(t1, . . . , tn)I = f I(tI1, . . . , tIn)

for all function constants f of arity n > 0.
Given a GQ-sentence F of σI , F I is defined recursively as follows:

1 It is clear from the type that R is any subset of U . We will skip such explanation.

ICLP’12

64 Stable Models of Formulas with Generalized Quantifiers (Preliminary Report)

p(t1, . . . , tn)I = pI(tI1, . . . , tIn),
(t1 = t2)I = (tI1 = tI2),
For a generalized quantifier Q of type 〈n1, . . . , nk〉,

(Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))I = QU ((x1.F1(x1))I , . . . , (xk.Fk(xk))I),

where (xi.Fi(xi))I = {ξ ∈ Uni | (Fi(ξ∗))I = t}.

We assume that, for the standard propositional connectives and quantifiers Q, functions
QU have the standard meaning:

QU
∀ (R) = t iff R = U ; QU

∃ (R) = t iff R ∩ U 6= ∅;
QU
∧ (R1, R2) = t iff R1 = R2 = {ε};2 QU

∨ (R1, R2) = t iff R1 = {ε} or R2 = {ε};
QU
→(R1, R2) = t iff R1 = ∅ or R2 = {ε};

QU
¬ (R) = t iff R = ∅;

QU
⊥() = f.

We say that an interpretation I satisfies a GQ-sentence F , or is a model of F , and write
I |= F , if F I = t. A GQ-sentence F is logically valid if every interpretation satisfies F . A
GQ-formula with free variables is said to be logically valid if its universal closure is logically
valid.

I Example 3. Let I1 be an interpretation whose universe is {1, 2, 3, 4} and let p be a
unary predicate constant such that p(ξ∗)I1 = t iff ξ ∈ {1, 2, 3}. We check that I1 satisfies
GQ-sentence F = ¬Q≤2[x] p(x) → Qmajority[y] p(y) (“if p does not contain at most two
elements in the universe, then p contains a majority”). Let I2 be another interpretation
with the same universe such that p(ξ∗)I2 = t iff ξ ∈ {1}. It is clear that I2 also satisfies F .

We say that a generalized quantifier Q is monotone in the i-th argument position if
the following holds for any universe U : if QU (R1, . . . , Rk) = t and Ri ⊆ R′i ⊆ Uni , then
QU (R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rk) = t. Similarly, we say that Q is anti-monotone in the

i-th argument position if the following holds for any universe U : if QU (R1, . . . , Rk) = t
and R′i ⊆ Ri ⊆ Uni , then QU (R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rk) = t. We call an argument

position of Q monotone (anti-monotone) if Q is monotone (anti-monotone) in that argument
position.

Let M be a subset of {1, . . . , k}. We say that Q is monotone in M if Q is monotone
in the i-th argument position for all i in M . It is easy to check that both Q∧ and Q∨ are
monotone in {1, 2}. Q→ is anti-monotone in {1} and monotone in {2}; Q¬ is anti-monotone
in {1}. In Example 2, Q≤2 is anti-monotone in {1} and Qmajority is monotone in {1}.

Predicate variables can be added to the language in the usual way as we define the
standard second-order logic. Syntactically, n-ary predicate variables are used to form atomic
formulas in the same way as n-ary predicate constants. Semantically, these variables range
over arbitrary truth-valued functions on Un.

3 Stable Models of GQ-Formulas

We now define the stable model operator SM with a list of intensional predicates. Let p
be a list of distinct predicate constants p1, . . . , pn, and let u be a list of distinct predicate

2 ε denotes the empty tuple. For any interpretation I, U0 = {ε}. For I to satisfy Q∧[][](F,G), both
(ε.F)I and (ε.G)I have to be {ε}, which means that F I = GI = t.

J. Lee and Y. Meng 65

variables u1, . . . , un. By u ≤ p we denote the conjunction of the formulas ∀x(ui(x)→ pi(x))
for all i = 1, . . . , n, where x is a list of distinct object variables of the same length as the
arity of pi, and by u < p we denote (u ≤ p) ∧ ¬(p ≤ u). For instance, if p and q are unary
predicate constants then (u, v) < (p, q) is

∀x(u(x)→ p(x)) ∧ ∀x(v(x)→ q(x)) ∧ ¬
(
∀x(p(x)→ u(x)) ∧ ∀x(q(x)→ v(x))

)
.

For any GQ-formula F and any list of predicates p = (p1, . . . , pn), expression SM[F ; p]
is defined as

F ∧ ¬∃u((u < p) ∧ F ∗(u)), (3)

where F ∗(u) is defined recursively:
pi(t)∗ = ui(t) for any list t of terms;
F ∗ = F for any atomic formula F that does not contain members of p;

(Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))∗ =
Q[x1] . . . [xk](F ∗1 (x1), . . . , F ∗k (xk)) ∧Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)). (4)

When F is a GQ-sentence, the models of SM[F ; p] are called the p-stable models of F :
they are the models of F that are “stable” on p. We often simply write SM[F] in place
of SM[F ; p] when p is the list of all predicate constants occurring in F , and call p-stable
models simply stable models.

I Proposition 1. Let Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)) be a GQ-formula and let M be a
subset of {1, . . . , k} such that every predicate constant from p occurs in some Fj where
j ∈M .

(a) If Q is monotone in M , then

u ≤ p→ ((Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))∗ ↔ Q[x1] . . . [xk](F ∗1 (x1), . . . , F ∗k (xk)))

is logically valid.
(b) If Q is anti-monotone in M , then

u ≤ p→ ((Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))∗ ↔ Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))

is logically valid.

Proposition 1 allows us to simplify the formula F ∗(u) in (3) without affecting the models
of (3). In formula (4), if Q is monotone in all argument positions, we can drop the second
conjunctive term in view of Proposition 1 (a). If Q is anti-monotone in all argument po-
sitions, we can drop the first conjunctive term in view of Proposition 1 (b). For instance,
recall that each of Q∧, Q∨, Q∀, Q∃ is monotone in all its argument positions, and Q¬ is
anti-monotone in {1}. If F is a standard first-order formula, then (4) can be equivalently
rewritten as

(¬F)∗ = ¬F ;
(F ∧G)∗ = F ∗ ∧G∗; (F ∨G)∗ = F ∗ ∨G∗;
(F → G)∗ = (F ∗ → G∗) ∧ (F → G);
(∀xF)∗ = ∀xF ∗; (∃xF)∗ = ∃xF ∗.

ICLP’12

66 Stable Models of Formulas with Generalized Quantifiers (Preliminary Report)

This is almost the same as the definition of F ∗ given in [7], except for the case (¬F)∗, which
is a bit more concise.3 The only propositional connective which is neither monotone nor
anti-monotone in all argument positions is Q→, for which the simplification does not apply.

Example 3 continued. For the GQ-sentence F considered earlier, SM[F] is

F ∧ ¬∃u(u < p ∧ F ∗(u)) , (5)

where F ∗(u) is equivalent to the conjunction of F and

¬Q≤2[x] p(x)→ Qmajority[y] u(y). (6)

I1 considered earlier satisfies (5): it satisfies F , and, for any proper “subset” u of p, it
satisfies the antecedent of (6) but not the consequent. Thus it is a stable model of F . On
the other hand, we can check that I2 does not satisfy (5), and is not a stable model.

4 Aggregates as GQ-Formulas

4.1 Formulas with Aggregates
The following definition of a formula with aggregates is from [5], which extends the one
from [9] to allow nested aggregates. By a number we understand an element of some fixed
set Num. For example, Num is Z∪ {+∞,−∞}, where Z is the set of integers. A multiset
is usually defined as a set of elements along with a function assigning a positive integer,
called the multiplicity, to each of its elements. An aggregate function is a partial function
from the class of multisets to Num. We assume the presence of some fixed background
signature σbg that contains all numbers. Furthermore, we assume that the interpretation
Ibg of the background signature is fixed, and interpretes each number as itself.

We consider a signature σ as a superset of σbg. An expansion I of Ibg to σ is an
interpretation of σ such that

the universe of I is the same as the universe of Ibg, and
I agrees with Ibg on all the constants in σbg.

First-order formulas with aggregates are defined as an extension of standard first-order
formulas by adding the following clause:

op〈x1.F1, . . . ,xn.Fn〉 � b (7)

is a first-order formula with aggregates, where
op is a symbol for an aggregate function (not from σ);
x1, . . . ,xn are nonempty lists of distinct object variables;
F1, . . . , Fn are arbitrary first-order formulas with aggregates of signature σ;
� is a symbol for a comparison operator (may not necessarily be from σ);
b is a term of σ.

3 ¬F is understood as F → ⊥ in [7], but this difference does not affect stable models. When ¬ is a
primitive propositional connective as above,

u ≤ p→ ((F → ⊥)∗(u)↔ (¬F)∗(u))

is logically valid.

J. Lee and Y. Meng 67

4.2 Aggregates as GQ-Formulas
Due to the space limit, we refer the reader to [5] for the stable model semantics of formulas
with aggregates. We can explain their semantics by viewing it as a special case of the
stable model semantics presented here. Following [5], for any set X of n-tuples (n ≥ 1),
let msp(X) (“the multiset projection of X”) be the multiset consisting of all ξ1 such that
(ξ1, . . . , ξn) ∈ X for at least one (n−1)-tuple (ξ2, . . . , ξn), with the multiplicity equal to
the number of such (n − 1)-tuples (and to +∞ if there are infinitely many of them). For
example, msp({(a, a), (a, b), (b, a)}) = {{a, a, b}}.

We identify expression (7) with the GQ-formula

Q(op,�)[x1] . . . [xn][y](F1(x1), . . . , Fn(xn), y = b) , (8)

where, for any interpretation I, QU
(op,�) is a function that maps P(U |x1|)× · · · ×P(U |xn|)×

P(U) to {t, f} such that QU
(op,�)(R1, . . . , Rn, Rn+1) = t iff

op(α) is defined, where α is the join of the multisets msp(R1), . . . ,msp(Rn),
Rn+1 = {n}, where n is an element of Num, and
op(α) � n.

I Example 4. {discount(alice), discount(carol),numOfDiscounts(2)} is an Herbrand stable
model of the formula

discount(alice) ∧ discount(carol)
∧ ∀z(count〈x.discount(x)〉 = z → numOfDiscounts(z)).

The following proposition states that this definition is equivalent to the definition from [5].
I Proposition 2. Let F be a first-order sentence with aggregates whose signature is σ, and
let p be a list of predicate constants. For any expansion I of σbg to σ, I is a p-stable model
of F in the sense of [5] iff I is a p-stable model of F in our sense.

5 Nonmonotonic dl-Programs as GQ-Formulas

5.1 Review of Nonmonotonic dl-Programs
Let C be a set of object constants, and let PT and PΠ be disjoint sets of predicate constants.
A nonmonotonic dl-program [3] is a pair (T ,Π), where T is a theory in description logic
of signature 〈C,PT 〉 and Π is a generalized normal logic program of signature 〈C,PΠ〉 such
that PT ∩PΠ = ∅. We assume that Π contains no variables by applying grounding w.r.t. C.
A generalized normal logic program is a set of nondisjunctive rules that can contain queries
to T using “dl-atoms.” A dl-atom is of the form

DL[S1op1p1, . . . , Skopkpk; Query](t) (k ≥ 0), (9)

where Si ∈ PT , pi ∈ PΠ, and opi ∈ {], −∪, −∩}. Query(t) is a dl-query as defined in [3]. A
dl-rule is of the form

a ← b1, . . . , bm,not bm+1, . . . ,not bn , (10)

where a is an atom and each bi is either an atom or a dl-atom. We identify rule (10) with

a ← B,N , (11)

where B is b1, . . . , bm and N is not bm+1, . . . ,not bn. An Herbrand interpretation I satisfies
a ground atom A relative to T if I satisfies A. An Herbrand interpretation I satisfies a
ground dl-atom (9) relative to T if T ∪

⋃k
i=1Ai(I) entails Query(t), where Ai(I) is

ICLP’12

68 Stable Models of Formulas with Generalized Quantifiers (Preliminary Report)

{Si(e) | pi(e) ∈ I} if opi is],
{¬Si(e) | pi(e) ∈ I} if opi is −∪,
{¬Si(e) | pi(e) 6∈ I} if opi is −∩.

A ground dl-atom A is monotonic relative to T if, for any two Herbrand interpretations
I and I ′ such that I ⊆ I ′ and I |=T A, we have that I ′ |=T A. Similarly, A is anti-monotonic
relative to T if, for any two Herbrand interpretations I and I ′ such that I ′ ⊆ I and I |=T A,
we have that I ′ |=T A.

Given a dl-program (T ,Π) and an Herbrand interpretation I of 〈C,PΠ〉, the weak dl-
transform of Π relative to T , denoted by wΠI

T , is the set of rules

a ← B′ (12)

where a← B,N is in Π, I |=T B ∧N , and B′ is obtained from B by removing all dl-atoms
in it. Similarly, the strong dl-transform of Π relative to T , denoted by sΠI

T , is the set of
rules (12), where a← B,N is in Π, I |=T B∧N , and B′ is obtained from B by removing all
nonmonotonic dl-atoms in it. The only difference between these two transforms is whether
monotonic dl-atoms remain in the positive body or not. Both transforms do not retain
nonmonotonic dl-atoms.

An Herbrand interpretation I is a weak (strong, respectively) answer set of (T ,Π) if I
is minimal among the sets of atoms that satisfy wΠI

T (sΠI
T , respectively).

5.2 Nonmonotonic dl-program as GQ-Formulas
We can view dl-programs as a special case of GQ-formulas. Consider a dl-program (T ,Π)
such that Π is ground. Under the strong answer set semantics we identify every dl-atom (9)
in Π with

Q(9)[x1] . . . [xk](p1(x1), . . . , pk(xk)) (13)

if it is monotonic relative to T , and

¬¬Q(9)[x1] . . . [xk](p1(x1), . . . , pk(xk)) (14)

otherwise. Since ¬ is an anti-monotone GQ, prepending ¬¬ in front of the quantified formula
in (14) means that, under the strong answer set semantics, every nonmonotonic dl-atom is
understood in terms of an anti-monotone GQ.

Given an interpretation I, QU
(9) is a function that maps P(U |x1|)×· · ·×P(U |xk|) to {t, f}

such that, QU
(9)(R1, . . . , Rk) = t iff T ∪

⋃k
i=1Ai(Ri) entails Query(t), where Ai(Ri) is

{Si(ξi) | ξi ∈ Ri} if opi is],
{¬Si(ξi) | ξi ∈ Ri} if opi is −∪,
{¬Si(ξi) | ξi ∈ U |xi| \Ri} if opi is −∩.

We say that I is a strong answer set of (T ,Π) if I satisfies SM[Π;PΠ].
Similarly, a weak answer set of (T ,Π) is defined by identifying every dl-atom (9) in Π

with (14) regardless of A being monotonic or not. This means that, under the weak answer
set semantics, every dl-atom is understood in terms of an anti-monotone GQ.
Example 1 continued. The dl-atom

#dl[Man]mm,Married]mm,Woman]mw,Married]mw;∃Spouse.>](alice) (15)

J. Lee and Y. Meng 69

is identified with the generalized quantified formula

Q(15)[x1][x2][x3][x4](mm(x1),mm(x2),mw(x3),mw(x4)) (16)

where, for any interpretation I, QU
(15) is a function that maps P(U)×P(U)×P(U)×P(U) to

{t, f} such that QU
(15)(R1, R2, R3, R4) = t iff T ∪{Man(c) | c ∈ R1}∪{Woman(c) | c ∈ R3}∪

{Married(c) | c ∈ R2 ∪R4} entails ∃xSpouse(alice, x).
Consider an Herbrand interpretation I = {mw(alice)}, which satisfies (15). I also

satisfies (16) since (x.mw(x))I = {alice} and T ∪ {Woman(alice),Married(alice)} entails
∃xSpouse(alice, x).

The following proposition tells us that the definitions of a strong answer set and a weak
answer set given here are reformulations of the original definitions from [3].
I Proposition 3. For any dl-program (T ,Π), an Herbrand interpretation is a strong (weak,
respectively) answer set of (T ,Π) in the sense of [3] iff it is a strong (weak, respectively)
answer set of (T ,Π) in our sense.

5.3 Another Semantics of Nonmonotonic dl-programs
Shen [14] notes that both strong and weak answer set semantics suffer from circular justifi-
cations.

I Example 5. [14] Consider (T ,Π), where T = ∅ and Π is the program

p(a)← #dl[c] p, b −∩ q; c u ¬b](a) , (17)

in which the dl-atom is neither monotonic nor anti-monotonic. This dl-program has two
strong (weak, respectively) answer sets: ∅ and {p(a)}. According to [14], the second answer
set is circularly justified:

p(a)⇐ #dl[c] p, b −∩ q; c u ¬b](a)⇐ p(a) ∧ ¬q(a).

Indeed, sΠ{p(a)}
T (wΠ{p(a)}

T , respectively) is p(a)←, and {p(a)} is its minimal model.

As we hinted in the previous section, this kind of circular justifications is related to the
treatment that understands every nonmonotonic dl-atom in terms of an anti-monotone GQ,
regardless of the nonmonotonic dl-atom’s being anti-monotonic or not. In this case, in view
of Proposition 1, predicates in a nonmonotonic dl-atom are exempt from the minimality
checking. This is different from how we treat nonmonotone aggregates, where we simply
identify them with nonmonotone GQs. This observation suggests the following alternative
semantics of dl-programs, in which we understand only anti-monotonic dl-atoms in terms of
anti-monotone GQs, unlike in the strong and the weak answer set semantics. We say that
an Herbrand interpretation I is an answer set of (T ,Π) if I satisfies SM[Π;PΠ], where we
simply identify every dl-atom (9) in Π with (13).

This definition of an answer set has a reduct-based characterization as well. Just like
we form a strong dl-transform, we first remove the negative body, but instead of removing
all nonmonotonic dl-atoms in the positive body, we remove only anti-monotonic dl-atoms
from the positive body. In other words, the reduct of Π relative to T and an Herbrand
interpretation I of 〈C,PΠ〉, denoted by ΠI

T , is the set of rules (12), where a← B,N is in Π,
I |=T B∧N , and B′ is obtained from B by removing all anti-monotonic dl-atoms in it. The
following proposition shows that this modified definition of a reduct can capture the new
answer set semantics of dl-programs.

ICLP’12

70 Stable Models of Formulas with Generalized Quantifiers (Preliminary Report)

I Proposition 4. For any dl-program (T ,Π) and any Herbrand interpretation I of 〈C,PΠ〉,
I is an answer set of (T ,Π) according to the new definition iff I is minimal among the sets
of atoms that satisfy ΠI

T .
The new semantics does not have the circular justification problem described in Exam-

ple 5.
Example 5 continued. {p(a)} is not an answer set of (T ,Π) according to the new
definition. The reduct Π{p(a)}

T is (17) itself retaining the dl-atom unlike under the strong
and the weak answer set semantics. We check that ∅, a proper subset of {p(a)}, satisfies it,
which means that {p(a)} is not an answer set.

6 Related Work

We refer the reader to [2] for the semantics of HEX programs. It is not difficult to see that
an external atom in a HEX program can be represented in terms of a generalized quantifier.
Eiter et al. show how dl-atoms can be simulated by external atoms #dl[](x). The treatment
is similar to ours in terms of generalized quantifiers. For another example, rule

reached(x)← #reach[edge, a](x)

defines all the vertices that are reachable from the vertex a in the graph with edge. The
external atom #reach[edge, a](x) can be represented by a generalized quantified formula

Qreach[x1x2][x3][x4](edge(x1, x2), x3 = a, x4 = x),

where Qreach is as defined in Example 2.
In fact, incorporation of generalized quantifiers in logic programming was considered

earlier in [1], but the treatment there was not satisfactory because they understood general-
ized quantifiers simply as anti-monotone GQs in our sense. Without going into detail, this
amounts to modifying our definition of F ∗ as

(Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))∗ = Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)) .

This approach does not allow recursion through generalized quantified formulas, and
often yields an unintuitive result. According to [1], program p(a)← ∀x p(x) has two answer
sets, ∅ and {p(a)}. The latter is “unfounded.” This is not the case with the semantics
that we introduced in this note. According to our semantics, which properly extends the
semantics from [7], {p(a)} is not an answer set.

7 Conclusion

We presented the stable model semantics for formulas containing generalized quantifiers, and
showed that some recent extensions of the stable model semantics with “complex atoms”
can be viewed as special cases of this formalism. We expect that the generality of the
formalism will be useful in providing a principled way to study and compare the different
extensions of the stable model semantics. As we observed, distinguishing among monotone,
anti-monotone, and neither monotone nor anti-monotone GQs is essential in defining the
semantics of such extensions, whereas the last group of GQs was not considered in the
traditional stable model semantics.

Acknowledgements. We are grateful to Michael Bartholomew, Vladimir Lifschitz, and the
anonymous referees for their useful comments. This work was partially supported by the
National Science Foundation under Grant IIS-0916116.

J. Lee and Y. Meng 71

References
1 Thomas Eiter, Georg Gottlob, and Helmut Veith. Modular logic programming and gener-

alized quantifiers. In Proceedings of International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR), pages 290–309, 1997.

2 Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uniform
integration of higher-order reasoning and external evaluations in answer-set programming.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages
90–96, 2005.

3 Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans
Tompits. Combining answer set programming with description logics for the semantic web.
Artificial Intelligence, 172(12-13):1495–1539, 2008.

4 Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Semantics and complexity of recursive
aggregates in answer set programming. Artificial Intelligence, 175(1):278–298, 2011.

5 Paolo Ferraris and Vladimir Lifschitz. On the stable model semantics of firsr-order formulas
with aggregates. In Proceedings of International Workshop on Nonmonotonic Reasoning
(NMR), 2010.

6 Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A new perspective on stable models.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages
372–379, 2007.

7 Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Stable models and circumscription.
Artificial Intelligence, 175:236–263, 2011.

8 Paolo Ferraris. Answer sets for propositional theories. In Proceedings of International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages 119–
131, 2005.

9 Joohyung Lee and Yunsong Meng. On reductive semantics of aggregates in answer set
programming. In Proceedings of International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), pages 182–195, 2009.

10 Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. A reductive semantics for counting and
choice in answer set programming. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 472–479, 2008.

11 Fangzhen Lin and Yi Zhou. From answer set logic programming to circumscription via
logic of GK. Artificial Intelligence, 175:264–277, 2011.

12 Per Lindström. First-order predicate logic with generalized quantifiers. Theoria, 32:186–
195, 1966.

13 A. Mostowski. On a Generalization of Quantifiers. Fundamenta Mathematicae, 44:12–35,
1957.

14 Yi-Dong Shen. Well-supported semantics for description logic programs. In Proceedings of
International Joint Conference on Artificial Intelligence, pages 1081–1086, 2011.

15 Tran Cao Son and Enrico Pontelli. A constructive semantic characterization of aggregates
in answer set programming. Theory and Practice of Logic Programming, 7(3):355–375,
2007.

16 Dag Westerståhl. Generalized quantifiers. In The Stanford Encyclopedia of Philos-
ophy (Winter 2008 Edition). 2008. http://plato.stanford.edu/archives/win2008/
entries/generalized-quantifiers/.

ICLP’12

http://plato.stanford.edu/archives/win2008/entries/generalized-quantifiers/
http://plato.stanford.edu/archives/win2008/entries/generalized-quantifiers/

Using Answer Set Programming in the
Development of Verified Software
Florian Schanda1 and Martin Brain2

1 Altran Praxis Limited
20 Manvers Street, Bath, BA1 1PX, UK
florian.schanda@altran-praxis.com

2 Department of Computer Science∗

University of Oxford, Oxford, OX1 3QD, UK
martin.brain@cs.ox.ac.uk

Abstract
Software forms a key component of many modern safety and security critical systems. One
approach to achieving the required levels of assurance is to prove that the software is free from
bugs and meets its specification. If a proof cannot be constructed it is important to identify
the root cause as it may be a flaw in the specification or a bug. Novice users often find this
process frustrating and discouraging, and it can be time-consuming for experienced users. The
paper describes a commercial application based on Answer Set Programming called Riposte. It
generates simple counter-examples for false and unprovable verification conditions (VCs). These
help users to understand why problematic VC are false and makes the development of verified
software easier and faster.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Answer Set Programming, verification, SPARK, Ada, contract based
verification, safety critical

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.72

1 Introduction

A critical system is one whose failure would cause serious injury, one or more fatalities, major
environmental damage or significant damage to other assets. Software is a component of
many critical systems and is playing an ever increasing role in their monitoring and control.
For example in modern aircraft, both civil and military, there are complex flight control
systems which must never ‘go wrong’. Errors in algorithms may cause wrong behaviour;
software crashes may result in catastrophic failures. Part of the argument for the safety of a
system is verification – showing that the system meets its specification. For software the
specification may include functional properties (things the system must do) and erroneous
behaviour (things that the system must not do). Testing may be sufficient to show functional
properties (i.e. the system can track flights) but is not able to guarantee the absence of errors
– for example testing alone cannot show that a system will never crash. Critical systems
require a higher level of assurance, formal verification systems, such as Spark1 can provide
this kind of certainty.

∗ Work conducted while at University of Bath and Altran Praxis.
1 The Spark programming language is not sponsored by or affiliated with SPARC International Inc. and

is not based on the SPARC™ architecture.

© Florian Schanda and Martin Brain;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 72–85

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.72
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. Schanda and M. Brain 73

One of the major barriers to increasing the commercial adoption of formal verification
is the perception that it is too expensive. Although formal development practices and
verification have been shown to reduce total project costs [13, 21] as well as to increase levels
of assurance, many companies focus only on the initial development time. “Programmers
find verification hard, so it takes them longer and thus costs us more” is a common objection.
This misses the wider context, but addressing this misapprehension is crucial to improving
adoption. One route to doing so is to improve support tools for developing verified software.
Given that developer time is at least 100 to 1000 times more expensive than CPU time,
significant computation resources can be justified if they save developers’ time.

The current proof tools for Spark focus on the primary goal of quickly and easily
discharging verification conditions (VCs). The proof of all verification conditions shows a
number of properties about the system: for example that certain kinds of error cannot occur
(for example buffer overruns), or that some security property holds (for example: only one
door of an airlock must be open at any time).

There is only limited support for distinguishing between VCs that are unprovable due
to incompleteness in the proof tools and those that are unprovable because they are false.
When verifying finished and correct software, this is of little importance. However during
development a significant minority of VCs may be unprovable. Distinguishing bugs (in
specification or implementation) from areas of incompleteness is vital as the resolutions for
each are very different and incorrectly classifying a verification failure can waste time and
potentially introduce unsoundness (depending on the processes around the usage of the tool).
Riposte is a tool based on Answer Set Programming (ASP) that supports developers in
classifying and resolving verification failures by generating concrete counter-examples to false
verification conditions. This paper:

Overviews the architecture of Riposte and its usability features which are intended to
produce more insightful counter-examples (Section 3).
Describes the methodology used and experience gained in developing a commercial tool
using ASP and the more unusual features of the problem encodings used by Riposte
(Section 4).
Gives statistics for the typical problem instances generated by Riposte and compares
Riposte’s performance to that of SMT solvers for analysing erroneous programs (Section 5).

2 SPARK

Spark is a language and supporting toolset2; the primary design goal is the provision of an
unambiguous language semantics and a sound verification system based on Hoare logic and
theorem proving. The executable part of the language is a subset of Ada (83, 95 and 2005)
and data flow and correctness contracts are given in Ada comments. Figure 2 shows a very
simple Spark program which will serve as an example throughout this paper, and Figure 1
illustrates the current architecture of the tool chain, with the phases of computation, flow
of information and outputs. There are three key phases, referred to as examine, prove and
summarise.

The ‘front end’ of the Spark toolset is the Examiner. It checks the program for compliance
with the Spark subset, performs data flow analysis and generates VCs for each path between
cut points (subprogram start and end, loops and assertions). VCs check contracts specified

2 Available under the GPL from http://libre.adacore.com/

ICLP’12

74 Using Answer Set Programming in the Development of Verified Software

Examine Prove Summarise

Examiner POGS

Simplifier

SPARKBridge

(Victor)

Riposte

Checker

.ads

.adb

VCs Results

Data
Flow

Proof
Status

Figure 1 The Spark tool chain.

by the user and freedom from run time exceptions such as integer overflow, array bounds
checks and division by zero. Figure 3 shows a VC generated from the previous example
program. VCs are expressed in functional description language (FDL), a simple intermediate
language, and a variety of proof tools are available to discharge them. These include the
Simplifier, a rewrite based automatic theorem prover; Victor, an SMT translator and prover
driver [22] and the Checker, an interactive theorem prover. An Isabelle plug-in to read Spark
VCs [3] is also available. Finally the POGS tool is used to summarise the state of the proof
of the entire system, giving statistics such as how many VCs there are in the system and
how many of them are discharged.

Spark is a mature system with the first version released in March 1987, and the Spark
tools have been used on a variety of industrial projects including applications such as flight
control, rail signalling, and high-grade cryptographic systems.

Spark places particular emphasis on modularity; this means it is common to verify
software as it is being written, well before it is completed. Thus subprograms first analysed
by the Examiner often contain errors and give undischarged VCs. Proof tools in earlier
versions of Spark did not distinguish between those VCs that are undischarged due to
incompleteness and those undischarged because they are false. The resolution for these
two kinds of failure are very different and misclassification can waste time and potentially
introduce unsoundness. So there is a need for a counter-example generation tool to support
users in locating the causes of verification failures.

3 Riposte architecture

Riposte consists of a front-end (implementing the parsing of FDL, interval reasoning, simple
rewrite and the user interface) and a back-end (that is used to perform the actual search
for counter-examples). The front-end generates an AnsProlog program for each conclusion
analysed. The back-end is a further set of rules included by each program which encode
the semantics of FDL. This program is then passed to an answer-set solver and any model
returned by the answer-set solver represents a counter-example, which is then interpreted by

F. Schanda and M. Brain 75

type Unsigned_Byte i s new Integer range 0 .. 255;

function Add_UB (A, B: Unsigned_Byte)
return Unsigned_Byte

--# return Value => (Value > A);
i s
begin

return A + B;
end Add_UB ;

Figure 2 Example Spark subprogram with several bugs. The line starting with –# is a Spark
contract specifying a postcondition for the function.

function_add_ub_2 .
H1 : t rue .
H2 : a >= unsigned_byte__first .
H3 : a <= unsigned_byte__last .
H4 : b >= unsigned_byte__first .
H5 : b <= unsigned_byte__last .
H6 : a + b >= unsigned_byte__base__first .
H7 : a + b <= unsigned_byte__base__last .

−>
C1 : a + b > a .
C2 : a + b >= unsigned_byte__first .
C3 : a + b <= unsigned_byte__last .

Figure 3 An interesting VC for the code from Figure 2. H2 - H5 are the hypotheses that give the
bounds for a and b. H6 and H7 state that a+ b will not overflow the base type for Unsigned_Byte, in
our case this is a 32-bit signed integer. C1 is the proof obligation required to show the postcondition
of the function (as specified by the user); C2 and C3 are required to show absence of run-time
errors as the addition may overflow the range allowed for Unsigned_Byte (this proof obligation is
automatically generated by the Examiner).

the front-end and expressed in a user-friendly way. Figure 4 shows the overall architecture of
Riposte, where gringo is the grounder and clasp the answer-set solver of the Potassco [18]
tool-chain.

Riposte is designed to be sound but not complete, thus an absence of a model guarantees
that a given conclusion is necessarily true. However, there may be spurious counter-examples
generated by Riposte (in particular in the presence of complex quantified expressions). To
mitigate this Riposte also attempts to check each counter-example to determine if it is a
valid counter-example.

The back-end of Riposte contains approximately 4,700 lines of AnsPrologdescribing 1,000
rules; the front-end is around 12,000 lines of Python. To our knowledge it is one of the
largest commercial deployment of an answer set program to date.

3.1 Rewrite
After parsing, Riposte performs a number of rewrites and simplifications. These include
putting the hypotheses and conclusions in prenex normal form, Skolemisation to remove
existential quantifiers and elimination of redundant quantifiers. Normalising expressions
makes the subsequent processing simpler and can make the problems easier.

3.2 Interval reasoning
The integers in FDL are mathematical and thus ‘infinite precision’. However in the VCs
generated from Spark programs every program variable is bounded. These bounds are

ICLP’12

76 Using Answer Set Programming in the Development of Verified Software

Riposte

Pe
r
C
on

cl
us
io
n

VC

Parse and Rewrite

Interval Reasoning

Instance Generation

Interpretation

Check

C/ETrue

gringo

clasp

Figure 4 Architecture of Riposte.

found and interval reasoning techniques similar to bounds propagation algorithms used in
CSP (Constraint Satisfaction Problem) solvers [16] are used to soundly refine the bounds.
Sometimes this reasoning is sufficient to show a conclusion must always be true, in which
case it can be discharged.

For example in Figure 3, Riposte can determine that the range of both a and b is [0; 255],
and the range for a + b is [0; 510]. Riposte can now immediately rewrite conclusion 2 to ‘true’
as unsigned_byte__first is 0.

3.3 Program generation
Once bounds are established for all program variables and the formulae simplified, Riposte
handles each conclusion individually. Although this requires more calls to the solver, the
program variables and hypotheses used in each search can be reduced to only those that
are necessary for a given conclusion. This not only makes the search faster, it significantly
simplifies the counter-examples generated, as assignments for irrelevant program variables
are not generated.

We now present a few interesting lines from the program generated for conclusion 3. Note
that more of the encoding is described in Section 4, but most names should be fairly obvious.

A few important background literals required by the rest of the encoding are defined, the
only one relevant for our example is wordLength; from interval arithmetic we know that the
largest values (the base types for a and b) can fit into a signed 32-bit integer in our example.
%%% Background
wordLength (3 2) .
l i t e r a l I n t e g e rLow (0) .
l i t e r a l I n t e g e rH i g h (1) .
opt imisat ionLength (8) .

For each program variable present in the VC, Riposte generates an ‘input variable’, this
defines the search space for the program.
va r i ab l e (a , b i t I n t eg e r , input) .
v a r i ab l e (b , b i t I n t eg e r , input) .

F. Schanda and M. Brain 77

Each VC may also make use of some numeric constants (0 and 255 in our example); the
bit-patterns for those are also defined in the program, a snippet for the first 3 bits of constant
255 is shown below:
va r i ab l e (bi_const_255 , b i t I n t eg e r , constant) .
b i tValue (bi_const_255 , 0 , 1) .
b i tValue (bi_const_255 , 1 , 1) .
b i tValue (bi_const_255 , 2 , 1) .
b i tValue (bi_const_255 , 3 , 1) .

Riposte then encodes each hypothesis and the currently analysed conclusion. The encoding
of a hypotheses (H2) is as follows:
%%% H2 : a >= 0
va r i ab l e (bi_leq_s (bi_const_0 , a) , boolean , exp r e s s i on) .
computation (bi_leq_s (bi_const_0 , a) ,

bi_leq_s ,
bi_const_0 ,
a) .

hypothes i s (bi_leq_s (bi_const_0 , a)) .

The variable literal declares the Boolean expression bi_leq_s(bi_const_0, a) with the
computation literal generates the rules that compute its value and the hypothesis literal
denotes that it is a hypothesis and thus must be true in all models.

Finally, the encoding of the conclusion analysed, C3, is shown below. Note the naming
of the variables for expressions, such as bi_plus_s(a, b); this avoids generating two
calculations for the same expression twice and it also allows easy identification of what a
variable represents from the name only.
%%% C3 : a + b <= 255
va r i ab l e (bi_plus_s (a , b) , b i t I n t eg e r , exp r e s s i on) .
computation (bi_plus_s (a , b) ,

bi_plus_s ,
a ,
b) .

v a r i ab l e (bi_leq_s (bi_plus_s (a , b) , bi_const_255) , boolean , exp r e s s i on) .
computation (bi_leq_s (bi_plus_s (a , b) , bi_const_255) ,

bi_leq_s ,
bi_plus_s (a , b) ,
bi_const_255) .

conc lu s i on (bi_leq_s (bi_plus_s (a , b) , bi_const_255)) .

3.4 Interpretation
After the program has been generated and passed to gringo and clasp, a model may be
returned. Each model contains a valuation for each input variable (bitValue for each bit of
a bitIntegers, boolenValue for booleans, etc.).
∗∗∗ Found a counter−example to function_add_ub_2 , conc lu s i on C3 :

(For path (s) from s t a r t to f i n i s h :)
H2 : a >= 0
H3 : a <= unsigned_byte__last
H4 : b >= 0
H5 : b <= unsigned_byte__last

−>
C3 : a + b <= unsigned_byte__last

This conc lu s i on i s f a l s e i f :
a = unsigned_byte__last
b = 1

A number of basic, but effective, usability features have been implemented in order to assist
the user with understanding the counter-example. In the output reproduced above for

ICLP’12

78 Using Answer Set Programming in the Development of Verified Software

conclusion 3 of our example, large numbers are translated back to the original constants or
an easier expression3; in this case unsigned_byte__last is really 255, but it is shown using
the original name used in the VC. Furthermore, in order to reduce visual clutter only the
hypotheses which are relevant to our conclusion are printed.

Riposte also checks that the counter-example given does actually make all hypotheses
true and the conclusion false. This currently functions as an integrity check but will be used
to refine the modelling if spurious counter-examples are generated.

Caching of previous results using Memcached is also performed to allow incremental and
distributed computation [8].

4 Methodology and Modelling

The experience of developing a commercial scale application using ASP has yielded some
insights into the development process and some useful encoding techniques.

4.1 Methodology
Riposte was developed using the methodology described in [6]. The map from informal
concepts (such as “the B’th bit of variable N has value V”) to literals was the first thing
developed. Using this a number of simple programs were encoded manually and an interpret-
ation script was developed. This allowed models to be understood in terms of the informal
concepts rather than as a set of literals, and was invaluable in locating faults. The search
space (each possible assignment to the variables in the FDL) was modelled and manually
checked. Then the program was developed incrementally, one instruction at a time, with the
behaviour of each section checked before proceeding. This greatly simplified debugging as the
faults were almost always in the most recently added rules and their effects, in terms of the
concepts they were supposed to represent, were easily visible. Three additional techniques
were used to locate and prevent faults: random testing of individual instructions, system
level regression testing and test driven development, and explicit modelling of assumptions
about the model.

To test the individual instructions, a simple application was written that picked input
values (covering all of the combinations of common ‘edge’ and extreme values and some
random values), emulated the instruction and then produced a program that checked that the
AnsProlog model gave the correct result. This proved useful while modelling the instruction
as it allowed the partially completed model to be checked. In at least one case a discrepancy
between the declarative AnsProlog and the procedural emulation in the test system was
found to be a fault in the emulation!

At a higher level, system level test cases (VCs with annotations of which conclusions were
supposed to have counter examples) were extensively used. Often suites of tests for a feature
were written before they were implemented; in a fashion similar to test driven development.
Once features were implemented, these test suites were used as whole system regression tests.
This approach proved very effective and when the system was used on commercial code bases,
very few faults were found.

The third technique for fault minimisation is more specific to AnsProlog. When developing
a model there are normally a number of undocumented assumptions about the programs

3 For example instead of printing 4503599627370495, Riposte will print 2 ∗ ∗52 − 1, which we contend is
much more helpful.

F. Schanda and M. Brain 79

and encodings. For example that each FDL program variable modelled is given only one
type or that any bit is either 1 or 0. In the case of the program, these are normally regarded
to be obvious from the informal meaning of the predicates and it is left to the programmer
to generate valid programs. Implicit properties of the encoding can be given as auxiliary
constraints if that helps inference. In Riposte assumptions about programs and the encoding
are explicitly stated using rules that derive a “model error” literal. For example, separate
literals are used to state when a bit is 1 or when it is 0 and the following rules are used to
express the link between them.
%% Each b i t o f b i t I n t e g e r s must be 1 (x) or 0
modelError (bit_is_both_1_and_0 (N,B)) :−

bitValue (N,B, 1) , b i tValue (N,B, 0) , v a r i ab l e (N, b i t I n t eg e r ,R) .
modelError (bit_is_neither_1_nor_0 (N,B)) :−

not bitValue (N,B, 1) , not bitValue (N,B, 0) , v a r i ab l e (N, b i t I n t eg e r ,R) , b i t (B) .

There are two uses for these rules. During development it is possible to search for answer sets
with model errors. This gives meaningful explanations of which implicit properties of the
model have been broken, rather than yielding models. When Riposte is run in production
mode, a constraint is added stating there are no modelling errors. Thus all of the rules
describing modelling errors effectively become constraints, allowing equivalence preprocessing
[19] to collapse the separate literals to one. This is an evolution of the techniques for error
diagnosis used in Anton [5].

4.2 Encoding
A number of encoding techniques were developed to improve the performance and capacity
of Riposte.

Variables are a central part of the model used in Riposte. They model FDL variables,
constants and the values of expressions. For example, if the expression a + b > 0 appears in a
hypothesis or conclusion, there will be five variables modelled; two FDL, or input integers, a

and b, one integer constant, 0, and two expression variables, an integer for a+b and a Boolean
for a + b > 0. Choice rules are used so that FDL variables are assigned non-deterministic
values. Constants are assigned direct values and the values of expression variables are
given by the rules modelling their instruction. One key innovation was to name expression
variables by the expression they compute. For example the variable corresponding to the
expression a + b would be named bi_plus_s(a,b). This meant that all of the hypotheses
and conclusions that referred to a + b would automatically use the same variable and thus
the same literals. Not only did this reduce the size of the programs generated, it also helped
eliminate symmetries introduced by having multiple variables record the value of the same
expression, and thus improved propagation.

One of the key challenges in modelling was how to deal with quantified expressions. As
soon as the target application contains arrays, quantified hypotheses are unavoidable as
even the simplest statement of type safety about arrays requires quantifiers. To illustrate
Riposte’s handling of quantifiers, consider the following (contrived) example:

function Contrived (A : Unsigned_Byte)
return Boolean

--# pre for al l I in Unsigned_Byte range 50 .. 100 => (A /= I);
--# return A > 60 -> A > 150;
i s
begin

return True;
end Contrived ;

The hypotheses which represents the precondition (effectively a 6∈ [50, 100]) is expressed in
FDL translated as follows (note that the identifier I has been renamed by Riposte).

ICLP’12

80 Using Answer Set Programming in the Development of Verified Software

%%% H1 : f o r _ a l l (riposte___qid_1 : unsigned_byte ,
%%% riposte___qid_1 >= 50 and riposte___qid_1 <= 100 −>
%%% not a = riposte___qid_1)

Riposte handles quantifiers using the sound but not complete technique of instantiation.
Every quantified hypothesis is replaced by a number of copies representing a subset of
the possible bindings for the quantifier. Omitting particular bindings can fail to remove
models (giving incompleteness) but cannot add models to a problem with no models (thus
giving soundness). Due to space constraints we show this only for part of the statement,
not a = riposte___qid_1. Note that RIPOSTE___QID_1 is variable whose instantiation
is determined by the literal hypothesisInstantiation. qi_h1 is an arbitrary constant
identifying the relevant expression.
va r i ab l e (bi_equal_l (a ,RIPOSTE___QID_1) , boolean , exp r e s s i on)

:− hypo th e s i s I n s t an t i a t i on (qi_h1 ,RIPOSTE___QID_1) .
computation (bi_equal_l (a ,RIPOSTE___QID_1) ,

bi_equal_l ,
a ,
RIPOSTE___QID_1)

:− hypo th e s i s I n s t an t i a t i on (qi_h1 ,RIPOSTE___QID_1) .

v a r i ab l e (b_not_l (bi_equal_l (a ,RIPOSTE___QID_1)) , boolean , exp r e s s i on)
:− hypo th e s i s I n s t an t i a t i on (qi_h1 ,RIPOSTE___QID_1) .

computation (b_not_l (bi_equal_l (a ,RIPOSTE___QID_1)) ,
b_not_l ,
bi_equal_l (a ,RIPOSTE___QID_1))

:− hypo th e s i s I n s t an t i a t i on (qi_h1 ,RIPOSTE___QID_1) .

And finally the rule which encodes our simple but surprisingly effective instantiation heuristic.
We essentially instantiate the quantified expression for all variables which are not expressions
(i.e. for constants and input variables only).
hypo th e s i s I n s t an t i a t i on (qi_h1 ,RIPOSTE___QID_1) :−

va r i ab l e (RIPOSTE___QID_1, b i t In t eg e r ,R1) , R1 != expre s s i on .

For our example this means that the quantified hypothesis is instantiated for {a, 0, 1, 50, 60,

100, 150, 255} and Riposte gives i = 101 as a counter-example.
The last two encoding techniques improved the performance and completeness of Riposte,

the next technique is focused on improving usability. Considering the program given in
Figure 3, a = 91 and b = 214 is a counter example to conclusion 3. While this is an entirely
correct counter-example it is perhaps not the most informative. To produce more helpful
counter examples, Riposte makes use of the optimisation features of the answer set solver.
This is used to produce counter examples in which the FDL or input variables are as close
to zero as possible. By using an arbitrary order across the input variables and individual
optimise statements for each variable, counter examples will often end up minimising some
program variables and maximising other. For example in the case above, a = 255 and b = 1
is given. One of the advantages of using an answer set solver is being able to perform this
optimisation.

5 Evaluation

This section gives two evaluations of Riposte. The first focuses on false VCs and compares
Riposte with Victor and a variety of different SMT solvers. This evaluates Riposte in its
intended usage scenario – finding counter examples to individual false VCs. The second
experiment uses a large set of true VCs for a number of commercial applications and shows
the distribution of problem size and run-time across real applications.

F. Schanda and M. Brain 81

5.1 Comparison

As Riposte is a developer support tool, a key requirement is that it produces responses quickly
and consistently across a range of real world programs. To test this a set of programs with
undischarged VCs was created from publicly available SPARK applications: libsparkcrypto
[26], Tokeneer [1] and SPARKSkein [9]. A number of subprograms whose proofs require
non-formalised background information (for example, the number of certificates that can fit
on the removable storage) were taken from Tokeneer. Subprograms taken from libsparkcrypto
and SPARKSkein were modified to contain common bugs such as off by one errors, missing
preconditions, indexing errors and insufficient loop invariants. The Examiner was used to
generate VCs for these subprograms and the Simplifier used to remove simple true VCs,
leaving a test set of 45 VCs. All experiments were run on an Intel i7 860 (2.8 GHz, 4 cores)
desktop computer running Debian GNU/Linux, using a 20 minutes time limit per VC.

Figure 5 gives a graph of the cumulative time taken for Riposte to produce answers for
the benchmark VCs. Results are also given for Victor, the SMT based prover for Spark,
using a variety of back end SMT solvers: Alt-Ergo [12], CVC3 [14] and Z3 [15]. These are
included to give an idea of what constituted reasonable amounts of time and completeness,
rather than for direct comparison.

Although the SMT solvers outperform Riposte for the easy VCs, the more complex VCs
containing bugs are resolved much more quickly by Riposte; resulting in the overall fastest
time to process all VCs. Riposte is the only tool that renders a verdict on all benchmark
VCs within the time limit. The division between grounder and solver causes slightly higher
overheads for Riposte, giving the lower results on the left hand side of the graph. However the
total time taken by Riposte on all resolved VCs is significantly lower (Riposte 1600s, CVC3
9000s, Alt-Ergo 11100s, Z3 20800s; to the nearest 100s) even though coverage is higher.

Riposte’s performance on these benchmarks is fairly typical. During development it has
been used on over 22,500 VCs (including four industrial applications, one unknown to the
tools authors) resolving 95% or more. When counter examples are found, they are typically
found rapidly and within the time developers are willing to wait.

5.2 Program statistics

We have also used Riposte to analyse the three code-bases mentioned above in their original
form to generate some statistics on the size and run-times of programs generated. Figure 6
shows the distribution of sizes the ground programs in terms of atoms and rules. It can be
seen that most of the programs are small (≤ 25000 atoms/rules), but a few are very large
(≥ 1, 1 million atoms and ≥ 1, 2 million rules).

Figure 7 plots the time taken to ground each program against the time taken to solve. It
can be seen that most programs take longer to ground than to actually solve and even then
the combined time is usually significantly less than around 10 seconds.

6 Related work

A key precedent for using ASP to reason about programs is the TOAST superoptimiser [7].
Its model of instructions was somewhat simpler as it was modelling hardware and thus only
had the register ‘type’ to consider. In comparison, Riposte’s models include a much richer
type system (as it is modelling a typed language) and supports both quantifiers and axioms
for reasoning about more complex types.

ICLP’12

82 Using Answer Set Programming in the Development of Verified Software

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 10 100 1000 10000

R
e
so

lv
e
d

 V
C

s
(e

x
cl

u
d

in
g

 e
rr

o
r/

ti
m

e
o
u

t)

Cumultative time in s until verdict (1200s time limit per vc)

Riposte 0.0.7
Victor / Alt-Ergo 0.93

Victor / Z3 3.2
Victor / CVC3 2.4.1

Figure 5 Cumulative time for returning a verdict on VCs for erroneous code.

 1

 10

 100

 1000

 10000

 100000

0.0 200.0 k 400.0 k 600.0 k 800.0 k 1.0 M 1.2 M

N
u

m
b

e
r

o
f

in
st

a
n

ce
s

(l
o
g

)

Number of atoms (buckets of 25000)

sparkskein
libsparkcrypto-0.1.1

tokeneer

 1

 10

 100

 1000

 10000

 100000

0.0 200.0 k 400.0 k 600.0 k 800.0 k 1.0 M 1.2 M 1.4 M

N
u

m
b

e
r

o
f

in
st

a
n

ce
s

(l
o
g

)

Number of rules (buckets of 25000)

sparkskein
libsparkcrypto-0.1.1

tokeneer

Figure 6 Program sizes in terms of atoms (above) and rules (below).

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

T
im

e
 t

o
 s

o
lv

e
 i
n

st
a
n

ce
 i
n

 s
 (

lo
g

)

Time to ground instance in s (log)

sparkskein
libsparkcrypto-0.1.1

tokeneer
y = x

Figure 7 Time taken to ground each program v.s. time taken to solve.

F. Schanda and M. Brain 83

The closest system to Riposte, both in terms of architecture and approach, is Nitpick
[4], Isabelle’s counter-example generator. It uses KodKod to generate counter-examples to
HOL theorems. Although the theoretical foundations of answer set semantics and KodKod’s
FORL are very different, there are many parallels between the two systems, making KodKod
effectively an equivalent approach. The one key difference is that Nitpick has to deal with
infinite objects, making the encoding significantly more complex.

Systems that use SAT, SMT or other model generation solvers to discharge VCs (for
example [11]) can potentially generate counter-examples directly from failed proof attempts.
However there are a number of practical problems involving the size and complexity of the
counter-examples generated [25].

A key problem is that compact VC generation algorithms [2] make it difficult to identify
the root cause of a counter-example (as well as potentially significantly increasing the cost of
verification [24]). One option is to ‘tag’ the VC with explanations. Tags can be additional
propositions [23] or meta-information annotations [17]. As SPARK uses a more verbose but
significantly simpler VC generation system (see Section 2), these are not needed in Riposte,
since the failing condition (and why it is generated) is already available to the user.

Another area of research concerns the development of user interfaces to view and explore
counter-examples once they have been generated. The VCC Model Viewer [11] and its
successor, the Boogie Verification Debugger [20], show the power of integrating counter-
example display into an IDE. An innovative approach to doing this is generating a program
that triggers a bug corresponding to the counter-example [25] and then using a conventional
debugger interface.

Finally, counter-examples play a key role in checking and refining abstraction in model
checking systems, although this tends to be automatic (for example systems based on CEGAR
[10]) rather than aimed at supporting end-users.

7 Conclusion and Future Work

This paper presents Riposte, a successful commercial application of answer set programming.
Its performance is state of the art, as shown in Section 5. Furthermore it validates previous
work on development methodologies [6] by showing it is possible to develop large application
using them.

The next step for Riposte is integration into the next commercially supported release
of the Spark tools. This will definitely yield challenging examples generated from VCs for
real world systems. It is hoped that these will be useful in improving the performance and
capacity of answer set programming tools. One area of particular interest is improvement in
the performance of grounders. As shown in Figure 7, grounding time is often the dominant
factor in Riposte’s performance. This is unusual as when the grounding is a bottleneck it is
normally a space issue rather than run-time.

Another challenging area is moving counter examples beyond assignments of values to
program variables. In some cases it is possible to produce expressions that describe a set
of counter examples and are more informative than a single counter example. It may be
possible to use the skeptical query mode of answer set solvers to find expressions that hold
for every counter example. More generally, techniques for summarising the answer sets of a
program would be of use.

ICLP’12

84 Using Answer Set Programming in the Development of Verified Software

References
1 Janet Barnes, Roderick Chapman, Randy Johnson, James Widmaier, Bill Everett, and

David Cooper. Engineering the Tokeneer enclave protection software. In ISSSE ’06. IEEE,
2006.

2 Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs.
In Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 82–87. ACM, September 2005.

3 Stefan Berghofer. Verification of Dependable Software using SPARK and Isabelle. In Jörg
Brauer, Marco Roveri, and Hendrik Tews, editors, Proceedings of the 6th International
Workshop on Systems Software Verification (SSV 2011), pages 48–65. TU Dresden, August
2011. Technical report TUD–FI11.

4 Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterexample generator
for higher-order logic based on a relational model finder. In Interactive Theorem Proving,
volume 6172, pages 131–146. Springer, July 2010.

5 Georg Boenn, Martin Brain, Marina De Vos, and John ffitch. Automatic music composition
using answer set programming. The Theory and Practise of Logic Programming, 11(2-
3):397–427, February 2011.

6 Martin Brain, Owen Cliffe, and Marina De Vos. A pragmatic programmer’s guide to answer
set programming. In Marina De Vos and Torsten Schaub, editors, Proceedings of SEA09,
pages 49–63. Electronic proceedings at http://sea09.cs.bath.ac.uk, September 2009.

7 Martin Brain, Tom Crick, Marina De Vos, and John Fitch. Toast: Applying answer set
programming to superoptimisation. In Sandro Etalle and Mirosław Truszczyński, editors,
Proceedings of ICLP06, volume 4079, pages 270–284. Springer, 2006.

8 Martin Brain and Florian Schanda. A low cost technique for distributed and incre-
mental verification. In Verified Software: Theories, Tools and Experiments, pages 114–129.
Springer, 2012.

9 Roderick Chapman, Eric Botcazou, and Angela Wallenburg. SPARKSkein: A Formal and
Fast Reference Implementation of Skein. In SBMF 2011, volume 7021 of LNCS, pages
16–27. Springer, 2011.

10 Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Computer Aided Verification, volume
1855 of LNCS, pages 154–169, 2000.

11 Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, MichałMoskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system for veri-
fying concurrent c. In Theorem Proving in Higher Order Logics, volume 5674 of LNCS,
pages 23–42. Springer, August 2009.

12 Sylvain Conchon, Evelyne Contejean, and Johannes Kanig. Ergo: A theorem prover for
polymorphic first-order logic modulo theories, 2006.

13 M. Croxford and J. Sutton. Breaking through the V and V Bottleneck. In Ada in Europe
1995, volume 1031 of LNCS. Springer, 1996.

14 CVC3: An automatic theorem prover for satisfiability modulo theories (SMT). http:
//www.cs.nyu.edu/acsys/cvc3, 2006.

15 L. de Moura and N. Bjørner. Z3: An efficient SMT solver. Tools and Algorithms for the
Construction and Analysis of Systems, 4963:337–340, 2008.

16 Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.
17 Ewen Denney and Bernd Fischer. Explaining verification conditions. In Algebraic Method-

ology and Software Technology, volume 5140 of LNCS, pages 145–159. Springer, 2008.
18 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider. Po-

tassco: The Potsdam answer set solving collection. AI Communications, 24(2):105–124,
2011.

http://www.cs.nyu.edu/acsys/cvc3
http://www.cs.nyu.edu/acsys/cvc3

F. Schanda and M. Brain 85

19 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Advanced preprocessing for answer
set solving. In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors, Pro-
ceedings of the Eighteenth European Conference on Artificial Intelligence (ECAI’08), pages
15–19. IOS Press, 2008.

20 Claire Le Goues, K. Rustan M. Leino, and MichałMoskal. The Boogie verification debug-
ger. In Software Engineering and Formal Methods, volume 7041 of LNCS, pages 407–414.
Springer, November 2011.

21 Anthony Hall and Roderick Chapman. Correctness By Construction: Developing a Com-
mercial Secure System. IEEE Software, pages 18–25, Jan/Feb 2002.

22 Paul B. Jackson and Grant Olney Passmore. Proving SPARK Verification Conditions
with SMT solvers. http://homepages.inf.ed.ac.uk/pbj/papers/vct-dec09-draft.
pdf, December 2009.

23 K. Rustan M. Leino, Todd Millstein, and James B. Saxe. Generating error traces from
verification-condition counterexamples. Science of Computer Programming, 55(1-3):209–
226, March 2005.

24 K. Rustan M. Leino, MichałMoskal, and Wolfram Schulte. Verification condition splitting.
Unpublished report., 2008.

25 Peter Müller and Joseph N. Ruskiewicz. Using debuggers to understand failed verification
attempts. In FM 2011: Formal Methods, volume 6664 of LNCS, pages 73–87. Springer,
2011.

26 Alexander Senier. libsparkcrypto - a cryptographic library implemented in SPARK. http:
//senier.net/libsparkcrypto, 2010.

ICLP’12

http://homepages.inf.ed.ac.uk/pbj/papers/vct-dec09-draft.pdf
http://homepages.inf.ed.ac.uk/pbj/papers/vct-dec09-draft.pdf
http://senier.net/libsparkcrypto
http://senier.net/libsparkcrypto

Generating Event-Sequence Test Cases by Answer
Set Programming with the Incidence Matrix
Mutsunori Banbara1, Naoyuki Tamura1, and Katsumi Inoue2

1 Information Science and Technology Center, Kobe University
1-1 Rokko-dai, Nada-ku, Kobe, Hyogo 657-8501, Japan
{banbara,tamura}@kobe-u.ac.jp

2 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
inoue@nii.ac.jp

Abstract
The effective use of ASP solvers is essential for enhancing efficiency and scalability. The incidence
matrix is a simple representation used in Constraint Programming (CP) and Integer Linear
Programming for modeling combinatorial problems. Generating test cases for event-sequence
testing is to find a sequence covering array (SCA). In this paper, we consider the problem of
finding optimal sequence covering arrays by ASP and CP. Our approach is based on an effective
combination of ASP solvers and the incidence matrix. We first present three CP models from
different viewpoints of sequence covering arrays: the naïve matrix model, the event-position
matrix model, and the incidence matrix model. Particularly, in the incidence matrix model, an
SCA can be represented by a (0, 1)-matrix called the incidence matrix of the array in which
the coverage constraints of the given SCA can be concisely expressed. We then present an
ASP program of the incidence matrix model. It is compact and faithfully reflects the original
constraints of the incidence matrix model. In our experiments, we were able to significantly
improve the previously known bounds for many arrays of strength three. Moreover, we succeeded
either in finding optimal solutions or in improving known bounds for some arrays of strength four.

1998 ACM Subject Classification D.1.6 Logic Programming; D.2.5 Testing and Debugging

Keywords and phrases Event-Sequence Testing, Answer Set Programming, Matrix Model,
Constraint Programming, Propositional Satisfiability (SAT)

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.86

1 Introduction

Recent development of Answer Set Programming (ASP) [3, 15, 21] suggests a successful
direction to extend logic programming to be more expressive and more efficient. ASP provides
a rich modeling language and can be well suited for modeling combinatorial problems in
Computer Science and Artificial Intelligence: multi-agent systems, systems biology, planning,
scheduling, semantic web, and Constraint Satisfaction Problems (CSPs). Remarkable
improvements in the efficiency of ASP solvers have been made over the last decade, through
the adoption of advanced techniques of Constraint Programming (CP) and Propositional
Satisfiability (SAT). Such improvements encourage researchers to solve hard combinatorial
problems by using ASP.

Combinatorial testing is an effective black-box testing method to detect elusive failures of
hardware/software. The basic idea is based on the observations that most failures are caused
by interactions of multiple components. The number of test cases is therefore much smaller

© Mutsunori Banbara, Naoyuki Tamura, and Katsumi Inoue;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 86–97

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.86
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Banbara, N. Tamura, and K. Inoue 87

than exhaustive testing. Generating test cases for combinatorial testing is to find a Covering
Array (CA) in Combinatorial Designs [2, 4, 5, 6, 7, 8, 9, 17, 18, 20, 22, 23, 27, 28]. However,
these CA-based combinatorial testing methods can not be directly applied to detect failures
that are caused by a particular event sequence, an ordering of multiple events to be processed.

Event-sequence testing is a combinatorial testing method focusing on event-driven hard-
ware/software. Suppose we want to test a system with 10 events. We have 10! = 3, 628, 800
test cases for exhaustive testing. Instead, we might be satisfied with test cases that exercise
all possible 3-sequences of 10 events (strength three event-sequence testing). Naively, we
need 10P3 = 8× 9× 10 = 720 test cases. We can reduce to less than 240 since one test case
covers at least three 3-sequences. The question is “what is the smallest number of test cases
that we need now?”. It comes down to an instance of the problem of finding optimal Sequence
Covering Array (SCA) proposed by Kuhn et al [19]. A sequence covering array provides a
set of test cases, where each row of the array can be regarded as an event sequence for an
individual test case. Fig.1 shows an optimal sequence covering array of 11 rows, an answer
of the question above.

ASP solvers have an important role in the latest ASP technology. The effective use
of them is essential for enhancing efficiency and scalability. The incidence matrix is a
simple representation used in CP and integer linear programming for modeling combinatorial
problems such as balanced incomplete block designs [9]. Our approach is based on an effective
combination of ASP solvers and the incidence matrix.

In this paper, we consider the problem of finding optimal sequence covering arrays
by ASP and CP. We first present three CP models from different viewpoints of sequence
covering arrays: naïve matrix model, event-position matrix model, and incidence matrix model.
Particularly, in the incidence matrix model, an SCA can be represented by a (0, 1)-matrix
called the incidence matrix of the array in which the coverage constraints of the given SCA
can be concisely expressed. We then present an ASP program of the incidence matrix model.
It is compact and faithfully reflects the original constraints of the incidence matrix model.
For example, it requires only 8 rules for the arrays of strength three. From the perspective of
ASP, Erdem et al. recently proposed an ASP-based approach for event-sequence testing [11],
and have shown that it enables a tester to rapidly specify problems and to experiment with
different formulations at a purely declarative level.

In our experiments, we were able to significantly improve the previously known bounds
obtained by a greedy algorithm [19] and an ASP-based approach [11] for many arrays of
strength three with small to large sizes of events. Moreover, we succeeded either in finding
optimal solutions or in improving known bounds for some arrays of strength four.

2 Sequence Covering Arrays and Related Work

I Definition 1. A sequence covering array SCA(n;S, t) is an n×|S| (n rows and |S| columns)
array A = (aij) over a finite set S of symbols with the property that

each row of A is a permutation of S, and
for each t-sequence σ = (e1, e2, . . . , et) over S, there exists at least one row r with column
indices 1 ≤ c1 < c2 < · · · < ct ≤ |S| such that ei = arci for all 1 ≤ i ≤ t.

The parameter n is the size of the array, S is the set of events, and t is the strength of the
array. Then trivial case when t = 2 is excluded from further consideration.

I Definition 2. The sequence covering array number SCAN(S, t) is the smallest n for which
an SCA(n;S, t) exists.

I Definition 3. A sequence covering array SCA(n;S, t) is optimal if SCAN(S, t) = n.

ICLP’12

88 Generating Event-Sequence Test Cases by ASP with the Incidence Matrix

a b c d e f g h i j

f a i g j h e c d b

h d i b e a j g f c

i c j d b a h f e g
g d f e b a h j c i

d j h c g e a i f b
g c b j i e h a f d
h j e b f i g a d c
i h f c b g d a e j

e f j d g i b c a h
e d c j i f h g a b

Each event is represented as an alpha-
bet instead of an integer.
Each row represents an event sequence.
We highlight the different 3-sequences
over {a, b, c} to show all possible 3-
sequences (six permutations) occur at
least once.
This property holds for all 3-sequences
over {a, b, c, d, e, f, g, h, i, j}.

Figure 1 An optimal sequence covering array SCA(11; 10, 3).

I Notation 4. Let s be an integer. SCA(n; s, t) and SCAN(s, t) are intended to denote,
respectively, SCA(n; {1, . . . , s} , t) and SCAN({1, . . . , s} , t).

Fig. 1 shows an example of SCA(11; 10, 3), a sequence covering array of strength t = 3
with s = 10 events. It is an optimal sequence covering array which has n = 11 rows.

In this paper, we define two kinds of problems to make our approach more understand-
able. For a given tuple 〈n, s, t〉, SCA decision problem is the problem to decide whether an
SCA(n; s, t) exists or not, and find it if exists. For a given pair 〈s, t〉, SCA optimization prob-
lem is the problem to find an optimal covering array SCA(n; s, t). Oetsch et al. have recently
proved that the Generalised Event Sequence Testing (GEST) problem is NP-complete 1.
Most SCA decision problems studied in this paper are special cases of GEST.

Kuhn et al. proposed a greedy algorithm for solving the SCA optimization problems [19].
The practical effectiveness, especially scalability, of their algorithm has been shown by the
fact that they succeeded in finding upper bounds for the arrays of strength 3 ≤ t ≤ 4 with
s ≤ 80 events. We refer to their algorithm [19] as Kuhn’s encoding.

Erdem et al. proposed ASP encodings and an ASP-based greedy algorithm for solving
the SCA optimization problems [11]. They have found and proved optimal solutions for
the arrays of strength t = 3 with 5 ≤ s ≤ 8 events through their exact ASP encodings.
Moreover, their ASP-based greedy algorithm that synergistically integrates ASP with a
greedy method is designed to improve the scalability issue of the ASP encodings. We refer to
their encodings [11] as Erdem’s encoding. When we need to distinguish between their exact
ASP encodings and greedy algorithm, we refer to the former as Erdem’s exact encoding and
the latter as Erdem’s greedy encoding.

3 Constraint Programming Models

We propose three different CP models for solving the SCA decision problems: the naïve
matrix model, the event-position matrix model, and the incidence matrix model. We assume
throughout that we have an SCA(n; s, 3), a sequence covering array of strength t = 3, for
the sake of clarity. Note that our models can be extended in a straightforward way to the
case of any strength t ≥ 3. We also use a sequence covering array SCA(6; {a, b, c, d}, 3) of
Fig. 2 as a running example.

1 Oetsch et al. personal communication

M. Banbara, N. Tamura, and K. Inoue 89

1 2 3 4
a d b c
d c b a
c d a b
a c b d
b d a c
b c a d

Figure 2 A sequence covering array
SCA(6; {a, b, c, d}, 3).

a b c d
1 3 4 2
4 3 2 1
3 4 1 2
1 3 2 4
3 1 4 2
3 1 2 4

Figure 3 The event-position matrix of
SCA(6; {a, b, c, d}, 3) shown in Fig. 2.

3.1 Naïve Matrix Model
For a given SCA decision problem for SCA(n; s, 3), the most direct model would be using
an n× s (n rows and s columns) matrix of integer variables mr,i (1 ≤ r ≤ n, 1 ≤ i ≤ s). The
domain of each variable is {1, 2, . . . , s}. This matrix identifies a sequence covering array itself.
We also use the auxiliary binary variables ar,(i,j,k),(p,q,u) with 1 ≤ r ≤ n, 1 ≤ i < j < k ≤ s,
1 ≤ p, q, u ≤ s, p 6= q, p 6= u, and q 6= u. The variable ar,(i,j,k),(p,q,u) is intended to denote
mr,i = p, mr,j = q, and mr,k = u in the matrix.

A global constraint is a constraint that can specify a relation between an arbitrary
number of variables [26]. In the naïve matrix model, we use the alldifferent constraint
that is one of the best known and most studied global constraint in CP. The constraint
alldifferent(X1, X2, . . . , X`) ensures that the values assigned to the variables X1, X2, . . . , X`

must be pairwise distinct.
The constraints for SCA(n; s, 3) are defined as follows.
Permutation constraints:

alldifferent(mr,1,mr,2, . . . ,mr,s) (1)
Channeling constraints:

ar,(i,j,k),(p,q,u) = 1⇔ (mr,i = p) ∧ (mr,j = q) ∧ (mr,k = u) (2)
Coverage constraints:∑

1≤r≤n
1≤i<j<k≤s

ar,(i,j,k),(p,q,u) ≥ 1 (3)

where 1 ≤ r ≤ n, 1 ≤ i < j < k ≤ s, 1 ≤ p, q, u ≤ s, p 6= q, p 6= u, and q 6= u.
The permutation constraints can be easily expressed by using alldifferent constraints of

(1). That is, for every row, one alldifferent is enforced to ensure that every event in the range
1 to s occurs exactly once. The constraints (2) express the channeling constraints. The
constraints (3) express the coverage constraints such that every 3-sequence of the events
{1, . . . , s} occurs at least once in the matrix.

Note that the constraints of leftward arrows in (2) can be omitted. Even if they may be
omitted, we can still get a solution. For any solution, the constraints (3) ensure that every
3-sequence of the events occurs at least once. For each such an occurrence, the corresponding
entries (i.e. a 3-tuple of variables) of the matrix are derived from the constraints (2). The
condition that each row is a permutation of the events is ensured by the constraints (1).

The drawback of this model is not only the number of instances required for the coverage
constraints (3), but also the number of variables contained within each cardinality constraint
in (3). We need in total sP3 cardinality constraints, and each of them contains n

(
s
3
)
variables.

To avoid this problem, we propose another matrix model, called the event-position matrix
model.

ICLP’12

90 Generating Event-Sequence Test Cases by ASP with the Incidence Matrix

a a b b c c a a b b d d a a c c d d b b c c d d

b c a c a b b d a d a b c d a d a c c d b d b c

c b c a b a d b d a b a d c d a c a d c d b c b

a d b c 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
d c b a 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
c d a b 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0
a c b d 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
b d a c 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0
b c a d 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

Figure 4 The incidence matrix of SCA(6; {a, b, c, d}, 3) shown in Fig. 2.

3.2 Event-Position Matrix Model

We give another view of sequence covering arrays. For a given sequence covering array
A = (aij), we can represent it by the event-position matrix of the array. The event-
position matrix B = (bie) of A is defined so that bie = j if aij = e. That is, the rows are
the same as before but the columns are labeled with the distinct events, and each entry
represents the position of its corresponding event. Fig. 3 shows the event-position matrix of
SCA(6; {a, b, c, d}, 3) shown in Fig. 2.

For a given SCA decision problem for SCA(n; s, 3), in the event-position matrix model,
we use again an n× s matrix of integer variables xr,i (1 ≤ r ≤ n, 1 ≤ i ≤ s). It identifies an
event-position matrix instead of a sequence covering array. The domain of each variable is
{1, 2, . . . , s}. We also use the auxiliary binary variables yr,(i,j,k) with 1 ≤ r ≤ n, 1 ≤ i, j, k ≤ s,
i 6= j, i 6= k, and j 6= k. The variable yr,(i,j,k) is intended to denote xr,i < xr,j < xr,k in the
event-position matrix.

The constraints for SCA(n; s, 3) are defined as follows.
Permutation constraints:

alldifferent(xr,1, xr,2, . . . , xr,s) (4)

Channeling constraints:
yr,(i,j,k) = 1⇔ (xr,i < xr,j) ∧ (xr,i < xr,k) ∧ (xr,j < xr,k) (5)

Coverage constraints:∑
r

yr,(i,j,k) ≥ 1 (6)

where 1 ≤ r ≤ n, 1 ≤ i, j, k ≤ s, i 6= j, i 6= k, and j 6= k.
The constraints (4) is the same as (1) of the previous model except that each argument

represents the position of the event. The constraints (5) express the channeling constraints.
The coverage constraints can be concisely expressed by the constraints (6). That is, for every
3-sequence (i, j, k) of the events, one cardinality constraint is enforced to ensure that there is
at least one row r that satisfies the condition xr,i < xr,j < xr,k. This means that we cover
all possible 3-sequence.

The comparisons xr,i < xr,k in (5) are clearly redundant and can be omitted, but we
leave them because of efficiency improvements. The constraints of leftward arrows in (5) can
be also omitted for the same reason as before.

M. Banbara, N. Tamura, and K. Inoue 91

3.3 Incidence Matrix Model
We now give yet another view of sequence covering arrays. For a given sequence covering
array, we can represent it by the incidence matrix of the array. Each row is labeled with one
row (i.e. an event sequence) of the array. Each column is labeled with one of all possible
t-sequences of the events. The incidence matrix C = (cij) of SCA(n; s, t) is a (0, 1)-matrix
with n rows and sPt columns such that cij = 1 if the t-sequence j is a sub-sequence of the
event sequence i, and cij = 0 otherwise.

Fig. 4 shows the incidence matrix of SCA(6; {a, b, c, d}, 3) shown in Fig. 2. Each row is
labeled with one row of the SCA(6; {a, b, c, d}, 3). Each of 4P3 = 24 columns is labeled with
one of all possible 3-sequences of the events {a, b, c, d}. The labels of the columns are written
vertically. For example, the entry in the first row and first column is a 1 since “a b c” is a
sub-sequence of “a d b c”.

In contrast, on the incidence matrix, let us consider the constraints that must be satisfied
for SCA(6; {a, b, c, d}, 3). Each column has at least one 1 (coverage constraints). From a
viewpoint of 3-combinations of the events {a, b, c, d}, there are 6 ×

(4
3
)

= 24 sub-matrices
with one row and six columns. Each sub-matrix sharing the same three events in the columns
has exactly one 1. Furthermore, for each row, such occurrences of 1’s are consistent with
each other in terms of the ordering of the events.

For a given SCA decision problem for SCA(n; s, 3), in the incidence matrix model, we
use an n× sP3 matrix of binary variables yr,(i,j,k) with 1 ≤ r ≤ n, 1 ≤ i, j, k ≤ s, i 6= j, i 6= k,
and j 6= k. We can express the permutation constraints by using only the yr,(i,j,k) variables,
but it requires a large number of constraints that are very costly to deal with. To avoid this
problem, we introduce the auxiliary binary variables prr,(i,j) with 1 ≤ r ≤ n, 1 ≤ i, j ≤ s,
and i 6= j. The variable prr,(i,j) is intended to denote the event i precedes the event j in the
row r.

The constraints for SCA(n; s, 3) are defined as follows.
Permutation constraints:(

(prr,(i,j) = 1) ∧ (prr,(j,k) = 1)
)
⇒ prr,(i,k) = 1 (7)

¬(prr,(i,j) = 1) ∨ ¬(prr,(j,i) = 1) (8)
(prr,(i,j) = 1) ∨ (prr,(j,i) = 1) (9)

Channeling constraints:
yr,(i,j,k) = 1⇔ (prr,(i,j) = 1) ∧ (prr,(i,k) = 1) ∧ (prr,(j,k) = 1) (10)

Coverage constraints:∑
r

yr,(i,j,k) ≥ 1 (11)

where 1 ≤ r ≤ n, 1 ≤ i, j, k ≤ s, i 6= j, i 6= k, and j 6= k.
The permutation constraints can be expressed by enforcing total ordering on the events:

(7) for transitivity, (8) for asymmetry, and (9) for comparability (totality). Note that the
constraints (7) can be replaced with the following arithmetic constraints (12), and the
constraints (8) and (9) with (13).

prr,(i,j) + prr,(j,k) − prr,(i,k) ≤ 1 (12)
prr,(i,j) + prr,(j,i) = 1 (13)

The channeling constraints are expressed by the constraints (10) that are slightly modified
to adjust the pr variables compared with (5). The coverage constraints (11) are the same as
(6). The equations prr,(i,k) = 1 in (10) and the constraints of leftward arrows in (10) can be
omitted for the same reason as before.

ICLP’12

92 Generating Event-Sequence Test Cases by ASP with the Incidence Matrix

Table 1 Benchmark results of different CP models for SCA(n; s, t).

n s t Result Incidence Incidence E-Position E-Position E-Position
(lex-row) (snake lex) (double lex)

6 5 3 UNSAT 1.320 < 0.000 5.457 0.008 0.011
7∗ 5 3 SAT < 0.000 < 0.000 0.005 0.010 0.010
7 6 3 UNSAT 1327.350 0.110 T.O 0.383 0.588
8∗ 6 3 SAT 0.005 0.006 0.012 0.016 0.022
7 7 3 UNSAT 1442.410 0.180 T.O 1.921 5.509
8∗ 7 3 SAT 0.008 0.015 0.032 0.077 0.027
7 8 3 UNSAT T.O 0.390 T.O 8.280 28.870
8∗ 8 3 SAT 0.070 0.094 7.870 2.815 18.160
9 9 3 SAT 0.075 0.242 6.139 6.070 64.570
9 10 3 SAT 11.896 5.890 982.580 1188.240 T.O
10 11 3 SAT 0.047 0.052 59.670 30.216 67.031
10 12 3 SAT 0.046 0.456 774.338 117.258 T.O
10 13 3 SAT 0.980 0.371 T.O T.O T.O
10 14 3 SAT 5.546 25.880 T.O T.O T.O
10 15 3 SAT 541.480 443.012 T.O T.O T.O
11 16 3 SAT 89.580 107.334 T.O T.O T.O
11 17 3 SAT 62.560 T.O T.O T.O T.O
12 18 3 SAT 3.603 3.830 T.O T.O T.O
12 19 3 SAT 2.851 18.840 T.O T.O T.O
12 20 3 SAT 22.500 180.256 T.O T.O T.O
12 21 3 SAT 1353.810 824.680 T.O T.O T.O
13 22 3 SAT 29.660 9.783 T.O T.O T.O
13 23 3 SAT T.O 898.820 T.O T.O T.O
14 24 3 SAT 4.838 13.962 T.O T.O T.O
14 25 3 SAT 25.600 7.763 T.O T.O T.O
14 26 3 SAT 67.850 8.864 T.O T.O T.O
14 27 3 SAT 1126.390 251.660 T.O T.O T.O
14 28 3 SAT T.O 641.320 T.O T.O T.O
15 29 3 SAT 127.470 18.955 T.O T.O T.O
15 30 3 SAT 673.210 190.200 T.O T.O T.O
17 40 3 SAT 771.990 T.O M.O M.O M.O
23 5 4 UNSAT T.O 0.046 T.O 3.554 4.980
24∗ 5 4 SAT 0.100 0.081 94.488 1.150 0.690
23 6 4 UNSAT T.O 0.260 T.O T.O T.O
24∗ 6 4 SAT 0.230 0.460 376.184 T.O T.O
38 7 4 SAT T.O 40.390 T.O T.O T.O
47 8 4 SAT T.O 688.400 T.O T.O T.O
52 9 4 SAT T.O 51.950 T.O T.O T.O
58 10 4 SAT 341.420 659.830 T.O T.O T.O
65 11 4 SAT T.O 159.330 T.O T.O T.O
69 12 4 SAT T.O 243.590 T.O T.O T.O

4 Experiments

To evaluate the effectiveness of our CP models, we solve SCA optimization problems (35
problems in total) of strength 3 ≤ t ≤ 4 with small to moderate sizes of events. For each
problem, we solve multiple SCA decision problems of SCA(n; s, t) with varying the value
of n. Such decision problems contain both satisfiable and unsatisfiable problems and their
optimal solutions exist on the boundaries.

For each SCA decision problem, we represent it by using our models with and without
breaking the symmetries. More precisely, we apply the lexicographic ordering constraints for
breaking the row symmetry in the naïve matrix model and the incidence matrix model. In
the event-position matrix model, for breaking the row and column symmetry, we apply the
double lex [12] and the snake lex [16] separately. In addition, we constrain every entry in the
first row to be “1 2 . . . s” for the naïve matrix model and the event-position matrix model
with double lex. We note that applying these constraints for breaking the symmetries does
not lose any solutions. For every model, we omit the constraints of leftward arrows in the
channeling constraints.

M. Banbara, N. Tamura, and K. Inoue 93

For solving every model of each decision problem, we use a SAT-based CSP solver
Sugar 2, an award-winning system in GLOBAL category (including global constraints such
as alldifferent) of the 2008 and 2009 International CSP Solver Competitions. Sugar solves a
finite linear CSP by encoding it into SAT and then solving the SAT-encoded problem by
using an external SAT solver at the back-end. The SAT encoding that Sugar adopted is
called the order encoding [24, 25]. It is efficient in the sense that unit propagation keeps
the bounds consistency in original CSPs. We use MiniSat 2.2.0 (core) [10], Glucose 2 [1], and
clasp 2.0.2 [13, 14] as back-end SAT solvers. The first two are efficient CDCL SAT solvers.
The last one clasp is not only a state-of-the-art ASP solver, but also an efficient SAT solver.
In particular, Glucose and clasp are award-winning solvers in the 2011 SAT Competition.

Table 1 shows the best CPU time in seconds of three SAT solvers for solving SCA(n; s, t).
We only shows our best lower and/or upper bounds of n for each SCA optimization problem.
We use the symbol “∗” to indicate that the value of n is optimal. The column “Result”
indicates whether it is satisfiable (SAT) or unsatisfiable (UNSAT). The columns “Incidence”
and “E-Position” indicate the incidence matrix model and the event-position matrix model
respectively. Note that we exclude the results of the naïve matrix model from Table 1 since
it was quite inefficient. All times were collected on Mac OS X with Intel Xeon 3.2GHz and
16GB memory. We set a timeout (“T.O”) including the encoding time of Sugar to 1800
seconds for each SCA decision problem. The “M.O” indicates a memory error of SAT solvers.

We observe in Table 1 that the incidence matrix based models (“Incidence” and “Incidence
with lex-row”) are faster and much more scalable to the number of events than the event-
position matrix based models (“E-Position”, “E-Position with snake lex” and “E-Position
with double lex”). “Incidence with lex-row” solved 39 SCA decision problems out of 41,
rather than 31 of “Incidence”, 14 of “E-Position with snake lex”, 12 of “E-Position with
double lex”, and 11 of “E-Position”. The main difference between two incidence matrix based
models is that “Incidence with lex-row” were able to give solutions for 7 arrays of strength
t = 4 not solved in timeout by “Incidence”.

Our models reproduced and re-proved 4 previously known optimal solutions. Moreover,
we found optimal solutions for SCAN(5, 4) and SCAN(6, 4). We also improved on previously
known upper bounds [11, 19] for the arrays of strength t = 3 with 18 ≤ s ≤ 40 events and
strength t = 4 with 5 ≤ s ≤ 12 events except s = 10.

5 An ASP Program of the Incidence Matrix Model

We present an ASP program of our best incidence matrix model. It is compact and faithfully
reflects the original constraints of the incidence matrix model. Our program has

(
t
2
)

+ 5 rules
for the SCA decision problem of SCA(n; s, t). For example, Fig. 5 shows the ASP program
sca3.lp for SCA(n; s, 3), which has only

(3
2
)

+ 5 = 8 rules. Note that this program can be
extended in a straightforward way to the case of any strength t ≥ 3. We use the syntax
supported by the solver clasp and the grounder gringo [13, 14].

In Fig. 5, the first two rules row(1..n) and col(1..s) express that the row indices are
integers in the range 1 to n, and the events are integers in the range 1 to s. The constants
n and s are replaced with given values by a grounder. The third rule corresponds to the
coverage constraints (11) where the predicate y(R,I,J,K) expresses the binary variable
yr,(i,j,k). To express the coverage constraints, it uses special constructs called cardinality
expressions of the form `{a1, . . . , ak}u where each ai is an atom and ` and u are non-negative

2 http://bach.istc.kobe-u.ac.jp/sugar/

ICLP’12

94 Generating Event-Sequence Test Cases by ASP with the Incidence Matrix

% SCA(n;s ,3)
row (1..n). col (1..s).

% coverage constraints
1{ y(R,I,J,K) : row(R) } :- col(I;J;K), I!=J, I!=K, J!=K.

% channeling constraints
pr(R,I,J) :- y(R,I,J,K).
pr(R,I,K) :- y(R,I,J,K).
pr(R,J,K) :- y(R,I,J,K).

% asymmetry & comparability constraints
1{ pr(R,I,J), pr(R,J,I) }1 :- row(R), col(I;J), I<J.

% transitivity constraints
pr(R,I,K) :- pr(R,I,J), pr(R,J,K), row(R), col(I;J;K), I!=J, I!=K, J!=K.

Figure 5 sca3.lp: An ASP program for SCA(n; s, 3).

integers denoting the lower bound and the upper bound of the cardinality expression. The
third rule first generates a candidate for the incidence matrix, and then constrains a lower
bound on the number of atoms is 1 for each column (i.e. each 3-sequence of the events).
From the fourth to the sixth rule, the predicate pr(R,I,J) expresses the auxiliary binary
variable prr,(i,j). These three rules correspond to the constraints of rightward arrows in
the channeling constraints (10). The seventh rule again uses cardinality expressions to
express the asymmetry and comparability constraints (13). The transitivity constraints (7)
are expressed by the last rule. The command “gringo sca3.lp -c n=n -c s=s | clasp”
gives an answer set of an SCA(n; s, 3) decision problem. We can get a solution of the original
problem by decoding the resulting answer set.

6 Comparison

We compare our ASP program with different approaches. We use Kuhn’s benchmark set
that consists of 62 SCA optimization problems for SCAN(s, t) of strength 3 ≤ t ≤ 4 with
5 ≤ s ≤ 80 events. We execute our ASP program by using clasp 2.0.4 and gringo 2.0.5 to
solve multiple SCA decision problems of SCA(n; s, t) with varying the value of n for each
optimization problem. All times were measured on Mac OS X with Intel Xeon 2.66GHz and
24GB memory. We set a timeout for clasp to 3600 seconds for each SCA(n; s, t).

Table 2 shows the comparison results of different approaches on the best known upper
bounds of SCAN(s, t). Our comparison includes our ASP program with clasp, our CP models
with Sugar, Erdem encoding [11], and Kuhn encoding [19]. We note that Erdem encoding is
closely related to the event-position matrix model of our CP models. We highlight the best
value of different approaches for each SCAN(s, t). The symbol “-” is used to indicate that
the result is not available in either our experiments or published literature.

In the case of strength t = 3, our ASP program with clasp were able to produce significantly
improved bounds compared with those in Erdem greedy encoding and Kuhn encoding. The
more events are considered, the more significant are the improvements. For example, when
s = 80 events, it produced an array of n = 24 rows compared with 38 of Erdem and 42 of
Kuhn. On average, it improved every bound of Erdem greedy encoding and Kuhn encoding
by 10 and 9 rows respectively. Compared with Erdem exact encoding, our ASP program can
be more scalable. In the case of strength t = 4, although not able to match Erdem greedy
encoding for SCAN(10, 4) and SCAN(20, 4), our ASP program were able to improve every
bound of Kuhn encoding for the arrays with s ≤ 23 events by 19 rows on average.

M. Banbara, N. Tamura, and K. Inoue 95

Table 2 Comparison of different approaches on the best known upper bounds of SCAN(s, t).

Our ASP Our CP Erdem exact Erdem greedy Kuhn encoding [19]
s with clasp with Sugar encoding [11] encoding [11]

t = 3 t = 4 t = 3 t = 4 t = 3 t = 4 t = 3 t = 4 t = 3 t = 4
5 7 24 7 24 7 − − − 8 29
6 8 24 8 24 8 − − − 10 38
7 8 40 8 38 8 − − − 12 50
8 8 44 8 47 8 − − − 12 56
9 9 53 9 52 9 − − − 14 68
10 9 59 9 58 9 − 11 55 14 72
11 10 65 10 65 10 − − − 14 78
12 10 73 10 69 10 − − − 16 86
13 10 77 10 − 10 − − − 16 92
14 10 81 10 − 10 − − − 16 100
15 10 84 10 − 10 − − − 18 108
16 11 89 11 − 11 − − − 18 112
17 11 91 11 − 11 − − − 20 118
18 12 97 12 − − − − − 20 122
19 12 100 12 − − − − − 22 128
20 12 105 12 − − − 19 104 22 134
21 12 104 12 − − − − − 22 134
22 13 111 13 − − − − − 22 140
23 14 112 13 − − − − − 24 146
24 14 − 14 − − − − − 24 146
25 14 − 14 − − − − − 24 152
26 14 − 14 − − − − − 24 158
27 14 − 14 − − − − − 26 160
28 14 − 14 − − − − − 26 162
29 15 − 15 − − − − − 26 166
30 15 − 15 − − − 23 149 26 166
40 17 − 17 − − − 27 181 32 198
50 19 − − − − − 31 − 34 214
60 21 − − − − − 34 − 38 238
70 22 − − − − − 36 − 40 250
80 24 − − − − − 38 − 42 264

7 Conclusion

In this paper, we considered the problem of finding optimal sequence covering arrays by
ASP and CP. We presented three CP models from different viewpoints of sequence covering
arrays. Among them, the incidence matrix model is efficient in the sense that an SCA can
be represented by the incidence matrix of the array in which the coverage constraints of the
given SCA can be concisely expressed. We presented a new ASP program that is compact
and faithfully reflects the incidence matrix model. To evaluate the effectiveness of our ASP
program, we solved Kuhn’s benchmark set that consists of 62 SCA optimization problems
for SCAN(s, t) of strength 3 ≤ t ≤ 4 with 5 ≤ s ≤ 80 events. We were able to significantly
improve the previously known bounds for many arrays, as shown in Table 2. Moreover, we
found optimal solutions for SCAN(5, 4) and SCAN(6, 4). However, we were still not able to
find any solutions for SCAN(s, 4) with 24 ≤ s ≤ 80 events because of expensive grounding,
which shows a limitation of our approach at present. To overcome this problem, hybrid
approaches to SCA, like Erdem greedy encoding, can be promising.

Our approach is based on an effective combination of ASP solvers and the incidence
matrix. It can be applied to a wide range of combinatorial search problems such as balanced
incomplete block designs [9] and SAT-based standard combinatorial testing [2].

ICLP’12

96 Generating Event-Sequence Test Cases by ASP with the Incidence Matrix

References
1 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT

solvers. In Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), pages 399–404, 2009.

2 Mutsunori Banbara, Haruki Matsunaka, Naoyuki Tamura, and Katsumi Inoue. Generat-
ing combinatorial test cases by efficient SAT encodings suitable for CDCL SAT solvers.
In Proceedings of the 17th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR-17), LNCS 6397, pages 112–126, 2010.

3 Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

4 D.A. Bulutoglu and F. Margot. Classification of orthogonal arrays by integer programming.
Journal of Statistical Planning and Inference, 138:654–666, 2008.

5 M. A. Chateauneuf and Donald L. Kreher. On the state of strength-three covering arrays.
Journal of Combinatorial Designs, 10(4):217–238, 2002.

6 David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner C. Patton. The
AETG system: An approach to testing based on combinatiorial design. IEEE Transactions
on Software Engineering, 23(7):437–444, 1997.

7 Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Constructing interaction test suites
for highly-configurable systems in the presence of constraints: A greedy approach. IEEE
Transactions on Software Engineering, 34(5):633–650, 2008.

8 Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and Charles J. Colbourn. Con-
structing test suites for interaction testing. In Proceedings of the 25th International Con-
ference on Software Engineering (ICSE 2003), pages 38–48, 2003.

9 Charles J. Colbourn and Jeffrey H. Dinitz. Handbook of Combinatorial Designs. Chapman
& Hall/CRC, 2007.

10 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceedings of the 6th
International Conference on Theory and Applications of Satisfiability Testing (SAT 2003),
LNCS 2919, pages 502–518, 2003.

11 Esra Erdem, Katsumi Inoue, Johannes Oetsch, Jorg Puhrer, Hans Tompits, and Cemal
Yilmaz. Answer-set programming as a new approach to event-sequence testing. In Teemu
Kanstrén, editor, Proceedings of the 3rd International Conference on Advances in System
Testing and Validation Lifecycle (VALID 2011), pages 25–34. Xpert Publishing Services,
2011.

12 Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin Pearson,
and Toby Walsh. Breaking row and column symmetries in matrix models. In Proceed-
ings of the 8th International Joint Conference on Principles and Practice of Constraint
Programming (CP 2002), LNCS 2470, pages 462–476, 2002.

13 Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-
driven answer set solving. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI 2007), pages 386–392. MIT Press, 2007.

14 Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. The conflict-driven answer set
solver clasp: Progress report. In Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors,
Proceedings of the Tenth International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR 2009), LNCS 5753, pages 509–514. Springer, 2009.

15 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proceedings of the Fifth International Conference and Symposium on Logic Programming,
pages 1070–1080. MIT Press, 1988.

16 Andrew Grayland, Ian Miguel, and Colva M. Roney-Dougal. Snake lex: An alternative to
double lex. In Proceedings of the 15th International Joint Conference on Principles and
Practice of Constraint Programming (CP 2009), LNCS 5732, pages 391–399, 2009.

M. Banbara, N. Tamura, and K. Inoue 97

17 Alan Hartman and Leonid Raskin. Problems and algorithms for covering arrays. Discrete
Mathematics, 284(1–3):149–156, 2004.

18 Brahim Hnich, Steven David Prestwich, Evgeny Selensky, and Barbara M. Smith. Con-
straint models for the covering test problem. Constraints, 11(2-3):199–219, 2006.

19 D. Richard Kuhn, James M. Higdon, James F. Lawrence, Raghu N. Kacker, and Yu Lei.
Combinatorial methods for event sequence testing. submitted for publication, 2010. Avail-
able at http://csrc.nist.gov/groups/SNS/acts/documents/event-seq101008.pdf.

20 Yu Lei and Kuo-Chung Tai. In-parameter-order: A test generation strategy for pairwise
testing. In Proceedings of 3rd IEEE International Symposium on High-Assurance Systems
Engineering (HASE 1998), pages 254–261, 1998.

21 Ilkka Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Ann. Mathematics and Artificial Intelligence, 25(3–4):241–273, 1999.

22 Kari J. Nurmela. Upper bounds for covering arrays by tabu search. Discrete Applied
Mathematics, 138(1-2):143–152, 2004.

23 Toshiaki Shiba, Tatsuhiro Tsuchiya, and Tohru Kikuno. Using artificial life techniques to
generate test cases for combinatorial testing. In Proceedings of 28th International Computer
Software and Applications Conference (COMPSAC 2004), pages 72–77, 2004.

24 Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling
finite linear CSP into SAT. In Proceedings of the 12th International Joint Conference on
Principles and Practice of Constraint Programming (CP 2006), LNCS 4204, pages 590–603,
2006.

25 Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling finite
linear CSP into SAT. Constraints, 14(2):254–272, 2009.

26 Willem Jan van Hoeve and Irit Katriel. Global constraints. In Francesca Rossi, Peter
van Beek, and Toby Walsh, editors, Handbook of Constraint Programming, pages 169–208.
Elsevier, 2006.

27 Alan W. Williams. Determination of test configurations for pair-wise interaction cover-
age. In Proceedings of 13th International Conference on Testing Communicating Systems
(TestCom 2000), pages 59–74, 2000.

28 Hantao Zhang. Combinatorial designs by SAT solvers. In Handbook of Satisfiability, pages
533–568. IOS Press, 2009.

ICLP’12

Towards Testing Concurrent Objects in CLP∗

Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa

DSIC, Complutense University of Madrid (UCM), E-28040 Madrid, Spain
{elvira,puri}@sip.ucm.es, mzamalloa@fdi.ucm.es

Abstract
Testing is a vital part of the software development process. It is even more so in the context of
concurrent languages, since due to undesired task interleavings and to unexpected behaviours of
the underlying task scheduler, errors can go easily undetected. This paper studies the extension
of the CLP-based framework for glass-box test data generation of sequential programs to the
context of concurrent objects, a concurrency model which constitutes a promising solution to
concurrency in OO languages. Our framework combines standard termination and coverage
criteria used for testing sequential programs with specific criteria which control termination and
coverage from the concurrency point of view, e.g., we can limit the number of task interleavings
allowed and the number of loop unrollings performed in each parallel component, etc.

1998 ACM Subject Classification D.2.5 Testing and Debugging, D.1.3 Concurrent Program-
ming, D.1.6 Logic Programming, D.1.5 Object-oriented Programming

Keywords and phrases Testing, Glass-box Test Data Generation, Active Objects, Symbolic Ex-
ecution

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.98

1 Introduction

Due to increasing performance demands, application complexity and multi-core parallelism,
concurrency is omnipresent in today’s software applications. It is widely recognized that
concurrent programs are difficult to develop, debug, test and analyze. This is even more so in
the context of concurrent imperative languages that use a global memory (called heap in what
follows) to which the different tasks can access. The focus of this paper is on the development
of automated techniques for testing concurrent objects. The actor-based paradigm [1] on
which concurrent objects are based has lately regained attention as a promising solution
to concurrency in OO languages. For many application areas, standard mechanisms like
threads and locks are too low-level and have shown to be error-prone and, more importantly,
not modular enough. The concurrent objects model is based on considering objects as the
concurrency units, i.e., each object conceptually has a dedicated processor (and can run in
parallel with other objects). Communication is based on asynchronous method calls with
standard objects as targets. An essential difference with thread-based concurrency is that
task scheduling is cooperative, i.e., switching between tasks of the same object happens only
at specific scheduling points during the execution, which are explicit in the source code and
can be syntactically identified.

∗ This work was funded in part by the Information & Communication Technologies program of the
European Commission, Future and Emerging Technologies (FET), under the ICT-231620 HATS project,
by the Spanish Ministry of Science and Innovation (MICINN) under the TIN-2008-05624 and PRI-
AIBDE-2011-0900 projects, by UCM-BSCH-GR35/10-A-910502 grant and by the Madrid Regional
Government under the S2009TIC-1465 PROMETIDOS-CM project.

© Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 98–108

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.98
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E. Albert, P. Arenas, and M. Gómez-Zamalloa 99

Test data generation (TDG) is the process of automatically generating test inputs for
interesting coverage criteria. The standard approach to (glass-box) TDG is to perform a
symbolic execution of the program [12, 4, 9, 15, 16, 6, 17], where the contents of variables are
expressions rather than concrete values. Symbolic execution produces a system of constraints
over the input variables consisting of the conditions to execute the different paths. The
conjunction of these constraints represents the equivalence class of inputs that would take
this path. In what follows, we use the term test case to refer to such constraints. The
CLP-based approach to glass-box TDG [8] is based on the idea of translating the program
to be tested (written in some imperative language) into an equivalent CLP program. The
key idea is that test cases can be obtained by executing the CLP-translated program using
the standard symbolic execution mechanism of CLP. When the original language includes
features which are not supported, or do not have the same behavior, as in CLP, e.g., the
use of a heap or primitives for concurrency different from those of CLP, specific built-in
operations must be implemented entirely in CLP in order to handle them, see [8, 2]. Then,
symbolic execution simply consists in executing the translated CLP program together with
the predefined built-ins. In particular we leverage typical termination and coverage criteria
for sequential programs (e.g., loop-k) to the concurrent setting and, besides, combine them
with novel criteria to ensure interesting coverage of the concurrent behaviors (e.g., we can
limit and control the number of task switches). We ensure fairness in the selection of objects
whose tasks are being tested by applying a coverage criterion that limits task switches at the
object level.

2 Symbolic Execution of Concurrent Objects

In this section, we summarize symbolic execution of concurrent objects, as presented in [2].
Essentially, the process is formalized in two steps: first the program is translated into a
CLP program which contains some built-in predicates to handle the heap and concurrency
primitives and, second, an implementation entirely in CLP of the built-ins is provided such
that symbolic execution can be then performed by just relying on the standard symbolic
execution engine of CLP.

2.1 CLP Translated Programs
The imperative language with concurrent objects we consider is basically the subset of the ABS
language [11] which is relevant to define the TDG framework. A program consists of a set of
classes C, where C is defined as class C[(T x)]{T x; M}. Each “Ti xi” declares a field xi of type
Ti, and each Mi is a method definition which takes the form T m(T1 x1, . . . ,Tn xn){T z; s̄},
where T is the type of the return value; x1, . . . , xn are the formal parameters and T z are local
variables. Finally, s̄ is a sequence of instructions which adhere to the following grammar:

s ::= x = rhs | await g | return e | if (b) { s } [else { s }] | while (b) { s } | skip
rhs ::= e | new C [(e)] | e ! m(e) | x.get
e ::= null | this.f | x | n | e + e | e ∗ e | e− e
g ::= b | e? | g ∧ g

The central concept of the concurrency model is that of concurrent object. Conceptually, each
object has a dedicated processor and encapsulates a local heap which is not accessible from
outside this object, i.e., fields are always accessed using the this object, and any other object
can only access such fields through method calls. Concurrent objects live in a distributed

ICLP’12

100 Towards Testing Concurrent Objects in CLP

environment with asynchronous and unordered communication by means of asynchronous
method calls, denoted o ! m(e). Method calls may be seen as triggers of concurrent activity,
spawning new tasks (so-called processes) in the called object. After asynchronously calling
x=o ! m(e), the caller may proceed with its execution without blocking on the call. Here x is
a future variable which allows synchronizing with the completion of task m. In particular, the
instruction await x? allows checking whether m has finished. In this case, execution of the
current task proceeds and x can be used for accessing the return value of m via the instruction
x.get. Otherwise, the current task releases the processor to allow another available task to
take it.

The translation of an ABS program into an equivalent CLP program has been subject of
previous work [2]. An important feature of the translation is that the imperative program
works on a global state which contains the set of created objects. This is simulated by
representing the state using additional arguments of all predicates. Each object of the state
includes the set of fields (which is not accessible outside the object) and its queue of pending
tasks. Tasks can be of three types: call are asynchronous calls, await are tasks suspended
due to an await condition and get are tasks suspended due to a blocking get instruction.
Future variables become ready(_) when the corresponding task is completed. The syntax of
the state is:

State ::= [] | [(Num,Object)|State]
Fut ::= ready(Data)|Var
Q ::= [] | [Task|Q]

Fields ::= [] | [field(f ,Data)|Fields]
Object ::= object(C ,Fields,Q)
Task ::= call(Call) | await(Call,Call) | get(Fut,Var ,Call)

Intuitively, for each class, the CLP translation represents all its methods (as well as the
intermediate blocks within the methods for loops, conditionals, etc.) by means of predicates
in the CLP program which adhere to the following grammar:

Clause ::= Pred(Args,Args,S ,S) : −[Ḡ,]B̄.
Args ::= [] | [Data∗|Args]

S ::= Var
G ::= Num∗ OpR Num∗ | Ref ∗1 \==Ref ∗2 | Var = Data

Ref ::= null | Var
B ::= Var #= Num∗ OpA Num∗ | Pred(Args,Args,S ,S) | Var=Data |

newObj(C ,Ref ∗,S ,S) | getField(Ref ∗,FSig,Var ,S) | async(Ref ∗,Call,S ,S) |
setField(Ref ∗,FSig,Var∗,S ,S) | await(Call,Call,S ,S) |
get(Var ,Var ,Call,S ,S) | return(Var∗,Var ,S ,S) | futAvail(Var ,Var)

Call ::= Pred(Args,Args)
Pred ::= BlockN | MethodN
Data ::= Num | Ref | Bool
OpR ::= #> | #< | #>= | #=< | #= | #\=
OpA ::= + | − | ∗ | / | mod

Num is a number, Var is a Prolog variable and Bool can be either true or false. An asterisk
on any element denotes that it can be either as defined by the grammar or a variable. Each
clause receives as input a possibly empty list of parameters (1st argument) and a global

E. Albert, P. Arenas, and M. Gómez-Zamalloa 101

class A {
Int n; Int ft; // fields
Int sumFacts(A ob) {

Fut<Int> f; Int res=0;
Int m = this.n;
await this.ft >= 0;
while (m > 0) {

f =ob ! fact(this.ft, this);
await f ?;
Int a = f.get;
res = res + a;
this.ft = this.ft + 1;
m = m - 1;

}
return res;

}
Int fact(Int k, A ob){

Fut <Int> f; Int res = 1;
if (k <= 0) res = 1;
else {

f = ob ! fact(k - 1,this);
await f ?; res = f.get;
res = k * res;

}
return res;

}
void setN(Int a) { this.n=a; }
void setFt(Int b) { this.ft=b; }
Unit set(Int a, Int b){

this.setN(a); this.setFt(b);
}

′A.sumFacts′([This,Ob], [R],S1 ,S2) :-
getField(This, fSig(′A′,n),M ,S1),
await(awguard0 ([This,Ob],_),

cont0 ([This,Ob,M], [R],S1 ,S2).
awguard0 ([This,Ob], [R],S ,S) :-

getField(This, fSig(′A′, ft),Ft,S),
geq([Ft, 0], [R]).

cont0 ([This,Ob,M], [R],S1 ,S2) :-
while([This,Ob,M , 0], [R],S1 ,S2).

while([Args], [R],S1 ,S2) :-
M #=< 0 ,
return([Res], [R],S1 ,S2).

while([Args], [R],S1 ,S2) :-
M #> 0 ,
getField(This, fSig(′A′, ft),Ft,S1),
async(Ob,′A.fact′([Ob,Ft,This], [F]),S1 ,S3),
await(awguard1 ([F],_),

cont1 ([Args,F], [R]),S3 ,S2).
awguard1 ([F], [V]) :- futAvail(F ,V).
cont1 ([Args,F], [R],S1 ,S2) :-

get(F ,A,cont2 ([Args,A], [R]),S1 ,S2).
cont2 ([Args,A], [R],S1 ,S2) :-

Res1 #= Res + A,
getField(This, fSig(′A′, ft),Ft,S1),
Ft1 #= Ft + 1 ,
setField(This, fSig(′A′, ft),Ft1 ,S1 ,S3),
M1 #= M − 1 ,while([Args1], [R],S3 ,S2).

geq([Ft,Z], [R]) :-
Ft #< Z ,R = false.

geq([Ft,Z], [R]) :-
Ft #>= Z ,R = true.

Figure 1 ABS running example (left). CLP translation of sumFacts (right).

state (3rd argument), and returns an output (2nd argument) and a final global state (4th
argument). The body of a clause may include a sequence of guards followed by a sequence of
instructions, including: arithmetic operations, calls to other predicates, builtins to handle the
concurrency (namely await, get, futAvail and return) and builtins to operate on the heap [8].
The latter includes the builtin newObj(C ,R,S1 ,S2) which creates a new object of class C in
state S1 and returns its assigned reference R and the updated state S2; getField(R,FSig,V ,S)
which retrieves in variable V the value of field FSig of the object referenced by R in the state
S and setField(R,FSig,V ,S1 ,S2) which sets the field FSig of the object referenced by R in
S1 to V and returns S2.

I Example 1. Fig. 1 (left) shows the implementation of a class A, which contains two
integer fields and five methods. Method sumFacts computes

∑ft+(m−1)
k=ft k! by asynchronously

invoking fact on object ob. The await instruction before entering the loop allows releasing
the processor if ft is negative. Once it takes a non-negative value, the task can resume its

ICLP’12

102 Towards Testing Concurrent Objects in CLP

a©async(Ref,Call,S1,S2) :- addTask(S1,Ref,call(Call),S2).
b©await(Cond,Cont,S1,S3) :-

Cond =..[_,[This|_],[Ret]], buildCall(Cond,S1,S2,CondCall), CondCall,
(Ret = false -> addTask(S1,This,await(Cond,Cont),S2),

switchContext(S2,S3)
; buildCall(Cont,S1,S3,ContCall), ContCall).

c©get (FV,V,Cont,S1,S3) :- Cont =..[_,[This|_],_],
(var(FV) -> addTask(S1,This,get(FV,V,Cont),S2) ,

switchContext(S2,S3)
; FV = ready(V), buildCall(Cont,S1,S3,ContCall), ContCall).

d©return([Ret],[ready(Ret)],S1,S2) :- switchContext(S1,S2).
e©futAvail(FV,false) :- var(FV), !. futAvail(ready(_),true).
f©addTask(S1,Ref,T,S2) :- getCell(S1,Ref,object(C,Fs,Q1)),

insert(Q1,T,Q2), setCell(S1,Ref,object(C,Fs,Q2),S2).
g©switchContext(S1,S3) :- S1 = [(Ref,_)|_], firstToLast(S1,S2), switchContext_(S2,S3,Ref).
h©switchContext_(S,S,Ref1) :- S = [(Ref2,object(_,_,[]))|_],Ref1 == Ref2.
i©switchContext_(S1,S3,Ref1) :- \+ (S1 = [(Ref2,object(_,_,[])|_], Ref1 == Ref2),

extractFirst(S1,Task,S2,Answer) ,
runTaskOrSwitch(Answer,Task,Ref1,S3,S2).

j©runTaskOrSwitch(true,Task,_Ref,S1,S3) :- runTask(Task,S1,S3) .
k©runTaskOrSwitch(false,_Task,Ref,S1,S3) :- firstToLast(S1,S2), switchContext_(S2,S3,Ref).
l©runTask(call(ShortCall),S1,S2) :- buildCall(ShortCall,S1,S2,Call), Call.

m©runTask(await(Cond,Cont),S1,S2) :- await(Cond,Cont,S1,S2).
n©runTask(get(FV,V,Cont),S1,S2) :- get (FV,V,Cont,S1,S2).
o©buildCall(ShortCall,S1,S2,Call) :- ShortCall =..[RN,In,Out], Call =..[RN,In,Out,S1,S2].

Figure 2 Implementation of Concurrency Builtins.

execution and enter the loop. Observe that an asynchronous call from sumFacts as follows
f = ob ! fact(3, this); will add the task fact(3, this) to the queue of ob. When this task starts
to execute it will add the task fact(2, ob) on the object this, which in turn will add the call
fact(1, this) on ob and so on, in such a way that the factorial is computed in a distributed
way between the two objects. Note that the calls are synchronized on future variables. This
means that until the recursive call fact(1, this) is not completed the other tasks are suspended
on their await conditions. Fig. 1 (right) shows the CLP translation of method sumFacts. We
use Args and Args1 to abbreviate, resp., This,Ob,M ,Res and This,Ob,M1 ,Res1 . Methods
and intermediate blocks (like cont0) are uniformly represented by means of predicates and
are not distinguishable in the translated program. The list of input arguments of all rules
includes: the this reference, the list of input parameters of the corresponding ABS method,
and for intermediate blocks, their local variables. The list of output argument is always a
unitary list with the return value. Loops in the source program are transformed into guarded
rules (e.g., rule while). An important point to note is that, for all await and get statements,
we introduce a continuation predicate (like conti, 0≤i≤2) which allows us to suspend the
current task (if needed) and then resume its execution at this precise point.

E. Albert, P. Arenas, and M. Gómez-Zamalloa 103

2.2 Implementation of Concurrency Builtins
Fig. 2 shows the CLP implementation of the builtins to handle concurrency of [2]. Boxes
are used to indicate code that needs to be changed in order to define the TDG framework.
Asynchronous calls are handled by predicate a© which adds the asynchronous call Call to
the queue of tasks of the receiver object Ref producing the updated state S2. The call
to addTask/4 searches the state for the object pointed to by reference Ref by means of
getCell/3 [8], adds the task to its queue (using insert/3) and updates the state with the
updated object (using setCell/3 [8]).

The fact that objects do not share memory ensures that their execution states are not
affected by how distribution (or parallelism) is realized. Namely, distribution is implemented
as follows: each object executes its scheduled task as far as possible and, when a task
finishes or gets blocked, simulation proceeds circularly with the next object in the state. In
contrast, concurrency occurs at the level of objects in the sense that tasks in the object
queue are executed concurrently. The concurrency model of our language only specifies that
the execution of the current task must proceed until a call to b©, c©, or d© is found. The
scheduling policy which decides which task executes next (among those ready for execution)
is left unspecified.

Rule g© is used when the execution of the current task can no longer proceed (hence it
releases the processor). The implementation gives the turn of execution to the first task
(according to the scheduling policy) of the following object (the next one in the state). This is
implemented by always keeping the current object in the head of the state, and moving it to
the last position when its current task finishes or gets blocked. If the current object has some
pending task in its queue j©, predicate extractFirst/4 bounds Answer to true. Otherwise, it is
bound to false and the following object is tried k©. The execution of the whole application
finishes when there is no pending task in any object h©.

Await b© first checks its condition Cond by means of the meta-call CondCall. If the
condition holds (Ret gets instantiated to true), a meta-call to the continuation Cont is made
(meta-call ContCall). Otherwise (Ret is false), an await task is added to the queue of the
current object and we switch context. Predicate o© builds a full call from a call without
states and two states. The evaluation of await conditions can involve return tests on future
variables. This is represented in our CLP programs by a call to e©. We use the special term
ready(V) to know whether the execution has finished. Rule e© checks whether the future
variable is a CLP variable or is instantiated to ready(_) and returns, resp., false or true.
When a method finishes its execution, we reach a return statement d© which instantiates the
future variable V associated to the current task to ready(V). This allows that, if the task
that requested the execution of this one was blocked awaiting on this future variable, it can
proceed its execution when it is re-scheduled. Namely, c© first checks if the task can resume
execution because its future variable has become instantiated. In such case, the continuation
of this get is executed (meta-call ContCall). Otherwise, the current task is added to the queue
and context is switched.

3 From Symbolic Execution to TDG

Having a CLP symbolic execution engine for concurrent objects is an important piece when
defining the CLP-based TDG framework, but there are still many other missing pieces.
Firstly, we need to define a TDG engine which incorporates relevant coverage criteria (CC).
An important problem in symbolic execution is that, since the input data is unknown, the
execution tree to be traversed is in general infinite. Hence it is required to integrate a

ICLP’12

104 Towards Testing Concurrent Objects in CLP

termination criterion which guarantees that the length of the paths traversed remains finite
while at the same time an interesting set of test cases is generated, i.e., certain code coverage
is achieved. The challenge when developing the TDG framework is integrating CC on the
CLP-translated programs which achieve the desired degree of coverage on the original ABS.

3.1 Task-Level Coverage and Termination Criteria
Given a task executing on an object, we aim at ensuring its local termination by leveraging
existing CC developed in the sequential setting to the context of concurrent objects. We
focus on the loop-count criteria [10] which limits the number of times we iterate on loops
to a threshold KI (other existing criteria would pose similar problems and solutions). If we
focus on a single task, this task-level CC can be integrated, as in the sequential CLP-based
approach [8], by keeping track of the ancestor sequences for every call unfolded in the task.
The main idea is that loop iterations are detected because recursive calls are performed.
However, in order to distinguish a recursive call from an independent call to the same
(recursive) predicate, we need to track the ancestors of each call. This can be implemented
by using a global ancestor stack for the task such that each time an atom A is unfolded using
a rule H:−B1, . . . , Bn, the predicate name of A (F/N where N is the arity) is pushed on the
ancestor stack. Additionally, a ′pop′ mark is added to the new goal B1, . . . , Bn,

′pop′ to
delimit the scope of the predecessors of F/N such that, once those atoms are evaluated, we
find the mark ′pop′ and can remove F/N from the ancestor stack. This way, the ancestor
stack, at each stage of the computation, contains the ancestors of the next atom to be selected
for resolution.

Due to the coexistence of multiple tasks in the concurrent setting, the problem is more
complicated and we need to construct the list of ancestor predicates for each available task
and besides, as tasks can suspend their execution, be able to recover this information when
they resume. Thus, the new syntax for tasks is:

Task ::= call(Call) | await(Call,Call,AncSt) | get(Fut,Var ,Call,AncSt)

where AncSt is a list of elements of the form F/N . Additionally, we introduce atoms of the
form taskSuspendMark to indicate to the TDG engine that a task is going to suspend and
hence its ancestor stack needs to be stored. This is achieved by replacing the framed code in
b© and c© in Fig. 2, resp., by:

(await) taskSuspendMark(AncSt), addTask(S1,This,await(Cond,Cont,AncSt),S2),
(get) taskSuspendMark(AncSt), addTask(S1,This,get(FV,V,Cont,AncSt),S2),

3.2 Task-Switching Coverage and Termination Criteria
Applying the task-level CC to all tasks does not guarantee termination. This is because we
can switch from one task to another an infinite number of times. For example, consider the
symbolic execution of ob1 ! fact(n, ob2). We circularly switch from object ob1 to object ob2
an infinite number of times because each asynchronous call in one object adds another call on
the other object (see Ex. 1). This is not detected by the task-level CC because each method
invocation is a new task that has no ancestors. The same problem can happen even with a
single object, e.g., in method sumFacts when executing await (ft >= 0), there is an infinite
branch in the evaluation tree, corresponding to the case ft < 0 which is re-tried forever.

E. Albert, P. Arenas, and M. Gómez-Zamalloa 105

The number of task switches can be limited by simply allowing Ks executions of predicate
g© (Fig. 2). However, it might happen that, due to excessive task switching in certain objects,
others are not properly tested (i.e., their tasks exercised) because the global number of
allowed task switches has been exceeded. For example, suppose that we add the instructions
B ob2 = new B(); ob2 ! q(); before the return in method sumFacts, where B is a class that
implements method q but whose code is not relevant. Then, as the evaluation tree for the
while loop generates an infinite number of task switches, the evaluation of the call ob2 ! m();
is not reached. In order to have fairness in the process and guarantee proper coverage from
the concurrency point of view, we propose to limit the number of task switches per object
(i.e., per concurrency unit). For this purpose, objects are now of the form:

Object ::= object(C ,Fields,Q,NT)

where NT is the number of tasks which have been extracted from its queue. Besides, similarly
to the treatment of the task-level CC, we introduce special markers by replacing the framed
code of rule j© by:

taskStartMark(S1,Task), incNumTasks(S1,S2), runTask(Task,S2,S3),

which allows the TDG engine to realize that there has been a task switching and hence the
limit needs to be checked. Predicate incNumTasks adds 1 to the number of task switches NT
of the first object in S1, i.e., the object selected by extractFirst.

3.3 A CLP-based TDG Engine for Concurrent Objects
Fig. 3 presents a TDG engine, named unfold, which receives as input parameters the method
call to be tested Root (last parameter), a list of atoms to be evaluated (initially Root),
two constants Kl and Ks to limit, resp., the number of loop iterations and the number of
task switches per object and the ancestor stack AncSt of the current task (initially empty).
Rule 1© corresponds to the end of a successful derivation, it stores (using storeTestCase/1)
the computed test case, namely the initial call Root instantiated with the bindings for the
input/output parameters and the states, and the constraint store. The task-level CC is
handled in rules 2©, 4© and 7©. Essentially, rule 7© checks if the number of iterations has not
been exceeded (checkIter traverses the list of ancestors AncSt) and, if not, it adds the ′pop′
mark as explained in Sec. 3.1. Later, when this mark is reached in rule 2©, the top of the
stack is popped. In rule 4©, when a task is suspending, the argument of taskSuspendMark
gets unified with the current stack (fourth argument of unfold) to be later recovered, and
execution proceeds. The treatment of the task switching criteria is captured by rule 3© which
detects the mark introduced in Sec. 3.2 and invokes checkNtasks to check if the number of
task switches in the current object exceeds Ks. If the task to be started now is an await or get,
predicate recoverAncStack(Task,AncStp) recovers its ancestor stack; if it is a call, initializes
AncStp to empty. As we have seen in Sec. 3.2, after finding such mark, there is a call to
incNumTasks.

The two remaining rules treat the builtins and the constraints. In particular, rule 6©
handles the ABS builtin predicates in Fig. 2 which make callbacks to the program. They are
treated differently from rule 7© because the loop-count criteria does not have to be applied
on them. Rule 5© covers external predicates, i.e., constraints and the auxiliary predicates in
Fig. 2. The difference w.r.t. rule 6© is that here we execute them (making call(A)) since the

ICLP’12

106 Towards Testing Concurrent Objects in CLP

1© unfold([],_Kl,_Ks,_AncSt,Root) :- storeTestCase(Root).
2© unfold([′pop′|R],Kl,Ks, [_|AncSt],Root) :- !, unfold(R,Kl,Ks,AncSt,Root).
3© unfold([taskStartMark(S,Task)|R],Kl,Ks,AncSt,Root) :- !,

checkNtasks(S,Ks),
recoverAncStack(Task,AncStp),
unfold(R,Kl,Ks,AncStp,Root).

4© unfold([taskSuspendMark(AncSt)|R],Kl,Ks,AncSt,Rt) :- !,
unfold(R,Kl,Ks,AncSt,Rt).

5© unfold([A|R],Kl,Ks,AncSt,Rt) :- isExternal(A), !,
call(A), unfold(R,Kl,Ks,AncSt,Rt).

6© unfold([A|R],Kl,Ks,AncSt,Root) :- functor(A,F,Ar), isAbsBuiltin(F/Ar), !,
clause(A,B), append(B,R,NG),
unfold(NG,Kl,Ks,AncSt,Root).

7© unfold([A|R],Kl,Ks,AncSt,Root) :- functor(A,F,Ar), checkIter(AncSt,F,Ar,Kl),
clause(A,B), append(B, [′pop′|R],NG),
unfold(NG,Kl,Ks, [F/Ar|AncSt],Root).

checkIter([],_,_,K) :- K > 0.
checkIter([F/Ar|As],F,Ar,K) :- !,K > 1,K1 is K−1,checkIter(As,F,Ar,K1).
checkIter([_|As],F,Ar,K) : −checkIter(As,F,Ar,K).
checkNtasks([(_, object(_,_,_,NTs))|_],K) :- NTs < K.
incNumTasks(H,Hp) :- H = [(Ref, object(CN,Fs,Q,K))|RH],

Kp is K + 1,
Hp = [(Ref, object(CN,Fs,Q,Kp))|RH].

recoverAncStack(await(_,_,AncSt),AncSt).
recoverAncStack(get(_,_,_,AncSt),AncSt).
recoverAncStack(call(_), []).

Figure 3 Implementation of TDG engine.

predicate is not part of the CLP program. The execution of unfold([Root],Kl,Ks, [], Root),
where Root=′C .m′(In,Out,S1 ,S2), computes an incomplete derivation tree for method
m of class C, the different branches of the tree are obtained by backtracking. Successful
branches are obtained in 1© and incomplete branches by 3© and 7© when the termination
tests stop the derivation. 〈G�θ〉 denotes a state with goal G and computed constraint store
θ. Then, given the set of branches (derivations) for the derivation tree T associated to
〈unfold([Root],Kl ,Ks, [],Root)�{}〉, where Root=′C .m′(In,Out, S1 , S2), the test cases for m
are the set of constraint stores θ associated to each output state 〈ε�θ〉 of a successful branch
in T (computed in 1©), where ε is an empty goal.

I Example 2. Let us obtain the test cases for method sumFacts with Kl=1, Ks=2. The exe-
cution of unfold([Root], 1 , 2 , [],Root) with Root=′A.sumFacts′(In,Out,S1 ,S2), first applies
rule 7© which bounds In to the list [This,Ob] and Out to [R]. Predicate checkIter succeeds
(the ancestor stack is empty). The first instruction in ′A.sumFacts′ (see Fig. 1 right) is a
getField which bounds S1 to [(Id1 , object(A, [field(n,_)|_], [], 0))|_]. Afterward, we find a
call to await which is handled by rule 6©, which in turns executes the rule b© of await in
Fig. 2. Here, the condition awguard0 in the await adds to the list of fields of S1 the literal
field(ft,_). The execution of the guard returns false and addTask inserts the task in the

E. Albert, P. Arenas, and M. Gómez-Zamalloa 107

queue of object Id1 with the annotation taskSuspendMark. Next, switchContext will take the
task and annotate it with taskStartMark. Now, rule 3© is applied and checkNtasks fails since
the number of task switches (incremented by switchContex) for Id1 is greater than 2. By
backtracking, we generate the branch in which Ft ≥ 0 which leads to executing cont0 and,
after unfolding the first clause of predicate while, the first test case is computed. In this
test case, S1/(Id1, object(′A′, [field(n,N1), field(ft, F t1)|_], [], 0))|_], R/0, the constraint
store contains N1≤0, Ft1≥0, and S1 ≡ S2. Again, by backtracking the second clause for
while is tried. At this point, the ancestor stack is [cont0/4 , sumFacts/4]. The async call intro-
duces a new object (Id2 , object(A,_F , [call(′A.fact′)], 0)) in the queue of Id1 . The execution
of the await spawns the task ′A.fact′ which returns 1. Thus, the second test case is com-
puted S1/[(Id1, object(′A′, [field(n, 1), field(ft, 0)|_], [], 0)), (Id2 , object(′A′,_, [], 0))|_],
S2/[(Id1, object(′A′, [field(n, 1), field(ft, 1)|_], [], 1)), (Id2, object(′A′,_, [], 1))|_] and
R/1. Note that the number of task switches for both objects Id1 and Id2 changes from
0 in the initial state S1 to 1 in the final state S2. No more solutions are computed since
the execution of fact is stopped after two task switches coming from the await in its body
and checkIter fails when evaluating again predicate while as the stack of ancestors contains
already [. . . , while, . . .]. Therefore, the two criteria are needed to ensure termination: Ks to
limit the number of task switches between the two objects and Kl to limit the number of
loop iterations in the while loop.

4 Conclusions, Related and Future Work

We have presented a novel approach to automate test case generation for concurrent objects,
entirely implemented in CLP, which ensures completeness of the test cases w.r.t. several
interesting criteria. The coverage criteria prune the tree in several dimensions: (1) limiting
the number of iterations of loops at the level of tasks, (2) limiting the length of the queue of
tasks of the objects such that the number of task interleavings that are tried remains finite,
(3) limiting the number of task switches allowed in each concurrency unit. The technique is
complete on the orderings in which tasks can be selected for execution, even allowing that
different policies are applied on different objects. We argue that our CLP-based framework
is at the same time practical and highly flexible and constitutes thus a promising approach
to TDG of concurrent languages.

In future work, we plan to study the application of our framework to a thread-based
concurrency model like Java [13, 5, 18]. The main conceptual difference with the actor-based
model is that task scheduling is preemptive. Therefore, at any point, the current task can
be suspended and interleaved with another one. Specific coverage criteria should be defined
to control such interleavings in a way that the size of the symbolic execution tree remains
reasonable and at the same time interesting test cases can be obtained. It seems that the
combination with dynamic analysis is useful for this purpose [3]. We also want to investigate
the application of further coverage criteria [14, 18, 7] to detect bugs related, for instance, to
happen-before relations.

References
1 G.A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, Cambridge, MA, 1986.
2 E. Albert, P. Arenas, and M. Gómez-Zamalloa. Symbolic Execution of Concurrent Objects

in CLP. In Practical Aspects of Declarative Languages (PADL’12), volume 7149 of LNCS,
pages 123–137. Springer, January 2012.

ICLP’12

108 Towards Testing Concurrent Objects in CLP

3 Jun Chen and Steve MacDonald. Towards a better Collaboration of Static and Dynamic
Analyses for Testing Concurrent Programs. In Workshop on Parallel and Distributed Sys-
tems: Testing, Analysis, and Debugging (PADTAD’08), page 8. ACM, 2008.

4 L. A. Clarke. A System to Generate Test Data and Symbolically Execute Programs. IEEE
Transactions on Software Engineering, 2(3):215–222, 1976.

5 O. Edelstein, E. Farchi, E. Goldin, Y. Nir, Ratsaby G, and S. Ur. Framework for Testing
Multi-Threaded Java Programs. Concurrency and Computation: Practice and Experience,
15(3-5):485–499, 2003.

6 Christian Engel and Reiner Hähnle. Generating Unit Tests from Formal Proofs. In Tests
and Proofs, First International Conference (TAP’07), volume 4454 of LNCS, pages 169–188.
Springer, 2007.

7 M. Factor, E. Farchi, and Y. Malka Y. Lichtenstein. Testing Concurrent Programs: A
Formal Evaluation of Coverage Criteria. In Seventh Israeli Conference on Computer-Based
Systems and Software Engineering (ICCSSE ’96), pages 119–126, 1996.

8 M. Gómez-Zamalloa, E. Albert, and G. Puebla. Test Case Generation for Object-Oriented
Imperative Languages in CLP. Theory and Practice of Logic Programming, ICLP’10 Special
Issue, 10 (4–6), 2010.

9 A. Gotlieb, B. Botella, and M. Rueher. A CLP Framework for Computing Structural Test
Data. In Computational Logic, pages 399–413, 2000.

10 W.E. Howden. Symbolic Testing and the DISSECT Symbolic Evaluation System. IEEE
Transactions on Software Engineering, 3(4):266–278, 1977.

11 E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A Core Language
for Abstract Behavioral Specification. In Formal Methods for Components and Objects
(FMCO 2010, Revised Papers), volume 6957 of LNCS, pages 142–164. Springer, 2012.

12 J. C. King. Symbolic Execution and Program Testing. Communications of the ACM,
19(7):385–394, 1976.

13 B. Long, D. Hoffman, and P. A. Strooper. Tool Support for Testing Concurrent Java
Components. IEEE Trans. Software Eng., 29(6):555–566, 2003.

14 Shan Lu, Weihang Jiang, and Yuanyuan Zhou. A Study of Interleaving Coverage Criteria.
In ESEC/SIGSOFT FSE, pages 533–536. ACM, 2007.

15 C. Meudec. ATGen: Automatic Test Data Generation using Constraint Logic Programming
and Symbolic Execution. Softw. Test., Verif. Reliab., 11(2):81–96, 2001.

16 R. A. Müller, C. Lembeck, and H. Kuchen. A Symbolic Java Virtual Machine for Test Case
Generation. In IASTED Conf. on Software Engineering. IASTED/ACTA Press, 2004.

17 T. Schrijvers, F. Degrave, and W. Vanhoof. Towards a Framework for Constraint-Based
Test Case Generation. In International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’09), volume 6037 of LNCS, pages 128–142. Springer, 2010.

18 Juichi Takahashi, Hideharu Kojima, and Zengo Furukawa. Coverage Based Testing for
Concurrent Software. In IEEE International Conference on Distributed Computing Systems
Workshops (ICDCS 2008), pages 533–538. IEEE Computer Society, 2008.

Visualization of CHR through Source-to-Source
Transformation
Slim Abdennadher and Nada Sharaf

Computer Science and Engineering Department
The German University in Cairo
slim.abdennadher,nada.hamed@guc.edu.eg

Abstract
In this paper, we propose an extension of Constraint Handling Rules (CHR) with different visual-
ization features. One feature is to visualize the execution of rules applied on a list of constraints.
The second feature is to represent some of the CHR constraints as objects and visualize the ef-
fect of CHR rules on them. To avoid changing the compiler, our implementation is based on
source-to-source transformation.

1998 ACM Subject Classification I.2.2 Automatic Programming, D.3.2 Language Classifications

Keywords and phrases Source-to-Source Transformation, Constraint Handling Rules, Visualiza-
tion

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.109

1 Introduction

Constraint Handling Rules (CHR) [4] is a high-level language especially designed for writing
constraint solvers. CHR is essentially a committed-choice language consisting of multi-headed
rules that transform constraints into simpler ones until they are solved. Over the last decade,
CHR has matured to a powerful general purpose language by adding several features to
it. There are quite a number of implementations of CHR. The most prominent ones are in
Prolog.

So far, debugging the CHR code and tracing its run in Prolog was not visualized,
thus less understandable and necessitating more concentration from the CHR programmer.
Additionally, it offers only a small degree of freedom for the programmer to move backwards
in the trace thread. In previous work [1], a tool called VisualCHR was developed to support
the development of constraint solvers written in JCHR; an implementation of CHR in Java.
To implement VisualCHR, the compiler of JCHR [9] has been modified to add the feature of
visualization. However, such visualization feature was not available for Prolog versions.

The aim of the paper is to introduce an approach to add visualization features for CHR
(implemented in SWI-Prolog) without changing the CHR compiler. Our approach uses
source-to-source transformation by providing an implementation based on the core CHR
language.

The paper will discuss features to visualize the execution of CHR rules as well as the
graphical representation of objects and the effect of applying rules on them without changing
the compiler.

The first transformer manipulates the input programs in order to be able to visualize
the execution of their rules. The provided visual tracer shows the used constraints at each
step and their effect on the existing constraints. The second transformer provides the user
with the possibility to choose the type of objects that represent some CHR constraints and
to visualize the objects after executing the rules on the constraints.

© Slim Abdennadher and Nada Sharaf;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 109–118

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.109
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

110 Visualization of CHR through Source-to-Source Transformation

The paper is organized as follows. In Section 2, we introduce briefly the CHR language.
In Section 3, some comparisons to related work will be discussed. In Section 4, the source-
to-source transformation used is presented. Section 5 illustrates the visualization of the
execution of the different rules and the visualization of some of the CHR constraints. Finally,
we conclude with a summary and directions for future work.

2 Constraint Handling Rules by Example

A CHR rule consists of a head and a body and may contain a guard. CHR allows multiple
heads and a conjunction of zero or more atoms in the guard as well as in the body of the
rule. In the following, the syntax and the semantics of CHR are introduced by example.

Following is an example of a typical CHR program defining the partial order relation ≤
(leq/2). leq(A,B) holds if variable A is less than or equal to variable B.

:- use_module(library(chr)).
:- chr_constraint leq/2.

reflexivity @ leq(X,X) <=> true.
antisymmetry @ leq(X,Y) , leq(Y,X) <=> X=Y.
idempotence @ leq(X,Y)\ leq(X,Y) <=> true.
transitivity @ leq(X,Y) , leq(Y,Z) ==> leq(X,Z).

The first rule, which is called reflexivity (rule names are optional), is a single-headed
simplification rule. It removes constraints of the form leq(A,A) from the constraint store.
The second rule, antisymmetry, is a simplification rule with two heads. It replaces two
symmetric leq constraints by an equality constraint. The equality constraint is usually
handled by the host language; in this case Prolog does the unification.

Simplification rules correspond to logical equivalence, as the syntax suggests. The third
rule is a simpagation rule which removes redundant copies of the same constraint. Such
rules are often needed because of the multi-set semantics of CHR. Finally, the last rule
(transitivity) is a propagation rule that adds redundant constraints. Propagation rules
correspond to logical implication.

Execution proceeds by exhaustively applying the rules to a given input query. For example,
given the query leq(A,B), leq(B,C), leq(C,A) the transitivity rule adds leq(A,C). Then,
by applying the antisymmetry rule, leq(A,C) and leq(C,A) are removed and replaced by
A=C. Now the antisymmetry rule becomes applicable on the first two constraints of the
original query. Now all CHR constraints are eliminated so no further rules can be applied,
thus the answer A=C, A=B is returned.

3 Related Work

Due to the importance of source-to-source transformation and the advantages that it could
bring around, various attempts have been made to incorporate and use such techniques
with CHR. This section briefly mentions some of the work related to using source-to-source
transformation with CHR.

In [6], a description of a source-to-source transformation technique for CHR was presented.
Through the used technique, it is argued that it is rather easy to add source-to-source
transformation to CHR. As discussed in [6], the input CHR program is represented in a
“relational normal form” using some special CHR constraints that encode the different parts

S. Abdennadher and N. Sharaf 111

of a CHR rule such as head/4, guard/2, body/2, pragma/2 and constraint/1. The
transformation is then done to this form. However, a new built-in predicate should be
introduced to the CHR runtime system in order to register handlers as transformers, the
intended order for application and the options that could provide additional control over
the expansion [6]. In [6], some applications are shown such as bootstrapping the CHR
compiler. Another example extends CHR by having probabilistic choice of rules. [7] provides
more details about probabilistic constraint handling rules. The whole source-to-source
transformation program for probabilistic CHR has a few rules and could fit into only one page
[7]. Nevertheless, the runtime system had to be extended with rules for conflict resolution [6].

Another approach to program transformation was presented in [12], namely, unfolding.
In order to do this, the syntax of CHR programs has to be modified. The rules have to be
annotated to be in a specific format and to have a local token store. In other words, the
operational semantics ωt [3] are replaced with some modified semantics ω′

t [12]. In general,
unfolding replaces a procedure call by its definition. According to [12], the unfolding process
that is performed replaces the conjunction of constraints, S (considered to be the procedure
call), in the body of a rule, r, with the body of another rule, v, given that the head of the
rule v matches S.

In [5], the specialization of rules with respect to the goal is considered which is very
interesting as it optimizes the program for input values of the goal. Since rules are specialized
(by modifying some of their parts), and these new rules are added, this was also considered
as a step towards transformation of CHR programs.

In [13], an implementation for aggregate functions in CHR was introduced. The imple-
mentation also used source-to-source transformation. However, in order to extend the current
CHR systems with aggregates, a number of low-level compiler directives had to be added
to the CHR system. In [11], more details about the implementation are offered. Meta CHR
rules were used. Such rules rewrite the CHR rules of a specific program. A meta rule could
be applied, if a single rule’s head (in the original program) matched the meta occurrences of
the (meta) rule. When the meta rule fires, the conjuncts of the program rule’s head that
caused the rule to fire are removed. The body of the meta rule could add new conjuncts to
the program rule’s guard or head. It could also add new rules to the program [11].

Finally, in [8], CHRrp, which adds user-definable priorities to the different rules, was
introduced. However, for CHRrp, the priority semantics ωp is introduced. Source-to-source
transformation is used to translate CHRrp into CHR.

The rest of this section goes through the differences and the advantages of the proposed
system. First of all, our approach does not require any changes to the compiler or the CHR
runtime system. The transformer and the output program are normal CHR programs that do
not require any additions or changes to work. At the same time, the proposed system saves
the user from having to translate the program into or from the “relational normal form”.
This translation is done automatically at the beginning through the Java application that
parses the input file and finally through the transformer itself as it writes the result into a
new file. Moreover, the order of the rules in the new program is the same as their order in
the original program thus eliminating the rule ordering problem faced in [6]. The user is also
able to control where new rules are added to the output program.

4 Source-to-Source Transformation for Visualization

In order to be able to have the required visual tracers, the original programs need to be
modified to be able to interact with the tracers and produce the needed output. The

ICLP’12

112 Visualization of CHR through Source-to-Source Transformation

(a) A Sample input file. (b) Some of the extracted information.

Figure 1 Sample of the information extracted through the Java application.

advantage of source-to-source transformation, in this context, is that it is able to manipulate
input programs to change or add to their behavior the required functionalities without the
need to do this modification manually. The proposed transformers use some of the central
ideas introduced in [6]. In [6], some CHR constraints, that encode the different constituents of
CHR rules, were introduced. The difference is that in the proposed transformers, instead of
head/4, head/3 is used since the information about the constraint’s identifier is not needed.
Using such CHR constraints, any CHR rule was transformed into “relational normal form”.

According to [6], the modified behavior is also represented in terms of the introduced
five CHR constraints. The proposed transformers, which are CHR handlers, operate on some
specific CHR constraints including some of the constraints introduced in [6]. Consequently,
the information regarding the different parts of the CHR rules needs to be extracted and
represented in the needed format. The different parts of the rules are represented using CHR
constraints. Some of them were introduced in [6] such as guard/2 and body/2. As mentioned
before, head/3 is used as well. For example, head(reflexivity,‘leq(X,X)’,remove),
represents the fact that the head of the rule named reflexivity contains leq(X,X) and
that when executing the rule, this constraint is removed from the constraint store since
reflexivity is a simplification rule.

Since some CHR solvers contain CHR rules as well as Prolog facts, the transformers use a
new constraint named facts/1. This constraint is used to copy such Prolog facts into the
output program. The proposed transformers write the modified program into a new file so
that there is no need to alter the compiler or the CHR runtime system in anyway.

In addition to the introduced CHR constraints, there are other ones that are mainly used
to write the modified rules and the facts to the output file. The proposed transformers
operate on these constraints. Each of the transformers has two main functionalities. Firstly,
it adds to the rules the required information and functionalities required to produce the
needed visual tracer and interact with it. Secondly, it writes the new program into a file.
This comes in handy since through using this arrangement, the original program does not
have to be transformed every time. Instead it is transformed at the beginning and the new
produced program could be used afterwards.

The question now may be how to represent the input program in the needed format so
that the transformer could act on it. One possibility is to do this manually. In this case, the
user would have to translate every part of the CHR program to produce the needed CHR
constraints and then run the transformer on these extracted constraints. As simple as doing
the translation might seem to be, this job could be very long and tedious. Therefore, a Java
application is provided to parse the input file and do this translation automatically.

As shown in Figure 2, the Java application performs two tasks. First of all, it parses
the input file in order to extract the needed information. In addition, it represents this
information in the needed format using the new CHR constraints. Figure 1 shows some of

S. Abdennadher and N. Sharaf 113

Figure 2 Overview of the system’s architecture.

the extracted information from the leq handler presented in Section 2. Secondly, it runs
the transformer using the extracted information to produce the new output program. The
SWI-Prolog JPL interface [10] is used in order to run the transformer (which is a CHR
program) from within the Java application. The new program has the required functionality
of producing and interacting with the needed visual tracer.

The rest of the section provides an example of the output file after applying the trans-
formation. It is concerned with the leq handler introduced in Section 2. The two proposed
transformers produce similar output. Note that for simplicity reasons, the rules presented
below are just an abstraction of the actual rules obtained by the transformers.

main:-initialize_visualizer_with_initial_store,proceed_tracer.
reflexivity @ leq(X,X) <=> send_visualizer_removed_head(leq(X,X)),

true,
send_visualizer_body(true),
rule_name(reflexivity),
proceed_tracer.

antisymmetry @ leq(X,Y), leq(Y,X) <=>
send_visualizer_removed_head(leq(X,Y)),
send_visualizer_removed_head(leq(Y,X)),
send_visualizer_body(X=Y),
rule_name(antisymmetry),
proceed_tracer,
X = Y.

idempotence @ leq(X,Y)\ leq(X,Y) <=>
send_visualizer_removed_head(leq(X,Y)),
send_visualizer_kept_head(leq(X,Y)),
true,
send_visualizer_body(true),
rule_name(idempotence),
proceed_tracer.

transitivity @ leq(X,Y), leq(Y,Z) ==>
send_visualizer_kept_head(leq(X,Y)),
send_visualizer_kept_head(leq(Y,Z)),
send_visualizer_body(leq(X,Z)),
rule_name(transitivity),
proceed_tracer,leq(X,Z).

The main predicate rule is added to the program to be able to to initialize the visual tracer.
initialize_visualizer_with_initial_store is an abstraction for the actions performed

ICLP’12

114 Visualization of CHR through Source-to-Source Transformation

to initialize the tracer. The corresponding Java class is initialized (according to the applied
transformer) and the initial constraints in the constraint store are sent. proceed_tracer is
used to add a row to the tracer’s tree using the initial constraints. As for the CHR rules, the
corresponding data is sent to the visual tracer. Afterwards, the tracer is advanced. Similarly,
advancing the tracer here means that a new row is added to the tree data structure of the
tracer. The tree is not visualized unless the user presses one of the buttons of the tracer as
shown in Section 5.

For example, after the idempotence rule is transformed, the interactions needed with
the visual tracer are added to the body. send_visualizer_removed_head(leq(X,Y)) is
used to refer to the Java method call that informs the tracer that the constraint leq(X,Y)
that appears in the head of the rule should be removed on executing the rule. On the other
hand, send_visualizer_kept_head(leq(X,Y)) is used to refer to the Java method call
informing the tracer that another constraint in the rule’s head is leq(X,Y) and that it should
be kept on executing the rule. Finally, rule_name(idempotence) and proceed_tracer are
also abstractions for the Java method calls that update the tracer with the rule’s name and
add a row to the tracer’s tree data structure using all the previously sent data respectively.

5 The Visualization

As introduced before, transformation is done in order to be able to visualize the execution
of the rules or to be able to visualize some of the CHR constraints. In other words, two
transformers are provided. The first one enables the user to visualize the execution in a
step-by-step manner. The second transformer allows the user to visualize some of the CHR
constraints themselves in order to be able to visually see the result of applying the rules of a
specific program on such constraints.

In order to be able to use any of the visual tracers, the initial program has to be
transformed first. Afterwards, the transformed program, which is automatically saved in
a new file, is consulted in the usual way. The only thing that needs to be added to the
query is main. This is used to initialize the visualization tool (which differs according to the
transformer that was used in the first step). The two visual tracers were built using Java.
The interface between SWI-Prolog and Java was also done using JPL [10]. Once the goal is
entered, the execution of the CHR rules proceeds in the normal way. In addition, the visual
tracer window opens. This section uses the gcd handler:

:- use_module(library(chr)).
:-chr_constraint gcd/1.

r1 @ gcd(N) \ gcd(M) <=> 0<N, N=<M | L is M mod N,
print(’added’),nl,gcd(L).

5.1 Visualizing The Execution
The first transformer is used in order to be able to visualize the execution of the rules. The
visual tree was built using the JGraph framework [2]. In order to visualize the execution of
the different rules in a step-by-step manner, the play and back buttons are used. The fast
forward button allows the user to view the full tree by one click.

The program used in this section computes the greatest common divisor of two numbers.
The program contains one rule named r1. There are three properties for the visualized tree.

S. Abdennadher and N. Sharaf 115

First of all, the name of the rule that was executed appears on the edge. Secondly, the active
CHR constraints are represented with green boxes, whereas the ones that were removed from
the constraint store (due to a simplification or a simpagation rule) appear as red boxes.
Figure 3 shows the visualization tree after visualizing only one step. As seen through the
figure, the two constraints gcd(24) and gcd(40) were used by the rule named r1. As a
result of applying this rule, the constraint gcd(16) was added to the constraint store. Now
the box containing gcd(40) is red while the one containing gcd(24) is green. This means
that as a result of applying the rule named r1, the constraint gcd(40) was removed from
the constraint store while the constraint gcd(24) was kept. Consequently, the rule r1 is a
simpagation rule. Third of all, in addition to the constraints, the tree shows all the built-in
constraints and the computations using blue boxes.

5.1.1 Removing Unneeded Nodes

The visual tracer allows users to remove any unneeded nodes in order to be able to customize
the tree according to their needs. For example in Figure 3 all the print statements and
computations are shown. If the user does not want to see any computation, then he/she
could right click on the node so that a menu with the option “Remove Similar Constraints”
appear.

Figure 3 After the first step, right clicking a node to remove it from the tracer.

Once the user clicks on this option, the tree is redrawn without such constraints. Moreover,
if the user does this in the middle of the visualization then this history is kept. In other
words, if the user has chosen to remove computations then at every new step if a computation
is done, it is not added to the tracer as shown in Figure 4.

5.2 Visualizing Constraints

The second transformer is used in order to be able to visualize some of the CHR constraints
themselves. More specifically, if the input program manipulates a specific object, then using
this transformer, the user is able to visualize the object (or the constraint itself).
For example the following program translates rectangles from one position to another.

ICLP’12

116 Visualization of CHR through Source-to-Source Transformation

Figure 4 Node removed and history kept throughout the next step.

:-use_module(library(chr)).
:-chr_constraint rectangle/4,translateX/1,translateY/1.

translateX @ rectangle(X1,Y1,W,H),translateX(X) <=> NewX1 is X1+X,
rectangle(NewX1,Y1,W,H).

translateY @ rectangle(X1,Y1,W,H),translateY(Y) <=> NewY1 is Y1+Y,
rectangle(X1,NewY1,W,H).

In order to be able to visualize the constraints, the user has to inform the system of the
CHR constraints that should be visualized and how they should be visualized. In other words,
users have to specify that they want to visualize the constraint named rectangle and that
this constraint should be visualized as a “Rectangle” object. Another example could involve
the constraint circle that has to be visualized as an “Ellipse” object. Consequently, through
the provided application, the user gets to choose the type of visualization objects that he/she
would like to associate with CHR constraints. Users also decide about the constraints to
visualize. They could choose to visualize all constraints, some of them or no constraints at
all. Through the provided application, the user could specify all such details.

The CHR constraints in the input file appear to the user as shown in Figure 5. The
default visualization object is “Line”. The user could remove the constraints that are not to
be visualized such as translateX and translateY in the previous example. Users could also
select a constraint and choose to edit it in order to specify the type of object that should be
associated with the constraint as shown in Figure 5. Once the user is done with transforming
the input file, the produced output file could be used for visualization. The result of
applying each rule could be seen through clicking as shown in Figure 6. Figure 6 is the result
of applying the query rectangle(10,10,50,50), translateX(100), translateY(100) to
the resulting output file (the file produced after applying the transformation). Since the object
chosen for visualizing the rectangle constraint is “Rectangle”, the arguments 10, 10, 50

S. Abdennadher and N. Sharaf 117

Figure 5 The user chooses to edit details about one of the constraints used in the input file.

and 50 correspond to the starting coordinates, the width and the height of the drawn
rectangle respectively. Therefore, when translating the rectangle, only one of the starting
coordinates needs to be changed.
Whenever a query is entered, the tracer shows the initial objects at the beginning. Through
mouse clicks, the user is able to view actions performed in a step-by-step approach. At each
step the new objects and the executed rule’s name are shown. Figure 6b shows the rectangle
after applying the translateX rule. The initial rectangle was removed since translateX is a
simplification rule. Figure 6c visualizes the final rectangle after applying the rule translateY
on the resulting rectangle. Similarly, the rectangle resulting from applying the translateX
was removed since translateY is a simplification rule.

(a) The initial constraint. (b) After applying the rule
translateX.

(c) After applying the rule trans-
lateY.

Figure 6 Visualizing the constraints in a step-by-step approach.

6 Conclusions and Future Work

The paper introduced two source-to-source transformers for CHR. Although based on some
central ideas introduced before, the new transformers introduce some new techniques of how
the transformation could be done. It also overcomes many of the issues faced before. More

ICLP’12

118 Visualization of CHR through Source-to-Source Transformation

specifically, the transformer is incorporated within a Java application that parses the input
file so that users do not have to worry about translating the program from or into any needed
format. Since the transformer and the produced CHR programs were built using the current
compiler and CHR runtime system, no modification is needed to be able to use them.

The transformers help visualize the execution of the different enclosed CHR rules in
addition to visualizing some of the CHR constraints. Such visual tracers could be useful for
many purposes including educational needs and debugging.

It was noticed that both transformers are similar. The technique used is the same in
both of them. The only difference is the type of the visual tracer and its corresponding
functionalities that are added to the output program. Consequently, for future work, the
ultimate goal is to develop a general workbench/engine that facilitates prototyping of source-
to-source transformation.

References
1 Slim Abdennadher and Matthias Saft. A Visualization Tool for Constraint Handling Rules.

In In Proceedings of 11th Workshop on Logic Programming Environments, 1th, 2001.
2 Gaudenz Alder. Design and Implementation of the JGraph Swing Component, 1.0.6 edition,

February 2003. Available at: http://jgraph.sourceforge.net/doc/paper/.
3 Gregory J. Duck, Peter J. Stuckey, Maria J. García de la Banda, and Christian Holzbaur.

The refined operational semantics of constraint handling rules. In Bart Demoen and Vladi-
mir Lifschitz, editors, ICLP, volume 3132 of Lecture Notes in Computer Science, pages
90–104. Springer, 2004.

4 Thom W. Frühwirth. Theory and practice of constraint handling rules, special issue on
constraint logic programming. Journal of Logic Programming, 37(1-3):95–138, October
1998.

5 Thom W. Frühwirth. Specialization of concurrent guarded multi-set transformation rules.
In Sandro Etalle, editor, LOPSTR, volume 3573 of Lecture Notes in Computer Science,
pages 133–148. Springer, 2004.

6 Thom W. Frühwirth and Christian Holzbaur. Source-to-source transformation for a class of
expressive rules. In Francesco Buccafurri, editor, APPIA-GULP-PRODE, pages 386–397,
2003.

7 Thom W. Frühwirth, Alessandra Di Pierro, and Herbert Wiklicky. Probabilistic constraint
handling rules. Electr. Notes Theor. Comput. Sci., 76:115–130, 2002.

8 Leslie De Koninck, Tom Schrijvers, and Bart Demoen. User-definable rule priorities for chr.
In Michael Leuschel and Andreas Podelski, editors, PPDP, pages 25–36. ACM, 2007.

9 Matthias Schmauss. An implementation of CHR in Java. An implementation of CHR in
Java, Master Thesis, Institute of Computer Science, LMU, Munich, Germany, November
1999.

10 Paul Singleton, Fred Dushin, and Jan Wielemaker. JPL: A bidirectional Prolog/Java
interface. http://www.swi-prolog.org/packages/jpl/.

11 Jon Sneyers, Peter Van Weert, Tom Schrijvers, and Bart Demoen. Aggregates in CHR.
Technical Report CW 481, Leuven, Belgium, March 2007.

12 Paolo Tacchella, Maurizio Gabbrielli, and Maria Chiara Meo. Unfolding in chr. In Pro-
ceedings of the 9th ACM SIGPLAN international conference on Principles and practice of
declarative programming, PPDP ’07, pages 179–186, New York, NY, USA, 2007. ACM.

13 Peter Van Weert, Jon Sneyers, and Bart Demoen. Aggregates for chr through program
transformation. In Andy King, editor, LOPSTR, volume 4915 of Lecture Notes in Computer
Science, pages 59–73. Springer, 2007.

http://www.swi-prolog.org/packages/jpl/

Static Type Inference for the Q language using
Constraint Logic Programming
Zsolt Zombori, János Csorba, and Péter Szeredi

Department of Computer Science and Information Theory
Budapest University of Technology and Economics
Budapest, Magyar tudósok körútja 2. H-1117, Hungary
{zombori,csorba,szeredi}@cs.bme.hu

Abstract
We describe an application of Prolog: a type inference tool for the Q functional language. Q
is a terse vector processing language, a descendant of APL, which is getting more and more
popular, especially in financial applications. Q is a dynamically typed language, much like Prolog.
Extending Q with static typing improves both the readability of programs and programmer
productivity, as type errors are discovered by the tool at compile time, rather than through
debugging the program execution.

We map the task of type inference onto a constraint satisfaction problem and use constraint
logic programming, in particular the Constraint Handling Rules extension of Prolog. We determ-
ine the possible type values for each program expression and detect inconsistencies. As most
built-in function names of Q are overloaded, i.e. their meaning depends on the argument types,
a quite complex system of constraints had to be implemented.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving

Keywords and phrases logic programming, types, static type checking, CSP, CHR, Q language

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.119

1 Introduction

Our paper presents most recent developments of the qtchk type analysis tool, for the Q
vector processing language. The tool has been designed in a collaborative project between
Budapest University of Technology and Economics and Morgan Stanley Business and Tech-
nology Centre, Budapest. We described our first results in [19]. That version provided type
checking: the programmer had to provide type annotations (in the form of appropriate Q
comments) and our task was to verify the correctness of the annotations. Since then, we
moved from type checking towards type inference: we devised an algorithm for inferring the
possible types of all program expressions, without relying on user provided type information.
Our preliminary results with the type inferencer were presented in [4]. Now we report on
the more mature qtchk system that is nearly complete. The main goal of the type inference
tool is to detect type errors and provide detailed error messages. Our tool can help detect
program errors that would otherwise stay unnoticed, thanks to which it has the potential
to greatly enhance program development. We perform type inference using constraint lo-
gic programming: the initial task is mapped onto a constraint satisfaction problem (CSP),
which is solved using the Constraint Handling Rules extension of Prolog [7], [15].

In Section 2 we give some background information. Section 3 briefly discusses approaches
to type inference that are related to our work. Section 4 contains our main contribution:
we present static type inference as a constraint satisfaction problem. Section 5 presents
the qtchk program, a static type inferencer for Q that implements the algorithm outlined

© Zsolt Zombori, János Csorba, and Péter Szeredi;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 119–129

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.119
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

120 Static Type Inference for the Q language using Constraint Logic Programming

in Section 4. Due to lack of space, we only address type inference proper. More details
about parsing Q programs and the system architecture can be found in [19]. In Section 6
we evaluate our tool.

2 Background

In this section we present the Q programming language. Due to lack of space we do not
describe the necessary background related to constraint logic programming: we expect the
readers to be familiar with the constraint satisfaction problem, the Prolog language and the
Constraint Handling Rules (CHR) extension of Prolog.

2.1 The Q Programming Language
Q is a highly efficient vector processing functional language, which is well suited to per-
forming complex calculations quickly on large volumes of data. Consequently, numerous in-
vestment banks (Morgan Stanley, Goldman Sachs, Deutsche Bank, Zurich Financial Group,
etc.) use this language for storing and analysing financial time series1. The Q language [1]
first appeared in 2003 and is now (February 2012) so popular, that it is ranked among the
top 50 programming languages by the TIOBE Programming Community [18].

Types Q is a strongly typed, dynamically checked language. This means that while each
variable is associated with a well-defined type, the type of a variable is not declared explicitly,
but stored along its value during execution. The most important types are as follows:

Atomic types in Q correspond to those in SQL with some additional date and time
related types that facilitate time series calculations. Q has the following 16 atomic types:
boolean, byte, short, int, long, real, float, char, symbol, date, datetime, minute,
second, time, timespan, timestamp.
Lists are built from Q expressions of arbitrary types, e.g. (1;2.2;‘abc) is a list com-
prising two numbers and a symbol.
Dictionaries are a generalisation of lists and provide the foundation for tables. A
dictionary is a mapping given by exhaustively enumerating all domain-range pairs. E.g.,
((‘a;‘b) ! (1;2)) is a dictionary that maps symbols a,b to integers 1,2, respectively.
Tables are lists of special dictionaries that correspond to SQL records.
Functions correspond to mathematical mappings specified by an algorithm.

Main Language Constructs As Q is a functional language, functions form the basis of the
language. A function is composed of an optional parameter list and a body comprising a
sequence of expressions to be evaluated. Function application is the process of evaluating the
sequence of expressions obtained after substituting actual arguments for formal parameters.
For example, the expression f: {[x] $[x>0;sqrt x;0]} defines a function of a single
argument x, returning

√
x, if x > 0, and 0 otherwise. Input and return values of functions

can also be functions. While being a functional language, Q also has imperative features,
such as multiple assignment2 of variables and loops.

1 Kx-Systems: http://kx.com/Customers/end-user-customers.php
2 Assignment is denoted by a colon, e.g. x:x*2 doubles the value of the variable x.

http://kx.com/Customers/end-user-customers.php

Z. Zombori, J. Csorba, and P. Szeredi 121

Type restrictions in Q The program code environment can impose various kinds of restric-
tions on types of expressions. In certain contexts, only one type is allowed. For example,
in the do-loop do[n;x:x*2], the first argument is required to be an integer. In other cases
we expect a polymorphic type, such as a list (list(A), where A is an arbitrary type). In
the most general case, there is a restriction involving the types of several expressions. For
instance, in the expression x = y + z, the type of x depends on those of y and z. A type
analyser for Q has to use a framework that allows for formulating all type restrictions that
can appear in the program.

2.2 Restriction of the Q language for type reasoning
Q is a very permissive language. In consultation with experts at Morgan Stanley we decided
to impose some restrictions on the language supported by the inference tool, in order to
promote good coding practice and make the type analyser more efficient.

With multiple assignment variables and dynamic typing, Q allows for setting a variable
to a value of type different from that of the current value. However, this is not the usual
practice and it defies the very goal of type checking. Hence we agreed that each variable
should have a single type in a program, otherwise the type analyser gives an error message.

Other restrictions concern the types of the built-in functions. Most built-in functions
in Q are highly overloaded, thanks to which some functions do not raise errors for certain
“strange” arguments. For example, the built-in function last takes a list as argument and
returns the last element of the list. However, this function works on atomic arguments as
well: it simply returns the input argument. To increase the efficiency of the type reasoner
we decided to ignore some special meanings of some built-in functions. For example, we neg-
lected this special meaning of the last function. Consequently, we infer that the argument
of the last function is a list, which is not necessarily true in general.

3 Related Work

One of the first algorithms for type inference is the Hindley-Milner type system [8]. It
associates the program with a set of equations which can be solved by unification. It sup-
ports parametric polymorphism, i.e., allows for using type variables. Most type systems
for statically typed functional languages are extensions of the Hindley-Milner system, for
example the ML family [14] and Haskell [9]. We also find several examples of dynamically
typed languages extended with a type system allowing for type checking and type inference.
These attempts aim to combine the safeness of static typing with the flexibility of dynamic
typing. [12] describe a polymorphic type system for Prolog.

A major limitation of the Hindley-Milner system is that it requires disjoint types. This
limitation is lifed in subtyping [2], which is a generalisation of Hindley-Milner. Here, the
input program is mapped into type constraints of the form U ⊆ V where U and V are types.
[11] and [10] present type checking tools for Erlang, a dynamically typed functional language,
based on subtyping. They introduce the notion of success typing: in case of potential type
errors, they assume that the programmer knows what he wants and only reject programs
where the type error is certain. Their tool aims to automatically discover hidden type in-
formation, without requiring any alteration of the code. Q is a dynamically typed functional
language, just like Erlang. While the language naturally yields many constraints of the form
U ⊆ V , subtyping is not sufficient to capture all constraints related to types. Built-in func-
tions are highly overloaded (ad-hoc polymorphism), and we need more sophisticated tools,
like constraint logic programming, to formulate and handle complex constraints. [5] report

ICLP’12

122 Static Type Inference for the Q language using Constraint Logic Programming

on using constraints in type checking and inference for Prolog. They transform the input
logic program with type annotations into another logic program over types, whose execution
performs the type checking. [17] describe a generic type inference system for a generalisa-
tion of the Hindley-Milner approach using constraints, and also report on an implementation
using Constraint Handling Rules. The CLP(SET) [6] framework provides constraint logic
reasoning over sets. Our solution has many similarities to CLP(SET) as types can be easily
seens as sets of expressions. The main difference is that we have to handle infinite sets.

4 Type Inference as a Constraint Satisfaction Problem

In this section we give an overview of our approach of transforming the problem of type
reasoning into a CSP. Type reasoning starts from a program code that can be seen as a
complex expression built from simpler expressions. Our aim is to assign a type to each
expression appearing in the program in a coherent manner. The types of some expressions
are known immediately (atomic expressions, certain built-in functions), besides, the program
syntax imposes restrictions between the types of certain expressions. The aim of the reasoner
is to assign a type to each expression that satisfies all the restrictions.

We associate a CSP variable with each subexpression of the program. Each variable has
a domain, which initially is the set of all possible types. Different type restrictions can be
interpreted as constraints that restrict the domains of some variables. In this terminology,
the task of the reasoner is to assign a value to each variable from the associated domain
that satisfies all the constraints. However, our task is more difficult than a classical CSP,
because there are infinitely many types, which cannot be represented explicitly in a list.

4.1 Type Language for Q
We describe the type language developed for Q. We allow polymorphic type expressions,
i.e., any part of a complex type expression can be replaced with a variable. Expressions are
built from atomic types and variables using type constructors. The abstract syntax of the
type language – which is also the Prolog representation of types – is as follows:

TypeExpr =
AtomicTypes | TypeVar | symbol(Name) | any

| list(TypeExpr) | tuple([TypeExpr ,...,TypeExpr])
| dict(TypeExpr , TypeExpr) | func(TypeExpr , TypeExpr)

AtomicTypes This is shorthand for the 16 atomic types of Q. Furthermore, the numeric
keyword can be used to denote a type consisting of all numeric values.

TypeVar represents an arbitrary type expression, with the restriction that the same variables
stand for the same type expression. Type variables allow for defining polymorphic type
expressions, such as list(A) -> A and tuple([A,A,B]).

symbol(Name) This is a degenerate type, as it has a single instance only, namely the
provided symbol. Nevertheless, it is important because in order to support certain table
operations, the type reasoner needs to know what exactly the involved symbols are.

any This is a generic type description, which denotes all data structures allowed by Q.
list(TE) The set of all lists whose elements are from the set represented by TE.
tuple([TE1, ..., TEk]) The set of all lists of length k, such that the ith element is from

the set represented by TEi.

Z. Zombori, J. Csorba, and P. Szeredi 123

dict(TE1, TE2) The set of all dictionaries, defined by an explicit association between a
domain list (TE1) and a range list(TE2) via positional correspondence. For example,
the dictionary (‘name;‘date) ! (‘Joe; 1962) has type
dict(tuple([symbol(name),symbol(date)]),tuple([symbol(Joe),int]))3.

func(TE1, TE2) The set of all functions, such that the domain and range are from the sets
represented by TE1 and TE2, respectively.

4.2 Domains
Type expressions can be embedded into each other (e.g. list(int), list(list(int)), etc.),
and tuples can be of arbitrary length, consequently we have infinitely many types, which
makes representing domains more difficult. Furthermore, the types determined by the type
language are not disjoint. For example 1.1f might have type float or numeric as well.
It is evident that every expression which satisfies type float also satisfies type numeric,
i.e., float is a subtype of numeric. We will use the subtype relation to represent infinite
domains finitely as intervals: a domain will be represented with an upper and a lower bound.

Partial Ordering We say that type expression T1 is a subtype of type expression T2 (T1 ≤
T2) if and only if, all expressions that satisfy T1 also satisfy T2. The subtype relation determ-
ines a partial ordering over type expressions. For example, consider the tuple([int,int])
type which represents lists of length two, both elements being integers. Every expression
that satisfies tuple([int,int]) also satisfies list(int), i.e., tuple([int,int]) is a sub-
type of list(int). For atomic expressions it is trivial to check if one type is the subtype of
another. Complex type expressions can be checked using some simple recursive rules. For
example, list(A) is a subtype of list(B) exactly if A is subtype of B.

Finite Representation of the Domain The domain of a variable is initially the set of all
types, which can be constrained with different upper and lower bounds.

An upper bound restriction for variable Xi is a list Li = [Ti1, . . . , Tini
], meaning that

the upper bound of Xi is
⋃ni

j=1 Tij , i.e., the type of Xi is a subtype of some element of Li.
Disjunctive upper bounds are very common and natural in Q, for example, the type of an
expression might have to be either list or dict. The conjunction of upper bounds is easily
described by having multiple upper bounds. If we have two upper bounds L1 and L2 on the
same variable Xi, this means the value of Xi expression has to be in

⋃
(T1j

⋂
T2k), for all

1 ≤ j ≤ n1 and 1 ≤ k ≤ n2.
A lower bound restriction for variable Xi is a single type expression Ti, meaning that

Ti is a subtype of the type of Xi. For lower bounds, it is their union which is naturally
represented by having multiple constraints: if X has two lower bounds T1 and T2, then
T1 ∪ T2 has to be subtype of the type of X. We do not use lists for lower bounds and hence
cannot represent the intersection of lower bounds. We chose this representation because no
language construct in Q yields a conjunctive lower bound.

With the following example we demonstrate that lower and upper bounds are natural
restrictions in Q: In the code a: f[b] function f is applied to b and the result is assigned
to a. Suppose the type of f turns out to be a map from numeric to tuple([int, int]).
We can infer that the type of b must be at most numeric, which can be expressed with an

3 To facilitate type inference for tables, we include detailed information on the domain/range of a dic-
tionary in its type. (A record is a dictionary with the domain being a list of column names.)

ICLP’12

124 Static Type Inference for the Q language using Constraint Logic Programming

upper bound. The result of f of b has the type tuple([int,int]), which means, that the
type of a must be at least tuple([int,int]), which can be expressed with a lower bound.
If later the type of a turns out to be list(int) (a list of integers) and the type of b to be
e.g. float, then the above expression is type correct.

4.3 Constraints
After parsing – where we build an abstract syntax tree representation of the input program
– the type analyser traverses the abstract syntax tree and imposes constraints on the types
of the subexpressions. The constraints describing the domain of a variable are particularly
important, we call them primary constraints. These are the upper and lower bound con-
straints. We will refer to the rest of the constraints as secondary constraints. Secondary
constraints eventually restrict domains by generating primary constraints, when their argu-
ments are sufficiently instantiated (i.e., domains are sufficiently narrow). Constraints that
can be used for type inference can originate from the following sources in a Q program:

Built-in functions For every built-in function, there is a well-defined relationship between
the types of its arguments and the type of the result. These relations are expressed by
adequate – sometimes quite complicated – constraints.

Atomic expressions The types of atomic expressions are revealed already by the parser, so
for example, 2.2f is immediately known to be a float.

Variables Local variables are made globally unique by the parser, so variables with the same
name must have the same type. We ensure this by equating their corresponding domains.

Program syntax Most syntactic constructs impose constraints on the types of their con-
stituent constructs. For example, the first argument of an if-then-else construct must
be int or boolean. Another example is the assignment construct. The type of the left
side has to be at least as “broad” as the type of the right side. It means the type of the
right side is subtype of the type of the left side.

4.4 Constraint Reasoning
In this subsection we describe how the constraints are used to infer possible types. Constraint
reasoning is based on a production system [13], i.e., a set of IF-THEN rules. We maintain
a constraint store which holds the constraints to be satisfied for the program to be type
correct. We start out with an initial set of constraints. A production rule fires when certain
constraints appear in the store and results in adding or removing some constraints. With
CHR terminology, we say that each rule has a head part that holds the constraits necessary
for firing and a body containing the constraints to be added. The constraints to be removed
are a subset of the head constraints. One can also provide a guard part to specify more
refined firing conditions.

The semantics of the constraints is given by describing their consequences and their
interactions with other constraints. At each step we systematically check for rules that can
fire. The more rules we provide the more reasoning can be performed.

Primary constraints represent variable domains. If a domain turns out to be empty, this
indicates a type error and we expect the reasoner to detect this. Hence, it is very important
for the constraint system to handle primary constraints as “cleverly” as possible. For this,
we formulated rules to describe the following interactions on primary constraints4:

4 Concrete examples of rules will be given in Section 5.

Z. Zombori, J. Csorba, and P. Szeredi 125

Two upper bounds on a variable should be replaced with their intersection.
Two lower bounds on a variable should be replaced with their union.
If a variable has an upper and a lower bound such that no type satisfies both, then the
clash should be made explicit by setting the upper bound to the empty set.
Upper and lower bounds can be polymorphic, i.e., they might contain other variables.
From the fact that the lower bound must be a subtype of the upper bound, we can
propagate constraints to the variables appearing in the bounds.

Secondary constraints connect different variables and restrict several domains. Unfortu-
nately, it is not realistic to capture all interactions of secondary constraints as that would
require exponentially many rules in the number of constraints. Hence, we only describe
(fully) the interaction of secondary constraints with primary constraints, i.e., we formulate
rules of the form: if certain arguments of the constraints are within a certain domain, then
some other argument can be restricted. E.g., if there is a summation in Q and we know
that the arguments are numeric values, then the result must be either integer or float. If
the second argument later turns out to be float, then the result must be float. At this point,
there is nothing more to be inferred and the constraint can be eliminated from the store.

Our aim is to eventually eliminate all secondary constraints. If we manage to do this, the
domains described by the primary constraints constitute the set of possible type assignments
to each expression. In case some domain is the empty set, we have a type error. Otherwise,
we consider the program type correct.

If the upper and lower bounds on a variable determine a singleton set, then we say that
it is instantiated. If all arguments of a secondary constraint are instantiated, then there are
two possibilities. If the instantiation satisfies the constraint, then the latter can be removed
from the store. Otherwise, the constraint fails.

Error Handling As we parse the input program, we generate constraints and add them to
the constraint store. The production rules automatically fire whenever they can. If some
domain gets restricted to the empty set, this means that the corresponding expression can-
not be assigned any type, i.e., we have a type error. At this point we mark the erroneous
expression, as well as the primary constraints whose interaction resulted in the empty do-
main. This information – along with the position of the expression – is used to generate
an error message. The primary constraints are meant to justify the error. Once the error
has been detected and noted, we roll back to the addition of the last constraint and simply
proceed by skipping the constraint. This way, the type analyser can detect more than one
error during a single run.

Labeling Eventually, after all constraints have been added, we obtain a constraint store
such that none of the rules can fire any more. There are three possibilities:

There were some discovered errors. Then we display the collected error messages and
terminate the type inference algorithm.
There were no type errors found and only primary constraints remain. In this case the
domains described by the primary constraints all contain at least one element. Any type
assignment from the respective domains satisfies all constraints, so the type analyser
stops with success.
No type errors were found, however, some secondary constraints remain. In order to
decide if the constraints are consistent, we do labeling.

ICLP’12

126 Static Type Inference for the Q language using Constraint Logic Programming

Labeling is the process of systematically assigning values to variables from within their
domains. The assignments wake up production rules. We might obtain a failure, in which
case we roll back until the last assignment and try the next value. Eventually, either we find
a type assignment to all variables that satisfies all constraints or we find that there is no
consistent assignment. In the first case we indicate that there is no type error. In the second
case, however, we showed that the type constraints are inconsistent, so an error message to
this effect is displayed. Due to the potentially large size of the search space traversed in
labeling, it looks very difficult to provide the user with a concise description of the error.

5 Implementation – the qtchk program

We built a Prolog program called qtchk that implements the type analysis described in
Section 4. It runs both in SICStus Prolog 4.1 [16] and SWI Prolog 5.10.5. It consists of over
8000 lines of code5. Constraint reasoning is performed using Constraint Handling Rules. Q
has many irregularities and lots of built-in functions (over 160), due to which a complex
system of constraints had to be implemented using over 60 constraints. The detailed user
manual for qtchk can be found in [3] that contains lots of examples along with the concrete
syntax of the Q language.

5.1 Representing variables
All subexpressions of the program are associated with CSP variables. In case some constraint
fails, we need to know which expression is erroneous in order to generate a useful error
message. If the arguments of the constraints are variables, we do not have this information
at hand. Hence, instead of variables we use identifiers ID = id(N,Type,Error)6, which
consist of three parts: an integer N which uniquely identifies the corresponding expression,
the type proper Type (which is a Prolog variable before the type is known) and an error
flag Error which is used for error propagation. We use the same representation for type
variables in polymorphic types, e.g. the type list(X) may be represented by list(id(2)).

5.2 Constraint Reasoning
Constraint reasoning is performed using the Constraint Handling Rules library of Prolog.
CHR has proved to be a good choice as it is a very flexible tool for describing the behaviour of
constraints. Any constraint involving arbitrary Prolog structures could be formulated. We
illustrate our use of CHR by presenting some rules that describe the interaction of primary
constraints. Our two primary constraints are

subTypeOf(ID,L): The type of identifier ID is a subtype of some type in L, where L is a
list of polymorphic type expressions.
superTypeOf(ID,T): The type of ID is a supertype of T, a polymorphic type expression.

With polymorphic types we can restrict the domain by a type expression containing the type
of another identifier. If the type of such an identifier becomes known, the latter is replaced
with the type in the constraint. For example, if we have constraints
subTypeOf(id(1),[float,list(id(2))]), superTypeOf(id(1),tuple([id(3),int])
and the types of id(2) and id(3) later both turn out to be int, then the constraints are
automatically replaced with

5 We are happy to share the code over e-mail with anyone interested in it.
6 In order to make the following examples easier to read, we will write id(N) instead of id(N,Type,Error)

Z. Zombori, J. Csorba, and P. Szeredi 127

subTypeOf(id(1),[float,list(int)]), superTypeOf(id(1),tuple([int,int]).
Due to the lower bound, float can be eliminated from the upper bound. This is performed
by the following CHR rule:

superTypeOf(X,A) \ subTypeOf(X,B0) <=> eliminate_sub(A, B0, B) |
create_log_entry(eliminate_sub(X,A,B0,B)), subTypeOf(X, B).

We make use of the Prolog predicate eliminate_sub(A,B0,B), which expresses that the list
of upper bounds B0 can be reduced to a proper subset B based on lower bound A. We obtain:
subTypeOf(id(1),[list(int)]), superTypeOf(id(1),tuple([int,int]).

5.3 Error Handling
During constraint reasoning, a Prolog failure indicates some type conflict. Before we roll
back to the last choice point, we remember the details of the error. We maintain a log that
contains entries on how various domains change during the reasoning and what constraints
were added to the store. Furthermore, to make error handling more uniform, whenever
secondary constraints are found violated, they do not lead to failure, but they set some
domain empty. Hence, we only need to handle errors for primary constraints. Whenever a
domain gets empty, we mark the expression associated with the domain and we look up the
log to find the domain restrictions that contributed to the clash. We create and assert an
error message and let Prolog fail. For example, the following message

Expected to be broader than (int -> numeric) and
narrower than (int -> int)

file:samples/s1.q line:13 character:4
{[x] f[x]}
^^^^^^^^^^

indicates that the underlined function definition is erroneous: the return value is numeric
or broader, although it is supposed to be narrower than integer.

6 Evaluation

The best way to evaluate our tool would be on Q programs developed by Morgan Stanley.
However, we could not obtain such programs due to the security policy of the company.
Instead, we used user contributed Q examples, publicly available at the homepage of Kx-
System [1]. This test set contains several (extended) examples from the Q tutorial and other
more complex programs. Table 1 summarizes our findings.

Table 1 Test results.

All Type correct Restrictions Labeling timeout Type error Analyser error
128 43 (33.6%) 43 (33.6%) 32 (25%) 5 (3.9%) 5 (3.9%)

We used 128 publicly available Q programs. Of this 43 were found type correct. As
explained in Subsection 2.2, we made some restrictions on the Q language, following the
requirements of Morgan Stanley. 43 programs were found erroneous due to not fulfilling
these restrictions. Most of the error messages arise from the same variable used with different
types and from some neglected special meaning of built-in functions. We often found the

ICLP’12

128 Static Type Inference for the Q language using Constraint Logic Programming

case that a function is called but defined in another file that was not included among the
examples. In such programs the lack of information often resulted in an extremely large
search space to be traversed during labeling. In 32 programs labeling could not find any
solution within the given time limit (1000 sec), partly for the former reason.

We were happy to find 5 genuine errors in the test set. These are in the following
programs: run.q7, mserve.q8, oop.q9, quant.q10, and dgauss.q11. We have found 5
programs containing some language element that our tool cannot handle well. We are in the
process of eliminating these problems.

7 Conclusions

We presented an algorithm and the tool qtchk that can be used for checking Q programs for
type correctness. We described how to map this task onto a constraint satisfaction problem
which we solve using constraint logic programming tools. We have found that our program
is a useful tool for finding type errors, as long as the programmers adhere to some coding
practices, negotiated with Morgan Stanley, our project partner. However, we believe that
the restrictions that we impose on the use of the Q language are reasonable enough for other
programmers as well, and our tool will find users in the broader Q community.

Acknowledgements

The results discussed above are supported by the grant TÁMOP – 4.2.2.B-10/1–2010-0009 .

References
1 Jeffry A. Borror. Q For Mortals: A Tutorial In Q Programming. CreateSpace, Paramount,

CA, 2008.
2 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-

morphism. ACM COMPUTING SURVEYS, 17(4):471–522, 1985.
3 János Csorba, Péter Szeredi, and Zsolt Zombori. Static Type Checker for Q Programs

(Reference Manual), 2011. http://www.cs.bme.hu/∼zombori/q/qtchk_reference.pdf.
4 János Csorba, Zsolt Zombori, and Péter Szeredi. Using constraint handling rules to provide

static type analysis for the q functional language. CoRR, abs/1112.3784, 2011.
5 Bart Demoen, M. García de la Banda, and P. Stuckey. Type constraint solving for para-

metric and ad-hoc polymorphism. In Proceedings of Australian Workshop on Constraints,
pages 1–12, 1998.

6 Agostino Dovier, Carla Piazza, Enrico Pontelli, and Gianfranco Rossi. Sets and constraint
logic programming. ACM Trans. Program. Lang. Syst., 22(5):861–931, September 2000.

7 Th. Fruehwirth. Theory and Practice of Constraint Handling Rules. In P. Stuckey and
K. Marriot, editors, Journal of Logic Programming, volume 37(1–3), pages 95–138, October
1998.

8 R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of
the American Mathematical Society, 146:pp. 29–60, 1969.

9 Mark P. Jones. Typing Haskell in Haskell. In Haskell Workshop, 1999.

7 http://code.kx.com/wsvn/code/contrib/cburke/qreference/source/run.q
8 http://code.kx.com/wsvn/code/kx/kdb+/e/mserve.q
9 http://code.kx.com/wsvn/code/contrib/azholos/oop.q
10 http://code.kx.com/wsvn/code/contrib/gbaker/common/quant.q
11 http://code.kx.com/wsvn/code/contrib/gbaker/deprecated/dgauss.q

http://code.kx.com/wsvn/code/contrib/cburke/qreference/source/run.q
http://code.kx.com/wsvn/code/kx/kdb+/e/mserve.q
http://code.kx.com/wsvn/code/contrib/azholos/oop.q
http://code.kx.com/wsvn/code/contrib/gbaker/common/quant.q
http://code.kx.com/wsvn/code/contrib/gbaker/deprecated/dgauss.q

Z. Zombori, J. Csorba, and P. Szeredi 129

10 Tobias Lindahl and Konstantinos F. Sagonas. Practical type inference based on success
typings. In Annalisa Bossi and Michael J. Maher, editors, PPDP, pages 167–178. ACM,
2006.

11 Simon Marlow and Philip Wadler. A practical subtyping system for Erlang. SIGPLAN
Not., 32:136–149, August 1997.

12 Alan Mycroft and Richard A. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23(3):295–307, 1984.

13 A. Newell and H.A. Simon. Human Problem Solving. Prentice Hall, Englewood Cliffs, 1972.
14 Francois Pottier and Didier Remy. The essence of ML type inference. Advanced Topics in

Types and Programming Languages, pages 389–489, 2005.
15 Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: implementation and

application. In First Workshop on Constraint Handling Rules: Selected Contributions,
pages 1–5, 2004.

16 SICS. SICStus Prolog Manual version 4.1.3. Swedish Institute of Computer Science,
September 2010.
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html.

17 Martin Sulzmann and Peter J. Stuckey. HM(X) type inference is CLP(X) solving. Journal
of Functional Programming, 18:251–283, March 2008.

18 TIOBE. TIOBE programming-community, TIOBE index, 2010. http://www.tiobe.com.
19 Zsolt Zombori, János Csorba, and Péter Szeredi. Static type checking for the q functional

language in prolog. In John P. Gallagher and Michael Gelfond, editors, ICLP (Technical
Communications), volume 11 of LIPIcs, pages 62–72. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2011.

ICLP’12

http://www.tiobe.com

Improving Lazy Non-Deterministic Computations
by Demand Analysis
Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract
Functional logic languages combine lazy (demand-driven) evaluation strategies from functional
programming with non-deterministic computations from logic programming. The lazy evaluation
of non-deterministic subexpressions results in a demand-driven exploration of the search space: if
the value of some subexpression is not required, the complete search space connected to it is not
explored. On the other hand, this improvement could cause efficiency problems if unevaluated
subexpressions are duplicated and later evaluated in different parts of a program. In order to
improve the execution behavior in such situations, we propose a program analysis that guides a
program transformation to avoid such inefficiencies. We demonstrate the positive effects of this
program transformation with KiCS2, a recent highly efficient implementation of the functional
logic programming language Curry.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases functional logic programming, implementation, program analysis

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.130

1 Motivation

Functional logic languages support the most important features of functional and logic
programming in a single language (see [10, 32] for recent surveys). They provide higher-
order functions and demand-driven evaluation from functional programming as well as logic
programming features like non-deterministic search and computing with partial information
(logic variables). This combination led to new design patterns [8, 11], better abstractions
for application programming (e.g., programming with databases [18, 26], GUI programming
[29], web programming [30, 31, 35], string parsing [22]), and new techniques to implement
programming tools, like partial evaluators [3] or test case generators [27, 50].

The implementation of functional logic languages is challenging due to the combination
of the various language features. For instance, one can

design new abstract machines appropriately supporting these operational features and
implementing them in some (typically, imperative) language, like C [43] or Java [12, 37],
compile into logic languages like Prolog and reuse the existing backtracking implementation
for non-deterministic search as well as logic variables and unification for computing with
partial information [7, 41], or
compile into non-strict functional languages like Haskell and reuse the implementation of
lazy evaluation and higher-order functions [20, 21].

The latter approach requires the implementation of non-deterministic computations in a
deterministic language but has the advantage that the explicit handling of non-determinism
allows for various search strategies, like depth-first, breadth-first, parallel, or iterative
deepening, instead of committing to a fixed (incomplete) strategy like backtracking [20].

© Michael Hanus;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 130–143

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.130
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Hanus 131

In this paper we consider KiCS2 [19], a new system that compiles functional logic programs
of the source language Curry [38] into purely functional Haskell programs. However, the
techniques presented in this paper can also be applied to similar implementations, like KiCS
[21] or ViaLOIS [13]. KiCS2 can compete with or outperform other existing implementations
of Curry [19]. In particular, deterministic parts of a program are much faster executed
than in Prolog-based Curry implementations. Non-determinism is implemented in KiCS2
by representing all non-deterministic results of a computation as a data structure. This
structure is traversed by operations implementing the search for solutions. Thus, different
search strategies are supported by KiCS2. This flexibility might cause efficiency problems in
some situations due to the duplication of unevaluated subexpressions (see below for a more
detailed explanation). Therefore, we propose a new technique to improve such problematic
situations based on the following steps:
1. The run-time behavior of the program is analyzed. In particular, information about

demanded arguments and the non-determinism behavior is approximated.
2. The information obtained from this analysis is used to transform the source program. In

particular, the computation of a non-deterministic subexpression is enforced earlier when
its value is definitely demanded.

In this paper, we review Curry and its implementation with KiCS2, discuss the potential
problems of this implementation and present a program transformation based on a demand
analysis which avoids these problems in many practical cases. Due to lack of space, we have
to omit some details which can be found in a corresponding technical report [34].

2 Functional Logic Programming and Curry

The declarative multi-paradigm language Curry [38] combines features from functional
programming (demand-driven evaluation, parametric polymorphism, higher-order functions)
and logic programming (computing with partial information, unification, constraints). The
syntax of Curry is close to Haskell1 [47]. In addition, Curry allows free (logic) variables
in conditions and right-hand sides of defining rules. The operational semantics is based
on an optimal evaluation strategy [6] which is a conservative extension of lazy functional
programming and logic programming.

A Curry program consists of the definition of data types (introducing constructors for the
data types) and operations on these types. For instance, the data types for Boolean values
and polymorphic lists are as follows:

data Bool = False | True
data List a = [] | a : List a -- [a] denotes "List a"

Note that, in a functional logic language like Curry, not all definable operations are functions
in the classical mathematical sense. There are also operations, sometimes called “non-
deterministic functions” [28], which might yield more than one result on the same input. For
instance, Curry contains a choice operation defined by:

x ? _ = x
_ ? y = y

1 Variables and function names usually start with lowercase letters and the names of type and data
constructors start with an uppercase letter. The application of f to e is denoted by juxtaposition
(“f e”).

ICLP’12

132 Improving Lazy Non-Deterministic Computations by Demand Analysis

A value is an expression without defined operations. Thus, the expression “True ? False”
has two values: True and False. If expressions have more than one value, one wants to
select intended values according to some constraints, typically in conditions of program rules.
A rule has the form “f t1 . . . tn | c = e” where the (optional) condition c is a constraint,
like the trivial constraint success or an equational constraint e1 =:= e2 which is satisfied if
both sides are reducible to unifiable values. For instance, the rule

last xs | (ys++[z]) =:= xs = z where ys,z free

defines an operation to compute the last element z of a list xs based on the (infix) operation
“++” which concatenates two lists (in contrast to Prolog, free variables like ys or z need to
be declared explicitly to make their scopes clear). As mentioned above, operations can be
non-deterministic:

aBool = True ? False

Using such non-deterministic operations as arguments might cause a semantical ambiguity
which has to be fixed. Consider the operations

xor True x = not x not True = False
xor False x = x not False = True

xorSelf x = xor x x

and the expression “xorSelf aBool”. If we interpret this program as a term rewriting system,
we could have the derivation

xorSelf aBool → xor aBool aBool → xor True aBool
→ xor True False → not False → True

leading to the unintended result True. Note that this result cannot be obtained if we
use a strict strategy where arguments are evaluated prior to the function calls. In order
to avoid dependencies on the evaluation strategies and exclude such unintended results,
González-Moreno et al. [28] proposed the rewriting logic CRWL as a logical (execution-
and strategy-independent) foundation for declarative programming with non-strict and non-
deterministic operations. CRWL specifies the call-time choice semantics [40], where values of
the arguments of an operation are determined before the operation is evaluated. This can be
enforced in a lazy strategy by sharing actual arguments. For instance, the expression above
can be lazily evaluated provided that all occurrences of aBool are shared so that all of them
reduce either to True or to False consistently

In order to provide a precise definition of the semantics of non-deterministic and non-strict
operations, we assume a given program P and extend standard expressions so that they
can also contain the special symbol ⊥ to represent undefined or unevaluated values. A
partial value is a value containing occurrences of ⊥. A partial constructor substitution is a
substitution that replaces variables by partial values. Then we denote by

[P]⊥ = {σ(l) = σ(r) | l = r ∈ P, σ partial constructor substitution}

the set of all partial constructor instances of the program rules. A context C[·] is an expression
with some “hole”. Then the reduction relation used in this paper is defined as follows:2

C[f t1 . . . tn] � C[r] if f t1 . . . tn = r ∈ [P]⊥
C[f e1 . . . en] � C[⊥] if f is a defined operation

2 Conditional rules are not considered in the reduction relation since they can be eliminated [4] by
transforming each conditional rule “l | c = e” into “l = cond c e” where cond is defined by “cond
success x = x”.

M. Hanus 133

The first rule models the call-time choice: if a rule is applied, the actual arguments of the
operation must have been evaluated to partial values. The second rule models non-strictness
where unevaluated operations are replaced by an undefined value (which is intended if the
value of this subexpression is not demanded). A partial value t is called a normal form of e
if e

∗
� t. Note that the derivation for “xorSelf aBool” shown above is not possible w.r.t.

�. The equivalence of this rewrite relation and CRWL is shown in [42, 33].
We do not discuss the implementation of free (logic) variables in the following. This is

justified by the fact that logic variables, denoting arbitrary but unknown values, can be
replaced by generators, i.e., operations that non-deterministically evaluate to all possible
ground values of the type of the free variable. For instance, the operation aBool is a generator
for Boolean values so that one can transform the expression “not x”, where x is a free variable,
into “not aBool”. It has been shown [9, 25] that computing with logic variables by narrowing
[48, 51] and computing with generators by rewriting are equivalent, i.e., compute the same
values. Since such generators are standard non-deterministic operations, they are translated
like any other operation.

3 Compiling Non-Deterministic Programs

In this section, we sketch the implementation of non-deterministic programs in a purely
functional language. This translation scheme is used by KiCS2 to compile Curry programs
into Haskell programs. More details can be found in [16, 17, 19].

As mentioned in the introduction, we are interested in an implementation supporting
different, in particular, complete search strategies. Thus, implementations based on a
particular search strategy, like backtracking, which can also be found in approaches to
support non-deterministic computations in functional programs [23, 39], are too limited.
To provide various, also user-definable, search strategies, we explicitly represent all non-
deterministic results of a computation in a data structure. This is achieved by extending
each data type of the source program by a constructor to represent a choice between two
values. For instance, the data type for Boolean values as defined above is translated into the
Haskell data type3

data Bool = False | True | Choice ID Bool Bool

In order to implement the call-time choice semantics discussed in Sect. 2, each Choice
constructor has an additional argument. For instance, the evaluation of xorSelf aBool
duplicates the argument operation aBool. Thus, we have to ensure that both duplicates,
which later evaluate to a non-deterministic choice between two values, yield either True or
False. This is obtained by assigning a unique identifier (of type ID) to each Choice. In
order to get unique identifiers on demand, we pass a (conceptually infinite) set of identifiers,
also called identifier supply, to each operation.4 Hence, each Choice created during run time
can pick its unique identifier from this set. For this purpose, we assume a type IDSupply,
representing an infinite set of identifiers, with operations

thisID :: IDSupply → ID
leftSupply :: IDSupply → IDSupply

3 Actually, our compiler adds also information to handle failures and performs some renamings to avoid
conflicts with predefined Haskell entities by introducing type classes to resolve overloaded symbols like
Choice.

4 Note that the target program should be free of side effects in order to enable various search strategies,
including parallel ones.

ICLP’12

134 Improving Lazy Non-Deterministic Computations by Demand Analysis

rightSupply :: IDSupply → IDSupply

thisID takes some identifier from this set, and leftSupply and rightSupply split this
set into two disjoint subsets without the identifier obtained by thisID. There are different
implementations available [14] so that KiCS2 is parametric over concrete implementations of
IDSupply. A simple one can be based on unbounded integers, see [19].

Now, the correct handling of the call-time choice semantics can be obtained by adding an
additional argument of type IDSupply to each operation. For instance, the operation aBool
defined above is translated into:

aBool :: IDSupply → Bool
aBool s = Choice (thisID s) True False

Similarly, the operation
main :: Bool
main = xorSelf aBool

is translated into
main :: IDSupply → Bool
main s = xorSelf (aBool (leftSupply s)) (rightSupply s)

so that the set s is split into a set (leftSupply s) containing identifiers for the evaluation
of aBool and a set (rightSupply s) containing identifiers for the evaluation of xorSelf.

Since all data types are extended by additional constructors, we must also extend the
definition of operations performing pattern matching.5 For instance, the operation xor is
extended by an identifier supply and further matching rules:

xor :: Bool → Bool → IDSupply → Bool
xor True x s = not x s
xor False x s = x
xor (Choice i x1 x2) x s = Choice i (xor x1 x s) (xor x2 x s)

The third rule transforms a non-deterministic argument into a non-deterministic result, i.e.,
a non-deterministic choice is moved one level up. This is also called a “pull-tab” step [5].

In our concrete example, we assume that choice identifiers are implemented as integers
[19]. Thus, if we evaluate the expression (main 1) w.r.t. the transformed rules defining xor,
we obtain the result

Choice 2 (Choice 2 False True) (Choice 2 True False)

Hence, the result is non-deterministic and contains three choices with identical identifiers.
To extract all values from such a Choice structure, we have to traverse it and compute all
possible choices but consider the choice identifiers to make consistent (left/right) decisions.
Thus, if we select the left branch as the value of the outermost Choice, we also have to select
the left branch in the selected argument (Choice 2 False True) so that False is the only
value possible for this branch. Similarly, if we select the right branch as the value of the
outermost Choice, we also have to select the right branch in its selected argument (Choice
2 True False), which again yields False as the only possible value. In consequence, the
unintended value True cannot be extracted.

As one can see, the implementation is modularized in two phases that are interleaved
by the lazy evaluation strategy of the target language: any expression is evaluated to a

5 To obtain a simple compilation scheme, KiCS2 transforms source programs into uniform programs
[19] where pattern matching is restricted to a single argument. This is always possible by introducing
auxiliary operations.

M. Hanus 135

tree representation of all its values and the main user interface (responsible for printing
all results) extracts the correct values from this tree structure. As a consequence, one can
easily implement various search strategies to extract these values as different tree traversal
strategies. Due to the overall lazy evaluation strategy, infinite search spaces does not cause
a complication. For instance, if one is interested only in a single solution, one can extract
some value even if the computed choice structure is conceptually infinite.

4 Demand Analysis

The translation scheme presented in the previous section leads to an implementation with a
good efficiency (e.g., the benchmarks presented in [19] show that it outperforms all other
Curry implementations for deterministic operations, and, for non-deterministic operations,
outperforms Prolog-based implementations of Curry and can compete with MCC [43], a
Curry implementation that compiles to C). It is also used in a slightly modified form in
another recent compact compiler for functional logic languages [13]. However, there are
situations where this scheme cause efficiency problems. For instance, consider the evaluation
of the expression (main 1) (for simplicity, we do not show the sharing of subexpressions
done by the lazy evaluation strategy):

main 1 →∗ xorSelf (aBool 2) 3
→∗ xor (aBool 2) (aBool 2) 3
→∗ xor (Choice 2 True False) (Choice 2 True False) 3
→∗ Choice 2 (Choice 2 False True) (Choice 2 True False)

As one can see, the (initially) single occurrence of the non-deterministic operation aBool,
whose evaluation introduces a Choice constructor, is duplicated so that it results (in combi-
nation with the pull-tab step) in three Choice constructors. Since the overall strategy to
extract values from choice structures has to traverse this choice structure, this might lead to
an explosion of the search space in some cases (see benchmarks in Section 6).

A careful analysis shows that this problem stems from the lazy evaluation strategy. Hence,
an improvement might be possible by changing the evaluation strategy. The operation
xorSelf always demands the value of its argument in order to apply some reduction rule.
Thus, one can also try to evaluate the argument before an attempt to evaluate xorSelf. Such
a kind of call-by-value or strict evaluation can be achieved by introducing a strict application
operation “sApply” implemented in the target code as follows:

sApply f (Choice i x1 x2) s = Choice i (sApply f x1 s) (sApply f x2 s)
sApply f x s = f x s

Hence, sApply enforces the evaluation of the argument (to an expression without a defined
operation at the top, also called head normal form) before the operation is applied. In
particular, if the argument is a non-deterministic choice, it is moved outside the application.
This operation is available as a predefined infix operation “$!” in Curry. Now consider what
happens if we redefine main by

main = xorSelf $! aBool

and evaluate the translated main expression:
main 1 →∗ sApply xorSelf (aBool 2) 3

→∗ sApply xorSelf (Choice 2 True False) 3
→∗ Choice 2 (xorSelf True 3) (xorSelf False 3)
→∗ Choice 2 (xor True True 3) (xor False False 3)
→∗ Choice 2 False False

ICLP’12

136 Improving Lazy Non-Deterministic Computations by Demand Analysis

Hence, the computed choice structure does not contain duplicated Choice constructors,
as desired. However, an unrestricted use of “$!” might destroy the completeness of the
evaluation strategy. For instance, consider the definition

ok x = True
loop = loop

Then “ok loop” has the value True but the evaluation of “ok $! loop” does not terminate.
As a consequence, we need some information about the demand of operations in order to

insert strict applications only for demanded arguments. This seems quite similar to strictness
information in purely functional programming [46]. However, the techniques developed there
cannot be applied to functional logic programs. For instance, consider the operation f defined
by

f 0 = 0
f x = 1

As a functional program, f is strict since the first rule demands its argument. As a functional
logic program, f does not strictly demand its argument: due to the non-deterministic
semantics, all rules can be used to compute a result so that we can apply the second rule to
evaluate (f loop) to the value 1.

These considerations show that we need a notion of demand specific for functional logic
programs. Using the rewrite relation � introduced above, we say that a unary operation6 f
demands its argument if ⊥ is the only normal form of (f ⊥). Thus, if a demanded argument
is not reducible to some expression with a constructor at the root, the application is always
undefined. This justifies the use of the strict application operation “$!” to demanded
arguments.

Hence, we are left with the problem of detecting demanded arguments in a program.
Since this property is undecidable in general, we can try to approximate it by some program
analysis. Early work on analyzing the behavior of functional logic programs [36, 45, 53]
tried to approximate narrowing derivations for confluent term rewriting systems so that it
is not applicable in our more general framework of non-deterministic operations. A more
appropriate analysis can be based on a fixpoint characterization of CRWL rewriting [1, 44].
An analysis to approximate call patterns w.r.t. CRWL rewriting has been presented in [33].
Since the undefined value ⊥ is a specific pattern, we can use a variant of this analysis to
approximate demanded arguments. Thus, we summarize the main techniques and results of
this analysis in the following.

Since we want to approximate the input/output relation of operations, an interpretation
I is some set of equations

I = {f t1 . . . tn) .= t | f n-ary operation, t1, . . . , tn, t are partial values}

The evaluation of an expression e w.r.t. I is a mapping evalI from expressions into sets of
partial values defined by (where C and f denotes a constructor and an operation symbol,
respectively):

evalI(x) = {x}
evalI(C e1 . . . en) = {C t1 . . . tn | ti ∈ evalI(ei), i = 1, . . . , n}
evalI(f e1 . . . en) = {⊥} ∪ {t | ti ∈ evalI(ei), i = 1, . . . , n, f t1 . . . tn

.= t ∈ I}

6 The extension to operations with more than one argument is straightforward.

M. Hanus 137

Hence, an operation is approximated as undefined or evaluated with the information provided
by the interpretation.

For the demand analysis, we are interested in the behavior of operations when they
are called with undefined arguments. Thus, it is not necessary to compute the complete
semantics of a program but it is sufficient to compute the behavior w.r.t. a given set of initial
calls M containing elements of the form f t1 . . . tn where f is an operation and t1, . . . , tn
are partial values. Then we define the transformation TM on interpretations I by

TM(I) = {s .= ⊥ | s ∈M} ∪ {s .= r′ | s .= t ∈ I, s = r ∈ [P]⊥, r′ ∈ evalI(r)}
∪ {f t1 . . . tn

.= ⊥ | s .= t ∈ I, s = r ∈ [P]⊥, f e1 . . . en is a subterm of r,
ti ∈ evalI(ei), i = 1, . . . , n}

Intuitively, the transformation TM adds to the set of initial calls in each iteration
1. better approximations of the rules’ right-hand sides (s .= r′) and
2. new function calls occurring in right-hand sides (f t1 . . . tn

.= ⊥).
Here, “better” should be interpreted w.r.t. the usual approximation ordering v where ⊥ is
the minimal element. As usual, we define

TM ↑ 0 = ∅
TM ↑ k = TM(TM ↑ (k − 1)) (for k > 0)

Since the mapping TM is continuous on the set of all interpretations, the least fixpoint
CM = TM ↑ ω exists. The following theorem states the correctness of this fixpoint semantics
w.r.t. CRWL rewriting.

I Theorem 1 ([33]). If s .= t ∈ CM, then s
∗
� t. If s ∈ M and t is a partial value with

s
∗
� t, then s .= t ∈ CM.

We call an equation s .= t ∈ I maximal in I if there is no s .= t′ ∈ I with t′ 6= t and t v t′.
The set of all maximal elements of an interpretation I is denoted by max(I). Maximal
elements can be used to characterize a demanded argument, as the following result shows.

I Proposition 2. Let f be a unary operation and f ⊥ ∈M. If f ⊥ .= ⊥ ∈ max(CM), then f
demands its argument.

The proposition suggests that one should analyze the least fixpoint w.r.t. a set of initial
calls having ⊥ at argument positions. In order to obtain a computable approximation of
the least fixpoint, we use the theory of abstract interpretation [24] and define appropriate
abstract domains and abstract operations (like abstract constructor application and abstract
matching) to compute an abstract fixpoint.

Interesting finite abstractions of partial values are sets of terms up to a particular depth
k, e.g., as already used in the abstract diagnosis of functional programs [2], abstraction of
term rewriting systems [15], or call pattern analysis of functional logic programs [33]. Due
to its quickly growing size, this domain is mainly useful in practice for depth k = 1. In
the domain of depth-bounded terms, subterms that exceed the given depth k are replaced
by the specific constant > that represents any term, i.e., the abstract domain of depth-k
terms consists of partial values up to a depth k extended by the constant >. For instance,
False:> is a depth-2 term. If one defines abstract constructor applications (by applying
the constructor and cutting subterms deeper than k) and an abstract matching of linear
constructor terms against depth-k terms (see [33] for details), one can compute an abstract
least fixpoint which approximates the least fixpoint of concrete computations.

ICLP’12

138 Improving Lazy Non-Deterministic Computations by Demand Analysis

For instance, consider the operations “?”, not, xor, and xorSelf defined above. In order
to approximate their demanded arguments, we define a set of initial calls where one argument
is ⊥ and all other arguments are >:

M = {⊥?>, >?⊥, not ⊥, xor ⊥ >, xor > ⊥, xorSelf ⊥}

Then the abstract least fixpoint w.r.t. M (note that the depth k is not relevant in this
example) contains the following abstract equations:

⊥?> .= >, >?⊥ .= >, not ⊥ .= ⊥, xor ⊥ ⊥ .= ⊥, xor ⊥ > .= ⊥, xor > ⊥ .= ⊥,
xorSelf ⊥ .= ⊥

Since all these elements are also maximal, we can deduce by Proposition 2 that all arguments
of not, xor, and xorSelf are demanded whereas “?” has no demanded argument. Of course,
the analysis becomes more interesting in the case of recursive functions. We omit further
examples here but refer to Section 6 for some benchmarks.

Our demand analysis can be extended in various ways. For instance, higher-order
features can be covered by transforming higher-order applications into calls to an “apply”
operation that implements the application of an arbitrary function occurring in the program
to an expression [52]. This technique is also known as “defunctionalization” [49]. Primitive
operations, like arithmetic functions, usually demand all their arguments. Thus, their behavior
can be approximated by returning the result ⊥ if some argument is ⊥, and otherwise > is
returned.

5 Program Transformation

We want to improve the non-determinism behavior of functional logic programs by transform-
ing them according to the ideas sketched in the previous section. As already discussed, this
can be done by adding strict applications to demanded arguments that are non-deterministic.
A method to approximate demanded arguments has already been shown. The approximation
of non-deterministic expressions is much simpler. For this purpose, we define an operation as
non-deterministic if it contains a call to “?” or a free variable in some of its defining rules, or
if it depends directly or indirectly on some non-deterministic operation. Thus, this property
can be computed using the defining rules and their program dependency graph.

Based on this information, we can classify expressions: an expression is non-deterministic
if it contains some non-deterministic operation. Now we perform the following transformation
of the source program: if there is some application (f e) in some rule, where e is non-
deterministic and the argument of f is demanded, replace this application by (f $! e). For
instance, the program rule

main = xorSelf aBool

will be transformed into
main = xorSelf $! aBool

since the argument of xorSelf is demanded (as approximated above) and the argument
aBool is non-deterministic. The extension of this transformation to operations with more
than one argument is straightforward.

The effect of this transformation will be shown in the next section by some benchmarks.

M. Hanus 139

Table 1 Benchmarks comparing original and optimized programs.

Benchmark ViaLOIS KiCS2 KiCS2
(original) (original) (optimized)

last2 n/a 1.34 0.94
last6 n/a 2.72 0.94
addNum2 1.25 1.54 0.01
addNum5 22.08 8.58 0.01
addPair 1.36 1.54 0.01
addTriple 4.45 3.65 0.01
half2 2.18 3.78 1.44
half5 4.97 6.37 1.44
dupList2 n/a 3.34 0.11
dupList5 n/a 52.49 0.11
select 22.51 6.37 0.01
queens n/a 36.62 1.26
psort 4.08 4.98 4.78

6 Benchmarks

We have implemented (in Curry) the program transformation shown above in a first prototype
in order to get some ideas about its effectiveness. The program analyzer uses the depth-k
domain to approximate demanded arguments. In order to provide an efficient analysis, only
maximal abstract elements are stored in the current interpretation and the fixpoint iteration
is done by an iteration using working lists. The non-determinism information is approximated
in a separate analysis. The analysis results are used to guide the program transformation
sketched above which produces the optimized Curry program.

Since our prototype does not support all features of Curry (e.g., no I/O), we have tested
it only on smaller benchmark programs. Since our transformation is intended to improve
non-deterministic programs, we have selected programs where non-deterministic operations
occur as arguments.

The benchmarks were executed on a Linux machine running Linux (Ubuntu 11.10) with
an Intel Core i5 (2.53GHz) processor. We omit the analysis times since they are less than 10
milliseconds for all presented examples. We tested two recent Curry implementations that
are based on the idea to present non-deterministic values in a data structure: KiCS2 [19]
with the Glasgow Haskell Compiler (GHC 7.0.3, option -O2) as its back end, and ViaLOIS
[13] with the OCaml native-code compiler (version 3.12.0) as its back end. Table 1 shows
the run times (in seconds) of a compiled executable for different programs. The programs
last2 and last6 compute the last element of a list (of 10,000 elements) and add it two
and six times to itself, respectively. addNum2 and addNum5 non-deterministically choose
a number (out of 2000) and add it two and five times, respectively. Similarly, addPair
and addTriple non-deterministically create a pair and triple of the same elements and
add the components. half2 and half5 compute the half of a number n (here: 2000) by
solving the equation x+x=:=n and add the result two and five times, respectively. dupList2
and dupList5 check a list xs (of 2000 elements) whether it is a duplicated list by solving
the equation ys+ys=:=xs and concatenating ys two and five times, respectively. select
non-deterministically selects an element in a list and returns the element and a list computed
by deleting the selected element. queens computes all safe placements of eight queens on a

ICLP’12

140 Improving Lazy Non-Deterministic Computations by Demand Analysis

chessboard by enumerating all placements and non-deterministically checking whether two
queens can attack each other. In this example, the duplication of choices stems from lazy
pattern matching, as pointed out in [16, Sect. 6.9]. Finally, psort is the naive permutation
sort applied to a list of 14 elements.

Since ViaLOIS is in an experimental state, it does not support all features of Curry
(in particular, free variables of type integer are not supported) so that some benchmarks
are not executable with ViaLOIS (marked by “n/a”). For the same reason, ViaLOIS does
not support the primitive operation “$!” necessary for the optimization presented in this
paper. Thus, the optimized programs are only executed with KiCS2. As one can see, the
improvements obtained by our optimization are quite relevant for the considered class of
programs. Only the improvement for psort is small since we cannot strictly evaluate the
complete permutation.

7 Conclusions

We have shown a program transformation to improve the efficiency of non-deterministic
computations in implementations of functional logic languages with a demand-driven strategy.
If such implementations support a variety of search strategies, in particular, complete
strategies, they often present the computation space in some tree structure which is explored
by the search strategy [13, 19, 20]. This has the risk that non-deterministic structures are
duplicated which increases the complexity of traversing the resulting structures. In order to
overcome this disadvantage, we presented an analysis to approximate demanded arguments
and use this information to evaluate non-deterministic arguments in a strict manner. We
have also shown results from a prototypical implementation of this approach.

Since this work is based on techniques from various domains ranging from implementations
of declarative languages to program analysis frameworks for such languages, there is a lot
of related work. Since we already discussed related approaches throughout this paper, we
omit a further discussion here. For future work, our demand analysis should be extended to
enable the analysis of complete applications. This requires the appropriate approximation of
all primitive operations, including I/O operations, and a modular analysis to be applied to
larger programs. Furthermore, the use of other abstract domains, like rational trees, that can
also approximate the demand of arbitrary large structures (e.g., lists) is another interesting
topic fur future work.

References

1 J.M. Almendros-Jiménez and A. Becerra-Terón. A framework for goal-directed bottom-up
evaluation of functional logic programs. In Proc. of the 5th International Symposium on
Functional and Logic Programming (FLOPS 2001), pages 153–169. Springer LNCS 2024,
2001.

2 M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and S. Lucas. Abstract diagnosis of
functional programs. In Proc. of the 12th Int’l Workshop on Logic-Based Program Synthesis
and Transformation (LOPSTR 2002), pages 1–16. Springer LNCS 2664, 2002.

3 M. Alpuente, M. Falaschi, and G. Vidal. Partial evaluation of functional logic programs.
ACM Transactions on Programming Languages and Systems, 20(4):768–844, 1998.

4 S. Antoy. Constructor-based conditional narrowing. In Proc. of the 3rd International
ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP
2001), pages 199–206. ACM Press, 2001.

M. Hanus 141

5 S. Antoy. On the correctness of pull-tabbing. Theory and Practice of Logic Programming,
11(4-5):713–730, 2011.

6 S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of the ACM,
47(4):776–822, 2000.

7 S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into Prolog. In
Proc. International Workshop on Frontiers of Combining Systems (FroCoS’2000), pages
171–185. Springer LNCS 1794, 2000.

8 S. Antoy and M. Hanus. Functional logic design patterns. In Proc. of the 6th International
Symposium on Functional and Logic Programming (FLOPS 2002), pages 67–87. Springer
LNCS 2441, 2002.

9 S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic programs.
In Proceedings of the 22nd International Conference on Logic Programming (ICLP 2006),
pages 87–101. Springer LNCS 4079, 2006.

10 S. Antoy and M. Hanus. Functional logic programming. Communications of the ACM,
53(4):74–85, 2010.

11 S. Antoy and M. Hanus. New functional logic design patterns. In Proc. of the 20th Interna-
tional Workshop on Functional and (Constraint) Logic Programming (WFLP 2011), pages
19–34. Springer LNCS 6816, 2011.

12 S. Antoy, M. Hanus, J. Liu, and A. Tolmach. A virtual machine for functional logic compu-
tations. In Proc. of the 16th International Workshop on Implementation and Application
of Functional Languages (IFL 2004), pages 108–125. Springer LNCS 3474, 2005.

13 S. Antoy and A. Peters. Compiling a functional logic language: The basic scheme. In Proc.
of the Eleventh International Symposium on Functional and Logic Programming, pages
17–31. Springer LNCS 7294, 2012.

14 L. Augustsson, M. Rittri, and D. Synek. On generating unique names. Journal of Functional
Programming, 4(1):117–123, 1994.

15 D. Bert and R. Echahed. Abstraction of conditional term rewriting systems. In Proc. of
the 1995 International Logic Programming Symposium, pages 147–161. MIT Press, 1995.

16 B. Braßel. Implementing Functional Logic Programs by Translation into Purely Functional
Programs. PhD thesis, Christian-Albrechts-Universität zu Kiel, 2011.

17 B. Braßel and S. Fischer. From functional logic programs to purely functional programs
preserving laziness. In Proceedings of the 20th International Symposium on Implementation
and Application of Functional Languages (IFL 2008), pages 25–42. Springer LNCS 5836,
2008.

18 B. Braßel, M. Hanus, and M. Müller. High-level database programming in Curry. In
Proc. of the Tenth International Symposium on Practical Aspects of Declarative Languages
(PADL’08), pages 316–332. Springer LNCS 4902, 2008.

19 B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A new compiler from Curry to
Haskell. In Proc. of the 20th International Workshop on Functional and (Constraint) Logic
Programming (WFLP 2011), pages 1–18. Springer LNCS 6816, 2011.

20 B. Braßel and F. Huch. On a tighter integration of functional and logic programming. In
Proc. APLAS 2007, pages 122–138. Springer LNCS 4807, 2007.

21 B. Braßel and F. Huch. The Kiel Curry System KiCS. In Applications of Declarative
Programming and Knowledge Management, pages 195–205. Springer LNAI 5437, 2009.

22 R. Caballero and F.J. López-Fraguas. A functional-logic perspective of parsing. In Proc. 4th
Fuji International Symposium on Functional and Logic Programming (FLOPS’99), pages
85–99. Springer LNCS 1722, 1999.

23 K. Claessen and P. Ljunglöf. Typed logical variables in Haskell. In Proc. ACM SIGPLAN
Haskell Workshop, Montreal, 2000.

ICLP’12

142 Improving Lazy Non-Deterministic Computations by Demand Analysis

24 P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In Proc. of the 4th
ACM Symposium on Principles of Programming Languages, pages 238–252, 1977.

25 J. de Dios Castro and F.J. López-Fraguas. Extra variables can be eliminated from functional
logic programs. Electronic Notes in Theoretical Computer Science, 188:3–19, 2007.

26 S. Fischer. A functional logic database library. In Proc. of the ACM SIGPLAN 2005
Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages 54–59. ACM
Press, 2005.

27 S. Fischer and H. Kuchen. Systematic generation of glass-box test cases for functional
logic programs. In Proceedings of the 9th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming (PPDP’07), pages 63–74. ACM Press,
2007.

28 J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and M. Rodríguez-
Artalejo. An approach to declarative programming based on a rewriting logic. Journal of
Logic Programming, 40:47–87, 1999.

29 M. Hanus. A functional logic programming approach to graphical user interfaces. In
International Workshop on Practical Aspects of Declarative Languages (PADL’00), pages
47–62. Springer LNCS 1753, 2000.

30 M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third Interna-
tional Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92.
Springer LNCS 1990, 2001.

31 M. Hanus. Type-oriented construction of web user interfaces. In Proceedings of the 8th ACM
SIGPLAN International Conference on Principles and Practice of Declarative Programming
(PPDP’06), pages 27–38. ACM Press, 2006.

32 M. Hanus. Multi-paradigm declarative languages. In Proceedings of the International
Conference on Logic Programming (ICLP 2007), pages 45–75. Springer LNCS 4670, 2007.

33 M. Hanus. Call pattern analysis for functional logic programs. In Proceedings of the
10th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’08), pages 67–78. ACM Press, 2008.

34 M. Hanus. Improving lazy non-deterministic computations by demand analysis. Technical
report 1209, Christian-Albrechts-Universität Kiel, 2012.

35 M. Hanus and S. Koschnicke. An ER-based framework for declarative web programming. In
Proc. of the 12th International Symposium on Practical Aspects of Declarative Languages
(PADL 2010), pages 201–216. Springer LNCS 5937, 2010.

36 M. Hanus and S. Lucas. A semantics for program analysis in narrowing-based functional
logic languages. In Proc. 4th Fuji International Symposium on Functional and Logic Pro-
gramming (FLOPS’99), pages 353–368. Springer LNCS 1722, 1999.

37 M. Hanus and R. Sadre. An abstract machine for Curry and its concurrent implementation
in Java. Journal of Functional and Logic Programming, 1999(6), 1999.

38 M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Available at
http://www.curry-language.org, 2006.

39 R. Hinze. Prolog’s control constructs in a functional setting - axioms and implementation.
International Journal of Foundations of Computer Science, 12(2):125–170, 2001.

40 H. Hussmann. Nondeterministic algebraic specifications and nonconfluent term rewriting.
Journal of Logic Programming, 12:237–255, 1992.

41 F. López-Fraguas and J. Sánchez-Hernández. TOY: A multiparadigm declarative system.
In Proc. of RTA’99, pages 244–247. Springer LNCS 1631, 1999.

42 F.J. López-Fraguas, J. Rodríguez-Hortalá, and J. Sánchez-Hernández. A simple rewrite
notion for call-time choice semantics. In Proceedings of the 9th ACM SIGPLAN Inter-

http://www.curry-language.org

M. Hanus 143

national Conference on Principles and Practice of Declarative Programming (PPDP’07),
pages 197–208. ACM Press, 2007.

43 W. Lux. Implementing encapsulated search for a lazy functional logic language. In Proc. 4th
Fuji International Symposium on Functional and Logic Programming (FLOPS’99), pages
100–113. Springer LNCS 1722, 1999.

44 J.M. Molina-Bravo and E. Pimentel. Modularity in functional-logic programming. In Proc.
of the Fourteenth International Conference on Logic Programming (ICLP’97), pages 183–
197. MIT Press, 1997.

45 J.J. Moreno-Navarro, H. Kuchen, J. Mariño-Carballo, S. Winkler, and W. Hans. Efficient
lazy narrowing using demandedness analysis. In Proc. of the 5th International Sympo-
sium on Programming Language Implementation and Logic Programming, pages 167–183.
Springer LNCS 714, 1993.

46 A. Mycroft. The theory and practice of transforming call-by-need into call-by-value. In
Proc. International Symposium on Programming, pages 269–281. Springer LNCS 83, 1980.

47 S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cam-
bridge University Press, 2003.

48 U.S. Reddy. Narrowing as the operational semantics of functional languages. In Proc. IEEE
Internat. Symposium on Logic Programming, pages 138–151, Boston, 1985.

49 J.C. Reynolds. Definitional interpreters for higher-order programming languages. In Pro-
ceedings of the ACM Annual Conference, pages 717–740. ACM Press, 1972.

50 C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy smallcheck: automatic
exhaustive testing for small values. In Proc. of the 1st ACM SIGPLAN Symposium on
Haskell, pages 37–48. ACM Press, 2008.

51 J.R. Slagle. Automated theorem-proving for theories with simplifiers, commutativity, and
associativity. Journal of the ACM, 21(4):622–642, 1974.

52 D.H.D. Warren. Higher-order extensions to Prolog: are they needed? In Machine Intelli-
gence 10, pages 441–454, 1982.

53 F. Zartmann. Denotational abstract interpretation of functional logic programs. In Proc.
of the 4th International Symposium on Static Analysis (SAS’97), pages 141–156. Springer
LNCS 1302, 1997.

ICLP’12

The additional difficulties for the automatic
synthesis of specifications posed by logic features
in functional-logic languages∗

Giovanni Bacci1, Marco Comini1, Marco A. Feliú2, and
Alicia Villanueva2

1 Dipartimento di Matematica e Informatica
University of Udine (Italy)
{giovanni.bacci,marco.comini}@uniud.it

2 DSIC, Universitat Politècnica de València (Spain)
{mfeliu,villanue}@dsic.upv.es

Abstract
This paper discusses on the additional issues for the automatic inference of algebraic property-
oriented specifications which arises because of interaction between laziness and logical variables
in lazy functional logic languages.

We present an inference technique that overcomes these issues for the first-order fragment of
the lazy functional logic language Curry. Our technique statically infers from the source code of a
Curry program a specification which consists of a set of equations relating (nested) operation calls
that have the same behavior. Our proposal is a (glass-box) semantics-based inference method
which can guarantee, to some extent, the correctness of the inferred specification, differently from
other (black-box) approaches based on testing techniques.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Curry, property-oriented specifications, semantics-based inference
methods

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.144

1 Introduction

Specifications have been widely used for several purposes: they can be used to aid (formal)
verification, validation or testing, to instrument software development, as summaries in
program understanding, as documentation of programs, to discover components in libraries
or services in a network context, etc. [2, 16, 6, 12, 8, 19, 14, 9]. We can find several proposals
of (automatic) inference of high-level specifications from an executable or the source code
of a system, like [2, 6, 12, 9], which have proven to be very helpful.

There are many classifications in the literature depending on the characteristics of spec-
ifications [13]. It is common to distinguish between property-oriented specifications and
model-oriented or functional specifications. Property-oriented specifications are of higher
description level than other kinds of specifications: they consist in an indirect definition of
the system’s behavior by means of stating a set of properties, usually in the form of axioms,

∗ M. A. Feliú and A. Villanueva have been partially supported by the eu (feder), the Spanish micin-
n/mineco under grant tin2010-21062-c02-02, the Spanish mec fpu grant ap2008-00608, and by the
Generalitat Valenciana, ref. prometeo2011/052.

© Giovanni Bacci, Marco Comini, Marco A. Feliú, and Alicia Villanueva;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 144–153

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.144
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

G. Bacci, M. Comini, M.A. Feliú, and A. Villanueva 145

that the system must satisfy [18, 17]. In other words, a specification does not represent
the functionality of the program (the output of the system) but its properties in terms of
relations among the operations that can be invoked in the program (i.e., identifies different
calls that have the same behavior when executed). This kind of specifications is particularly
well suited for program understanding: the user can realize non-evident information about
the behavior of a given function by observing its relation with other functions.

Clearly, the task of automatically inferring program specifications is in general unde-
cidable and, given the complexity of the problem, there exists a large number of different
proposals which impose several restrictions.

We can identify two mainstream approaches to perform the inference of specifications:
glass-box and black-box. The glass-box approach [2, 6] assumes that the source code of
the program is available. In this context, the goal of inferring a specification is mainly
applied to document the code, or to understand it [6]. Therefore, the specification must be
more succinct and comprehensible than the source code itself. The inferred specification can
also be used to automatize the testing process of the program [6] or to verify that a given
property holds [2]. The black-box approach [12, 9] works only by running the executable.
This means that the only information used during the inference process is the input-output
behavior of the program. In this setting, the inferred specification is often used to discover
the functionality of the system (or services in a network) [9]. Although black-box approaches
work without any restriction on the considered language – which is rarely the case in a glass-
box approach – in general, they cannot guarantee the correctness of the results (whereas
indeed semantics-based glass-box approaches can).

QuickSpec [6] is an (almost) black-box approach for Haskell programs [15] based on test-
ing. The tool automatically infers program specifications as sets of equations of the form
e1 = e2, where e1, e2 are generic program expressions that (should) have the same compu-
tational behavior. This approach has two properties that we like:
it is completely automatic as it needs only the program to run, plus some indications on

target functions and generic values to be employed in equations, and
the outcomes are very intuitive since they are expressed only in terms of the program com-

ponents, so the user does not need any kind of extra knowledge to interpret the results.
We aim to develop a method with similar outcomes for the lazy functional logic language
Curry [10, 11]. Curry is a multi-paradigm programming language that combines in a seamless
way features from functional programming (nested expressions, lazy evaluation, higher-order
functions) and logic programming (logical variables, partial data structures, built-in search).

However, due to its very high-level features (in particular lazy evaluation and logical
variables), the problem of inferring specifications for this kind of languages immediately poses
several additional problems w.r.t. the functional paradigm (as well as other paradigms).

In this paper we discuss these issues in detail and we motivate why any proposal that
aims to infer property-oriented specifications, like those of the QuickSpec approach, for lazy
functional logic languages need to be radically different from the method used by QuickSpec.

2 Analysis of the issues posed by the logical features of Curry

Curry is a lazy functional logic language which admits free (logical) variables in expressions
and program rules are evaluated non-deterministically.1 Differently from the functional case

1 Variables and function names start by a character in lower case, whereas data constructors and type
names start by a letter in upper case. For a complete description of the Curry language, the interested

ICLP’12

146 Additional difficulties for automatic specifications synthesis posed by logic features

(of QuickSpec), due to the logical features, an equation e1 = e2 can be interpreted in many
different ways. We will discuss the key points of the problem by means of a (very simple)
illustrative example.

I Example 1 (Boolean logic example). Consider the definition for the boolean data type
with values True and False and boolean operations and, or, not and imp:

and True x = x
and False _ = False
or True _ = True
or False x = x

not True = False
not False = True
imp False x = True
imp True x = x

This is a pretty standard “short-cut” definition of boolean connectives. For example, the
definition of and states that whenever the first argument is equal to False, the function
returns the value False, regardless of the value of the second argument. Since the language
is lazy, in this case the second argument will not be evaluated.

For the program of Example 1, one could expect to have in its property-oriented specification
equations like

imp x y = or (not x) y not (and x y) = or (not x) (not y) (2.1)
and x (and y z) = and (and x y) z not (or x y) = and (not x) (not y) (2.2)
and x y = and y x (2.3)
not (not x) = x (2.4)

which are well-known laws among the (theoretical) boolean operators. These equations, of
the form e1 = e2, can be read as

all possible outcomes for e1 are also outcomes for e2, and vice versa. (2.5)

In the following, we call this equivalence computed result equivalence and we denote it by
=CR. Actually, Equations (2.1), (2.2) and (2.3) are literally valid in this sense since, in Curry,
free variables are admitted in expressions, and the mentioned equations are valid as they are.
This is quite different from the pure functional case where equations have to be interpreted
as properties that hold for any ground instance of the variables occurring in the equation.

On the contrary, Equation (2.4) is not literally valid since the goal not (not x) is
evaluated to {x/True} · True2 and {x/False} · False, whereas x is evaluated just to {} · x.
Note however that any ground instance of the two goals evaluates to the same results,
namely both True and not (not True) are evaluated to {} · True, and both False and
not (not False) are evaluated to {} · False.

Decidedly, also this notion of ground equivalence is interesting for the user, and we denote
it by =G. This notion coincides with the (only possible) one used in the pure functional
paradigm: two terms are ground equivalent if, for all ground instances, the outcomes of
both terms coincide.

Because of the presence of logical variables, there is another very relevant difference
w.r.t. the pure functional case concerned with contextual equivalence: given a valid equation

reader can consult [11].
2 The expression {x/True} · True denotes that the normal form True has been reached with computed

answer substitution {x/True}.

G. Bacci, M. Comini, M.A. Feliú, and A. Villanueva 147

e1 = e2, is it true that, for any context C, the equation C[e1] = C[e2] still holds? Curry is
not referentially transparent3 w.r.t. its operational behavior, i.e., an expression can produce
different computed values when it is embedded in a context that binds its free variables (as
shown by the following artificial example), which makes the answer to the question posed
above not straightforward.

I Example 2. Given a program with the following rules

g x = C (h x)
h A = A

g’ A = C A
f (C x) B = B

the expressions g x and g’ x compute the same result, namely {x/A} · C A. However, the
expression f (g x) x computes one result, namely {x/B} · B, while expression f (g’ x) x
computes none.

Thus, in the Curry case, it becomes mandatory to additionally ask in the equivalence
notion of (2.5) that the outcomes must be equal also when the two terms are embedded
within any context. We call this equivalence contextual equivalence and we denote it by =C .
Actually, Equations (2.1) and (2.2) are valid w.r.t. this equivalence notion.

We can see that =C is (obviously) stronger than =CR, which is in turn stronger than =G.
As a conclusion, for our example we would get the following (partial) specification.

not (or x y) =C and (not x) (not y) imp x y =C or (not x) y

not (and x y) =C or (not x) (not y) not (not x) =G x

and x (and y z) =C and (and x y) z and x y =G and y x

The inference of =C equalities poses serious issues to testing-based methods like Quick-
Spec. First, expressions have to be nested within some outer context in order to establish
their =C equivalence. Since the number of needed terms to be evaluated grows exponentially
w.r.t. the depth of nestings, the addition of a further level of depth can dramatically alter
the performance. Moreover, if we try to mitigate this problem by reducing the number
of terms/tests to be checked, the quality of the produced equations will degrade sensibly.
Second, since the typical real life case is that the program in consideration is just a module
of a complex software system, it may happen that no function in the considered module can
discriminate contexts; but in other modules there could be one. Clearly, we could imag-
ine to run the tool on the entire system but, besides the obvious increment of cost, the
“caller” module could have not been implemented yet. Thus, we would need to reconsider
the outputs of synthesis whence some new module is added.

This kind of issues do not arise with languages, like Haskell, which are referentially
transparent: essentially, languages where the semantics of all nested expressions can be
obtained by instantiating the semantics of the outer expression with those of the arguments.

Contrary to testing-based approaches, a semantics-based method that computes the
(compositional) semantics of a part of code does not suffer of these issues4. Obviously, in

3 The concept of referential transparency of a language can be stated in terms of a formal semantics as:
the semantics equivalence of two expressions e, e′ implies the semantics equivalence of e and e′ when
used within any context C[·]. Namely, ∀e, e′, C. JeK = Je′K =⇒ JC[e]K = JC[e′]K.

4 Evidently, the semantics to be employed needs to be fully abstract w.r.t. contextual embedding in order
to compute correct =C equations.

ICLP’12

148 Additional difficulties for automatic specifications synthesis posed by logic features

this case the problem is the undecidability of the semantics’ computation, thus suitable
approximations must be used. This would lead to possibly erroneous equations, but this
also happens with testing-based approaches.

Since Curry is not referentially transparent, we do not consider the semantics-based
approach an option, but a must. In the following we present a first proposal of a semantics-
based method that tackles the presented issues and discuss about its limitations.

3 Formalization of equivalence notions

In this section, we formally present all the kinds of term equivalence notions that are used
to compute equations of the specification. We need first to introduce some basic formal
notions that are used in the rest of the paper.

We say that a first order Curry program is a set of rules P built over a signature Σ
partitioned in C, the constructor symbols, and D, the defined symbols. V denotes a (fixed)
countably infinite set of variables and T (Σ,V) denotes the terms built over signature Σ and
variables V. A fresh variable is a variable that appears nowhere else.

In order to state formally the equivalences described before we need two semantic eval-
uation functions ECJK and ECRJK which enjoy some properties.
ECRJt; P K gives the computed results (CR) semantics of the term t with (definitions from)

the program P . This semantics has to be fully abstract w.r.t. the behavior of computed
results. Namely, the semantics of two terms t1, t2 are identical if and only if the eval-
uations of t1 and t2 compute the same results. It is theoretically possible to use just a
correct semantics, but clearly in such case we will not have all equivalences which are
valid w.r.t. a fully abstract semantics.

ECJt; P K gives the contextual (C) semantics of the term t with the program P . This
semantics has to be fully abstract w.r.t. the behavior of computed results under any
context. Namely, the semantics of two terms t1, t2 are identical if and only if, for any
context C, the evaluations of C[t1] and C[t2] compute the same results. We say that
such a semantics fulfills referential transparency.

The semantics which can be obtained by collecting all results of the official small-step op-
erational semantics of Curry [11, App. D.5], as well as the I/O semantics of [1], can be
used for ECRJt; P K but they are not referentially transparent. On the contrary, the full
small-step operational semantics of Curry is referentially transparent but is far from being
fully-abstract.

The WERS-semantics of [3, 4] is an appropriate choice for ECJt; P K and moreover the set
of its leaves is an appropriate choice for ECRJt; P K. However, our proposal does not rely on
these particular semantics and any semantics which fulfills the aforementioned requirements
can be used.

Now we are ready to formally introduce our notion of specification. An (algebraic)
specification S is a set of (sequences of) equations of the form t1 =K t2 =K . . . =K tn, with
K ∈ {C,CR,G} and t1, t2, . . . , tn ∈ T (Σ,V). K distinguishes the kinds of computational
equalities that we previously informally discussed, which we now present formally.

Contextual Equivalence =C . States that two terms t1 and t2 are equivalent if C[t1] and
C[t2] have the same behavior for any context C[·]. Namely,

t1 =C t2 ⇐⇒ ECJt1; P K = ECJt2; P K

G. Bacci, M. Comini, M.A. Feliú, and A. Villanueva 149

Computed-result equivalence =CR. This equivalence states that two terms are equivalent
when the outcomes of their evaluation are the same. Namely

t1 =CR t2 ⇐⇒ ECRJt1; P K = ECRJt2; P K

The =CR equivalence is coarser than =C (=C ⊆ =CR) as shown by Example 2.
Ground Equivalence =G. This equivalence states that two terms are equivalent if all pos-

sible ground instances have the same outcomes. Namely

t1 =G t2 ⇐⇒ ∀θ grounding. ECRJt1θ; P K = ECRJt2θ; P K

By definition, the =G equivalence is coarser than =CR (=CR ⊆ =G).
User Defined Equality Equations. The symbol =Ueq is used for user-defined equality equa-

tions. Equality equations depend upon a user-defined notion of equality. When dealing
with a user-defined data type, the user may have defined a specific notion of equivalence
by means of an “equality” function. Let us call equal(t1, t2) such user-defined function.
Then, we state that

t1 =Ueq t2 ⇐⇒ ECRJequal(t1, t2); P K = ECRJTrueK ⇐⇒ equal(t1, t2) =CR True

Clearly, we do not have necessarily any relation between =Ueq and the others, as the user
function equal may have nothing to do with equality. However, in typical situations such
a function is defined to preserve at least =G, meaning that t1 =G t2 implies t1 =Ueq t2.
In any case, as clear from the definition, this is technically just a particular instance
of =CR, so it does not need to be considered by itself and in the following we will not
consider it explicitly.
Nevertheless, these equations can provide the user significant information about the
structure and behavior of the program and a pragmatical tool should reasonably present
a sequence True =CR equal(t1, t2) =CR . . . =CR equal(tn−1, tn) as t1 =Ueq . . . =Ueq tn for
readability purposes.

Note that =G is the only possible notion in the pure functional paradigm. This fact allows
one to have an intuition of the reason why the problem of specification synthesis is more
complex in the functional logic paradigm.

To summarize, we have =C ⊆ =CR ⊆ =G and only =C is referentially transparent (i.e., a
congruence w.r.t. contextual embedding).

4 Deriving Specifications from Programs

The idea underlying the process of inferring specifications is that of computing the seman-
tics of various terms and then identify all terms which have the same semantics. How-
ever, not all equivalences are as important as others, given the fact that many equiva-
lences are simply consequences of others. For example, if ti =C si then, for all contexts
C, C[t1, . . . , tn] =C C[s1, . . . , sn], thus the latter derived equivalences are uninteresting and
should be omitted. Indeed, it would be desirable to synthesize the minimal set of equations
from which, by deduction, all equalities can be derived. This is certainly a complex issue in
testing approaches (it is certainly a big part in the QuickSpec method). With a semantics-
based approach it is fairly natural to produce just the relevant equations. The idea is to
proceed bottom-up, by starting from the evaluation of simpler terms and then newer terms
are constructed (and evaluated) by using only semantically different arguments.

There is also another source of redundancy due to the inclusion of relations =K . For
example, since =C is the finer relation, if t =C s then t =CR s and t =G s. To avoid

ICLP’12

150 Additional difficulties for automatic specifications synthesis posed by logic features

the generation of coarser redundant equations, a simple solution is that of starting with
=C equivalences and, once these are all settled, to proceed with the evaluation of the CR
semantics only of non =C equivalent terms. Thereafter, we can evaluate the ground semantics
of non =CR equivalent terms.

Let us describe in more detail the specification inference process. The input of the process
consists of the Curry program to be analyzed and two additional parameters: a relevant API,
Σr, and a maximum term size, max_size. The relevant API allows the user to choose the
operations in the program that will be present in the inferred specification, whereas the
maximum term size limits the size of the terms in the specification. The inference process
consists of three phases, one for each kind of equality: first =C and then =CR and =G. Terms
are classified by their semantics into a data structure, which we call classification, consisting
of a set of equivalence classes (ec) formed by

sem(ec): the semantics of (all) the terms in that class;
terms(ec): the set of terms belonging to that equivalence class;
rep(ec): the representative term of the class (rep(ec) ∈ terms(ec)).

The representative term is the term which is used in the construction of nested expressions
when the equivalence class is considered. To output smaller equations it is better to choose
the smallest term in the class (w.r.t. the function size), but any element of terms(ec) can
be used.

For the sake of comprehension, we present an untyped version of the method.

Computation of the initial classification

We initially create a classification which contains:
one class for a free (logical) variable 〈E JxK, x, {x}〉 5;
the classes for any built-in or user-defined constructor.

Then, for all symbols f/n of the relevant API, Σr, and distinct variables x1, . . . , xn, we add
to classification the term t = f(x1, . . . , xn) with semantics s = ECJt; P K. This operation
looks for an equivalence class ec in the current classification whose semantics coincides with
s. If it is found, then the term t is added to the set of terms in ec. Otherwise a new
equivalence class 〈s, t, {t}〉 is created.

Generation of =C classification

We iteratively select all symbols f/n of the relevant API Σr and n equivalence classes
ec1, . . . , ecn from the current classification. We build the term t = f(t1, . . . , tn), where
each ti is the representative term of eci, ti = rep(eci); then, we compute the semantics
s = ECJt; P K and update the current classification by adding to classification t and s as
described before.

If the classification changes, then we iterate by considering again all the symbols in the
relevant API to build and evaluate new (maybe greater) terms. This phase is doomed to
terminate because at each iteration we consider, by construction, terms which are different
from those already existing in the classification and whose size is strictly greater than the
size of its subterms (but the size is bounded by max_size).

Let us show an example:

5 The typed version uses one variable for each type

G. Bacci, M. Comini, M.A. Feliú, and A. Villanueva 151

I Example 3. Let us recall the program of Example 1 and choose as relevant API the
functions and, or and not. In the first iteration, the terms t1.1 = not x, t1.2 = and x y,
and t1.3 = or x y are built. After computing the semantics, and since the semantics of none
of them coincides with the semantics of an existing equivalence class, three new equivalence
classes appear, one for each term.

During the second iteration, the following two terms (among others) are built: the term
t2.1 = and (not x) (not x’) is built as the instantiation of t1.2 with t1.1, and the term
t2.2 = not (or x y) as the instantiation of t1.1 with t1.3. The semantics of these two terms
are the same, but it is different from the semantics of the existing equivalence classes, thus
during this iteration (at least) this new class is computed. From this point on, only the
representative of the class will be used for constructing new terms. We choose the smaller
term as the representative, which in the example is t2.2 (rep(ec1) = t2.2), thus terms like
not (and (not x) (not x’)) will never be built.

Generation of the =C specification

Since, by construction, we have avoided much redundancy thanks to the strategy used to
generate the equivalence classes, we now have only to take each equivalence class with more
than one term and generate equations for these terms.

Generation of =CR equations

The second phase works on the former classification by first transforming each equivalence
class ec by replacing the C-semantics sem(ec) with ECRJrep(ec); P K and terms(ec) with the
(singleton) set {rep(ec)}.

After the transformation, some of the equivalence classes which had different semantic
values may now have the same CR-semantics and then we merge them, making the union
of the term sets terms(ec).

Thanks to the fact that, before merging, all equivalence classes were made of just sin-
gleton term sets, we cannot generate (again) equations t1 =CR t2 when an equation t1 =C t2
had been already issued.

Let us clarify this phase by an example.

I Example 4. Assume we have a classification consisting of three equivalence classes with
C-semantics s1, s2 and s3 and representative terms t11, t22 and t31:

ec1 = 〈s1, t11, {t11, t12, t13}〉 ec2 = 〈s2, t22, {t21, t22}〉 ec3 = 〈s3, t31, {t31}〉

We generate equations t11 =C t12 =C t13 and t21 =C t22.
Now, assume that ECRJt11K = x0 and ECRJt22K = ECRJt31K = x1. Then (since t12, t13

and t21 are removed) we obtain the new classification

ec4 = 〈x0, t11, {t11}〉 ec5 = 〈x1, t22, {t22, t31}〉

Hence, the only new equation is t22 =CR t31. Indeed, equation t11 =CR t12 is uninteresting,
since we already know t11 =C t12 and equation t21 =CR t31 is redundant (because t21 =C t22
and t22 =CR t31).

Successive (sub-)phases

The resulting (coarser) classification is then used to produce the =CR equations, as done
before, by generating equations for all non-singletons term sets. In the last phase, we

ICLP’12

152 Additional difficulties for automatic specifications synthesis posed by logic features

transform again the classification by replacing the CR-semantics with the ground semantics
(and term sets with singleton term sets). Then we merge eventual equivalence classes with
the same semantics and, finally, we generate =G equations for non singleton sets.

4.1 Feasibility considerations
In a semantics-based approach, one of the main problems to be tackled is effectiveness. The
semantics of a program is in general infinite and thus some approximation has to be used in
order to have a terminating method.

Several solutions can be adopted. To experiment on the validity of our proposal we have
implemented the basic functionality of this methodology in a prototype, written in Haskell,
available at http://safe-tools.dsic.upv.es/absspec. The computation of ECJK is based
on an implementation of the immediate consequences operator PνJP K of the (fixpoint)
WERS-semantics of [3, 4]. To achieve termination, the prototype computes a fixed number
of steps of PνJP K. Then, it proceeds with the classification as described with a further
enhancement which is possible due to properties of the WERS-semantics. Namely, the
semantics ECRJK can be obtained directly by transforming the ECJK semantics, concretely
just by loosing internal structure. Therefore, no (costly) computation of ECRJK is needed,
but just a quick filtering. The implementation of =G equalities is still ongoing work.

We are aware that many other attempts to guarantee termination could be used. Cer-
tainly, given our know-how, in the future we will experiment with abstractions obtained
by abstract interpretation [7] (the WERS-semantics itself has been obtained as an abstract
interpretation).

5 Conclusions and Future Work

This paper discusses about the issues that arise for the automatic inference of high-level,
property-oriented (algebraic) specifications because of the presence of logical features in
functional-logic languages. Then, a first preliminary proposal which overcomes these issues
is presented. To the best of our knowledge, in the functional logic setting there are currently
no proposals for specification synthesis. There is a testing tool, EasyCheck [5], in which
specifications are used as the input for the testing process. Given the properties, EasyCheck
executes ground tests in order to check whether the property holds.

Our method computes a concise specification of program properties from the source code
of the program. We hope to have convinced the reader that we reached our main goal, that
is, to get a concise and clear specification that is useful for the programmer in order to
detect possible errors, or to check program’s correctness.

We have developed a prototype that implements the basic functionality of the approach.
We are working on the inclusion of all the functionalities described in this paper.

It would be interesting in the future, once our proposal is mature, to investigate on the
appropriateness also for referentially transparent languages like Haskell.

References
1 E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics for Declar-

ative Multi-Paradigm Languages. Journal of Symbolic Computation, 40(1):795–829, 2005.
2 G. Ammons, R. Bodík, and J. R. Larus. Mining specifications. In 29th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages (POPL’02), pages 4–16, New
York, NY, USA, 2002. Acm.

http://safe-tools.dsic.upv.es/absspec

G. Bacci, M. Comini, M.A. Feliú, and A. Villanueva 153

3 G. Bacci. An Abstract Interpretation Framework for Semantics and Diagnosis of Lazy
Functional-Logic Languages. PhD thesis, Dipartimento di matematica e Informatica, Uni-
versità di Udine, 2011.

4 G. Bacci and M. Comini. A Compact Goal-Independent Bottom-Up Fixpoint Modeling
of the Behaviour of First Order Curry. Technical Report DIMI-UD/06/2010/RR, Diparti-
mento di Matematica e Informatica, Università di Udine, 2010.

5 J. Christiansen and S. Fischer. Easycheck – test data for free. In Proceedings of the 9th
International Symposium on Functional and Logic Programming (FLOPS’08), volume 4989
of Lecture Notes in Computer Science, pages 322–336. Springer, 2008.

6 K. Claessen, N. Smallbone, and J. Hughes. QuickSpec: Guessing Formal Specifications
using Testing. In 4th International Conference on Tests and Proofs (TAP 2010), volume
6143, pages 6–21, 2010.

7 P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
Los Angeles, California, January 17–19, pages 238–252, New York, NY, USA, 1977. ACM
Press.

8 C. Ghezzi and A. Mocci. Behavior model based component search: an initial assessment. In
Proceedings of 2010 ICSE Workshop on Search-driven Development: Users, Infrastructure,
Tools and Evaluation (SUITE’10), pages 9–12, New York, NY, USA, 2010. Acm.

9 C. Ghezzi, A. Mocci, and M. Monga. Synthesizing intensional behavior models by graph
transformation. In 31st International Conference on Software Engineering (ICSE’09), pages
430–440, 2009.

10 M. Hanus. A unified computation model for functional and logic programming. In 24th
ACM Symposium on Principles of Programming Languages (POPL 97), pages 80–93, 1997.

11 M. Hanus. Curry: An integrated functional logic language (vers. 0.8.2), 2006. Available at
URL: http://www.informatik.uni-kiel.de/˜curry.

12 J. Henkel, C. Reichenbach, and A. Diwan. Discovering documentation for java container
classes. IEEE Transactions on Software Engineering, 33(8):526–542, 2007.

13 A. A. Khwaja and J. E. Urban. A property based specification formalism classification.
The Journal of Systems and Software, 83:2344–2362, 2010.

14 I. Nunes, A. Lopes, and V. Vasconcelos. Bridging the Gap between Algebraic Specification
and Object-Oriented Generic Programming. In Saddek Bensalem and Doron Peled, editors,
9th International Workshop on Runtime Verification (RV 2009), volume 5779 of Lecture
Notes in Computer Science, pages 115–131. Springer, 2009.

15 S. Peyton Jones. Haskell 98 Language and Libraries - The Revised Report. Cambridge Uni-
versity Press, Cambridge, UK, 2003. Available at http://www.haskell.org/definition/.

16 D. Rayside, A. Milicevic, K. Yessenov, G. Dennis, and D. Jackson. Agile specifications.
In Companion to the 24th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA 2009), pages 999–1006. Acm,
2009.

17 H. van Vliet. Software Engineering–Principles and Practice. John Wiley, 1993.
18 J. M. Wing. A specifier’s introduction to formal methods. Computer, 23(9):10–24, 1990.
19 B. Yu, L. Kong, Y. Zhang, and H. Zhu. Testing Java Components based on Algebraic

Specifications. In First International Conference on Software Testing, Verification, and
Validation (ICST 2008), pages 190–199. IEEE Computer Society, 2008.

ICLP’12

http://www.informatik.uni-kiel.de/~curry
http://www.haskell.org/definition/

A Concurrent Operational Semantics for
Constraint Functional Logic Programming ∗

Rafael del Vado Vírseda, Fernando Pérez Morente, and
Marcos Miguel García Toledo

Departamento de Sistemas Informáticos y Computación, Universidad Complutense
de Madrid
C. Profesor José García Santesmases, s/n. 28040 Madrid, Spain
rdelvado@sip.ucm.es fperezmo@fdi.ucm.es mmgarciat@fdi.ucm.es

Abstract
In this paper we describe a sound and complete concurrent operational semantics for constraint
functional logic programming languages which allows to model declarative applications in which
the interaction between demand-driven narrowing and constraint solving helps to prune the search
space, leading to shorter goal derivations. We encode concurrency into the generic CFLP(D)
scheme, a uniform foundation for the operational semantics of constraint functional logic pro-
gramming systems parameterized by a constraint solver over the given domain D. In this concur-
rent version of the CFLP(D) scheme, goal solving processes can be executed concurrently and
cooperate together to perform their specific tasks via demand-driven narrowing and declarative
residuation guided by constrained definitional trees, constraint solving, and communication by
synchronization on logical variables.

1998 ACM Subject Classification D.1.6 Logic Programming; D.3.3 Language Constructs and
Features: Constraints, functions and concurrent programming structures.

Keywords and phrases Constraint logic programming, concurrent logic programming, functional
logic programming.

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.154

1 Introduction

Multiparadigm logic programming languages and systems [2, 6, 8, 11] aim to integrate the most
important declarative programming paradigms, namely functional programming (demand-
driven rewriting strategies, higher-order facilities, etc.) and (constraint) logic programming
(goal solving, logical variables, computation with constraints, etc.). The endeavor to extend
this declarative combined logic paradigm to a practical language suitable for concurrent
executions has stimulated much research over the last two decades, resulting in a large
variety of proposals [3, 6, 8]. The aim of this research area is the development of concurrent
functional and constraint logic programming systems [2, 8] that maintain the balance between
expressiveness and declarative reading: abstraction, computations as proofs, amenability to
meta-programming, etc. However, the interactions between all these different features are
complex, so the design and implementation of a sound and complete theoretical framework
of concurrent and constrained multiparadigm logic programming systems is non-trivial.
A common feature of the various approaches is the attempt to define declarative operational
models for concurrency within the Constraint Logic Programming scheme CLP(D) [7], which

∗ This work has been partially supported by the Spanish projects STAMP (TIN2008-06622-C03-01),
Prometidos-CM (S2009TIC-1465), and GPD (UCM-BSCH-GR35/10-A-910502).

© Rafael del Vado Vírseda, Fernando Pérez Morente, and Marcos Miguel García Toledo;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 154–163

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.154
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

R. del Vado Vírseda, F. Pérez Morente, and M.M. García Toledo 155

replaces the basic computational model of logic programming (i.e., SLD-resolution with
syntactic unification) by constraint solving over some constraint domain D (e.g., the integer or
the real numbers). The CLP(D) scheme can be generalized into the framework of concurrent
constraint programming [10] to accommodate a simple and powerful model of declarative
concurrent computation based on a global store, represented by a constraint on the values
that variables can assume. All goal solving processes of the system share this common store,
and instead of “reading” and “writing” the values of variables, processes may ask (check if a
constraint is entailed by the store) and tell (augment the store with a new constraint).

The CFLP(D) scheme [9] elegantly captures the fundamental ideas behind the multi-
paradigm logic systems, generalizing the CLP(D) scheme to provide uniform foundations
for the semantics of functional and constraint logic programming languages. The efficient
operational semantics relies on demand-driven narrowing with definitional trees [12], a com-
bination of syntactic unification and demand-driven rewriting, parameterized by a constraint
solver over the given domain D, which is sound and complete with respect to a declarative
semantics formalized by a constraint rewriting logic [9], and uses a hierarchical structure
called definitional tree to efficiently control the computation. The current version of the
constraint functional logic system T OY [11] has been designed to efficiently implement
the CFLP(D) scheme. However, concurrency is not supported in the CFLP(D) execution
model and its efficient implementation in the T OY system, although declarative forms of
concurrency do exist for similar (but less expressive) approaches [3, 6, 8].

Despite those concurrent extensions, we are not aware of any implementation backed
by theoretical results concerning the combination of sound and complete demand-driven
narrowing with definitional trees and constraint solving to provide a more powerful de-
clarative integration of concurrent programming techniques. The development of these
practical techniques is essential for the implementation of concurrent multiparadigm logic
programming systems, since they allow further optimizations related to the synchronization
and communication of constraint solving mechanisms that can considerably reduce the search
space generated by narrowing.

The aim of this paper is to provide a well-founded concurrent operational semantics that
has the potential to be at the basis of more efficient implementations of constraint functional
logic programming languages than the current ones [4]. The main contribution of this work is
the hybrid operational combination between constraint solving and demand-driven narrowing
guided by definitional trees, to show that this concurrent operational model allows constraint
solving to efficiently reduce the search space generated by narrowing.

The rest of this paper is organized as follows. Section 2 introduces our approach by
presenting an example of declarative concurrency in CFLP(FD), a concrete instance of
constraint functional logic programming over the finite domain FD of integer numbers. In
Sections 3 and 4 we introduce and enrich the presentation of the generic CFLP(D) scheme
[9] underlying the implementation of the T OY system [11], now with concurrent features.
Finally, Section 5 summarizes some conclusions and plans for future work.

2 An Example of Concurrent Execution in CFLP(FD)

For a first impression of our proposal of a concurrent operational model in constraint
functional logic programming, we consider the following conditional (⇐) rewriting rules
(→) with constraints over the constraint finite domain FD of integers defining a simple
CFLP(FD)-program to compute Fibonacci numbers:

ICLP’12

156 A Concurrent Operational Semantics for CFLP(D)

fib (0) → 1
fib (1) → 1
fib (N) → fib (N − 1) + fib (N − 2) ⇐ N ≥ 2

From this program, we want to compute all the values for the variable X from the user-defined
constraint fib (X) ≤ 2 (i.e., the values 0, 1 and 2 for X). We propose a concurrent operational
semantics to improve the efficiency of the sequential T OY(FD) system [11] implementing
CFLP(FD). This enhanced operational semantics begins separating (we use the symbol ‘2’
for this purpose) the initial goal fib (X) ≤ 2 into the evaluation of a function call fib (X)→ R

and a solved constraint store with a primitive constraint R ≤ 2, introducing a logical variable
R for communication and synchronization between both parts:

fib (X)→ R 2 R ≤ 2

The new system tries to concurrently evaluate both parts: the function call fib (X)→ R by
demand-driven narrowing [12] (i.e., a combination of lazy rewriting ‘→’ and unification ‘7→’
by substitutions) for each of the three (variable-renamed) program rules, and the primitive
constraint R ≤ 2 by the FD-constraint solver of SICStus Prolog underlying T OY(FD) [11]:

1. First program rule: fib (0)→ 1
In order to evaluate the function call fib (X)→ R, the first program rule can be applied
to instantiate the argument X to 0 (indicated in the goal by the separation symbol ‘2’
and the unification substitution {X 7→ 0}) and to store the corresponding rewriting result
1 in the logical variable R:

1→ R 2 R ≤ 2 2 {X 7→ 0}

Now, we can reduce R to 1 and apply the accumulated substitution {R 7→ 1, X 7→ 0} to
instantiate the constraint R ≤ 2. Then, the FD-constraint solver checks the satisfiability
of the instantiated store 1 ≤ 2. Thus, the first answer computed by constrained demand-
driven narrowing is {X 7→ 0}:

2 1 ≤ 2 2 {R 7→ 1, X 7→ 0} ⇒ σ1 = {X 7→ 0} (First computed answer)

2. Second program rule: fib (1)→ 1
Concurrently, X can be also instantiated to 1 in our computational model, and then the
second program rule can be applied to compute the second answer:

1→ R 2 R ≤ 2 2 {X 7→ 1}
2 1 ≤ 2 2 {R 7→ 1, X 7→ 1} ⇒ σ2 = {X 7→ 1} (Second computed answer)

3. Third program rule: fib (X) → fib (X − 1) + fib (X − 2) ⇐ X ≥ 2
Also concurrently, a variable-renamed variant of the third program rule can be applied to
the goal, resulting in the evaluation of two new fib function calls:

fib (X − 1) + fib (X − 2)→ R 2 X ≥ 2, R ≤ 2
fib (X − 1)→ R1, fib (X − 2)→ R2 2 X ≥ 2, R1 +R2 = R, R ≤ 2

In this third case (3), our enhanced version of the T OY(FD) system explores concurrently
two possible ways to efficiently compute more answers, according to the two possible
flows of communication and synchronization (i.e., instantiation of the common logical
variables X, R1, R2 and R) between the mechanisms of demand-driven narrowing and
constraint solving, differing in their length (and therefore in efficiency) due to the different
concurrent interleavings of both computational mechanisms.

R. del Vado Vírseda, F. Pérez Morente, and M.M. García Toledo 157

3.1 From narrowing to constraint solving: In this first case, closer to the sequential
execution of the T OY(FD) system [11], our operational model evaluates concurrently
the function calls fib (X − 1) and fib (X − 2) (or equivalently, the flattened and
standardized forms fib (N1) and fib (N2) with new constraints N1 = X − 1 and
N2 = X − 2, respectively, in the common constraint store) by applying again a
combination of demand-driven narrowing and constraint solving. For example, the
system can compute the value {X 7→ 2} for X applying concurrently the second and
the first program rules, respectively, to compute {N1 7→ 1} and {N2 7→ 0}, and then
applying the constraint solver to 1 = X − 1 and 0 = X − 2. Then, the corresponding
result 1 will be stored in the logical variables R1 and R2:
1→R1, 1→R2 2X ≥ 2, R1 +R2 =R, R≤ 2, 1 =X−1, 0 =X−22 {N1 7→ 1, N2 7→ 0}
1→R1, 1→R2 2R1 +R2 =R, R≤ 22 {N1 7→ 1, N2 7→ 0X 7→ 2 }

To ensure the consistency of this evaluation process by the demand-driven narrowing
computation, our concurrent operational model has to protect (or suspend) the eva-
luation of variables R1 and R2 from the action of the constraint solver in favour of
an evaluation only by narrowing to compute {R1 7→ 1, R2 7→ 1} from 1→R1 and
1→R2. Analogously, since we want to compute values {N1 7→ 1, N2 7→ 0} for the
variables N1 and N2 by narrowing, we also need to protect both variables from the
action of the constraint solver (this is the so-called flex narrowing option in this work).
Finally, since both processes are synchronized by sharing the common constraint store
that contains R1 +R2 = R, R ≤ 2, and we have computed by narrowing the values
{R1 7→ 1, R2 7→ 1}, the constraint solver can compute now the substitution {R 7→ 2}
and offer to the user the third computed answer {X 7→ 2}:
2 1 + 1 = R, R ≤ 2 2 {N1 7→ 1, N2 7→ 0, X 7→ 2, R1 7→ 1, R2 7→ 1}
2 2 ≤ 2 2 {N1 7→ 1, N2 7→ 0, X 7→ 2, R1 7→ 1, R2 7→ 1, R 7→ 2} ⇒ σ3 = {X 7→ 2}

At this point, the narrowing computation in T OY(FD) performs an infinite and
useless “trial and error” generation of other possible values for X to find new possible
answers. For example, alternatively applying the first and second program rules it is
possible to compute other values for N1 and N2 due to the concurrent evaluation of
fib (N1) and fib (N2): {N1 7→ 0, N2 7→ 0}, {N1 7→ 0, N2 7→ 1} or {N1 7→ 1, N2 7→ 1}.
All of these concurrent processes only obtain inconsistent values for X from N1 = X−1
and N2 = X − 2 and must be discarded. Moreover, for each application of the third
program rule, we have to evaluate two new function calls fib in order to infinitely
compute concrete values for R1 and R2, and to check that each concrete instance of
the constraint store R1 + R2 = R, R ≤ 2 fails. How can our concurrent operational
model efficiently help to prevent this infinite and useless search space generated by
narrowing? This is the main idea of our paper:

3.2 From constraint solving to narrowing: In this case, our concurrent operational
model needs to protect (or suspend) variables N1 and N2, now from the narrowing
action (this is the so-called rigid narrowing or residuation option in this work). Then,
as an important difference with respect to (3.1), the solver allows to solve the constraint
X ≥ 2 to generate and assign directly to the variables X, N1 =X − 1 and N2 =X − 2
only correct integer values: {X 7→ 2, N1 7→ 1, N2 7→ 0}, {X 7→ 3, N1 7→ 2, N2 7→ 1},
{X 7→ 4, N1 7→ 3, N2 7→ 2}, etc. For each of these possible values, the system creates
a process and awakes simple concurrent applications of rewriting (instead of expensive
“trial and error” applications of narrowing as we have seen in (3.1)). For example, for
the values {X 7→ 2, N1 7→ 1, N2 7→ 0} the concurrent system computes the same third

ICLP’12

158 A Concurrent Operational Semantics for CFLP(D)

answer {X 7→ 2} in less time. For any other value X ≥ 3, this process is free to use,
concurrently, efficient FD-constraint solving techniques [1, 4] to add directly to the
constraint store R1 +R2 > 2. Then, the solver fails checking the extended common
constraint store R1 +R2 > 2, R1 +R2 = R, R ≤ 2 and stops the generation of more
values for X. Moreover, since the goal solving processes share the same constraint
store, the (3.2) option kills automatically all the remaining active processes in the
(3.1) option, avoiding the generation of an infinite and useless narrowing computation.
In conclusion, in this case constraint solving has helped to efficiently compute the last
answer, and at the same time has reduced the search space generated by narrowing.

3 Concurrent Constraint Functional Logic Programming

In this section we give a revised summary of the generic CFLP(D) scheme [9] underlying
our proposal of a concurrent system for multiparadigm logic programming.

3.1 Expressions, Patterns, and Constraints
A signature is a tuple Σ = 〈DC ,FS〉 where DC =

⋃
n∈N DCn and FS =

⋃
n∈N FSn are

families of countably infinite and mutually disjoint sets of data constructors and evaluable
function symbols. Evaluable functions can be further classified into domain dependent
primitive functions PFn ⊆ FSn (e.g., +, ≤ ∈ PF2) and user defined functions DFn = FSn

\ PFn for each arity n ∈ N (e.g., fib ∈ DF1). We also assume a countably infinite set Var
of variables X,Y, . . . and a set U of primitive elements u, v, . . . (as e.g., the set Z of integer
numbers).

Expressions e, e′ ∈ Exp(U) have the syntax e ::= ⊥ | u | X | h | (e e′), where ⊥ is a
special symbol in DC 0 to denote an undefined data value, u ∈ U , X ∈ Var , and h ∈ DC
∪ FS . The following classification of expressions is useful: X em with X ∈ Var and m ≥ 0
is called a flexible expression, while u ∈ U and h em with h ∈ DC ∪ FS are called rigid
expressions. Moreover, a rigid expression h em is called active if and only if h ∈ FSn and
m ≥ n, and passive otherwise. The occurrence of a symbol is passive if and only if is a
primite element u ∈ U or is the root symbol h of a passive expression (a symbol used in this
sense is called a passive symbol). Another class of expressions are Patterns s, t ∈ Pat(U),
built as t ::= ⊥ | u | X | c tm | f tm, where c ∈ DCn (m ≤ n) and f ∈ FSn (m < n).

For every expression e, the set of positions in e is inductively defined as follows: the
empty sequence identifies e itself, and for every expression of the form hem, the sequence
i · q, where i is a positive integer not greater than m and q is a position, identifies the
subexpression of ei at q. The subexpression of e at p is denoted by e|p and the result of
replacing e|p with e′ in e is denoted by e[e′]p. If e is a linear expression (without repeated
variable occurrences), pos(X, e) will be used for the position of the variable X occurring in
e. Substitutions σ ∈ Sub(U) are mappings σ : V → Pat(U) extended homomorphically to
σ : Exp(U)→ Exp(U). We define the domain Dom(σ) of a substitution σ as the collection of
variables that are not mapped to themselves.

A constraint domain D provides a set of specific data elements u ∈ U along with certain
primitive functions p ∈ PF operating on them. For example, the constraint finite domain
FD [4, 9] can be formalized as a structure with carrier set consisting of patterns built from
the symbols in a signature Σ and the set of primitive elements Z. Symbols in Σ are intended
to represent data constructors (e.g., the list constructors), domain specific primitive functions
(e.g., addition and multiplication over Z), and user defined functions. Constraints have the
syntactic form p en, with p ∈ PFn a primitive relational symbol and en ∈ Exp(U) (e.g.,
fib (X) ≤ 2, X ≥ 2 or R1 +R2 = R in infix notation).

R. del Vado Vírseda, F. Pérez Morente, and M.M. García Toledo 159

3.2 Programs and Constrained Definitional Trees
In the sequel, we assume an arbitrarily fixed constraint domain D built over a set of primitive
elements U . In this setting, a program is a set of constrained rewrite rules that defines the
behavior of possibly higher-order and/or non-deterministic lazy functions over D, called
program rules. More precisely, a program rule R for f ∈ DFn has the form f tn → r ⇐ P 2C

(abbreviated as f tn → r if P and C are both empty; see Section 2) and is required to satisfy:

The left-hand side f tn is a linear expression with tn ∈ Pat(U), and the right-hand side
r ∈ Exp(U).
P is a finite sequence of so-called productions of the form ei → Ri (1 ≤ i ≤ k), intended
to be interpreted as a conjunction of local definitions with no cycles [9]. For all 1≤ i≤ k,
ei ∈Exp(U), and Ri /∈Var(f tn) are different variables.
C is a finite set of constraints, also intended to be interpreted as a conjunction, and
possibly including occurrences of user-defined function symbols.

Tτ is a constrained Definitional Tree over D (cDT (D) for short) with call pattern τ (a
linear pattern of the form ftn, where f ∈DFn and tn ∈Pat(U)) if its depth is finite and one
of the following cases holds for the rules of a program P:

Tτ ≡ rule(τ → r1 ⇐ P1 �C1 ‖ . . . ‖ rm ⇐ Pm �Cm), where τ → ri ⇐ Pi �Ci for all
1 ≤ i ≤ m are variants of overlapping program rules in P.
Tτ ≡ case(τ,X, op, [T1, . . . , Tk]), where X is a variable in τ , op ∈ {flex, rigid, flex/rigid},
h1, . . . , hk (k > 0) are pairwise different passive symbols of P, and for all 1 ≤ i ≤ k, Ti
is a cDT (D) with call pattern τσi, where σi = {X 7→ hiY mi} with Y mi new distinct
variables such that hiY mi ∈ Pat(U).

A Tf of a function symbol f ∈ DFn defined by a program P is a cDT (D) with call pattern
fXn, where Xn are new variables, and the collection of all the program rules obtained from
the different rule nodes equals, up to variants, the collection of all the program rules defining
f in P.

3.3 Goals and Answers
A goal G for a program has the general form P �C �S �σ, where the separation symbol
‘� ’ must be interpreted as a conjunction, and:

P ≡ e1 → R1, . . . , en → Rn is a finite conjunction of so-called productions, where each Ri
is a distinct variable and ei is an expression (we call these productions suspensions), or a
pair of the form < τ, T > with τ an instance of the call pattern in the root of a cDT (D)
T (we call these productions demanded productions). The set of produced variables is
PVar(P) =def {R1, . . . , Rn} (e.g., R, R1 and R2 in Section 2).
C ≡ δ1, . . . , δk is a finite conjunction of constraints (possibly including user-defined
function symbols; e.g., fib (X) ≤ 2 in the initial goal of Section 2).
S ≡ π1, . . . , πl is a finite conjunction of primitive constraints (i.e., constraints with only
pattern arguments; e.g., R ≤ 2), called constraint store.
σ ∈Sub(U) is an idempotent substitution called answer substitution such that Dom(σ)∩
Var(P � C � S) = ∅.

A solved goal is a goal � �S �σ in which P and C are empty, and identifies an answer S �σ
(or simply σ, as we have seen in Section 2). We say that X ∈ Var(G) is a demanded variable
in G if and only if one of the following cases holds:

ICLP’12

160 A Concurrent Operational Semantics for CFLP(D)

1. Any substitution that is a solution of S cannot bind X to the undefined value ⊥ (shortly,
X ∈ DVarD(S)). For example, R ∈ DVarFD(R ≤ 3).

2. There exists a suspension (Xak → R) ∈ P such that k > 0 and R is a demanded variable
in G (this case is only necessary to deal with higher-order [9]).

3. There exists a demanded production (< e, case (τ, Y, op, [T1, . . . , Tk]) > → R) ∈ P such
that X = e|pos(Y,τ) and R is a demanded variable in G (see e.g., N1 and N2 in (3.1) and
(3.2)). If op in the branch node is of type flex, the variable X is called a flex variable
(e.g., N1 and N2 in (3.1)). Otherwise, the variable X is called a rigid variable (e.g., N1
and N2 in (3.2)).

4 A Concurrent Operational Semantics for CFLP(D)

In this section we present a set of concurrent goal transformation rules of the form G `̀ R ‖ki=1
Gi, specifying all the possible concurrent evaluations (‖ki=1) of subgoals Gi obtained by
applying a rule R of goal solving (`̀ R) to a goal G in our concurrent operational semantics
for the CFLP(D) scheme. All these rules (formally presented in Figures 1 and 2) have been
implemented in the T OY system [11] and are implicitly applied in our running example
of Section 2. We refer the reader to that section for detailed examples illustrating the
application of all these rules. We write G `̀ ∗ ‖ki=1 Gi to represent concurrent derivations,
given by the successive application (`̀ ∗) of concurrent goal transformation rules from G.
For example, the concurrent derivation G `̀ ∗G′1 ‖G21 ‖ G22 represents the concurrent goal
transformation steps G `̀ G1 ‖G2 with G1 `̀ G′1 and G2 `̀ G21 ‖G22.

Each time a goal G contains the conjunction of two or more atomic statements that
could be concurrently evaluated (e.g., two or more productions), our operational model
creates concurrent goal solving processes, each of one consisting of an atomic statement
from G, together with the necessary information for an adequate and consistent demand-
driven evaluation applying a concurrent goal transformation rule (i.e., the sets of produced,
demanded, rigid and flex variables). Moreover, for synchronization and in order to properly
combine the possible computed answers from subgoal processes, as well as the cases in which
processes remain suspended (indicated by the symbol) or fail (indicated by the symbol �),
new subgoals must share the constraint store of the main goal G.

4.1 Concurrent Demand-Driven Narrowing and Residuation
We start with a suspension e → R representing the computation of a function call, for
example fib (X) → R, where e has a user-defined function symbol f in the root (e.g., fib)
and R is a demanded variable (e.g., by the constraint store R ≤ 2). Then, the rule DT (see
Figure 1) is applicable, awakening the suspension e→R, decorating e with an appropriate
cDT (D) Tf (e.g., Tfib given in Section 3), and introducing a new demanded production
< e, Tf >→R into the goal. If the function call is not demanded (i.e., R is not a demanded
variable), this computation remains suspended () until the variable R disappears from
the goal (and then the suspension can be eliminated) or R becomes demanded. The goal
transformation rules for demanded productions < e, Tf > → R encode the demand-driven
narrowing strategy [12] guided by the constrained definitional tree Tf , now in a concurrent
setting:

If Tf is a rule tree, then the transformation RRA can be concurrently applied (‖ki=1) for
each of the k available overlapping program rules for rewriting e, introducing appropriate
suspensions and constraints into the new subgoals so that a demand-driven evaluation
can be ensured.

R. del Vado Vírseda, F. Pérez Morente, and M.M. García Toledo 161

DT Definitional Tree

fen → R,P �C�S�σ `̀ DT

{
< fen, TfXn >→ R,P �C�S�σ if R ∈ DVarD(P �S)

	 if R /∈ DVarD(P �S)

}

if f ∈ DFn, and all variables in T
fXn

are new variables.

RRA Rewrite Rule Application
< fen, rule (ftn → r1 ⇐ P1�C1 ‖ . . . ‖ rk ⇐ Pk �Ck) >→ R,P �C �S�σ `̀ RRA

‖ki=1 en → tn, ri → R,Pi, P � Ci, C � S � σ

CSS Case Selection
< e, case (τ,X, op, [T1, . . . , Tk]) >→ R,P �C�S�σ `̀ CSS < e, Ti >→ R,P �C�S�σ

if e|pos(X,τ) = hi . . . with 1≤ i≤ k given by e, and hi is the passive symbol associated to Ti.

CC Case non-Cover
< e, case (τ,X, op, [T1, . . . , Tk]) >→ R,P �C �S�σ `̀ CC �

if e|pos(X,τ) =h. . . is a passive symbol h /∈{h1, . . . , hk}, being hi the passive symbol associated to Ti.

DN Demand Narrowing
< e, case (τ,X, op, [T1, . . . , Tk]) >→ R,P �C �S�σ `̀ DN

e|pos(X,τ) → R′, < e[R′]pos(X,τ), case (τ,X, op, [T1, . . . , Tk]) >→ R,P � C �S�σ

if e|pos(X,τ) = g . . . with g ∈ FS active (primitive or defined function), and R′ a new variable.

DP Demand Produced Variable
< e, case (τ,X, op, [T1, . . . , Tk]) >→ R,P �C �S�σ `̀ DP	

if e|pos(X,τ) = Y with Y ∈ PVar(P).

DR Demand Residuation
< e, case (τ,X, rigid, [T1, . . . , Tk]) >→ R,P �C �S�σ `̀ DR 	

if e|pos(X,τ) = Y with Y /∈ PVar(P).

DI Demand Instantiation
< e, case (τ,X,flex, [T1, . . . , Tk]) >→ R,P �C �S�σ `̀ DI

‖ki=1 (< e, Ti >→ R,P �C �S)σi�σσi
if e|pos(X,τ) = Y with Y /∈PVar(P), and σi = {Y 7→ hiY mi} with hi (1≤ i≤ k) the pas-
sive symbol associated to Ti, and Y mi are new variables.

Figure 1 Rules for concurrency in constrained demand-driven narrowing and residuation.

If Tf is a case tree, one of the transformations CSS, CC, DN, DP, DR or DI must be
applied, according to the kind of symbol h occurring in e at the case-distinction position
pos(X, τ):

If h is a passive symbol hi, then CSS selects the appropriate subtree Ti (otherwise
CC fails �).
If h is an active primitive or defined function symbol g, then DN introduces a new
demanded suspension in the goal to evaluate e|pos(X,τ).
If h is a produced variable Y , the goal must remain suspended () using DP until a
concurrent process of the computation evaluates Y .
If Y is a non-produced variable, there are two possibilities:
∗ If the branch node has the option rigid (or flex/rigid), we must suspend the

evaluation () using DR until the variable has been bound, for example, by the
action of the constraint solver (as we have seen in (3.2) for N1 and N2, and we

ICLP’12

162 A Concurrent Operational Semantics for CFLP(D)

AC Atomic Constraint
P � pen, C�S�σ `̀ AC ‖ni=1 ei → Xi, P �C� pXn, S�σ

if p ∈ PFn, pen is a constraint, and Xn are new variables.
CS Constraint Solving

P �C�S�σ `̀ CS{χ} ‖ki=1

 (P �C)σi�Si�σσi if (i) or (ii) or (iii) in Section 4.2

	 otherwise


if SolverD(S, χ) =

∨k

i=1(Si�σi) with χ =def PVar(P) ∪ FVar(P).
SF Solving Failure

P �C �S�σ `̀ SF{χ} � if SolverD(S, χ) = fail.

Figure 2 Rules for concurrent constraint solving.

will formalize in the next subsection). This case corresponds to the computational
principle of declarative residuation [6].

∗ If the branch node has the option flex (or flex/rigid), then DI selects concurrently
(‖ki=1) each subtree Ti, generating an appropriate binding σi for Y (as e.g., for N1
and N2 in (3.1)).

4.2 Concurrent Constraint Solving
The goal transformation rules concerning concurrent constraint solving (see Figure 2) are
designed to concurrently combine the evaluation of (primitive or user-defined) constraints
with the action of a constraint solver over the given domain. The first rule AC evaluates
non-primitive constraints pen (e.g., fib (X) ≤ 2) by performing a concurrent evaluation (‖ni=1)
of their arguments ei in suspensions ei → Xi, and introducing a flattened primitive constraint
pXn into the common constraint store, with new logical variables Xn for the communication
and synchronization among all these concurrent goal solving processes.

For the evaluation of primitive constraints in a constraint domain D we postulate a
constraint solver of the form SolverD(S, χ), which can reduce any given finite conjunction
of primitive constraints S representing the constraint store of the goal into an equivalent
simpler solved form. The constraint solver needs to take proper care of a selected set of
so-called critical (or protected) variables χ =def PVar(P) ∪ FVar(P) occurring in S to ensure
a correct demand-driven evaluation (see variables R1, R2 and N1, N2 in (3.1) and (3.2) of
Section 2). We require that any solver invocation returns a finite disjunction of k simpler
solved form alternatives Si �σi. Then, the rule CS describes the possible concurrent (‖ki=1)
evaluations of a single goal by a solver’s invocation for each possible alternative solved form
computed by the constraint solver. To avoid deadlock situations, we require solvers to have
the ability to compute and discriminate a distinction of the following cases and situations for
each concurrent solved form alternative (illustrated by (3.1) and (3.2) in Section 2):

(i) A suspended production () (e.g., suspended by the DT rule) with a non-demanded
critical variable at the right-hand side may be now demanded (and then activated) by
the new constraint store Si of some alternative Si �σi (formally, DVarD(Si) ∩ χ 6= ∅), or

(ii) A suspended demanded production () (for example, suspended by the DR rule) could
be activated by applying σi to instantiate a rigid and not produced variable in this
production (i.e., Dom(σi)∩RVar(P) 6= ∅), or

(iii) A suspended production () could be irrelevant for the new constraint store Si (i.e.,
Var(Si) ∩ χ = ∅) and then has to be eliminated.

R. del Vado Vírseda, F. Pérez Morente, and M.M. García Toledo 163

For any other situation, the corresponding goal solving process must be suspended ()
by the action of the constraint solver. Additionally, the failure rule SF is used for failure
detection (�) in the constraint solving process.

4.3 Soundness and Completeness
We conclude this section with the main theoretical result of the paper ensuring soundness
and completeness for concurrent CFLP(D)-derivations w.r.t. the declarative semantics of the
CFLP(D) scheme formalized in [5, 9] by means of a Constraint Rewriting Logic CRWL(D).

I Theorem 1 (Soundness and Completeness). Let S �σ be an answer of G.

(a) Soundness: If G `̀ ∗ ‖ki=1 Gi is a concurrent derivation from G of a finite number k of
goals Gi, for each Gi ≡ � �Si �σi a solved goal, Si �σi is an answer of the initial goal
G. Formally, SolD (Gi) ⊆ SolP (G).

(b) Completeness: There exists a concurrent derivation G `̀ ∗ ‖ki=1 Gi, ending with a
finite number k of solved goals Gi ≡ � �Si �σi, that covers all the solutions of the initial
answer S �σ. Formally, SolP (G) ⊆

⋃k
i=1 SolD (Gi).

5 Conclusions and Future Work

The set of transformation rules presented in Section 4 provides a sound and complete ope-
rational model to describe a concurrent CFLP(D) scheme as a novel generalization of the
classical CLP(D) scheme useful for concurrent functional and constraint logic programming.

We are currently investigating other practical instances of constraint domains (e.g., linear
and non-linear arithmetic constraints over real numbers) and the cooperative integration
of more efficient constraint solving methods into our concurrent system (e.g., based on the
ILOG CP technology [1] or using declarative modeling languages such as OPL).

References
1 I. Castiñeiras and F. Sáenz Pérez. Integrating ILOG CP Technology into T OY. In Proc.

WFLP’09, pages 27-43, 2009.
2 Curry. Available at http://www-ps.informatik.uni-kiel.de/currywiki/.
3 R. Echahed and W. Serwe. Defining Actions in Concurrent Declarative Programming. In

Electr. Notes Theor. Comput. Sci. 64, pages 176-194, 2002.
4 A. J. Fernández et. al. Constraint functional logic programming over finite domains. Journal

of TPLP 7(5), pages 537–582, 2007.
5 F.J. López Fraguas, M. Rodríguez Artalejo, and R. del Vado. A Lazy Narrowing Calculus

for Declarative Constraint Programming. In PPDP’04, pages. 43–54, 2004.
6 M. Hanus. Multiparadigm Declarative Languages. ICLP’07, pages 45-75, 2007.
7 J. Jaffar and J.L. Lassez. Constraint logic programming. POPL’87, pages 111-119, 1987.
8 M. Marin, T. Ida, and W. Schreiner. CFLP: A Mathematica Implementation of a Distribu-

ted Constraint Solving System. The Math. Journal 8(2), pages 287-300, 2001.
9 F.J. López, M. Rodríguez, and R. del Vado. A new generic scheme for functional logic

programming with constraints. Journal of HOSC 20 (1-2), pages 73-122, 2007.
10 V. Saraswat and M. Rinard. Concurrent constraint programming. POPL’90, pages 232-245.
11 T OY: A Constraint Functional Logic System. Available at toy.sourceforge.net.
12 R. del Vado. A demand-driven narrowing calculus with overlapping definitional Trees. In

PPDP 2003, ACM, pages 253-263, 2003.

ICLP’12

http://www-ps.informatik.uni-kiel.de/currywiki/
toy.sourceforge.net

Surviving Solver Sensitivity:
An ASP Practitioner’s Guide
Bryan Silverthorn1, Yuliya Lierler2, and Marius Schneider3

1 Department of Computer Science
The University of Texas at Austin, Austin, TX, USA
bsilvert@cs.utexas.edu

2 Department of Computer Science
University of Kentucky, Lexington, KY, USA
yuliya@cs.uky.edu

3 Institute of Computer Science
University of Potsdam, Potsdam, Germany
manju@cs.uni-potsdam.de

Abstract
Answer set programming (ASP) is a declarative programming formalism that allows a practi-
tioner to specify a problem without describing an algorithm for solving it. In ASP, the tools for
processing problem specifications are called answer set solvers. Because specified problems are
often NP complete, these systems often require significant computational effort to succeed. Fur-
thermore, they offer different heuristics, expose numerous parameters, and their running time is
sensitive to the configuration used. Portfolio solvers and automatic algorithm configuration sys-
tems are recent attempts to automate the problem of manual parameter tuning, and to mitigate
the burden of identifying the right solver configuration. The approaches taken in portfolio solvers
and automatic algorithm configuration systems are orthogonal. This paper evaluates these ap-
proaches, separately and jointly, in the context of real-world ASP application development. It
outlines strategies for their use in such settings, identifies their respective strengths and weak-
nesses, and advocates for a methodology that would make them an integral part of developing
ASP applications.

1998 ACM Subject Classification I.2.2 Automatic analysis of algorithms

Keywords and phrases algorithm configuration, algorithm selection, portfolio solving, answer
set programming, algorithm portfolios

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.164

1 Introduction

Answer set programming (ASP) [19, 20] is a declarative programming formalism based on
the answer set semantics of logic programs [9]. Its origins go back to the observation that the
language of logic programs can be used to model difficult combinatorial search problems so
that answer sets correspond to the solutions of a problem. In the declarative programming
paradigm, a software engineer expresses the logic of a computation without describing its
control flow or algorithm. Thus a declarative program is a description of what should be
accomplished, rather than a description of how to go about accomplishing it. As a result,
declarative programming requires tools that process given problem specifications and find
their solutions. In ASP such systems are called answer set solvers. They implement a difficult
computational task, since the problem of deciding whether a logic program has an answer
set is NP-complete. Despite the complexity of the task, ASP and its tools have proved to

© Bryan Silverthorn, Yuliya Lierler, and Marius Schneider;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 164–175

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.164
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Silverthorn, Y. Lierler, and M. Schneider 165

be useful; ASP has been used to model and solve problems in many real-world domains,
including computational biology and linguistics.

The computational methods of top-performing answer set solvers such as cmodels [10]
and clasp [8, 5] are strongly related to those of satisfiability (SAT) solvers—software systems
designed to find satisfying assignments for propositional formulae [11]. It is well known that
modern SAT solvers are sensitive to parameter configuration. The same holds for answer
set solvers. These systems typically implement numerous heuristics and expose a variety of
parameters to specify the chosen configuration. For example, the command line

clasp --number=1 --trans-ext=no --eq=5 --sat-prepro=0 --lookahead=no
--heuristic=Berkmin --rand-freq=0.0 --rand-prob=no
--rand-watches=true --restarts=100,1.5 --shuffle=0,0
--deletion=3.0,1.1,3.0 --strengthen=yes
--loops=common --contraction=250 --verbose=1

represents the default configuration of answer set solver clasp (version 2.0.2). On one hand,
a rich set of heuristics implemented in clasp makes this solver successfully applicable to a
variety of problem domains. On the other hand, given an application at hand, it is unclear
how to go about picking the best configuration of the system. Gebser et al. [7] write:

In fact, we are unaware of any true application on which clasp is run in its
default settings. Rather, in applications, “black magic” is used to find suitable search
parameters.

We believe that black magic refers to manual tuning that relies on “rules of thumb”, solver
familiarity, and the user’s domain expertise. Unfortunately, it is unreasonable to expect
that a regular ASP application developer possesses enough knowledge about the internals
of answer set solvers and their heuristics to understand the full implications of picking a
particular configuration. Furthermore, requiring such extraordinary expertise would diminish
the idea of declarative programming itself.

In this paper we evaluate some of the tools available for addressing the black magic
problem—including portfolio solvers such as claspfolio [7] and borg [23], and automatic
algorithm configuration systems such as paramils [14]—in the context of specific problem
domains in ASP, highlighting real-world applications. Our goal is not to develop a novel
system, but to aid ASP application developers, especially those hoping to leverage existing
tools for portfolio solving and configuration tuning. We provide a case study that illustrates
and evaluates alternative methodologies in three practical domains: weighted sequence [18],
natural language parsing [17], and Riposte [2]. The struggle to deal with solver sensitivity
in the former two domains, in fact, triggered the research described in this paper. Our
hope is to identify a systematic way to remove haphazard manual tuning and performance
evaluation from the process of applying ASP tools to a new domain. We focus our attention
on tuning the ASP solver clasp (version 2.0.2). The configuration space of clasp consists
of 8 binary, 7 categorical, and 25 continuous parameters, which makes us believe that this
system alone is a good choice for evaluation. Nevertheless, all of the methods investigated
here may accommodate any other solver of interest, as well as multiple solvers.

Six candidate strategies are studied:
1. selecting the best single configuration from among the 25 representative clasp configura-

tions used by claspfolio (a clasp-based portfolio solver) for each domain;
2. constructing a “solver execution schedule” over those 25 configurations;
3. applying claspfolio, trained on its large set of ASP instances, to each domain without

further modification;

ICLP’12

166 Surviving Solver Sensitivity: An ASP Practitioner’s Guide

4. training a portfolio specifically on each application domain using the 25 clasp configura-
tions of claspfolio;

5. tuning a single clasp configuration specifically for each domain using paramils; and

6. training a portfolio specifically on each application domain using multiple configurations
produced by tuning clasp, using paramils, for individual instances of the domain.

We believe that these options are representative of modern approaches for dealing with solvers’
configuration sensitivity, able to illustrate the strengths and weaknesses of each approach.
Also, to the best of our knowledge, the evaluation of strategies 4 and 6 on individual problem
domains is unique to this paper.

We start by describing the domains used in the proposed case study. Section 3 gives an
overview of portfolio methods in general together with the details of the strategies 1, 2, 3,
and 4. Section 4 outlines the general principles behind the algorithm configuration system
paramils and describes the details of strategy 5. Strategy 6 is specified in Section 5. We
conclude with a thorough analysis of the methods’ performance in practice.

2 Review of Application Domains

In this work we compare and contrast several methodologies on three domains that stem
from different subareas of computer science. This section provides a brief overview of these
applications. We believe that these domains represent a broad spectrum of ASP applications,
and are thus well-suited for the case study proposed. The number of instances available for
each application ranged from several hundred to several thousand. The complexity of the
instances also varied. The diversity of the instances and their structure played an important
role in our choice of domains.

The weighted-sequence (wseq) domain is a handcrafted benchmark problem that was
used in the Third Answer Set Programming Competition1 (aspcomp) [3]. Its key features are
inspired by the important industrial problem of finding an optimal join order by cost-based
query optimizers in database systems. In our analysis we used 480 instances of the problem,
which were generated according to the metrics described by Lierler et al. [18].

The natural language parsing (nlp) domain formulates the task of parsing natural
language, i.e., recovering the internal structure of sentences, as a planning problem in ASP. In
particular, it considers the combinatory categorical grammar formalism for realizing parsing.
Lierler and Schüller [17] describe the procedure of acquiring instances of the problem using
CCGbank2, a corpus of parsed sentences from real world sources. In this work we study
1,861 instances produced from the CCGbank data.

Riposte (rip)3 is a project in computer aided verification, where ASP is used to generate
counterexamples for the FDL intermediate language of the spark program verification system.
These counterexamples point at the problematic areas of the analyzed code. We evaluate
instances created from the application of Riposte to a spark implementation of the Skein
hash function; these 3,133 instances were shared with us by Martin Brain in February 2012.

1 https://www.mat.unical.it/aspcomp2011/OfficialProblemSuite. wseq was referred to as a bench-
mark number 28, Weight-Assignment Tree.

2 http://groups.inf.ed.ac.uk/ccg/ccgbank.html.
3 https://forge.open-do.org/projects/riposte

https://www.mat.unical.it/aspcomp2011/OfficialProblemSuite
http://groups.inf.ed.ac.uk/ccg/ccgbank.html
https://forge.open-do.org/projects/riposte

B. Silverthorn, Y. Lierler, and M. Schneider 167

3 Algorithm Portfolio Methods

In portfolio solving, an “algorithm portfolio method” or “portfolio solver” automatically
divides computation time among a suite of solvers. SAT competitions4 have provided a rich
source of diverse solvers and benchmark instances, and have spurred the development of
portfolio solving. Several different types of portfolio solvers exist. These range from simple
methods that divide computational resources equally among a hand-selected suite of solvers,
to more complex systems that make informed decisions by analyzing the appearance of
instances. The development of the ASP portfolio solver claspfolio [7] was largely inspired
by the advances of this approach in SAT, and especially by the ideas championed by the
portfolio SAT solver satzilla [26].

Gebser et al. [6] suggest that portfolio solving in general and claspfolio in particular is
a step toward overcoming the sensitivity of modern answer set solvers to parameter settings.
Nevertheless, the extent to which existing portfolio solvers achieve this goal on individual
application domains is an open issue. In this paper, we shed light on two questions related to
it. First, how well does a general-purpose portfolio, trained on many different instance types,
perform when compared against the default clasp configuration on a particular domain?
Second, what benefits are gained from moving from general-purpose to application-driven
portfolios, by training a portfolio solver specifically for the application in question?

Two different portfolio systems are employed in considering these questions: the clasp-
folio algorithm-selection system is used as a general-purpose portfolio, and the borg
algorithm-portfolio toolkit is used to construct domain-specific portfolios based on the mapp
architecture [23]. Both of these approaches are described below.

3.1 Algorithm Selection and claspfolio
Systems for automatic algorithm selection, such as satzilla for SAT and claspfolio
for ASP, leverage the appearance of an instance to make decisions about which solver or
configuration to apply. An algorithm selection system typically involves two components:

a suite or portfolio of different solvers or solver configurations, and
a solver (or configuration) selector.

The selector is responsible for picking the best-performing solver for a particular instance.
The definition of “best-performing” is arbitrary, but expected run time is often used. The
efficiently computable properties of an instance on which these methods base their decisions
are called numerical features of that instance.

Techniques from supervised machine learning are used to build the selector component.
Thousands of runs are observed during a training phase, and each run is labeled with its
performance score and the features of its associated instance. These examples are then used
to learn a function that maps an instance, using its features, directly to a solver selection
decision. Using this architecture, algorithm-selection portfolios have been top performers at
the SAT and ASP competitions. For example, the portfolio answer set solver claspfolio
was the winner of the NP category in the system track of aspcomp.

The claspfolio (version 1.0.1) solver employs 25 representative configurations of clasp
(version 2.0.2), and a feature set that includes properties of an ASP instance ranging from
the number of constraints to the length of clauses learned from short initial runs. The choice
of configurations of clasp that were used in building claspfolio relied on the expertise

4 http://www.satcompetition.org/.

ICLP’12

http://www.satcompetition.org/

168 Surviving Solver Sensitivity: An ASP Practitioner’s Guide

of Benjamin Kaufmann, the main designer of clasp, and on black magic. claspfolio5

was trained on 1,901 instances from 60 different domains. It will be used to evaluate the
performance of general-purpose portfolio, one designed to operate on a wide variety of
instance types. A different system, but one that exhibits comparable performance, is used to
evaluate the performance of domain-specific portfolio solvers. It is described next.

3.2 Solver Scheduling, mapp, and borg

We utilize the borg toolkit6 as our experimental infrastructure. Like tools such as runsolver
[21], borg executes solvers while measuring and limiting their run time. It is also designed
to collect and analyze solver performance data over large collections of instances, to compute
instance feature information, and to construct different portfolio solvers.

To build domain-specific portfolios, borg instantiates the “modular architecture for
probabilistic portfolios” (mapp) [23]. Unlike an algorithm selection method, mapp computes
the complete solver execution schedule that approximately maximizes the probability of
solving the instance within the specified run time constraint. A solver execution schedule
consists of one or more sequential calls to possibly different solvers, where the last call is
allocated all remaining runtime.

Unlike an algorithm selection portfolio, then, mapp may run more than one solver on an
instance. This strategy has proved to be effective. Earlier versions of mapp [24], built for a
portfolio of pseudo-Boolean (PB) solvers, took first place in the main category of the 2010
and 2011 PB competitions.

Two different types of mapp portfolios are evaluated:
mapp−, which does not use instance features, and thus consistently executes a single
solver execution schedule computed over the run times of all training instances, and
mapp+, which uses instance features to tailor each execution schedule to a given instance.

We used the borg framework to create mapp portfolios using the same 25 configurations of
clasp employed by claspfolio. This will allow us to more fairly compare the effectiveness of
the application-driven portfolio-solving approach studied here to that of the general-purpose
claspfolio system. Furthermore, we use claspfolio itself to compute instance-specific
features for mapp+. As a result, mapp+ tailors a solver execution schedule to each instance
using the same features available to claspfolio.

We also use borg to select the “best single” (bestsingle) configuration of clasp, from
among those 25, that maximizes the probability of successfully solving an instance of the
training set.

Whether they employ pure algorithm selection or solver execution scheduling, portfolio
methods have repeatedly proved successful on collections of competition instances. Such
collections include instances of many different problems. Section 6 evaluates their behavior
instead on collections of instances drawn entirely from each of our representative domains.

The next section discusses an orthogonal methodology for handling solver sensitivity.
Instead of marshalling multiple fixed configurations, it follows a local search strategy through
the configuration space of a solver, attempting to identify the best-performing single configu-
ration on a domain.

5 http://potassco.sourceforge.net/#claspfolio
6 http://nn.cs.utexas.edu/pages/research/borg/.

http://potassco.sourceforge.net/#claspfolio
http://nn.cs.utexas.edu/pages/research/borg/

B. Silverthorn, Y. Lierler, and M. Schneider 169

4 Automatic Algorithm Configuration

The success of portfolio solving in competition demonstrates that selecting a solver’s configu-
ration is important. This success, however, leads to an obvious question: instead of focusing
on the selection of an existing configuration, can we obtain a new configuration that performs
better (or best) on a particular domain? This paper examines this possibility by applying a
tool for automatic algorithm configuration to clasp on our three application domains.

We take paramils7 [14] (version 2.3.5) as a representative of automatic algorithm
configuration tools. Other systems of this kind include smac [12, 13] and gga [1]. paramils
is based on iterative local search in the configuration space, and evaluates the investigated
configurations on a given training set of instances. Its focusedILS approach allows it to
focus the evaluation on a subset of the given instances, and thus to assess the quality of
a configuration more quickly. This subset is adaptively extended after each update of the
current suboptimal solution. The idea behind this approach is that a configuration that
performs well on a small subset is also a good choice for the entire instance set. We designed
our algorithm configuration experiments based on this observation.

In the experiments we tuned clasp, with the help of paramils, on a randomly sampled
subset of 50 instances for each of the domains. The maximal cutoff time of each clasp call
was 1,200 seconds, the tuning time was 120,000 seconds, and the minimization of the average
runtime was the optimization objective. Since paramils uses a local search approach, it (i)
is non-deterministic and (ii) can become trapped in a local optimum. Therefore, we ran the
paramils experiment ten times, independently, and afterwards chose the configuration with
the best performance.

For all experiments, we used a discretized configuration space of clasp selected by
Benjamin Kaufmann. It is similar to the parameter file used in the experiments of Gebser et
al. [7], and is available online at http://www.cs.uni-potsdam.de/wv/claspfolio/.

5 Domain-Specific Portfolio Synthesis

An automatic algorithm configuration system such as paramils generates a single configura-
tion tuned on a set of many instances. On the other hand, the assumption made by portfolio
methods is that multiple configurations exhibit complementary strengths on a distribution of
instances. If this assumption does not hold on some domain for a standard suite of solvers, is
it possible to use automatic algorithm configuration to generate a new suite of complementary
solvers? Systems such as Hydra have explored this possibility in SAT [25]. Here, we evaluate
a simple strategy for doing so in ASP, leveraging paramils. In this protocol, we
1. randomly sample a set of N instances from the domain,
2. use paramils to tune a configuration of clasp specifically for each instance,
3. collect training data for each configuration across the entire domain, and
4. construct a portfolio using those training data.
This methodology follows from the assumption that multiple distinct instance subtypes exist
in the domain, and that instances belonging to these subtypes will thus be present in the
random sample. By tuning a configuration to each instance, and therefore to each subtype,
a portfolio of complementary solvers may emerge.

In our evaluations, we use N = 20 instances sampled from each domain to test this
possibility in the set of experiments described next. We applied the same paramils settings

7 http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

ICLP’12

http://www.cs.uni-potsdam.de/wv/claspfolio/
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

170 Surviving Solver Sensitivity: An ASP Practitioner’s Guide

as described in previous section, with the exception of running paramils only once, instead of
ten times, to tune clasp on each of the 20 instances. Afterwards, we selected 16 configurations
for wseq, 16 for nlp and 6 for rip, which were found on instances with runtimes longer than
0.2 seconds on average. Typically, all inspected clasp configurations performed comparably
for these easy instances. Once again we utilized the borg toolkit to build the kind of
portfolio solvers described in Section 3.2 for each of the studied domains, in this case using
the configurations found by paramils.

6 Experimental Results

The experiments in this section compare and contrast the approaches discussed for handling
solver sensitivity in ASP. To recap, we will compare strategies 1–6, summarized in the
introduction, by measuring the performance of the bestsingle, mapp, and paramils-based
solvers trained with various clasp configurations and on different training sets. In addition,
we will present the performance of:

claspfolio,
the default configuration of clasp, and
the oracle portfolio, also called the virtual best solver, which corresponds to the minimal
run time on each instance given a portfolio approach with perfect knowledge.

The configurations found by paramils are not included in the portfolios of bestsingle,
claspfolio, mapp and oracle. All solver runs were collected on a local cluster (Xeon
X5355 @ 2.66GHz) with a timeout set to 1,200 CPU seconds.

We use the standard technique of five-fold cross validation to get an unbiased evaluation.
Each collection of instances is split into pairs of training and test sets. In five-fold cross
validation, these pairs are generated by dividing the collection into five disjoint test sets of
equal size, with the instances left out of each test set used to form each training set.

First, to illustrate the potential effectiveness of portfolio methods, Table 1 presents the
performance of claspfolio and mapp (trained with the claspfolio configurations on the
claspfolio training set) on the aspcomp instances from the NP category in the system
track. Note that the performance of claspfolio and of the mapp+ solver appear quite
similar in this situation. This performance similarity allows us to take the mapp+ approach
as representative of portfolio methods in general in our evaluations. These results show
that portfolios are clearly effective on heterogeneous collections of instances that include
multiple qualitatively different problem domains. It is less clear, however, that multiple
complementary solver configurations exist across instances within a single problem domain.

To answer the question of whether portfolio solving provides any benefit on individual
problem domains, Figure 1 presents performance curves for experiments run on each domain
separately, under five-fold cross validation. bestsingle, the mapp portfolios, and oracle
were all trained on each specific domain (using the claspfolio configurations). paramils
denotes the clasp configuration found for each domain, as described in Section 4. On
a domain included in its training set (wseq, 5 instances), claspfolio performs well,
only slightly worse than a portfolio trained specifically on that domain. On domains
not included in its training set—nlp and rip—claspfolio is less effective, beating the
default configuration on nlp but losing to it on rip. Lacking domain-specific training, then,
claspfolio can struggle to identify good configurations. Portfolios trained for each domain
(mapp− and mapp+) consistently perform much better than default and claspfolio. This
improvement seems to be due to identifying a single good configuration: note that the mapp−

B. Silverthorn, Y. Lierler, and M. Schneider 171

Table 1 The number of instances solved and the mean run time (MRT) on those solved instances
for single-solver and portfolio strategies on the 125 aspcomp instances (with all portfolios trained
on the claspfolio training set.)

aspcomp

Solver Solved MRT (s)

default 75 82.99
bestsingle 82 63.75
mapp− 82 63.75
mapp+ 84 75.41
claspfolio 85 97.47
oracle 91 48.84

Number of Instances Solved

P
er

−
In

st
an

ce
 C

ut
of

f (
C

P
U

 S
ec

on
ds

)

0

200

400

600

800

1000

0

200

400

600

800

1000

0

200

400

600

800

1000

WSEQ

20 40 60 80

NLP

50 100 150 200 250 300 350

RIP

560 580 600 620

Solver

Best Single

MAPP−

MAPP+

Default

Claspfolio

Oracle

ParamILS

Figure 1 Cactus plots presenting the performance, under five-fold cross validation, of strategies
1-5 on the three application domains considered in this paper.

ICLP’12

172 Surviving Solver Sensitivity: An ASP Practitioner’s Guide

Table 2 Results summarizing the performance of “paramils-based” portfolios, as described
in Section 5, according to the mean number of instances solved and the mean run time on those
instances. These scores were averaged over five-fold cross validation.

wseq nlp rip

Solver Solved MRT (s) Solved MRT (s) Solved MRT (s)

bestsingle (ILS) 93.40 163.95 343.80 95.27 626.20 1.39
mapp− (ILS) 93.40 163.95 343.80 95.26 626.00 1.95
mapp+ (ILS) 93.80 170.52 342.40 100.61 626.00 5.48
oracle (ILS) 94.80 72.27 349.40 80.66 626.20 1.13

and bestsingle solvers are almost identical in their performance. This hypothesis was
confirmed by analyzing the solver execution schedule of mapp−: it turns out that mapp−, on
these domains, may practically be identified with the bestsingle solver approach. Comparing
mapp+ and mapp− performance, then, shows that feature-based prediction provides no
benefit in these experiments. The feature computation overhead incurred by mapp+ and
claspfolio on “easy” domains, such as rip, is also evident. In these single-problem domains,
in other words, the portfolio approach is useful for systematically identifying a good solver
configuration, but struggles to make useful performance predictions from feature information.

In contrast, configurations tuned via paramils perform very well. The performance of
paramils tracks that of the oracle portfolio. Both portfolios and algorithm configuration
improve on the performance of default by large margins.

Note also, however, that run time can be misleading. For example, default is faster
on some instances of the wseq domain, but solves fewer overall. These deceptive aspects
of solver performance strongly suggest that an ASP application developer should employ a
tool, such as a portfolio framework, to systematically collect and analyze solver performance.
Cursory approaches, such as manually experimenting with only a few instances, can lead to
the suboptimal selection of a configuration.

Since collecting training data from the entire domain incurs substantial cost, our recom-
mendation would be to collect such data on a modest randomly sampled subset of instances.
If configurations exhibit substantial differences in performance on that subset, and especially
if the performance gap between the bestsingle solver and the oracle portfolio is large, then
additional training data may enable a portfolio method to make up some of that difference.
Such decisions might also be made based on recently proposed formal definitions of instance
set homogeneity [22].

Configurations found by paramils provide substantial gains in performance on every
domain. It is interesting to see that they perform nearly the same as the oracle portfolio
of claspfolio configurations: if perfect algorithm selection were somehow available, we
would not need to tune the configuration. Conversely, it is impressive that the range of
configurations spanned by the claspfolio suite of solvers can be equaled by a single tuned
configuration on these domains.

Table 2 presents details of the performance of portfolios obtained under the methodology
described in Section 5. No further improvement in comparison to the paramils configuration
could be obtained under this methodology. Either a single configuration is sufficient to
achieve maximum clasp-derived performance on these domains, or a more sophisticated
approach to portfolio construction must be used—the ISAC approach [15], for example,
which attempts to explicitly identify subgroups of instances within the domain, or the Hydra

B. Silverthorn, Y. Lierler, and M. Schneider 173

system, which accounts for overall portfolio performance in making tuning decisions [25].
This question is left to future investigation.

7 Conclusions

The results of this experimental study strongly recommend two courses of action for ASP
application developers, one general and one specific. As a general recommendation, it is
clear that significant care must be paid to solver parameterization in order to accurately
characterize performance on a domain. Employing a portfolio toolkit to systematically
collect run time data and select the best claspfolio configuration is a reasonable and
straightforward first step. As a specific recommendation, however, the use of automatic
algorithm configuration can wring more performance from a domain. Preparing such a tool,
however, itself requires intimate knowledge of a specific solver. Solver authors could empower
the solver’s users by providing configuration files for paramils or a related tool.

One final observation made clear by this work is the importance of understanding the
desired solver performance objective. An ASP developer must carefully select an appropriate
run time budget for their task, and must carefully weigh their desires for efficiency and
consistent success. These desires may be in conflict, and the effectiveness of algorithm
portfolio and configuration methods both depend on a user understanding and accurately
specifying their own preferences.

The need for studies such as that conducted in this paper has also been expressed by
Karp [16]. By looking at worst-case asymptotic performance over the space of all possible
inputs, theoretical computer science typically predicts the intractability in general of the
computational tasks exemplified by ASP or SAT. In practice, however, these challenging
tasks can often be solved, thus driving the need for an experimental approach to the task of
finding and evaluating algorithms for difficult search problems on specific domains. Karp
writes:

A tuning strategy [searches] the space of concrete algorithms consistent with the
algorithmic strategy to find the one that performs best on the training set. Finally,
an evaluation method compares the chosen algorithm with its competitors on a
verification set of instances drawn from the same distribution as the training set.

The case study presented in this work, as well as the methodologies it explored, are steps
toward refining such an experimental approach—an approach that appears essential to
enabling a practitioner to evaluate and apply increasingly powerful, increasingly sensitive
parameterized solvers.

Acknowledgments

We are grateful to Vladimir Lifschitz, Peter Schüller, and Miroslaw Truszczynski for useful
discussions related to the topic of this work. Martin Brain, Peter Schüller, and Shaden Smith
assisted us with the instances used in this case study. Yuliya Lierler was supported by a
CRA/NSF 2010 Computing Innovation Fellowship.

References
1 C. Ansótegui, M. Sellmann, and K. Tierney. A Gender-Based Genetic Algorithm for the Au-

tomatic Configuration of Algorithms. In I. Gent, editor, Proceedings of the CP’09, volume
5732 of Lecture Notes in Computer Science, pages 142–157. Springer-Verlag, 2009.

ICLP’12

174 Surviving Solver Sensitivity: An ASP Practitioner’s Guide

2 M. Brain and F. Schanda. Riposte: Supporting development in spark using counter-
examples. Unpublished manuscript, 2012.

3 F. Calimeri, G. Ianni, F. Ricca, M. Alviano, A. Bria, G. Catalano, S. Cozza, W. Faber,
O. Febbraro, N. Leone, M. Manna, A. Martello, C. Panetta, S. Perri, K. Reale, M. Carmela
Santoro, M. Sirianni, G. Terracina, and P. Veltri. The third answer set programming
competition: Preliminary report of the system competition track. In Delgrande and Faber
[4], pages 388–403.

4 J. Delgrande and W. Faber, editors. Proceedings of the LPNMR’11, volume 6645 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2011.

5 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider.
Potassco: The Potsdam answer set solving collection. AI Communications, 24(2):105–124,
2011.

6 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Challenges in answer set solving.
In M. Balduccini and T. Son, editors, Logic Programming, Knowledge Representation, and
Nonmonotonic Reasoning: Essays in Honor of Michael Gelfond, volume 6565, pages 74–90.
Springer-Verlag, 2011.

7 M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. Schneider, and S. Ziller. A portfolio
solver for answer set programming: Preliminary report. In Delgrande and Faber [4], pages
352–357.

8 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In Proceedings of the IJCAI’07, pages 386–392. MIT Press, 2007.

9 M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Robert
Kowalski and Kenneth Bowen, editors, Proceedings of the ICLP’88, pages 1070–1080. MIT
Press, 1988.

10 E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning, 36:345–377, 2006.

11 C. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability solvers. In Frank van
Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowledge Represen-
tation, pages 89–134. Elsevier, 2008.

12 F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In Proceedings of LION’11, pages 507–523, 2011.

13 F. Hutter, H. Hoos, and K. Leyton-Brown. Parallel algorithm configuration. In Proceedings
of the LION’12, 2012. To appear.

14 F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: An automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306, 2009.

15 S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. ISAC—instance-specific algorithm
configuration. In Proceedings of the ECAI’10, 2010.

16 R. Karp. Heuristic algorithms in computational molecular biology. Journal of Computer
and System Sciences, 77(1):122–128, 2011.

17 Y. Lierler and P. Schüller. Parsing combinatory categorial grammar with answer set pro-
gramming: Preliminary report. In Workshop on Logic programming (WLP), 2011.

18 Y. Lierler, S. Smith, M. Truszczynski, and A. Westlund. Weighted-sequence problem: Asp
vs casp and declarative vs problem oriented solving. In Proceedings of the PADL’12), 2012.

19 V. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer Verlag, 1999.

20 I. Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.

21 O. Roussel. Controlling a Solver Execution with the runsolver Tool. Journal on Satisfiability,
Boolean Modeling and Computation, 7(4):139–144, 2011.

B. Silverthorn, Y. Lierler, and M. Schneider 175

22 M. Schneider and H. Hoos. Quantifying homogeneity of instance sets for algorithm con-
figuration. In Y. Hamadi and M. Schoenauer, editors, Proceedings of the LION’12, 2012.
Submitted for Post-Proceedings.

23 B. Silverthorn. A Probabilistic Architecture for Algorithm Portfolios. PhD thesis, The
University of Texas at Austin, 2012.

24 B. Silverthorn and R. Miikkulainen. Latent class models for algorithm portfolio methods.
In Proceedings of the AAAI’10, 2010.

25 L. Xu, H. Hoos, and K. Leyton-Brown. Hydra: Automatically configuring algorithms for
portfolio-based selection. In Proceedings of the AAAI’10, 2010.

26 L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research, 32:565–606, 2008.

ICLP’12

aspeed : ASP-based Solver Scheduling
Holger Hoos1, Roland Kaminski2, Torsten Schaub3, and
Marius Schneider4

1 University of British Columbia, Canada
hoos@cs.ubc.ca

2 University of Potsdam, Germany
kaminski@cs.uni-potsdam.de

3 University of Potsdam, Germany
torsten@cs.uni-potsdam.de

4 University of Potsdam, Germany
manju@cs.uni-potsdam.de

Abstract
Although Boolean Constraint Technology has made tremendous progress over the last decade,
it suffers from a great sensitivity to search configuration. This problem was impressively coun-
terbalanced at the 2011 SAT Competition by the rather simple approach of ppfolio relying on a
handmade, uniform and unordered solver schedule. Inspired by this, we take advantage of the
modeling and solving capacities of ASP to automatically determine more refined, that is, non-
uniform and ordered solver schedules from existing benchmarking data. We begin by formulating
the determination of such schedules as multi-criteria optimization problems and provide corre-
sponding ASP encodings. The resulting encodings are easily customizable for different settings
and the computation of optimum schedules can mostly be done in the blink of an eye, even when
dealing with large runtime data sets stemming from many solvers on hundreds to thousands of
instances. Also, its high customizability made it easy to generate even parallel schedules for
multi-core machines.

1998 ACM Subject Classification I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Algorithm Schedule, Portfolio-based Solving, Answer Set Programming

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.176

1 Introduction

Boolean Constraint Technology has made tremendous progress over the last decade, leading
to industrial-strength solvers. Although this advance in technology was mainly conducted
in the area of Satisfiability Testing (SAT; [3]), it meanwhile also led to significant boosts
in neighboring areas, like Answer Set Programming (ASP; [2]), Pseudo-Boolean Solving
[3, Chapter 22], and even (multi-valued) Constraint Solving [21]. However, there is yet a
prize to pay. Modern Boolean constraint solvers are rather sensitive to the way their search
parameters are configured. Depending on the choice of the respective configuration, the
solver’s performance may vary by several orders of magnitude. Although this is a well-known
issue, it was impressively laid bare once more at the 2011 SAT competition, where 16 prizes
were won by the portfolio-based solver ppfolio [17]. The idea underlying ppfolio is very simple:
it independently runs several solvers in parallel. If only one processing unit is available, three
solvers are started. By relying on the operating system, each solver gets nearly the same time
to solve a given instance. We refer to this as a uniform, unordered solver schedule. If more

© Holger Hoos, Roland Kaminski, Torsten Schaub, and Marius Schneider;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 176–187

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.176
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

H. Hoos, R. Kaminski, T. Schaub, and M. Schneider 177

Table 1 Table of solver runtimes on problem instances with κ = 10.

s1 s2 s3 oracle

i1 1 (11) 3 1
i2 5 (11) 2 2
i3 8 1 (11) 1
i4 (11) (11) 2 2
i5 (11) 6 (11) 6
i6 (11) 8 (11) 8

timeouts 3 3 3 0

processing units are available, one solver is in turn started on each unit; though multiple
ones may end up on the last unit.

Inspired by this plain, yet successful system, we provide a more elaborate, yet still simple
approach that takes advantage of the modeling and solving capacities of ASP to automatically
determine more refined, that is, non-uniform and ordered solver schedules from existing
benchmarking data. The resulting encodings are easily customizable for different settings.
For instance, our approach is directly extensible to the generation of parallel schedules for
multi-core machines. Also, the computation of optimum schedules can mostly be done in
the blink of an eye, even when dealing with large runtime data sets stemming from many
solvers on hundreds to thousands of instances. Unlike both, our approach does not rely on
any domain-specific features, which makes it easily adaptable to other problems.

The remainder of this article is structured as follows. In Section 2, we formulate the
determination of optimum schedules as multi-criteria optimization problems. In doing so,
our primary emphasis lies in producing robust schedules that aim at the fewest number of
timeouts by non-uniformly attributing each solver (or solver configuration) a different time
slice. Once such a robust schedule is found, we optimize its runtime by selecting the best solver
alignment. We next extend this approach to parallel settings in which multiple processing
units are available. With these specifications at hand, we proceed in two steps. First, we
provide an ASP encoding for computing (parallel) timeout-minimal schedules (Section 3).
Once such a schedule is identified, we use the encoding to find a time-minimal alignment of
its solvers (Section 4). Both ASP encodings reflect interesting features needed for dealing
with large sets of runtime data. Finally, in Section 5, we provide a empirical evaluation
of the resulting system aspeed, and we contrast it with related approaches (Section 6). In
what follows, we presuppose a basic acquaintance with ASP (see [2] for a comprehensive
introduction).

2 Solver Scheduling

Sequential Scheduling. Given a set I of problem instances and a set S of solver configurations,
we use function t : I × S 7→ R to represent a table of solver runtimes on instances. Also, we
use an integer κ to represent a given cutoff time.

For illustration, consider the runtime function in Table 1; it deals with 6 problem instances,
i1 to i6, and 3 solvers, s1, s2, and s3. Each solver can solve three out of six instances within
the cutoff time, κ = 10. A timeout is represented in Table 1 by 11, that is, an increased
cutoff time. The oracle solver, also called virtually best solver, is obtained by assuming the
best performance of each individual solver. As we see in the rightmost column, the oracle

ICLP’12

178 aspeed : ASP-based Solver Scheduling

would allow for solving all instances in our example within the cutoff time. Thus, if we knew
beforehand which solver to choose for each instance, we could solve all of them. Unlike this,
we can already obtain an improvement by successively running each solver within a limited
time slice rather than running one solver until cutoff. For instance, running s1 for 1, s2
for 6, and s3 for 2 seconds allows us to solve 5 out of 6 instances, as indicated in bold in
Table 1. In what follows, we show how such a schedule can be obtained beforehand from
given runtime data.

Given I, S, t, and κ as specified above, a timeout-optimal solver schedule can be expressed
as an unordered tuple σ, represented as a function σ : S → [0, κ], satisfying the following
condition:

σ ∈ arg maxσ:S→[0,κ] |{i | t(i, s) ≤ σ(s), (i, s) ∈ I × S}|

such that
∑
s∈Sσ(s) ≤ κ

(1)

An optimal schedule σ consists of slices σ(s) indicating the (possibly zero) time allotted to
each solver s ∈ S. Such a schedule maximizes the number of solved instances, or conversely,
minimizes the number of obtained timeouts.

The above example corresponds to the schedule σ = {s1 7→ 1, s2 7→ 6, s3 7→ 2}; in fact, σ
constitutes one among nine timeout-optimal solver schedules in our example. Note that the
sum of all time slices is even smaller than the cutoff time. Hence, all schedules obtained by
adding 1 to either of the three solvers are also timeout-optimal. A timeout-optimal schedule
consuming the entire allotted time is {s1 7→ 0, s2 7→ 8, s3 7→ 2}.

In practice, however, the criterion in (1) turns out to be too coarse, that is, it yields many
heterogeneous solutions among which we would like to make an educated choice. To this
end, we take advantage of L-norms for regulating the selection. In our case, an Ln-norm
on schedules is defined as1 Σs∈S,σ(s)6=0 σ(s)n. Depending upon the choice of n as well as
whether we minimize or maximize the norm, we obtain different selection criteria. For
instance, L0-norms suggest using as few/many solvers as possible and L1-norms aim at
minimizing/maximizing the sum of time slices. Minimizing the L2-norm amounts to allotting
each solver a similar time slice, while maximizing it prefers schedules with large runtimes
for few solvers. In more formal terms, an Ln-norm gives rise to objective functions of the
following form. For a set of schedules of a set S of solvers, we define:

σ ∈ arg minσ:S→[0,κ] Σs∈S,σ(s)6=0 σ(s)n (2)

An analogous function is obtained for maximization with arg max.
For instance, our exemplary schedule σ = {s1 7→ 1, s2 7→ 6, s3 7→ 2} has the Li-norms 3,

9, and 41 for i = 0..2. For a complement, we get norms 3, 9, and 27 for the (suboptimal)
uniform schedule {s1 7→ 3, s2 7→ 3, s3 7→ 3} and 1, 9, and 81 for a singular schedule {s3 7→ 9},
respectively. Although we empirically discovered no clear edge of the latter, we favor a
schedule with a minimal L2-norm. First, it leads to a significant reduction of candidate
schedules and, second, it results in schedules with a most homogeneous distribution of time
slices, similar to ppfolio. In fact, our exemplary schedule has the smallest L2-norm among
all nine timeout-optimal solver schedules.

Once we have identified a most robust schedule wrt criteria (1) and (2), it is interesting
to know which solver alignment yields the best performance as regards time. More formally,

1 The common Ln-norm is defined as n
√

Σx∈Xxn. We take the simpler definition in view of using it merely
for optimization.

H. Hoos, R. Kaminski, T. Schaub, and M. Schneider 179

we define an alignment of a set S of solvers as the bijective function π : {1, . . . , |S|} → S.
Consider the above schedule σ = {s1 7→ 1, s2 7→ 6, s3 7→ 2}. The alignment π = {1 7→ s1, 2 7→
s3, 3 7→ s2} induces the execution sequence (s1, s3, s2) of σ. This sequence solves all six
benchmarks in Table 1 in 29 seconds; in detail, it takes 1, 1+2, 1+2+1, 1+2, 1+2+6, 1+2+6
seconds for benchmark ik for k = 1..6. Note that benchmark i3 is successfully solved by the
third solver in the alignment, viz. s2. Hence the total time amounts to the allotted time by
σ to s1 and s3, viz. σ(s1) and σ(s3), plus the effective time of s2, viz. t(i3, s2). Because the
timeout-minimal time slices are given, we do not distinguish whether an alignment solves a
benchmark after the total time of the schedule or not. For instance, our exemplary alignment
π takes 9 seconds on both i5 and i6, although it only solves the former but not the latter.

This can be made precise as follows. Given a schedule σ and an alignment π of a set S of
solvers, and an instance i ∈ I, we define:

τσ,π(i) =


(∑min (P)−1

j=1 σ(π(j))
)

+ t(i, π(min (P))) if P 6= ∅,

κ otherwise
(3)

where P = {l ∈ {1, . . . , |S|} | t(i, π(l)) ≤ σ(π(l))}. While minP gives the position of the first
solver solving instance i in a schedule σ aligned by π, τσ,π(i) gives the total time to solve
instance i by schedule σ aligned by π. If an instance i cannot be solved at all by a schedule,
τσ,π(i) is set to the cutoff κ. For our exemplary schedule σ and its alignment π, we get for
i3: minP = 3 and τσ,π(i3) = 1 + 2 + 1 = 4.

For a schedule σ of solvers in S, we then define:

π ∈ arg minπ:{1,...,|S|}→S
∑
i∈Iτσ,π(i) (4)

For our timeout-optimal schedule σ = {s1 7→ 1, s2 7→ 6, s3 7→ 2} wrt criteria (1)
and (2), we obtain two optimal alignments, yielding execution alignments (s3, s1, s2) and
(s1, s3, s2), both of which result in a solving time of 29 seconds.

Parallel Scheduling. The increasing availability of multi-core processors makes it inter-
esting to extend our approach for distributing a schedule’s solvers on different processing
units. For simplicity, we take a coarse approach in binding solvers to units, thus precluding
re-allocations during runtime.

To begin with, let us provide a formal specification of the extended problem. To this
end, we augment our ensemble of concepts with a set U of (processing) units and associate
each unit with subsets of solvers from S. More formally, we define a distribution of a set S
of solvers as the function η : U → 2S such that

⋂
u∈U η(u) = ∅. With it, we can determine

timeout-optimal solver schedules for several cores simply by strengthening the condition
in (1) to the effect that all solvers associated with the same unit must respect the cutoff
time. This leads us to the following extension of (1):

σ ∈ arg maxσ:S→[0,κ] |{i | t(i, s) ≤ σ(s), (i, s) ∈ I × S}|

such that
∑
s∈η(u)σ(s) ≤ κ for each u ∈ U

(5)

For illustration, let us reconsider Table 1 along with schedule σ = {s1 7→ 1, s2 7→ 8, s3 7→
2}. Assume that we have two cores, 1 and 2, along with the distribution η = {1 7→ {s2}, 2 7→
{s1, s3}}. This distributed schedule solves all benchmarks in Table 1 with a cutoff of κ = 8.
Hence, it is an optimal solution to the optimization problem in (5).

We keep the definitions of a schedule’s Ln-norm as a global constraint.
For determining our secondary criterion, enforcing time-optimal schedules, we relativize

the auxiliary definitions in (3) to account for each unit separately. Given a schedule σ and a

ICLP’12

180 aspeed : ASP-based Solver Scheduling

set U of units, we define for each unit u ∈ U a local alignment of the solvers in η(u) as the
bijective function πu : {1, . . . , |η(u)|} → η(u). Given this and an instance i ∈ I, we extend
the definitions in (3) as follows:

τσ,πu
(i) =


(∑min (P)−1

j=1 σ(πu(j))
)

+ t(i, πu(min (P))) if P 6= ∅,

κ otherwise
(6)

where P = {l ∈ {1, . . . , |η(u)|} | t(i, πu(l)) ≤ σ(πu(l))}.
The collection (πu)u∈U regroups all local alignments into a global alignment. For a

schedule σ of solvers in S and a set U of (processing) units, we then define:

(πu)u∈U ∈ arg min(πu:{1,...,|η(u)|}→η(u))u∈U

∑
i∈I minu∈U τσ,πu(i) (7)

For illustration, reconsider the above distribution and suppose we chose the local aligments
π1 = {s2 7→ 1} and π2 = {s1 7→ 1, s3 7→ 2}. This global alignment solves all six benchmark
instances in 22 seconds. In more detail, it takes 12, 1 + 22, 11, 1 + 22, 61, 81 seconds for
benchmark ik for k = 1..6, where the solving unit is indicated by the subscript.

Note that the definitions in (5), (6), and (7) correspond to their sequential counterparts
in (1), (3), and (4) whenever we are faced with a single processing unit.

3 Solving Timeout-Optimal Scheduling with ASP

To begin with, we detail the basic encoding for identifying robust (parallel) schedules. In
view of the remark at the end of the last section, however, we directly provide an encoding
for parallel scheduling, which collapses to one for sequential scheduling whenever a single
processing unit is used.

Following good practice in ASP, a problem instance is expressed as a set of facts. That
is, Function t : I × S 7→ R is represented as facts of form time(i,s,t), where i ∈ I, s ∈ S,
and t is the runtime t(i, s) converted to a natural number with a limited precision. The
cutoff is expressed via Predicate kappa/1. And the number of available processing units is
captured via Predicate units/1, here instantiated with 2 cores. Given this, we can represent
the contents of Table 1 as follows.

kappa (10).
units (2).

time(i1 , s1 , 1). time(i1 , s2 , 11). time(i1 , s3 , 3).
time(i2 , s1 , 5). time(i2 , s2 , 11). time(i2 , s3 , 2).
time(i3 , s1 , 8). time(i3 , s2 , 1). time(i3 , s3 , 11).
time(i4 , s1 , 11). time(i4 , s2 , 11). time(i4 , s3 , 2).
time(i5 , s1 , 11). time(i5 , s2 , 6). time(i5 , s3 , 11).
time(i6 , s1 , 11). time(i6 , s2 , 8). time(i6 , s3 , 11).

The encoding in Listing 1 along with all following ones are given in the input language
of gringo, documented in [7]. The first three lines of Listing 1 provide auxiliary data. The
set S of solvers is given by Predicate solver/1. Similarly, the runtimes for each solver are
expressed by time/2. In addition, the ordering order/3 of instances by time per solver is
precomputed.

order(I,K,S) :-
time(I,S,T), time(K,S,V), (T,I) < (V,K),
not time(J,S,U) : time(J,S,U) : (T,I) < (U,J) : (U,J) < (V,K).

H. Hoos, R. Kaminski, T. Schaub, and M. Schneider 181

The above results in facts order(I,K,S) capturing that instance I is solved immediately
before instance K by solver S. Although this information could be computed via ASP (as
shown above), we make use of external means for sorting (the above rule needs cubic time
for instantiation, which is infeasible for a few thousand instances).2

The idea is now to guess for each solver a time slice and a processing unit. With the
resulting schedule, all solvable instances can be identified. And finally all schedules solving
most instances are selected.

Listing 1 ASP encoding for Timeout-Minimal (Parallel) Scheduling.
1 solver (S) :- time(_,S,_).
2 time(S,T) :- time(_,S,T).
3 unit (1..N) :- units(N).

5 {slice(U,S,T): time(S,T): T <= K: unit(U)} 1 :- solver (S),kappa(K).
6 slice(S,T) :- slice(_,S,T).

8 :- not [slice(U,S,T) = T] K, kappa(K), unit(U).

10 solved (I,S) :- slice(S,T), time(I,S,T).
11 solved (I,S) :- solved (J,S), order(I,J,S).
12 solved (I) :- solved (I,_).

14 # maximize { solved (I) @ 2 }.
15 # minimize [slice(S,T) = T*T @ 1].

A schedule is represented by atoms slice(U,S,T) allotting a time slice T to solver S on unit
U. In Line 5, at most one time slice is chosen for each solver subject to the trivial condition
that it is equal or less the cutoff time. At the same time, a processing unit is uniquely
assigned to the selected solver. The following line projects out the processing unit because
it is irrelevant when determining solved instances (in Line 10). The integrity constraint in
Line 8 ensures that the sum over all selected time slices on each core is not greater than
the cutoff time. This implements the side condition in (5); and it reduces to the one in (1)
whenever a single unit is considered. In lines 10 to 12, all instances solved by the selected
time slices are gathered via predicate solved/1. Given that we collect in Line 6 all time
slices among actual runtimes, each time slice allows for solving at least one instance. This
property is used in Line 10 to identify the instance I solvable by solver S. Given this and the
sorting of instances by solver performance in order/3, we collect in Line 11 all instances
that can be solved even faster than the instance in Line 10. Note that at first sight it might
be tempting to encode this differently:

solved (I) :- slice(S,T), time(I,S,TS), T <= TS.

The problem with the above rule is that it has a quadratic number of instantiations in the
number of benchmark instances in the worst case. Unlike this, our ordering-based encoding
is linear because only successive instances are considered. Finally, the number of solved
instances is maximized in Line 14, following the recipe in (5) (or (1), respectively). This
major objective gets a higher priority, viz. 2, than the L2-norm from (2) having priority 1.

2 To be precise, we use gringo’s embedded scripting language lua for sorting.

ICLP’12

182 aspeed : ASP-based Solver Scheduling

4 Solving (Timeout and) Time-Minimal Parallel Scheduling with ASP

In the previous section, we have determined a timeout-minimal schedule. Here, we present
an encoding that takes such a schedule and calculates a solver alignment per processing unit
while minimizing the overall runtime according to Criterion (7). This two-phase approach is
motivated by the fact that an optimal alignment must be determined among all permutations
of a schedule. While a one shot approach had to account for all permutations of all potential
timeout-minimal schedules, our two-phase approach reduces the second phase to searching
among all permutations of a single timeout-minimal schedule.

We begin by extending the problem instance of the last section (in terms of kappa/1,
units/1, and time/3) by facts over slice/3 providing the time slices of a timeout-minimal
schedule (per solver and processing unit). To take on our example from Section 2, we use
the obtained timeout-minimal schedule to create the following problem instance:

kappa (10). units (2).
time(i1 , s1 , 1). time(i1 , s2 , 11). time(i1 , s3 , 3).
...
slice (1,s2 ,8). slice (2,s1 ,1). slice (2,s3 ,2).

The idea of the encoding in Listing 2 is to guess a permutation of solvers and then to use
ASP’s optimization capacities for calculating a time-minimal alignment. The challenging
part is to keep the encoding compact. That is, we have to keep the size of the instantiation
of the encoding small because otherwise we fail to solve common problems with thousands of
benchmark instances. To do this, we make use of #sum aggregates with negative weights to
find the fastest processing unit without representing any sum of times explicitly.

Listing 2 ASP encoding for Time-Minimal (Parallel) Scheduling.
1 solver (U,S) :- slice(U,S,_).
2 instance (I) :- time(I,_,_).
3 unit (1..N) :- units(N).
4 solvers (U,N) :- unit(U), N := { solver (U,_)}.
5 solved (U,S,I) :- time(I,S,T), slice(U,S,TS), T <= TS.
6 solved (U,I) :- solved (U,_,I).
7 capped (U,I,S,T) :- time(I,S,T), solved (U,S,I).
8 capped (U,I,S,T) :- slice(U,S,T), solved (U,I), not solved (U,S,I).
9 capped (U,I,d,K) :- unit(U), kappa(K), instance (I), not solved (U,I).

10 capped (I,S,T) :- capped (_,I,S,T).

12 1 { order(U,S,X) : solver (U,S) } 1 :- solvers (U,N), X = 1..N.
13 1 { order(U,S,X) : solvers (U,N) : X = 1..N } 1 :- solver (U,S).

15 solvedAt (U,I,X+1) :- solved (U,S,I), order(U,S,X).
16 solvedAt (U,I,X+1) :- solvedAt (U,I,X), solvers (U,N), X <= N.

18 mark(U,I,d,K) :- capped (U,I,d,K).
19 mark(U,I,S,T) :- capped (U,I,S,T), order(U,S,X), not solvedAt (U,I,X).
20 min (1,I,S,T) :- mark (1,I,S,T).

22 less(U,I) :- unit(U), unit(U+1), instance (I),
23 [min(U,I,S1 ,T1): capped (I,S1 ,T1) = T1 , mark(U+1,I,S2 ,T2) = -T2] 0.

25 min(U+1,I,S,T) :- min(U,I,S,T), less(U,I).
26 min(U,I,S,T) :- mark(U,I,S,T), not less(U-1,I).

28 # minimize [min(U,_,_,T): not unit(U+1) = T].

H. Hoos, R. Kaminski, T. Schaub, and M. Schneider 183

The block in Line 1 to 10 gathers static knowledge about the problem instance, that
is, solvers per processing unit (solver/2), instances appearing in the problem description
(instance/1), available processing units (unit/1), number of solvers per unit (solvers/2),
instances solved by a solver within its allotted slice (solved/3), and instances that could be
solved on a unit given the schedule (solved/2). In view of Equation (6), we precompute the
times that contribute to the values of τσ,πu and capture them in capped/4 (and capped/3).
A fact capped(U,I,S,T) assigns to instance I run by solver S on unit U a time T. In Line 7,
we assign the time needed to solve the instance if it is within the solver’s time slice. In Line 8,
we assign the solver’s time slice if the instance could not be solved but at least one other
solver could solve it on the processing unit. In Line 9, we assign the whole cutoff to dummy
solver d (we assume that there is no other solver called d) if the instance could not be solved
on the processing unit at all; this is to implement the else case in (6) and (3).

The actual encoding starts in Line 12 and 13 by guessing a permutation of solvers. Here
the two head aggregates ensure that for every solver (per unit) there is exactly one index
and vice versa. In Line 15 and 16, we mark indexes (per unit) as solved if the solver with
the preceding index could solve the instance or if the previous index was marked as solved.
Note that this is a similar “chain construction” as done in the previous section in order to
avoid a combinatorial blow-up.

In the block from Line 18 to 26, we determine the time for the fastest processing unit
depending on the guessed permutation. The rules in Line 18 and 19 mark the necessary
times that have to be added up on each processing unit. The sums of the marked times
correspond to τσ,πu(i) in Equation (6) and (3). Next, we determine the smallest sum of
times. Therefore, we iteratively determine the minimum. An atom min(U,I,S,T) marks the
times of the fastest unit in the range from unit 1 to U to solve an instance (or the cutoff via
dummy solver d if the schedule does not solve the instance for the unit). To begin with, we
initialize min/4 with the times for the first unit in Line 20. Then, we add a rule in Line 22
and 23 that, given minimal times for units in the range of 1 to U and times for unit U+1,
determines the faster one. The current minimum contributes positive times to the sum, while
unit U+1 contributes negative times. Hence, if the sum is negative or zero, the sum of times
captured in min/4 is smaller or equal to the sum of times of unit U+1 and the unit thus slower
than some preceding unit, which makes the aggregate true and derives the corresponding
atom over less/2. Depending on less/2, we propagate the smaller sum, which is either
contributed by the preceding units (Line 25) or the unit U+1 (Line 26). Finally, in Line 28
the times of the fastest processing unit are minimized in the optimization statement, which
implements Equation (7) and (4).

5 Experiments

After describing the theoretical foundations and ASP encodings underlying our approach, we
now present some short results from an empirical evaluation. The python implementation
of our solver, dubbed aspeed, uses the ASP systems [4] of the potassco group [6], namely
grounder the gringo (3.0.4) and the ASP solver clasp (2.0.5). The sets of runtime data
(including a list of the solvers and instances) used in this work are freely available online [1].

To provide a thorough empirical evaluation of our approach, we selected five large data sets
of runtimes for two prominent and widely studied problems, SAT and ASP. The sets Random,
Crafted and Application contain the runtimes taken from the 2011 SAT Competition [18];
the 3s-Set is the training set of the portfolio SAT solver 3s [13]; and the ASP instance set
(ASP-Set) contains runtimes based on different configurations of the highly parametric ASP
solver clasp [8].

ICLP’12

184 aspeed : ASP-based Solver Scheduling

Table 2 Comparison of different approaches w.r.t. #timeouts for a cutoff time of 5000 CPU
seconds for Random (|I| = 600, |S| = 9), Crafted (|I| = 300, |S| = 15), Application (|I| = 300,
|S| = 18) and 3s-Set (|I| = 5467, |S| = 37) and 600 seconds for ASP-Set (|I| = 313, |S| = 8).

Random Crafted Application 3s-Set ASP-Set
Single Best 254 (42.3%) 155 (51.6%) 85 (28.3%) 1881 (34.4%) 28 (8.9%)
Uniform 155 (25.8%) 123 (41.5%) 116 (38.6%) 1001 (18.3%) 29 (9.2%)
ppfolio-like 127 (21.1%) 126 (42.0%) 82 (27.3%) 645 (11.8%) 17 (5.4%)
satzilla 115 (19.2%) 101 (34.0%) 74 (24.7%) −− (−%) −− (−%)
aspeed (seq) 131 (21.8%) 98 (32.6%) 83 (27.6%) 536 (9.8%) 18 (5.7%)
aspeed (par 8) 109 (18.2%) 85 (28.3%) 51 (17.0%) 140 (2.5%) 8 (2.6%)
Oracle 108 (18%) 77 (26%) 45 (15%) 0 (0%) 4 (1.3%)

Based on these data sets, we compare sequential aspeed and parallel aspeed with eight
cores (par 8) against the best solver in the portfolio (Single Best), a uniform distribution
of the time slices over all solvers in the portfolio (Uniform), the Oracle performance (also
called virtual best solver) and two SAT solvers: a ppfolio-like approach inspired by the
single-threaded version of ppfolio, where the best three complementary solvers are selected
with a uniform distribution of time slices, and satzilla [23] based on the results of [24] as
a representative of a sequential portfolio-based algorithm selector. To obtain an unbiased
evaluation of performance, we used 10-fold cross validation. Table 2 shows the number
of timeouts and, in brackets, the corresponding fraction of the instance set; hence, small
numbers indicate better performance. In all cases, aspeed showed better performance than
the Single Best solver. aspeed performed better than ppfolio-like in three out of five settings,
namely on Crafted, 3s-Set and ASP-Set, and better than satzilla in one out of three settings,
namely, Crafted.

6 Related Work

Our work forms part of a long line of research that can be traced back to John Rice’s seminal
work on algorithm selection [16] on one side, and to work by Huberman, Lukos, and Hogg
[12] on parallel algorithm portfolios on the other side.

Most recent work on algorithm selection is focused on mapping problem instances to
a given set of algorithms, where the algorithm to be run on a given problem instance i
is typically determined based on a set of (cheaply computed) features of i. This is the
setting considered prominently by Rice [16], as well as by the work on SATzilla, which makes
use of regression-based models of running time [22, 23]; work on the use of decision trees
and case-base reasoning for selecting bid evaluation algorithms in combinatorial auctions
[10, 5]; and work on various machine learning techniques for selecting algorithms for finding
maximum probable explanations in Bayes nets in real time [11]. All these approaches are
similar to ours in that they exploit complementary strengths of a set of solvers for a given
problem; however, unlike these per-instance algorithm selection methods, aspeed selects and
schedules solvers to optimize performance on a set of problem instances, and therefore does
not require instance features.

cphydra is a portfolio-based procedure for solving constraint programming problems that
is based on case-based reasoning for solver selection and a simple complete search procedure
for sequential solver scheduling [15]. Like the previously mentioned approaches, and unlike
aspeed, it requires instance features for solver selection, and, according to its authors, is
limited to a low number of solvers (in their work, five). Like the simplest variant of aspeed,

H. Hoos, R. Kaminski, T. Schaub, and M. Schneider 185

the solver scheduling in cphydra aims to maximize the number of given problem instances
solved within a given time budget.

Early work on parallel algorithm portfolios highlights the potential for performance
improvements, but does not provide automated procedures for selecting the solvers to be run
in parallel from a larger base set [12, 9]. ppfolio, which demonstrated impressive performance
at the 2011 SAT Competition, is a simple procedure that runs between 3 and 5 SAT solver
concurrently (and, depending on the number of processors or cores available, potentially
in parallel) on a given SAT instance. The component solvers have been chosen manually
based on performance on past competition instances, and they are all run for the same
amount of time. Unlike ppfolio, our approach automatically selects solvers to minimize the
number of timeouts or total running time on given training instances using a powerful ASP
solver and can, at least in principle, work with much larger numbers of solvers. Furthermore,
unlike ppfolio, aspeed can allot variable amounts of time to each solver to be run as part of a
sequential schedule.

Concurrently with our work presented here, Yun and Epstein [25] developed an approach
that builds sequential and parallel solver schedules using case-based reasoning in combination
with a greedy construction procedure. Their RSR-WG procedure combines fundamental
aspects of cphydra [15] and GASS [20]; unlike aspeed, it relies on instance features. RSR-WG
uses a relatively simple greedy heuristic to optimize the number of problem instances solved
within a given time budget by the parallel solver schedule to be constructed; our use of an
ASP encoding, on the other hand, offers considerably more flexibility in formulating the
optimization problem to be solved, and our use of powerful, general-purpose ASP solvers can
at least in principle find better schedules. Our approach also goes beyond RSR-WG in that
it permits the optimization of parallel schedules for runtime.

Perhaps most closely related to our approach is the recent work of Kadioglu et al. on
algorithm selection and scheduling [13]. They study pure algorithm selection and various
scheduling procedures based on mixed integer programming techniques. Unlike aspeed, their
more sophisticated procedures rely on instance features for nearest-neighbour-based solver
selection, based on the (unproven) assumption that any given solver shows similar performance
on instances with similar features [14]. (We note that in the literature on artificially created,
‘uniform random’ SAT and CSP instances there is some evidence suggesting that at least with
the cheaply computable features that can be practically exploited by per-instance algorithm
selection approaches this assumption may not hold.) We focussed deliberately on a simpler
setting than their best-performing semi-static scheduling approach in that we do not use
per-instance algorithm selection, yet still obtain excellent performance; furthermore, we
consider the more general case of parallel solver schedules, while their work is limited to
sequential execution of solvers.

7 Conclusion

In this work, we demonstrated how ASP formulations and a powerful ASP solver (clasp) can
be used to compute sequential and parallel solver schedules. Compared with earlier model-free
and model-based approaches (ppfolio and satzilla, respectively), our new procedure, aspeed,
performs very well on SAT and ASP – two widely studied problems for which substantial
and sustained effort is being expended in the design and implementation of high-performance
solvers.

aspeed is open-source and available online [1]. We expect aspeed to work particularly
well in situations where various different kinds of problem instances have to be solved (e.g.,

ICLP’12

186 aspeed : ASP-based Solver Scheduling

competitions) or where single good (or even dominant) solvers or solver configurations are
unknown (e.g., new applications). Our approach leverages the power of multi-core and
multi-processor computing environments and, because of its use of easily modifiable and
extensible ASP encodings, can in principle be readily modified to accommodate different
constraints on and optimization criteria for the schedules to be constructed. Unlike most
other portfolio-based approaches, aspeed does not require instance features and can therefore
be applied more easily to new problems.

Because, like various other approaches, aspeed is based on minimisation of timeouts, it is
currently only applicable in situations where some instances cannot be solved within the time
budget under consideration (this setting prominently arises in many solver competitions). In
future work, we intend to investigate strategies that automatically reduce the time budget if
too few timeouts are observed on training data; we are also interested in the development of
better techniques for directly minimizing runtime.

In situations where there is a solver or configuration that dominates all others across
the instance set under consideration, portfolio-based approaches are generally not effective
(with the exception of performing multiple independent run of a randomized solver). The
degree to which performance advantages can be obtained through the use of portfolio-based
approaches, and in particular aspeed, depends on the degree to which there is complementarity
between different solvers or configurations, and it would be interesting to investigate this
dependence quantitatively, possibly based on recently proposed formal definitions of instance
set homogeneity [19].

Acknowledgments

This work was partially funded by the German Science Foundation (DFG) under grant SCHA
550/8-2.

References

1 aspeed. Available at http://www.cs.uni-potsdam.de/aspeed/.
2 C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press, 2003.
3 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability,

volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.
4 F. Calimeri, G. Ianni, F. Ricca, M. Alviano, A. Bria, G. Catalano, S. Cozza, W. Faber,

O. Febbraro, N. Leone, M. Manna, A. Martello, C. Panetta, S. Perri, K. Reale, M. Santoro,
M. Sirianni, G. Terracina, and P. Veltri. The third answer set programming competition:
Preliminary report of the system competition track. In Proceedings of the Eleventh Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11),
volume 6645 of Lecture Notes in Artificial Intelligence, pages 388–403. Springer-Verlag,
2011.

5 C. Gebruers, A. Guerri, B. Hnich, and M. Milano. Making choices using structure at the
instance level within a case based reasoning framework. In Proceedings of the First Confer-
ence on Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, volume 3011 of Lecture Notes in Computer Science, pages 380–386.
Springer, 2004.

6 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider.
Potassco: The Potsdam answer set solving collection. AI Communications, 24(2):105–124,
2011.

http://www.cs.uni-potsdam.de/aspeed/

H. Hoos, R. Kaminski, T. Schaub, and M. Schneider 187

7 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. A user’s
guide to gringo, clasp, clingo, and iclingo.

8 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In Proceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI’07), pages 386–392. AAAI Press/The MIT Press, 2007.

9 C. Gomes and B. Selman. Algorithm portfolios. Artificial Intelligence, 126(1-2):43–62,
2001.

10 A. Guerri and M. Milano. Learning techniques for automatic algorithm portfolio selection.
In Proceedings of the Sixteenth European Conference on Artificial Intelligence (ECAI’04),
pages 475–479, 2004.

11 H. Guo and W. Hsu. A learning-based algorithm selection meta-reasoner for the real-time
MPE problem. In Proceedings of the Seventeenth Australian Joint Conference on Artificial
Intelligence, pages 307–318. Springer, 2004.

12 B. Huberman, R. Lukose, and T. Hogg. An economic approach to hard computational
problems. Science, 27:51–53, 1997.

13 S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann. Algorithm
Selection and Scheduling. In Proceedings of the Seventeenth International Conference on
Principles and Practice of Constraint Programming (CP’11), volume 6876 of Lecture Notes
in Computer Science, pages 454–469. Springer-Verlag, 2011.

14 S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. ISAC – instance-specific algo-
rithm configuration. In Proceedings of the Nineteenth European Conference on Artificial
Intelligence (ECAI’10), pages 751–756. IOS Press, 2010.

15 E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan. Using case-based
reasoning in an algorithm portfolio for constraint solving. In Proceedings of the Nineteenth
Irish Conference on Artificial Intelligence and Cognitive Science (AICS’08), 2008.

16 J. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.
17 O. Roussel. Description of ppfolio, 2011.
18 SATComp11. Available at http://www.cril.univ-artois.fr/SAT11/.
19 M. Schneider and H. Hoos. Quantifying homogeneity of instance sets for algorithm con-

figuration. In Proceedings of the Sixth International Conference Learning and Intelligent
Optimization (LION’12), Lecture Notes in Computer Science. Springer-Verlag, 2012.

20 M. Streeter, D. Golovin, and S. Smith. Combining multiple heuristics online. In Proceedings
of the Twenty-second National Conference on Artificial Intelligence (AAAI’07), pages 1197–
1203. AAAI Press, 2007.

21 N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear CSP into SAT.
Constraints, 14(2):254–272, 2009.

22 L. Xu, H. Hoos, and K. Leyton-Brown. Hierarchical Hardness Models for SAT. In Proceed-
ings of the Thirteenth International Conference on Principles and Practice of Constraint
Programming (CP’07), volume 4741 of Lecture Notes in Computer Science, pages 696–711.
Springer-Verlag, 2007.

23 L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research, 32:565–606, 2008.

24 L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. Detailed SATzilla Results from the
Data Analysis Track of the 2011 SAT Competition. Technical report, University of British
Columbia, 2011.

25 X. Yun and S. Epstein. Learning algorithm portfolios for parallel execution. In Proceedings
of the Sixth International Conference Learning and Intelligent Optimization (LION’12),
Lecture Notes in Computer Science, Springer-Verlag, 2012.

ICLP’12

http://www.cril.univ-artois.fr/SAT11/

Answer Set Solving with Lazy Nogood Generation
Christian Drescher and Toby Walsh

NICTA∗ and the University of New South Wales

Abstract
Although Answer Set Programming (ASP) systems are highly optimised, their performance is
sensitive to the size of the input and the inference it encodes. We address this deficiency by
introducing a new extension to ASP solving. The idea is to integrate external propagators
to represent parts of the encoding implicitly, rather than generating it a-priori. To match the
state-of-the-art in conflict-driven solving, however, external propagators can make their inference
explicit on demand. We demonstrate applicability in a novel Constraint Answer Set Programming
system that can seamlessly integrate constraint propagation without sacrificing the advantages
of conflict-driven techniques. Experiments provide evidence for computational impact.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving

Keywords and phrases Conflict-Driven Nogood Learning, Constraint Answer Set Programming,
Constraint Propagation, Lazy Nogood Generation

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.188

1 Introduction

Developing a powerful paradigm for declarative problem solving is one of the key challenges
in the area of knowledge representation and reasoning. A promising candidate is Answer
Set Programming (ASP; [24, 16, 33, 43, 37, 2]) which builds on Logic Programming and
Nonmonotonic Reasoning. Its success depends on two factors: efficiency of the solving
capacities, and modelling convenience. Efficient ASP solvers [26, 22, 36, 32] match the
state-of-the-art in conflict-driven solving [41], including conflict-driven learning, lookback-
based heuristics, and backjumping. However, their performance is sensitive to the size of
problem encodings which can quickly become infeasible, for instance, through the worst-case
exponential number of loops in a logic program [34], or constructs that are naturally non-
propositional, like constraints over finite domains. A variety of extensions to ASP have been
proposed that deal with some of these issues via integration of other declarative problem
solving paradigms. Recently, for example, we have witnessed the development of Constraint
Answer Set Programming (CASP) that integrates Constraint Programming (CP) with ASP,
supporting constraints over finite domains, and most importantly, global constraints. While
this approach certainly increases modelling convenience and can drastically decrease the size
of an encoding, it does not fully carry over to conflict-driven solving technology [12].

We address this problem and present a new computational extension to ASP solving,
called Lazy Nogood Generation. Motivated by the success of Lazy Clause Generation [46]
in Constraint Satisfaction Problem (CSP) solving, the key idea is to generate (parts of)
the problem encoding on demand, only when new information can be propagated. We
make several contributions to the study of Lazy Nogood Generation in ASP. First, we
lay the foundations of external propagation based on a uniform characterisation of answer

∗ NICTA is funded by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

© Christian Drescher and Toby Walsh;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 188–200

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.188
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

C. Drescher and T. Walsh 189

sets in terms of nogoods. This provides the underpinnings to represent conditions on the
answer sets of a logic program without encoding the entire problem a-priori. However,
external propagators can make parts of the encoding explicit, in particular, when they can
trigger inference. As we shall see, our techniques generalise existing ones, e.g., loop formula
propagation [22], and weight constraint rule propagation [21]. Second, we specify a decision
procedure for ASP solving with Lazy Nogood Generation. It is centred around conflict-driven
solving and integrates external propagation. Third, we demonstrate applicability. We show
how to seamlessly integrate constraint propagation with our framework, resulting in a novel
approach to CASP solving. Finally, we empirically evaluate a prototypical implementation
and compare to the state-of-the-art in ASP and CASP solving.

2 Background

Many tasks from the declarative problem solving domain can be defined as CSP, that is a tuple
(V,D,C) where V is a finite set of constraint variables, each v ∈ V has an associated finite
domain dom(v) ∈ D, and C is a set of constraints. A constraint c is a k-ary relation, denoted
R(c), on the domains of the variables in S(c) ∈ V k. A (constraint variable) assignment is
a function A that assigns to each variable v ∈ V a value from dom(v). For a constraint c
with S(c) = (v1, . . . , vk) define A(S(c)) = (A(v1), . . . , A(vk)). The constraint c satisfied if
A(S(c)) ∈ R(c). Otherwise, we say that c is violated. Let CA = {c∈C | A(S(c))∈R(c)}. An
assignment A is a solution iff C = CA. CP systems are oriented towards solving CSP and
typically interleave backtracking search to explore assignments with constraint propagation
to prune the set of values a variable can take. The effect of constraint propagation is studied
in terms of local consistency. E.g., a binary constraint c is called arc consistent iff a variable
in S(c) is assigned any value, there exists a value in the domain for the other variable
in S(c) \ {v} such that c is not violated. An n-ary constraint c is called domain consistent
iff v ∈ S(c) is assigned any value, there exist values in the domains of all other variables
in S(c) \ {v} such that c is not violated. Observe that, in general, a constraint propagator
that enforces domain consistency prunes more values than one that enforces arc consistency
on a binary decomposition of the original constraint. CSPs can be encoded with ASP [43],
which is founded on Logic Programming.

A (normal) logic program P over an alphabet A is a finite set of rules r of the form
a0 ← a1, . . . , am,∼am+1, . . . ,∼an where ai ∈ A are atoms for 0 ≤ i ≤ n. A default literal is
an atom a or its default negation∼a. The atom H(r) = a0 is called the head of r and the set
of default literals B(r) = {a1, . . . , am,∼am+1, . . . ,∼an} is called the body of r. For a set of
default literals S, define S+ = {a | a∈S} and S− = {a |∼a∈S}. For restricting S to atoms E ,
define S|E = {a | a∈S+ ∩ E} ∪ {∼a | a∈S− ∩ E}. For X ⊆ A define external support for X
as ESP (X) = {B(r) | r∈P, H(r)∈X, B(r)+ ∩X = ∅}. The set of atoms occurring in P is
denoted by At(P), and the set of bodies in P is B(P) = {B(r) | r∈P}. For regrouping rules
sharing the heads in X ⊆ A, define PX = {r∈P | H(r)∈X}, and for bodies sharing the
same head a, define B(a) = {B(r) | r∈P, H(r) = a}. A logic program with externals over E
is a logic program P over an alphabet distinguishing regular atoms A and external atoms E ,
such that H(r) ∈ A for each r ∈ P . Let Y ⊆ E . For a logic program P over externals from E
define the pre-reduct P (Y) = {H(r)← B(r)|A\E | r∈P, B(r)+|E ⊆ Y, B(r)−|E ∩Y = ∅}. A
splitting set for a logic program P [35] is a set E ⊆ A if H(r) ∈ E then B(r)+ ∪B(r)− ⊆ E
for each r ∈ P . Observe that, if E is a splitting set of P , it splits P into a logic program PE
over E and a logic program PA\E with externals over E . The semantics of a logic program P

is given by its answer sets. A set X ⊆ A is an answer set of P , if X is a minimal model

ICLP’12

190 Answer Set Solving with Lazy Nogood Generation

of the reduct PX = {H(r)← B(r)+ | r∈P, B(r)− ∩X = ∅} [24]. Let E be a splitting set
of P . The set Z ⊆ A is an answer set of P iff Z = X ∪ Y such that X is an answer set of PE
and Y is an answer set of PA\E(Y) (Splitting Set Theorem, [35]). Although our semantics
is propositional, modern ASP systems support non-ground logic programs and construct
atoms in A from a first-order signature via a grounding process, systematically substituting
all occurrences of first-order variables by terms, resulting in a (ground) instantiation.

Following [22], the answer sets of a logic program P can be characterised as Boolean
assignments over At(P) ∪ B(P) that do not conflict with the conditions induced by the
completion [9] and all loop formulas of P [30], expressed in terms of nogoods [11]. Formally,
a (Boolean) assignment A is a sequence (σ1, . . . , σn) of (signed) literals σi of the form Ta or
Fa where a is in the scope of A, e.g., S(A) = At(P) ∪B(P). The complement of a literal σ
is denoted σ. True and false variables in A are accessed via AT and AF, respectively. A
nogood represents a set δ = {σ1, . . . , σn} of signed literals, expressing a condition conflicting
with any assignment A if δ ⊆ A. If δ \A = {σ} and σ 6∈ A, we say that δ is unit and asserts
the unit-resulting literal σ. A total assignment, that is AT ∪AF = S(A) and AT ∩AF = ∅,
is a solution for a set of nogoods Γ if δ 6⊆ A for each δ ∈ Γ.

3 Nogoods of Logic Programs with Externals

We generalise [22] and describe nogoods capturing completion and loop formulas for a logic
program P with externals over E . For β = {a1, . . . , am,∼am+1, . . . ,∼an} ∈ B(P), define

∆β =
{
{Ta1, . . . ,Tam,Fam+1, . . .Fan,Fβ},
{Fa1,Tβ}, . . . , {Fam,Tβ}, {Tam+1,Tβ}, . . . , {Tan,Tβ}

}
.

Intuitively, the nogoods in ∆β enforce the truth of body β iff all its elements are satisfied.
For an atom a ∈ At(P) with B(a) = {β1, . . . , βk}, define

∆a =
{
{Tβ1,Fa}, . . . , {Tβk,Fa}, {Fβ1, . . . ,Fβk,Ta}

}
.

Let ∆EP =
⋃
β∈B(P) ∆β∪

⋃
a∈At(P)\E ∆a. The solutions for ∆∅P correspond to the models of the

completion of P [22]. To capture the effect of loop formulas induced by a set L ⊆ At(P) \ E ,
for a ∈ L define λ(a, L) = {{Ta} ∪ {Fβ | β ∈ ESP (L)}}. The set of loop nogoods
is ΛEP =

⋃
L⊆At(P)\E,L 6=∅{λ(a, L) | a∈L}. Let P be a logic program and X ⊆ A. Then, X is

an answer set of P iff there is a (unique) solution for ∆∅P ∪Λ∅P such that AT∩At(P) = X [22].
We combine this result with the Splitting Set Theorem [35].

I Proposition 1. Let P be a logic program, E a splitting set for P , and X ⊆ A. Then, X is
an answer set of P iff there is a (unique) solution A for ∆∅PE

∪ Λ∅PE
∪∆EPA\E

∪ ΛEPA\E
such

that AT ∩ (At(PE) ∪At(PA\E)) = X.

An efficient algorithm for computing solutions to ∆∅P ∪ Λ∅P is Conflict-Driven Nogood
Learning (CDNL, [22]). It combines search and propagation by recursively assigning the
value of a proposition and performing unit-propagation to determine its consequences [41].

4 Lazy Nogood Generation

Instead of generating all nogoods ∆∅P ∪ Λ∅P a-priori, referred to as eager encoding, we
introduce external propagators to generate nogoods on demand, i.e., only when they are
able to propagate new information. We call this technique Lazy Nogood Generation, gen-
eralising an approach to encoding constraints over finite domains into sets of clauses by
executing constraint propagation during SAT search and recording the propagation in terms
of clauses (Lazy Clause Generation; [46]). Formally, an external propagator for a set of

C. Drescher and T. Walsh 191

nogoods Γ is a function π that maps a Boolean assignment to a subset of Γ such that for
each total assignment A if δ ⊆ A for some δ ∈ Γ then δ′ ⊆ A for some δ′ ∈ π(A). In other
words, an external propagator generates a conflicting nogood from Γ iff some nogood in Γ
is conflicting with the total assignment. We call an external propagator conflict-optimal, if
this condition holds for each (partial) assignment. Notice that, even for a conflict-optimal
external propagator, unit-propagation on Γ can infer more unit-resulting literals than unit-
propagation on lazily generated nogoods. To close this gap, we define inference-optimal
external propagators. An external propagator π for a set of nogoods Γ is inference-optimal
if π is conflict-optimal and for each non-conflicting assignment A if δ \A = {σ} such that
σ 6∈ A for some δ ∈ Γ then δ′ \A = {σ} for some δ′ ∈ π(A). The correspondence between
external propagation and the set of nogoods it represents can be formalised as follows.

I Proposition 2. Let ∆ be a set of nogoods, and π be an external propagator for Γ ⊆ ∆.
Then, the assignment A is a solution of ∆ iff A is a solution of (∆ \ Γ) ∪ π(A).

One of the advantages of Lazy Nogood Generation over eager encodings is space efficiency.
For instance, the worst-case exponential number of loops in a logic program P makes an eager
encoding of the conditions induced by Λ∅P infeasible [34]. Non-optimal external propagation,
however, can check whether an unfounded set [50] has to be falsified in linear time [7], and
determines nogoods in Λ∅P on demand via directed unfounded set inference [22]. To reflect
Lazy Nogood Generation also on the language level of ASP, we make use of splitting [35] for
outsourcing conditions over E ⊆ A into PE . Instead of making PE explicit, however, a set
of external propagators Π can be provided that precisely represent the conditions induced
by PE . We will write At(Π) to access E . The previous propositions yield the following result.

I Theorem 3. Let P be a logic program, E a splitting set for P , Π a set of external propagators
for ∆∅PE

∪Λ∅PE
, and X ⊆ A. Then, X is an answer set of P iff there is a (unique) solution A

for ∆EPA\E
∪ ΛEPA\E

∪
⋃
π∈Π π(A) s.t. AT ∩ (At(PE) ∪At(Π)) = X.

External propagation provides a form of modularity that allows programmers to select
encodings which propagate better, but were previously avoided for space-related reasons.
E.g., in [12] we describe eager encodings that simulate constraint propagators for the all-
different constraint which achieve arc, bound, or range consistency. A constraint propagator
that can achieve domain consistency exists [48] but it cannot be simulated efficiently [6].
Because of the fact that external propagators generate nogoods only on demand, however, we
can implicitly represent encodings via Lazy Nogood Generation that are otherwise infeasible.

5 Conflict-Driven Nogood Learning with Lazy Nogood Generation

We develop a decision procedure for answer set solving with Lazy Nogood Generation based
on CDNL [22]. It is centred around conflict analysis according to the First-UIP scheme [41].
That is, a conflicting nogood is iteratively resolved against other nogoods until a conflicting
nogood that contains a unique implication point is obtained. This guides backjumping.
Recording the resolved nogood enables conflict-driven learning, which can further prune
the search space. For controlling the set of recorded nogoods, deletion strategies can be
applied (cf. [42]). In contrast to CDNL we will integrate external propagators that perform
Lazy Nogood Generation in order to represent conditions on the answer sets of a logic
program that are not encoded eagerly. Much like their eager counterpart, lazily generated
nogoods can contribute to conflict analysis and lookback-based search heuristics. This can
improve propagation. Different to eagerly encoded nogoods, however, the amount of lazily
generated nogoods can be controlled via deletion.

ICLP’12

192 Answer Set Solving with Lazy Nogood Generation

Input : A logic program P with external propagators Π.
Output : An answer set of P if one exists.

1 A← ∅ // Boolean assignment
2 ∇ ← ∅ // set of recorded nogoods
3 dl← 0 // decision level
4 loop
5 (A,∇)← Propagation(P,Π,∇,A)
6 if δ ⊆ A for some δ ∈ ∆At(Π)

P ∪∇ then
7 if dl = 0 then return no answer set
8 (ε, k)← ConflictAnalysis(δ, P,∇,A)
9 ∇ ← ∇∪ {ε}

10 A← A\{σ ∈ A | k < dl(σ)}
11 dl← k

12 else if AT ∪AF = At(P) ∪B(P) ∪At(Π) then
13 return AT ∩ (At(P) ∪At(Π))
14 else
15 σd ← Select(P,Π,∇,A)
16 A← A ◦ (σd)
17 dl← dl + 1

Algorithm 1 CDNL-LNG.

5.1 Main Algorithm
Algorithm 1 specifies our main procedure, CDNL-LNG. It takes a logic program P with
external propagators Π, and starts with an empty assignment A and an empty set ∇ that
will store recorded nogoods, including lazily generated nogoods. The decision level dl is
initialised with 0. Its purpose is counting decision literals in the assignment. We use dl(σ)
to access the decision level of literal σ. The following loop is very similar to CDNL. First,
Propagation (Line 5) extends A and ∇, as described in the next section. If this encounters
a conflict (Line 6), the ConflictAnalysis procedure generates a conflicting nogood ε by
exploiting interdependencies between nogoods in ∆At(Π)

P ∪∇ through conflict resolution, and
determines a decision level k to continue search at. Then, ε is added to the set of recorded
nogoods ∇ in Line 9. This can prune the search space and lead to faster propagation.
Lines 10–11 account for backjumping to level k. Thereafter ε is unit and triggers inference
in the next round of propagation. If ConflictAnalysis, however, yields a conflict at
level 0, no answer set exists (Line 7). Furthermore, we distinguish the cases of a complete
assignment (Lines 12–13) and a partial one (Lines 14–17). In case of a complete assignment,
the atoms in AT correspond to an answer set of P . In the other case, A is partial and no
nogood is conflicting. Then, a decision literal σd is selected by some heuristic, added to A,
and the decision level is incremented. While ConflictAnalysis and Select are similar to
the ones in CDNL, we extend Propagation to accommodate Lazy Nogood Generation.

5.2 Propagation
A specification of our Propagation procedure is shown in Algorithm 2. It works on a
logic program P with external propagators Π, a set of recorded nogoods ∇, and an as-
signment A. Propagation interleaves unit-propagation on nogoods ∆At(Π)

P and recorded
nogoods ∇ including lazily generated nogoods from external propagators. We start with

C. Drescher and T. Walsh 193

Input : A logic program P with external propagators Π, recorded nogoods ∇,
Boolean assignment A.

Output : An extended assignment and set of recorded nogoods.

1 loop
2 repeat // unit-propagation
3 if δ ⊆ A for some δ ∈ ∆At(Π)

P ∪∇ then return (A,∇)
4 Σ← {δ ∈ ∆At(Π)

P ∪∇ | δ\A = {σ}, σ /∈ A}
5 if Σ 6= ∅ then let σ ∈ δ\A for some δ ∈ Σ in
6 A← A ◦ (σ)

7 until Σ = ∅
8 foreach π ∈ Π do
9 Σ← π(A) // external propagation

10 if Σ 6= ∅ then break
11 if Σ = ∅ then
12 Σ← LoopFormulaPropagation(P,A) // loop formula propagation
13 if Σ = ∅ then return (A,∇)
14 ∇ ← ∇∪ Σ

Algorithm 2 Propagation.

unit-propagation (Lines 2–7), resulting either in a conflict, i.e., some nogood is conflict-
ing (Line 3), or in a fixpoint possibly extending A with unit-resulting literals. If there is no
conflict, Propagation performs external propagation following some priority (Lines 8–10).
Based on A, each propagator may encode inference in a set of lazily generated nogoods Σ
which is added to the set of recorded nogoods ∇ at the end of the loop in Line 14. The
LoopFormulaPropagation procedure (Line 12; [22]) works similarly to ensure that no
loop formula is violated, i.e., no loop nogood in ΛAt(Π)

P is conflicting. This only has an effect
if the logic program is non-tight [18]. Note that external propagation is interleaved by unit-
propagation in order to assign unit-resulting literals immediately and detect conflicts early.
Our algorithm also favours external propagation over loop formula propagation, motivated
by the fact that external propagators can affect the assignment to atoms in At(Π), possibly
falsifying external support for a loop in P .

6 Constraint Answer Set Solving via Lazy Nogood Generation

One difficult task for ASP solving with Lazy Nogood Generation remains, i.e., to design
efficient external propagators. A research area that is largely concerned with efficient
propagation is CP. We here follow the idea from [46] and apply CP techniques to generate
lazy nogoods representing constraints over finite domains. To reflect this on the language
level, we make use of CASP, a paradigm that naturally merges CP and ASP.

CASP abstracts from non-propositional constraints by incorporating constraint atoms
into logic programs. We access the constraint atom associated to a constraint c via the
function At(c). A constraint logic program is a tuple P = (V,D,C, P), where V,D,C are the
same as in the definition of a CSP, and P is a logic program with externals over constraint
atoms C = {At(c) | c ∈ C}. A fundamental difference to traditional CP is that, in CASP,
each constraint c is reified via At(c). Its truth value is determined by the conditions induced
by P and an assignment A to the variables in S(c). The set of constraint atoms CA = {At(c) |

ICLP’12

194 Answer Set Solving with Lazy Nogood Generation

Input : A Boolean assignment A.
Output : A set of lazily generated nogoods.

1 ∇ ← ∅ // set of lazily generated nogoods
2 if Tval(v, i) ∈ A for some i ∈ dom(v) then
3 ∇ ← {{Tval(v, i), Tval(v, j)} | j ∈ dom(v)\{i}, Fval(v, j) 6∈ A}
4 if Tval(v, i) 6∈ A for some i ∈ dom(v) ∧ ∀j ∈ dom(v)\{i} Fval(v, j) ∈ A then
5 ∇ ← {{Fval(v, i) | i ∈ dom(v)}}
6 return ∇

Algorithm 3 An external propagator for the value encoding Γv.

c ∈ CA} correspond to the constraints satisfied by A. Let P be a constraint logic program
and A an assignment. The pair (X,A) is a constraint answer set of P iff X is an answer
set of P (CA) (cf. [23]). Given that assignments A and their effect on each constraint can
be represented in a logic program [43], the task of computing constraint answer sets can be
reduced to the one of computing answer sets of P with external propagators for generating
assignments A and capturing the inference of constraint propagation.

To begin with, CASP solving via Lazy Nogood Generation requires a propositional
representation of assignments to constraint variables. In the value encoding, an atom val(v, i),
representing v = i, is introduced for each variable v ∈ V and value i ∈ dom(v). Intuitively,
the atom val(v, i) is true if v takes the value i, and false if v takes a value different from i (cf.
[51]). To insure that an assignment A represents a consistent set of possible values for v, we
encode the conditions that v must not take two values, i.e., {Tval(v, i),Tval(v, j)} 6⊆ A for
all i, j ∈ dom(v), i 6= j, and that v must take at least one value, i.e., Fval(v, i) 6∈ A for some
i ∈ dom(v), in the set of nogoods Γv = {{Tval(v, i),Tval(v, j)} | i, j ∈ dom(v), i 6= j} ∪
{{Fval(v, i) | i ∈ dom(v)}} [12]. We employ external propagators to represent the nogoods
in Γv. Algorithm 3 provides a specification of an inference-optimal external propagator for
this task. It takes a Boolean assignment A and returns a set of lazily generated nogoods,
initialised in Line 1, that are unit or conflicting. Lines 2–3 insure that if v is assigned a
value i then all other values are removed from its domain, while Lines 4–5 deal with the
condition that there is at least one value that can be assigned to v. This procedure can be
made very efficient, e.g., by using watched literals [42]. Another representation for constraint
variables is the bound encoding, where an atom is introduced for each variable v ∈ V and
value i ∈ dom(v) to represent that v is bounded by i, i.e., v ≤ i (cf. [49]). Similar to the
value encoding, we can define nogoods that insure a consistent Boolean assignment [12]. A
combination of value and bound encoding is also possible.

We see atoms from the value and bound encoding as primitive constraints, as all constraints
can be decomposed into nogoods over them, e.g., by describing changes in the variables’
domains inferred by constraint propagation. This way, constraint propagators can be encoded
eagerly or lazily. Transforming a constraint propagator into an external propagator is
straightforward: Rather than applying domain changes directly, the constraint propagator
has to be made encoding its inferences in form of nogoods over primitive constraints [46].

I Example 4. An external propagator for encoding the reified all-different constraint c is
specified in Algorithm 4. Provided with a Boolean assignment A, it starts with an empty set
of lazily generated nogoods, followed by a distinction into two cases. First, if the constraint
is to be satisfied, i.e., TAt(c) ∈ A, then for each variable in the scope of the constraint that
has a value assigned, a nogood is generated that asserts the removal of this value from the
domain of all other variables in the scope of the constraint (Lines 2–3). On the other hand,

C. Drescher and T. Walsh 195

Input : A Boolean assignment A.
Output : A set of lazily generated nogoods.

1 ∇ ← ∅ // set of lazily generated nogoods
2 if TAt(c) ∈ A then foreach v ∈ S(c) s.t. Tval(v, i) ∈ A for some i ∈ dom(v) do

3
∇ ← ∇∪ {{TAt(c), Tval(v, i), Tval(w, i)} | w ∈ S(c)\{v},

i ∈ dom(w), Fval(w, i) 6∈ A}
4 else
5 foreach v ∈ S(c) s.t. Tval(v, i) ∈ A for some i ∈ dom(v) do
6 if w ∈ S(c)\{v} s.t. Tval(w, i) ∈ A then
7 if FAt(c) 6∈ A then
8 ∇ ← {{TAt(c), Tval(v, i), Tval(w, i)}}
9 return ∇

10 if ∀v ∈ S(c) ∃i ∈ dom(v) s.t. Tval(v, i) ∈ A then
11 ∇ ← {{FAt(c)} ∪ {Tval(v, i) | v ∈ S(c), i ∈ dom(v), Tval(v, i) ∈ A}}

12 return ∇

Algorithm 4 An external propagator for encoding the reified all-different constraint c.

if the constraint is not set to be satisfied, the algorithm checks whether two variables in the
scope of the constraint have the same value assigned (Lines 5–9). If so, the all-different
constraint is violated and a nogood asserting that the constraint atom is set to false will be
returned (unless FAt(c) ∈ A, in which case the constraint atom is already false). If, however,
no such two variables can be found and all variables in the scope of the constraint have a
value assigned, then the all-different condition is satisfied and a nogood is generated that
asserts the truth of the constraint atom (Lines 10–11). Observe that this propagator enforces
arc consistency on the binary decomposition of the reified all-different constraint if At(c)
is true, but propagates weakly if At(c) is false. However, propagators that achieve higher
levels of local consistency are also possible [48].

While constraint propagators encode their inference into unit or conflicting nogoods, unit-
propagation processes this information within the next iteration. Unit-propagation, constraint
propagation, and loop formula propagation are repeated until a fixpoint is reached or a
conflict is encountered. By generating a conflicting nogood, e.g., a constraint propagator can
yield that the underlying constraint is violated.

7 Experiments

We have implemented our approach with Lazy Nogood Generation for constraint variables,
the all-different and integer linear constraints within a new version of our prototypical
CASP system inca [54] which is based on the latest development version of clingo (3.0.92; [53]).
The default setting uses an all-different propagator that enforces arc consistency, while
incaDC enforces domain consistency, representing an infeasible encoding. To compare with
the state-of-the-art, we include clingcon (2.0.0-beta; [53]) in our analysis. It also extends
clingo, but integrates the CP solver gecode (3.7.1;[52]). Similar to our approach, clingcon
is based on CDNL and abstracts from the constraints via constraint atoms, but it employs
gecode to check the existence of a constraint variable assignment that does not violate any
constraint (according to the assignment to constraint atoms). In turn, the CP solver can yield
a conflict or propagate constraint atoms by generating nogoods over constraint atoms that

ICLP’12

196 Answer Set Solving with Lazy Nogood Generation

Table 1 Average time in seconds over completed runs on Quasigroup, Graceful Graph, Packing,
and Numbrix benchmarks. Number of completed runs are given in parenthesis.

benchmark class clingo clingcon clingconDC inca incaDC

Quasigroup Completion (200) 106.6 (93) 34.4 (9) 4.6 (200) 86.2 (171) 24.7 (200)
Quasigroup Existence (21) 25.7 (18) 61.4 (10) 88.2 (11) 60.3 (20) 26.6 (20)
Graceful Graphs (10) 3.0 (9) 15.7 (4) 31.3 (7) 5.2 (6) 12.6 (10)
Packing (50) 104.1 (1) 33.1 (50) 33.1 (50) 24.6 (50) 24.6 (50)
Numbrix (12) 10.4 (12) 17.4 (12) 51.3 (12) 1.3 (12) 5.2 (12)
weighted, penalised time 228.3 267.0 124.6 103.1 24.2

occur in the constraint logic program. This constitutes a very limited form of Lazy Nogood
Generation. We have set clingcon to generate nogoods by looking at dependency between
constraints according to the irreducibly inconsistent set construction method in “forward”
mode, when we noticed that this option significantly improves the performance of clingcon.
Furthermore, the setting clingconDC uses domain consistency propagation. Our experiments
also consider eager encodings for a comparison with the state-of-the-art in ASP solving, given
through clingo. We conducted experiments on Quasigroup Completion (n = 40), Quasigroup
Existence (QG1-4: n = 7 . . . 9; QG5: n = 12 . . . 14; QG6-7: n = 10 . . . 12) and Graceful
Graphs benchmarks that stem from [12], Packing benchmarks from [8] and Numbrix [45]
puzzles. Experiments were run on a Linux PC, where each run was limited to 600 sec CPU
time on a 2.00 GHz core and 2 GB RAM. A summary of our results is provided in Table 1.

Although more benchmark classes are needed for a meaningful comparison, we can draw
a few interesting conclusions. First, execution time can improve when CP constructs are
treated by external propagation rather than encoding them eagerly. The latter can lead to
huge encodings, in particular, when large domains are involved. In fact, the encoding of the
Packing problem that was given in the system track of the competition quickly reaches the
memory limit of 2 GB in 49 over 50 instances, while the CASP systems clingcon and inca
solve every instance within a reasonable amount of space and time. Second, the advantage
of generating nogoods to describe the inferences of constraint propagators is that CDNL
can exploit constraint interdependencies for directing search, and most importantly conflict
analysis. The fact that clingcon does not encode CP constructs into nogoods, by design, is
likely to be the reason for its limited success in our experiments, where clingcon is particularly
ineffective on Quasigroup problems. Third, experiments show that our approach, represented
through inca, combines the best of both worlds: It can avoid huge encodings via abstraction to
external propagation while retaining the ability to make the encoding explicit. It outperforms
the state-of-the-art in CASP solving on individual benchmark classes, and is more robust
over all benchmark instances. On most benchmarks, a dedicated treatment of infeasible
all-different encodings via external propagation has further improved performance.

8 Related Work

Related work on the integration of ASP with other declarative problem solving paradigms
is plentiful, and roughly falls into one of three categories: translation-based approaches,
modular approaches, and integrated approaches. In translation-based approaches, all parts of
an (extended) ASP model are eagerly encoded into a single language for which highly efficient
off-the-shelf solvers are available. Niemelä [43] provides a simple mapping of constraints
into ASP given by allowed or forbidden combinations of values. We have demonstrated
efficiency in [12], describing what type of local consistency the unit-propagation of an ASP

C. Drescher and T. Walsh 197

solver achieves on value, bounds, and range encodings. Specialised encodings for grammar
and related constraints are presented in [14]. There is also a substantial body of work on
encoding constraints into SAT [51, 25, 4, 15, 49, 5] which can be translated into ASP [43].
Similarly, (extended) ASP models can be translated, e.g., into SAT [27], SAT with inductive
definitions [38], and difference logic [28]. In a modular approach, theory-specific solvers
interact in order to compute solutions. Baselice et al. [3] and Mellarkod and Gelfond [39]
combine systems for solving ASP and CP that do not ground constraint variables. Instead,
constraint variables are handled in a CP solver. Dal Palú et al. [10] employ a CP system
for intermediate grounding and the computation of answer sets. The approach taken by
Balduccini [1] consists of writing logic programs whose answer sets encode a desired CSP,
which is, in turn, solved by a CP system. Järvisalo et al. [29] obtain the overall semantics
from the ones of individual modules, including CP modules. While above modular approaches
see ASP and CP solvers as blackboxes, Mellarkod et al. [40] integrate a CP solver into the
decision engine of a backtracking-based ASP solver. Gebser et al. [23] integrate constraint
atoms with conflict-driven techniques by extending the conflict analysis of an ASP solver.
An implementation of their approach is given through the CASP system clingcon. The
abstraction from the inference performed by constraint propagation, however, limits the
exploitation of constraint interdependencies. ASP solving via Lazy Nogood Generation
was first outlined in [13], and falls into the category of integrated approaches. The related
work closest to this paper is Lazy Clause Generation [46], a SAT-based approach to CSP
solving where lazy clause generators encode the inference of propagation rules into clauses.
However, our approach is fundamentally more general then Lazy Clause Generation, where
the truth value of each constraint atom is known a-priori and every nogood is represented by
a clause. Nogoods can also be represented by other ASP constructs, such as cardinality rules,
weight constraint rules [44], and aggregation [47, 19]. Gebser et al. [20] show that constraint
variables can be conveniently expressed by means of cardinality rules. Elkabani et al. [17]
provide a generic framework which provides an elegant treatment of such extensions to ASP,
employing constraint propagators for their handling, though, without support for conflict-
driven techniques. A thorough approach to integrating propagators for weight constraint
rules within a conflict-driven framework is presented in [21].

Alternative computation models that aim at limiting the need for preliminary grounding
but do not integrate ASP with other declarative paradigms have also been proposed (e.g., [31]).

9 Conclusion

We presented a comprehensive extension for ASP solving to address the scalability and effi-
ciency of ASP, called Lazy Nogood Generation. Founded on a nogood-based characterisation
of external propagation, our techniques allow for representing encodings that are otherwise
infeasible. However, external propagators can make parts of the encoding explicit whenever
it triggers inference. We presented key algorithms that are centred around conflict-driven
learning, and seamlessly applied our techniques to CASP solving by employing constraint
propagation. Experiments show that our prototypical implementation is competitive with
the state-of-the-art. We expect further significant computational impact given the empirical
evidence provided by Lazy Clause Generation [46]. Moreover, Lazy Nogood Generation
generalises Lazy Clause Generation, as every nogood can be syntactically represented by a
clause, but other ASP constructs are also possible. Future work considers the exploitation of
ASP constructs like aggregation and loops. Many questions on modelling and solving CASP
also remain open, concerning encoding optimisations and further language extensions.

ICLP’12

198 Answer Set Solving with Lazy Nogood Generation

References
1 M. Balduccini. Representing constraint satisfaction problems in answer set programming.

In 25th International Conference on Logic Programming (ICLP’09) Workshop on Answer
Set Programming and Other Computing Paradigms (ASPOCP’09), 2009.

2 C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

3 S. Baselice, P. Bonatti, and M. Gelfond. Towards an integration of answer set and constraint
solving. In 21st International Conference on Logic Programming (ICLP’05), pages 52–66.
Springer, 2005.

4 C. Bessière, E. Hebrard, and T. Walsh. Local consistencies in SAT. In 6th International
Conference on Theory and Applications of Satisfiability Testing (SAT’03), pages 299–314.
Springer, 2003.

5 C. Bessière, G. Katsirelos, N. Narodytska, C.-G. Quimper, and T. Walsh. Decomposi-
tions of all different, global cardinality and related constraints. In 21st International Joint
Conference on Artificial Intelligence (IJCAI’09), pages 419–424, 2009.

6 C. Bessière, G. Katsirelos, N. Narodytska, and T. Walsh. Circuit complexity and decompos-
itions of global constraints. In 21st International Joint Conference on Artificial Intelligence
(IJCAI’09), pages 412–418, 2009.

7 F. Calimeri, W. Faber, N. Leone, and G. Pfeifer. Pruning operators for answer set program-
ming systems. In 9th International Workshop on Non-Monotonic Reasoning (NMR’02),
pages 200–209, 2002.

8 F. Calimeri, G. Ianni, F. Ricca, M. Alviano, A. Bria, G. Catalano, S. Cozza, W. Faber,
O. Febbraro, N. Leone, M. Manna, A. Martello, C. Panetta, S. Perri, K. Reale, M. C.
Santoro, M. Sirianni, G. Terracina, and P. Veltri. The third answer set programming
competition: Preliminary report of the system competition track. In 11th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11), pages 388–
403. Springer, 2011.

9 K. Clark. Negation as failure. In Logic and Data Bases, pages 293–322. Plenum Press,
1978.

10 A. Dal Palù, A. Dovier, E. Pontelli, and G. Rossi. Answer set programming with constraints
using lazy grounding. In 25th International Conference on Logic Programming (ICLP’09),
pages 115–129. Springer, 2009.

11 R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
12 C. Drescher and T. Walsh. A translational approach to constraint answer set solving.

Theory and Practice of Logic Programming, 26th International Conference on Logic Pro-
gramming (ICLP’10) Special Issue, 10(4-6):465–480, 2010.

13 C. Drescher and T. Walsh. Conflict-driven constraint answer set solving with lazy nogood
generation. In 25th AAAI Conference on Artificial Intelligence (AAAI’11), pages 1772–
1773. AAAI Press, 2011.

14 C. Drescher and T. Walsh. Modelling grammar constraints with answer set programming.
In Technical Communications of the 27th International Conference on Logic Programming
(ICLP’11), volume 11 of Leibniz International Proceedings in Informatics (LIPIcs), pages
28–39. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2011.

15 N. Eén and N. Sörensson. Translating pseudo-Boolean constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.

16 T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM Transactions on Database
Systems, 22(3):364–418, 1997.

17 I. Elkabani, E. Pontelli, and T. Son. Smodels with CLP and its applications: A simple
and effective approach to aggregates in ASP. In 20th International Conference on Logic
Programming (ICLP’04), pages 73–89. Springer, 2004.

C. Drescher and T. Walsh 199

18 E. Erdem and V. Lifschitz. Tight logic programs. Theory and Practice of Logic Program-
ming, 3(4-5):499–518, 2003.

19 W. Faber, G. Pfeifer, and N. Leone. Semantics and complexity of recursive aggregates in
answer set programming. Artificial Intelligence, 175(1):278–298, 2011.

20 M. Gebser, H. Hinrichs, T. Schaub, and S. Thiele. xpanda: A (simple) preprocessor for
adding multi-valued propositions to ASP. In 23rd Workshop on (Constraint) Logic Pro-
gramming (WLP’09), 2009.

21 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. On the implementation of weight
constraint rules in conflict-driven ASP solvers. In 25th International Conference on Logic
Programming (ICLP’09), pages 250–264. Springer, 2009.

22 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In 20th International Joint Conference on Artificial Intelligence (IJCAI’07), pages 386–392.
AAAI Press/MIT Press, 2007.

23 M. Gebser, M. Ostrowski, and T. Schaub. Constraint answer set solving. In 25th Interna-
tional Conference on Logic Programming (ICLP’09), pages 235–249. Springer, 2009.

24 M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In 5th
International Conference and Symposium on Logic Programming (ICLP/SLP’88), pages
1070–1080. MIT Press, 1988.

25 I. P. Gent. Arc consistency in SAT. In 15th Eureopean Conference on Artificial Intelligence
(ECAI’02), pages 121–125. IOS Press, 2002.

26 E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning, 36(4):345–377, 2006.

27 T. Janhunen and I. Niemelä. Compact translations of non-disjunctive answer set programs
to propositional clauses. In 11th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’11), pages 111–130. Springer, 2011.

28 T. Janhunen, I. Niemelä, and M. Sevalnev. Computing stable models via reductions to
difference logic. In 10th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’09), pages 142–154. Springer, 2009.

29 M. Järvisalo, E. Oikarinen, T. Janhunen, and I. Niemelä. A module-based framework for
multi-language constraint modeling. In 10th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’09), pages 155–169. Springer, 2009.

30 J. Lee. A model-theoretic counterpart of loop formulas. In 19th International Joint Confer-
ence on Artificial Intelligence (IJCAI’05), pages 503–508. Professional Book Center, 2005.

31 C. Lefèvre and P. Nicolas. The first version of a new ASP solver : ASPeRiX. In 10th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’09),
pages 522–527. Springer, 2009.

32 Y. Lierler. Abstract answer set solvers with backjumping and learning. Theory and Practice
of Logic Programming, 11(2-3):135–169, 2011.

33 V. Lifschitz. Answer set planning. In 16th International Conference on Logic Programming
(ICLP’99), pages 23–37. MIT Press, 1999.

34 V. Lifschitz and A. Razborov. Why are there so many loop formulas? ACM Transactions
on Computational Logic, 7(2):261–268, 2006.

35 V. Lifschitz and H. Turner. Splitting a logic program. In 11th International Conference on
Logic Programming (ICLP’94), pages 23–37. MIT Press, 1994.

36 M. Maratea, F. Ricca, W. Faber, and N. Leone. Look-back techniques and heuristics in
DLV: Implementation, evaluation, and comparison to QBF solvers. Algorithms, 63(1-3):70–
89, 2008.

37 V. M. Marek and M. Truszczynski. Stable models and an alternative logic program-
ming paradigm. The Logic Programming Paradigm: a 25-year perspective, pages 375–398.
Springer, 1999.

ICLP’12

200 Answer Set Solving with Lazy Nogood Generation

38 M. Mariën, J. Wittocx, M. Denecker, and M. Bruynooghe. SAT(ID): Satisfiability of
propositional logic extended with inductive definitions. In 11th International Conference
on Theory and Applications of Satisfiability Testing (SAT’08), pages 211–224. Springer,
2008.

39 V. Mellarkod and M. Gelfond. Integrating answer set reasoning with constraint solving tech-
niques. In 9th International Symposium Proceedings on Functional and Logic Programming
(FLOPS’08), pages 15–31. Springer, 2008.

40 V. Mellarkod, M. Gelfond, and Y. Zhang. Integrating answer set programming and con-
straint logic programming. Annals of Mathematics and Artificial Intelligence, 53(1-4):251–
287, 2008.

41 D. Mitchell. A SAT solver primer. Bulletin of the European Association for Theoretical
Computer Science, 85:112–133, 2005.

42 M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In 38th Design Automation Conference (DAC’01), pages 530–535.
ACM, 2001.

43 I. Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

44 I. Niemelä, P. Simons, and T. Soininen. Stable model semantics of weight constraint
rules. In 5th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’99), pages 317–331. Springer, 1999.

45 http://www.parade.com/askmarilyn/numbrix/.
46 O. Ohrimenko, P. J. Stuckey, and M. Codish. Propagation via lazy clause generation.

Constraints, 14(3):357–391, 2009.
47 N. Pelov. Semantics of logic programs with aggregates. PhD thesis, Department of Computer

Science, K.U. Leuven, Belgium, 2004.
48 J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In 12th AAAI

Conference on Artificial Intelligence (AAAI’94), pages 362–367. AAAI Press, 1994.
49 N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear CSP into SAT.

Constraints, 14(2):254–272, 2009.
50 A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic

programs. Journal of the ACM, 38(3):620–650, 1991.
51 T. Walsh. SAT v CSP. In 6th International Conference on Principles and Practice of

Constraint Programming (CP’00), pages 441–456. Springer, 2000.
52 http://www.gecode.org.
53 http://potassco.sourceforge.net.
54 http://potassco.sourceforge.net/labs.html.

Lazy Model Expansion by Incremental Grounding
Broes De Cat1, Marc Denecker2, and Peter Stuckey3

1 Department of Computer Science, K.U.Leuven, Belgium
broes.decat@cs.kuleuven.be

2 Department of Computer Science, K.U.Leuven, Belgium
marc.denecker@cs.kuleuven.be

3 National ICT Australia, Victoria Laboratory,
Department of Computing and Information Systems,
University of Melbourne, Australia
peter.stuckey@nicta.com.au

Abstract
Ground-and-solve methods used in state-of-the-art Answer Set Programming and model expan-
sion systems proceed by rewriting the problem specification into a ground format and afterwards
applying search. A disadvantage of such approaches is that the rewriting step blows up the ori-
ginal specification for large input domains and is unfeasible in case of infinite domains. In this
paper we describe a lazy approach to model expansion in the context of first-order logic that can
cope with large and infinite problem domains. The method interleaves grounding and search,
incrementally extending the current partial grounding only when necessary. It often allows to
solve the original problem without creating the full grounding and is hence more widely applic-
able than ground-and-solve. We report on an existing implementation within the IDP system
and on experiments that show the promise of the method.

1998 ACM Subject Classification F.4.1 Mathematical Logic, I.2.4 Knowledge Representation
Formalisms and Methods, I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Knowledge representation and reasoning, model generation, grounding,
IDP framework, first-order logic

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.201

1 Introduction

Model expansion [8] is the task of generating models of a logical theory for a given uni-
verse of domain elements. It is a widely accepted way to solve a range of problems, by
encoding the problem in a declarative (logic) language such that structures which satisfy
the specification are solutions to the problem. Model expansion is related to answer set
generation in Answer Set Programming [10] and to finding variable assignments satisfying
sets of constraints in Constraint Programming [1]. One approach used to solve such infer-
ence tasks is the ground-and-solve paradigm. The problem specification is formulated in a
high-level (user-friendly) language, which is then rewritten into a lower-level representation
on which a search algorithm can be applied. This process is called grounding (also known as
unrolling). Examples are the high-level language FO(·) [5], which is grounded to its propos-
itional fragment PC(·); ASP is grounded to propositional ASP and MiniZinc [9] is unrolled
into Flatzinc.

An important bottleneck to applying ground-and-solve is the size of the grounding.
Grounding an FO theory results in a blow-up of the size of the theory, related to the nesting

© Broes De Cat, Marc Denecker, and Peter Stuckey;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 201–211

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.201
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

202 Lazy Model Expansion by Incremental Grounding

depth of quantifiers and the size of the domains of the original theory. There are lots of
practical problems in which the propositional theory is too large to generate.

In this paper, we present a novel approach to remedy this bottleneck, based on rewriting
the theory lazily instead of up-front. The two main ideas are placeholder introduction and
∀-instantiation. Placeholders which represent non-ground formulas are introduced in the
grounding. During search, they are “grounded further” depending on the interpretation.
For sentences of (universally quantified) disjunctions, conditions are derived under which
those sentences can certainly be satisfied by some extension of the current interpretation.
As long as the interpretation satisfies those conditions, the sentence is not added to the
grounding. Consider for example a disjunctive sentence: as long as one disjunct is true in
the model, the value of the others is irrelevant.

It is also shown that the approach becomes even stronger when we are only interested in
a subset of the full solution, as long as it can certainly be extended to a model. For example
for planning problems, we are often only interested in the actions necessary to achieve the
goal, independent of the full (possibly infinite) time frame and any additional relationships.

The approach is presented for theories in function-free first-order logic. Without loss
of generality, any FO theory can be transformed into one not containing functions [18]. In
section 3, it is shown how to represent partly ground theories and their properties. Section
4 shows which formulas to delay and the lazy model expansion algorithm is presented in
section 4.4. Experimental results are provided in section 5, related work in 6.

2 Preliminaries

In this section, we first present syntax and semantics of FO, used throughout the paper,
followed an introduction to the inference tasks modelexpansion and grounding.

2.1 FO
We assume familiarity with classical logic. A vocabulary Σ consists of a set of predicate
and function symbols. Propositional symbols and constants are 0-ary predicate symbols,
respectively function symbols. FO terms and formulae are defined as usual, and are built
inductively from variables, constant and function symbols, logical connectives (¬, ∧, ∨) and
quantifiers (∀, ∃).

Each variable x is assumed to have an associated set of domain elements t over which the
variable ranges, denoted as x[[t]]. We sometimes refer to such a variable as a typed variable
and formulae containing only typed variables as typed formulae. Given a formula ϕ with a
free variable x, substitution of x with domain element d is denoted as ϕ[x/d].

Throughout the paper, A and L are used to refer to an atom, respectively a literal. A
ground sentence is a sentence without variables (hence also without quantifiers). A ground
theory is a theory consisting of ground sentences.

In this paper we deal with three-valued interpretations I which allow us to adequately
represent the partial structure within a search algorithm. We will sometimes write an
interpretation I as the set of all domain literals which are true in it. For example given a
set of domain atoms {P,Q,R}, then I = {P,¬Q}, denotes the interpretation in which P is
true, Q is false and R is unknown.

The interpretation of a sentence under an interpretation I, denoted I(ϕ), is defined as
usual except for quantified formulae, as we assume each variable is typed. For existential
quantification, I(∃x[[t]](ϕ)) is true iff there is a d ∈ t such that I(ϕ[x/d]) = t; and false iff
for all d ∈ t we have I(ϕ[x/d]) = f. (Typed) universal quantification is defined similarly.

B. De Cat, M. Denecker, and P. Stuckey 203

The interpretation of formulae containing the shorthands ⇒,⇐ and ≡ is taken to be the
interpretation of the formulae they represent.

A (three-valued) interpretation I is a model of an FO sentence if and only if the sentence
is true under the interpretation. It is a model of an FO theory T if and only if it is a model
of each of the sentences in T .

An interpretation I is more precise than an interpretation I’ if and only if I is identical
to I’ except on symbols which are unknown in I’ (I ′ ⊆ I). Two interpretations I and J

agree on shared symbols if there is no proposition P where {P,¬P} ⊆ I ∪ J .
An occurrence of a subformula ϕ in T is called monotone if it is not in the scope of a

negation. It is anti-monotone if it is in the scope of a negation. If it occurs as a subformula
of an equivalence, it is called non-monotone. This reflects the well-known property that
increasing the truth value of an atom with only monotone occurrences, increases the truth
value of formulas. If the atom has only anti-monotone occurrences, then increasing its truth
value decreases the value of formulae.

With a slight abuse of notation, given a theory T , T is used both to refer to the set and
the conjunction of the sentences it contains.

2.2 Model expansion
Model generation is the inference task of, given a vocabulary Σ, a theory T over Σ and a
(partial) interpretation Sin of Σ, finding models M which satisfy T and are more precise
than Sin. If the universe of domain elements is part of the input structure, the inference
task is called model expansion, denoted as MX〈T ,Sin〉. Model expansion can be used to
solve problems by modelling them as a logical theory and structure such that solutions to
the problem are models of the theory extending the structure[8].

In this paper we consider an instance of model expansion where also an “output” vocab-
ulary σout is given, a subset of Σ. The idea is then to generate interpretations I which
are two-valued on σout and for which an extension exists which is a model of the theory
T and is more precise than Sin. Conceptually, this comes down to problems where we are
only interested in some part of the solution, as long as we are guaranteed that a complete
solution exists. This task generalizes both satisfiability checking (where σout is emtpy) and
model expansion (where σout = Σ). It is denoted as MX〈T ,Sin, σout〉.

In the next sections, we present an approach for model expansion over an empty output
vocabulary. In section 4.4, the approach is extended (in a straightforward way) to non-empty
output vocabularies.

2.3 Grounding
Basically, grounding is the process of instantiating all variables with domain elements to
obtain a propositional theory. The full grounding of a typed, free-variable free FO formula
ψ, Gfull(ψ), is defined by Table 1. The size of the full grounding of a formula is exponential
in the nesting depth of quantifiers and polynomial in the size of the domains.

More intelligent grounding techniques exist which reduce the size of the grounding, such
as grounding with bounds [16].

3 Delayed theories

Lazy grounding (lazy mx) is an approach to interleave grounding and search. The key
idea of our approach is to partly ground the input theory and to delay grounding of the

ICLP’12

204 Lazy Model Expansion by Incremental Grounding

Table 1 The definition of the full grounding Gfull(ψ) of an FO formula ψ not containing free
variables.

Original formula ψ Full grounding Gfull(ψ)
P (d) P (d)
¬P (d) ¬P (d)∧
i∈[1,n] ϕi

∧
i∈[1,n] Gfull(ϕi)∨

i∈[1,n] ϕi
∨
i∈[1,n] Gfull(ϕi)

∀y[[t]] : ϕ
∧
d∈tGfull(ϕ[y/d])

∃y[[t]] : ϕ
∨
d∈tGfull(ϕ[y/d])

ϕ ≡ ϕ′ Gfull(ϕ) ≡ Gfull(ϕ′)

remainder. Conditions on the partial interpretation are derived which govern whether ad-
ditional grounding is necessary. We call such conditions delays.

I Example 1. Consider the sentence (∃x[[t]] : P (t)) with t ranging from 1 to n. As long
as P (1) is not false, it can still be assigned a value (true) such that the formula becomes
satisfied. Therefore, we can delay the remaining instantiations by replacing them with a new
Tseitin symbol T , resulting in the ground clause P (1) ∨ T and the non-ground “delayed”
formula T ≡ ∃x[[t\1]]. The latter formula is only grounded further if T becomes true.

Such a condition on the partial structure I, I(T) 6= t, is called a delay. As long as it is
satisfied, no additional grounding is performed on the associated sentence. The result is a
theory which is equivalent to the original one (as Tseitin transformation was used) and if a
partial interpretation can be found which satisfies the ground portion and the delay, it can
certainly be extended to a full model (setting I(T) to I(∃x[[t\1]])). �

I Example 2 (Continued). Consider the theory consisting of the previous sentence and the
additional sentence (∀x[[t]] : P (x) ≡ ϕ(x)), with ϕ a general formula not containing P . As
long as P (d) has not been assigned a value, P (d) can still be assigned a value such that
P (d) ≡ ϕ[x/d] is consistent (namely I(P (d)) = I(ϕ[x/d])). Consequently, grounding only
has to be applied for instantations of x with domain elements d for which I(P (d)) is not
unknown. The delay is then the condition I(∃x[[t]] : ¬P (d)) 6= u. �

Delayed grounding can lead to a significant reduction in the size of the grounding. In
the case of (∃x[[t]] : P (t)), quantifier instantiation is only done partially. In the case of
(∀x[[t]] : P (x) ≡ ϕ(x)), it is even completely avoided as long as the delay is satisfied.

3.1 Delays on formulae
A delayed sentence has the form (ϕ)δ where ϕ is a sentence and δ is a delay condition (in
short, a delay). A delayed theory Td is a theory consisting of a ground theory G and a
residual (non-ground) theory D consisting of delayed sentences. We will often denote it by
〈G,D〉. Such a delayed theory will be obtained by partially grounding the theory, resulting
in G, and partially delaying the grounding, resulting in D.

Two types of delays are considered:
A true-delay, denoted ϕ 6= t, is satisfied in an interpretation I iff I(ϕ) 6= t.
A known-delay, denoted ϕ = u, is satisfied in an interpretation I iff I(ϕ) = u.

We say that a (partial) interpretation I satisfies (is a model of) a delayed sentence (ϕ)δ
if I satisfies ϕ. We say that I weakly satisfies (ϕ)δ if I satisfies the delay or I satisfies ϕ. By
extension, an interpretation weakly satisfies a (delayed) theory iff it satisfies all its sentences.

B. De Cat, M. Denecker, and P. Stuckey 205

We will say that a delayed sentence (φ)δ is active in I if its condition δ is not satisfied,
otherwise it is inactive. Conceptually, grounding will be triggered when a sentence becomes
active, transforming it into ground sentences and inactive delayed sentences.

The lazy grounding algorithm will iteratively reduce delayed theories into “more ground”
delayed theories. The main invariant of the algorithm is that any such delayed theory is a
partial grounding of T : A delayed theory Td is a partial grounding of a theory T iff
T and Td are “logically equivalent” in the sense that each 2-valued model M of T can
be extended to a model of Td and vice versa, each 2-valued model of Td satisfies T .
Each interpretation that weakly satisfies Td has a two-valued extension that satisfies T .

I Example 3 (Continued). The delayed theory introduced in example 2 is a partial grounding
of its original theory. It consists of a ground theory P (1) ∨ T and of the delayed sentences

(T ≡ ∃x[[t\1]])T 6=t (∀x[[t]] : P (x) ≡ ϕ(x))∃x[[t]]:¬P (d)=u

The next section shows which delays can be safely introduced to guarantee this invariant.

4 Introducing delayed sentences

The lazy grounding component of the lazy mx algorithm is responsible for the grounding of
an active delayed theory into a more ground, inactive one.1 To this end, delayed sentences
are replaced by a combination of ground and delayed sentences. This is either achieved with
Tseitin introduction (section 4.1) or ∀-instantiation (section 4.2). The lazy mx algorithm
itself is then presented in section 4.4.

4.1 Tseitin introduction

Recall from example 1 that ∃x[[t]] : P (x) was partially grounded to the ground formula P (1)∨
T and a delayed sentence ((T ≡ (∃x[[t\1]] : P (x))))T 6=t. We here describe this operation.

I Definition 4 (Tseitin introduction). Given a delayed theory Td = 〈G,D〉 and a set of
occurrences of a formula ϕ in sentences ψ with (ψ)δ ∈ Td, the Tseitin introduction for ϕ in
Td is the delayed theory Td’=〈G,D′〉 where D’ is obtained from D by

substituting each selected occurrence of ϕ in D with the new propositional symbol Tϕ
adding a new delayed sentence (Tϕ ≡ ϕ)δ′ where δ′ is determined as follows:

If all selected occurrences of ϕ are monotone in D, then δ′ = (Tϕ 6= t).
If all are anti-monotone, then δ′ = (¬Tϕ 6= t).
Otherwise, δ′ = (Tϕ = u). �

Applying Tseitin introduction to any partial grounding of a theory T results in a partial
grounding of T .

I Example 5. Consider the theory T = P ≡ ∀x[[t]] : Q(x). Applying Tseitin introduction
to ∀x[[t\1]] : Q(x) results in the ground theory P ≡ Q(1) ∧ T and the delayed sentence
(T ≡ ∀x[[t\1]] : Q(x))T = u. This delayed theory is a partial grounding of T .

1 Note that an initial theory T trivially corresponds to the delayed theory
〈
∅, {(ϕ)t 6=t |ϕ ∈ T }

〉
with an

empty ground theory and all its formulae active.

ICLP’12

206 Lazy Model Expansion by Incremental Grounding

4.2 ∀-instantiation
Another approach to introducing delays applies to sentences of which a condition on their
satisfiability can be derived. For some classes of formulae such conditions are well-known:

I Example 6. Consider the definite clause ∀x[[t]] : P1(x) ∧ . . . ∧ Pn(x) ⇒ Q(x). Any
interpretation I in which none of the (ground) heads Q(d) are false can be extended to an
interpretation which satisfies all clauses, namely the extension in which all heads are true.
Consequently, only instantiations with domain elements d for which I(Q(d)) is false need to
be grounded. The remaining instantiations can then be delayed on the falsity of their heads.
Assume for example that only I(Q(d1)) = f for some d1 ∈ t. The delayed theory Td

Td =
〈
φ[x/d1]⇒ Q(d1), {(∀x[[t\d1]] : φ(x)⇒ Q(x))∃x[[t\d1]]:¬Q(x) 6= t}

〉
is then a partial grounding of the definite clause under I. �

Below, it is shown formally how to delay instantiation for universally quantified dis-
junctive sentences based on their satisfiability. Delaying those is not captured by Tseitin
introduction and they represent a class of formulae which occur often in practice. At the end
of the section, it is shown how the approach can be extended to other classes of formulae.

I Definition 7 (∀-instantiation). Consider a delayed theory Td = 〈G,D〉, a partial grounding
of T , and an interpretation I. Assume a sentence ψ = ∀x[[t]] :

∨
i∈[1,m] ϕi with (ψ)δ ∈ D.2

Applying ∀-instantiation to ψ for Td under I consists of selecting a subset Sd of
⋃
i∈[1,m] ϕi

such that each formula in Sd is a literal of which the symbol does not occur with opposite
sign in any delay in Td. Assume nd denotes the set of tuples of domain elements which
falsify all formulae in Sd under I (so they cannot be delayed). Then 〈Grem,Drem〉 is the
grounding of the sentence ∀x[[nd]]

∨
i∈[1,m] ϕi. The remaining instantiations are delayed by

the delay condition χ = ∃x[[t\nd]] :
∧
ϕi∈Sd ¬ϕi 6= t. The result is the delayed theory

T ′
d =

〈
G ∧ Grem,D − {ψ} ∪ Drem ∪ (∀x[[t\nd]]

∨
i∈[1,m] ϕi)χ

〉
. �

As for Tseitin introduction, it can be shown that applying ∀-instantiation to any partial
grounding of a theory T results in a partial grounding of T .

It should be noted that whether such a delay can contain a literal over a symbol P
depends on occurrences of P in existing delays. If multiple delays are watching different
truth assignments to the same symbol, inconsistencies might not be detected.
∀-instantiation can be extended to other classes of formulae such as equivalences and

non-monotone occurrences of quantifiers. For sentences of the form ∀x[[t]] : L(x) ≡ ϕ(x) for
example, the strategy is as outlined above except that χ becomes a known-delay. In the
same fashion, the approach can be extended to inductive definitions[5], sets of rules of the
form (∀x : L(x)← φ) evaluated by the well-founded semantics[13]. Furthermore, the exact
delays used by ∀-instantiation allow us to trade-off propagation versus grounding size and
towards solving query tasks. Details are out of the scope of this paper, but results of these
ideas are included in the prototype implementation used in the experiments.

4.3 Delayed grounding algorithm
With these techniques, we can now give an informal (due to lack of space) presentation
of the delayed grounding algorithm for_del_gnd. The algorithm takes as arguments an

2 A delayed sentence (ϕ ∧ ϕ′)δ can be seen as the union of delayed sentences (ϕ)δ and (ϕ′)δ.

B. De Cat, M. Denecker, and P. Stuckey 207

interpretation I, a theory T and the set of delays of all currently delayed sentences. It
returns a delayed theory Td inactive in I which is a partial grounding of T .

We assume a standard top-down reduced grounding algorithm, such as in e.g. [15], which
recursively visits the theory top-down to ground it. The algorithm keeps track of the set of
ground and delayed sentences and of the context ((anti/non)-monotone).

Lazy grounding is applied in two different scenarios. Firstly, if a universally quantified
disjunctive sentence is encountered for which a set of subformulas can be selected according
to the above conditions, the sentence is delayed using ∀-instantiation (recursively grounding
non-delayable instantiations). Secondly, for an existential quantification or disjunction, a
non-false subformula is selected randomly3 and grounded recursively; the remainder of the
formula is delayed by Tseitin introduction. The second approach is also applied for non-
monotone occurrences of universal quantifiers and conjunctions.

4.3.1 Incremental delayed grounding algorithm
Initially, for_del_gnd is applied to I and T (no delayed sentences yet), resulting in an initial
delayed theory Td. In order to construct a weak model for a delayed theory Td, search and
grounding are interleaved. When, during search, an interpretation I is constructed where
some delays in Td are active, further grounding is applied to the associated delayed sentences.
This is achieved by iterating over all delayed sentences in Td and incrementally applying
for_del_gnd to each active delayed sentence. Each new ground sentence is added to the
ground theory and the original delayed sentence is replaced by new delayed sentences (if
any). This algorithm is denoted as inc_del_gnd. It takes as input an interpretation I and a
delayed theory T and the result is a partial grounding of T which is inactive under I.

I Example 8. Consider T = ∃x[[t]] : (P (x) ∧ R(x)) ∨ (∀y[[t′]] : Q(x, y)). Delayed grounding
of this sentence is achieved by selecting a domain element d ∈ t and applying for_del_gnd
to (P (d) ∧ R(d)) ∨ (∀y[[t′]] : Q(d, y)) while applying Tseitin introduction to the residual
subformula φ = ∃x[[t\d]] : (P (x) ∧R(x)) ∨ (∀y[[t′]] : Q(x, y)).

Applying for_del_gnd to (P (d) ∧ R(d)) ∨ (∀y[[t′]] : Q(d, y)) recursively calls for_del_gnd
on P (d) ∧ R(d) and Tseitin introduction on the other disjunct ψ = (∀y[[t′]] : Q(d, y)). The
resulting delayed theory consists of the ground sentence (P (d) ∧ R(d)) ∨ Tψ ∨ Tφ and the
true-delayed sentences:

(Tψ ≡ (∀y[[t′]] : Q(d, y)))Tψ 6= t

(Tφ ≡ ∃x[[t\d]] : (P (x) ∧R(x)) ∨ (∀y[[t′]] : Q(x, y)))Tφ 6= t �

4.4 Lazy model expansion
The complete lazy model expansion algorithm, denoted lazy_mx and shown below, inter-
leaves grounding and search based on a standard (incremental) CDCL search algorithm.
The algorithm (shown below) gets as input a theory T and a pre-interpretation Sin and
maintains the current delayed theory 〈G,D〉. The (current) ground theory provides the con-
straints used during search. If a conflict at root level is encountered, then G has no model
and hence neither does T since 〈G,D〉 is a partial grounding of T . If a delay is active,
grounding is performed to construct a new delayed theory which is a partial grounding of
T . If all delays are inactive and the search algorithm detects that I satisfies all constraints
in G, I is a weak model of 〈G,D〉. As 〈G,D〉 is a partial grounding of T , T is satisfiable.

3 Better heuristics are part of future work.

ICLP’12

208 Lazy Model Expansion by Incremental Grounding

lazy_mx (T , I)
〈G,D〉 := for_del_gnd(T , I, ∅)
while true do

I := unit_propagation(G,I)
if (conflict detected)

if (at root level) return false

G := G ∧ conflict clause
I := I at state of backjump point

else if (some delay in D is active in I)
〈G,D〉 := inc_del_gnd (〈G,D〉,I)

else if (satisfaction of G in I is detected) return true

else I := I ∪ {l} with l a search choice

If the lazy_mx algorithm returns true, T has a model that is more precise than I. If the
algorithm returns false, no interpretation exists which is more precise than I and satisfies
T . The algorithm terminates if T and I are finite. If T has a finite number of sentences,
termination is possible but not guaranteed (not even when a finite model exists).

Deciding atoms occurring in known-delays when I is already a weak model of T will
obviously cause unnecessary grounding. As standard search algorithms decide all literals in
the ground theory, we use a modified algorithm which tracks satisfaction of constraints in
an efficient way without deciding all literals in the ground theory.

To handle non-empty output vocabularies σout, we modified the algorithm to always
return models which are two-valued on σout. This is achieved by forcing the search algorithm
to decide all atoms in the set of domain atoms of σout under Sin.

5 Experiments

A prototype implementation was created within the idp-3 system, a knowledge base system
based on extensions of first-order logic. The idp system is a state-of-the-art model expansion
system, based on the ground-and-solve paradigm [14], [3].

Experiments were conducted with three setups: basic model expansion (denoted idp),
lazy model expansion by Tseitin introduction (idpT) and by Tseitin introduction and by
∀-instantiation (idpT,S).

The considered benchmarks represent a diverse set of problems, both existing benchmarks
(e.g. from previous ASP competitions) and newly constructed ones. As most existing
benchmarks are problems with a feasible grounding and difficult search part, we also created
new instances which are computationally easier but have a very large grounding. This
combination will allow to assess the strengths and weaknesses of the approach.

For each benchmark instance, runtime and grounding size are measured for each setup.
Grounding size is measured as the number of literals over the input vocabulary. The ground-
ing size of all setups is compared to the (theoretical) grounding size of the full grounding
(see table 1). 4 The results are shown in table 2.

The experiments show that, for a range of benchmarks and instances, lazy mx by in-
cremental grounding can be very beneficial. For most benchmarks, the grounding size is
reduced orders of magnitude over both the full grounding and the reduced grounding as

4 For the full grounding, the input structure is not taken into account. Consequently, even the grounding
of the IDP setup can be smaller than the full grounding as IDP constructs a reduced grounding.

B. De Cat, M. Denecker, and P. Stuckey 209

Table 2 Experimental results of applying lazy model expansion (idpT and idpT,S) compared to
default model expansion (idp). Grounding time (in seconds) is denoted as t, grounding size as G, ∗∗
denotes ASP competition instances. A timeout of 1000 seconds was used and a memory limit of 3
Gb, — indicates timeout or memory overflow. All experiments were run on an Intel Core 2 Machine
(dual 2.40Ghz) running Ubuntu 10.4. The version of the idp system used in the experiments and
all data files are available from http://dtai.cs.kuleuven.be/krr/research/experiments.

Benchmark Gfull Gidp GidpT GidpT,S tidp tidpT tidpT,S

func-1 8.0 ∗ 107 8.0 ∗ 107 1.6 ∗ 105 540 99.03 4.07 0.1
func-2 ∞ — — 1370 — — 0.1
bnq** 1.4 ∗ 108 1.1 ∗ 105 1.1 ∗ 105 6.8 ∗ 104 2.56 2.56 1.96
packing-1 1.0 ∗ 1010 1.2 ∗ 108 1.1 ∗ 108 1.0 ∗ 106 171 172 5.0
packing-2 3.1 ∗ 1012 — — 2.2 ∗ 107 — — 27.0
agentK 5.0 ∗ 106 — — 626 — — 0.02
planning1 ∞ — — 385 — — 0.29
planning2-1 3.0 ∗ 108 2.0 ∗ 108 .05 ∗ 106 4.3 ∗ 104 139.02 5.96 0.46
planning2-2 3.0 ∗ 1010 — 5.1 ∗ 108 2.5 ∗ 106 — 455.02 31.05
soko-18** 1.6 ∗ 108 8.3 ∗ 107 — — 247.5 — —
soko-L 3.7 ∗ 108 — 1.5 ∗ 106 4.0 ∗ 105 — 16.0 6.0
reach-08** 2.3 ∗ 1018 — — 60 — — 26.05
reach-14** 6.2 ∗ 1014 — — 1.7 ∗ 105 — — 3.36

done by idp. Running times on many benchmarks go from untractable to solvable within
seconds. Runtime is only worse for the sokoban 18 problem.

Tseitin introduction proves to be an advantage in benchmarks such as encoding functional
dependencies and planning: problems which are generally solved by selecting an appropriate
(small) subset of literals to assign, even if this choice is unguided. Indeed, it is enough to
select one domain elelement for each function range or only actions for a small timeframe
in many planning problems. On the other hand sokoban 18 shows that in hard planning
problems, the incremental approach has an adverse effect on the search (introduction of
large number of Tseitin literals). As expected, it has few effects on problems with a universal
quantifications over large domains, such as packing 2, reachability and func 2.

Delaying using ∀-instantiation was expected to have a positive effect on most benchmarks,
unless the loss in propagation is too significant (such as for sokoban 18). On all other
benchmarks, it has an outspoken positive effect:

Even for bounded N-Queens, a hard search problem, the grounding size is reduced and
the performance increased, because non-propagating implications are not grounded.

Problems with an infinite full grounding can be solved, such as planning problems over
infinite times. The conjunction with Tseitin introduction is crucial to delay both exist-
ential and universal quantifiers.

It acts as a kind of dynamic dependency analysis, selecting the parts of the theory which
(hopefully) contribute to finding a model. This can be observed in particular in reach-
ability (reach-*), in fact a query task generally solved by (static) dependency analysis.
Additionally, the dynamic character of our approach is both at least as powerful and
more general, during search only grounding what becomes relevant.

ICLP’12

http://dtai.cs.kuleuven.be/krr/research/experiments

210 Lazy Model Expansion by Incremental Grounding

6 Related work

Within logic programming and ASP, static dependency analysis is applied as a means to
reduce the size of the grounding up-front by detecting non-relevant parts of the theory. It has
been implemented for example in [7] and [17]. Furthermore, lazy grounding techniques have
been researched within ASP [6], [12] and CP [11]. Such techniques usually work on delaying
grounding of specific constraints as long as they do not cause propagation, for example for
all-different constraints, aggregates and equality reasoning. Our lazy mx approach is more
general, as it performs dependency analysis dynamically and is able to delay grounding even
when propagation is possible, but might be less powerful for constraints for which specific
algorithms exist. Comparing those techniques in-depth is part of future work.

The model generation theorem prover Paradox [4] uses a grounding technique based on
lazily extending the domain of the quantifiers. It first chooses a domain (all domain elements
are symmetrical) and constructs the full grounding. If no model is found, it increases the
domain size, until a model is found or a bound on the size is hit (if one could be derived).
Such an approach stands orthogonal to the work presented in this paper and it is part of
future work to combine the advantages of both approaches.

As part of future work, we will investigate the relation with techniques used to delay the
grounding of quantifiers such as skolemisation, used e.g. in theorem proving, and congruence
closure algorithms which reason on equality of terms, from the domain of SAT-Modulo-
Theories. Another promising topic is that of undoing grounding on backtracking. In effect,
it might be possible to track whether delays have become inactive again and to remove the
associated constraints again. Such a strategy would allow to reduce the size of the grounding
again when a different part of the search space comes under investigation.

7 Conclusion

Lazy model expansion is an approach to model expansion that interleaves solving and search.
It can be highly beneficial when the original theory has a large (or infinite) grounding, be-
cause it tries to introduce just enough grounding to solve the problem. The disadvantages of
lazy mx are that it provides less propagation than full grounding, and the order of ground-
ing can effect search detrimentally. There remains much future work to improve lazy mx
by incorporating ideas such as lifted unit propagation and devising better heuristics for
controlling delay, but there are already examples where lazy mx is highly beneficial.

Acknowledgements

Broes De Cat is funded by the Institute for Science and Technology Flanders (IWT).
Research supported by Research Foundation-Flanders (FWO-Vlaanderen).
NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

B. De Cat, M. Denecker, and P. Stuckey 211

References
1 Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University Press,

2003.
2 Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press, 2003.
3 Bart Bogaerts, Broes De Cat, Stef De Pooter, and Marc Denecker. The idp framework

reference manual. http://dtai.cs.kuleuven.be/krr/software/idp3/documentation,
2012.

4 Koen Claessen and Niklas Sörensson. New techniques that improve MACE-style model
finding. In MODEL, 2003.

5 Marc Denecker and Eugenia Ternovska. A logic of nonmonotone inductive definitions.
volume 9, 2008.

6 Claire Lefèvre and Pascal Nicolas. The first version of a new ASP solver : ASPeRiX. In
LPNMR, pages 522–527, 2009.

7 Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
volume 7, pages 499–562, 2006.

8 David G. Mitchell and Eugenia Ternovska. A framework for representing and solving NP
search problems. In Manuela M. Veloso and Subbarao Kambhampati, editors, AAAI, pages
430–435. AAAI Press / The MIT Press, 2005.

9 N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G. Tack. Minizinc:
Towards a standard CP modelling language. In C. Bessiere, editor, Proceedings of the 13th
International Conference on Principles and Practice of Constraint Programming, volume
4741 of LNCS, pages 529–543. Springer-Verlag, 2007.

10 Ilkka Niemelä. Answer set programming: A declarative approach to solving search prob-
lems. In JELIA, pages 15–18, 2006. Invited talk.

11 O. Ohrimenko, P.J. Stuckey, and M. Codish. Propagation via lazy clause generation.
Constraints, 14(3):357–391, 2009.

12 Alessandro Dal Palù, Agostino Dovier, Enrico Pontelli, and Gianfranco Rossi. Answer set
programming with constraints using lazy grounding. In Patricia M. Hill and David Scott
Warren, editors, ICLP, volume 5649 of LNCS, pages 115–129. Springer, 2009.

13 Allen Van Gelder. The alternating fixpoint of logic programs with negation. Journal of
Computer and System Sciences, 47(1):185–221, 1993.

14 Johan Wittocx, Maarten Mariën, and Marc Denecker. The idp system: a model expansion
system for an extension of classical logic. In Marc Denecker, editor, LaSh, pages 153–165,
2008.

15 Johan Wittocx. Finite Domain and Symbolic Inference Methods for Extensions of First-
Order Logic. PhD thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium,
May 2010.

16 Johan Wittocx, Maarten Mariën, and Marc Denecker. Grounding FO and FO(ID) with
bounds. Journal of Artificial Intelligence Research, 38:223–269, 2010.

17 M. Gebser and R. Kaminski and A. König and T. Schaub. Advances in gringo Series 3. In
James P. Delgrande and Wolfgang Faber, editors, LPNMR, volume 6645 of LNCS, pages
345-351. Springer, 2011.

18 Heinz-Dieter Ebbinghaus and Jörg Flum and Wolfgang Thomas. Mathematical logic (2.
ed.). Springer, 1994.

ICLP’12

http://dtai.cs.kuleuven.be/krr/software/idp3/documentation

Unsatisfiability-based optimization in clasp∗

Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and
Torsten Schaub

University of Potsdam,
August-Bebel-Str. 89,
D-14482 Potsdam, Germany
{bandres,matheis,torsten}@cs.uni-potsdam.de

Abstract
Answer Set Programming (ASP) features effective optimization capacities based on branch-and-
bound algorithms. Unlike this, in the area of Satisfiability Testing (SAT) the finding of minimum
unsatisfiable cores was put forward as an alternative approach to solving Maximum Satisfiability
(MaxSAT) problems. We explore this alternative approach to optimization in the context of
ASP. To this end, we extended the ASP solver clasp with optimization components based upon
the computation of minimal unsatisfiable cores. The resulting system, unclasp, is based on an
extension of the well-known algorithmsmsu1 andmsu3 and tailored to the characteristics of ASP.
We evaluate our system on multi-criteria optimization problems stemming from realistic Linux
package configuration problems. In fact, the ASP-based Linux configuration system aspuncud
relies on unclasp and won four out of seven tracks at the 2011 MISC competition.

1998 ACM Subject Classification I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases answer-set-programming, solvers

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.212

1 Introduction

Answer Set Programming (ASP,[2]) utilizes effective and elaborate optimization techniques
based on branch-an-bound algorithms [11]. While these technique have shown to be able
solve many problems efficiently, an alternative to this approach emerged in the field of
Satisfiability Testing (SAT) for solving Maximum Satisfiability (MaxSAT,[7]) problems. The
approach of using unsatisfiable cores has already shown to be successful by the Maximum
Satisfiability with UNsatisfiable COREs (MSUnCore,[10]) solver, being ranged as the best
solver in the industrial category in the 2008 MaxSAT evaluation. A closer survey shows that
the MSUnCore is able to solve some instances that are difficult for the ASP solver clasp [5]
efficiently. To this end, we propose a new algorithm for solving optimization problems
in ASP, combining the MSUnCore solving techniques of msu1 and msu3 with regard of
the characteristics of ASP. The algorithm is extended with techniques for multi-criteria
optimization and utilizes the algorithm from [9] for solving weighted optimization problems.
The implemented algorithm forms a branch of the clasp solver, unclasp, specialized for
solving unweighted multi-criteria optimization ASP problems. In fact, aspuncud, an ASP-
based Linux configuration system based on unclasp, won four out of seven tracks at the 2011
Mancoosi International Solver Competition (MISC) competition [8]. The unclasp solver is
available in the lab section of the Potsdam Answer Set Solving Collection [4].

∗ This work was partially funded by the German Science Foundation (DFG) under grant SCHA 550/8-2.

© Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 212–221

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.212
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Andres, B. Kaufmann, O. Matheis, and T. Schaub 213

The remainder of the paper is structured as follows. The fundamentals of the MSUnCore
algorithms are introduced in section 2. Section 3 presents our adaptation of the unsatis-
fiable based MSUnCore algorithms for solving ASP optimization, and its implementation
into unclasp Our experimental results, including instances from MISC and a number of
(un)weighted problems, are discussed in section 4. Section 5 concludes the paper.

2 The MSUnCore Algorithm

The MSUnCore solver features several strategies for solving unweighted, partial MaxSAT
problems. Partial MaxSAT is an extension of the SAT problem, in which the number of
satisfied clauses of a given subset of the SAT problem is to be maximized, while all other
clauses of the problem must still hold. The clauses of the subset are called soft, while all
other are hard clauses. A partial MaxSAT is unweighted if no clause of the subset is favored,
and weighted otherwise. To this end, all MSUnCore strategies utilize unsatisfiability based
approaches. The basic idea behind unsatisfiability based optimization is trying to solve
the given problem and to extract an unsatisfiable core if the problem is not satisfiable.
An unsatisfiable core is a subset of clauses of the original problem whose conjunction is
still unsatisfiable. All soft clauses of the extracted core are relaxed, allowing the solver
to arbitrarily satisfy one of the clauses. Afterwards, the problem is tried to be solved
again with the relaxed clauses. This procedure is iterated until the problem is satisfied
or an unsatisfiable core with no soft clauses is identified, meaning that the problem is
unsatisfiable. Each of the four strategies of MSUnCore, msu1-4, implements a different
approach in utilizing the identified unsatisfiable core. In the following the msu1 algorithm
is explained as an introduction to unsatisfiability based optimization. Subsequently, the
features of the other MSUnCore algorithms are presented.

Algorithm 1 presents the pseudo code of the msu1 strategy. The algorithm consists of
a main loop, identifying a solution with the maximum number of satisfied clauses. To this
end, the loop iterates through the following steps. First, the problem is passed to a solver.
If the solver returns satisfiability, an optimal solution for the problem is found and the loop
ends. Otherwise, the reason for unsatisfiability, i.e. an unsatisfiable core, is taken from the
solver. Next, all soft clauses of the identified core are relaxed, that is, a unique variable v is
added to the clause. Since the newly added relaxation variable is unique, the solver is able to
arbitrarily set the variable to true and thus to satisfy the clause. If the identified core does
not contain any soft clauses, the core can not be relaxed and the loop ends returning the
problem as unsatisfiable, since every solution to the problem must injure at least one clause
within the core by definition. Finally, an at-most-1 constraint is added to the problem to
ensure that at most one of the newly added relaxation variables is set to true. If V is the
set of newly added relaxation variables, then the at-most-1 constraint for msu1 consists of
the following clauses:

the clause
∨

v∈V v, and one clause in the form of ¬vi ∨ ¬vj for any vi, vj ∈ V .

The first clause ensures that at least one of the relaxation variables is true, while the
others prevent that more than one is true. Thus, |V | variables and 1 +

(|V |
2
)
clauses are

added to the problem. Since in every iteration only one additional soft clause is satisfied
through relaxation, the first valid solution found by the SAT solver is optimal. The number
of additional variables and clauses needed is a major disadvantage for the msu1 algorithm,
especially for bigger problems. The msu2 and the msu3 algorithms offer two approaches for
reducing the number of needed clauses and relaxation variables, respectively.

ICLP’12

214 Unsatisfiability-based optimization in clasp

By introducing additional relaxation variables msu2 is able to reduce the number of
additional clauses to encode the at-most-1 constraint from Θ(|V |2) to Θ(|V |). Since ASP
offers its own efficient encoding of the at-most-1 constraint, this approach is not further
examined. As stated above, msu1 adds a new relaxation variable for every soft clause in an
indentified unsatisfiable core. This leads to clauses with many relaxation variables in the
case of intersection between cores. Thus, creating several possible combinations for satisfying
one set of clauses, obfuscating the solving process. The msu3 algorithm trades the ability to
distinct between identified unsatisfiable cores for a reduced number of relaxation variables.
At first, all identified unsatisfiable cores are removed from the problem without substitution,
until the problem is satisfiable. While this is not compulsory, it allows to identify disjoint
unsatisfiable cores efficiently. Afterwards, the identified cores are relaxed, but instead of
adding a relaxation variable each time a clause occurs in an identified core as in msu1, msu3
relaxes each clause only once. Thereby, potentially reducing the number of used relaxation
variables. While msu1-3 use true top-down approaches for finding optimal solutions, msu4
combines the msu3 approach with bottom-up search. Instead of allowing only one additional
soft clause to be relaxed in each iteration, msu4 states that each subsequent solution must
satisfy at least one additional soft clause without being relaxed. Thus, approaching the
optimal solution from the lower end. All identified unrelaxable cores are treated as in msu4.

Algorithm 1 Iterative UNSAT Core Elimination of msu1.
T := ∅ {set of all relaxation variables}
while SAT solver returns UNSATISFIABLE do
LET UC be the UNSAT core provided by the SAT solver
S := ∅ {set of new relaxation variables for UC}
for all Clause c ∈ UC do

if c is relaxable then
Allocate a new relaxation variable v

c := c ∪ {v}
S := S ∪ {v}

end if
end for
if S = ∅ then

return CNF UNSATISFIABLE
else
Add clauses enforcing the one-hot constraint for S to the SAT solver
T := T ∪ S

end if
end while
R := {v|v ∈ T, v = 1}; k := |R|
return Satisfying Assignment, k, R.

3 Implementation of unclasp

The problem of ASP optimization is strongly related to partial MaxSAT. Both problems
consist of an unrelaxable rule set and a linear optimization function. While the literals of
an ASP optimization rule can be interpreted as distinct soft clauses of a partial MaxSAT
problem, the relaxation variables used to solve a partial MaxSAT can be used to form an

B. Andres, B. Kaufmann, O. Matheis, and T. Schaub 215

optimization rule in ASP. We utilize this correlation in our approach for developing an un-
satisfiability based algorithm for ASP optimization. This approach tries to combine the ad-
vantages of msu1 with the practical improvements of msu3 in regard of the characteristics of
ASP. To this end, we create a branch of the ASP solver clasp, utilizing its sophisticated ASP
solving technique. The resulting system, unclasp, is specialized for unweighted, hierarchic
optimization problems. Although, able to solve weighted problems as well. The advantages
gained by porting the MSUnCore’s unsatisfiability based approach of solving MaxSAT, to
an ASP solving strategy are presented in the following. Afterwards, an extension for solving
weighted problems, is explained. Finally, the implementation of our approach into unclasp
is presented.

When solving ASP optimization problems with themsu3 approach, the one-literal clauses
of an ASP optimization rule offer a distinct advantage over the longer clauses of MaxSAT.
Since, in msu3 each clause is limited to only one relaxation variable, one can interpret the
negated literal as its own relaxation variable.

Take, for example, the one-literal clause {¬l}. If extended by the relaxation variable v

we get {¬l∨v}, which is equivalent v ← l. Since, an optimal solution minimizes the number
of true relaxation variables, and v is unique in the problem description, v ←→ l follows.
Thus, {l} is the relaxed clause of {¬l}.

With this, msu3 can be processed for ASP problems without additional variables. The
next strong point of ASP is its management of cardinality constraints. Cardinality con-
straints are satisfied if the number of satisfied literals of the constraint are within a specified
range. The ASP solver clasp is able to handle the constraint as a single rule simply by
counting the number of satisfied literals. Clasp only generates the specific clauses for the
cardinality constraint when needed for resolution. This is done on demand. This does
not only allow to encode at-most-1 constraints efficiently, but also to formulate at-most-n
constraints. Being constraints, that enforces the usage of at most n relaxation variables.

In respect to these two characteristics of ASP, our approach works as follows: The
problem is given to the solver, and in case of unsatisfiability the core is extracted. All
clauses from the optimization rule in the core are relaxed as described above, and an at-
most-1 constraint from the new relaxation variables is formulated as inmsu1. In difference to
msu1, the relaxed clauses are marked as hard for any successive solving pass. This prevents
them to be relaxed a second time. Instead, the new at-most-1 constraint becomes a soft
rule. When a at-most-n constraint is encountered in an unsatisfiable core, it is relaxed by
an at-most-(n+1) rule for the same variables. This algorithm iterates until the problem is
solved or an unsatisfiable core without soft clauses is encountered.

For dealing with weighted problems the idea from [9] is added to the management of
unsatisfiable cores. After the core is identified, each containing clause is split into two. This
is done in such a way, that a maximum equal weighted core and a remainder is obtained.
Now, the equal weighted core is interpreted as unweighted, while the clauses in the remainder
are added to the problem. For example, the weighted core (a = 3, b = 5, c = 4) is split into
an equal weighted core (a = 3, b = 3, c = 3) and its remainder (b = 2, c = 1). The equal
weighted core is now interpreted as unweighted (a, b, c) and the weighted clauses b = 2 and
c = 1 are added to the problem.

ASP allows to formulate multiple optimization rules and to order them in a hierarchy.
Meaning that an optimal solution to a hierarchic optimization problem, has an optimal
value in the highest hierarchy level and in all lower levels in an optimal value in respect to
the solutions possible for its predecessor levels. This is handled as a sequence of distinct
optimizations with the identified optimal values from the higher levels as additional criterion.

ICLP’12

216 Unsatisfiability-based optimization in clasp

The implementation of unclasp is based on the clasp solver by utilizing a modification
of the internal clasp function ClaspFacade::solveIncremental. This function runs one loop,
divided into four phases as shown in figure 1. The phases are surrounded by the control
functions initStep and nextStep, initializing the next pass through the loop and deciding
whether another pass is necessary respectively. Figure 2 shows the added interface for
implementing our approach.

The loop differentiates in our implementation between the first and all successive run-
throughs. In the first pass, the initStep function is skipped and the problem is read in
the read step. During preprocess the rules of the problem are translated into an internal
representation and the constant minimizeconstraint_, holding all literals to be optimized,
is formulated by the build in ProgramBuilder function. Next, in the getAssumptions phase,
assumelevel is called, extracting the literals of the current optimization level from minimize-
constraint_ and copying them into the assumptions_ set. This is done to account for literals
that influence more than one optimization level. Also, the weights of the minimization liter-
als are copied into the weightmap_. In the solve step, a solution to the problem with respect
to the assumptions_ is searched for. This leads to three different outcomes determining the
behavior of the nextStep function. If the problem is unsatisfiable under assumptions, that
is, the extracted unsatisfiable core consists at least one literal from assumptions_, the loop
starts another pass, beginning with nextStep. If no literal from assumptions_ is in the iden-
tified core, the problem is unsatisfiable and the incremental solving process is terminated.
Finally, in the case of satisfiability, assumelevel is called, checking whether another optimiz-
ation level exists. If no further level in the optimization hierarchy exists, the solution found
is optimal and the loop terminates. Otherwise, the assumptions_ are transformed into facts
by the factifyassumptions function and assumelevel extracts the new assumptions_ from
minimizeconstraint_. Then, the optimization continues with another pass through the loop.

In all successive passes the initStep function calls the internal2program function, which
translates the unsatisfiable core from the previous pass back into program variables. Af-
terwards, analysecore is called for managing the translated core. First, the minimal weight
of the core’s literals is identified and the weight of these literals in the weightmap are re-
duced by this amount. Then an at-most-1 constraint for the core’s literals is formulated
by the addconstraint function. A guard variable with the previous identified weight allows
the relaxation of the variable, i.e. marking it as soft with the appropriate weight. The
guard variable is saved in addtoassumptions_ for later usage in the getAssumptions phase,
when an internal representation for the guard is generated. If a literal of the core is already
a guard variable of an at-most-n constraint, an appropriate at-most-(n+1) variable is ad-
ded to addconstraints. All weights in the weightmap that are reduced to 0 are removed
from assumptions_. The read phase is skipped after the first pass and the new constraints
from initStep are added into the internal representation. In the getAssumptions phase the
variables of addtoassumptions_ are mapped to the internal literals with help of the buildin
SolverStrategies::SymbolTable. The internal literals are then added to assumptions_. The
solve phase and the nextStep function behave as described above.

4 Experiments

We evaluate our implementation on optimization instances taken from the MISC and the
ASP problem collection asparagus [1]. In order to be able to compare our approach from
Section 3 with the MSUnCore algorithms, we implemented an ASP optimizing variant of
msu1, msu3 and msu4 in unclasp. Thus, unclasp is in no need to reduce the number of

B. Andres, B. Kaufmann, O. Matheis, and T. Schaub 217

initStep read preprocess getAssumptions solve nextStep

UNSATISFIABLE under assumptions / SATISFIABLE with a new optimization level

SATISFIABLE /
UNSATISFIABLE

Figure 1 The incremental solving procedure.

Table 1 Runtime parameters of the optimizing strategies used.

new unclasp --opt-uncore=oll
msu1 unclasp --opt-uncore=msu1
msu3 unclasp --opt-uncore=msu3
msu4 unclasp --opt-uncore=msu4
clasp clasp-2.0.0 --sat-prepro --restarts=128 --local-restarts

--heuristic=VSIDS --solution-recording --opt-hierarch=1
--opt-heu=1

clauses introduced by the one-hot condition followed by msu2. To compare the unsatisfiab-
ility based approach with the branch-and-bound approach we included the clasp 2.0 solver
into the benchmark. Table 1 presents the runtime parameters used for each strategy. The
parameters for clasp are specialized for the MISC benchmark set. Below, we report the
sequential runtimes on a Linux machine equipped with 3.4 GHz Intel Xeon CPUs and 32
GB RAM. Finally, a timeout was set after 300 seconds.

The MISC benchmark set consists of instances where, given a set of installed and available
packages, a solution has to satisfy requests of package addition and removal, while minim-
izing the effect on the current installation. Packages may depend on or conflict each other,
creating a combinational rich unweighted hierarchic optimization problem with a large num-
ber of widely independent optimization variables. The huge number of suboptimal solutions
necessitate a sophisticated search heuristic and restart policy.

Figure 3 presents a solution cost distribution plot [6] of the runtime measured. The
x-axis shows the runtime for solving one instance, while the y-axis labels the percentage
of instances solved within the time. The plot shows that for smaller runtimes, up to 10
seconds, all approaches are able to solve a comparable number of instances. On larger
runtimes the approaches start to differentiate from each other and a gap emerges. The msu1
and our new approach clearly dominate the benchmark, able to solve all but two instances
in less than 70 seconds, each. Please note, that these two instances were not solved by
any approach within the time frame of 300 seconds, demonstrating their complexity. The
next two best performing solvers are msu3 and msu4 with 10 and 12 unsolved instances,
respectively. While being able to solve some of the instances faster than the unsatisfiability
based approaches, clasp did not solve a higher percentage of MISC instances on any given
runtime. In addition clasp could not solve 43 instances before reaching time-out. The
performance of msu4 and clasp indicates, that the bottom-up strategy used by them is not
ideal. The benchmark shows further, that the reduction of relaxation variables pursued by
msu3 is not advantageous for the MISC problem class, overall.

To evaluate the performance of the unsatisfiability based strategies in general and our
proposed algorithm in particular, we selected nine general optimization problems from the

ICLP’12

218 Unsatisfiability-based optimization in clasp

class UncoreControl: public IncrementalControl {
public:

virtual void initStep(ClaspFacade& f);
void getAssumptions(ClaspFacade& f, LitVec& a);
virtual bool nextStep(ClaspFacade& f);

protected:
void initassumptions(ClaspFacade& f);
void assumelevel(ClaspFacade& f);
void removefromassumptions(const LitVec&);
void factifyassumptions(ClaspFacade& f);
virtual void analysecore(ClaspFacade& f, const LitVec&);
Var addconstraint(ClaspFacade& f, const LitVec&,

unsigned int bound);
Literal internal2program(ClaspFacade& f, Literal v);

const MinimizeConstraint* minimizeconstraint_;
std::set<Literal> assumptions_;
VarVec addtoassumptions_;
Guardtable guardtable_;
unsigned int level_;
bool nextlevel_;
std::vector<unsigned int>min_;
SolveStats totalstats_;
std::map<Literal,int> weightmap_;

};

Figure 2 Interface for implementing unclasp into clasp.

asparagus benchmark collection. Most of them were used in the ASP’09 competition [3].
Table 2 shows the selected optimization problems and the corresponding runtime of the
optimizing technique. The upper six problems are unweighted, while the lower three are
weighted. In the 15-puzzle and sokoban instances the solver has to minimize the number
of steps needed to solve the problem. Since all steps build upon each other, there are no
combinatorics in the minimization function. Thus, the size of the identified core in every
iteration of unclasp is one (i.e. the next step). Because of that, the unsatisfiability based
algorithms behave the same. The branch-and-bound based algorithm of clasp also achieves
similar runtime results. The clique problem describes the problem of finding the maximal
clique in an undirected graph, given. Here, the bottom-up algorithms of msu4 and clasp
are clearly superior to the top-down algorithms, as the instances become larger. Of the
top-down algorithms, our new approach is able to achieve the best runtime results, while
msu1 could not solve three of the five instances. The other three unweighted problems,
labyrinthpath, minimum postage stamp problem (mpsp) and weight bounded
dominating set (wbds) use a large number of optimization variables and also return
large unsatisfiable cores. This highlights the different strategies of the unsatisfiability based
approaches. In labyrinthpath msu1’s ability to distinguish identified cores is advantageous
over msu3 reduced number of additional variables, as with the MISC benchmark set. In
mpsp the opposite is the case, andmsu3 outperformsmsu1, able to solve two more instances.
Interestingly, msu4 performs similar to msu3. Our approach achieves the best results on

B. Andres, B. Kaufmann, O. Matheis, and T. Schaub 219

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 100 300

p
(x

<
=

t)

t in sec

MISC Benchmark runtime results

unclasp/new
unclasp/msu1
unclasp/msu3
unclasp/msu4

clasp

Figure 3 Solution cost distribution plot of the MISC instance runtime.

these three problems. Especially on the mpsp and wbds instances, where it is able to
solve instances every other approach could not. clasp is not able to compete with the
unsatisfiability based approach with the exception of msu1 in the mpsp problem.

The bottom-up algorithms msu4 and clasp perform well in the weighted problems, com-
panyctrl, opendoors and fastfood, while clasp has a better runtime on opendoors and
msu4 on fastfood. The companyctrl problem demonstrates the benefit of the splitting
algorithm. While the other approaches are able to solve the problem without much effort,
the msu3 algorithm, which is incompatible with the algorithm from [9], has much difficulty.
The fastfood problem shows the limit of the top-down unsatisfiability based algorithms.
While the problem is easy in general, the cores get too big after a few loop iterations. On
this problem class the variable reduction of the msu3 algorithm shows to be useful, allowing
msu3 to solve three of the five instances tested.

Overall, unsatisfiability based optimization has shown to be efficient in solving un-
weighted optimization problems. The benchmark demonstrates the effectiveness of our
implementation, but also shows its limits on weighted optimization problems.

5 Discussion

We presented an approach to bring unsatisfiabilty based optimization to ASP. Our approach
combines the msu1 and msu3 strategies of theMSUnCore MaxSAT solver with regard to the
special characteristics of ASP. The resulting algorithm is specialized for solving unweighted
hierarchical optimization problems. In fact, our implementation of the proposed algorithm
into unclasp was able to to solve a number of problems faster than the traditional branch-and-
bound approach utilized by clasp. This shows that the unclasp approach is a useful addition
to the algorithms currently used by clasp for solving unweighted problems, expanding clasp’s
portfolio of optimization strategies.

ICLP’12

220 Unsatisfiability-based optimization in clasp

Table 2 Runtime of selected optimization instances from asparagus.

oll msu1 msu3 msu4 clasp
15-puzzle
init1 9,58 9,42 9,53 9,45 6,74
init1simple 0,93 0,93 0,93 0,94 2,02
init1simple2 0,42 0,42 0,42 0,42 1,48
init2 81,84 82,74 82,27 81,81 73,85
init3 13,38 13,28 13,44 13,43 16,81
sokoban
dimitr_yo51s10 0,24 0,24 0,25 0,25 0,21
dimitr_yo51s14 1,65 1,65 1,66 1,66 1,06
dimitr_yo51s17 2,54 2,55 2,55 2,58 1,59
dimitr_yo52s10 1,67 1,67 1,67 1,67 0,65
dimitr_yo55s10 0,81 0,81 0,81 0,83 0,49
clique
gen10_25 0,02 0,02 0,02 0,02 0,02
gen200_8000 4,77 300,00 21,35 0,73 0,77
gen300_20000 28,87 300,00 143,45 4,17 3,94
gen75_1000 0,06 8,19 0,12 0,07 0,05
gen100_2000 0,14 300,00 0,51 0,16 0,08
labyrinthpath
l10_10_01 1,88 1,89 1,88 1,86 18,33
l11_11_01 2,41 1,88 2,39 2,37 300,00
l12_12_01 3,44 4,82 212,90 236,66 300,00
l13_13_01 300,00 300,00 300,00 300,00 300,00
l14_14_01 300,00 300,00 300,00 300,00 300,00
mpsp
mpsp30-2 0,04 0,13 0,08 0,09 0,05
mpsp36-2 0,12 3,35 0,44 1,02 0,30
mpsp48-2 2,99 300,00 50,90 53,01 116,59
mpsp54-2 1,96 300,00 64,83 36,83 80,59
mpsp60-2 17,14 300,00 300,00 300,00 300,00
wbds
r100_400_11_1 72,01 300,00 300,00 300,00 300,00
r100_400_11_13 3,40 300,00 300,00 300,00 300,00
r100_400_11_9 4,16 300,00 300,00 300,00 300,00
r150_600_11_17 300,00 300,00 300,00 300,00 300,00
r150_600_11_3 300,00 300,00 300,00 300,00 300,00
companyctrl
02-company 0,85 0,88 285,46 0,93 0,74
12-company 3,96 4,02 4,52 4,08 3,91
22-company 1,46 1,52 300,00 1,52 1,13
32-company 0,96 0,94 300,00 0,92 0,85
42-company 1,54 1,51 1,76 1,71 1,52
opendoors
level_00 0,09 0,10 0,09 0,11 0,11
level_05 0,19 0,26 0,19 0,22 0,20
level_10 0,37 0,37 0,37 0,62 0,28
level_17 24,73 6,76 24,17 71,98 4,92
level_28 300,00 300,00 300,00 300,00 18,64
fastfood
a5.16.dl 300,00 300,00 32,36 12,15 13,02
a5.4.dl 300,00 300,00 300,00 3,84 1,15
fa8.17.dl 300,00 300,00 24,42 8,72 5,92
a8.8.dl 300,00 300,00 300,00 276,82 300,00
a9.11.dl 300,00 300,00 28,94 7,29 6,15

B. Andres, B. Kaufmann, O. Matheis, and T. Schaub 221

References
1 http://asparagus.cs.uni-potsdam.de.
2 C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press, 2003.
3 M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczyński. The second answer

set programming competition. pages 637–654.
4 M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider.

Potassco: The Potsdam answer set solving collection. AI Communications, 24(2):105–124,
2011.

5 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven answer
set solver. pages 260–265.

6 H. Hoos and T. Stützle. Stochastic Local Search: Foundations & Applications. Elsevier /
Morgan Kaufmann, 2004.

7 D. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer
and System Sciences, Academic, 9, 1974.

8 mancoosi. http://www.mancoosi.org.
9 V. Manquinho, J. Marques-Silva, and J. Planes. Algorithms for weighted Boolean optim-

ization. pages 495–508.
10 msuncore. http://www.csi.ucd.ie/staff/jpms/soft/soft.php.
11 P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model

semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

ICLP’12

An FLP-Style Answer-Set Semantics for
Abstract-Constraint Programs with Disjunctions∗

Johannes Oetsch, Jörg Pührer, and Hans Tompits

Technische Universität Wien,
Institut für Informationssysteme 184/3,
Favoritenstraße 9–11, A–1040 Vienna, Austria,
{oetsch,puehrer,tompits}@kr.tuwien.ac.at

Abstract
We introduce an answer-set semantics for abstract-constraint programs with disjunction in rule
heads in the style of Faber, Leone, and Pfeifer (FLP). To this end, we extend the definition
of an answer set for logic programs with aggregates in rule bodies using the usual FLP-reduct.
Additionally, we also provide a characterisation of our semantics in terms of unfounded sets,
likewise generalising the standard concept of an unfounded set. Our work is motivated by the
desire to have simple and rule-based definitions of the semantics of an answer-set programming
(ASP) language that is close to those implemented by the most prominent ASP solvers. The
new definitions are intended as a theoretical device to allow for development methods and meth-
odologies for ASP, e.g., debugging or testing techniques, that are general enough to work for
different types of solvers. We use abstract constraints as an abstraction of literals whose truth
values depend on subsets of an interpretation. This includes weight constraints, aggregates, and
external atoms, which are frequently used in real-world answer-set programs. We compare the
new semantics to previous semantics for abstract-constraint programs and show that they are
equivalent to recent extensions of the FLP semantics to propositional and first-order theories
when abstract-constraint programs are viewed as theories.

1998 ACM Subject Classification D.1.6 Logic Programming, D.3.1 Formal Definitions and
Theory, I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases answer-set programming, abstract constraints, aggregates, disjunction

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.222

1 Introduction

In order to reflect various programming needs, the basic answer-set programming (ASP)
language, as originally defined by Gelfond and Lifschitz [12], has been extended in several
ways to accommodate constructs like aggregates, weight constraints, and external atoms.
Abstract-constraint programs [21, 23] are generalised logic programs providing abstractions
of such commonly-used constructs and thus are perfectly suited to study different language
extensions in a uniform manner. Hereby, abstract constraints are dedicated literals whose
truth value depends on a set of propositional atoms.

In this paper, we consider abstract-constraint programs with disjunction in the heads and
define an answer-set semantics for this kind of programs in the style of Faber, Leone, and
Pfeifer (“FLP” for short), based on a simple reduct-based definition extending the original
one defined for disjunctive logic program for aggregates in rule bodies [6]. The FLP semantics

∗ This work was partially supported by the Austrian Science Fund (FWF) under grant P21698.

© Johannes Oetsch, Jörg Pührer, and Hans Tompits;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 222–234

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.222
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

J. Oetsch, J. Pührer, and H. Tompits 223

has been introduced to provide an intuitive handling of aggregates and is implemented in
the solvers DLV [4, 16] and DLVHEX [3]. Recently, the FLP semantics has also been extended
to propositional theories [30] and to first-order theories with aggregates [1]. However, in
contrast to these extensions, the language we consider can be viewed as the smallest superset
of the languages supported by current state-of-the-art ASP solvers.

Besides the basic reduct-based definition of answer sets, we also introduce a characterisa-
tion of our semantics in terms of unfounded sets, generalising the standard concept of an
unfounded set [5].

Concerning the semantics for abstract-constraint programs in general, among the different
proposals in the literature [23, 29, 27, 22, 20, 19, 26], to the best of our knowledge, only the
work of Shen, You, and Yuan [27] deals with disjunctions in the head, i.e., they consider
the same language as we do. Their semantics coincides with ours for the case of convex
abstract-constraint programs, which is also the fragment that is currently implemented in
common ASP solvers, but their approach depends on an involved program transformation
that introduces fresh atoms—a potential advantage of our definition lies in its simplicity.
Moreover, while we treat abstract-constraint atoms in the spirit of the FLP semantics, Shen,
You, and Yuan [27] handle them the same way as Son, Pontelli, and Tu [29]. Relations to
semantics for more restricted classes of abstract-constraint programs follow from known
results.

Our main motivation for developing the characterisations discussed in this paper is of
a rather practical nature. We want to have clear, declarative, and rule-based definitions
that capture the languages of a majority of modern ASP solvers to a large extent. The
new characterisations are intended as a theoretical device to facilitate uniform development
methods and methodologies for ASP, like debugging or testing techniques [25, 13], that are
general enough to work for different types of solvers. Indeed, since sufficiently efficient ASP
solvers became available in the late 1990s, there has never been a standard for implemented
ASP languages. Different ASP solvers support different language features, some of which are
syntactic sugar, while others add expressiveness to the formalism. In particular, the languages
of DLV, Clasp [10, 11], and of other solvers based on the grounder lparse and its de-facto
successor Gringo, like smodels [24, 28], cmodels [18], and pbmodels [20], support different
features. For instance, DLV allows for disjunction in rule heads which are not supported in
Clasp and many related solvers. These, on the other hand, allow for weight constraints [28]
in rule heads, whereas aggregates in DLV are restricted to appear in rule bodies only.1

The semantics characterised in this paper conservatively extends that of DLV, providing
a theoretical basis for adding, e.g., choice rules to the language of DLV. In particular, our
characterisation in terms of unfounded sets can be seen as a practical step towards an
implementation in DLV as unfounded sets are central elements of the evaluation strategy
of this solver. The introduced semantics also coincides with that of Simons, Niemelä,
and Soininen [28] implemented in Clasp whenever no negative weights appear in weight
constraints. Negative weights are rarely used and their semantics have been considered
unintuitive by some authors [9, 8]. Thus, our characterisations lay a solid foundation for
programming support methods operating on both solver dialects of Clasp and DLV. Besides
that, they are of theoretical interest as they clarify the role of aggregate domains in rule
heads in extensions of the FLP semantics. Moreover, the reduct-based definition identifies a
single condition on the spoiling interpretation that is necessary for extending the original

1 Note that the ASP solver ClaspD [2] supports both disjunctions and aggregates (more precisely, weight
constraints) in rule heads but not within the same rule.

ICLP’12

224 An FLP-Style Semantics for Abstract-Constraint Programs with Disjunctions

definition of the FLP semantics to programs with aggregates in rule heads.
Besides the relation of our semantics with the one by Shen, You, and Yuan [27], as pointed

out above, we also discuss relations to other proposals of semantics for abstract-constraint
programs. As mentioned, the FLP semantics has been extended to propositional theories by
Truszczyński [30] for comparison with the semantics by Ferraris [7, 8]. Like the definition
of Ferraris, the FLP semantics for propositional theories depends on a recursively defined
reduct. Our results show that the semantics introduced in this paper is equivalent to that
proposed by Truszczyński when abstract-constraint programs are translated into theories. In
this sense, our definitions reflect the semantics by Truszczyński for programs with disjunctive
rules.

This paper is organised as follows. In the next section, we give some background on
abstract-constraint programs and discuss how special literals often used in real-world answer-
set programs can be expressed as abstract-constraint atoms. In Section 3, we first recapitulate
the FLP semantics for the fragment of abstract-constraint programs corresponding to the
logic-programming language it was originally designed for and discuss shortcomings of a
straightforward extension of the FLP semantics to full abstract-constraint programs. We then
continue with our reduct-based semantics and the characterisation in terms of unfounded sets.
Section 4 presents relations to other semantics of abstract-constraint programs. Moreover,
we discuss the relation to recent extensions of the FLP semantics to theories. We conclude
the paper in Section 5. For space reasons, most proofs are omitted.

2 Preliminaries

We assume a fixed propositional language based on a countable set A of (propositional)
atoms. We use “not” as the symbol for default negation. An abstract-constraint atom, or
c-atom, is a pair A = 〈D, C〉, where D ⊆ A is the domain of A, denoted by DA, and C ⊆ 2D

is a collection of sets of atoms, called the satisfiers of A, denoted by CA. The domain of
a default negated c-atom not A is given by Dnot A = DA. For an atom a, we identify the
c-atom 〈{a}, {{a}}〉 with a. We call such c-atoms elementary.

An abstract-constraint program, or simply program, is a finite set of rules of the form

A1 ∨ · · · ∨Ak ← Ak+1, . . . , Am, not Am+1, . . . , not An, (1)

where 0 ≤ k ≤ m ≤ n and any Ai for 1 ≤ i ≤ n is a c-atom. For a rule r of form (1),
B(r) = {Ak+1, . . . , Am, not Am+1, . . . , not An} is the body of r, B+(r) = {Ak+1, . . . , Am}
is the positive body of r, B−(r) = {Am+1, . . . , An} is the negative body of r, and H(r) =
{A1, . . . , Ak} is the head of r. If B(r) = ∅ and H(r) 6= ∅, then r is a fact. For facts, we
usually omit the symbol “←”. The domain of a rule r is Dr =

⋃
X∈H(r)∪B(r) DX . A rule

r of form (1) is normal if k = 1. A program is normal if it contains only normal rules. A
program is a logic program if it contains only elementary c-atoms. Furthermore, a program
is an elementary-head program if only elementary c-atoms appear in rule heads.

An interpretation is a set of atoms. For two sets I and X of atoms, I|X = I ∩X is the
projection of I to X. An interpretation I satisfies a c-atom 〈D, C〉, symbolically I |= 〈D, C〉,
if I|D ∈ C. Moreover, I |= not 〈D, C〉 iff I 6|= 〈D, C〉.

A c-atom A is monotone if, for all interpretations I, I ′, if I ⊂ I ′ and I |= A, then also
I ′ |= A. A c-atom A is convex if, for all interpretations I, I ′, I ′′, if I ⊂ I ′ ⊂ I ′′, I |= A, and
I ′′ |= A, then also I ′ |= A. Moreover, a program is monotone (resp., convex) if all contained
c-atoms are monotone (resp., convex). An interpretation I satisfies a set S of c-atoms,
symbolically I |= S, if I |= A for all A ∈ S. Moreover, I satisfies a rule r, symbolically

J. Oetsch, J. Pührer, and H. Tompits 225

I |= r, if I |= B(r) implies I |= A for some A ∈ H(r). As well, I satisfies a set Π of rules,
symbolically I |= Π, if I |= r for every r ∈ Π. If I |= Π, we say that I is a model of Π.

A rule r such that I |= B(r) is called active under I. The set ΠI = {r ∈ Π | I |= B(r)} of
all active rules of a program Π under an interpretation I is the FLP-reduct of Π [6].

As mentioned in the introduction, c-atoms are used to represent special literals used in
logic programming, like aggregates and weight constraints, for formal study. Such special
literals have in common that their truth values are determined by sets of atoms in an
interpretation. Throughout this paper we will identify such special literals with c-atoms. As
examples, since our motivation is to obtain characterisations of a semantics close to that
of the popular answer-set solvers Clasp and DLV, we next illustrate how frequently-used
language constructs, viz. weight constraints as used in Clasp and aggregates as used in DLV,
can be represented as c-atoms. We consider variable-free variants only since variables are not
needed in the remainder of the paper. Note that both Clasp and DLV rely on a grounding
step before solving.

Simons, Niemelä, and Soininen [28] introduced weight constraints for normal logic pro-
grams. A weight constraint is an expression of form

l [a1 = w1, . . . , ak = wk, not ak+1 = wk+1, . . . , not an = wn] u ,

where each ai is an atom and each weight wi is a real number, for 1 ≤ i ≤ n. The lower
bound l and the upper bound u are either a real number, ∞, or −∞. However, the authors
effectively require weights to be non-negative, as in their semantics negative weights are
eliminated in a pre-processing step that has been claimed to lead to unintuitive results in
several works [9, 8]. If all weights are non-negative, weight constraints are convex. Intuitively,
the sum of weights wi of those atoms ai, 1 ≤ i ≤ k, that are true and the weights of the
atoms ai, k < i ≤ n, that are false must lie within the lower and the upper bound. More
formally, an interpretation I satisfies a weight constraint if

l ≤ (
∑

1≤i≤k,ai∈I

wi +
∑

k<i≤n,ai 6∈I

wi) ≤ u .

A special form of a weight constraint is a cardinality constraint where all weights are 1.
The intuition is that lower and upper bounds define how many of the contained atoms may
be true in an answer set. A further specialised form of a cardinality constraint is a choice
atom that is of the form

0 [a1 = 1, . . . , ak = 1] k .

Choice atoms are often used in the head of a rule for non-deterministically guessing a subset
of its domain {a1, . . . , ak}. They are often abbreviated as {a1, . . . , ak}.

A weight constraint

l [a1 = w1, . . . , ak = wk, not ak+1 = wk+1, . . . , not an = wn] u

corresponds to the c-atom 〈D, C〉, where D = {a1, . . . , an} and

C = {X ⊆ D | l ≤ (
∑

1≤i≤k,ai∈X

wi +
∑

k<i≤n,ai 6∈X

wi) ≤ u} .

We next define aggregates following Faber [5]. A ground set is a set of pairs of the form
〈~c : I〉, where ~c is a list of constants and I is a set of atoms. An aggregate function is of
the form f [S], where S is a ground set and f is an aggregate function symbol. Intuitively,

ICLP’12

226 An FLP-Style Semantics for Abstract-Constraint Programs with Disjunctions

f stands for a mapping from multisets of constants to constants. An aggregate atom is of
the form f [S] ≺ c, where f [S] is an aggregate function, c is a constant called guard, and
≺ ∈ {=, <,≤,≥, >} is a predefined comparison operator. Given an interpretation I and a
ground set S, I(S) is the multiset

[c1 | 〈c1, . . . , cn : I ′〉 ∈ S, I ′ ⊆ I] .

Then, an aggregate atom f [S] ≺ c is satisfied by I if f(I(S)) ≺ c. Moreover, a default
negated aggregate atom not f [S] ≺ c is satisfied by I if f [S] ≺ c is not satisfied by I. An
aggregate atom f [S] ≺ c can be expressed as a c-atom

〈D, {X ⊆ D | f(X(S)) ≺ c}〉 ,

where D =
⋃
〈~c:I′〉∈S I ′.

As an example, consider the aggregate atom #count[S] = 1, where

S = {〈2 : queen_2_1〉, 〈2 : queen_2_2〉, 〈2 : queen_2_3〉, 〈2 : queen_2_4〉},

stemming from an instantiation of an encoding of the n-queens problem with n = 4. Intuitively,
the aggregate atom is true when only one queen is located on row 2 of a chessboard. The
aggregate function symbol #count maps a multiset of constants to its cardinality. Hence,
under interpretation I1 = {queen_2_3}, we have that I1(S) = [2], therefore #count(I1(S)) =
1, and hence #count[S] = 1 is satisfied by I1. For I2 = {queen_2_3, queen_2_4}, we have
I1(S) = [2, 2], therefore #count(I2(S)) = 2, and #count[S] = 1 is not satisfied by I2.

3 Reduct-Based Answer-Set Semantics

Before presenting our actual definition of an FLP-style semantics for abstract-constraint
programs, we first recapitulate the FLP semantics by Faber, Pfeifer, and Leone [6] for
disjunctive logic programs with aggregates appearing in rule bodies only and afterwards
discuss the shortcomings of a straightforward extension of their definition to full abstract-
constraint programs.

3.1 Prelude: FLP-Semantics for Elementary-Head Programs and a
Straightforward Extension

As stated above, Faber, Pfeifer, and Leone [6] defined a semantics for disjunctive logic
programs with aggregates appearing in rule bodies only. This class of programs, viewed as
abstract-constraint programs, corresponds to the fragment of elementary-head programs. We
refer to their semantics as the FLP semantics, defined as follows.

I Definition 1 ([6]). Let Π be an elementary-head program. Then, an interpretation I is an
FLP answer set of Π if I |= ΠI and there is no I ′ ⊂ I such that I ′ |= ΠI . The set of all FLP
answer sets of Π is denoted by ASFLP(Π).

For the same class of programs, Faber [5] provided a definition of unfounded sets that we
generalise to full abstract-constraint programs later on. Note that Faber considers strong
negation and partial interpretations which we do not cover in this paper.

J. Oetsch, J. Pührer, and H. Tompits 227

I Definition 2 ([5]). Let Π be an elementary-head program and I an interpretation. Then, a
set X of atoms is unfounded in Π with respect to I if, for each rule r ∈ Π with H(r) ∩X 6= ∅,

I 6|= B(r),
I \X 6|= B(r), or
I |= l, for some l ∈ H(r) \X.

As shown by Faber [5], a model I of a program Π is an FLP answer set of Π iff I ∩X = ∅,
for each unfounded set X for Π with respect to I.

Now, let us call the extended FLP semantics the one obtained from Definition 1 by
keeping the conditions of the definition but allowing Π to be a general abstract-constraint
program. This straightforward extensions leads to undesired results, however, as we illustrate
next.

As stated earlier, a popular form of aggregates used in the head of rules in ASP are choice
atoms. Consider the program consisting of the fact

〈{a, b}, {∅, {a}, {b}, {a, b}}〉

which corresponds to the choice atom {a, b}. Here, the intended behaviour of a choice atom,
viz. expressing a non-deterministic choice between sets ∅, {a}, {b}, and {a, b}, can only be
achieved if non-minimal answer sets are permitted. The extended FLP semantics, however,
allows only the empty set as an answer set of this program.

We are interested in a notion of answer set that prevents minimisation between the
different satisfiers of an abstract-constraint atom and thus allows for using choice atoms with
their usual meaning. This is introduced in the following.

3.2 Basic Definition and Unfounded Sets
I Definition 3. Let Π be an abstract-constraint program and I an interpretation. Then, I

is an answer set of Π if I |= ΠI , and there is no I ′ ⊂ I such that

(i) I ′ |= ΠI , and
(ii) for every r ∈ ΠI with I ′ |= B(r), there is some A ∈ H(r) with I ′ |= A and I ′|DA

= I|DA
.

The set of answer sets of Π is denoted by AS(Π).

This definition differs from the one of Faber, Pfeifer, and Leone [6] by the additional
Condition (ii) on the spoiling interpretation I ′. Intuitively, the purpose of this condition is
to prevent minimisation within c-atoms.

I Example 4. Consider program Π1 consisting of the fact

〈{a, b}, {{a}, {b}, {a, b}}〉

that realises a choice of at least one atom from {a, b}. The answer sets of Π1 are given by
{a}, {b}, and {a, b}. Without Condition (ii), however, we would lose the answer set {a, b}
as, e.g., {a} ⊆ {a, b} and {a} |= Π{a,b}.

Opposed to the extended FLP semantics for programs where such a choice cannot be expressed
without introducing auxiliary atoms, we do not enforce subset-minimal answer sets.

The next example illustrates that there are however minimisation effects between different
c-atoms in a disjunction.

ICLP’12

228 An FLP-Style Semantics for Abstract-Constraint Programs with Disjunctions

I Example 5. Consider the program

Π2 = 〈{a, b}, {{a}, {b}, {a, b}}〉 ∨ 〈{a, c}, {{a, c}}〉

that also consist of a single (disjunctive) fact. Interpretations {a}, {b}, and {a, b} are answer
sets of Π2. However, the satisfier {a, c} of the second disjunct is not an answer set. Here,
{a} is the spoiling interpretation, since for

A = 〈{a, b}, {{a}, {b}, {a, b}}〉

we have {a} |= A and {a}|DA
= {a, c}|DA

.

Often, answer sets are computed following a two-step strategy: First a model of the
program is built and in the second step it is checked whether this model obeys a foundedness
condition ensuring that it is an answer set. Intuitively, every set of atoms in an answer set
must be “supported” by some active rule that derives one of the atoms. Here, it is important
that the reason for this rule to be active does not depend on the atom it derives. Such rules
are referred to as external support [14]. In what follows, we extend this notion to our setting.

I Definition 6. Let r be a rule, X a set of atoms, and I an interpretation. Then, r is an
external support for X with respect to I if

I |= B(r),
I \X |= B(r),
there is some A ∈ H(r) with X|DA

6= ∅ and I|DA
⊆ S for some S ∈ CA, and

for all A ∈ H(r) with I |= A we have (X ∩ I)|DA
6= ∅.

We next show how answer sets can be characterised in terms of external supports.

I Theorem 7. Let Π be a program and I an interpretation. Then, I is an answer set of Π
iff I is a model of Π and every X with ∅ ⊂ X ⊆ I has an external support r ∈ Π with respect
to I.

To complete the picture, we express the absence of an external support in an interpretation
by extending the concept of an unfounded set [17, 5] to abstract-constraint programs (for
the case of total interpretations). Defining unfounded sets in terms of external supports is
motivated by the duality of these notions as discussed by Lee [14].

I Definition 8. Let Π be a program, X a set of atoms, and I an interpretation. Then, X is
unfounded in Π with respect to I if there is no rule r ∈ Π that is an external support for X

with respect to I.

Note that this is a conservative extension of Definition 2 for elementary-head programs.
Theorem 7 now immediately yields the following result:

I Theorem 9. Let Π be a program and I an interpretation. Then, I is an answer set of Π
iff I is a model of Π, and there is no set X with ∅ ⊂ X ⊆ I that is unfounded in Π with
respect to I.

Faber [5] also provides a characterisation of answer sets based on the unfounded-freeness
property for the class of programs he considered. This concept can be lifted to the case of
abstract-constraint programs under our semantics.

I Definition 10. Let Π be a program and I an interpretation. Then, I is unfounded-free in
Π if I ∩X = ∅ for each unfounded set X in Π with respect to I.

J. Oetsch, J. Pührer, and H. Tompits 229

Opposed to Theorems 7 and 9, the definition of unfounded-freeness does not restrict the
considered unfounded sets to subsets of the interpretation. Therefore, it is important to note
that due to the definition of external support, the part of an unfounded set contained in the
interpretation is itself an unfounded set.

I Proposition 11. Let X be a set of atoms, and I an interpretation. If a rule r is an external
support for I ∩X with respect to I then r is an external support for X with respect to I.

I Lemma 12. Let X be a set of atoms, Π a program, and I an interpretation. If X is
unfounded in Π with respect to I then I ∩X is unfounded in Π with respect to I.

We conclude the section with the result that characterises answer sets in terms of
unfounded-free models, generalising Corollary 3 of Faber [5].

I Theorem 13. Let Π be a program and I an interpretation. Then, I is an answer set of Π
iff I is a model of Π and unfounded-free in Π.

Proof. (⇒) Suppose that I is an answer set of Π. By Theorem 9, I is a model of Π and it
holds that (∗) there is no set X with ∅ ⊂ X ⊆ I that is unfounded in Π with respect to I.
Assume that I is not unfounded-free in Π. Then, there is some unfounded set X for Π with
respect to I such that I ∩X 6= ∅. Hence, by Lemma 12, I ∩X is an unfounded set in Π with
respect to I, contradicting (∗).
(⇐) Towards a contradiction, assume that I is not an answer set of Π. By Theorem 9, there
must be some set X with ∅ ⊂ X ⊆ I that is unfounded in Π with respect to I. Hence, as
thus I ∩X 6= ∅, I is not unfounded-free in Π. J

4 Relation to other Semantics

In this section, we shed some light on commonalities and differences of our semantics with
related proposals. First, we discuss relations to semantics that follow the tradition of Simons,
Niemelä, and Soininen [28] and then to other FLP-style semantics. A characteristic difference
of the two categories of semantics is how non-convex body literals may give support to atoms
in an interpretation.

As an example, consider the program consisting of the following rules:

a←〈{a, b}, {∅, {a, b}}〉,
a←b, and
b←a.

While {a, b} is an answer set under FLP-style semantics, it is not considered stable in, e.g.,
the semantics discussed in the following subsection.

4.1 Semantics in the Tradition of Simons, Niemelä, and Soininen
Shen, You, and Yuan [27] defined a stable model semantics for abstract-constraint programs
involving disjunction, i.e., the language fragment they consider is the same as in our setting.
Let us call a stable model following Shen, You, and Yuan [27] an SYY stable model.2

The following result can be shown:

2 Their construction is quite involved and is omitted here for space reasons.

ICLP’12

230 An FLP-Style Semantics for Abstract-Constraint Programs with Disjunctions

I Theorem 14. Let Π be a program such that all c-atoms appearing in a body of Π are
convex. If I is an answer set of Π, then I is an SYY stable model of Π.

Regarding the converse direction, an even stronger result holds:

I Theorem 15. Let Π be a program. If I is an SYY stable model of Π, then I is an answer
set of Π.

Due to known results from the literature [27, 19, 29], Theorems 14 and 15 imply that
our semantics is equivalent to a range of semantics proposed for more restricted classes
of abstract-constraint programs including ones for normal monotone abstract-constraint
programs [23, 22] and normal convex abstract-constraint programs [20] that are based on a
non-deterministic one-step provability operator.

Furthermore, there are semantics defined for normal abstract-constraint programs where
every answer set in the respective approach is an answer set as defined in our paper and
where, if the considered programs are convex, also the converse holds, i.e., an answer set as
defined in this paper is also an answer set in the respective approach. In particular, these
include

the approach by Liu et al. [19] based on computations,
the work of Son, Pontelli, and Tu [29] that use the concept of conditional satisfaction of
c-atoms for defining their semantics, and
the reduct-based semantics by Shen and You [26].

Liu and Truszczyński [20] showed that their semantics for normal convex abstract-constraint
programs resembles that of normal programs with weight constraints [28] with non-negative
integer weights. As stated earlier, this type of weight constraints can be represented by convex
abstract-constraint atoms. Due to the relation of the semantics by Liu and Truszczyński and
ours, answer sets as defined in this paper coincide with stable models as defined by Simons,
Niemelä, and Soininen for this class of programs. This semantics has been implemented in
smodels and the state-of-the-art ASP solver Clasp.

4.2 Semantics in the Style of Faber, Pfeifer, and Leone
The straightforwardly extended FLP semantics for abstract-constraint programs, as discussed
in Section 3, and our proposed semantics are interrelated as follows.

I Theorem 16. For any program Π, each extended FLP answer set of Π is an answer set of
Π.

As intended, for the restricted setting of elementary-head programs that was considered
by Faber, Pfeifer, and Leone [6], our semantics coincides with theirs.

I Theorem 17. For an elementary-head program Π, it holds that AS(Π) = ASFLP(Π).

Proof. ASFLP(Π) ⊆ AS(Π) holds by Theorem 16. Assume now that I ∈ AS(Π) but
I /∈ ASFLP(Π). From I ∈ AS(Π) it follows that I |= ΠI . Hence, by Definition 1, there must
be some I ′ ⊂ I such that I ′ |= ΠI . Furthermore, by Definition 3, there must be some r ∈ ΠI

such that I ′ |= B(r) and (∗) for all l ∈ H(r) with I ′ |= l, I ′|Dl
6= I|Dl

holds. From r ∈ ΠI ,
I ′ |= B(r), and I ′ |= ΠI , we get that I ′ |= H(r). Thus, there is some l′ ∈ H(r) with I ′ |= l.
From the definition of the satisfaction relation follows I ′|Dl

= {l}. As I ′ ⊂ I and Dl = {l},
we get I|Dl

= {l}, and hence I ′|Dl
= I|Dl

. As this contradicts (∗), AS(Π) = ASFLP(Π) must
hold. J

J. Oetsch, J. Pührer, and H. Tompits 231

Truszczyński [30] introduced an FLP-style semantics for propositional theories. A main
goal of his paper is to study the differences between the semantics by Faber, Pfeifer, and
Leone and that of Ferraris [8]. It is worth mentioning that the same differences to the latter
apply to the semantics defined in this paper. In particular, they differ in the treatment of
default negated literals that are non-convex. For further information on the relation between
these families of semantics, we refer to the work of Truszczyński [30] and of Lee and Meng [15]
who reduce elementary-head programs under the FLP semantics to propositional formulas
under the semantics of Ferraris.

For comparison with the work of Truszczyński, we consider propositional theories over
the language determined by A and the Boolean connectives ⊥, ∧ ,∨, and ⊃. Moreover, we
use the shorthands > = ⊥ ⊃ ⊥ and ¬f = f ⊃ ⊥. Given an interpretation I and a formula
f , the classical satisfaction relation I |= f is defined as usual. Also, following custom, we
identify empty disjunctions with ⊥ and empty conjunctions with >.

I Definition 18 ([30]). Let f be a propositional formula and I an interpretation. The
T-reduct, f I , of f is defined inductively as follows, where a is an atom, ◦ ∈ {∧,∨}, and g

and h are propositional formulas:

⊥I =⊥.

aI =
{

a if I |= a,

⊥ otherwise.

(g ◦ h)I =
{

gI ◦ hI if I |= g ◦ h,

⊥ otherwise.

(g ⊃ h)I =


g ⊃ hI if I |= g and I |= h,

> if I 6|= g,

⊥ otherwise.

For a propositional theory F , F I is defined as {f I | f ∈ F}.

I Definition 19 ([30]). Let F be a propositional theory and I an interpretation. Then, I is
a T-answer set of F iff I is a subset-minimal model of F I .

Note that any T-answer set of F is also a model of F . In order to compare our semantics
and the semantics by Truszczyński, we use a standard translation of abstract-constraint
programs to propositional theories. To this end, we use the following representation of
abstract-constraint atoms in terms of DNF formulas.

I Definition 20 ([27]). Let A = 〈D, C〉 be an abstract constraint atom where D consists of
atoms only. Then,

ϕ(A) =
∨

X∈C

((
∧

l∈X

l) ∧ (
∧

l∈D\X

¬l)) .

We extend the translation ϕ(·) to rules and abstract-constraint programs as follows.

I Definition 21. Let r be a rule of the form (1) where every Ai, 1 ≤ i ≤ n, is an abstract-
constraint atom whose domain is restricted to atoms. Then, ϕ(r) = ϕB(r) → ϕH(r),
where

ϕH(r) = ϕ(A1) ∨ · · · ∨ ϕ(Ak) and
ϕB(r) = ϕ(Ak+1) ∧ · · · ∧ ϕ(Am) ∧ ¬ϕ(Am+1) ∧ · · · ∧ ¬ϕ(An).

Finally, for a program Π, we define the propositional theory ϕ(Π) = {ϕ(r) | r ∈ Π}.

ICLP’12

232 An FLP-Style Semantics for Abstract-Constraint Programs with Disjunctions

Obviously, for a rule r and an interpretation I, I |= H(r) iff I |= ϕH(r), and I |= B(r) iff
I |= ϕB(r).

We next present the relation of our semantics to the approach of Truszczyński.

I Theorem 22. Let Π be a program and I an interpretation. Then, I is an answer set of Π
iff I is a T-answer set of ϕ(Π).

As Bartholomew, Lee, and Meng [1] have shown that their semantics for first-order
theories with aggregates extends that of Truszczyński, the same relation applies to our
approach.

5 Conclusion

In this work, we presented a new definition of answer sets for disjunctive abstract-constraint
programs and a respective characterisation in terms of unfounded sets. The underlying
semantics is a conservative extension of that by Faber, Pfeifer, and Leone [6] for disjunctive
logic programs with aggregates in rule bodies only to the case where aggregates are also
allowed in rule heads. Moreover, we showed that our semantics is also equivalent to a range
of semantics that follow the understanding of Simons, Niemelä, and Soininen [28] for convex
programs. Thereby, we reached our goal of providing simple definitions of an answer set that
captures the essence of the semantics as implemented in popular ASP solvers like Clasp and
DLV.

As regards future work, we are currently working on novel debugging techniques supporting
software developers in writing answer-set programs that exploit the characterisations presented
in this paper. Moreover, it would be interesting to explore how our notion of external support
relates to loop formulas for abstract constraint programs as defined by You and Liu [31].

Acknowledgements

We would like to thank the reviewers for their constructive comments which helped to improve
this paper.

References
1 Michael Bartholomew, Joohyung Lee, and Yunsong Meng. First-order extension of the

FLP stable model semantics via modified circumscription. In Proceedings of the 22nd In-
ternational Joint Conference on Artificial Intelligence (IJCAI 2011), pages 724–730. AAAI
Press, 2011.

2 Christian Drescher, Martin Gebser, Torsten Grote, Benjamin Kaufmann, Arne König, Max
Ostrowski, and Torsten Schaub. Conflict-driven disjunctive answer set solving. In Proceed-
ings of the 11th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2008), pages 422–432. AAAI Press, 2008.

3 Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. Effective
integration of declarative rules with external evaluations for semantic-web reasoning. In
Proceedings of the 3rd European Semantic Web Conference (ESWC 2006), volume 4011 of
Lecture Notes in Computer Science, pages 273–287. Springer, 2006.

4 Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello. The
KR system DLV: Progress report, comparisons and benchmarks. In Proceedings of the 6th
International Conference on Principles of Knowledge Representation and Reasoning (KR
1998), pages 406–417. Morgan Kaufmann Publishers, 1998.

J. Oetsch, J. Pührer, and H. Tompits 233

5 Wolfgang Faber. Unfounded sets for disjunctive logic programs with arbitrary aggregates. In
Proceedings of the 8th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2005), volume 3662 of Lecture Notes in Computer Science, pages 40–52.
Springer, 2005.

6 Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Semantics and complexity of recursive
aggregates in answer set programming. Artificial Intelligence, 175(1):278–298, 2011.

7 Paolo Ferraris. Answer sets for propositional theories. In Proceedings of the 8th Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2005),
volume 3662 of Lecture Notes in Computer Science, pages 119–131. Springer, 2005.

8 Paolo Ferraris. Logic programs with propositional connectives and aggregates. ACM Trans-
actions on Computational Logic, 12(4):25, 2011.

9 Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expressions. Theory
and Practice of Logic Programming, 5(1-2):45–74, 2005.

10 Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. clasp: A
conflict-driven answer set solver. In Proceedings of the 9th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR 2007), volume 4483 of Lecture
Notes in Computer Science, pages 260–265. Springer, 2007.

11 Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. The conflict-driven answer set
solver clasp: Progress report. In Proceedings of the 10th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2009), volume 5753 of Lecture Notes
in Computer Science, pages 509–514. Springer, 2009.

12 Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunct-
ive databases. New Generation Computing, 9(3/4):365–386, 1991.

13 Tomi Janhunen, Ilkka Niemelä, Johannes Oetsch, Jörg Pührer, and Hans Tompits. On
testing answer-set programs. In Proceedings of the 19th European Conference on Artificial
Intelligence (ECAI 2010), volume 215 of Frontiers in Artificial Intelligence and Applica-
tions, pages 951–956. IOS Press, 2010.

14 Joohyung Lee. A model-theoretic counterpart of loop formulas. In Leslie Pack Kaelbling
and Alessandro Saffiotti, editors, Proceedings of the 19th International Joint Conference on
Artificial Intelligence (IJCAI 2005), pages 503–508, Denver, CO, USA, 2005. Professional
Book Center.

15 Joohyung Lee and Yunsong Meng. On reductive semantics of aggregates in answer set
programming. In Proceedings of the 10th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2009), volume 5753 of Lecture Notes in Computer
Science, pages 182–195. Springer, 2009.

16 Nicola Leone, Gerald Pfeifer, Wofgang Faber, Thomas Eiter, Georg Gottlob, Somina Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

17 Nicola Leone, Pasquale Rullo, and Francesco Scarcello. Disjunctive stable models: Unfoun-
ded sets, fixpoint semantics, and computation. Information and Computation, 135(2):69–
112, 1997.

18 Yuliya Lierler. CMODELS – SAT-based disjunctive answer-set solver. In Proceedings
of the 8th International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR 2005), volume 3662 of Lecture Notes in Computer Science, pages 447–451.
Springer, 2005.

19 Lengning Liu, Enrico Pontelli, Tran Cao Son, and Mirosław Truszczyński. Logic programs
with abstract constraint atoms: The role of computations. Artificial Intelligence, 174(3-
4):295–315, 2010.

ICLP’12

234 An FLP-Style Semantics for Abstract-Constraint Programs with Disjunctions

20 Lengning Liu and Mirosław Truszczyński. Properties and applications of programs with
monotone and convex constraints. Journal of Artificial Intelligence Research, 27:299–334,
2006.

21 V. Wiktor Marek and Jeffrey B. Remmel. Set constraints in logic programming. In Pro-
ceedings of the 7th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2004), volume 2923 of Lecture Notes in Computer Science, pages 167–
179. Springer, 2004.

22 Victor W. Marek, Ilkka Niemelä, and Mirosław Truszczyński. Logic programs with mono-
tone abstract constraint atoms. Theory and Practice of Logic Programming, 8(2):167–199,
2008.

23 Victor W. Marek and Mirosław Truszczyński. Logic programs with abstract constraint
atoms. In Proceedings of the 19th National Conference on Artificial Intelligence (AAAI
2004), pages 86–91. AAAI Press, 2004.

24 Ilkka Niemelä and Patrik Simons. Smodels - An implementation of the stable model and
well-founded semantics for normal logic programs. In Proceedings of the 4th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR 1997), volume
1265 of Lecture Notes in Computer Science, pages 420–429. Springer, 1997.

25 Johannes Oetsch, Jörg Pührer, and Hans Tompits. Stepping through an answer-set program.
In Proceedings of the 11th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR 2011), volume 6645 of Lecture Notes in Computer Science, pages
134–147. Springer, 2011.

26 Yi-Dong Shen and Jia-Huai You. A generalized Gelfond-Lifschitz transformation for logic
programs with abstract constraints. In Proceedings of the 22nd Conference on Artificial
Intelligence (AAAI 2007), pages 483–488. AAAI Press, 2007.

27 Yi-Dong Shen, Jia-Huai You, and Li-Yan Yuan. Characterizations of stable model se-
mantics for logic programs with arbitrary constraint atoms. Theory and Practice of Logic
Programming, 9(4):529–564, 2009.

28 Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1–2):181–234, 2002.

29 Tran Cao Son, Enrico Pontelli, and Phan Huy Tu. Answer sets for logic programs with
arbitrary abstract constraint atoms. Journal of Artificial Intelligence Research, 29:353–389,
2007.

30 Mirosław Truszczyński. Reducts of propositional theories, satisfiability relations, and gen-
eralizations of semantics of logic programs. Artificial Intelligence, 174(16-17):1285–1306,
2010.

31 Jia-Huai You and Guohua Liu. Loop formulas for logic programs with arbitrary constraint
atoms. In Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI 2008),
pages 584–589. AAAI Press, 2008.

Reconciling Well-Founded Semantics of
DL-Programs and Aggregate Programs∗

Jia-Huai You1, John Morris1, and Yi Bi2

1 Department of Computing Science
University of Alberta, Canada

2 School of Computer Science and Technology
Tianjin University, China

Abstract
Logic programs with aggregates and description logic programs (dl-programs) are two recent
extensions to logic programming. In this paper, we study the relationships between these two
classes of logic programs, under the well-founded semantics. The main result is that, under
a satisfaction-preserving mapping from dl-atoms to aggregates, the well-founded semantics of
dl-programs by Eiter et al., coincides with the well-founded semantics of aggregate programs,
defined by Pelov et al. as the least fixpoint of a 3-valued immediate consequence operator under
the ultimate approximating aggregate. This result enables an alternative definition of the same
well-founded semantics for aggregate programs, in terms of the first principle of unfounded sets.
Furthermore, the result can be applied, in a uniform manner, to define the well-founded semantics
for dl-programs with aggregates, which agrees with the existing semantics when either dl-atoms
or aggregates are absent.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Well-founded semantics, description logic programs, aggregate logic pro-
grams, three-valued logic.

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.235

1 Introduction

In logic programming beyond positive logic programs, almost all semantics of the current
interest can be traced back to the origin of two semantics, the stable model semantics [10]
and the well-founded semantics [17]. While the former is based on guess-and-verify to sort
contradictory information into different stable models/answer sets, the latter is defined by
a built-in mechanism to circumvent contradictory conclusions, thus making safe inferences
in the presence of data that require conflicting interpretations.

More recently, well-founded semantics have been studied for two extensions of logic pro-
gramming: logic programs with aggregates (or, aggregate programs) [5, 13, 14] and description
logic programs (dl-programs) [8]. The former brings into logic programming reasoning with
constraints, while the latter is an example of logic programming with external atoms [7]. In
a dl-program an atom can be a dl-atom, which is a well-designed interface to an underlying
description logic knowledge base. In this way, some decidable fragments of first-order logic
can be integrated into rule-based non-monotonic reasoning. These extensions substantially
widen the application range of logic programming.

∗ The work was partially supported by Natural Sciences and Engineering Research Council of Canada.

© Jia-Huai You, John Morris, and Yi Bi;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 235–246

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.235
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

236 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

An aggregate is a constraint, which is a relation on a domain where the tuples in the
relation are called admissible solutions. A dl-atom can also be viewed as a constraint, in
terms of the sets of (ordinary) atoms under which it is satisfied. Despite this close connec-
tion, the semantics for these two kinds of programs have been studied independently. In
[8], the semantics is defined under the first principle of unfounded sets, while in the work of
Pelov et al. [14], a purely algebraic framework is developed under the theory of approxim-
ating operators on bilattices [4], parameterized by approximating operators and aggregate
relations. In particular, given an aggregate program Π, the well-founded semantics, based
on the least fixpoint of a 3-valued immediate consequence operator Φaggr

Π , is defined along
with the ultimate aggregate relation. Let us call this semantics the (ultimate) well-founded
semantics of Π. It extends the well-founded semantics for normal logic programs.

In this paper, we study the relationships between dl-programs and aggregate programs
under the well-founded approach. The main result is that the well-founded semantics of dl-
programs can be obtained from the ultimate well-founded semantics of aggregate programs,
under a mapping from dl-atoms to aggregates. This leads to the following conclusions: on
the one hand, the well-founded semantics for dl-programs can be viewed as a special case
of the ultimate well-founded semantics for aggregate programs, and on the other hand, the
latter semantics can be defined, alternatively, employing the notion of unfounded sets.1
As a result, the well-founded semantics can be defined, in a uniform manner using the
first principle of unfoundedness, for logic programs that may contain both dl-atoms and
aggregates.

The paper is organized as follows. The next section provides some definitions. Section
3 introduces the well-founded semantics for dl-programs. Section 4 shows that under a
mapping from dl-atoms to aggregates, the well-founded semantics for dl-programs is precisely
that of the corresponding aggregate programs. Then in Section 5 we extend the well-founded
semantics to logic programs that may contain dl-atoms as well as aggregates. Section 6 is
about related work followed by comments on future work.

2 Preliminaries

We introduce dl-programs. Although technically this paper does not intimately depend on
description logics (DLs) [1], some familiarity would be convenient.

A DL knowledge base L consists of a finite set of axioms built over a vocabulary ΣL =
(A ∪R, I), where A, R and I are pairwise disjoint (denumerable) sets of atomic concepts,
atomic roles and individuals, respectively. As usual, concepts can be built from atomic
concepts and other constructs, such as u (conjunction), t (disjunction), ¬ (negation), and
various restrictions (see [1] for more details).

Let P be a finite set of predicate symbols and C a nonempty finite set of constants such
that P ∩ (A ∪R) = ∅ and C ⊆ I. A term is either a constant from C or a variable. An
atom is of the form p(t1, ..., tm), where p is a predicate symbol from P, and ti is a term. An
equality (resp. inequality) is of the form t1 = t2 (resp. t1 6= t2), where t1 and t2 are terms.
A dl-query is of the form Q(t), where t is a list of terms, and Q is an equality/inequality
symbol, or a concept, a role, or a concept inclusion axiom, built from A ∪R.

A dl-atom is of the form DL[S1op1p1, · · · , Smopmpm;Q](t), where Si is a concept or role
built from A ∪R, or an equality/inequality symbol; opi ∈ {∪+ , ∪- , ∩- }; pi ∈ P is a unary

1 In fact, such a definition of unfounded sets was already proposed in [9].

J. You, J. Morris, and Y. Bi 237

predicate symbol if Si is a concept, and a binary predicate symbol otherwise; and Q(t) is a
dl-query.

A dl-rule (or rule) is of the form h← A1, ..., Am, not B1, ..., not Bn, where h is an atom,
and Ai and Bi are atoms or equalities/inequalities or dl-atoms. An atom or a dl-atom A,
and its negated form not A, is called a literal. For any rule r, we denote the head of the rule
by H(r), and the body by B(r). In addition, B+ = {A1, ..., Am} and B− = {B1, ..., Bn}. A
rule base P is a finite set of rules.

A dl-program is a combined knowledge base KB = (L,P), where L is a DL knowledge
base and P is a rule base.

A ground instance of a rule r is obtained by first replacing every variable in r with a
constant from C, then replacing with > (resp. ⊥) every equality/inequality if it is valid (resp.
invalid) under the unique name assumption (UNA). > and ⊥ are two special predicates such
that > (resp. ⊥) is true (resp. false) in every interpretation.

In this paper, we assume a rule base P is already grounded using the constants appearing
in the given non-ground program. Likewise, when we refer to an atom/dl-atom/literal, by
default we mean it is one without variables.

The Herbrand base of a rule base P , denoted by HBP , is the set of all ground atoms
p(t1, ..., tm), where p is from P and ti is a constant from C, both occurring in P . Any subset
of HBP is an interpretation of P .

I Definition 1. Let KB = (L,P) be a dl-program and I ⊆ HBP an interpretation. Define
the satisfaction relation under L, denoted |=L, as follows:
1. I |=L > and I 6|=L ⊥.
2. For any atom a ∈ HBP , I |=L a if a ∈ I.
3. For any (ground) dl-atom A = DL[S1op1p1, · · · , Smopmpm;Q](c) occurring in P , I |=L

A if L ∪
⋃m

i=1Ai |= Q(c), where

Ai =


{Si(e) | pi(e) ∈ I}, if opi = ∪+ ;
{¬Si(e) | pi(e) ∈ I}, if opi = ∪- ;
{¬Si(e) | pi(e) 6∈ I}, if opi = ∩- .

4. For any ground atom or dl-atom A, I |=L not A if I 6|=L A.

The above satisfaction relation naturally extends to conjunctions of literals. For a rule
r ∈ P , I |=L r if I 6|=L B(r) or I |=L H(r). I is a model of a dl-program KB = (L,P) if
I |=L r for all r ∈ P .

A ground dl-atom A is monotonic relative to KB if for any I ⊆ J ⊆ HBP , I |=L A

implies J |=L A. Otherwise, A is nonmonotonic.
Additional notations: Given a set S of atoms, ¬.S = {¬a | a ∈ S}; given a set P of

rules, LitP = HBP ∪ ¬.HBP ; if I is a set of literals, I+ = {a | a is an atom in I} and
I− = {a | ¬a ∈ I}; a set of literals I ⊆ LitP is consistent if there is no atom a such that
a ∈ I and ¬a ∈ I. In this paper, by an interval [S1, S2], where S1 and S2 are sets and
S1 ⊆ S2, we mean the set {S | S1 ⊆ S ⊆ S2}.

3 Well-Founded Semantics for Arbitrary DL-Programs

The well-founded semantics is first defined for dl-programs with dl-atoms that may only
contain operators ∪+ and ∪- [8]. These dl-atoms are monotonic. It is then commented (see
Section 9.2 of [8]) that the definition can be generalized to the class of all dl-programs. For
contrast, here we introduce the well-founded semantics for arbitrary dl-programs directly.

ICLP’12

238 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

I Definition 2. (Unfounded set) Let KB = (L,P) be a dl-program and I ⊆ LitP be
consistent. A set U ⊆ HBP is an unfounded set of KB relative to I iff the following holds:

For every a ∈ U and every rule r ∈ P with H(r) = a, either (i) ¬b ∈ I ∪ ¬.U for
some ordinary atom b ∈ B+(r), or (ii) b ∈ I for some ordinary atom b ∈ B−(r), or
(iii) for some b ∈ B+(r), it holds that S+ 6|=L b for each consistent S ⊆ LitP with
I ∪ ¬.U ⊆ S, or (iv) for some b ∈ B−(r), it holds that S+ |=L b for each consistent
S ⊆ LitP with I ∪ ¬.U ⊆ S.

Intuitively, the definition says that an atom a is in an unfounded set U , relative to I,
because, for every rule with a in the head, at least one body literal is not satisfied by I

under L, and this fact remains to hold for any consistent extension of I ∪ ¬.U .

I Definition 3. Let KB = (L,P) be a dl-program. We define the operators TKB , UKB ,
and WKB on all consistent I ⊆ LitP as follows:
(i) a ∈ TKB(I) iff a ∈ HBP and some r ∈ P exists such that (a) H(r) = a, (b) for all

b ∈ B+(r), S+ |=L b for each consistent S with I ⊆ S ⊆ LitP , (c) ¬b ∈ I for all
ordinary atoms b ∈ B−(r), and (d) for all b ∈ B−(r), S+ 6|=L b for each consistent S
with I ⊆ S ⊆ LitP .

(ii) UKB(I) is the greatest unfounded set of KB relative to I; and
(iii) WKB(I) = TKB(I) ∪ ¬.UKB(I).

With the standard definition of monotonicity of operators over complete lattices, one
can verify easily that the operators TKB , UKB , and WKB are all monotonic.

As a notation, we define W 0
KB = ∅, and W i+1

KB = WKB(W i
KB), for all i ≥ 0. In the

sequel, we will use a similar notion for other monotonic operators, but sometimes we may
start applying such an operator from a nonempty set (this will be made clear when such a
situation arises).

I Definition 4. (Well-founded Semantics) Let KB = (L,P) be a dl-program. The
well-founded semantics of KB, denoted by WFS(KB), is defined as the least fixpoint of the
operator WKB , denoted lfp(WKB). An atom a ∈ HBP is well-founded (resp. unfounded)
relative to KB iff a (resp. ¬a) is in lfp(WKB).

I Example 5. Consider a dl-program KB = (∅, P), where P consists of

r1 : p(a)← not DL[S1 ∩- q, S2 ∪+ r;¬S1 u S2](a).
r2 : q(a)← DL[S ∪+ q;S](a).
r3 : r(a)← DL[S ∩- q;¬S](a).

Starting with W 0
KB = ∅, for example, we do not derive p(a) since there is a consist-

ent extension that satisfies the dl-atom in rule r1, but {q(a)} is an unfounded set re-
lative to ∅. The reader can verify that W 1

KB = {¬q(a)}, W 2
KB = {¬q(a), r(a)}, and

W 3
KB = {¬q(a),¬p(a), r(a)}, which is the least fixpoint of WKB .

We now discuss an alternative way to construct the least fixpoint ofWKB . The technical
result given here will be used later when relating to the ultimate well-founded semantics for
aggregate programs.

Since the operator TKB only generates positive atoms, given a consistent I ⊆ LitP , we
can apply TKB iteratively, with I− fixed. That is,

T 0
KB = I+, T 1

KB = TKB(T 0
KB ∪ ¬.I−), ..., T k+1

KB = TKB(T k
KB ∪ ¬.I−), ... (1)

J. You, J. Morris, and Y. Bi 239

Since this sequence is ⊆-increasing, a fixpoint exists. Let us denote it by FPTKB
(I). Note

that the operator FPTKB
: LitP → HBP is monotonic relative to a fixed I−. Namely,

for any consistent sets of literals I1 and I2 such that I−1 = I−2 and I1 ⊆ I2, we have
FPTKB

(I1) ⊆ FPTKB
(I2).

Now, following Definition 3, we define an operator VKB , which is similar to WKB , as
follows: Given a consistent set of literals I ⊆ LitP ,

VKB(I) = FPTKB
(I) ∪ ¬.UKB(I) (2)

As the operator VKB is monotonic, its least fixpoint exists, which we denote by lfp(VKB).
We can show that (the proof is omitted for lack of space)

I Lemma 6. lfp(VKB) = lfp(WKB).

4 Representing DL-Programs by Aggregate Programs

In general, an aggregate in a logic program is a constraint atom. Since in this paper our
interest is in the semantics, we assume that an aggregate is a constraint whose semantics is
pre-defined in terms of its domain and admissible solutions. An explicit representation of
such constraints has been called abstract constraint atoms (or just c-atoms) [12].

We assume a propositional language, LΣ, determined by a fixed countable set Σ of
propositional atoms. A c-atom A is a pair (D,C), where D is a nonempty finite set of atoms
in Σ and C ⊆ 2D. We use Ad and Ac to refer to the components D and C of A, respectively.
As an abstraction, a c-atom A can be used to represent the semantics of any constraint with
a set Ac of admissible solutions over a finite domain Ad [11, 12]. Therefore, in the sequel we
will use the aggregate notation and c-atoms exchangeably.

The complement of a c-atom A is the c-atom A′ with A′d = Ad and A′c = 2Ad \Ac.
An interpretation I ⊂ Σ satisfies an atom a if a ∈ I; ¬a if a 6∈ I. I satisfies a c-atom A,

written as I |= A, if Ad ∩ I ∈ Ac; not A, written I |= not A, if Ad ∩ I 6∈ Ac. Therefore, it
follows that I satisfies not A iff I satisfies the complement of A. I satisfies a conjunction E
of atoms or c-atoms, written I |= E, if I satisfies every conjunct in it.

A c-atom A is monotone if for any J ⊇ I, that I satisfies A implies J satisfies A.
Otherwise, A is nonmonotone.

An aggregate program (or exchangeably, a logic program with c-atoms) is a finite set of
rules of the form h← B1, ..., Bn, not C1, ..., not Ck, where h, Bi, and Ci are ordinary atoms
or c-atoms. Given a rule r, we use H(r) to denote the head and B(r) to denote the body.

Note that in [14] negative aggregates ¬C are allowed, but here we write them as not C.
The notations LitΠ, S+, and S− (given a set of literals S) are defined similarly as for

those used for dl-programs.

IDefinition 7. (From dl-programs to aggregate programs) Given a dl-programKB =
(L,P), we obtain an aggregate program, denoted β(KB), by a mapping βKB from atoms,
dl-atoms, and their default negation occurring in P to aggregates as follows:

If A is an ordinary atom a then βKB(A) = a, and
If A is a dl-atom then βKB(A) = (HBP , C), where C = {I ⊆ HBP | I |=L A}.
For any default negation of the form not A, βKB(not A) = βKB(A)′.

In the sequel, as the underlying KB is always clear, we will drop the subscript in βKB .
Also, by abuse of notation, given a rule r ∈ P , we denote by β(B(r)) the translated con-
junction in the body of r, and by β(r) the translated rule. Since this mapping does not

ICLP’12

240 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

introduce new symbols, given a dl-program KB = (L,P), we can identify Σ for the trans-
lated aggregate programs with HBP .

As an example, consider a dl-program KB = (∅, {p(a) ← DL[S ∩- p;¬S](a)}). The
translated aggregate program consists of a single rule, p(a)← ({p(a)}, {∅}). The c-atom in
the rule represents the semantics of, e.g., the cardinality constraint, card=({x| p(x)}, 0).

I Lemma 8. Let KB = (L,P) be a dl-program and I ⊆ HBP .
(i) For any dl-atom A, I |=L A iff I |= β(A), and I 6|=L A iff I |= β(A)′.
(ii) For any rule r ∈ P , I satisfies r iff I satisfies β(r).
(iii) I is a model of KB iff I is a model of β(KB).

4.1 Relationship
Following [13, 14], given a complete lattice 〈L,�〉, the bilattice induced from it is the struc-
ture 〈L2,�,�p〉, where for all x, y, x′, y′ ∈ L,

(x, y) � (x′, y′) if and only if x � x′ and y � y′
(x, y) �p (x′, y′) if and only if x � x′ and y′ � y

The order � on L2 is called the produce order, while �p is called the precision order. Both
orders are complete lattice orders on L2. We are interested only in the subset of pairs (x, y)
that are consistent, i.e., x � y, and when x = y it is said to be exact. We denote the set of
consistent pairs by Lc.

Given a bilattice 〈L2,�,�p〉, the �-least element is (⊥,⊥) and the �p-least element
is (⊥,>). E.g., consider the complete lattice 〈2Σ,⊆〉 where Σ is a set of atoms. For the
bilattice induced from it, the �-least element is (∅, ∅) and the �p-least element is (∅,Σ).

The idea of the well-founded semantics for an aggregate program is to start with the
�p-least element 〈∅,Σ〉, and apply an approximating operator, denoted A, in a way that
not only are the true atoms computed, but also the false atoms that are not reachable by
derivations. It approximates an operator O on L, whose fixpoints are exact pairs on L2.

I Definition 9. Let O : L → L be an operator on a complete lattice 〈L,�〉. We say that
A : Lc → Lc is an approximating operator of O iff the following conditions are satisfied:

A extends O, i.e., A(x, x) = (O(x), O(x)), for every x ∈ L.
A is �p-monotone.

The condition on A is a mild one: it only requires to extend O on exact pairs, in addition
to monotonicity.

For aggregate programs, given a language LΣ, a program Π, and a monotonic approx-
imating operator A of some operator O, we will compute a sequence

(∅,Σ) = (u0, v0), (u1, v1), ..., (uk, vk), ..., (u∞, v∞) (3)

such that the internal [ui, vi] is decreasing, i.e., [ui+1, vi+1] ⊂ [ui, vi], for all i, eventually
reaching a fixpoint, which is denoted by (u∞, v∞).

Intuitively, one can think of this sequence as representing the process that, initially
nothing is known to be true and every atom in Σ is potentially true (as such, nothing is
known to be false); and given (ui, vi), after the current iteration, ui+1 \ui is the set of atoms
that become known to be true and vi \ vi+1 is the set of atoms that become known to be
false. In this way, ui represents a lower estimate and vi an upper estimate of the eventual
fixpoint. At the end, u∞ is the set of true atoms and Σ \ v∞ is the set of false atoms, and
the truth value of the remaining atoms is undefined. This gives a 3-valued interpretation of
the least fixpoint.

J. You, J. Morris, and Y. Bi 241

A fixpoint operator that constructs sequence (3) can be defined in different ways. For
example, we can simply take the approximating operator A, i.e., A(ui, vi) = (ui+1, vi+1),
for all i. If A is �p-monotone, then the least fixpoint of A exists, which is called the
Kripke-Kleene fixpoint of A.

As alluded to earlier, our interest is the well-founded semantics, which is determined
by the so-called well-founded fixpoint of A. It is computed by a stable revision operator,
denoted by StΠ, for a given aggregate program Π. Namely, StΠ(ui, vi) = (ui+1, vi+1),
where (ui+1, vi+1) is computed from (ui, vi) using two component operators of A. The first
one, denoted by A1(·, vi), is A with vi fixed, and similarly, the second, denoted by A2(ui, ·),
is A with ui fixed. Given an upper estimate b, we compute a new lower estimate by an
iterative process:

x0 = ⊥, x1 = A1(x0, b), ..., xi+1 = A1(xi, b), ... (4)

until a fixpoint is reached. That is, if b = vi, then ui+1 = x∞ where x∞ = A1(x∞, b). The
operator that generates x∞ is called the lower revision operator.

On the other hand, given a lower estimate a, we compute a new upper estimate

y0 = a, y1 = A2(a, y0), ..., yi+1 = A2(a, yi), (5)

until a fixpoint is reached. That is, if a = ui, then vi+1 = y∞ where y∞ = A2(a, y∞). The
operator that generates y∞ is called the upper revision operator.

It can be seen that if A is �p-monotone, so is StΠ, thus the least fixpoint of StΠ can
be constructed by a sequence (3), where (u∞, v∞) is called the well-founded fixpoint of A,
which is the least fixpoint of the stable revision operator StΠ.

By this parameterized algebraic approach one can define possibly different well-founded
semantics by employing different �p-monotone approximating operators. In the context
of aggregate programs, the operator we are approximating is the standard immediate con-
sequence operator extended to aggregate programs Π, i.e., TΠ : Σ→ Σ, where

TΠ(I) = {H(r) | r ∈ Π and I |= B(r)}. (6)

To approximate TΠ while preserving the well-founded and stable model semantics for nor-
mal logic programs, in [13], a three-valued immediate consequence operator Φaggr

Π is defined
for aggregate programs, which maps 3-valued interpretations to 3-valued interpretations.
Recall that a 3-valued interpretation can be represented by a pair (I1, I2) of 2-valued inter-
pretations with I1 ⊆ I2, where I1 is the set of atoms assigned to true, Σ\I2 is the set of atoms
assigned to false, and all the other atoms are assigned to undefined. Thus, Φaggr

Π maps a pair
of 2-valued interpretations to a pair of 2-valued interpretations, i.e., Φaggr

Π (I1, I2) = (I ′1, I ′2).
The definition of Φaggr

Π guarantees that it approximates the operator TΠ, in that for any
fixpoint (I, J) of Φaggr

Π , and for any x such that TΠ(x) = x, (I, J) �p (x, x).
From the definition of Φaggr

Π above, two component operators are induced. They are

Φaggr,1
Π (I1, I2) = I ′1 and Φaggr,2

Π (I1, I2) = I ′2 (7)

The original definition of Φaggr
Π is given in 3-valued logic, parameterized by the choice

of approximating aggregates [13]. In [16], the authors showed an equivalent definition of
Φaggr,1

Π in terms of conditional satisfaction, when the approximating aggregate used is the
ultimate approximating aggregate. We state this result below (see Appendix of [16]). Here,
we replace aggregates with c-atoms. In a similar way, an equivalent definition of Φaggr,2

Π can
be obtained.

ICLP’12

242 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

I Theorem 10. Let Π be an aggregate program, and I and M interpretations with I ⊆M ⊆
Σ. Then,

Φaggr,1
Π (I,M) = {H(r) | r ∈ Π,∀J ∈ [I,M], J |= B(r)} (8)

Φaggr,2
Π (I,M) = {H(r) | r ∈ Π,∃J ∈ [I,M], J |= B(r)} (9)

I Lemma 11. The component operators Φaggr,1
Π (·, b) and Φaggr,2

Π (a, ·) are ⊆-monotone, and
Φaggr

Π is ⊆p-monotone.

Therefore, the stable revision operator StΠ induced from Φaggr
Π is also ⊆p-monotone, and

we take the least fixpoint of this operator for the semantics. Recall that this fixpoint has
been referred to as the well-founded fixpoint of Φaggr

Π .

I Definition 12. Let Π be an aggregate program and (u∞, v∞) the well-founded fixpoint of
Φaggr

Π . The ultimate well-founded semantics of Π based on Φaggr
Π , denoted by UWFS(Π), is

defined as u∞ ∪ ¬.(Σ \ v∞).

In the sequel, we will drop the phrase “based on Φaggr
Π ", with the understanding that the

underlying approximating operator is Φaggr
Π as identified in Theorem 10.

I Example 13. Consider the following aggregate program Π:

p(−1). p(−2)← sum≤({x | p(x)}, 2).
p(3)← sum>({x | p(x)},−4). p(−4)← sum≤({x | p(x)}, 0).

The aggregates under sum are self-explaining, e.g., sum≤({x | p(x)}, 2) means that the sum
of x for satisfied atoms p(x) is less than or equal to 2. For the construction of the well-
founded fixpoint, we start with the pair (∅,Σ). The reader can apply equations in (7) to
verify: by applying the operator Φaggr,1

Π (·,Σ) iteratively, we get a new lower estimate Q =
{p(−1), p(−2), p(−4)}; and by applying Φaggr,2

Π (∅, ·) iteratively, we get an upper estimate Σ,
which is the same as before. Thus the new pair is (Q,Σ). Continuing in the next iteration,
Q remains the same but p(3) is no longer derivable. We thus have (Q,Σ − {p(3)}), which
is a fixpoint. So the ultimate well-founded semantics is that all atoms in Q are true, p(3) is
false, and nothing is undefined.

I Theorem 14. Let KB = (L,P) be a dl-program. The well-founded semantics of KB
coincides with the ultimate well-founded semantics of the aggregate program β(KB). That
is, WFS(KB) = UWFS(β(KB)).

Proof. (Sketch) Let Π = β(KB) and (u∞, v∞) in sequence (3) be the ultimate well-founded
fixpoint of Φaggr

Π . Recall that WFS(KB) = lfp(WKB) = lfp(VKB) (the latter is by
Lemma 6) and UWFS(Π) = u∞ ∪ ¬.(Σ \ v∞). We prove the coincidence by induction
on the sequences of constructing lfp(VKB) and (u∞, v∞). In the proof, we assume rules in
P are of the form a← φ or a← not φ, where φ is a dl-atom. The proof can be generalized
to arbitrary dl-rules. Below, we identify Σ for the corresponding aggregate program with
HBP for the given dl-program, i.e., we let Σ = HBP .

Clearly, V 0
KB = u0 ∪ ¬.(Σ \ v0) = ∅. Assume (V i

KB)+ = ui and (V i
KB)− = Σ \ vi and we

show (V i+1
KB)+ = ui+1 and (V i+1

KB)− = Σ \ vi+1, for all i ≥ 0. Note that from (1), and by
induction hypothesis, we have

(V i+1
KB)+ = FPTKB

(V i
KB) = FPTKB

(ui ∪ ¬.(Σ \ vi)) (10)

J. You, J. Morris, and Y. Bi 243

(a) (V i+1
KB)+ = ui+1. First, observe that for the approximating operator Φaggr

Π , x∞ in (4)
can be computed equivalently by starting with ui, i.e.,

x0 =ui, x1 =Φaggr,1
Π (x0, vi), ..., xi+1 =Φaggr,1

Π (xi, vi), ..., x∞=Φaggr,1
Π (x∞, vi) (11)

and ui+1 = x∞. According to (10), we need to show FPTKB
(ui ∪ ¬.(Σ \ vi)) = ui+1. We

prove this by showing a one-one correspondence between the steps in (1) and those in (11).
That is, xk = T k

KB for all k ≥ 0. The base case is due to the induction hypothesis, namely
x0 = ui = (V i

KB)+ = T 0
KB (note that T 0

KB here refers to the one in (1)). Assume xk = T k
KB

and we show xk+1 = T k+1
KB , for all k ≥ 0. For any atom a ∈ Σ, a ∈ xk+1 iff for some rule

r ∈ P with H(r) = a such that for every J ∈ [xk, vi], J |= β(B(r))). Let us label the last
statement as (C1).

Suppose r = a← φ. By Lemma 8, J |= β(φ) iff J |=L φ. From the induction hypothesis,
we have (V i

KB)− = Σ \ vi, and it follows

[xk, vi] = {S+ | S is consistent and xk ∪ ¬.Σ \ vi ⊆ S ⊆ LitP }

From xk = T k
KB , it follows that (C1) iff a ∈ T k+1

KB , as the condition (b) of Definition 3 is
satisfed: for all b ∈ B+(r), S+ |=L b for each consistent S with T k

KB ⊆ S ⊆ LitP . The case
where r = a← not φ can be proved similarly, based on condition (d) of Definition 3.

(b) (V i+1
KB)− = Σ \ vi+1. Namely, UKB(V i

KB) = Σ \ vi+1, i.e., the greatest unfounded set of
KB relative to V i

KB is precisely the fixpoint y∞ (= vi+1) below:

y0 =ui, y1 =Φaggr,2
Π (ui, y0), ..., yi+1 =Φaggr,2

Π (ui, yi), ..., y∞=Φaggr,2
Π (ui, y∞) (12)

(b-1) Prove that for any a ∈ Σ, if a ∈ vi+1 then a 6∈ U , for any unfounded set U of KB
relative to V i

KB . By definition, a ∈ vi+1 iff a ∈ yk, for some k ≥ 0, iff there is a rule r ∈ P
with H(r) = a such that ∃J ∈ [ui, yk], J |= β(B(r)). By Lemma 8, J |= β(B(r)) iff J |=L φ,
if r is of form a← φ. This violates condition (iii) in Definition 2, as by induction hypothesis
there is a consistent extension S of V i

KB such that S+ = J . The proof is similar if r is of
form a← not φ, in which case condition (iv) is violated.

(b-2) Show that a 6∈ vi+1 ⇒ a ∈ UKB(V i
KB), for all a ∈ Σ. That a 6∈ vi+1 (i.e., a 6∈ y∞)

means, for every rule r ∈ P with H(r) = a, and for all I ∈ [ui, y∞], I 6|= β(B(r)), hence by
Lemma 8, I 6|=L φ if r = a← φ and I |=L φ if r = a← not φ. Note that

[ui, y∞] = {S+ | S is consistent and ui ∪ ¬.Σ \ y∞ ⊆ S ⊆ LitP }

From the induction hypothesis we know ui = (V i
KB)+ and (V i

KB)− = Σ\vi, and notationally
vi+1 = y∞. It follows from Definition 2 that Σ \ vi+1 is an unfounded set of KB relative
to V i

KB , and a ∈ Σ \ vi+1. Obviously, it is the greatest unfounded set of KB relative to
V i

KB , since for any atom ϕ ∈ y∞, there is a derivation of ϕ based on V i
KB . Therefore,

a ∈ UKB(V i
KB). The proof is completed. J

5 Well-Founded Semantics of DL-Programs with Aggregates

A dl-program with aggregates is a combined knowledge base KB = (L,P), where L is a
DL knowledge base and P a finite set of rules of the form a ← b1, ..., bk, not c1, ..., not cn,
where a is an atom, and each bi or cj is either an ordinary atom, a dl-atom, or an aggregate
atom. In the following, we continue to denote by HBP the set of atoms composed from the
constants and predicate symbols of the underlying language.

ICLP’12

244 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

Now we extend the satisfaction relation |=L to cover aggregates. Let KB = (L,P) be
a dl-program with aggregates and I ⊆ HBP an interpretation. For any aggregate φ, we
define I |=L φ iff I |= φ, and extend |=L naturally to conjunctions of atoms, dl-atoms,
aggregates, and their negations. Then, Definitions 2 and 3 can be adopted directly, by
replacing "dl-program" with "dl-program with aggregates". To distinguish, let us denote the
fixpoint operator WKB in Definition 3 by W ′KB .

I Definition 15. (Well-founded semantics for dl-programs with aggregates) Let
KB = (L,P) be a dl-program with aggregates. The well-founded semantics of KB is
defined as the least fixpoint of the operator W ′KB , denoted lfp(W ′KB).

I Theorem 16. Let KB = (L,P) be a dl-program with aggregates. (i) If P contains
no aggregates, then lfp(W ′KB) = lfp(WKB); and (ii) If P contains no dl-atoms, then
lfp(W ′KB) = lfp(W ′P) = UWFS(P).

For illustration, we close this section by presenting a dl-program with aggregates.

I Example 17. ConsiderKB = (L,P) with L = {V ip v CR}, possibly plus some assertions
of individuals in the concepts V ip and/or CR, where CR stands for Customer-Record, and
P containing

1. purchase(X)← purchase(X,Obj), item(Obj).
2. client(X)← DL[CR ∪+ purchase;CR](X).
3. imp_client(X)← DL[V ip](X).
4. imp_client(X)←client(X), sum≥({Y | item(Obj), cost(Obj,Y), purchase(X,Obj)},100).
5. discount(X)← imp_client(X).
6. promo_offer(X)← DL[CR ∪- imp_client;CR](X), card=({Y | purchase(Y)}, 0).

Rule 1 is self-explaining. Rule 2 queries the DL knowledge base in order to enhance the
client predicate. In rules 3 and 4 we establish that important clients are those who have
spent at least $100 or are VIPs. Rules 5 and 6 provide benefits to certain customers. In
rule 5, a discount is offered to important clients - VIPs and those whose purchases sum to
$100 or more. Rule 6 describes a promotional offer for non-VIP customers who have not
made any purchases - they are potential clients. For applications, P may contain some facts
about items, cost, and purchase.

6 Related Work and Further Direction

The close relationships between well-founded model, partial stable models, and stable models
are well-understood (see, e.g., [6, 15, 19]). That the well-founded model of a normal logic
program is contained in all its stable models makes it possible in a stable model solver to
compute the well-founded model as the first approximation. The well-founded semantics
has been defined for disjunctive programs [18] and default logic [2]. The close relationship
between dl-programs and aggregate programs is noticed in [8], but left as an interesting
future direction.

In [9], the notion of unfounded sets for arbitrary aggregate programs is defined (which
generalizes that of [3] for logic programs with monotone and anti-monotone aggregates): A
set of atoms U is an unfounded set for an aggregate program P and a partial interpretation
I, if for every a ∈ U , and for every rule r ∈ P with a as the head, a literal ξ in B(r) is false
w.r.t. I or w.r.t. (I−U)∪¬.U . The latter expression equals I∪¬.U if I∩U = ∅. Here, falsity
in I amounts to falsify in all of its totalization. It thus gives the same effect as requiring

J. You, J. Morris, and Y. Bi 245

that ξ is not satisfied by any consistent extension of I ∪ ¬.U in our definition. Thus, it
follows from our result that, if we define the well-founded semantics for arbitrary aggregate
programs using the notion of unfounded sets in [9], the resulting semantics is equivalent to
the ultimate well-founded semantics defined by Pelov et al. [13, 14].

The complexity issues for various classes of dl-programs and aggregate programs under
the well-founded semantics will be addressed in future work.

References
1 F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.

The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, 2003.

2 Gerhard Brewka and Georg Gottlob. Well-founded semantics for default logic. Fundamenta
Informaticae, 31(3/4):221–236, 1997.

3 Francesco Calimeri, Wolfgang Faber, Nicola Leone, and Simona Perri. Declarative and
computational properties of logic programs with aggregates. In Proc. IJCAI-05, pages
406–411, 2005.

4 M. Denecker, V. W. Marek, and M. Truszczynski. Ultimate approximation and its applic-
ation in nonmonotonic knowledge representation systems. Information and Computation,
192(1):84–121, 2004.

5 M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate well-founded and stable semantics
for logic programs with aggregates. In Proc. ICLP’01, pages 212–226, 2001.

6 Phan Minh Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–358,
1995.

7 Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uniform
integration of higher-order reasoning and external evaluations in answer-set programming.
In Proc. IJCAI-05, pages 90–96, 2005.

8 Thomas Eiter, Thomas Lukasiewicz, Giovambattista Ianni, and Roman Schindlauer. Well-
founded semantics for description logic programs in the semantic web. ACM Transactions
on Computational Logic, 12(2), 2011. Article 3.

9 W. Faber. Unfounded sets for disjunctive logic programs with arbitrary aggregates. In
proc. LPNMR-05, pages 40–52, 2005.

10 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proc. ICLP’88, pages 1070–1080, 1988.

11 V. W. Marek and J. B. Remmel. Set constraints in logic programming. In Proc. LPNMR-04,
pages 167–179, 2004.

12 V. W. Marek and M. Truszczynski. Logic programs with abstract constraint atoms. In
Proceedings of AAAI-04, pages 86–91, 2004.

13 N. Pelov, M. Denecker, and M. Bruynooghe. Partial stable models for logic programs with
aggregates. In Proc. LPNMR-04, pages 207–219, 2004.

14 N. Pelov, M. Denecker, and M. Bruynooghe. Well-founded and stable semantics of logic
programs with aggregates. Theory and Practice of Logic Programming, 7:301–353, 2007.

15 Teodor C. Przymusinski. The well-founded semantics coincides with the three-valued stable
semantics. Fundam. Inform., 13(4):445–463, 1990.

16 Tran Cao Son and Enrico Pontelli. A constructive semantic characterization of aggregates
in answer set programming. TPLP, 7(3), 2007.

17 Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for
general logic programs. J. ACM, 38(3):620–650, 1991.

ICLP’12

246 Reconciling Well-Founded Semantics of DL-Programs and Aggregate Programs

18 Kewen Wang and Lizhu Zhou. Comparisons and computation of well-founded semantics
for disjunctive logic programs. ACM Trans. Comput. Log., 6(2):295–327, 2005.

19 Jia-Huai You and Li Yan Yuan. On the equivalence of semantics for normal logic programs.
J. Log. Program., 22(3):211–222, 1995.

Preprocessing of Complex Non-Ground Rules in
Answer Set Programming∗

Michael Morak and Stefan Woltran

Institute of Information Systems 184/2
Vienna University of Technology
Favoritenstrasse 9–11, 1040 Vienna, Austria
E-mail: [surname]@dbai.tuwien.ac.at

Abstract
In this paper we present a novel method for preprocessing complex non-ground rules in answer set
programming (ASP). Using a well-known result from the area of conjunctive query evaluation, we
apply hypertree decomposition to ASP rules in order to make the structure of rules more explicit
to grounders. In particular, the decomposition of rules reduces the number of variables per rule,
while on the other hand, additional predicates are required to link the decomposed rules together.
As we show in this paper, this technique can reduce the size of the grounding significantly and thus
improves the performance of ASP systems in certain cases. Using a prototype implementation and
the benchmark suites of the Answer Set Programming Competition 2011, we perform extensive
tests of our decomposition approach that clearly show the improvements in grounding time and
size.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases answer set programming, hypertree decomposition, preprocessing

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.247

1 Introduction

Starting from the pioneering work of Gelfond and Lifschitz [16, 17], the declarative problem
solving paradigm of answer set programming (short: ASP, see e.g. [2]) has become a central
formalism in artificial intelligence and knowledge representation. This is due to its simple,
yet expressive modelling language, which is implemented by systems showing a steadily
increasing performance. Such systems follow a two-step approach for evaluating a program:
The so-called grounder instantiates rules by replacing the various variables with applicable
constants. This yields a propositional logic program (consisting of propositional or “ground”
rules) that is equivalent for the given domain. This program is then finally fed into the
actual solver. In systems like lparse/smodels [23] or gringo/clasp [12] this separation is quite
strict whereas DLV [20] followed a more integrated approach.

Although today’s ASP systems have reached an impressive state of sophistication, we
believe that there is still room for improvement, in particular on the level of grounding. In fact,
since checking whether a non-ground rule fires is already NP-complete [9] in general (as easily
shown by analogy to the conjunctive query evaluation problem, which is also NP-complete,
cf. [1]), grounders have to list all possibly applicable instantiations of non-ground rules which
are, by the NP-completeness of the aforementioned problem, exponentially many in the worst
case. However, often the rules exhibit a particular structure which, in theory, could be used
to avoid or at least reduce this blow-up. Several preprocessing and optimization techniques

∗ This work was supported by special fund “Innovative Projekte 9006.09/008” of TU Vienna.

© Michael Morak and Stefan Woltran;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 247–258

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.247
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

248 Preprocessing of Complex Non-Ground Rules in Answer Set Programming

that work well in practice have been developed in the past, see, e.g., [10, 13, 11], but to the
best of our knowledge, in the area of ASP, decomposition of rules via hypergraphs has not
been implemented or systematically investigated yet.

In this paper we present such a novel preprocessing strategy. It is based on ideas of Gottlob
et. al. in [19], who employed a similar mechanism to efficiently solve the boolean conjunctive
query evaluation problem. In our approach, each rule is represented as a hypergraph, where
each variable in the rule is represented by a vertex and each predicate in the rule is represented
by a hyperedge in the hypergraph. Using a hypertree decomposition of this hypergraph
representation, the rule can then be split up into an equivalent set of smaller rules, whose
grounding is only exponential in the size of the nodes in the hypertree decomposition (i.e.,
the number of variables in each node). In cases where the size of the nodes is considered to
be bound by a fixed constant, the grounding thus remains linear in the size of the non-ground
program when using current generation grounders. First experiments with a prototype
implementation and the benchmarks from the well-known Third ASP Competition 2011 [7]
show a significant decrease both in grounding time and grounding size for certain problems.

2 Preliminaries

In this section we give a brief introduction to Answer Set Programming (ASP) as well as the
to the concepts of hypergraphs and hypertree decompositions.

Logic Programs and Answer Set Semantics

We focus here only on the basic definitions; for a comprehensive and recent introduction to
answer set programming, see [6].

Disjunctive logic programs are programs that consist of rules of the form

H1 ∨ · · · ∨Hk ← P1, . . . , Pn,¬N1, . . . ,¬Nm

where Hi, Pi and Ni are atoms. An atom A is a predicate with an arity and accordingly many
variables or constant symbols (also called domain elements). If the arity is 0, we simply write
A instead of A(). Variables are denoted by capital letters, constants by lower-case words. If an
atom does not contain variables it is said to be ground. For a rule r of above form, we denote
by H(r) the set of head atoms of r (i.e. H(r) = {H1, . . . ,Hk}); the positive body we denote
by B+(r) = {P1, . . . , Pn} and the negative body by B−(r) = {N1, . . . , Nn}. H1, . . . ,Hk are
called the head atoms, and P1, . . . , Pn (resp. N1, . . . , Nm) are called the positive body (resp.
negative body) atoms of the rule. Moreover, we use B(r) = {P1, . . . , Pn,¬N1, . . . ,¬Nn} to
denote the set of all literals in the body or r. The ¬ operator is a unary logical connective,
called the negation as failure operator or, alternatively, default negation. Given a logic
program Π, we denote by BΠ its Herbrand Base, i.e., the set of all ground atoms which can
be constructed from the constants and predicates in Π.

A rule is said to be safe if every variable occurring in the head or negative body of the
rule also occurs in the positive body of the rule. From this point onward, we only consider
logic programs whose rules are safe.

I Example 1. An example logic program is given below:

q ← E(X,Y),¬E(X, a)

It has the intended meaning that the boolean predicate q is true, if there exists an
edge from a vertex X to a vertex Y in a graph, but not from the vertex X to a constant
vertex a. J

M. Morak and S. Woltran 249

A logic program is said to be ground, if it does not contain any rules with variables. A
non-ground rule (i.e. one that contains variables) can be seen as an abbreviation for all
possible instantiations of the variables with domain elements. In answer set programming,
this step is usually explicitly performed by a grounder. Note that such a ground program can
be exponential in the size of the non-ground program. In what follows, we denote by Gr(Π)
the grounding of a program Π. Moreover, we denote by Gr(r,Π) the grounding of a single
rule r with respect to the domain elements occurring in Π. Clearly, Gr(Π) =

⋃
r∈Π Gr(r,Π).

A set S of ground atoms is a model of a disjunctive logic program Π if S satisfies each
rule in Gr(Π). A ground rule r is satisfied by S if H(r) ∩ S 6= ∅ holds, whenever B(r) is
satisfied by S (i.e., whenever B+(r) ⊆ S and B−(r) ∩ S = ∅). The reduct ΠS of a ground
disjunctive logic program Π with respect to a set S of ground atoms is defined as:

ΠS = {H(r)← B+(r) | r ∈ Π, B−(r) ∩ S = ∅}

A set S of ground atoms is an answer set of a logic program Π if S is a minimal model of
(Gr(Π))S , the reduct of the grounding of Π with respect to S.

Hypergraphs and Hypertree Decompositions

Tree decompositions and treewidth, originally defined in [24], are a well known tool to tackle
computationally hard problems (see, e.g., [3, 4] for an overview). Treewidth is a measure for
the cyclicity of a graph and many NP-complete problems become tractable in cases where the
treewidth is bounded. However, many problems are even better represented by hypergraphs.
In [18] the concepts of hypertree decompositions and hypertree width were introduced that
extend the measurement of cyclicity to hypergraphs.

A hypergraph is a pair H = (V,E) with a set V of vertices and a set E of hyperedges. A
hyperedge e ∈ E is itself a set of vertices, with e ⊆ V . A hypergraph of a non-ground logic
program rule r is a pair HG(r) = (V,E) such that V consists of all the variables occurring
in r and E is a set of hyperedges, such that for each atom A ∈ B(r) there exists exactly one
hyperedge e ∈ E, which consists of all the variables occurring in A. Furthermore there exists
exactly one hyperedge e ∈ E that contains all the variables occurring in H(r).

The following definition is central for our purposes:
A (generalized) hypertree decomposition of a hypergraph H = (V,E) is a triplet HD =

〈T, χ, λ〉, where T = (N,F) is a (rooted) tree and χ and λ are labelling functions such that
for each node n ∈ N , χ(n) ⊆ V and λ(n) ⊆ E and the following conditions hold:

1. for every e ∈ E there exists a node n ∈ N such that e ⊆ χ(n),
2. for every v ∈ V the set {n ∈ N | v ∈ χ(n)} induces a connected subtree of T ,
3. for every node n ∈ N , χ(n) ⊆

⋃
e∈λ(n) e.

A hypertree decomposition of a logic program rule r is therefore a hypertree decomposition
of the hypergraph of r . The width of a hypertree decomposition is the maximum λ-set size
over all its nodes. The minimum width over all possible hypertree decompositions is called
the (generalized) hypertree width. Similarly, the treewidth of a hypertree decomposition is
defined by the maximum χ-set size, minus one, of a hypretree decomposition of minimal
width.

Unfortunately, for a given hypergraph, it is NP-hard to compute a hypertree decomposition
of minimum width. However, efficient heuristics have been developed that offer good
approximations (cf. [8, 5]). In practice it turns out that these approximations are often
sufficient to obtain good results with decomposition-based algorithms (i.e., algorithms that
take the problem and its hypertree decomposition as input).

ICLP’12

250 Preprocessing of Complex Non-Ground Rules in Answer Set Programming

3 Preprocessing of Non-ground Rules

In this section we describe our main contribution, a novel method for preprocessing complex
logic program rules in order to decrease the size of the grounding.

Current grounders for answer set programming do not consider the structure of a rule
and thus, when grounding, the number of ground rules produced can in the worst case be
exponential in the number of variables occurring in the rule. However, given a hypertree
decomposition of such a rule, the exponentiality of the grounding can be restricted to the
maximum χ-set size of the decomposition.

In order to describe our algorithm, we introduce the following notational aids: For a node
n in a hypertree decomposition, we represent by parent(n) and desc(n) the parent node of
n and the set of descendants (or child nodes) of n respectively. For a set (or sequence) B
of literals and a set X of variables, we denote with B ∩X (with some abuse of notation)
the literals in B that have at least one of the variables in X occurring in them. E.g.,
if B(r) = E(X1, X2), E(X2, X3),¬E(X3, X4, c), then the intersection B(r) ∩ {X1, X4} =
E(X1, X2),¬E(X3, X4, c).

Given these shorthands, the rewriting of logic program rules according to our method
works by running the following algorithm Preprocess:

1. We compute a (generalized) hypertree decomposition HD(r) = HD(HG(r)) = 〈T =
(N,F), χ, λ〉 of a given logic program rule r , trying to minimize the maximal χ-set size.
W.l.o.g. we assume that the edge representing H(r) occurs only in the root node of T .

2. We do a bottom-up traversal of the hypertree decomposition of r . For each node n ∈ N
(except the root) in the decomposition, let Yn = χ(n) ∩ χ(parent(n)) and Tn be a fresh
predicate to store the current result. At each node n ∈ N we generate a rule rn of the
form:

Tn(Yn) ← (B(r) ∩ χ(n))
∪ {ΣX(X) | X ∈ B−(r) ∩ χ(n)}
∪ {Tm(Ym) | m ∈ desc(n)}

The additional temporary predicates ΣX(X) are necessary to guarantee safety of the
generated rule. To this end, for each variable X occurring in B−(r) ∩ χ(n), we generate
a rule

ΣX(X)← b

where b ∈ B+(r) with X as one if its arguments1.
For the root node n, we generate a rule similar to rn but replace Tn(Yn) by H(r) and
we furthermore add all ground atoms of B(r) to this generated rule (since those atoms
are not represented in the tree decomposition). We refer to this generated rule as the
head rule. Generated rules stemming from a leaf node n ∈ N are referred to as leaf rules.
Atoms of the from Tn(Y) and ΣX(X) are subsequently called temporary atoms.

I Definition 2. Given a rule r we denote by r∗ the set of rules obtained by running Preprocess
on r . Moreover, for a logic program Π and r ∈ Π, we define Πr∗ = (Π \ {r}) ∪ r∗.

The intuition underlying the Preprocess algorithm is the following: Grounders have to
compute all the groundings for every rule in a given logic program. When these rules involve
multiple joins, this can be inefficient, because the grounder has to compute all possible tuples

1 We select here such a b from B+(r) with minimal arity. Note that such a predicate exists since r is safe.

M. Morak and S. Woltran 251

satisfying the first join, and then, for each of those, compute all possible tuples satisfying
the next join, and so forth.

However, the grounder actually only needs to store the values that are involved in the
next join, and perform the join operation on them, instead of the complete set of tuples.
The Preprocess algorithm makes this explicit: The hypertree decomposition takes care of
splitting the rules into multiple parts (i.e., the nodes in the decomposition). By construction
of the decomposition, the join operations performed inside a node cannot be split up any
further, thus, for each of the nodes we generate a rule performing these joins. However, in
the temporary head predicate we then only store the variables that are actually involved in a
join in the next node, thereby allowing the grounder to ignore the other variables for any
subsequent joins.

The following brief example shows this behaviour:

I Example 3. Given the rule

r = H(A,D)← E(A,B), E(B,C),¬E(C,D), E(D,A)

we compute a (simple) decomposition HD(r), for instance the following:

H(A,D), E(A,B), E(D,A)

E(B,C),¬E(C,D)

This decomposition then yields the following set of rules r∗, when applying the steps
discussed above:

ΣD(D)← E(D,A)

T1(B,D)← E(B,C),¬E(C,D),ΣD(D)

H(A,D)← E(A,B), E(D,A), T1(B,D)

The resulting set of rules is equivalent to the rule r in the sense of Theorem 4 below,
however the number of possible ground rules is now only in O(2maxn∈N |χ(n)|) instead of
O(2|X|), with X the variables in r . J

Once we have preprocessed a rule (or, every rule in a logic program), it is easy to recreate
the answer sets of the original program, as the following theorem states:

I Theorem 4. Let Π be a logic program. Then for every answer set A of Π there exists
exactly one answer set Ar∗ ⊇ A of Πr∗ and for every answer set Ar∗ of Πr∗ there exists
exactly one answer set A ⊆ Ar∗ of Π, such that in both cases it holds that BΠ ∩Ar∗ = A.

Due to space constraints, we refer the reader to the full version of this paper [22] for the
proof of this and the next theorem.

Note that Theorem 4 also shows that we can replace in a program Π step-by-step each
rule r by the corresponding replacement r∗ and obtain a program equivalent to Π in the
sense of Theorem 4 where each rule has been decomposed.

This leads to a decrease in grounding size, depending on the treewidth of the rules in the
program. We define the size of a rule to be the size of its hypergraph representation. Then
we can state the following theorem:

ICLP’12

252 Preprocessing of Complex Non-Ground Rules in Answer Set Programming

I Theorem 5. Let Π be a logic program and r ∈ Π a rule of size n. If r has bounded
treewidth, then the size of Gr(r∗,Πr∗) is linear in the size of the rule; and, in fact, is bounded
by the function O(2k·n), where k is the treewidth of r.

I Corollary 6. Let Π be a logic program. If every rule in Π has bounded treewidth, then the
size of Gr(Π) is linear in the size of Π.

The implications of the above theorem, as we will show in Section 4, can lead to substantial
speedups in the time it takes current-generation grounders to ground a logic program.

4 Experimental Evaluation

In order to empirically test our projected runtime behaviour, we have implemented a
prototypical rule-preprocessing system available at

http://www.dbai.tuwien.ac.at/research/project/dynasp/dynasp/#additional

This tool makes use of the SHARP framework for hypertree decomposition-based algo-
rithms2. Our system handles all basic ASP rules, including inequality as well as comparisons.
However, arithmetical operations are currently not implemented.

Using our prototype, we performed a series of tests on a set of benchmarks from the
third ASP competition3 (see also [7]). We selected the following four problems from the
competition

Sokoban Decision
Stable Marriage
Minimal Diagnosis
Partner Units Polynomial

This particular selection is motivated by the fact that these encodings do not use any
arithmetical operations, choice rules or other ASP extensions, thus our first prototype is able
to process them.

We chose problems from the ASP competition to show that, even though the encodings
have been extensively hand-tuned, by intelligently splitting rules according to our algorithms,
it is still possible to obtain improved grounding results. This also signifies the usefulness of
our algorithm, because employing it would eliminate the need for extensive, time-consuming
and notoriously imperfect hand-tuning.

In the following plots, red dots represent the value measured for the original benchmark
instance and blue triangles represent the value measured for the preprocessed benchmark
instance. Only the non-ground encoding was preprocessed, afterwards it was passed to
gringo [15], together with the actual problem instance from the third ASP competition
website, and the output was fed into claspd4 [14]. For each problem a sample of 50 problem
instances was selected. The time for preprocessing was not recorded in our plots, as for our
benchmark instances it was not measurable (i.e. always below 0.1 seconds). The time limit
for both gringo and claspd was 600 seconds each. If a timeout occurred, then no point was
plotted for the respective instance. The “size” of the grounded program was measured by
recording the number of variables, as determined by running claspd. As claspd introduces
variables not only for atoms but also for rule bodies, this gives a useful impression of the
actual problem size.

2 http://www.dbai.tuwien.ac.at/research/project/sharp
3 http://aspcomp2011.mat.unical.it
4 In short test-runs we obtained similar results for the well-known DLV solver [20].

 http://www.dbai.tuwien.ac.at/research/project/dynasp/dynasp/#additional
http://www.dbai.tuwien.ac.at/research/project/sharp
http://aspcomp2011.mat.unical.it

M. Morak and S. Woltran 253

instance

si
ze

5000

1+05

1500

2+05

2500

3+05

3500

preprocessing
no yes

(a) grounding size

instance
at

om
s

5000

10000

15000

20000

preprocessing
no yes

(b) number of atoms

Figure 1 Grounding size and number of ground atoms for the Sokoban Decision problem.

Figure 1a shows the size of the preprocessed grounded Sokoban Decision program that
was output by gringo in relation to the size of the grounding of the original. As can be seen
the grounding size can be reduced dramatically. On average, the size of the ground program
was reduced by 78%.

Figure 1b shows the number of atoms in the grounded Sokoban Decision problem. Given
that our preprocessing strategy introduces a number of temporary predicates in the non-
ground encoding, the number of actual atoms in the ground program increases by a linear
factor, as each hypertree decomposition itself is linear in the size of the respective rule, and at
each node, a single new temporary predicate is introduced. However, because of the nature
of our preprocessing method, the number of rules decreases, and the decrease in the number
of rules corresponds well with the decrease in size of the grounding.

Figure ?? shows the time in seconds needed by claspd for solving the whole grounded
problem, as well as the number of conflicts it encountered while doing so. Except for a few
cases, the solving time of claspd, when combined with our preprocessing algorithm, is slightly
increased, despite the much smaller size of the ground program. In rare cases however, there
is a substantial slowdown of claspd. However we also noticed that for a number of instances,
the smaller size of the ground program enabled claspd to solve the problem without hitting
the time limit (see the topmost few instances in Figure 2b). The number of conflicts, shown
in Figure 2a exhibit a similar behaviour. In most cases, an increased number of conflicts also
entails an increased number of restarts of claspd.

Note that this increase in solving time could be easily eliminated if the solver (clasdp or
otherwise) would be aware of the nature our the temporary atoms. The increase is mainly
due to the solver making lots of unnecessary guesses about which temporary atoms should
be in the answer set and which ones should not. However, by Lemma 3.4 in [22], given a set
of non-temporary atoms, the temporary atoms for this set can always be deterministically
calculated with minimal overhead. Therefore the solver could (a) ignore all rules with
temporary head atoms, as by the Lemma 3.4 in [22] those are always satisfied, (b) for a
guessed (partial) answer set, compute the corresponding temporary atoms as per the proof
of Lemma 3.4 in [22] and (c) check, whether the head rule is satisfied.

ICLP’12

254 Preprocessing of Complex Non-Ground Rules in Answer Set Programming

instance

co
nf

lic
ts

50000

100000

150000

200000

250000

preprocessing
no yes

(a) conflicts while solving

instance

tim
e

100

200

300

400

500

preprocessing
no yes

(b) solving time

Figure 2 The number of conflicts encountered and the time in seconds needed by claspd for
solving the grounded Sokoban Decision problem.

instance

si
ze

2+05

4+05

6+05

8+05

1+06

1200

1400

preprocessing
no yes

(a) Minimal Diagnosis grounding size

instance

si
ze

1+06

2+06

3+06

4+06

5+06

preprocessing
no yes

(b) Partner Units grounding size

Figure 3 Grounding size of the Minimal Diagnosis and the Partner Units Polynomial problems.

The Sokoban Decision problem is the only problem in our benchmark selection that
involves a solving phase. The other three problems that we discuss in the following are in
fact solved by the grounder itself, therefore only the grounding size and grounding time plots
are relevant for these problems.

Figure 3 shows the size of the grounding of the Minimal Diagnosis and Partner Units
Polynomial problems. In the latter, only a single rule is split up, which is a rule with an
all-positive body (i.e. no default negation). In this case our approach works best, because no

M. Morak and S. Woltran 255

instance

gr
ou

nd
in

g
tim

e

50

100

150

200

250

300

preprocessing
no yes

(a) Stable Marriage grounding time

instance
si

ze

1+06

2+06

3+06

4+06

5+06

preprocessing
no yes

(b) Stable Marriage grounding size

Figure 4 Grounding time and grounding sizes for the Stable Marriage problem.

domain closure predicates (Σ) are needed. This simple split-up rule already decreases the
grounding size by an average of 4%, as seen in Figure 3b.

On the other hand, for the Minimal Diagnosis problem in Figure 3a, all the rules that
are split up are of the form

a(U, V)← b(U, S), b(V, T), S != T

and therefore get split up into the following three rules:

T1(V, S)← b(V, T), S != T,ΣS(S)

a(U, V)← b(U, S), T1(V, S)

ΣS(S)← b(U, S)

In this case, with our approach there is a chance that the actual grounding size increases,
especially if many valid groundings for the fact b(U, S) exist. Note that the grounding size
with our preprocessing algorithm is always upper-bounded by O(2maxn∈N |χ(n)|), as opposed
to exponential in the number of variables of the whole rule. However these worst-case bounds
are seldom exhausted. Whether a rule that gets split up as described above is actually
beneficial to the overall grounding size, heavily depends on the configuration of the ground
facts that are supplied to the grounder.

Note also that if our preprocessing approach would be integrated directly into the grounder,
it would eliminate the need for domain closure predicates as the grounder already knows
about the domain anyway. In this case it would be impossible for the grounding size to
increase when employing our preprocessing approach and thus the only potential disadvantage
could be eliminated.

Lastly, the Stable Marriage problem in Figure 4 shows the strength of our preprocessing
algorithm. Here the non-ground rules contain many free variables and many predicates are
joined together which forms the ideal basis for our algorithm. The non-ground rules force
gringo to output almost exponentially many groundings for each rule. Figure 4a shows that

ICLP’12

256 Preprocessing of Complex Non-Ground Rules in Answer Set Programming

a significant speedup in all cases can here be gained, for the worst-case instances, cutting the
grounding time from over 300 seconds to about 5 seconds. Also the grounding size decreases
dramatically. In Figure 4b it can also be seen, that for the topmost 15 instances, clasp could
not even finish parsing the gringo output within the timeout limit of 600 seconds. In case of
our significantly reduced grounding size, this was however easily possible.

5 Conclusion

In this paper, we have presented a novel preprocessing strategy for non-ground rules in
answer set programming. The preprocessing intelligently splits up non-ground rules into
smaller ones by means of a hypertree decomposition in order to decrease the maximum
number of variables per rule (and thus to reduce the size of the entire grounding). This
technique follows the rule of thumb experienced ASP users will apply when encoding their
problems. However, for complex rules, manual splitting becomes increasingly difficult and the
readability of the encoding may suffer considerably. Also, programs may be automatically
generated or specified for the purpose of presentation rather than for optimization (for
instance, specifications in general game playing, see, e.g., [21]).

Benchmarks performed on problems used in the well-established answer set programming
competition show significant potential of our strategy and thus warrant inclusion of such a
method into existing grounders. The speedup of the grounding process is due to two factors:

Firstly, if the number of rule instantiations is reduced significantly, also the time it takes
to compute and output each of these instantiations is reduced by the same amount. This
effect can clearly be seen for the Stable Marriage problem in the previous section.

Secondly, by splitting up rules into smaller, equivalent ones, the number of joins between
non-ground predicates is reduced. Therefore the grounder does not have to perform as many
join operations as before, which also leads to a speedup of the grounding process.

Future Work

In order to use the demonstrated positive effects of our algorithm in state-of-the-art ASP
grounders and solvers, there are two approaches worth investigating.

Firstly, if this preprocessing approach is directly incorporated to a grounder, the grounder
may use the information about temporary predicates in order to speed up the grounding
process further. Also, the domain closure predicates (Σ) are currently only a workaround,
as currently our preprocessing algorithm has no information about the domain of specific
variables in a non-ground rule. However, if included directly into the grounder, the domain
closure predicates would become obsolete, as the grounder can immediately fill the respective
variables with their now known domain, as the grounder has full information about the
ground facts and domains of the various predicates and variables. This would not only lead
to a speedup, but also would further decrease the size of the grounding, as the domain
predicates do no longer exist, eliminating also the increase in size of the Minimal Diagnosis
grounding.

Secondly, even though the size of the ground program decreases in all our benchmark
cases except the Minimal Diagnosis problem, the solving time actually increases. This
means that claspd is currently not aware of the tree-like structure of the split-up rules in
the preprocessed and grounded instance. If the grounder could pass information about the
temporary predicates to the solver, this could significantly speed up the solving process, as
the temporary predicates could be automatically dismissed from the computation and the
answer sets.

M. Morak and S. Woltran 257

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2 C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press, 2003.
3 H. L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–22, 1993.
4 H. L. Bodlaender. Discovering treewidth. In P. Vojtás, M. Bieliková, B. Charron-Bost,

and O. Sýkora, editors, SOFSEM 2005: 31st Conference on Current Trends in Theory and
Practice of Computer Science. Proceedings, volume 3381 of LNCS, pages 1–16. Springer,
2005.

5 H. L. Bodlaender and A. M. C. A. Koster. Treewidth computations I. Upper bounds. Inf.
Comput., 208(3):259–275, 2010.

6 G. Brewka, T. Eiter, and M. Truszczynski. Answer set programming at a glance. Commun.
ACM, 54(12):92–103, 2011.

7 F. Calimeri, G. Ianni, F. Ricca, M. Alviano, A. Bria, G. Catalano, S. Cozza, W. Faber,
O. Febbraro, N. Leone, M. Manna, A. Martello, C. Panetta, S. Perri, K. Reale, M. C.
Santoro, M. Sirianni, G. Terracina, and P. Veltri. The third answer set programming
competition: Preliminary report of the system competition track. In J. P. Delgrande and
W. Faber, editors, 11th Conference on Logic Programming and Nonmonotonic Reasoning,
LPNMR 2011. Proceedings, volume 6645 of LNCS, pages 388–403. Springer, 2011.

8 A. Dermaku, T. Ganzow, G. Gottlob, B. J. McMahan, N. Musliu, and M. Samer. Heuristic
methods for hypertree decomposition. In A. F. Gelbukh and E. F. Morales, editors, MICAI
2008: 7th Mexican International Conference on Artificial Intelligence, Proceedings, volume
5317 of LNCS, pages 1–11. Springer, 2008.

9 T. Eiter, W. Faber, M. Fink, and S. Woltran. Complexity results for answer set program-
ming with bounded predicate arities and implications. Ann. Math. Artif. Intell., 51(2-
4):123–165, 2007.

10 W. Faber, N. Leone, C. Mateis, and G. Pfeifer. Using database optimization techniques
for nonmonotonic reasoning. In Proc. 7th International Workshop on Deductive Databases
and Logic Programming (DDLP’99), pages 135–139, 1999.

11 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Challenges in answer set solving.
In M. Balduccini and T. Son, editors, Logic Programming, Knowledge Representation, and
Nonmonotonic Reasoning: Essays in Honor of Michael Gelfond, volume 6565, pages 74–90.
Springer, 2011.

12 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp : A conflict-driven answer
set solver. In C. Baral, G. Brewka, and J. S. Schlipf, editors, Logic Programming and Non-
monotonic Reasoning, 9th International Conference, LPNMR 2007. Proceedings, volume
4483 of LNCS, pages 260–265. Springer, 2007.

13 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Advanced preprocessing for answer
set solving. In M. Ghallab, C. D. Spyropoulos, N. Fakotakis, and N. M. Avouris, editors,
ECAI 2008 - 18th European Conference on Artificial Intelligence, Proceedings, volume 178
of Frontiers in Artificial Intelligence and Applications, pages 15–19. IOS Press, 2008.

14 M. Gebser, B. Kaufmann, and T. Schaub. The conflict-driven answer set solver clasp:
Progress report. In E. Erdem, F. Lin, and T. Schaub, editors, Logic Programming and Non-
monotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam, Germany,
September 14-18, 2009. Proceedings, volume 5753 of LNCS, pages 509–514. Springer, 2009.

15 M. Gebser, T. Schaub, and S. Thiele. Gringo : A new grounder for answer set programming.
In C. Baral, G. Brewka, and J. S. Schlipf, editors, Logic Programming and Nonmonotonic
Reasoning, 9th International Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17,
2007, Proceedings, volume 4483 of LNCS, pages 266–271. Springer, 2007.

16 M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.
ICLP/SLP, pages 1070–1080, 1988.

ICLP’12

258 Preprocessing of Complex Non-Ground Rules in Answer Set Programming

17 M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Comput., 9(3/4):365–386, 1991.

18 G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries. In
Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, 1999, pages 21–32. ACM Press, 1999.

19 G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. J.
ACM, 48(3):431–498, 2001.

20 N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The dlv
system for knowledge representation and reasoning. ACM Trans. Comput. Log., 7(3):499–
562, 2006.

21 M. Möller, M. T. Schneider, M. Wegner, and T. Schaub. Centurio, a general game player:
Parallel, Java- and ASP-based. Künstliche Intelligenz, 25(1):17–24, 2011.

22 M. Morak and S. Woltran. Preprocessing of complex non-ground rules in answer set pro-
gramming. Technical Report DBAI-TR-2011-72 (revised version), Institute of Information
Systems 184/2, Vienna University of Technology, Austria, 2012.

23 I. Niemelä and P. Simons. Smodels - an implementation of the stable model and well-
founded semantics for normal logic programs. In J. Dix, U. Furbach, and A. Nerode,
editors, Logic Programming and Nonmonotonic Reasoning, 4th International Conference,
LPNMR’97, Dagstuhl Castle, Germany. Proceedings, volume 1265 of Lecture Notes in Com-
puter Science, pages 421–430. Springer, 1997.

24 N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. J. Comb. Theory,
Ser. B, 36(1):49–64, 1984.

Two-Valued Logic Programs
Vladimir Lifschitz

University of Texas at Austin, USA

Abstract
We define a nonmonotonic formalism that shares some features with three other systems of non-
monotonic reasoning—default logic, logic programming with strong negation, and nonmonotonic
causal logic—and study its possibilities as a language for describing actions.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Answer set programming, Non monotonic reasoning, Foundations

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.259

1 Introduction

A stable model of a logic program, according to the original definition of the stable model
semantics [4], is a set of ground atoms. Intuitively, the atoms that belong to the model are
true, and all other atoms are false. Thus a stable model gives complete information about
the truth values of all atoms; the incompleteness of information encoded in a logic program
can be only expressed by the existence of several stable models.

When classical (strong) negation was added to the language of logic programs in [5],
and the term “answer set” was introduced, the situation changed. An answer set is a set
of ground literals that is consistent but possibly incomplete. Thus an answer set can be
thought of as a function that assigns to each ground atom A one of three values: true (A
belongs to the set), false (¬A belongs to the set), or unknown (the set contains neither A
nor ¬A). An answer set can represent incomplete information.

On the other hand, in the original stable model semantics truth and falsity were not
symmetric: if an atom does not occur in the heads of rules of a logic program then it is
treated as false. In the answer set semantics, the truth value of such an atom is unknown.

To sum up, 1988-style stable models are asymmetric and represent complete information;
1991-style answer sets are symmetric and can represent incomplete information.

The nonmonotonic formalism described in this note is motivated by the fact that some
important uses of answer set programming (ASP) call for both symmetry and completeness.
We often encounter this situation when ASP is applied to reasoning about truth-valued
fluents. To describe a state, we need to provide complete information about the values of all
fluents. The modification of the stable model semantics defined below treats truth and falsity
symmetrically, like the 1991 version, and at the same time guarantees the completeness of
information, as the 1988 version.

Two-valued logic programs share some features with default logic [13] and with nonmono-
tonic causal logic in the sense of [11]. As in the case of default logic, the nonmonotonicity
of two-valued logic programs is determined by the use of “justifications.” Literals play a
special role in their syntax, as they do in the definition of an answer set in [5], and this fact
allows us to make their semantics relatively simple: it does not refer to deductive closure in
the sense of classical logic. As in nonmonotonic causal logic, their semantics is defined in
terms of two-valued truth assignments—or, in other words, consistent and complete sets of
literals—rather than (possibly incomplete) extensions or (possibly incomplete) answer sets.

© Vladimir Lifschitz;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 259–266

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.259
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

260 Two-Valued Logic Programs

2 Definitions

2.1 Syntax
In this note, formulas are propositional formulas formed from a fixed set σ of atoms. A
(two-valued) rule is an expression of the form

L0 ← L1, . . . , Ln : F, (1)

where the head L0 and the premises L1, . . . , Ln (n ≥ 0) are literals, and the justification F
is a formula. Rule (1) reads: derive L0 from L1, . . . , Ln if F is a consistent assumption.

A pair of rules of the form

A ← L1, . . . , Ln : F ∧A,
¬A ← L1, . . . , Ln : F ∧ ¬A,

where A is an atom, can be abbreviated as

{A} ← L1, . . . , Ln : F (2)

(“derive any of the literals A, ¬A from L1, . . . , Ln if that literal is consistent with assump-
tion F”). This abbreviation is similar to choice rules in the sense of [12]. Both in (1) and
in (2), if F is > (truth) then we will drop the colon and F at the end of the rule. If, in
addition, n = 0 then ← can be dropped too.

A (two-valued) program is a set of rules.

2.2 Semantics
As in classical propositional logic, an interpretation is a function from σ to {false, true}.
We will identify an interpretation I with the set of literals that are satisfied by I.

The reduct of a program Π relative to an interpretation I is the set of rules

L0 ← L1, . . . , Ln (3)

corresponding to the rules (1) of Π for which I |= F . We say that I is a model of Π if the
smallest set of literals closed under the rules (3) equals I. In other words, models of Π are
fixpoints of the operator αΠ from interpretations to sets of literals defined as follows: αΠ(I)
is the smallest set of literals closed under the reduct of Π relative to I.

It is clear that the set of models of a program is not affected by replacing the justification
of a rule with an equivalent formula. It is clear also that every literal that belongs to a model
of Π is the head of a rule of Π. It follows that if some atom from σ does not occur in the
heads of rules then the program is inconsistent (that is, has no models). This is a property
that two-valued programs share with causal theories in the sense of [11].

2.3 Example
Let Π be the program

{a},
b← a,

(4)

or, written in full,
a ← : a,
¬a ← : ¬a,
b ← a : >,

V. Lifschitz 261

with σ = {a, b}. Since Π has no rules with the head ¬b, the only possible models are
I1 = {a, b} and I2 = {¬a, b}. The reduct of Π relative to I1 consists of the rules a and
b← a, so that αΠ(I1) = {a, b} = I1; I1 is a model. The reduct relative to I2 consists of the
rules ¬a and b← a, so that αΠ(I2) = {¬a} 6= I2; I2 is not a model.

2.4 Constraints
Adding a pair of rules of the form

A ← : F,
¬A ← : F (5)

to a program Π eliminates the models of Π that satisfy F . (Proof: adding these rules makes
the reduct of the program relative to I inconsistent if I satisfies F , and does not affect the
reduct otherwise.) We will call (5) a constraint and write it as ← F .

2.5 Clausal Form
We say that a program Π is in clausal form if each of its justifications is a conjunction of
literals (possibly the empty conjunction >). For instance, program (4) is in clausal form.

Replacing a rule of the form

L0 ← L1, . . . , Ln : F ∨G

in any program with the pair of rules

L0 ← L1, . . . , Ln : F,
L0 ← L1, . . . , Ln : G

does not affect the set of models. (Proof: for any interpretation I, the reduct relative to I
remains the same.) It follows that any program can be converted to clausal form by rewriting
the justifications in disjunctive normal form and then breaking every rule into several rules
corresponding to the disjunctive terms of its justification.

3 Relation to Traditional ASP Programs

3.1 Reduction to Programs with Strong Negation
As mentioned in the introduction, two-valued programs are essentially a special case of
nondisjunctive programs with strong negation. To make that claim precise, we will define
a simple translation that turns any two-valued program Π in clausal form into a program
with strong negation. That program, tv2sn(Π), is the set of rules

L0 ← L1, . . . , Ln,not Ln+1, . . . ,not Lp

for all rules
L0 ← L1, . . . , Ln : Ln+1 ∧ · · · ∧ Lp

of Π. (By L we denote the literal complementary to L.) For instance, tv2sn turns program (4)
into

a ← not ¬a,
¬a ← not a,
b ← a.

(6)

ICLP’12

262 Two-Valued Logic Programs

An interpretation I (that is to say, a sound and complete set of literals) is a model of Π
iff I is an answer set of tv2sn(Π). (Proof: the reduct of tv2sn(Π) relative to I in the sense
of [5] is identical to the reduct of Π relative to I.) In other words, models of Π are identical
to complete answer sets of tv2sn(Π). For instance, program (6) has two answer sets, {a, b}
and {¬a}. The first of them is the only model of (4); the second is incomplete.

Incomplete answer sets of a program with strong negation can be eliminated by adding
the rules

← not A,not ¬A (7)

for all atoms A. Consequently models of a program Π in clausal form are identical to the
answer sets of the program obtained from tv2sn(Π) by adding rules (7) for all A from σ.

3.2 Complete Answer Sets in Disguise
In many ASP programs, strong negation is not used at all. Answer sets of such a program are
sets of positive literals; the intuition is that the falsity of an atom is indicated by its absence
in the answer set, rather than the presence of its negation. In this situation, we can think
of an answer set consisting of positive literals as a “complete answer set in disguise”—as a
complete answer set X with all negative literals removed (symbolically, X ∩ σ).

Similarly, a program without strong negation can be viewed as a “two-valued program
in disguise.” Let Π be a set of rules of the form

A0 ← A1, . . . , An,not An+1, . . . ,not Ap, (8)

where each Ai is an atom. By lp2tv(Π) we denote the two-valued program consisting of the
rules

A0 ← A1, . . . , An : ¬An+1 ∧ · · · ∧ ¬Ap

for all rules (8) of Π, and the rules

¬A← : ¬A (9)

for all atoms A. Rule (9) makes the closed world assumption for A explicit.
Answer sets of Π can be characterized as sets of the form X ∩ σ, where X is a model

of lp2tv(Π). (Proof: tv2sn(lp2tv(Π)) is the closed world interpretation of Π in the sense of
[5, Section 6].) Thus the map X 7→ X ∩ σ is a 1–1 correspondence between the models of
lp2tv(Π) and the models of Π.

Consider, for instance, the program Π consisting of one rule a← not b. The correspond-
ing two-valued program is

a ← : ¬b,
¬a ← : ¬a,
¬b ← : ¬b.

Its only model is {a,¬b}. By removing the negative literal ¬b from it, we get {a}, the only
answer set of Π.

4 Relation to Causal Logic

Recall that a causal theory in the sense of [11] is a set of rules of the form F ← G, where
F and G are propositional formulas. The reduct of a causal theory T relative to an inter-
pretation I is the set of the heads F of all rules F ← G of T for which I satisfies G. An

V. Lifschitz 263

interpretation I is a model of a causal theory T if the reduct of T relative to I is satisfied by I
and is not satisfied by any other interpretation. This semantics formalizes the philosophical
principle that McCain and Turner call the law of universal causation.

A causal theory is definite if the head of each of its rules is a literal. For any definite
causal theory T , we define the corresponding two-valued program ct2tv(T) as the set of rules
F ← : G for all rules F ← G of T . Models of any definite causal theory T are identical to
models of program ct2tv(T). (Proof: consider the reduct X of a definite causal theory T
relative to an interpetation I; I is the only interpretation satisfying X iff X = I.) In
other words, definite causal theories are essentially two-valued programs whose rules have
no premises. We can say also that two-valued programs generalize definite causal theories
by allowing “logic programming style premises” in the bodies of rules.

If the bodies of rules of a definite causal theory T are conjunctions of literals then ct2tv(T)
is a program in clausal form, and the transformation tv2sn defined above can be used to
turn that program into a program with strong negation. By composing ct2tv with tv2sn we
get the translation from the language of causal theories into logic programming with strong
negation familiar from [10, Section 6.3.3].

5 Representing Action Descriptions by Two-Valued Programs

Consider a finite set σ of propositional atoms divided into two groups, fluents and elementary
actions. An action is a function from elementary actions to truth values. A transition
system T is determined by a set of functions from fluents to truth values, called the states
of T , and a set of triples 〈s0, a, s1〉, where s0 and s1 are states of T , and a is an action.
These triples are called the transitions of T . A transition system can be visualized as a
directed graph that has states as its vertices, with an edge from s0 to s1 labeled a for every
transition 〈s0, a, s1〉. Informally speaking, a transition 〈s0, a, s1〉 expresses the possibility of
the system changing its state from s0 to s1 when the elementary actions to which a assigns
the value true are concurrently executed.

Action description languages B and C, defined in [6, Section 5, 6] and [8], and reviewed
in [7, Section 2], serve for describing action domains by specifying transition systems. They
are closely related to logic programs under the answer set semantics [1, 9]. In this section we
show how the semantics of B and of a large (“definite”) fragment of C can be characterized
in terms of two-valued programs.

5.1 Translating B-Descriptions
This review of the syntax of B follows [7, Section 2.1.1]. A fluent literal is a literal containing
a fluent. A condition is a set of fluent literals. An action description in the language B, or
a B-description, is a set of expressions of two forms: static laws

L if C,

where L is a fluent literal, and C is a condition, and dynamic laws

e causes L if C,

where e is an elementary action, L is a fluent literal, and C is a condition. The semantics of
the language (see, for instance, [7, Section 2.1.2]) defines, for every B-description D, which
transition system it represents.

ICLP’12

264 Two-Valued Logic Programs

The set of transitions of that system can be described by the program b2tv(D), defined
as follows. Its signature σ1 consists of the symbols of the forms

f(0), e(0), f(1), (10)

where f is a fluent and e is an elementary action. Its rules are
(i) L(t)← L1(t), . . . , Ln(t), where t = 0, 1, for each static law

L if L1, . . . , Ln

from D;
(ii) L(1)← e(0), L1(0), . . . , Ln(0) for each dynamic law

e causes L if L1, . . . , Ln

from D;
(iii) L(1)← L(0) : L(1) for every fluent literal L,
(iv) {A(0)} for every atom A of σ.
Rules (iii) solve the frame problem by formalizing the commonsense law of inertia [14]; they
are similar to the “frame default” from [13]. Rules (iv) express that both the initial values
of fluents and the elementary actions to be executed can be chosen arbitrarily.

Recall that we agreed to identify truth-valued functions with sets of literals (Section 2.2).
Using this convention, we can characterize the set of transitions of an arbitrary B-descrip-
tion D in terms of models of b2tv(D) as follows:

Proposition. For any sets s0, s1 of fluent literals, and any action a, 〈s0, a, s1〉 is a transi-
tion of T (D) iff the set

{L(0) : L ∈ s0 ∪ a} ∪ {L(1) : L ∈ s1}

is a model of b2tv(D).

This fact is a reformulation of Lemma 2 from [7], in view of the property of the trans-
formation tv2sn noted in Section 3.1. It establishes a 1–1 correspondence between the
transitions of D and the models of b2tv(D).

5.2 Translating Definite C-Descriptions
This review of the syntax of C follows [7, Section 2.2.1]. An action description in the language
C, or C-description, is a set of expressions of the two forms: static laws

caused F if G, (11)

where F and G are formulas that do not contain elementary actions, and dynamic laws

caused F if G after H, (12)

where F and G are formulas that do not contain elementary actions, and H is a formula.
The semantics of the language (see, for instance, [7, Section 2.2.2]) defines, for every C-
description D, which transition system it represents.

A C-description is definite if, in each of its laws (11), (12), the head F is a literal.
For any definite C-description D, the set of transitions of the corresponding system can be
described by the program c2tv(D), defined as follows. Its signature σ1 consists of the same

V. Lifschitz 265

symbols (10) as in the case of B-descriptions. For any formula F of the signature σ, by F (0)
we will denote the formula of the signature σ1 obtained from F by appending the string ′(0)′

to each atom. For any formula F of the signature σ that does not contain elementary actions,
by F (1) we will denote the formula of the signature σ1 obtained from F by appending the
string ′(1)′ to each atom. The rules of c2tv(D) are
(i) F (t)← : G(t), where t = 0, 1, for each static law (11) from D;
(ii) F (1)← : G(1) ∧H(0) for each dynamic law (12) from D;
(iii) {A(0)} for every atom A of σ.

The characterization of transitions given by the proposition from Section 5.1, with b2tv
replaced by c2tv, holds for any definite C-description D. This fact is a corollary to Proposi-
tion 2 from [8], in view of the property of the transformation ct2tv noted in Section 4 above.
It establishes a 1–1 correspondence between the transitions of D and the models of c2tv(D).

If H in a dynamic law (12) is a conjunction of literals L1 ∧ · · · ∧ Ln then the rule in
clause (ii) of the definition of c2tv can be rewritten as

F (1)← L1(0), . . . , Ln(0) : G(1),

and the models of the theory will remain the same.

6 Conclusion

We have seen that the language of two-valued programs is sufficiently rich for expressing the
ASP solution to the frame problem that exploits the distinction between strong negation and
negation as failure (Section 5.1), and that it can model the uses of ASP that avoid strong
negation altogether (Section 3.2). There are also “mixed” representations, which express
the falsity of some atoms explicitly, in terms of strong negation, and treat the falsity of
other atoms in the spirit of an implicit closed world assumption. Such representations can
be often expressed by two-valued programs as well.

Uses of ASP for which the language of two-valued programs is inadequate are relatively
rare, but they do exist. Incomplete answer sets are essential for representing “weak ex-
ceptions” to defaults, as in [2, Example 3.2]: birds normally fly; wounded birds may or
may not fly. Another example is given by the approach to conformant planning presented
in [15]. The planner described in that paper operates with “partial states”—incomplete
sets of literals that approximate states in the sense of Section 5. The difference between
the applications of ASP that can be naturally represented by two-valued programs and the
applications for which it is not the case is an important distinction between two kinds of
answer set programs.

Two-valued programs can be viewed as a special case of multi-valued propositional for-
mulas under the stable model semantics introduced in [3].1 A preprocessor converting such
formulas (perhaps from a subset that includes two-valued programs) into input accepted by
answer set solvers would be a useful knowledge representation tool.

Acknowledgements

Thanks to Marc Denecker, Michael Gelfond, Joohyung Lee, Yuliya Lierler, and Fangkai
Yang for useful discussions related to the topic of this note, and to the anonymous referees
for their comments.

1 Joohyung Lee, personal communication, April 4, 2012.

ICLP’12

266 Two-Valued Logic Programs

References
1 Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with A-Prolog. Theory

and Practice of Logic Programming, 3(4-5):425–461, 2003.
2 Chitta Baral and Michael Gelfond. Logic programming and knowledge representation.

Journal of Logic Programming, 19,20:73–148, 1994.
3 Michael Bartholomew and Joohyung Lee. Stable models of formulas with intensional func-

tions. In Proceedings of International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), 2012. To appear.

4 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic program-
ming. In Robert Kowalski and Kenneth Bowen, editors, Proceedings of International Logic
Programming Conference and Symposium, pages 1070–1080. MIT Press, 1988.

5 Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing, 9:365–385, 1991.

6 Michael Gelfond and Vladimir Lifschitz. Action languages2. Electronic Transactions on
Artificial Intelligence, 3:195–210, 1998.

7 Michael Gelfond and Vladimir Lifschitz. The common core of action languages B and C.
In these proceedings, 2012.

8 Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal explana-
tion: Preliminary report. In Proceedings of National Conference on Artificial Intelligence
(AAAI), pages 623–630. AAAI Press, 1998.

9 Vladimir Lifschitz and Hudson Turner. Representing transition systems by logic programs.
In Proceedings of International Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR), pages 92–106, 1999.

10 Norman McCain. Causality in Commonsense Reasoning about Actions3. PhD thesis, Uni-
versity of Texas at Austin, 1997.

11 Norman McCain and Hudson Turner. Causal theories of action and change. In Proceedings
of National Conference on Artificial Intelligence (AAAI), pages 460–465, 1997.

12 Ilkka Niemelä and Patrik Simons. Extending the Smodels system with cardinality and
weight constraints. In Jack Minker, editor, Logic-Based Artificial Intelligence, pages 491–
521. Kluwer, 2000.

13 Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
14 Murray Shanahan. Solving the Frame Problem: A Mathematical Investigation of the Com-

mon Sense Law of Inertia. MIT Press, 1997.
15 Phan Huy Tu, Tran Cao Son, Michael Gelfond, and Ricardo Morales. Approximation of

action theories and its application to conformant planning. Artificial Intelligence, 175:79–
119, 2011.

2 http://www.ep.liu.se/ea/cis/1998/016/
3 ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.gz

Possibilistic Nested Logic Programs
Juan Carlos Nieves and Helena Lindgren

Department of Computing Science
Umeå University
SE-901 87, Umeå, Sweden
jcnieves,helena@cs.umu.se

Abstract
We introduce the class of possibilistic nested logic programs. These possibilistic logic programs
allow us to use nested expressions in the bodies and the heads of their rules. By considering a
possibilistic nested logic program as a possibilistic theory, a construction of a possibilistic logic
programing semantics based on answer sets for nested logic programs and the proof theory of
possibilistic logic is defined. We show that this new semantics for possibilistic logic programs
is computable by means of transforming possibilistic nested logic programs into possibilistic dis-
junctive logic programs. The expressiveness of the possibilistic nested logic programs is illustrated
by scenarios from the medical domain. In particular, we exemplify how possibilistic nested logic
programs are expressive enough for capturing medical guidelines which are pervaded of vagueness
and qualitative information.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving

Keywords and phrases Answer Set Programming, Uncertain Information, Possibilistic
Reasoning

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.267

1 Introduction

In the literature, one can find different approaches for encoding qualitative information
[12, 18, 20]. A common strategy for capturing qualitative information is by using non-
numerical values. Possibilistic reasoning has shown to be a suitable approach for dealing with
qualitative reasoning [18]. In particular, this feature is based on the fact that the possibilistic
values of a possibilistic knowledge base can be non-numerical values which capture the
uncertainty of a knowledge base.

In the context of possibilistic logic programming, there are few proposals which deal
with non-numerical values which are not totally ordered [14]. However, the expressiveness of
the approach presented in [14] is restricted to disjunctive logic programs. Indeed most of
the logic programming approaches which deal with uncertain information make syntactic
restrictions to their specification languages. By not having syntactic restriction in a symbolic
specification, one can provide a transparent method to capture real data domains. For
instance, there are different ways to interpret a medical guideline for diagnosis (we will
illustrate this in the body of the paper). The presence of more than one disease in an individual
(comorbidity) is common in older people, and some guidelines have expressions supporting
both potential comorbidity and differential diagnosis. For example, the most frequently
used guideline for mental diseases uses a multiple axis system between certain guidelines
for expressing comorbidity [2]. Still, additional diagnostic criteria are needed to assess a
potential dementia disease, which use a different way to express the ambiguity built into
diagnosis of neurological and mental diseases. The uncertainty is reflected in the vocabulary

© Juan Carlos Nieves and Helena Lindgren;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 267–276

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.267
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

268 Possibilistic Nested Logic Programs

used in these guidelines (e.g., possible, probable, unlikely, supportive, etc.). The meaning of
such expressions represents different and sometimes overlapping ranges of possibilities, which,
consequently, cannot be totally ordered when are formalized. However, there are practical
reasons for reusing the vocabulary in the guidelines for expressing the knowledge in formal
reasoning. Firstly, to provide to a clinician explanations of the reasoning and to mirror the
uncertainty of an assessment in the available evidence-based medical knowledge, and secondly,
to allow an expert physician to validate a knowledge base which handles comorbidity. An
example of a possibilistic rule, which captures both uncertainty, ambiguity and a potential
multi-diagnosis, is the following: possible: DLB ∧AD ← visHall∧slow∧prog∧epiMem. (It
is possible that both Alzheimer’s disease and Lewy Body dementia are present based on the
observed symptoms). Another example illuminates how negation as failure can be utilized:
probable: VaD ← fn ∧ radVasc ∧ not (AD ∨DLB) (vascular dementia is probable present
considering the observations and since we do not have reasons to believe that Alzheimer’s
disease or Lewy Body dementia are present).

Against this background, we extended the results presented in [14] and [10] by introducing
the class of possibilistic nested logic programs. These possibilistic logic programs allow us to
use nested expressions in the bodies and the heads of their rules. Given that possibilistic logic
is axiomatizable in the necessity-value case [6], we define the semantics of the possibilistic
nested logic programs by considering the proof theory of possibilistic logic. In particular, by
considering a possibilistic nested logic program as a possibilistic theory, a construction of
a possibilistic logic programing semantics based on answer sets for nested logic programs
[10] and the proof theory of possibilistic logic [6] is defined. It is worth mentioning that the
answer set semantics inference can also be characterized as a logic inference in terms of the
proof theory of intuitionistic logic and intermediate logics [17, 16].

We also show that the new possibilistic semantics generalizes the previous possibilistic
semantics introduced in [13, 14]. In order to define a general method for computing the
possibilistic answer sets of a possibilistic nested program, the idea of equivalence between
possibilistic programs is explored.

The rest of the paper is divided as follows: In the following section, some basic concepts
of nested logic programs and possibilistic logic are introduced. After this, the syntaxis and
semantics of the possibilistic nested logic programs are introduced. In this section, some
properties of the possibilistic nested logic semantics are identified (by lack of space, the
formal proofs are omitted). In the last section, an outline of our conclusions and future work
is presented.

2 Background

In this section, we introduce some basic concepts of Nested Logic Programs [10] and Possibil-
istic Logic [6]. We assume that the reader is familiarized with basic concepts in classical logic
and logic programming semantics, e.g. interpretations, models, etc. A good introductory
treatment of these concepts can be found in [3].

2.1 Nested Logic Programs
The considered language consists of: (i) an enumerable set A of elements called atoms
(denoted by a, b, c, . . .), (ii) logic connectives ∧, ∨, ¬, not, ⊥, > in which {∧, ∨}, {not, ¬},
{>,⊥} are 2-place, 1-place and 0-place connectives respectively and (iii) auxiliary symbols
”(”, ”)”, ”.”. We refer to a literal as an atom a or an extended atom ¬a. We denote by L the
set of literals built using elements in A.

J. C. Nieves and H. Lindgren 269

Literals, ⊥ and > are considered elementary formulas, while {∨,∧, not} formulas (denoted
as A, B, C, . . .) are constructed from elementary formulas using the connectives {∨,∧, not}
arbitrarily nested (strong negation ¬ is allowed to appear only in front of atoms). As probably
noted, we are considering two types of negations in this paper: strong negation ¬ (as it called
by the Answer Set Programming community [3]) and negation as failure not.

Given a finite set of literals L, a nested rule is an expression of the form H ← B, where
H and B are either an elementary formula or a {∨,∧, not} formulas (known as the head and
the body respectively). Some particular cases are facts, of the form H ← > (written as H),
and constraints, ⊥ ← B (written as ← B). If no occurrences of not appear in a rule, then
the rule is called a definite nested rule.

A nested logic program P is a finite set of nested rules. If the program does not contain
not, then the program is called a definite nested program.

The semantics for nested programs was introduced in [10]. Like the classic answer set
semantics [7], the semantics for nested logic programs is defined in two steps: first for definite
nested logic programs and after for general nested logic programs (programs which contain
negation as failure).

I Definition 1. [10] Let M be a set of literals. M satisfies a definite nested formula A
(denoted by M |= A), recursively as follows:

for elementary A, M |= A if A ∈M or A = >
M |= A ∧B if M |= A and M |= B

M |= A ∨B if M |= A or M |= B

I Definition 2. [10] Let P be a definite nested logic program. A set of literals M is closed
under P if, ∀r ∈ P such that r = H ← B, M |= H whenever M |= B.

I Definition 3. [10] Let M be a set of literals and P a definite nested logic program. M is
called an answer set for P if M is minimal among the consistent sets of literals closed under
P .

In order to manage the negation as failure in nested logic programs, a syntactic reduction
for nested logic programs was defined.

I Definition 4. [10] The reduction of a nested formula with respect to a set of literals M is
recursively defined as follows:

for elementary A, AM = A

(A ∧B)M = AM ∧BM

(A ∨B)M = AM ∨BM

(not A)M =
{
⊥, if M |= AM

>, otherwise
(H ← B)M = HM ← BM

I Definition 5. [10] The reduct of a nested logic program PM with respect to a set of literals
M is defined as follows:

PM = {(H ← B)M | H ← B ∈ P}

Please observe that PM is a definite nested logic program. Hence, the following definition
follows from the answer set definition.

I Definition 6. [10] Let P be a nested logic program and M be a set of literals. M is an
answer set of P if it is an answer set of PM .

ICLP’12

270 Possibilistic Nested Logic Programs

Table 1 Examples of possibilistic rules captured by the syntax of possibilistic nested programs.

Syntax Rule Type
α : a ∧ not b← p ∧ not (¬q ∨ r). possibilistic nested rule
α : a ∨ b← c ∧ not ¬e. possibilistic disjunctive rule [14]
α : a← c ∧ not d. possibilistic normal rule [13]

3 Possibilistic Nested Logic Programs

In this section, the general syntax and semantics for possibilistic nested logic programs will
be presented. We will show that the semantics of the possibilistic nested logic programs
generalizes the logic programming semantics of both the nested logic programs and the
possibilistic disjunctive logic programs (the particular case of possibilistic normal logic
programs is also considered). In order to define a process for computing the possibilistic
answer sets of a possibilistic nested logic program some transformations between possibilistic
programs are formalized.

The syntax of the possibilistic nested logic programs is based on the standard syntax of
nested logic programs.

3.1 Syntax
We start by defining some concepts for managing the possibilistic values of a possibilistic
knowledge base. We want to point out that in the whole document only finite lattices are
considered.

A possibilistic atom is a pair p = (a, q) ∈ A×Q, in which A is a finite set of atoms and
(Q,≤) is a lattice. The projection ∗ to a possibilistic atom p is defined as follows: p∗ = a.
Also given a set of possibilistic atoms S, ∗ over S is defined as follows: S∗ = {p∗|p ∈ S}.

Let (Q,≤) be a lattice. A possibilistic nested rule r is of the form:

α : A← B

in which α ∈ Q and A ← B is a nested rule. The projection ∗ for a possibilistic nested
rule is r∗ = A ← B. On the other hand, the projection n for a possibilistic nested rule is
n(r) = α. This projection denotes the degree of necessity captured by the certainty level of
the information described by r. A possibilistic nested constraint c is of the form:

>Q : ← B

in which >Q is the top of the lattice (Q,≤) and ← B is a nested constraint as defined in the
background section. The projection ∗ for a possibilistic nested constraint c is: c∗ = ← B.

A possibilistic nested program P is a tuple of the form 〈(Q,≤), N〉, in which N is a finite
set of possibilistic nested rules and possibilistic nested constraints. The generalization of ∗
over P is as follows: P ∗ = {r∗|r ∈ N}. If N∗ is a set of nested definite rules, P is called a
possibilistic nested definite logic program. Different formula combinations lead to different
logic rules as shown in Table 1.

We illustrate a possibilistic nested program with an example from the dementia domain
(simplified due to space reasons). A summary of the clinical guidelines which are used in

J. C. Nieves and H. Lindgren 271

Figure 1 Graph representation of a lattice.

the dementia example given here can be found in [15] and includes [2]. We use the following
abbreviations:

AD = Alzheimer’s disease
DLB = Lewy body type of dementia
VaD = Vascular dementia

epiMem = Episodic memory dysfunction
fluctCog = Fluctuating cognition

fn = Focal neurological signs
prog = Progressive course

radVasc = Radiology exam shows vascular signs
slow = Slow, gradual onset

extraPyr = Extrapyramidal symptoms
visHall = Visual hallucinations

We extract the following labels describing different levels of uncertainty of assessments from
the clinical guidelines: Q := {confirmed, probable, possible, plausible, supported, open}. To de-
scribe their relationships, let < be a partial order such that the following set of relations holds:
{confirmed > probable, probable > possible, confirmed > plausible, plausible > supported,
possible > supported, supported > open}, see Figure 1. Given x, y ∈ Q, the relation x > y

means that y is less certain than x.

I Example 7. The following clauses are included in our possibilistic nested logic program:

1. probable: VaD ← fn ∧ radVasc ∧ not (AD ∨DLB)
2. probable: DLB ← extraPyr ∧ visHall ∧ not fn
3. probable: DLB ← fluctCog ∧ visHall ∧ not fn
4. probable: DLB ← fluctCog ∧ extraPyr ∧ not fn
5. probable: VaD ∧DLB ← fn ∧ radVasc ∧ extraPyr ∧ fluctCog

ICLP’12

272 Possibilistic Nested Logic Programs

6. possible: VaD ∧DLB ← fn ∧ fluctCog
7. possible: VaD ∧AD ← fn ∧ slow ∧ prog ∧ epiMem
8. possible: VaD ∧AD ← radVasc ∧ slow ∧ prog ∧ epiMem
9. possible: DLB ∧AD ← fluctCog ∧ slow ∧ prog ∧ epiMem
10. possible: DLB ∧AD ← extraPyr ∧ slow ∧ prog ∧ epiMem
11. possible: DLB ∧AD ← visHall ∧ slow ∧ prog ∧ epiMem
12. possible: DLB ← fluctCog
13. possible: DLB ← visHall
14. possible: DLB ← extraPyr
15. possible: VaD ← fn
16. possible: VaD ← radVasc
17. supported: VaD ← fluctCog
18. plausible: VaD ← fn
19. probable: AD ← slow ∧ prog ∧ epiMem ∧ not (VaD ∨DLB)

A problem in the dementia domain is that a large number of symptoms are overlapping
between diseases. In addition, it is common to have more than one disease causing dementia
in old age and in later stages of the disease progression (comorbidity). Typically, formal
representations do not support this kind of complexity of a differential diagnostic process.
The advantage of applying possibilistic nested rules is that it provides a transparent method
to capture the different ways to interpret a set of findings, including potential comorbidity.
Transparency is highly desirable in a knowledge modeling situation where medical domain
experts are responsible for the content. Our example exemplify this, showing that one of two
possible medical conditions may be present, or both.

3.2 Possibilistic Nested Logic Semantics
In order to define the semantics of the possibilistic nested logic programs, we introduce some
basic concepts with respect to sets of possibilistic atoms.

Given a finite set of atoms A, a lattice (Q,≤) and a the function Cardinality which returns
the cardinality of a set:

PS = {S|S ∈ 2A×Q and ∀x ∈ A,Cardinality({(x, α)|(x, α) ∈ S}) ≤ 1}

Observe that every S ∈ PS is a set of possibilistic atoms where every atom x ∈ A at most
occurs one time in S.

I Definition 8. [14] Let A be a finite set of atoms and (Q,≤) be a lattice. ∀A,B ∈ PS, we
define
A uB = {(x,GLB({α, β})|(x, α) ∈ A ∧ (x, β) ∈ B}.

A tB = {(x, α)|(x, α) ∈ A and x /∈ B∗} ∪
{(x, α)|x /∈ A∗ and (x, α) ∈ B} ∪
{(x,LUB({α, β})|(x, α) ∈ A and (x, β) ∈ B}.

A v B ⇐⇒ A∗ ⊆ B∗, and ∀x, α, β, (x, α) ∈ A ∧
(x, β) ∈ B then α ≤ β.

Before moving on, let us define the concept of i-greatest set w.r.t. PS as follows: Given
M ∈ PS, M is an i-greatest set in PS iff @M ′ ∈ PS such that M v M ′. For instance,
let PS = {{{(a, 2), (b, 1)}, {(a, 2), (b, 2)}}. One can see that PS has one i-greatest sets:
{(a, 2), (b, 2)}.

J. C. Nieves and H. Lindgren 273

Similar to the definition of answer set semantics for nested logic programs, the possibilistic
answer set semantics for possibilistic nested logic programs is defined in terms of a syntactic
reduction.
I Definition 9 (Reduction PM). Let P = 〈(Q,≤), N〉 be a possibilistic nested logic program,
M be a set of atoms. P reduced by M is the following possibilistic definite nested logic
program:

PM := {α : (A← B)M |α : A← B ∈ N and M is closed under (A← B)M}

Observe that the reduction (A← B)M is according to Definition 4 and PM is a possibilistic
definite nested logic programs.

Now by considering the inference of possibilistic logic (`P L) and the reduction PM , the
inference relation �P L is defined as follows:
I Definition 10. Let P = 〈(Q,≤), N〉 be a possibilistic nested logic program and M ∈ PS.

We write P �P L M when M∗ is an answer set of P ∗ and PM∗ `P L M .
Observe that the inference relation �P L is considering the standard definition of answer

sets for nested logic programs (Definition 6). In particular, �P L is identifying sets of
possibilistic atoms which satisfy P . However, not all these sets are optimal in the sense of
necessity-values of a possibilistic theory. Hence, in order to define the possibilistic answer
sets of a possibilistic nested logic programs we consider the idea of an i-greatest set.
I Definition 11. Let P = 〈(Q,≤), N〉 be a possibilistic nested logic program and M be a
set of possibilistic atoms. M is a possibilistic answer set of P iff M is an i-greatest set in PS
such that P �PL M . NSEM (P) denotes the set of possibilistic answer sets of P .

In order to illustrate the definition of answer sets for possibilistic nested logic programs,
let us consider a subset of possibilistic nested rules which were introduced in Example 7.
I Example 12. Let P = 〈(Q,≤), N〉 be a possibilistic nested logic program in which (Q,≤)
is the lattice introduced in Example 7 and N is the following set of possibilistic nested rules:

confirmed : fn ← >
confirmed : radVasc ← >
confirmed : extraPyr ← >
confirmed : fluctCog ← >
probable : VaD ∧DLB ← fn ∧ radVasc ∧

extraPyr ∧ fluctCog
possible : DLB ← extraPyr
probable : VaD ← fn ∧ radVasc ∧

not (AD ∨DLB)

In order to infer the answer sets of P , the first step is to find, the answer set of P ∗. It is not hard
to see that P ∗ has only one answer set which isM = { fn,radVasc,extraPyr,fluctCog,DLB,VaD }.
Now, one can see that PM is:

confirmed : fn ← >
confirmed : radVasc ← >
confirmed : extraPyr ← >
confirmed : fluctCog ← >
probable : VaD ∧DLB ← fn ∧ radVasc ∧

extraPyr ∧ fluctCog
possible : DLB ← extraPyr

ICLP’12

274 Possibilistic Nested Logic Programs

Observe that the possibilistic nested rule r = probable : VaD ← fn ∧ radVasc ∧ not (AD ∨
DLB) was removed because (r∗)M is not closed under M . Now let us consider M1 =
{(fn, confirmed), (radVasc, confirmed), (extraPyr , confirmed), (fluctCog, confirmed),
(DLB, probable), (VaD, probable)} and M2 = {(fn, confirmed), (radVasc, confirmed),
(extraPyr , confirmed), (fluctCog, confirmed), (DLB, possible), (VaD, probable)}.

One can see that PM `PL M1 and PM `PL M2. Since M = M∗1 = M∗2 , hence both M∗1
and M∗2 are answer sets of P ∗. Therefore PM �PL M1 and PM �PL M2. This means that
both M1 and M2 are two potential sets to be answer sets of P . Observe that M2 v M1,
therefore M2 is not an i-greatest set. One can see that M1 is an i-greatest set, therefore M1
is the unique possibilistic answer set of P .

An obvious property of the logic programming semantics of the possibilistic nested logic
programs is that it generalizes the logic programming semantics of nested logic programs
I Proposition 1. Let P = 〈(Q,≤), N〉 be a possibilistic nested logic program. If M is a
possibilistic answer set of P then M∗ is an answer set of P ∗.

In the family of possibilistic logic programs, the approach presented in this paper general-
izes the approaches presented in [13] and [14].

Let us formalize the relationship between the nested possibilistic semantics and the
possibilistic stable semantics. The last one was introduced by [13].
I Proposition 2. Let P = 〈(Q,≤), N〉 be a possibilistic nested logic program such that for all
r ∈ N , r = α : A0 ← A1 ∧ · · · ∧Aj ∧ not Aj+1 ∧ · · · ∧ not An, LN∗ has no extended atoms
and (Q,≤) is a total ordered set. If M is a consistent possibilistic answer set of P then M is
a possibilistic stable model according to the definition from [13].

Now, let us show that the possibilistic semantics for possibilistic nested logic programs
generalizes the semantics of possibilistic disjunctive logic programs.
I Proposition 3. Let P = 〈(Q,≤), N〉 be a possibilistic nested logic program such that for
all r ∈ N , r = α : A0 ∨ · · · ∨ Am ← Am+1 ∧ . . . Aj ∧ not Aj+1 ∧ · · · ∧ not An in which
Ai(0 ≤ i ≤ n) are literals. If M is a consistent possibilistic answer set of P then M is a
possibilistic answer set according to the definition from [14].

It is known that the answer set semantics for nested logic programs is computable [10].
Indeed, one can find solvers of nested logic programs [19]. On the other hand, the possibilistic
inference of possibilistic logic is complete and sound by a possibilistic extended version of the
classical resolution rule [6]. Hence, it is not difficult to define an algorithm for computing
the possibilistic answer sets of a possibilistic nested logic program.

A common strategy for computing the answer set of a nested logic program is to translate
the nested logic programs into disjunctive ones. Hence, the answer sets of the nested logic
programs are characterized by the answer sets of disjunctive logic programming systems.
This strategy can be also applied for computing the answer sets of possibilistic nested logic
programs via possibilistic disjunctive logic programs.

By lack of space, we omit the details of the transformation of any possibilistic nested
logic program into a possibilistic logic program. The details of this transformation will be
presented in the long version of this paper. In the following theorem, it is assumed that there
is a transformation of any possibilistic nested logic program into a possibilistic disjunctive
logic program.

I Theorem 13. Let P = 〈(Q,≤), N〉 be a possibilistic nested logic program and P ′ a
possibilistic disjunctive logic program obtained by transforming P . If M ′ is an answer set of
P ′ then M = {(a, α)|(a, α) ∈M ′ and a ∈M ′∗ ∩ LP ∗} is answer set of P .

J. C. Nieves and H. Lindgren 275

4 Conclusions and Future Work

In the logic programming literature, one can find different approaches for expressing uncertain
information [8, 13, 4, 1, 21, 14, 5]; however, most of them define syntactic restriction to
their specification languages. Against this background, we introduce the class of possibilistic
nested logic programs. The syntax and semantics of these programs generalize previous
works in the paradigm of Answer Set Programming plus Possibilistic Logic (Proposition 2,
Proposition 3). Moreover, our approach generalizes the frame of nested logic programs
(Proposition 1). We show that the semantics of the possibilistic nested programs can be
computed by transforming possibilistic nested logic programs into possibilistic disjunctive
logic programs (Theorem 13).

In the long version of this paper, we will present a process for transforming a possibilistic
nested logic program into a possibilistic disjunctive logic program. In this process, we will
identify the class of possibilistic generalized disjunctive logic programs which is a subclass
(syntactically speaking) of the possibilistic nested logic programs. Let us observe that the
class of possibilistic generalized disjunctive logic programs is a class of possibilistic programs
which is interesting by itself due to this class of logic programs is the possibilistic extension
of the generalized disjunctive logic programs explored in [9].

To the best of our knowledge, the approach presented in this paper is the first work
to attend to manage uncertain information with no-syntactic restrictions in its rules. It is
worth mentioning that the possibilistic nested logic programs combine both non-monotonic
reasoning and reasoning under uncertainty in a single framework.

Since the uncertain information in possibilistic nested logic programs can be captured
by partially ordered sets, the possibilistic nested programs define a suitable approach for
capturing qualitative information. In particular, we have illustrated that possibilistic nested
logic programs are expressive enough for capturing ambiguous and uncertain knowledge
content in medical guidelines. The approach has the potential to provide medical experts,
who are usually not experts in knowledge representation, with a formal framework that is
transparent and intuitive for knowledge modeling.

In our future, we will explore practical algorithms for implementing a solver for possibilistic
nested logic programs. It is worth mentioning that there already exist solvers of nested logic
programs [19]; hence, a solver for nested logic programs can be taken as a starting point for
a solver for possibilistic nested logic programs. The approach described in this paper will
be evaluated in practical knowledge modeling and diagnostic situations involving medical
professionals as part of the ACKTUS project [11].

5 Acknowledgements

This research has been supported by VINNOVA (The Swedish Governmental Agency for
Innovation Systems) and the Swedish Brain Power.

References

1 Teresa Alsinet, Carlos Iván Chesñevar, Lluis Godo, and Guillermo Ricardo Simari. A
logic programming framework for possibilistic argumentation: Formalization and logical
properties. Fuzzy Sets and Systems, 159(10):1208–1228, 2008.

2 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders
DSM-IV-TR Fourth Edition (Text Revision). Amer Psychiatric Pub, 4th edition, 2000.

ICLP’12

276 Possibilistic Nested Logic Programs

3 Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge, 2003.

4 Chitta Baral, Michael Gelfond, and J. Nelson Rushton. Probabilistic reasoning with answer
sets. TPLP, 9(1):57–144, 2009.

5 Kim Bauters, Steven Schockaert, Martine De Cock, and Dirk Vermeir. Weak and strong
disjunction in possibilistic asp. In SUM, volume 6929 of Lecture Notes in Computer Science,
pages 475–488. Springer, 2011.

6 Didier Dubois, Jérôme Lang, and Henri Prade. Possibilistic logic. In Dov Gabbay, Chris-
topher J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence
and Logic Programming, Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning,
pages 439–513. Oxford University Press, Oxford, 1994.

7 Michael Gelfond and Vladimir Lifschitz. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing, 9:365–385, 1991.

8 Michael Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming
and its applications. J. Log. Program., 12(3&4):335–367, 1992.

9 V. Lifschitz. Principles of Knowledge Representation, chapter Foundations of Logic Pro-
gramming, pages 69–128. CSLI Publications, 1996.

10 Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic
programs. Annals of Mathematics and Artificial Intelligence, 25(3-4):369–389, 1999.

11 Helena Lindgren and Peter Winnberg. Evaluation of a semantic web application for collab-
orative knowledge building in the dementia domain. In eHealth, pages 62–69, 2010.

12 Peter Lucas. Symbolic diagnosis and its formalisation. The Knowledge Engineering Review,
12:109–146, 1997.

13 Pascal Nicolas, Laurent Garcia, Igor Stéphan, and Claire Lefèvre. Possibilistic Uncertainty
Handling for Answer Set Programming. Annals of Mathematics and Artificial Intelligence,
47(1-2):139–181, 2006.

14 Juan Carlos Nieves, Mauricio Osorio, and Ulises Cortés. Semantics for Possibilsitic
Disjuntive Programs. Theory and Practice of Logic Programming, Available on doi:
10.1017/S1471068411000408, 2011.

15 J O’Brien, D Ames, and A Burns, editors. Dementia. Arnold, 2000.
16 Mauricio Osorio, Juan Antonio Navarro Pérez, and José Arrazola. Applications of intu-

itionistic logic in answer set programming. TPLP, 4(3):325–354, 2004.
17 David Pearce. Stable inference as intuitionistic validity. J. Log. Program., 38(1):79–91,

1999.
18 Henri Prade. Advances in data management. In Current Research Trends in Possibil-

istic Logic: Multiple Agent Reasoning, Preference Representation, and Uncertain Databases.
Springer Berlin / Heidelberg, 2009.

19 Vladimir Sarsakov, Torsten Schaub, Hans Tompits, and Stefan Woltran. nlp: A compiler
for nested logic programming. In LPNMR, Lecture Notes in Computer Science, pages
361–364. Springer, 2004.

20 David Silverman. Interpreting Qualitative Data. SAGE Publications, 2006.
21 Davy Van-Nieuwenborgh, Martine De Cock, and Dirk Vermeir. An introduction to fuzzy

answer set programming. Ann. Math. Artif. Intell., 50(3-4):363–388, 2007.

A Tarskian Informal Semantics for Answer Set
Programming∗

Marc Denecker1, Yuliya Lierler2, Miroslaw Truszczynski2, and
Joost Vennekens3

1 Department of Computer Science, K.U. Leuven
3001 Heverlee, Belgium
marc.denecker@cs.kuleuven.be

2 Department of Computer Science, University of Kentucky
Lexington, KY 40506-0633, USA
yuliya|mirek@cs.uky.edu

3 Campus De Nayer | Lessius Mechelen | K.U. Leuven
2860 Sint-Katelijne-Waver, Belgium
joost.vennekens@cs.kuleuven.be

Abstract
In their seminal papers on stable model semantics, Gelfond and Lifschitz introduced ASP by
casting programs as epistemic theories, in which rules represent statements about the knowledge
of a rational agent. To the best of our knowledge, theirs is still the only published systematic
account of the intuitive meaning of rules and programs under the stable semantics. In current
ASP practice, however, we find numerous applications in which rational agents no longer seem
to play any role. Therefore, we propose here an alternative explanation of the intuitive meaning
of ASP programs, in which they are not viewed as statements about an agent’s beliefs, but as
objective statements about the world. We argue that this view is more natural for a large part
of current ASP practice, in particular the so-called Generate-Define-Test programs.

1998 ACM Subject Classification D.1.6 Logic Programming, I.2.4 Knowledge Representation
Formalisms and Methods

Keywords and phrases Answer set programming, informal semantics, generate-define-test

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.277

1 Introduction

The key postulate of declarative programing is that programs reflect the way information
about a domain of discourse is described in natural language. The syntax must align with
linguistic patterns we use and the formal semantics must capture the way we understand
them. To put it differently, a declarative programming formalism (logic) must have an
informal semantics, an intuitive and precise link between the formal syntax and semantics
of the logic, and informal intended meanings of natural language expressions describing
the “real world”. This informal semantics explains what programs mean or, in other words,
provides programs with an informal but precise natural language reading.

Having an informal semantics is important to a declarative programming formalism. It
facilitates effective coding by offering intuitions to guide the programmer, and provides a

∗ The first and the fourth author are supported by Research Foundation-Flanders (FWO-Vlaanderen)
and by GOA 2003/08 “Inductive Knowledge Bases”. The second author was supported by a CRA/NSF
2010 Computing Innovation Fellowship. The third author was supported by the NSF grant IIS-0913459.

© Marc Denecker, Yuliya Lierler, Miroslaw Truszczynski, and Joost Vennekens;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 277–289

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.277
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

278 A Tarskian Informal Semantics for ASP

basis for the programming methodology. It promotes understanding of code and helps in
teaching how to program. It suggests extensions of the logic to facilitate expressing new
types of knowledge, and it helps explain the relationship to other logics. The postulate is
essential anywhere the emphasis on declarativeness is paramount, in particular, in addition
to declarative programming, also in knowledge representation and database query languages
and, more generally, in all contexts where we need to think how information about a domain
of discourse has been or is to be encoded in a logic.

First-order (FO) logic has a clear informal semantics aligned with the classical Tarskian
formal semantics of the logic. Indeed, the constructors of the FO language directly correspond
to natural language connectives and expressions “for all” and “there is”. The formal Tarskian
semantics of these syntactic constructors is given by interpretations (structures), which are
abstract mathematical representations of informally understood “possible objective state of
affairs,” and it literally reflects the informal understanding of the natural language connectives
and quantifying expressions. It is that informal semantics that makes FO sentences legible
and their intended meaning clear, and is largely responsible for the widespread use of FO
logic in declarative programming, knowledge representation and database query languages.

Our main goal in this work is to analyze the role of informal semantics in the development
of answer set programming (ASP) and its effective use. The key step is to clarify what
informal semantics we have in mind. According to the intuitions Gelfond and Lifschitz
exploited when introducing the stable-model (answer-set) semantics [10, 11], a program is a
formal representation of a set of epistemic propositions believed by a rational introspective
agent, and stable models of the program represent that agent’s belief sets. This epistemic
informal semantics linked ASP to autoepistemic logic by Moore [16] and default logic by
Reiter [20], and supported applications in nonmonotonic reasoning. However, the epistemic
perspective does not seem to be relevant to the way ASP is predominantly used now, as
a formalism for modeling search problems [14, 17]. We argue that for such use of ASP a
Tarskian informal semantics, not unlike the one for the FO logic, fits the bill better.

Interestingly, while the Tarskian informal semantics of ASP seems to have been implicitly
followed by a vast majority of ASP users, it has never been explicitly identified or analyzed.
We do so in this paper. We describe that informal semantics and show how it explains the
way ASP developed and how it is intimately related to the currently dominating form of ASP,
the generate-define-test (GDT) ASP [12]. We point out how the Tarskian informal semantics
connects GDT ASP with the logic FO(ID). We argue that taking the Tarskian informal
semantics seriously strongly suggests that the language of GDT ASP can be streamlined
while in the same time generalizing the current one.

We present the Tarskian informal semantics for ASP in the context of a more general
formalism, which we introduce first. We call it first-order answer set programming of ASP-
FO for short. ASP-FO can be viewed as a modular first-order generalization of GDT ASP
with unrestricted interpretations as models, with open and closed domains, non-Herbrand
functions, and FO constraints and rule bodies. It is closely connected to the logic FO(ID)
[3, 6] and has formal connections to the equilibrium logic [18]. ASP-FO generalizes GDT
ASP and so the informal semantics we develop for ASP-FO applies to GDT ASP, too.

2 Generate-Define-Test methodology

GDT is an effective methodology to encode search problems in ASP. In GDT, a programmer
conceives the problem as consisting of three parts: generate, define and test [12]. The
role of generate is to generate the search space. Nowadays this is often encoded by a set of

M. Denecker, Y. Lierler, M. Truszczynski, and J. Vennekens 279

choice rules:

{A} ← B1, . . . , Bn, not C1, . . . , not Cm, (1)

where A, Bi and Ci are atoms. Such a rule states that atom A can be arbitrarily true or
false, if the condition expressed by the rule’s body holds. This condition may refer to other
generated predicates, or to defined predicates. The define part is a set of definitions of
some auxiliary predicates. Each definition is encoded by a group of rules

A← B1, . . . , Bn, not C1, . . . , not Cm, (2)

where A,Bi, Cj are atoms and A is the auxiliary predicate that is being defined. These
rules describe how to derive the auxiliary predicates from the generated predicates or from
other defined predicates, typically in a deterministic way. Finally, the test part eliminates
generated answer sets that do not satisfy desired constraints. They are represented by
constraint rules:

← B1, . . . , Bn, not C1, . . . , not Cm, (3)

A set of these three types of rules will be called a GDT program.
For instance, the GDT-program (4) below encodes the Hamiltonian cycle problem. The

example illustrates that an ASP program conceived in the GDT way typically shows a rich
internal structure.

generate {In(x, y)} ← Edge(x, y).
define Node(V). . . . Node(W).

Edge(V, V ′). . . . Edge(W, W ′).
T (x, y)← In(x, y).
T (x, y)← T (x, z), T (z, y).

test ← In(x, y), In(x, z), y 6= z.

← In(x, z), In(y, z), x 6= y.

← Node(x), Node(y), not T (x, y).

(4)

Each of the three parts may again consist of independent components. For instance, test
in the example above consists of three independent constraints; define contains separate
definitions for three predicates Node, Edge and T . This internal structure exists in the mind
of programmers, but is not explicit in ASP programs and often becomes apparent only when
we investigate the dependencies between predicates. This motivates us to define a logic which
does make the internal structure of a GDT-program explicit.

3 Concepts of Tarskian model semantics

A vocabulary Σ is a set of predicate and function symbols, each with a non-negative integer
arity. Terms, formulas and sentences are defined as in FO.

An interpretation (or structure) A of a vocabulary Σ is given by a non-empty set dom(A),
the domain of A, and, for each symbol τ of Σ, a value τA, the interpretation of τ . If τ is an
n-ary function symbol, τA is an n-ary total function over dom(A). If τ is an n-ary predicate
symbol, τA is an n-ary relation over dom(A). If A is an interpretation of a vocabulary Σ, we
call Σ the vocabulary of A and write it as ΣA. An interpretation of the empty vocabulary
consists only of its domain.

ICLP’12

280 A Tarskian Informal Semantics for ASP

If Σ′ ⊆ ΣA, we define the projection of A on Σ′, written A|Σ′ , to be the interpretation of
Σ′ with the same domain and the same interpretation of each symbol τ ∈ Σ′ as A. We then
also say that A is an extension of its projection A|Σ′ .

Let A and A′ be interpretations of the same vocabulary Σ, having the same domain, and
assigning the same values to every function symbol in Σ. We say that A is a subinterpretation
of A′, written A ⊆ A′, if, for every predicate symbol P of Σ, the relation PA interpreting
this predicate symbol in A is a subset of the corresponding relation PA′ .

A variable assignment θ for an interpretation A assigns to each variable v an element θ(v)
in dom(A). When x is a variable and d an element of dom(A), we write θ[x : d] for a variable
assignment that assigns d to x but is otherwise the same as θ. The interpretation tA,θ of
a term in an interpretation A under variable assignment θ is defined through the standard
induction. As usual, we assume that ∧,∀,⇒ are defined in terms of ¬,∨ and ∃.

I Definition 1 (Satisfiability relation A, θ |= ϕ). Let ϕ be an FOL formula and A a structure
over a vocabulary containing all function and relation symbols in ϕ. We define A, θ |= ϕ by
induction on the structure of ϕ:
– A, θ |= P (t̄) if t̄ A,θ ∈ PA;
– A, θ |= ψ ∨ φ if A, θ |= ψ or A, θ |= φ;
– A, θ |= ¬ψ if A, θ 6|= ψ;
– A, θ |= ∃x ψ if for some d ∈ dom(I), A, θ[x : d] |= ψ.
When ϕ is a sentence (no free variables), then θ is irrelevant and we write A |= ϕ.

In a Tarskian model semantics, a structure represents a potential state of affairs. For
a sentence ϕ and a structure A, A |= ϕ formalizes that ϕ is true in the state of affairs as
given by A. If all we know about the state of affairs is that ϕ is true in it, then a structure
A is a possible state of the world, or a possible world, if and only if A |= ϕ.

4 The logic ASP-FO

We introduce a modular form of ASP to represent the different kind of modules in GDT
programs. We define a G-module, D-module and T-module.

I Definition 2. A choice rule is an expression of the form: ∀x̄ ({P (t̄)} ← ϕ), where ϕ is
an FO formula, P (t̄) is an atom and x̄ includes all free variables appearing in the rule. A
G-module is a set of choice rules with the same predicate in their head.

I Definition 3. A D-module D is a pair 〈Ext,Π〉 where Ext is a set of predicates, called
defined or output predicates, and Π is a set of rules of the form

∀x̄ (P (t̄)← ϕ), (5)

where P (t̄) is an atom with P ∈ Ext, and ϕ is an FO formula with all its free variables
amongst x̄.

For a D-module D, we denote the set of its defined predicate symbols by Ext(D). We
write Par(D) for the set of all other symbols in Π. We call Par(D) the set of parameter or
input symbols. For a set of rules Π, we denote by heads(Π), the set of all predicate symbols
appearing in the head of a rule r ∈ Π. In the following we identify a D-module 〈heads(Π),Π〉
with Π.

I Definition 4. A T-module is an FO sentence.

M. Denecker, Y. Lierler, M. Truszczynski, and J. Vennekens 281

I Definition 5. An ASP-FO-theory is a set of G-modules, D-modules and T-modules.

There is an obvious syntactical match between these language constructs and those used
in ASP to express generate, define and test modules. For instance, an ASP constraint (3)
corresponds to the T-module– FO sentence: ∀x̄(¬(B1 ∧ · · · ∧Bn ∧¬C1 ∧ · · · ∧ ¬Cm)), where
x̄ is the set of variables occurring in (3), and we identify normal rules (2) with the universal
closure of A← B1 ∧ · · · ∧Bn ∧ ¬C1 ∧ · · · ∧ ¬Cm.

Note that an ASP-FO theory preserves the internal structure of the generate, define
and test parts. For instance, we may write the Hamiltonian cycle theory as:

generate {∀x∀y({In(x, y)} ← Edge(x, y))}
define {V ertex(V)← t, . . . , V ertex(W)← t}

{Edge(V, V ′)← t, . . . , Edge(W, W ′)← t}{
∀x∀y(T (x, y)← In(x, y))
∀x∀y(T (x, y)← In(x, z) ∧ In(z, y))

}
test ∀x∀y∀z¬(In(x, y) ∧ In(x, z) ∧ y 6= z)

∀x∀y∀z¬(In(x, z) ∧ In(y, z) ∧ x 6= y)
∀x∀y(V ertex(x) ∧ V ertex(y)⇒ T (x, y))

(6)

In defining the formal semantics of ASP-FO, we aim to ensure that three conditions are
satisfied. First, the structures are to be viewed as possible worlds, i.e., they should represent
possible states of affairs, not states of belief. We do not restrict to Herbrand interpretations.
Second, to respect the modular structure of an ASP-FO theory, its semantics should be
modular, that is, defined in terms of the semantics of its modules. We therefore simply define
that a structure A is a model of a ASP-FO theory T iff it is a model of each of its modules.
In other words, an ASP-FO theory can be understood as a monotone conjunction of its
modules. Third, as ASP-FO is to reflect the GDT methodology, ASP-FO theories resulting
from GDT programs must have the same meaning.

The definition of satisfaction of a T-module, i.e., an FO sentence, is standard (Definition 1).
It follows that ASP-FO is a conservative extension of FO.

The semantics for a D-module is a generalization of the stable semantics to arbitrary
structures and to FO rule bodies. For reasons explained in the next section, we use the
semantics that was introduced by Pelov et al. [19] and, in the way we follow here, by
Vennekens et al. [22]. It uses a pair of interpretations to simulate the construction of the
Gelfond-Lifschitz reduct.

I Definition 6 (Satisfaction by pairs of interpretations). Let ϕ be an FO formula, A and B

interpretations of all symbols in ϕ having the same domain and assigning the same values to
all function symbols, and let θ be a variable assignment. We define the relation (A,B), θ |= ϕ

by induction on the structure of ϕ:
– (A,B), θ |= P (t̄) if A, θ |= P (t̄),
– (A,B), θ |= ¬ϕ if (B,A), θ 6|= ϕ,
– (A,B), θ |= ϕ ∨ ψ if (A,B), θ |= ϕ or (A,B), θ |= ψ

– (A,B), θ |= ∃xψ if for some d ∈ dom(I), (A,B), θ[x : d] |= ψ.
This truth assignment interprets positive occurrences of atoms in A, and negative occurrences
in B. Indeed, (positive) atoms are interpreted in A, but every occurrence of ¬ switches the
role of A and B.

For two structures A and B that have the same domain and interpret disjoint vocabularies,
A ◦B denotes the structure that interprets the union of the vocabularies of A and B, has
the same domain as A and B, and coincides with A and B on their respective vocabularies.

ICLP’12

282 A Tarskian Informal Semantics for ASP

I Definition 7 (Parameterized stable-model semantics). For a D-module D, an interpretation
M of Ext(D) is a stable model of D relative to an interpretation Ap of Par(D) ifM is the
least1 of all interpretations A of Ext(D) that have the same domain as Ap, interpret function
symbols in the same way as Ap and for each rule ∀x̄ (P (t̄) ← ϕ) of D and each variable
assignment θ, if (Ap ◦ A,Ap ◦M), θ |= ϕ then A, θ |= P (t̄).

This parameterized stable-model semantics generalizes the original one in three ways:
it is parameterized, i.e., it builds stable models on top of a given interpretation of the
parameter symbols; it handles FO bodies; and it works for arbitrary (not only Herbrand)
interpretations.

I Definition 8. A structure A is a model of a D-module D (notation A |= D) if A|Ext(D) is
a stable model of D relative to A|Par(D).

We now turn our attention to G-modules. We note that the point of a choice rule is to
“open up” certain atoms P (d̄) – to allow them to be true without forcing them to be true.

I Definition 9. A structureM is a model of a G-module G if for each variable assignment
θ such thatM, θ |= P (x̄) there is a choice rule ∀ȳ ({P (t̄)} ← ϕ) in G such that t̄M,θ = x̄θ

andM, θ |= ϕ.

A G-module can be translated to an equivalent singleton G-module, using a process similar
to predicate completion. First, we note that any choice rule ∀x̄ ({P (t̄)} ← ϕ) can be rewritten
as ∀ȳ ({P (ȳ)} ← ∃x̄(ȳ = t̄ ∧ ϕ)). Next, any finite set of choice rules ∀x̄ ({P (x̄)} ← ϕi) can
be combined into a single choice rule ∀x̄ ({P (ȳ)} ← ϕ1 ∨ · · · ∨ ϕn)). It is straightforward to
show that these transformations are equivalence-preserving. Together with this result, the
following theorem implies that each (finite) G-module is equivalent to an FO sentence. Thus,
G-modules are redundant in ASP-FO, since they can be simulated by T-modules.

I Theorem 10. An interpretationM satisfies a singleton G-module {∀x̄ ({P (x̄)} ← ϕ)} if
and only ifM satisfies ∀x̄ (P (x̄)⇒ ϕ).

For instance, the singleton G-module of the generate part of (4) corresponds to the
following FO sentence: ∀x∀y(In(x, y)⇒ Edge(x, y)).

ASP-FO is an open domain logic with uninterpreted function symbols. Logic programming
and ASP often restrict the semantics to Herbrand interpretations only.

I Definition 11. The Herbrand module over a set σ of function symbols is the expression
H(σ). We say thatM |= H(σ) if dom(M) is the set of variable-free terms that can be built
from σ and for each such term t, tM = t.

Herbrand modules are useful in applications with complete knowledge of the domain.
By adding H(σ) for the set σ of all function symbols of Σ to an ASP-FO theory, we limit
its semantics to Herbrand models of σ. By adding H(σ) for a strict subset σ of function
symbols, the remaining function symbols behave as uninterpreted symbols and take arbitrary
interpretation in the Herbrand universe consisting of the terms of σ. Herbrand modules can
be expressed by means of D- and T-modules (as in the logic FO(ID) [3]). Thus, they are
redundant.
Relationship with FO and ASP. ASP-FO is not only a conservative extension of FO but
also of the basic ASP language of normal programs. Note that a set of normal rules can be
seen as a D-module defining all predicates.

1 The term “least” is understood with respect to the notion of subinterpretation defined earlier. One can
show that such a least interpretation always exists.

M. Denecker, Y. Lierler, M. Truszczynski, and J. Vennekens 283

I Theorem 12. For a normal program Π over vocabulary Σ, a structure A is a stable model
of Π if and only if A is a model of the ASP-FO theory {(ΣP ,Π),H(ΣF)}, where ΣP ,ΣF is
the set of all predicate and function symbols of Σ, respectively.

This theorem allows us to represent an entire normal logic program as a single D-module
(and an auxiliary Herbrand module). However, as stated before, what we would like to show
is the equivalence of GDT-programs in ASP and the corresponding ASP-FO theories.

Let us now consider a GDT-program Π consisting of a set of choice rules of form (1),
normal rules of form (2) and constraints of form (3). We define the (positive) predicate
dependency graph of Π as the directed graph with all predicate symbols of Π as its vertices
and with an edge from P to Q whenever P appears in the head of a rule and Q occurs
positively in the body of that rule (i.e., in the scope of an even number of negations).

Without loss of generality we assume that each predicate of Π appears in the head of at
least one of its rules. By heads(Π) we denote the set of all predicate symbols appearing in
the heads of the rules of the form (1) or (2) in Π. A partition Π0, . . . ,Πn of Π is a splitting2
of Π if:
– for each i, Πi is either a singleton containing a constraint, the set of all choice rules for

some predicate P , or a normal logic program;
– heads(Πi) ∩ heads(Πj) = ∅ for i 6= j;
– for any strongly connected component S of the predicate dependency graph of Π, S ⊆

heads(Πi) for some i;
– for any predicate symbol P occurring in the head of some choice rule in Π there is no

edge from P to P in the predicate dependency graph of Π.

We can identify each Πi in a splitting with an ASP-FO module in the obvious way: a
Πi that consists of a constraint corresponds to a T-module, a Πi consisting of choice rules
corresponds to a G-module, and a Πi consisting of normal rules corresponds to a D-module.

I Theorem 13. For a GDT-program Π, if Π0, . . . ,Πn is a splitting of Π, then an interpret-
ationM is answer set of Π if and only ifM is a model of {M0, . . . ,Mn,H(Σ)}, where each
Mi is the ASP-FO module corresponding to Πi.

For instance, the horizontal lines within generate, define, and test parts of the
Hamiltonian cycle program (4) identify a partition that satisfies the conditions of a splitting.
Theorem 13 states that the answer sets of (4) coincide with models of the ASP-FO theory (6).

The practice of ASP demonstrates that the vast majority of GDT programs admit a
splitting. Theorem 13 shows that ASP-FO (i) extends this fragment of ASP in a direct way,
and (ii) interprets those ASP programs as the monotone conjunction of their components.

Theorem 13 fails to take into account three common extensions of the ASP language:
aggregates (or weight expressions), disjunction in the head, and strong negation. Each of
these limitations can be lifted (we do not discuss the details due to space restrictions).
Relation to FO(ID). A theory in FO(ID) is a set of FO sentences and inductive definitions.3
These definitions are syntactically identical to D-modules of ASP-FO, but are interpreted
under a two-valued parameterized variant of the well-founded semantics, rather than the
parameterized stable-model semantics used in ASP-FO.

I Definition 14. A Σ-interpretation A is a model of an FO(ID) definition ∆ (notation
A |= ∆) if A|Ext(D) is the well-founded model of ∆ relative to A|Par(D), as defined in [7].

2 The conditions on splitting follow the requirements stated in the Symmetric Splitting Theorem in [9].
3 Some versions of FO(ID) allow also boolean combinations of FO formulas and definitions [6].

ICLP’12

284 A Tarskian Informal Semantics for ASP

Denecker and Ternovska [6] introduced the notion of a total definition. An FO(ID)
definition is total if it has only two-valued well-founded models and hence expresses a total,
deterministic function from Par(D)-interpretations to Ext(D)-interpretations. Syntactic
conditions such as no negative occurrences of defined symbols in the bodies of rules (defining
the class of positive definitions), predicate stratification and local stratification all guarantee
that a definition is total. Thus, many definitions occurring in practice are total. For total
definitions (D-modules), the well-founded and stable models coincide [19]. Consequently, the
logics ASP-FO and FO(ID) restricted to total definitions (D-modules) coincide, too.

Looking back at the ASP-FO theory for the Hamiltonian circuit program, we see that all
three of its D-modules are positive. Hence, it is equivalent to the FO(ID) theory of the same
syntactic form.
Relation to the equilibrium logic first-order ASP. There is a formal connection
between ASP-FO D-modules and extensions of ASP to the first-order setting based on
equilibrium logic [18] and the operator SM [8]. We consider the latter two under the
restriction to formulas representing rules of the form (5). In this case, the semantics coincide
if the bodies of rules (5) have no nested occurrences of negation [21]. However, the two
generalizations of ASP differ if nested occurrences are allowed. For instance, the D-module
{P ← ¬¬P} has only ∅ as a model, while in these generalizations also {P} is a model. More
importantly though, they differ at the conceptual level. The logic ASP-FO directly extends
FO. The equilibrium logic version of first-order ASP is based on the quantified logic HT that
differs substantially from FO and, arguably, lacks its direct connection to everyday linguistic
patterns.

5 Informal semantics of ASP-FO and the Generate-Define-Test
methodology

A formal semantics is just a mathematical definition and therefore, by itself, it does not
yet explain how expressions in a logic relate to the real world. For this, also an informal
semantics is needed, i.e., an intuitive interpretation for the logic’s syntactic and semantic
objects. In this paper, we interpret an answer set as a Tarskian representation of a possible
state of the world. The aim of this section is to investigate in detail how the connectives of
ASP should be understood in this new perspective.

It is a common adage in knowledge representation that humans are only able to compre-
hend a large theory if its meaning is composed from the meanings of its components through
a simple and natural semantic composition operator. The most basic composition operator
is simple conjunction. It is the use of this operator that causes FO to be monotonic. The
meaning of an ASP-FO theory is constructed from the meaning of its individual modules by
precisely the same form of conjunction. This is in perfect agreement with our intuition of
modules as imposing constraints on possible worlds, independently from each other. Whatever
analysis remains to be done has then to be concerned with individual modules.
Informal semantics of T-modules/FO sentences. FO sentences express propositions
about an objective world, not about beliefs, intentions, or other propositional attitudes. In
Tarskian model semantics, a structure A serves as a mathematical abstraction of an objective
world. The recursive rules of the definition of truth of a sentence in A (Definition 1) specify
the formal semantics of FO simply by translating each formal connective into an informal
one: ∧ into the natural language “and”, ∨ into “or”, etc. Iterated application of these rules
translates an FO sentence into a natural language sentence that accurately captures its
meaning.

M. Denecker, Y. Lierler, M. Truszczynski, and J. Vennekens 285

The existence of this informal semantics does not mean that each FO sentence has
a self-evident meaning. Sentences with three or more nestings of quantifiers are hard to
understand. The material implication ψ ⇒ ϕ also may cause difficulties. Nevertheless,
for a core fragment of FO, sentences have an accurate and reliable informal semantics. For
example, given the informal meaning of the symbols Node and T in the Hamiltonian circuit
example, the informal semantics of

∀x∀y(Node(x) ∧Node(y)⇒ T (x, y))

is the proposition that each node can be reached from every other one.
Informal semantics of choice rules. Choice rules in ASP are often explained in a
computational way, as generators of the search space. Here we propose a declarative
interpretation. The set of ASP choice rules for predicate P

{P (t̄1)} ← ϕ1. . . . {P (t̄n)} ← ϕn.

constitutes a G-module in ASP-FO which can be further translated in

∀x(P (x̄) ⇒ (x̄ = t̄1 ∧ ϕ1) ∨ · · · ∨ (x̄ = t̄n ∧ ϕn))

In the Tarskian possible-world perspective, this sentence says that P is universally false
with exceptions explicitly listed in the consequent of the implication. In other words, a
G-module expresses the local closed world assumption (LCWA) on P , together with an
exception mechanism to relax this LCWA and reinstall the open world assumption (OWA)
on certain parts of the domain. For instance, ∀x∀y(In(x, y) ⇒ Edge(x, y)), the ASP-FO
image of the ASP choice rule {In(x, y)} ← Edge(x, y), states that In(x, y) is false except
when Edge(x, y) is true, in which case In(x, y) might be either true or false.

This analysis of ASP choice rule modules as FO sentences shows that logical connectives
in choice rule bodies, including negation, have their standard FO meaning. However, the
meaning of a choice module as a whole is not composed from the meaning of its individual
rules by monotone conjunction. Instead, adding a rule to a module corresponds to adding a
disjunct to its FO axiom. Hence, the underlying composition operator of this sort of module
is actually anti-monotonic: the module becomes weaker with each rule added. This agrees
with the role of a choice rule as expressing an exception to the LCWA imposed by the module.
The more exceptions there are, the weaker this LCWA.
Informal semantics of D-modules. In the GDT methodology, D-modules serve to define
a set of auxiliary predicates and do so using a rule-based, potentially recursive syntax [12].
Even though current ASP practice tacitly assumes that the stable-model semantics is a
correct semantics for such modules, this is actually far from trivial. As far as we know,
this issue has not yet been addressed in the literature. Our results allow us to present the
following argument to fill this gap.

Informal rule-based definitions (such as Definition 1) abound in mathematics. They
express a precise, objective form of informal knowledge. A formal rule-based definition
construct should match with the informal one. The three most common forms of definitions
in formal sciences are non-inductive definitions, monotone inductive definitions (e.g., transitive
closure) and definitions by induction over a well-founded order (e.g., the definition of |= in
FO, cf. Definition 1). Denecker [2, 3] was first to argue that rules under the well-founded
semantics provide a uniform and correct formalization of these. Later, Denecker et al. [5]
and Denecker and Ternovska [6] extended the original arguments. A full discussion of the
arguments is beyond the scope of this paper but the essence is that an informal inductive

ICLP’12

286 A Tarskian Informal Semantics for ASP

definition describes how to construct the defined relation by iterated application of rules
and that the well-founded semantics correctly “simulates” this construction for the three
aforementioned forms of definitions.

Not every formal rule set can be understood as a “good” informal inductive definition (i.e.,
one that a formal scientist would accept). In particular, a “good” definition should define for
each object whether it is an element of the defined set or not. In formal terms, this means that
a “good” formal rule set should have a total, i.e., 2-valued, well-founded model. Accordingly,
such definitions are called total [3, 6]. Since parameterized stable and well-founded semantics
coincide for total definitions, the above arguments apply immediately also to total D-modules.
Therefore, the work by Denecker and his coauthors also provides a detailed explanation of why
total D-modules under the stable model semantics correctly formalize the natural language
concept of an inductive definition. To the best of our knowledge, such an explanation has
not yet appeared in print before.

It does not apply to all of ASP, though. First, the analysis by Denecker and co-authors
consistently interprets structures as possible worlds; therefore, our argument does not apply
to the epistemic interpretation of stable models. Second, when we go beyond total D-modules,
the correspondence to FO(ID) breaks down. In FO(ID), such rule sets are unsatisfiable,
whereas in ASP-FO, they may have 0, 1 or more models. How such rule sets can be interpreted
is an open question, but in practice there seems little need for non-total D-modules. Indeed,
D-modules are non-total only in case of cycles over negation. In early applications of ASP,
such cycles over negation were used to encode the generate and test parts of the search
problem. However, more recently, these roles have been taken over by choice rules and
constraints. Consequently, cycles over negation in D-modules have become very rare. In fact,
in the current practice of ASP, D-modules almost always seem to be either positive or to
contain only locally stratified negation. (but see below for an exception).
Comparison with the epistemic view. It is most interesting that the same mathematical
principle can play a very different role depending on whether we take an epistemic or a
possible world view on ASP. Under the stable model semantics, no atom belongs to an
answer set unless it is derived by some rule (in an appropriate cycle-free manner). Under
the epistemic view of an answer set, the informal explanation is that a rational agent should
only believe an atom (or literal) if he has a justification for doing so. In the Tarskian setting,
this explanation does not work, simply because the presence of an atom in an answer set
does not reflect that it is believed but rather that it is true in the possible world. Thus, what
the stable semantics expresses in the Tarskian view is that atoms cannot be true unless
there is a reason for them to be so, which is a form of Closed World Assumption (CWA).
In particular, it is a global CWA on all predicates. Of course, this is a strong assumption
that often needs to be relaxed and this is where choice rules naturally step in. In epistemic
ASP, on the other hand, no implicit CWA is imposed; if CWA is desired it must be stated
explicitly, e.g., by rules ∼P (x̄) ← not P (x̄) involving strong negation [11]. Since there is,
therefore, no implicit global CWA to “open,” the role of choice rules is difficult to explain
in this context. A remarkable conclusion is that the mathematical principle to formalize
rationality in the epistemic view of stable models actually expresses a form of CWA in the
possible world view of stable models. A more detailed discussion on the importance of the
informal semantics of the “models” of a logic program can be found in [4].

The form of CWA implemented by the parameterized stable-model semantics in ASP-FO
differs from other instances of CWA. It is local, i.e., applied only to the defined predicates
Ext(D), and it is also parameterized, in the sense that it is applied given the parameter AP .
For instance, the D-module ({P}, {P ← Q}) imposes CWA on P but it does not entail

M. Denecker, Y. Lierler, M. Truszczynski, and J. Vennekens 287

¬P . This is due to the parameter Q, which causes the ASP-FO semantics to admit two
models: if the parameter Q is true, then P can be derived, so {Q,P} is a model; if the
parameter Q is false, then P cannot be derived and, by the CWA, must be false, so ∅ is also a
model. Strikingly, this particular form of CWA, which deviates from standard forms of CWA,
coincides for the important fragment of total D-modules with the precise and well-known
mathematical principle of definition by induction. Whether the form of CWA underlying
D-modules has natural KR applications beyond total definitions is an intriguing question.
Such applications might be found in ASP programs that utilize cycles over negation for
purposes other than to express choices or constraints, e.g., to express causal rules as in [13].
On the nature of negation and rule operator. Taking a possible world view also forces
us to modify our interpretation of negation as failure. The embedding of ASP constraints
and choice rules in FO shows that ASP’s unary rule operator ← for constraints as well as
negation as failure not in such rules are the same as classical negation. As for negation in
D-modules, we started this section by noting that in a Tarskian view, negation cannot be
epistemic. Indeed, let us look at what negation means in informal definitions, for instance,
in the following (informal) rule from our (informal) Definition 1: A, θ |= ¬ψ if A, θ 6|= ψ.
The definition is by structural induction, hence this rule should not be applied before rules
deriving subformulas of ¬ψ. Once this condition is met, the rule derives I, θ |= ¬ϕ when it
is not the case that A, θ |= ψ. This is standard objective negation as formalized by classical
negation in FO.

The difference between a rule ∀x (P (t̄) ← ϕ) in an FO(ID) definition or a D-module
and a material implication ∀x (P (t̄)⇐ ϕ) therefore does not lie in the interpretation of the
connectives of ϕ. Instead, it lies in the rule operator←, which differs from material implication
⇐. Previous studies of inductive definitions called this operator also the production operator,
reflecting its role of producing new elements of the defined relation. As discussed in [7], part
of its meaning is the restriction that such elements should be produced in accordance with
the well-founded order over which the induction is happening. This makes a rule indeed
quite different from a material implication.

6 Discussion

Interpreting the answer-set semantics as a Tarskian possible-world semantics is a major
mental leap which affects our interpretation of the ASP formalism, its composition laws, and
the meaning of its connectives. While many ASP researchers may have already made this
leap in their day-to-day programming under the Generate-Define-Test methodology, this
paper offers the first detailed discussion of its consequences. To conduct our analysis, we
presented the formalism ASP-FO, whose modular structure is geared specifically towards the
GDT paradigm. By studying our possible-world perspective on ASP-FO, we obtained an
informal semantics for the GDT fragment of ASP, which combines modules by means of the
standard conjunction, and captures the roles of different modules in GDT-based programs.

We proposed ASP-FO as a theoretical mechanism to study GDT and ASP from a Tarskian
perspective. However, ASP-FO is also a viable ASP logic for which several efficient ASP tools
exists. Similarly to FO(ID), ASP-FO is an open domain logic and its models can be infinite.
In general, the satisfiability problem is undecidable (and not just co-semidecidable) — the
result can be obtained by adapting the corresponding result concerning the logic FO(ID) [6].
In many search problems, however, a finite domain is given. That opens a way to practical
problem solving. One can apply finite Herbrand model generation or model expansion [15]
and the corresponding tools [1]. Also, the IDP system [23] implements both the FO(ID) and
ASP-FO semantics.

ICLP’12

288 A Tarskian Informal Semantics for ASP

Finally, let us put the goals of this paper in a broader historical perspective. First, both
logic programming and nonmonotonic reasoning were anti-theses to classical logic (FO),
motivated by respectively computational and representational issues with the latter. The
work on ASP-FO and earlier on FO(ID) effectively presents a synthesis of these paradigms
with FO. Second, the view of logic programs as definitions was already present in Clark’s
view, albeit implicitly, and his completion semantics is not fully adequate to formalize this
idea. Later, Gelfond and Lifschitz proposed to interpret logic programs as epistemic theories.
The view on D-modules presented in this paper is a proposal to “backtrack” to Clark’s
original view.

References
1 A. Aavani, X. Wu, S. Tasharrofi, E. Ternovska, and D. G. Mitchell. Enfragmo: A system

for modelling and solving search problems with logic. In N. Bjørner and A. Voronkov, edit-
ors, Proceedings of the 18th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, LPAR 2012, volume 7180 of LNCS, pages 15–22, Berlin, 2012.
Springer.

2 M. Denecker. The well-founded semantics is the principle of inductive definition. In J. Dix,
L. Fariñas del Cerro, and U. Furbach, editors, Proceedings of the European Workshop on
Logics in Artificial Intelligence, JELIA 1998, volume 1489 of LNCS, pages 1–16, Berlin,
1998. Springer.

3 M. Denecker. Extending classical logic with inductive definitions. In J.W. Lloyd, V. Dahl,
U. Furbach, M. Kerber, K.-K. Lau, C. Palamidessi, L.M. Pereira, Y. Sagiv, and P.J. Stuckey,
editors, Proceedings of First International Conference on Computational Logic, CL 2000,
volume 1861 of LNCS, pages 703–717, Berlin, 2000. Springer.

4 M. Denecker. What’s in a model? Epistemological analysis of logic programming. In
D. Dubois, C.A. Welty, and M.-A. Williams, editors, Proceedings of the 9th International
Conference on Principles of Knowledge Representation and Reasoning, pages 106–113, Palo
Alto, CA, 2004. AAAI Press.

5 M. Denecker, M. Bruynooghe, and V.W. Marek. Logic programming revisited: Logic
programs as inductive definitions. ACM Transactions on Computational Logic, 2(4):623–
654, 2001.

6 M. Denecker and E. Ternovska. A logic of nonmonotone inductive definitions. ACM Trans-
actions on Computational Logic, 9(2):1–50, 2008.

7 M. Denecker and J. Vennekens. Well-founded semantics and the algebraic theory of non-
monotone inductive definitions. In C. Baral, G. Brewka, and J.S. Schlipf, editors, Pro-
ceedings of the 9th International Conference on Logic Programming and Nonmonotonic
Reasoning, LPNMR 2007, volume 4483 of LNCS, pages 84–96, Berlin, 2007. Springer.

8 P. Ferraris, J. Lee, and V. Lifschitz. Stable models and circumscription. Artificial Intelli-
gence, 175:236–263, 2011.

9 P. Ferraris, J. Lee, V. Lifschitz, and R. Palla. Symmetric splitting in the general theory
of stable models. In Proceedings of the 21st International Joint Conference on Artificial
Intelligence, IJCAI-2009, pages 797–803, Palo Alto, CA, 2009. AAAI Press.

10 M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. Kow-
alski and K. Bowen, editors, Proceedings of International Logic Programming Conference
and Symposium, pages 1070–1080, Cambridge, MA, 1988. MIT Press.

11 M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365–385, 1991.

12 V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138:39–
54, 2002.

M. Denecker, Y. Lierler, M. Truszczynski, and J. Vennekens 289

13 V. Lifschitz and H. Turner. Representing transition systems by logic programs. In M. Gelf-
ond, N. Leone, and G. Pfeifer, editors, Proceedings of International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR), volume 1730 of LNCS, pages 92–
106, Berlin, 1999. Springer.

14 V.W. Marek and M. Truszczynski. Stable models and an alternative logic programming
paradigm. In K.R. Apt, V.W. Marek, M. Truszczynski, and D.S. Warren, editors, The Logic
Programming Paradigm: a 25-Year Perspective, pages 375–398. Springer, Berlin, 1999.

15 D.G. Mitchell and E. Ternovska. A framework for representing and solving NP search
problems. In Proceedings of the 20th National Conference on Artificial Intelligence, AAAI
2005, pages 430–435, Palo Alto, CA, 2005. AAAI Press.

16 R. C. Moore. Semantical considerations on nonmonotonic logic. Artificial Intelligence,
25(1):75–94, 1985.

17 I. Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.

18 D. Pearce and A. Valverde. Quantified equilibrium logic and foundations for answer set
programs. In Proceedings of the 24th International Conference on Logic Programming,
ICLP 2008, volume 5366 of LNCS, pages 546–560, Berlin, 2008. Springer.

19 N. Pelov, M. Denecker, and M. Bruynooghe. Well-founded and stable semantics of logic
programs with aggregates. Theory and Practice of Logic Programming, 7(3):301–353, 2007.

20 R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
21 M. Truszczynski. Connecting first-order asp and the logic FO(ID) through reducts, In

E. Erdem, Y. Lierler, Y. Lierler, and D. Pearce, editors, Correct Reasoning, Essays of Logic-
Based AI in Honour of Vladimir Lifschitz, volume 7265 of LNCS, Berlin, 2012. Springer.

22 J. Vennekens, J. Wittocx, M. Mariën, and M. Denecker. Predicate introduction for logics
with a fixpoint semantics. Part I: Logic programming. Fundamenta Informaticae, 79(1-
2):187–208, 2007.

23 J. Wittocx, M. Mariën, and M. Denecker. The idp system: a model expansion system for
an extension of classical logic. In M. Denecker, editor, Logic and Search, Computation of
Structures from Declarative Descriptions, LaSh 2008, pages 153–165, 2008.

ICLP’12

Paving the Way for Temporal Grounding∗

Felicidad Aguado, Pedro Cabalar, Martín Diéguez, Gilberto Pérez,
and Concepción Vidal

University of Corunna
Corunna, Spain
{aguado,cabalar,martin.dieguez,gperez,eicovima}@udc.es

Abstract
In this paper we consider the problem of introducing variables in temporal logic programs under
the formalism of Temporal Equilibrium Logic (TEL), an extension of Answer Set Programming
(ASP) for dealing with linear-time modal operators. We provide several fundamental contribu-
tions that pave the way for the implementation of a grounding process, that is, a method that
allows replacing variables by ground instances in all the possible (or better, relevant) ways.

1998 ACM Subject Classification D.1.6 Logic Programming, F.4.1 Mathematical Logic

Keywords and phrases ASP, linear temporal logic, grounding, temporal equilibrium logic

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.290

1 Introduction

Many application domains and example scenarios from Answer Set Programming (ASP) [13,
11] contain a dynamic component, frequently representing transition systems over discrete
time. However, temporal reasoning in ASP tends to be quite rudimentary, just treating
time as an integer variable which is grounded for a finite interval1. To cope with more
elaborated temporal reasoning, in [1] a formalism called Temporal Equilibrium Logic (TEL)
was proposed. TEL is syntactically identical to propositional Linear-time Temporal Logic
(LTL) [16], but semantically, it relies on a temporal extension of Equilibrium Logic [14], the
most general and best studied logical characterisation of stable models (or answer sets) [7].
A recent work [2] introduced a reduction of TEL into regular LTL, for a syntactic subclass
of temporal theories called Splitable Temporal Logic Programs. Although this syntactic
fragment is a strict subset of the TEL normal form obtained in [4], it deals with temporal
rules in which, informally speaking, “past does not depend on the future,” something general
enough to cover most (if not all) existing examples of ASP temporal scenarios. The reduction
was implemented in a tool, STeLP2 [5], that computes the temporal stable models of a given
program, showing the result in the form of a Büchi automaton.

Although the theoretical results on which STeLP is based are restricted to the proposi-
tional case, the input language was extended with the introduction of variables. This was
done imposing some strict limitations on the syntax, forcing that any variable instance is
not only safe (that is, occurring in the positive body of the rule) but also “typed” by a
static predicate, i.e., a predicate whose extent does not vary along time. In many cases,
this restriction implied the generation of irrelevant ground rules that increase the size of the

∗ This research was partially supported by Spanish MEC project TIN2009-14562-C05-04.
1 More elaborated approaches [12] deal with arbitrary temporal distances by using a constraint satisfac-
tion tool as a backend.

2 http://kr.irlab.org/stelp_online

© Felicidad Aguado, Pedro Cabalar, Martín Diéguez, Gilberto Pérez, and Concepción Vidal;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 290–300

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.290
http://kr.irlab.org/stelp_online
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, and C. Vidal 291

static city/1, car/1, road/2.
o at(X,A) ::- driveto(X,A), car(X), city(A). % (1)

driveto(X,B) v no_driveto(X,B) ::- at(X,A), car(X), road(A,B). % (2)
o at(X,A) ::- at(X,A), not o no_at(X,A), car(X), city(A). % (3)

no_at(X,A) ::- at(X,B), A!=B, car(X), city(A), city(B). % (4)
::- at(X,A), at(X,B), A!=B, car(X), city(A), city(B). % (5)

Figure 1 A simple car driving scenario.

resulting ground LTL theory while they could be easily detected and removed by a simple
analysis of the temporal program. Furthermore, the treatment of variables had not been
proved to be sound with respect to the important property of domain independence [3] –
essentially, a program is domain independent when its stable models do not vary under the
arbitrary addition of new constants. Although the DLV definition of safe variables guarantees
domain independence, there was no formal proof for temporal logic programs under TEL.

In this paper we provide several fundamental results that pave the way for an improved
grounder for temporal logic programs with variables. The rest of the paper is organised as
follows. In the next section, we explain our motivations using an illustrative example. In
Section 3 we introduce the first order extension of TEL and provide some basic definitions,
explaining the syntactic form for our input language. Next, we study the relaxed definition
of safe variables and prove that it guarantees domain independence. Section 5 defines the
concept of derivable facts, explaining how they can be computed and used afterwards to
generate smaller ground theories. Finally, Section 6 concludes the paper.

2 A motivating example

For a better understanding of our motivations, let us consider a simple illustrative example.

I Example 1. Suppose we have a set of cars placed at different cities and, at each transition,
we can drive a car from one city to another in a single step, provided that there is a road
connecting them. J

Figure 1 contains a possible representation of this scenario in the language of STeLP.
In the rules, operator ‘o’ stands for “next” whereas ‘::-’ corresponds to the standard ASP
conditional ‘:-’, but holding at all time points. Rule (1) is the effect axiom for driving car
X to city A. The disjunctive rule (2) is used to generate possible occurrences of actions in a
non-deterministic way. Rules (3) and (4) represent the inertia3 of fluent at(X,A). Finally,
rule (5) just forbids that a car is at two different cities simultaneously.

As we can see in the first line, predicates city/1, car/1 and road/2 are declared to
be static. The scenario would be completed with rules for static predicates. These rules
conform what we call the static program and can only refer to static predicates without
containing temporal operators. An example of a static program for this scenario could be:

road(A,B) :- road(B,A). % roads are bidirectional
city(A) :- road(A,B).
car(1). car(2).
road(lisbon,madrid). road(madrid,paris). road(boston,ny). road(ny,nj).

3 Auxiliary predicates no_driveto(X,B) and no_at(X,A) play the role here of strong negation.

ICLP’12

292 Paving the Way for Temporal Grounding

Additionally, our temporal program would contain rules describing the initial state like, for
instance, the pair of facts:

at(1,madrid). at(2,ny).

Note that all variables in a rule are always in some atom for a static predicate in the
positive body. This sometimes makes rule bodies quite long and slightly redundant. The
current grounding process performed by STeLP just consists in feeding the static program
to DLV and, once it provides an extension for all the static predicates, each temporal rule
is instantiated for each possible substitution of variables according to static predicates. In
our running example, for instance, DLV provides a unique model4 for the static program
containing the facts:

car(1), car(2), city(lisbon), city(madrid), city(paris), city(boston),
city(ny), city(nj), road(lisbon,madrid), road(madrid,lisbon),
road(madrid,paris), road(paris,madrid), road(boston,ny),
road(ny,boston), road(ny,nj), road(nj,ny)

With these data, rule (1) generates 12 ground instances, since we have two possible cars for
X and six possible cities for A. Similarly, rule (4) would generate 60 instances as there are
30 pairs A,B of different cities and two cars for X. Many of these ground rules, however, are
irrelevant. Consider, for instance, the following pair of generated rules:

o at(1,ny) ::- driveto(1,ny).
no_at(1,paris) ::- at(1,ny).

corresponding, respectively, to possible instantiations of (1) and (4). In both cases, the
body refers to a situation where car 1 is located or will drive to New York, while we can
observe that it was initially at Madrid and that the European roadmap is disconnected from
the American one. Of course, one could additionally encode a static reachability predicate
to force that rule instances refer to reachable cities for a given car, but this would not be
too transparent or elaboration tolerant. One would expect that the grounder was capable of
detecting these “non-derivable” cases ignoring them in the final ground theory, if possible.

On the other hand, if we forget, for a moment, the temporal operators and we consider
the definition of safe variables used in DLV, one may also wonder whether it is possible to
simply require that each variable occurs in the positive body of rules, without needing to
refer to static predicates mandatorily. Figure 2 contains a possible variation of the same
scenario allowing this possibility. Our goal is allowing this new, more flexible definition of
safe variables and exploiting, if possible, the information in the temporal program to reduce
the set of generated ground rules.

3 Temporal Quantified Equilibrium Logic

Syntactically, we consider function-free first-order languages L = 〈C,P 〉 built over a set of
constant symbols, C, and a set of predicate symbols, P . Using L, connectors and variables,
an L = 〈C,P 〉-formula F is defined following the grammar:

F ::= p | ⊥ | F1 ∧ F2 | F1 ∨ F2 | F1 → F2 | © F | �F | ♦F | ∀xF (x) | ∃xF (x)

4 If the static program yields several stable models, each one generates a different ground theory whose
temporal stable models are computed independently.

F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, and C. Vidal 293

static city/1, car/1, road/2.
o at(X,A) ::- driveto(X,A).

driveto(X,B) v no_driveto(X,B) ::- at(X,A), road(A,B).
o at(X,A) ::- at(X,A), not o no_at(X,A).

no_at(X,A) ::- at(X,B), A!=B, city(A).
::- at(X,A), at(X,B), A!=B.

Figure 2 A possible variation of the cars scenario.

where p ∈ P is an atom, x is a variable and ©, � and ♦ respectively stand for “next”,
“always” and “eventually.” A theory is a finite set of formulas. We use the following derived
operators and notation: ¬F def= F → ⊥, > def= ¬⊥ and F ↔ G

def= (F → G) ∧ (G → F) for
any formulas F,G. An atom is any p(t1, . . . , tn) where p ∈ P is a predicate with n-arity and
each ti is a term (a constant or a variable) in its turn. We say that a term or a formula is
ground if it does not contain variables. An L-sentence or closed-formula is a formula without
free-variables. The application of i consecutive©’s is denoted as follows: ©iϕ

def=©(©i−1ϕ)
for i > 0 and ©0ϕ

def= ϕ. A temporal fact is a construction of the form ©iA where A is an
atom. If D is a non-empty set, we denote by At(D,P) the set of ground atomic sentences of
the language 〈D,P 〉. For the semantics, we will also define a mapping σ : C ∪D → D such
that σ(d) = d for all d ∈ D.

A first-order LTL-interpretation is a structure 〈(D,σ),T〉 where D is a non-empty set
(the domain), σ is a mapping as defined above (the interpretation of constants) and T is an
infinite sequence of sets of ground atoms T = {Ti}i≥0. Intuitively, Ti ⊆ At(D,P) contains
those ground atoms that are true at situation i. Given two LTL-interpretations H and T we
say that H is smaller than T, written H ≤ T, when Hi ⊆ Ti for all i ≥ 0. As usual, H < T
stands for: H ≤ T and H 6= T. We define the ground temporal facts associated to T as
follows: Facts(T) def= {©ip | p ∈ Ti}. It is easy to see that H ≤ T iff Facts(H) ⊆ Facts(T).

I Definition 2. A temporal-here-and-there L-structure with static domains, or a TQHT-
structure, is a tuple M = 〈(D,σ),H,T〉 where 〈(D,σ),H〉 and 〈(D,σ),T〉 are two LTL-
interpretations satisfying H ≤ T. J

A TQHT-structure of the form M = 〈(D,σ),T,T〉 is said to be total. If M =
〈(D,σ),H,T〉 is a TQHT-structure and k any positive integer, we denote by (M, k) =
〈(D,σ), (H, k), (T, k)〉 the temporal-here-and-there L-structure with (H, k) = {Hi}i≥k and
(T, k) = {Ti}i≥k. The satisfaction relation for M = 〈(D,σ),H,T〉 is defined recursively
forcing us to consider formulas from 〈C ∪ D,P 〉. Formally, if ϕ is an L-sentence for the
atoms in At(C ∪D,P), then:

If ϕ = p(t1, . . . , tn) ∈ At(C ∪D,P), then

M |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ H0.

M |= t = s iff σ(t) = σ(s)

For ⊥, ∧ and ∨, as usual.
M |= ϕ→ ψ iff 〈(D,σ), w,T〉 6|= ϕ or 〈(D,σ), w,T〉 |= ψ for all w ∈ {H,T}
M |=©ϕ if (M, 1) |= ϕ.
M |= �ϕ if ∀j ≥ 0, (M, j) |= ϕ

M |= ♦ϕ if ∃j ≥ 0, (M, j) |= ϕ

ICLP’12

294 Paving the Way for Temporal Grounding

〈(D,σ),H,T〉 |= ∀xϕ(x) iff 〈(D,σ), w,T〉 |= ϕ(d) for all d ∈ D and for all w ∈ {H,T}.
M |= ∃xϕ(x) iffM |= ϕ(d) for some d ∈ D.

The resulting logic is called Quantified Temporal Here-and-There Logic with static do-
mains, and denoted by SQTHT or simply by QTHT. It is not difficult to see that, if we
restrict to total TQHT-structures, 〈(D,σ),T,T〉 |= ϕ iff 〈(D,σ),T,T〉 |= ϕ in first-order
LTL. Furthermore, the following property can be easily checked by structural induction.

I Proposition 3. For any formula ϕ, if 〈(D,σ),H,T〉 |= ϕ, then 〈(D,σ),T,T〉 |= ϕ

A theory Γ is a set of L-sentences. An interpretationM is a model of a theory Γ, written
M |= Γ, if it satisfies all the sentences in Γ.

I Definition 4 (Temporal Equilibrium Model). A temporal equilibriummodel of a theory Γ is a
total modelM = 〈(D,σ),T,T〉 of Γ such that there is no H < T satisfying 〈(D,σ),H,T〉 |=
Γ. J

If M = 〈(D,σ),T,T〉 is a temporal equilibrium model of a theory Γ, we say that
the First-Order LTL interpretation 〈(D,σ),T〉 is a temporal stable model of Γ. We write
TSM(Γ) to denote the set of temporal stable models of Γ. The set of credulous consequences
of a theory Γ, written CredFacts(Γ) contains all the temporal facts that occur at some
temporal stable model of Γ, that is:

CredFacts(Γ) def=
⋃

〈(D,σ),T〉∈TSM(Π)

Facts(T)

A property of TEL directly inherited from Equilibrium Logic (see Proposition 5 in [15])
is the following:

I Proposition 5 (Cummulativity for negated formulas). Let Γ be some theory and let ¬ϕ
be some formula such that M |= ¬ϕ for all temporal equilibrium models of Γ. Then, the
theories Γ and Γ ∪ {¬ϕ} have the same set of temporal equilibrium models. J

It is well-known that stable models (and so Equilibrium Logic) do not satisfy cummu-
lativity in the general case: that is, if a formula is satisfied in all the stable models, adding it
to the program may vary the consequences we obtain. However, when we deal with negated
formulas, Proposition 5 tells us that cummulativity is guaranteed.

In this work, we will further restrict the study to a syntactic subset called splitable5
temporal formulas (STF) which will be of one of the following types:

B ∧N → H (1)
B ∧©B′ ∧N ∧©N ′ → ©H ′ (2)

�(B ∧©B′ ∧N ∧©N ′ → ©H ′) (3)

where B and B′ are conjunctions of atomic formulas, N and N ′ are conjunctions of ¬p,
being p an atomic formula and H and H ′ are disjunctions of atomic formulas.

5 The name splitable refers to the fact that these programs can be splitted using [10] thanks to the
property that rule heads never refer to a time point previous to those referred in the body.

F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, and C. Vidal 295

I Definition 6. A splitable temporal logic program (STL-program for short) is a finite set of
sentences like

ϕ = ∀x1∀x2 . . . ∀xnψ,

where ψ is a splitable temporal formula with x1, x2, . . . , xn free variables.

We will also accept in an STL-program an implication of the form �(B ∧N → H) (that
is, containing � but not any©) understood as an abbreviation of the pair of STL-formulas:

B ∧N → H

�(©B ∧©N → ©H)

I Example 7. The following theory Π7 is an STL-program:

¬p → q (4)
q ∧ ¬© r → ©p (5)

�(q ∧ ¬© p → ©q) (6)
�(r ∧ ¬© p → ©r ∨©q) (7)

For an example including variables, the encoding of Example 1 in Figure 2 is also an
STL-program Π1 whose logical representation corresponds to:

�(Driveto(x, a) → ©At(x, a)) (8)
�(At(x, a) ∧Road(a, b) → Driveto(x, b) ∨NoDriveto(x, b)) (9)

�(At(x, a) ∧ ¬©NoAt(x, a) → ©At(x, a)) (10)
�(At(x, b) ∧ City(a) ∧ a 6= b → NoAt(x, a)) (11)
�(At(x, a) ∧At(x, b) ∧ a 6= b → ⊥) (12)

Remember that all rule variables are implicitly universally quantified. For simplicity, we
assume that inequality is a predefined predicate.

An STL-program is said to be positive if for all rules (1)-(3), N and N ′ are empty (an
empty conjunction is equivalent to >). An STL-program is said to be normal if it contains
no disjunctions, i.e., for all rules (1)-(3), H and H ′ are atoms. Given a propositional
combination ϕ of temporal facts with ∧,∨,⊥,→, we denote ϕi as the formula resulting from
replacing each temporal fact A in ϕ by ©iA. For a formula r = �ϕ like (3), we denote by
ri the corresponding ϕi. For instance, (6)i = (©iq ∧¬©i+1 p→©i+1q). As © behaves as
a linear operator in THT, in fact F i ↔©iF is a THT tautology.

I Definition 8 (expanded program). Given an STL-program Π for signature Σ we define its
expanded program Π∞ as the infinitary logic program containing all rules of the form (1),
(2) in Π plus a rule ri per each rule r of the form (3) in Π and each integer value i ≥ 0. J

The program Π∞7 would therefore correspond to (4), (5) plus the infinite set of rules:

©iq ∧ ¬©i+1 p→©i+1q ©i r ∧ ¬©i+1 p→©i+1r ∨©i+1q

for i ≥ 0. We can interpret the expanded program as an infinite non-temporal program
where the signature is the infinite set of atoms of the form ©ip with p ∈ At and i ≥ 0.

I Theorem 9 (Theorem 1 in [2]). 〈T,T〉 is a temporal equilibrium model of Π iff {©ip | p ∈
Ti, i ≥ 0} is a stable model of Π∞ under the (infinite) signature {©ip | p ∈ Σ}. J

I Proposition 10. Any normal positive STL-program Π has a unique temporal stable model
〈(D,σ),T〉 which coincides with its ≤-least LTL-model. We denote LM(Π) = Facts(T). J

ICLP’12

296 Paving the Way for Temporal Grounding

4 Safe Variables and Domain Independence

In this section we consider the new definition of safe variables which does not refer to static
predicates any more. As a result, we obtain a direct extrapolation of DLV-safety by just
ignoring the temporal operators.

I Definition 11. A splitable temporal formula ϕ of type (1), (2) or (3) is said to be safe if,
for any variable x occurring in ϕ, there exists an atomic formula p in B or B′ such that x
occurs in p. A formula ∀x1∀x2 . . . ∀xnψ is safe if the splitable temporal formula ψ is safe.

For instance, rules (8)-(12) are safe. A simple example of unsafe rule is the splitable temporal
formula > → P (x) where x does not occur in the positive body (in fact, the rule body is
empty). Although an unsafe rule not always leads to lack of domain independence (see
examples in [6]) it is frequently the case. We prove next that domain independence is, in
fact, guaranteed for safe STL-programs.

I Theorem 12. If ϕ is a safe sentence and 〈(D,σ),T,T〉 is a temporal equilibrium model
of ϕ, then T|C = T and Ti ⊆ At(σ(C), P) for any i ≥ 0.

Let (D,σ) be a domain and D′ ⊆ D a finite subset; the grounding over D′ of a sentence
ϕ, denoted by GrD′(ϕ), is defined recursively

GrD′(p) def= p, where p denotes any atomic formula

GrD′(ϕ1 � ϕ2) def= GrD′(ϕ1)�GrD′(ϕ2), with � any binary operator in {∧,∨,→}

GrD′(∀xϕ(x)) def=
∧

d∈D′
GrD′ϕ(d)

GrD′(∃xϕ(x)) def=
∨

d∈D′
GrD′ϕ(d)

GrD′(©ϕ) def= ©GrD′(ϕ)

GrD′(�ϕ) def= �GrD′(ϕ)

GrD′(♦ϕ) def= ♦GrD′(ϕ)

I Proposition 13. Given any non-empty finite set D:
〈(D,σ),H,T〉 |= ϕ iff 〈(D,σ),H,T〉 |= GrD(ϕ). J

I Theorem 14 (Domain independence). Let ϕ be safe splitable temporal sentence. Suppose
we expand the language L by considering a set of constants C ′ ⊇ C. A total QTHT-model
〈(D,σ),T,T〉 is a temporal equilibrium model of GrC′(ϕ) if and only if it is a temporal
equilibrium model of GrC(ϕ).

5 Derivable ground facts

In this section we present a technique for grounding safe temporal programs based on the
construction a positive normal ASP program with variables. The least model of this program
can be obtained by the ASP grounder6 DLV and it can be used afterwards to provide the
variable substitutions to be performed on the STL-program. Besides, in some cases, this
technique means a reduction of the number of generated ground rules with respect to the
previous strategy that relied on static predicates.

6 Or any other ASP grounder, such as gringo, respecting DLV definition of safe variables.

F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, and C. Vidal 297

The method is based on the idea of derivable ground temporal facts for an STL-program
Π. This set, call it ∆, will be an upper estimation of the credulous consequences of the
program, that is, CredFacts(Π) ⊆ ∆. Of course, the ideal situation would be that ∆ =
CredFacts(Π), but the set CredFacts(Π) requires the temporal stable models of Π and
these (apart from being infinite sequences) will not be available at grounding time. In the
worst case, we could choose ∆ to contain the whole set of possible temporal facts, but this
would not provide relevant information to improve grounding. So, we will try to obtain
some superset of CredFacts(Π) as small as possible, or if preferred, to obtain the largest
set of non-derivable facts we can find. Note that a non-derivable fact ©ip 6∈ ∆ satisfies that
©ip 6∈ CredFacts(Π) and so, by Proposition 5, Π ∪ {¬©i p} is equivalent to Π, that is,
both theories have the same set of temporal equilibrium models. This information can be
used to simplify the ground program either by removing rules or literals.

We begin defining several transformations on STL-programs. For any temporal rule r,
we define r∧ as the set of rules:

If r has the form (1) then r∧ def= {B → p | atom p occurs in H}
If r has the form (2) then r∧ def= {B ∧©B′ →©p | atom p occurs in H ′}
If r has the form (3) then r∧ def= {�(B ∧©B′ →©p) | atom p occurs in H ′}

In other words, r∧ results from removing all negative literals in r and, informally speaking,
transforming disjunctions in the head into conjunctions, so that r∧ will imply all the original
disjuncts in the disjunctive head of r. It is interesting to note that for any rule r with an
empty head (⊥) this definition implies r∧ = ∅. Program Π∧ is defined as the union of r∧
for all rules r ∈ Π. As an example, Π∧7 consists of the rules:

> → q

q → ©p
�(q → ©q) �(r → ©r)

�(r → ©q)

whereas Π∧1 would be the program:

�(Driveto(x, a) → ©At(x, a)) (13)
�(At(x, a) ∧Road(a, b) → Driveto(x, b)) (14)
�(At(x, a) ∧Road(a, b) → NoDriveto(x, b)) (15)

�(At(x, a) → ©At(x, a)) (16)
�(At(x, b) ∧ City(a) ∧ a 6= b → NoAt(x, a)) (17)

If we look carefully at this example program, we are now moving each car x so that it will
be at several cities at the same time (constraint (12) has been removed) and, at each step,
it will additionally locate car x in all adjacent cities to the previous ones “visited” by x. In
this way, if we conclude ©iAt(x, a) from this program this is actually representing that car
x can reach city a in i steps or less. In some sense, Π∧ looks like a heuristic simplification7
of the original problem obtained by removing some constraints (this is something common
in the area of Planning in Artificial Intelligence).

Notice that, by definition, Π∧ is always a positive normal STL-program and, by Propos-
ition 10, it has a unique temporal stable model, LM(Π∧).

I Proposition 15. For any STL-program Π, CredFacts(Π) ⊆ LM(Π∧). J

7 We could further simplify Π∧ removing rules (15) and (17) by observing that their head predicates
never occur in a positive body of Π1. However, for the formal results in the paper, this is not essential,
and would complicate the definitions.

ICLP’12

298 Paving the Way for Temporal Grounding

Unfortunately, using ∆ = LM(Π∧) as set of derivable facts is unfeasible for practical
purposes, since this set contains infinite temporal facts corresponding to an “infinite run” of
the transition system described by Π∧. Take for instance Π∧1 for the cars scenario. Imagine
a roadmap with thousands of connected cities. LM(Π∧) can tell us that, for instance, car
1 cannot reach Berlin in less than 316 steps, so that ©315At(1, Berlin) is non-derivable,
although ©316At(1, Berlin) is derivable. However, in order to exploit this information for
grounding, we would be forced to expand the program up to some temporal distance, and
we have no hint on where to stop. Note that, on the other hand, when we represent the
transition system as usual in ASP, using a bounded integer variable for representing time,
then this fine-grained optimization for grounding can be applied, because the temporal path
always has a finite length.

As a result, we will adopt a compromise solution taking a superset of LM(Π∧) extracted
from a new theory, ΓΠ. This theory will collapse all the temporal facts from situation 2 on,
so that all the states Ti for i ≥ 2 will be repeated. We define ΓΠ as the result of replacing
each rule �(B ∧©B′ →©p) in Π∧ by the formulas:

B ∧©B′ → ©p (18)
©B ∧©2B′ → ©2p (19)
©2B ∧©2B′ → ©2p (20)

and adding the axiom schema:

©2 �(p↔©p) (21)

for any ground atom p ∈ At(D,P) in the signature of Π. As we can see, (18) and (19) are
the first two instances of the original rule �(B ∧©B′ → ©p) corresponding to situations
i = 0 and i = 1. Formula (20), however, differs from the instance we would get for i = 2
since, rather than having ©3B′ and ©3p, we use ©2B′ and ©2p respectively. This can be
done because axiom (21) is asserting that from situation 2 on all the states are repeated.

In the cars example, for instance, rule (13) in Π∧1 would be transformed in ΓΠ1 into the
three rules:

Driveto(x, a)→©At(x, a) ©Driveto(x, a)→©2At(x, a)
©2Driveto(x, a)→©2At(x, a)

It is not difficult to see that axiom (21) implies that checking that some M is a temporal
equilibrium model of ΓΠ is equivalent to check that {©ip | p ∈ Ti , i = 0, 1, 2} is a stable
model of ΓΠ \ {(21)} and fixing Ti = T2 for i ≥ 3. This allows us to exclusively focus on the
predicate extents in T0, T1 and T2, so we can see the �-free program ΓΠ \{(21)} as a positive
normal ASP (i.e., non-temporal) program for the propositional signature {p,©p,©2p | p ∈
At(D,P)} that can be directly fed to DLV, after some simple renaming conventions.

I Theorem 16. ΓΠ has a least LTL-model, LM(ΓΠ) which is a superset of LM(Π∧).

In other words CredFacts(Π) ⊆ LM(Π∧) ⊆ LM(ΓΠ) = ∆, i.e., we can use LM(ΓΠ) as
set of derivable facts and simplify the ground program accordingly. Note that this simpli-
fication does not mean that we first ground everything and then remove rules and literals:
we simply do not generate the irrelevant ground cases.

A slight adaptation8 is further required for this method: as we get ground facts of the
form p,©p and ©2p we have to unfold the original STL-program rules to refer to atoms in

8 In fact, this means that we have to extend the definition of splitable temporal rule to cope with ©2

atoms. This is not essential, but has forced to reprogram the translation into LTL performed by STeLP.

F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, and C. Vidal 299

the scope of ©2. For instance, given (9) we would first unfold it into:

At(x, a) ∧Road(a, b) → Driveto(x, b) ∨NoDriveto(x, b) (22)
©At(x, a) ∧©Road(a, b) → ©Driveto(x, b) ∨©NoDriveto(x, b) (23)

�(©2At(x, a) ∧©2Road(a, b) → ©2Driveto(x, b)
∨©2 NoDriveto(x, b)) (24)

and then check the possible extents for the positive bodies we get from the set of derivable
facts ∆ = LM(ΓΠ). For instance, for the last rule, we can make substitutions for x, a and b
using the extents of ©2At(x, a) and ©2Road(a, b) we have in ∆. However, this still means
making a join operation for both predicates. We can also use DLV for that purpose by just
adding a rule that has as body, the positive body of the original temporal rule r, and as
head, a new auxiliary predicate Substr(x, a, b) referring to all variables in the rule. In the
example, for rule (24) we would include in our DLV program:

©2At(x, a) ∧©2Road(a, b)→ Subst(24)(x, a, b)

In this way, each tuple of Substr(x1, . . . , xn) directly points out the variable substitution
to be performed on the temporal rule.

6 Conclusions

We have improved the grounding method for temporal logic programs with variables in dif-
ferent ways. First, we provided a safety condition that directly corresponds to extrapolating
the usual concept of safe variable in Answer Set Programming as required, for instance, by
the input language of DLV [9]. In this way, any variable occurring in a rule is considered
to be safe if it also occurs in the positive body of the rule, regardless the possible scope
of temporal operators. An interesting topic for future study is trying to extend [3, 8, 6]
to the temporal case, providing a general safety condition for arbitrary quantified temporal
theories. Second, we have designed a method for grounding the temporal logic program that
consists in constructing a non-temporal normal positive program with variables that is fed
to solver DLV to directly obtain the set of variable substitutions to be performed for each
rule. The proposed method allows reducing in many cases the number of ground temporal
rules generated as a result. For instance, in the cars scenario from Figure 2 and the small
instance case described in the paper (2 cars and 6 cities) we reduce the number of generated
ground rules in the scope of ‘�’ from 160 using the current STeLP grounding method to 62
with the technique introduced here. Due to the combinatorial nature of this decrease, we do
not include figures for other instances of the example. The reader may easily imagine that
the higher degree of cities interconnection, the smaller obtained reduction of rule instances,
as this approaches to the worst case of n2, where the n cities are all pairwise connected. On
the other hand, the example is general enough to illustrate the proposed technique, as rules
for temporal predicates usually limit the possible combinations of variable values we must
consider.

A stand-alone prototype for proving examples like the one in the paper has been con-
structed, showing promising results. The immediate future work is incorporating the new
grounding method inside STeLP and analysing its performance on benchmark scenarios. We
will also study different improvements like, for instance, detecting rules with variables that
are irrelevant for grounding.

ICLP’12

300 Paving the Way for Temporal Grounding

References
1 F. Aguado, P. Cabalar, G. Pérez, and C. Vidal. Strongly equivalent temporal logic pro-

grams. In JELIA 2008, volume 5293 of LNCS, pages 8–20.
2 F. Aguado, P. Cabalar, G. Pérez, and C. Vidal. Loop formulas for splitable temporal logic

programs. In James P. Delgrande and Wolfgang Faber, editors, LPNMR’11, volume 6645
of LNCS, pages 80–92. Springer, 2011.

3 A. Bria, W. Faber, and N. Leone. Normal form nested programs. In S. Hölldobler et al, ed-
itor, Proc. of the 11th European Conference on Logics in Artificial Intelligence (JELIA’08),
Lecture Notes in Artificial Intelligence, pages 76–88. Springer, 2008.

4 P. Cabalar. A normal form for linear temporal equilibrium logic. In JELIA’10, volume
6341 of LNCS, pages 64–76. Springer, 2010.

5 P. Cabalar and M. Diéguez. STELP - a tool for temporal answer set programming. In
LPNMR’11, volume 6645 of LNCS, pages 370–375, 2011.

6 P. Cabalar, D. Pearce, and A. Valverde. A revised concept of safety for general answer set
programs. In LPNMR’09, volume 5753 of LNCS, pages 58–70. Springer, 2009.

7 M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In R. A.
Kowalski and K. A. Bowen, editors, Logic Programming: Proc. of the Fifth International
Conference and Symposium (Volume 2), pages 1070–1080. MIT Press, 1988.

8 J. Lee, V. Lifschitz, and R. Palla. Safe formulas in the general theory of stable models.
preliminary report. In ICLP’08, volume 5366 of LNCS, pages 672–676. Springer, 2008.

9 N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The dlv
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic, 7:499–562, 2006.

10 Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In Proceedings of the
eleventh international conference on Logic programming, pages 23–37, Cambridge, MA,
USA, 1994. MIT Press.

11 V. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm, pages 169–181. Springer-Verlag, 1999.

12 Veena S. Mellarkod, Michael Gelfond, and Yuanlin Zhang. Integrating answer set pro-
gramming and constraint logic programming. Annals of Maths and AI, 53(1-4):251–287,
2008.

13 I. Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.

14 D. Pearce. A new logical characterisation of stable models and answer sets. In Non
monotonic extensions of logic programming. Proc. NMELP’96. (LNAI 1216). 1996.

15 David Pearce. Equilibrium logic. Annals of Maths and AI, 47(1-2):3–41, 2006.
16 A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of

Computer Science, pages 46–57. IEEE Computer Society Press, 1977.

Logic + control: An example
Włodzimierz Drabent

Institute of Computer Science, Polish Academy of Sciences, Poland, and
IDA, Linköping University, Sweden
drabent@ipipan.waw.pl

Abstract
We present a Prolog program – the SAT solver of Howe and King – as a (pure) logic program with
added control. The control consists of a selection rule (delays of Prolog) and pruning the search
space. We construct the logic program together with proofs of its correctness and completeness,
with respect to a formal specification. Correctness and termination of the logic program are
inherited by the Prolog program; the change of selection rule preserves completeness. We prove
that completeness is also preserved by one case of pruning; for the other an informal justification
is presented.

For proving correctness we use a method, which should be well known but is often neglected.
For proving program completeness we employ a new, simpler variant of a method published
previously. We point out usefulness of approximate specifications. We argue that the proof
methods correspond to natural declarative thinking about programs, and that they can be used,
formally or informally, in every-day programming.

1998 ACM Subject Classification D.1.6 Logic Programming, F.3.1 Specifying and Verifying and
Reasoning about Programs, D.2.4 Software/Program Verification, D.2.5 Testing and Debugging

Keywords and phrases program correctness, program completeness, specification, declarative
programming, declarative diagnosis.

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.301

1 Introduction

The purpose of this paper is to show to which extent the correctness related issues of a Prolog
program can, in practice, be dealt with mathematical precision. We present a construction
of a useful Prolog program. We view it as a logic program with added control. We formally
prove that the logic program conforms to its specification and partly informally justify that
adding control preserves this property. We argue that the employed methods are not difficult
and can be used by actual programmers.

Howe and King [11] presented a SAT solver which is an elegant and concise Prolog pro-
gram of 22 lines. It is not a (pure) logic program, as it includes nonvar/1 and the if-then-else
of Prolog; it was constructed as an implementation of an algorithm, using logical variables
and coroutining. The algorithm is DPLL with watched literals and unit propagation (see
[11] for references). Here we look at the program from a declarative point of view. We show
how it can be obtained by adding control to a definite clause logic program.

We first present a simple logic program of five clauses, and then modify it in order to
obtain a logic program on which the intended control can be imposed. The control involves
fixing the selection rule (by means of the delay mechanisms of Prolog), and pruning some
redundant fragments of the search space. In constructing both the introductory program
and the final one, we begin with a specification, describing the relations to be defined by
the program. We argue about usefulness of approximate specifications. For both logic

© Włodzimierz Drabent;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 301–311

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.301
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

302 Logic + control: An example

programs we present formal proofs of their correctness and completeness. In the second case
the proofs are performed together with the construction of the program. Both programs
terminate under any selection rule. Adding control preserves correctness and termination.
Completeness of the final program with control is justified partly informally.

To facilitate the proofs we present the underlying proof methods for correctness and
completeness. For proving correctness we use the method of [4]; for completeness – a sim-
plification of the method of [8]. We also employ a method of proving that a certain kind of
pruning SLD-trees preserves completeness (from [7], an extended version of this paper).
Preliminaries. In this paper we consider definite clause programs (i.e. programs without
negation). We use the standard notation and definitions, see e.g. [1]. In our main examples
we assume a Herbrand universe H like in Prolog, based on an alphabet of infinitely many
function symbols of each arity ≥ 0. However the theoretical considerations of Sect. 3 are
valid for arbitrary nonempty Herbrand universe. By ground(P) we mean the set of ground
instances of a program P (under a given Herbrand universe).

We use the Prolog notation for lists. Names of variables begin with an upper-case letter.
By a list we mean a term of the form [t1, . . . , tn] (so terms like [a, a|X], or [a, a|a] are not
considered lists). As we deal with clauses as data, and clauses of programs, the latter will
be called rules to avoid confusion. Given a predicate symbol p, by an atom for p we mean
an atom whose predicate symbol is p, and by a rule for p – a rule whose head is an atom
for p. By a procedure p we mean all the rules for p in the program under consideration.
Organization of the paper. The next section presents a simple and inefficient SAT
solver. Section 3 formalizes the notion of a specification, and presents methods for proving
program correctness and completeness. In Section 4 the final logic program is constructed
hand in hand with its correctness and completeness proof. Section 5 considers adding control
to the program. Section 6 discusses the presented approach and its relation to declarative
diagnosis.

2 Propositional satisfiability – first logic program

Representation of propositional formulae. We first present the encoding of proposi-
tional formulae in CNF as terms, proposed by [11] and used in this paper.

Propositional variables are represented as logical variables; truth values – as constants
true, false. A literal of a clause is represented as a pair of a truth value and a variable;
a positive literal, say x, as true-X and a negative one, say ¬x, as false-X. A clause is
represented as a list of (representations of) literals, and a conjunction of clauses as a list
of their representations. For instance a formula (x ∨ ¬y ∨ z) ∧ (¬x ∨ v) is represented as
[[true-X,false-Y,true-Z],[false-X,true-V]].

An assignment of truth values to variables can be represented as a substitution. Thus a
clause (represented by) f is true under an assignment (represented by) θ iff the list fθ has
an element of the form t-t, i.e. false-false or true-true. A formula in CNF is satisfiable
iff its representation has an instance whose each element (is a list which) contains a t-t.
We will often say “formula f” for a formula in CNF represented as a term f , similarly for
clauses etc.
The program. Now we construct a simple logic program checking satisfiability of such
formulae. We begin with describing the (unary) relations to be defined by the program. Let

L0
1 =

{
[t1-u1, . . . , tn-un] ∈ H | n > 0, ti = ui for some i ∈ {1, . . . , n}

}
,

L0
2 = { [s1, . . . , sn] | n ≥ 0, s1, . . . , sn ∈ L0

1 }.

W. Drabent 303

(It may be additionally required that all tj , uj are in {true, false}, we do not impose this
restriction). A clause f is true under an assignment θ iff the list fθ is in L0

1. A formula
in CNF is satisfiable iff it has an instance in L0

2. However L0
2 is not a unique set with this

property. Moreover, a program defining (exactly) L0
2 would be unnecessarily complicated

and would involve unnecessary computations (like checking if the elements of a list are indeed
closed lists of pairs). So we extend L0

2.
A list of the form [t1-u1, . . . , tn-un] (n ≥ 0) will be called a list of pairs. Let

L1 =
{
t ∈ H | if t is a list of pairs then t ∈ L0

1
}
,

L2 =
{
s ∈ H | if s is a list of lists of pairs then s ∈ L0

2
}
.

Note that L0
1 ⊆ L1, L

0
2 ⊆ L2, and that for any set L′

2 such that L0
2 ⊆ L′

2 ⊆ L2 it holds:

A formula in CNF is satisfiable iff it has an instance in L′
2. (1)

(Because any its instance from L2 is also in L0
2, as the formula is a list of lists of pairs).

Thus a program computing any such set L′
2 would do.

A program P1 defining such L′
2 is constructed in a rather obvious way. Its main procedure

is sat_cnf. It employs sat_cl, which defines an L′
1 such that L0

1 ⊆ L′
1 ⊆ L1. In the next

section we prove that the sets defined by the program indeed satisfy these inclusions.

sat_cnf ([]). (2)
sat_cnf ([Clause|Clauses])← sat_cl(Clause), sat_cnf (Clauses). (3)
sat_cl([Pol-V ar|Pairs])← Pol = V ar. (4)
sat_cl([H|Pairs])← sat_cl(Pairs). (5)
=(X,X). (6)

Let f be (a representation of) a CNF formula. Then sat_cnf (f) succeeds iff f is satisfiable.

3 Correctness and completeness

Now we show how to prove that a program indeed defines the required relations. Basically
we follow the approach of [8]. We present a special case of the correctness criterion used
there, and we simplify and extend the method of proving completeness; see [7] for a wider
presentation, and for proofs of the theorems.

3.1 Specifications
We provided a specification for the program P1 by describing a set for each predicate;
the predicate should define this set. In a general case, for an n-argument predicate p the
specification describes an n-argument relation, to be defined by p. The specification in
Sect. 2 is approximate: the relations are described not exactly, each one is specified by
giving its superset and subset. It is convenient to view an approximate specification as two
specifications (in our example the first one specifies L1, L2, and the second one L0

1, L
0
2).

The former describes the tuples that are allowed to be computed, the latter those that have
to be computed. The former is related to program correctness, the latter to completeness.

In our example it was impossible to provide an exact specification, as it was not known
which of the possible relations should be implemented. The usual procedure append provides
a somehow different example of usefulness of approximate specifications [8]. In that case the
relation is known, but it is not necessary (and a bit cumbersome) to specify it exactly.

ICLP’12

304 Logic + control: An example

To make it explicit which relation corresponds to which predicate, specifications will
be represented as Herbrand interpretations. A (formal exact) specification is a Herbrand
interpretation; given a specification S, each A ∈ S is called a specified atom (by S). The
fact that p(t1, . . . , tn) ∈ S is understood as that the tuple (t1, . . . , tn) is in the relation
corresponding to p.

So the approximate specification in the example of Sect. 2 consists of two specifications
S1 and S0

1 with the specified atoms of the form, respectively:

S1 : sat_cnf (t),
sat_cl(s),
x=x,

where t ∈ L2,

s ∈ L1,

x ∈ H
(7)

S0
1 : sat_cnf (t),

sat_cl(s),
x=x,

where t ∈ L0
2,

s ∈ L0
1,

x ∈ H
(8)

Correctness and completeness. In imperative programming, correctness usually means
that the program results are as specified. In logic programming, due to its non-deterministic
nature, we actually have two issues: correctness (all the results are compatible with the
specification) and completeness (all the results required by the specification are produced).
In other words, correctness means that the relation defined by the program is a subset
of the specified one, and completeness means inclusion in the opposite direction. Given a
specification S and a program P , with its least Herbrand model MP , we have: P is correct
w.r.t. S iff MP ⊆ S; it is complete w.r.t. S iff MP ⊇ S.

Notice that if a program P is both correct and complete w.r.t. S then MP = S and
the specification describes exactly the relations defined by P . An approximate specification,
given by a pair Scorr, Scompl of Herbrand interpretations, means that for one of them the
program has to be correct, for the other – complete. Formally, it is required that Scompl ⊆
MP ⊆ Scorr.

It is useful to relate correctness and completeness with answers of programs.1

I Proposition 1. Let P be a program, Q a query, and S a specification.
If P is correct w.r.t. S and Qθ is an answer for P then S |= Qθ.
If P is complete w.r.t. S and S |= Qσ, for a ground Qσ, then Qσ is an answer for P ,

and is an instance of some computed answer for P and Q.

3.2 Correctness
To prove correctness we use the following property [4]; see [8] for further explanations.

I Theorem 2 (Correctness). A sufficient condition for a program P to be correct w.r.t. a
specification S is S |= P .

Note that S |= P means that for each ground instance H ← B1, . . . , Bn of a rule of P , if
B1, . . . , Bn ∈ S then H ∈ S.

Using Th. 2, it is easy to show that P1 is correct w.r.t. S1. For instance consider rule (5),
and its arbitrary ground instance sat_cl([u|s])← sat_cl(s), such that sat_cl(s) ∈ S1. If [u|s]
is a list of pairs then s is; thus s ∈ L0

1, and [u|s] ∈ L0
1. So [u|s] ∈ L1, and sat_cl([u|s]) ∈ S1.

We leave the rest of the proof to the reader.

1 By a computed (respectively correct) answer for a program P and a query Q we mean an instance Qθ
of Q where θ is a computed (correct) answer substitution [1] for Q and P . We often say just “answer”,
as each computed answer is a correct one, and each correct answer (for Q) is a computed answer (for Q
or for some its instance Qσ). Thus, by soundness and completeness of SLD-resolution, Qθ is an answer
for P iff P |= Qθ.

W. Drabent 305

3.3 Completeness
We begin with introducing a few auxiliary notions. Let us say that a program P is complete
for a query Q = A1, . . . , An w.r.t. S when A1θ, . . . , Anθ ∈ S implies A1θ, . . . , Anθ ∈ MP ,
for any ground instance Qθ of Q. Informally, complete for Q means that all the answers for
Q required by the specification are computed. Note that a program is complete w.r.t. S iff
it is complete w.r.t. S for any query iff it is complete w.r.t. S for any query A ∈ S.

We also say that a program P is semi-complete w.r.t. S if P is complete for any query
Q for which there exists a finite SLD-tree. Note that the existence of a finite SLD-tree
means that P with Q terminates under some selection rule. For a semi-complete program, if
a computation for a query Q terminates then all the required by the specification answers for
Q have been obtained. Here are conditions under which “semi-complete” implies “complete.”
I Proposition 3. Let a program P be semi-complete w.r.t. S. P is complete w.r.t. S if
1. for each ground atomic query A ∈ S there exists a finite SLD-tree, or
2. the program is recurrent or acceptable [1, Chapter 6].

A ground atom H is called covered [13] by a program P w.r.t. a specification S if H is
the head of a ground instance H ← B1, . . . , Bn of a rule of the program, such that all the
atoms B1, . . . , Bn are in S. For instance, given a specification S = { p(si(0)) | i ≥ 0 }, atom
p(s(0)) is covered both by a program { p(s(X))← p(X).} and by { p(X)← p(s(X)).}.

Now we are ready to present a sufficient condition for completeness.

I Theorem 4 (Completeness). Let P be a program, and S a specification.
If all the atoms from S are covered by P then P is semi-complete w.r.t. S.

Hence, if such P satisfies one of the conditions from Prop. 3 then it is complete w.r.t. S.
Let us apply Th. 4 to our program. First let us show that all the atoms from S0

1 are
covered by P1 (and thus P1 is semi-complete). For instance consider a specified atom A =
sat_cnf (t). Thus t ∈ L0

2. If t is nonempty then t = [s|t′], where s ∈ L0
1, t′ ∈ L0

2. Hence a
ground instance A← sat_cl(s), sat_cnf (t′) of a clause of P1 has all its body atoms in S0

1 , so
A is covered. If t is empty then A is covered as it is the head of the rule sat_cnf ([]). The
reasoning for the remaining atoms of S1 is similar, and left to the reader.

So the program is semi-complete w.r.t. S1, and it remains to show its termination. An
informal justification is that, for an intended initial query (or for an arbitrary ground initial
query), the predicates are invoked with (closed) lists as arguments, and each recursive call
employs a shorter list. For a formal proof that the program is recurrent [2],[1, Chapter 6.2],
see [7]. Thus by Proposition 3, P1 is complete w.r.t. S1.

4 Preparing for adding control

To be able to influence the control of program P1 in the intended way, in this section we
construct a more sophisticated logic program P3, with a program P2 as an initial stage. The
construction is guided by a formal specification, and done together with a correctness and
semi-completeness proof. Most of the details are presented. However efficiency issues are
outside of the scope of this work.

As explained in Sect. 2, it is sufficient that sat_cnf defines a set Lsat_cnf such that
L0

2 ⊆ Lsat_cnf ⊆ L2 (similarly, sat_cl defines Lsat_cl , where L0
1 ⊆ Lsat_cl ⊆ L1). The rules

for sat_cnf and = from P1, i.e. (2), (3), (6), are included in P2. We modify the definition
of sat_cl, introducing some new predicates. The new predicates would define the same
propositional clauses as sat_cl, but represented in a different way.

ICLP’12

306 Logic + control: An example

To simplify the presentation, we provide now the specification for the new predicates.
Explanations are given later on, while introducing each predicate. In the specification for
correctness (respectively completeness) the new specified atoms are

sat_cl3(s, v, p),
sat_cl5(v1, p1, v2, p2, s),
sat_cl5a(v1, p1, v2, p2, s),

where [p-v|s] ∈ L1 (respectively ∈ L0
1),

[p1-v1, p2-v2|s] ∈ L1 (respectively ∈ L0
1).

(9)

So specification S2 for correctness is obtained by adding these literals to specification S1
(cf. (7)), and specification S0

2 for completeness – by adding to S0
1 (cf. (8)) the literals of

(9) with L1 replaced by L0
1. Note that S0

2 ⊆ S2.
In what follows, SC1 stands for the sufficient condition from Th. 2 for correctness w.r.t.

S2, and SC2 – for the sufficient condition from Th. 4 for semi-completeness w.r.t. S0
2 (i.e.

each atom from S0
2 is covered). While discussing a procedure p, we consider SC2 for atoms

of the form p(. . .) from S0
2 . Let SC stand for SC1 and SC2. We perform the correctness

and completeness proof hand in hand with introducing new rules of P3. When checking a
corresponding SC is not mentioned, it is simple and left to the reader. SC for sat_cnf and
= have been already shown.

Program P1 performs inefficient search by means of backtracking. We are going to
improve it by delaying unification of pairs Pol-Var in sat_cl. The idea is to perform such
unification if Var is the only unbound variable of the clause. Otherwise, sat_cl is to be
delayed until one of the first two variables of the clause becomes bound to true or false.

This idea will be implemented by separating two cases: the clause has one literal, or
more. We want to distinguish these two cases by means of indexing the main symbol of
the first argument. So the argument should be the tail of the list. We redefine sat_cl,
introducing an auxiliary predicate sat_cl3. It defines the same set as sat_cl, but a clause
[Pol-V ar|Pairs] is represented as three arguments Pairs, V ar, Pol of sat_cl3.

sat_cl([Pol-V ar|Pairs])← sat_cl3(Pairs, V ar, Pol). (10)

Procedure sat_cl3 has to cover each atom A = sat_cl3(s, v, p) ∈ S0
2 , i.e. each A such that

[p-v|s] ∈ L0
1. Assume first s = []. Then p = v; this suggests a rule

sat_cl3([], V ar, Pol)← V ar = Pol. (11)

Its ground instance sat_cl3([], p, p) ← p= p covers A w.r.t. S0
2 . Conversely, each instance

of (11) with the body atom in S2 is of this form, its head is in S2, hence SC1 holds.
When the first argument of sat_cl3 is not [], we want to delay sat_cl3(Pairs, V ar, Pol)

until V ar or the first variable of Pairs is bound. In order to do this in, say, Sicstus, we
need to make the two variables to be separate arguments of a predicate. So we introduce
a five-argument predicate sat_cl5, which is going to be delayed. It defines the set of the
lists from Lsat_cl of length greater than 1; however a list [Pol1-V ar1, Pol2-V ar2 |Pairs] is
represented as the five arguments V ar1, Pol1, V ar2, Pol2, Pairs of sat_cl5. The intention
is to delay selecting sat_cl5 until its first or third argument is bound (is not a variable). So
the following rule completes the definition of sat_cl3.

sat_cl3([Pol2-V ar2|Pairs], V ar1, Pol1)← sat_cl5(V ar1, Pol1, V ar2, Pol2, Pairs). (12)

To check SC, let S = S2,L = L1 or S = S0
2 ,L = L0

1. For each ground instance of (12) the
body is in S iff the head is in S. Hence SC1 holds for (12), and each sat_cl3([p2-v2|s], v1, p1) ∈
S0

2 where s 6= [] is covered by (12). So SC2 for sat_cl3 holds, due to (11) and (12).

W. Drabent 307

In evaluating sat_cl5, we want to treat the bound variable (the first or the third argu-
ment) in a special way. So we make it the first argument of a new predicate sat_cl5a, with
the same declarative semantics as sat_cl5.

sat_cl5(Var1,Pol1,Var2,Pol2,Pairs)← sat_cl5a(Var1,Pol1,Var2,Pol2,Pairs). (13)
sat_cl5(Var1,Pol1,Var2,Pol2,Pairs)← sat_cl5a(Var2,Pol2,Var1,Pol1,Pairs). (14)

SC are trivially satisfied. Moreover, SC2 is satisfied by each of the two rules alone. The
control will choose the one that results in invoking sat_cl5a with its first argument bound.

To build a procedure sat_cl5a we have to provide rules which cover each atom A =
sat_cl5a(v1, p1, v2, p2, s) ∈ S0

2 . Note that A ∈ S0
2 iff [p1-v1, p2-v2|s] ∈ L0

1 iff p1 = v1 or
[p2-v2|s] ∈ L0

1 iff p1 = v1 or sat_cl3(s, v2, p2) ∈ S0
2 . So two rules follow

sat_cl5a(V ar1, Pol1, V ar2, Pol2, Pairs)← V ar1 = Pol1. (15)
sat_cl5a(V ar1, Pol1, V ar2, Pol2, Pairs)← sat_cl3(Pairs, V ar2, Pol2). (16)

and SC2 holds for sat_cl5a. To check SC1, consider a ground instance of (15), with the body
atom in S2: sat_cl5a(p, p, v2, p2, s) ← p = p. As [p-p, p2-v2|s] ∈ L1, the head of the clause
is in S2. Take a ground instance sat_cl5a(v1, p1, v2, p2, s)← sat_cl3(s, v2, p2). of (16), with
the body atom in S2. Then its head is in S2, as [p2-v2|s] ∈ L1 implies [p1-v1, p2-v2|s] ∈ L1.

From a declarative point of view, our program is ready. The logic program P2 consists
of rules (2), (3), (6), and (10) – (16). It is correct w.r.t. S2 and semi-complete w.r.t. S0

2 .
Avoiding floundering. When selecting sat_cl5 is delayed as described above, program
P2 may flounder; a nonempty query with no selected atom may appear in a computation.
Floundering is a kind of pruning SLD-trees, and may cause incompleteness. To avoid it, we
add a top level predicate sat. It defines the relation (a Cartesian product) in which the first
argument is as defined by sat_cnf , and the second argument is a list of truth values.

sat(Clauses,Vars)← sat_cnf (Clauses), tflist(Vars). (17)

(Predicate tflist will define the set of truth value lists.) The intended initial queries are of
the form

sat(f, l), where f is a (representation of a) propositional formula,
l is the list of variables in f.

(18)

Such query succeeds iff the formula f is satisfiable. Floundering is avoided, as tflist will
eventually bind all the variables of f . More precisely, consider a node Q in an arbitrary
SLD-tree for a sat(f, l) of (18). We have three cases. (i) Q is the root, or its child. (ii) Q
contains an atom derived from tflist(l). Otherwise, (iii) the variables of l (and thus those
of f) are bound; hence all the atoms of Q are ground (as no rule of P2 introduces a new
variable). So no such Q consists solely of non-ground sat_cl5 atoms.

We use auxiliary predicates to define the set of truth values, and the set of the lists of
truth values. The extended formal specification S3 for correctness consists of atoms

sat(t, u), tflist(u),
tf (true), tf (false),

where t ∈ L2, u is a list whose elements are true or false, (19)

and of those of S2 (i.e. the atoms of (7), (9)). The extended specification S0
3 for completeness

consists of S0
2 and of the atoms described by a modified (19) where L2 is replaced by L0

2.
The three new predicates are defined in a rather obvious way, following [11]:

ICLP’12

308 Logic + control: An example

tflist([]). (20)
tflist([Var |Vars])← tflist(Vars), tf (Var). (21)

tf (true). (22)
tf (false). (23)

This completes our construction. The logic program P3 consists of rules (2), (3), (6), (10)
– (17), and (20) – (23). It is correct w.r.t. S3 and semi-complete w.r.t. S0

3 . It terminates
for the intended queries, under any selection rule, as it is recurrent under a suitable level
mapping, see [7]. Thus by Prop. 3, the program is complete w.r.t. S0

3 .

5 The program with control

In this section we add control to program P3. As the result we obtain the Prolog program of
Howe and King [11]. (The predicate names differ, those in the original program are related
to its operational semantics.) The idea is that P3 with this control implements the DPLL
algorithm with watched literals and unit propagation.2

The control added to P3 modifies the default Prolog selection rule, and prunes some
redundant parts of the search space (by the if-then-else construct). So correctness and
termination of P3 are preserved (as we proved termination for any selection rule).

To delay sat_cl5 until its first or third argument is not a variable we use a declaration

:- block sat_cl5(-, ?, -, ?, ?). (24)

of Sicstus. As informally discussed in Sect. 4, for the intended initial queries floundering is
avoided; thus the completeness of P3 is preserved.

The first case of pruning is to use only one of the two rules (13), (14), the one which
invokes sat_cl5a with the first argument bound. According to [7, Corollary 6], this pruning
preserves completeness (see [7] for a proof). The pruning is implemented by employing the
nonvar built-in and the if-then-else construct of Prolog:

sat_cl5(V ar1, Pol1, V ar2, Pol2, Pairs)←
nonvar(V ar1)→ sat_cl5a(V ar1, Pol1, V ar2, Pol2, Pairs);

sat_cl5a(V ar2, Pol2, V ar1, Pol1, Pairs).
(25)

An efficiency improvement related to rules (15), (16) is possible. Procedure sat_cl5a
is invoked with the first argument Var1 bound. If the first argument of the initial query
sat(f, l) is a (representation of a) propositional formula then sat_cl5a is called with its
second argument Pol1 being true or false. So the unification Var1 = Pol1 in (15) works
as a test, and the rule binds no variables.3 Thus after a success of rule (15) there is no point
in invoking (16), as the success of (15) produces the most general answer for sat_cl5a(. . .),
which subsumes any other answer. Hence the search space can be pruned accordingly. We
do this by converting the two rules into

sat_cl5a(V ar1, Pol1, V ar2, Pol2, Pairs)←
V ar1 =Pol1 → true; sat_cl3(Pairs, V ar2, Pol2). (26)

This completes our construction. The obtained Prolog program consists of declaration (24),
the rules of P3 except for those for sat_cl5 and sat_cl5a, i.e. (2), (3), (6), (10) – (12), (17),
(20) – (23), and Prolog rules (25), (26). It is correct w.r.t. S3, and is complete w.r.t. S0

3 for
queries of the form (18).

2 However, when a non-watched literal in a clause becomes true, the clause is not immediately removed.
3 So = may be replaced by the built-in ==, as in [11].

W. Drabent 309

6 Discussion

Proof methods. The correctness proving method of [4] (further references in [8]) used
here should be well-known, but is often neglected. For instance, an important monograph
[1] uses a more complicated method (of [3]), which refers to the operational semantics (LD-
resolution). See [8] for comparison and argumentation that the simpler method is sufficient.

Proving completeness has been seldom considered, especially within a framework of de-
clarative semantics. For instance it is not discussed in [1]. (Instead, for a program P and
an atomic query A, a characterization of the set of computed instances of A is studied,
in a special case of the set being finite and the answers ground [1, Sect. 8.4].) Book [5]
presents criteria for program completeness, in a sophisticated framework of relating logic
programming and attribute grammars. The method presented here (Sect. 3.3, [7]) is a sim-
plification of that from [8] (an initial version appeared in [6]). Our notion of completeness
is slightly different, and programs with negation are excluded. We introduce a notion of
semi-completeness, for which the corresponding sufficient condition deals with program pro-
cedures separately, while for completeness the whole program has to be taken into account.

Correctness and completeness are declarative properties, they are independent from the
operational semantics. If dealing with them required reasoning in terms of operational
semantics then logic programming would not deserve to be meant a declarative programming
paradigm. The sufficient criteria of Th. 2, 4 for correctness and semi-completeness are purely
declarative, they treat program rules as logical formulae, and abstract from any operational
notions. However proving completeness refers to program termination. The reason is that
in practice termination has to be concerned anyway, and a pure declarative approach to
completeness [5, Th. 6.1] seems more complicated [7] (and it includes a condition similar to
those for proving termination). Note that semi-completeness alone may be a useful property,
as it guarantees that whenever the computation terminates, all the required answers have
been computed.

We want to stress the simplicity and naturalness of the sufficient conditions for cor-
rectness and semi-completeness (Th. 2, 4). Informally, the first one says that the rules of a
program should produce only correct conclusions, given correct premises. The other says
that each ground atom that should be produced by P has to be the head of a rule instance,
whose body atoms should be produced by P too. The author believes that this is a way a
competent programmer reasons about (the declarative semantics of) a logic program.

Specifications. The examples of programs P1 and P3 show usefulness of approximate spe-
cifications (p. 303). They are crucial for avoiding unnecessary complications in constructing
specifications and in correctness and completeness proofs. They are natural: when starting
construction of a program, the relations it should compute are often known only approxim-
ately. Also, it is often difficult (and unnecessary) to exactly establish the relations computed
by a program. As an example, the reader may try to describe the two (distinct) sets defined
by the main procedures of P1 and P2 (cf. [7], where MP1 is given.)

Specifications which are interpretations (as here and in [1]) have a limitation. They
cannot express that e.g. for a given a there exists a b such that p(a, b). In our case, we could
not specify that it is sufficient for a SAT solver to find some variable assignment satisfying
f , whenever f is satisfiable. Our specifications S0

1 , S0
3 require that all such assignments are

found. The problem seems to be solved by introducing specifications in a form of logical
theories (where axioms like ∃b. p(a, b) can be used). This idea is present in [5, 8].

Relations to declarative diagnosis. Declarative diagnosis methods (called sometimes
declarative debugging) [13] (see also [9, 12] and references therein) locate in a program the

ICLP’12

310 Logic + control: An example

reason for its incorrectness or incompleteness. A diagnosis algorithm begins with a symptom
(obtained from testing the program): an answer Q such that S 6|= Q, or a query Q for which
computation terminates but some answers required by S are not produced. The located
error turns out to be the program fragment (a rule or a procedure) which violates our
sufficient condition for correctness or, respectively, semi-completeness. Roughly speaking,
the diagnosis algorithm actually checks the sufficient conditions of Th. 2 (Th. 4), but only
for some instances of program rules (for some specified atoms) – those involved in producing
the symptom. (See [7] for further discussion.)

An attempt to prove a buggy program to be correct (complete) results in violating the
corresponding sufficient condition for some rule (specified atom). For instance, in this way
the author found an error in a former version of P1 (there was [Pairs] instead of Pairs).
Any error located by diagnosis will also be found by a proof attempt; moreover no symptom
is needed, and all the errors are found. However the sufficient condition has to be checked
for all the rules of the program (for all specified atoms).

A serious difficulty in using declarative diagnosis methods is that an exact specification (a
single intended model) of the program is needed. Then answering some diagnoser queries,
like “is append([a], b, [a|b]) correct”, may be difficult, as the programmer often does not
know some details of the intended model, like those related to applying append on non-lists.
The problem has been pointed out in [9] and discussed in [12] (see also references therein).
A solution is to employ approximate specifications; incorrectness diagnosis should use the
specification for correctness, and incompleteness diagnosis that for completeness. This seems
simpler than introducing new diagnosis algorithms based on three logical values [12].

7 Conclusions

The central part of this paper is an example of a systematic construction of a Prolog program:
the SAT solver of [11]. Starting from a formal specification, a definite clause program, called
P3, is constructed hand in hand with a proof of its correctness and completeness (Sect. 4).
The final Prolog program is obtained from P3 by adding control (delays and pruning SLD-
trees, Sect. 5). Correctness, completeness and termination of a pure logic program can be
dealt with formally, and we proved them for P3. Adding control preserves correctness and (in
this case) termination. We partly proved, and partly justified informally that completeness
is preserved too. We point out usefulness of approximate specifications.

The employed proof methods are of separate interest. The method for correctness [4]
is simple, should be well-known, but is often neglected. A contribution of this work is a
method for proving completeness (Sect. 3.3, [7]), a simplification of that of [8]. Due to lack
of space, taking pruning into account in proving completeness [7] is not discussed here.

We are interested in declarative programming. Our main example was intended to show
how much of the programming task can be done without considering the operational se-
mantics, how “logic” could be separated from “control.” A substantial part of work could be
done at the stage of a pure logic program, where correctness, completeness and termination
could be dealt with formally. It is important that all the considerations and decisions about
the program execution and efficiency (only superficially treated here) are independent from
those related to the declarative semantics, to the correctness of the final program, and – to
a substantial extent – its completeness.

We argue that the employed proof methods are simple, and correspond to a natural way
of declarative thinking about programs. We believe that they can be actually used – maybe
at an informal level – in practical programming; this is supported by our main example.

W. Drabent 311

References
1 K. R. Apt. From Logic Programming to Prolog. International Series in Computer Science.

Prentice-Hall, 1997.
2 M. Bezem. Strong termination of logic programs. J. Log. Program., 15(1&2):79–97, 1993.
3 A. Bossi and N. Cocco. Verifying correctness of logic programs. In J. Díaz and F. Orejas,

editors, TAPSOFT, Vol.2, volume 352 of Lecture Notes in Computer Science, pages 96–110.
Springer, 1989.

4 K. L. Clark. Predicate logic as computational formalism. Technical Report 79/59, Imperial
College, London, December 1979.

5 P. Deransart and J. Małuszyński. A grammatical view of logic programming. MIT Press,
1993.

6 W. Drabent. It is declarative. In Logic Programming: The 1999 International Conference,
page 607. The MIT Press, 1999. Poster abstract. A technical report at http://www.ipipan.
waw.pl/~drabent/itsdeclarative3.pdf.

7 W. Drabent. Logic + control: An example of program construction. CoRR, arXiv:1110.4978
[cs.LO], 2012. Corrected version. http://arxiv.org/abs/1110.4978.

8 W. Drabent and M. Miłkowska. Proving correctness and completeness of normal programs –
a declarative approach. Theory and Practice of Logic Programming, 5(6):669–711, 2005.

9 W. Drabent, S. Nadjm-Tehrani, and J. Małuszyński. Algorithmic Debugging with Assertions.
In H. Abramson and M. H. Rogers, editors, Meta-Programming in Logic Programming, pages
501–522. The MIT Press, 1989.

10 J. M. Howe and A. King. A pearl on SAT solving in Prolog (extended abstract). Logic
Programming Newsletter, 24(1), March 31 2011. http://www.cs.nmsu.edu/ALP/2011/03/
a-pearl-on-sat-solving-in-prolog-extended-abstract/.

11 J. M. Howe and A. King. A pearl on SAT and SMT solving in Prolog. Theoretical Computer
Science, 2012. Special Issue on FLOPS 2010. Available online http://dx.doi.org/10.1016/
j.tcs.2012.02.024. An earlier version is [10].

12 L. Naish. A three-valued declarative debugging scheme. In 23rd Australasian Computer
Science Conference (ACSC 2000), pages 166–173. IEEE Computer Society, 2000.

13 E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

ICLP’12

http://www.ipipan.waw.pl/~drabent/itsdeclarative3.pdf
http://www.ipipan.waw.pl/~drabent/itsdeclarative3.pdf
http://arxiv.org/abs/1110.4978
http://www.cs.nmsu.edu/ALP/2011/03/a-pearl-on-sat-solving-in-prolog-extended-abstract/
http://www.cs.nmsu.edu/ALP/2011/03/a-pearl-on-sat-solving-in-prolog-extended-abstract/
http://dx.doi.org/10.1016/j.tcs.2012.02.024
http://dx.doi.org/10.1016/j.tcs.2012.02.024

Deriving a Fast Inverse of the Generalized Cantor
N-tupling Bijection
Paul Tarau

Dept. of Computer Science and Engineering
University of North Texas, Denton, Texas, USA
tarau@cs.unt.edu

Abstract
We attack an interesting open problem (an efficient algorithm to invert the generalized Cantor
N-tupling bijection) and solve it through a sequence of equivalence preserving transformations
of logic programs, that take advantage of unique strengths of this programming paradigm. An
extension to set and multiset tuple encodings, as well as a simple application to a “fair-search”
mechanism illustrate practical uses of our algorithms.

The code in the paper (a literate Prolog program, tested with SWI-Prolog and Lean Prolog)
is available at http://logic.cse.unt.edu/tarau/research/2012/pcantor.pl.

1998 ACM Subject Classification F.4.1 Mathematical Logic, Logic Programming

Keywords and phrases generalized Cantor n-tupling bijection, bijective data type transfor-
mations, combinatorial number system, solving combinatorial problems in Prolog, optimization
through program transformation, logic programming and software engineering

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.312

1 Introduction

It is by no means a secret that logic programming is an ideal paradigm for solving combi-
natorial problems. Built-in backtracking, unification and availability of constraint solvers
facilitates quick prototyping for problems involving search or generation of combinatorial
objects. It also provides an easy path from executable specification to optimal implementation
through a well-understood set of program transformations. From a software engineering
perspective, problem solving with help of logic programming tools is a natural fit to agile de-
velopment practices as it encourages a fast moving iterative process consisting of incremental
refinements.

This paper reports on tackling a somewhat atypical problem solving instance: finding a
fast inverse of a generalization of Cantor’s pairing bijection to n-tuples. This generalization
is mentioned in two relatively recent papers [2, 7] with a possible attribution in [2] to Skolem
as a first reference.

The formula, given in [2] p.4, looks as follows:

Kn(x1, . . . , xn) =
(

n−1+x1+...+xn

n

)
+ · · ·+

(
k−1+x1+...+xk

k

)
+ . . . +

(1+x1+x2
2

)
+
(

x1
1
)

where
(

n
k

)
represents the number of subsets of k elements of a set of n elements and

Kn(x1, . . . , xn) denotes the natural number associated to the tuple x1, . . . , xn. So the
problem of inverting it means finding a solution of the Diophantine equation(

x1

1

)
+
(

1 + x1 + x2

2

)
+ . . . +

(
n− 1 + x1 + . . . + xn

n

)
= z (1)

© Paul Tarau;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 312–322

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://logic.cse.unt.edu/tarau/research/2012/pcantor.pl
http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.312
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Tarau 313

and proving that it is unique. Unfortunately, despite extensive literature search, we have not
found any attempt to devise an algorithm that computes the inverse of the function Kn, so
we had to accept the fact that we were looking at an open problem with possibly interesting
implications, given that for n = 2 it reduces to Cantor’s pairing function that has been used
in hundreds of papers on foundations of mathematics, logic, recursion theory as well as in
some practical applications (dynamic n-dimensional arrays) like [11].

As an inductive proof that Kn is a bijection is given in [7] (Theorem 2.1), we know that
a solution exists and is unique, so the problem reduces to computing the first solution of the
Diophantine equation (1).

Unfortunately, solving an arbitrary Diophantine equation is Turing-equivalent. This is
a consequence of the negative answer to Hilbert’s 10-th problem, proven by Matiyasevich
[8], based on earlier work by Robinson, Davis and Putnam [4, 10], and some fairly simple
instances of it, like Fermat’s ∃x, y, z > 0,∃n ≥ 3, xn + yn = zn have waited for centuries
before being solved.

On the other hand, things do not look that bad in this case, as it is easy to show that
in the equation (1), ∀i, xi ≤ z holds. Therefore, an enumeration of all tuples x1, . . . , xn for
0 ≤ xi ≤ z provides an obvious but dramatically inefficient solution.

So our open problem reduces to finding an efficient, linear or low polynomial algorithm
for computing the inverse. This paper provides a surprisingly simple solution to it in section
7, after telling the story of our incremental refinements (as well as backtracking steps) leading
to it. Section 2 overviews the well-known solution for n = 2. Section 3 provides the Prolog
implementation of the mapping from n-tuples to natural numbers. Section 4 describes the
successive refinements of the inverse function, from its specification to a moderately useful
implementation. Section 5 introduces a list-to-set bijection that will turn out to be helpful
in “connecting the dots” to a well-known combinatorial problem that leads to our solution
described in section 7 (after a small “backtracking step” shown in section 6). Section 8
extends the bijection to sets and multisets. Section 10 discusses related work and section 11
concludes the paper.

2 The Classic Result: Cantor’s Pairing Function and its Inverse

Cantor’s pairing function is a polynomial of degree 2, obtained from the generalized one for
n = 2, given by the formula f(x1, x2) = x1 + (x1+x2+1)(x1+x2)

2 .
The following Prolog code implements it:

cantor_pair(X1,X2,P) :- P is X1 + (((X1+X2+1) * (X1+X2)) // 2).

Note that by composing it n times, one can obtain an n-tupling function, but unfortunately
the resulting polynomial is of degree 2n, in contrast to the generalized n-tupling bijection
which is a polynomial of degree n. On the other, hand, as the following Prolog code shows,
the problem of finding its inverse efficiently is relatively easy. Basically, the inverse of Cantor’s
pairing function is obtained by solving a second degree equation while keeping in mind that
solutions should be natural numbers [17].

cantor_unpair(P,K1,K2) :- E is 8*P+1, intSqrt(E,R), I is (R-1)//2,
K1 is P-((I*(I+1))//2), K2 is ((I*(3+I))//2)-P.

We face a small bump here – Prolog’s ordinary square root returning a fixed size float
or double does not make sense when working with arbitrary size integers, so we need to

ICLP’12

314 Deriving a Fast Inverse of the Generalized Cantor N-tupling Bijection

implement an “integer square root” of N returning the natural number that provides the
largest perfect square ≤ N . Fortunately, we can ensure fast convergence using Newton’s
method:
intSqrt(0,0).
intSqrt(N,R) :- N>0, iterate(N,N,K), K2 is K*K, (K2>N -> R is K-1 ; R=K).

iterate(N,X,NewR) :- R is (X+(N//X))//2, A is abs(R-X),
(A<2 -> NewR=R ; iterate(N,R,NewR)).

As the following example shows, computations with larger than 64-bit operands are handled,
provided that the underlying Prolog system supports arbitrary size integers.
?- cantor_pair(1234567890,9876543210,P),cantor_unpair(P,A,B).
P = 61728394953703703760, A = 1234567890, B = 9876543210.

3 Implementing the Generalized Cantor n-tupling Bijection

Tupling/untupling functions are a natural generalization of pairing/unpairing operations.
They are called ranking/unranking functions by combinatorialists as they map bijectively
various combinatorial objects to N (ranking) and back (unranking).

The natural generalization of Cantor’s pairing bijection described in [2] is introduced
using geometric considerations that make it obvious that it defines a bijection Kn : Nn → N.
More precisely, they observe that the enumeration in N2 of integer coordinate pairs laying
on the anti-diagonals x1 + x2 = c can be lifted to points with integer coordinates laying on
hyperplanes of the form x1 + x2 + . . . + xk = c. The same result, using a slightly different
formula is proven algebraically, by induction in [7]. We remind that the bijection Kn is
defined by the formula

Kn(x1, . . . , xn) =
n∑

k=1

(
k − 1 + x1 + . . . + xk

k

)
(2)

where
(

n
k

)
, also called “binomial coefficient” denotes the number of subsets of n with k

elements as well as the coefficient of xk in the expansion of the binomial (x + y)n.
It is easy to see that the generalized Cantor n-tupling function defined by equation (2) is

a polynomial of degree n in its arguments, and a conjecture, attributed in [2] to Rudolf Fueter
(1923), states that it is the only one, up to a permutation of the arguments. As mentioned
in section 1, as we have found out through extensive literature search, while hoping for the
contrary, it was also an open problem to find an efficient inverse for it.

Our first step is an efficient implementation of the function Kn : Nk → N. By all means,
this is the easy part, just summing up a set of binomial coefficients.

3.1 Binomial Coefficients, efficiently
Computing binomial coefficients efficiently is well-known(

k

n

)
= n!

k!(n− k)! = n(n− 1) . . . (n− (k − 1))
k! (3)

However, we will need to make sure that we avoid unnecessary computations and reduce
memory requirements by using a tail-recursive loop. After simplifying the slow formula in the
first part of the equation (3) with the faster one based on falling factorial n(n− 1) . . . (n−
(k − 1)), and performing divisions as early as possible to avoid generating excessively large
intermediate results, one can derive the binomial_loop tail-recursive predicate:

P. Tarau 315

binomial_loop(_,K,I,P,R) :- I>=K, !, R=P.
binomial_loop(N,K,I,P,R) :- I1 is I+1, P1 is ((N-I)*P) // I1,

binomial_loop(N,K,I1,P1,R).

Note that, as a simple optimization, when N −K ≤ K, the faster computation of
(

N
N−K

)
is

used to reduce the number of steps in binomial_loop.
The resulting predicate binomial(N,K,R) computes

(
N
K

)
and unifies the result with R.

binomial(N,K,R) :- N<K, !, R=0.
binomial(N,K,R) :- K1 is N-K, K>K1, !, binomial_loop(N,K1,0,1,R).
binomial(N,K,R) :- binomial_loop(N,K,0,1,R).

3.2 The Nk → N bijection
We are ready to implement a first version of the Nk → N ranking function as a tail-recursive
computation using the accumulator pairs L1 → L2, that hold the states of the length of the
list processed so far, and S1 → S2, that hold the state of the prefix sum of X1, X2, . . . Xk

computed so far.

from_cantor_tuple1(Xs,R) :- from_cantor_tuple1(Xs,0,0,0,R).

from_cantor_tuple1([],_L,_S,B,B).
from_cantor_tuple1([X|Xs],L1,S1,B1,Bn) :- L2 is L1+1, S2 is S1+X, N is S2+L1,

binomial(N,L2,B), B2 is B1+B,
from_cantor_tuple1(Xs,L2,S2,B2,Bn).

The following examples illustrate the fact that the values of the result are relatively small,
independently of the length or the size of the values on the input list.

?- from_cantor_tuple([],N).
N = 0.
?- from_cantor_tuple([0,2012,999,0,10],N).
N = 2107259417045595.
?- from_cantor_tuple([9,8,7,6,5,4,3,2,1,0,0,1,2,3,4,5,6,7,8,9],N).
N = 3706225144988231392404.

4 Refining the Specification of the Inverse

We start with an executable specification of the inverse, seen as defining, for a given K, a
bijection gK : N→ NK .

4.1 Enumerating, naively
The predicate to_cantor_tuple1(K,N,Ns) computes, for each K, the function gK associating
to the natural number N a tuple represented as a list Ns of length K.

to_cantor_tuple1(K,N,Ns) :- numlist(0,N,Is), cartesian_power(K,Is,Ns),
from_cantor_tuple1(Ns,N),
!. % just an optimization - no other solutions exist

Note that the built-in numlist(From, To, Is) is used to generate a list of integers in the
interval [From..To]).

The predicate to_cantor_tuple1 uses cartesian_power(K,Is,Ns) to enumerate candi-
dates of length K, drawn from the initial segment [0..N] of N.

ICLP’12

316 Deriving a Fast Inverse of the Generalized Cantor N-tupling Bijection

cartesian_power(0,_,[]).
cartesian_power(K,Is,[X|Xs]) :- K>0, K1 is K-1, member(X,Is),

cartesian_power(K1,Is,Xs).

As cartesian_power backtracks over this finite set of potential solutions, the predicate
from_cantor_tuple1(Ns,N) is called until the first (and known to be unique) solution is
found. Given the unicity of the solution, the CUT in the predicate to_cantor_tuple1 is
simply an optimization without an effect on the meaning of the program.

The following example illustrates the correctness of this executable specification.

?- to_cantor_tuple1(3,42,R), from_cantor_tuple(R,S).
R = [1, 2, 2], S = 42.

Unfortunately, performance deteriorates quickly around K larger than 5 and N larger than
100 as the time complexity of this program is at least O(NK). However, given our reliance
on Prolog’s backtracking, the search uses at most O(Klog(N)) space when filtering through
lists of length K containing numbers of at most the bitsize of N.

4.2 A better algorithm, using a tighter upper limit
The next step in deriving an efficient untupling function is a bit trickier. First we observe that,
as from_cantor_tuple(K,Ns,N) runs through successive hyperplanes X1 + . . . + Xk = M ,
for each of them the sum maxes out when X1 = M and Xk = 0 for 1 ≤ K ≤ N . We can
compute directly this maximum value with the predicate largest_binomial_sum as follows:

largest_binomial_sum(K,M,R) :- largest_binomial_sum(K,M,0,R).

largest_binomial_sum(0,_,R,R).
largest_binomial_sum(K,M,R1,Rn) :- K>0, K1 is K-1, M1 is M+K1,

binomial(M1,K,B), R2 is R1+B,
largest_binomial_sum(K1,M,R2,Rn).

The predicate largest_binomial_sum(K,M,R) computes the same R as cantor_tuple([M,
0,...,0], R), with K-1 0s following M.

Next we compute the upper limit for possible values of the sum M of [X1, ..., Xk] such
that the relation to_cantor_tuple([X1,...,Xk],N) holds, i.e. we find the hyperplane
X1 + . . . + Xk = M defining the Cantor K-tuple. This computation, is implemented by the
predicate find_hyper_plane(K,N,M) which, when given the inputs K and M, finds the value
of the sum M that defines the hyperplane containing our tuple.

find_hyper_plane(0,_,0).
find_hyper_plane(K,N,M) :- K>0, between(0,N,M), largest_binomial_sum(K,M,R), R>=N,!.

Note the use of the built-in between(From,To,I) that backtracks over integers in the interval
[From..To].

We are now ready to define a more efficient inverse of the from_cantor_tuple1 bijec-
tion, called to_cantor_tuple2, as a search through the set of lists such that the relation
from_cantor_tuple1(Xs,N) holds.

to_cantor_tuple2(K,N,Ns) :- find_hyper_plane(K,N,M),
sum_bounded_cartesian_power(K,M,Xs),
from_cantor_tuple1(Xs,N),
!,
Ns=Xs.

P. Tarau 317

The search, restricted this time to integers in the interval [0..M] is implemented by the
predicate sum_bounded_cartesian_power.

sum_bounded_cartesian_power(0,0,[]).
sum_bounded_cartesian_power(K,M,[X|Xs]) :- K>0, M>=0, K1 is K-1,

between(0,M,X), M1 is M-X,
sum_bounded_cartesian_power(K1,M1,Xs).

Note that, after applying the upper limit M computed by find_hyper_plane, to ensure
that only tuples summing up to M are explored, we are using a customized cartesian prod-
uct computation, in the predicate sum_bounded_cartesian_power backtracking over lists
[X1...Xk] that sum-up to M. However, as the query

?- findall(M,(between(0,31,N),P is 2^N,find_hyper_plane(2,P,M)),Ms).
Ms = [1,1,2,3,5,7,10,15,22,31,44,63,90,127,180,255,361,511,723,1023,

1447,2047,2895,4095,5792,8191,11584,16383,23169,32767,46340,65535]

indicates, while M grows significantly slower than P it can reach intractable ranges quite
quickly.

The predicate to_cantor_tuple2 is a good improvement over to_cantor_tuple1, but
it is by no means the efficient algorithm we are seeking.

Clearly, a “paradigm shift” is needed at this point, as obvious optimizations only promise
diminishing returns. The highest hope would be to find a deterministic predicate similar to
the integer square root based inverse for the case N = 2, but this time the arbitrary degree
N of our polynomial looks like an insurmountable obstacle.

5 The Missing Link: from Lists to Sets and Back

After rewriting the formula for the Nk → N bijection as:

Kn(x1, . . . , xn) =
n∑

k=1

(
k − 1 + sk

k

)
(4)

where sk =
k∑

i=1
xi, we recognize the prefix sums sk incremented with values of k starting at 0.

At this point, as our key “Eureka step”, we instantly recognize here the “set side” of the
bijection between sequences of n natural numbers and sets of n natural numbers described
in [13]1. We can compute the bijection list2set together with its inverse set2list as

list2set(Ns,Xs) :- list2set(Ns,-1,Xs).

list2set([],_,[]).
list2set([N|Ns],Y,[X|Xs]) :- X is (N+Y)+1, list2set(Ns,X,Xs).

set2list(Xs,Ns) :- set2list(Xs,-1,Ns).

set2list([],_,[]).
set2list([X|Xs],Y,[N|Ns]) :- N is (X-Y)-1, set2list(Xs,X,Ns).

1 In [13] a general framework for bijective data transformations provides such conversion algorithms
between a large number of fundamental data types.

ICLP’12

318 Deriving a Fast Inverse of the Generalized Cantor N-tupling Bijection

The following examples illustrate how it works:

?- list2set([2,0,1,2],Set).
Set = [2, 3, 5, 8].

?- set2list([2, 3, 5, 8],List).
List = [2, 0, 1, 2].

As a side note, this bijection is mentioned in [5] and implicitly in [2], with indications that it
might even go back to the early days of the theory of recursive functions.

6 Backtracking one step: revisiting the Nk → N bijection

It is time to step back at this point, and factor out list2set from our tail-recursive
“untupling” loop from_cantor_tuple1.

The predicate from_cantor_tuple implements the the Nk → N bijection in Prolog, using
the iterative computation of the binomial

(
n
k

)
as well as the sequence to set transformer

list2set. In contrast to from_cantor_tuple1, untupling_loop does not need to add the
increments 1, 2, ..L− 1 as this task has been factored out and processed by list2set.

from_cantor_tuple(Ns,N) :-
list2set(Ns,Xs),
untupling_loop(Xs,0,0,N).

untupling_loop([],_L,B,B).
untupling_loop([X|Xs],L1,B1,Bn) :- L2 is L1+1, binomial(X,L2,B), B2 is B1+B,

untupling_loop(Xs,L2,B2,Bn).

This shifts the problem of computing its inverse from lists to sets, an apparently minor use
of a bijective data type transformation, that will turn out to be the single most critical step
toward our solution.

7 The Efficient Inverse

We have now split our problem in two simpler ones: inverting untupling_loop and then
applying set2list to get back from sets to lists.

Our first attempt was to try out constraint solving as it can sometime reverse arithmetic
operations. Moreover, global constraints like all_different can take advantage of the fact
that we are dealing with sets. However, the code (included as a comment in the companion
Prolog file), turned out to be orders of magnitude slower than to_cantor_tuple2. This
happened despite of the fact that we have tried also to take advantage of the optimizations
implemented by the predicate to_cantor_tuple2, most likely because delaying computations
brought unnecessary overhead without changing the essentially nondeterministic nature of
the search.

The key “Eureka step” at this point is to observe that untupling_loop implements the
sum of the combinations

(
X1
1
)
+
(

X2
2
)
+. . .+

(
XK

K

)
= N , which is nothing but the representation

of N in the combinatorial number system of degree K, [16], due to [6]. Fortunately, efficient
conversion algorithms between the conventional and the combinatorial number system are
well known, [1, 5].

For instance, theorem L in [5] describes the precise position of a given sequence in the
lexicographic order enumeration of all sequences of length k.

P. Tarau 319

I Theorem 1 (Knuth). The combination [ck, . . . c2, c1] is visited after exactly
(

ck

k

)
+ . . . +(

c2
2
)

+
(

c1
1
)
other combinations have been visited.

We are ready to implement the Prolog predicate tupling_loop(K,N,Ds), which, given
the degree K indicating the number of “combination digits”, finds and repeatedly subtracts
the greatest binomial smaller than N.
tupling_loop(0,_,[]).
tupling_loop(K,N,[D|Ns]) :- K>0, NewK is K-1, I is K+N,

between(NewK,I,M), binomial(M,K,B), B>N,
!, % no more search is needed
D is M-1, % the previous binomial gives the "digit" D
binomial(D,K,BM), NewN is N-BM,
tupling_loop(NewK,NewN,Ns).

The predicate tupling_loop implements a deterministic greedy search algorithm, by sub-
tracting the combination containing the most significant “digit” D at each step from the
variable N. At a given step, this results in the variable NewN that carries on the result in
the tail-recursive loop. At the same time, the decreased value of K, used in the binomial is
carried on as the variable NewK.

The efficient inverse of Cantor’s N-tupling is now simply:
to_cantor_tuple(K,N,Ns) :- tupling_loop(K,N,Xs), reverse(Xs,Rs), set2list(Rs,Ns).

Note that we reverse the intermediate result Xs to ensure that set2list receives it in
increasing order - our canonical representation for sets. The following example illustrates
that it works as expected, including on very large numbers:

?- to_cantor_tuple(1234,6666777788889999000031415,Ns), from_cantor_tuple(Ns,N).
Ns = [0, 0, 0, 0, 0, 0, 0, 0, 0...,0, 0, 1, 0], N = 6666777788889999000031415 .

8 Extending the Bijection to Sets and Multisets of K Natural
Numbers

We obtain a bijection from natural numbers to sets of K natural numbers, canonically
represented as lists of strictly increasing elements, by simply dropping the set2list and
list2set operations.
from_cantor_set_tuple(Xs,N) :- untupling_loop(Xs,0,0,N).

to_cantor_set_tuple(K,N,Xs) :- tupling_loop(K,N,Ts), reverse(Ts,Xs).

Multisets of K natural numbers are represented canonically as sequences of nonde-
creasing, but possibly duplicated elements. Following [13], a transformation, similar to
list2set/set2list can be derived for multisets. After a few unfoldings, the resulting code,
using tail recursive helper predicates, becomes:
mset2set(Ns,Xs) :- mset2set(Ns,0,Xs).

mset2set([],_,[]).
mset2set([X|Xs],I,[M|Ms]) :- I1 is I+1, M is X+I, mset2set(Xs,I1,Ms).

set2mset(Xs,Ns) :- set2mset(Xs,0,Ns).

set2mset([],_,[]).
set2mset([X|Xs],I,[M|Ms]) :- I1 is I+1, M is X-I, set2mset(Xs,I1,Ms).

ICLP’12

320 Deriving a Fast Inverse of the Generalized Cantor N-tupling Bijection

The two transformations can be seen as defining a bijection between strictly increasing and
nondecreasing sequences of natural numbers:

?- set2mset([2,5,6,8,9],Mset), mset2set(Mset,Set).
Mset = [2, 4, 4, 5, 5], Set = [2, 5, 6, 8, 9].

We can combine this bijection with the Cantor n-tupling bijection and obtain

from_cantor_multiset_tuple(Ms,N) :- mset2set(Ms,Xs), from_cantor_set_tuple(Xs,N).

to_cantor_multiset_tuple(K,N,Ms) :- to_cantor_set_tuple(K,N,Xs), set2mset(Xs,Ms).

For instance, when dealing with commutative and associative operations, such multiset
encodings turn out to be a natural match.

9 A Simple Application: Fair Search

One might ask, legitimately, why would one bother with pairing and n-tupling bijections.
While the case has been made (see for instance [11]) for various applications besides theo-
retical computer science, that range from indexing multi-dimensional data and geographic
information systems to cryptography and coding theory, we will focus here on a simple appli-
cation with immediate relevance to logic programming: fair search through a multi-parameter
search space.

A theorem conjectured by Bachet and proven by Lagrange, states that “every natural
number is the sum of at most four squares”. Let’s assume that one wants to find, a “simple”
solution to the equation (5), knowing that, as a consequence of this theorem, a solution
always exists.

N = X2 + Y 2 + Z2 + U2 (5)

Let us define “simple solution” as a solution bounded by O(X + Y + Z + U). We want to
enumerate “simpler” candidates first, efficiently. To this end, we can use the fast inverse
of the Cantor n-tupling function (specialized to multisets, given that both the “*” and “+”
operations, involved in the equation 5, are associative and commutative). We can write a
generic fair_multiset_tuple_generator as:

fair_multiset_tuple_generator(From,To,Length, Tuple) :- between(From,To,N),
to_cantor_multiset_tuple(Length,N,Tuple).

We can specialize fair_multiset_tuple_generator for our specific problem as:

to_lagrange_squares(N,Ms) :- M is N^2, % conservative upper limit
fair_multiset_tuple_generator(0,M,4,Ms),
maplist(square,Ms,MMs), sumlist(MMs,N),
!. % keep the first solution only

square(X,S) :- S is X*X.

The algorithm is quite efficient, for instance, it takes only a few seconds to find a decomposition
for 2012:

?- time(to_lagrange_squares(2012,Xs)), maplist(square,Xs,Ns), sumlist(Ns,N).
% 9,685,955 inferences, 4.085 CPU in 4.085 seconds (100% CPU, 2371347 Lips)
Xs = [15, 23, 23, 27], Ns = [225, 529, 529, 729], N = 2012.

P. Tarau 321

The algorithm is also simple enough to be used as an executable specification and it ensures
optimality of the solution, in the sense that our search scans hyperplanes of the form
X1 + X2 + X3 + X4 = K for progressively larger and larger values of K. Also, given the
multiset representation, the associativity and commutativity of “*” and “+” are factored in,
reducing the search space significantly. However, our simple algorithm is no match to the
O(log2(N)) randomized algorithm of [9]. As a side note, deriving a faster algorithm for this
decomposition is a fascinating task on its own, starting with the observation that it needs
only to be computed for the prime factors of a number and involving some elegant identities
holding for Hurwitz quaternions [18]. More importantly, the mechanism sketched here can
also be used in iterative deepening algorithms as a fair a goal selector (for both conjunctions
and disjunctions). This can be done initially in a meta-interpreter and possibly partially
evaluated or moved to the underlying Prolog abstract machine.

Note also that, depending on the natural representation of the candidate data tuple (i.e.
set, multiset or sequence), one can customize the fair tuple generator accordingly.

10 Related Work

We have found the first reference to the generalization of Cantor’s pairing function to n-tuples
in [2], and benefited from the extensive study of its properties in [7].

There are a large number of papers referring to the original ”Cantor pairing function”
among which we mention the surprising result that, together with the successor function it
defines a decidable subset of arithmetic [3]. Combinatorial number systems can be traced
back to [6] and one can find efficient conversion algorithms to conventional number systems
in [5] and [1]. Finally, the “once you have seen it, obvious” list2set / set2list bijection
is borrowed from [13], but not unlikely to be common knowledge of people working in
combinatorics or recursion theory. This simple bijection between lists and sets of natural
numbers shows the unexpected usefulness of the framework supporting bijective data type
transformations [13, 15, 12], of which, a large Haskell-based2 instance is described in [14].

11 Conclusion

We have derived through iterative refinements a fairly surprising solution to an open problem
for which we had no a priori idea if it is solvable, or within which complexity bounds could
be solved. The key “Eureka step” was to recognize a bijective data type transformation
that suddenly brought us to a relatively well known equivalent problem for which efficient
algorithms were available. Through the process, the ability to automate search algorithms
relying directly on an executable declarative specification has been a major catalyst. The
ability to derive equivalent logic programs using simple transformations has been also unusu-
ally helpful. From a software engineering perspective, this recommends logic programming as
an ideal problem solving tool. Last but not least, proven sources of fundamental algorithms
like [5] and the unusually high quality of Wikipedia articles on related topics have helped
“connecting the dots” quickly and effectively.

Acknowledgement

This research has been supported by NSF research grant 1018172.

2 but designed in a guarded Horn-clause style, for virtually automatic transliteration to Prolog

ICLP’12

322 Deriving a Fast Inverse of the Generalized Cantor N-tupling Bijection

References
1 B. P. Buckles and M. Lybanon. Generation of a Vector form the Lexicagraphical Index

[G6]. ACM Transactions on Mathematical Software, 5(2):180–182, June 1977.
2 Patrick Cegielski and Denis Richard. On arithmetical first-order theories allowing encoding

and decoding of lists. Theoretical Computer Science, 222(1–2):55 – 75, 1999.
3 Patrick Cégielski and Denis Richard. Decidability of the Theory of the Natural Integers

with the Cantor Pairing Function and the Successor. Theor. Comput. Sci., 257(1-2):51–77,
2001.

4 Martin Davis, Hilary Putnam, and Julia Robinson. The decision problem for exponential
diophantine equations. The Annals of Mathematics, 74(4):425–436, nov 1961.

5 Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating
All Combinations and Partitions. Addison-Wesley Professional, 2005.

6 D. H. Lehmer. The machine tools of combinatorics. In Applied combinatorial mathematics,
pages 5–30. Wiley, New York, 1964.

7 Meri Lisi. Some remarks on the Cantor pairing function. Le Matematiche, 62(1), 2007.
8 Yuri Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, London, 1993.
9 Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in number theory. Com-

munications on Pure and Applied Mathematics, 39(S1):S239–S256, 1986.
10 Julia Robinson. Unsolvable diophantine problems. Proceedings of the American Mathemat-

ical Society, 22(2):534–538, aug 1969.
11 Arnold L. Rosenberg. Efficient pairing functions – and why you should care. International

Journal of Foundations of Computer Science, 14(1):3–17, 2003.
12 Paul Tarau. A Groupoid of Isomorphic Data Transformations. In J. Carette, L. Dixon,

C. S. Coen, and S. M. Watt, editors, Intelligent Computer Mathematics, 16th Symposium,
Calculemus 2009, 8th International Conference MKM 2009 , pages 170–185, Grand Bend,
Canada, July 2009. Springer, LNAI 5625.

13 Paul Tarau. An Embedded Declarative Data Transformation Language. In Proceedings
of 11th International ACM SIGPLAN Symposium PPDP 2009, pages 171–182, Coimbra,
Portugal, September 2009. ACM.

14 Paul Tarau. Declarative Combinatorics: Isomorphisms, Hylomorphisms and Hereditarily
Finite Data Types in Haskell, January 2009. Unpublished draft, http://arXiv.org/abs/
0808.2953, updated version at http://logic.cse.unt.edu/tarau/research/2010/ISO.
pdf, 150 pages.

15 Paul Tarau. Isomorphisms, Hylomorphisms and Hereditarily Finite Data Types in Haskell.
In Proceedings of ACM SAC’09, pages 1898–1903, Honolulu, Hawaii, March 2009. ACM.

16 Wikipedia. Combinatorial number system — wikipedia, the free encyclopedia, 2011. [On-
line; accessed 21-March-2012].

17 Wikipedia. Pairing function — wikipedia, the free encyclopedia, 2011. [Online; accessed
23-March-2012].

18 Wikipedia. Lagrange’s four-square theorem — wikipedia, the free encyclopedia, 2012. [On-
line; accessed 22-March-2012].

http://arXiv.org/abs/0808.2953
http://arXiv.org/abs/0808.2953
http://logic.cse.unt.edu/tarau/research/2010/ISO.pdf
http://logic.cse.unt.edu/tarau/research/2010/ISO.pdf

On the Termination of Logic Programs with
Function Symbols
Sergio Greco, Francesca Spezzano, and Irina Trubitsyna

DEIS – Università della Calabria, 87036 Rende, Italy
{greco,fspezzano,irina}@deis.unical.it

Abstract
Recently there has been an increasing interest in the bottom-up evaluation of the semantics of
logic programs with complex terms. The main problem due to the presence of functional symbols
in the head of rules is that the corresponding ground program could be infinite and that finiteness
of models and termination of the evaluation procedure is not guaranteed. This paper introduces,
by deeply analyzing program structure, new decidable criteria, called safety and Γ-acyclicity,
for checking termination of logic programs with function symbols under bottom-up evaluation.
These criteria guarantee that stable models are finite and computable, as it is possible to generate
a finitely ground program equivalent to the source program. We compare new criteria with other
decidable criteria known in the literature and show that the Γ-acyclicity criterion is the most
general one. We also discuss its application in answering bound queries.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Logic Programming, Function Symbols, Bottom-up Execution, Program
Termination, Stable Models

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.323

1 Introduction

Recently there has been an increasing interest in Answer Set Programming (ASP) with
function symbols, and more in general on the bottom-up evaluation of the semantics of logic
programs with complex terms [1, 2, 3]. Indeed, one of the main limitations of current ASP
and datalog systems is the inability (or the limited power) to define programs with complex
terms and function symbols [4, 5, 6, 7]. The main problem in extending logic programming
under bottom-up evaluation with function symbols is that the corresponding ground program
is infinite and that finiteness of models and termination of the evaluation procedure is not
guaranteed.

The problem of checking whether the computation of a query terminates has been
investigated since the beginning of logic programming. Most of the past work was devoted to
the termination of programs under top-down evaluation or for SLD resolution [8, 9], although
it also received a significant attention from the deductive database community [10]. The
reason was that the only relevant logic programming implemented language was Prolog,
which computes answers to queries using a specific SLDNF resolution algorithm. Recently,
the attention has been concentrated on semantics which can be naturally computed by
means of bottom-up evaluation, such as stable model semantics for programs with possibly
unstratified negation, perfect model semantics for programs with stratified negation, and
minimum model semantics for positive programs. The following example shows a very simple
program which uses function symbols in rule heads and the problem is to decide if the fixpoint
computation of the program terminates.

© Sergio Greco, Francesca Spezzano, and Irina Trubitsyna;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 323–333

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum f“ur Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.323
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

324 On the Termination of Logic Programs with Function Symbols

I Example 1. Consider the following logic program P1:

r1 : p(a, a).
r2 : p(f(X), g(X))← p(X, X).

The program has a unique minimal model M1 = {p(a, a), p(f(a), g(a))}, which can be
computed using the classical bottom-up fixpoint algorithm. Current techniques are not
able to establish (in advance, by analyzing the structure of the program) that the fixpoint
computation terminates. �

The problem, known as program termination, (or query termination, when we refer to a
specific query goal) is, in the general case, undecidable. Therefore, the recent research is
investigating the identification of structural criteria that guarantee that the semantics can
be computed using, for instance, bottom-up evaluators based on the grounding of programs.
This is not a simple task as it is possible to have equivalent queries (i.e. queries computing
the same answers, independently from the database) that have different structural properties
and very basic changes to the syntax of programs, even without changing the semantics, may
significantly alter the structural properties.

Current criteria analyze how values are propagated among predicate arguments, to
understand whether the set of values associable with an argument is finite. However,
these methods have limited capacity in comprehending finiteness of arguments appearing in
recursive rules with function symbols in the head of rules. Considering the previous example,
they are not able to understand that rule r2 can be activated a finite number of times
(actually, considering that there is only one exit rule, the recursive rule can be activated at
most once).

Related works. As said before, the problem of checking whether the computation of a query
terminates has been investigated since the beginning of logic programming.

Most of the past work was devoted to the termination of programs under top-down
evaluation or for SLD resolution [8, 9]. The class of finitary programs, allowing decidable
(ground) query computation using a top-down evaluation, has been proposed in [11]. A
program P is finitary if (1) the number of cycles involving an odd number of negative subgoals
is finite, and (2) it is finitely recursive. A program P is finitely recursive if each ground atom
depends on finitely many ground atoms [12].

The problem of establishing whether the bottom-up based computation of logic programs
terminates received a significant attention since the beginning of deductive databases [10]
and recently has received an increasing interest. The class of finitely ground (FG) programs
has been proposed in [13]. The key property of this class is that stable models (answer sets)
are computable. In fact, for each program P in this class there exists a finite and computable
subset of its instantiation (grounding), called intelligent instantiation, having precisely the
same answer sets as P . As the problem of deciding whether a program is FG is not decidable,
decidable subclasses, such as finite domain (FD) programs [13], ω-restricted programs [14],
λ-restricted programs [15] and argument restricted (AR) programs [16] have been proposed.
The query termination problem for ground query goals has been studied in [17]. Other
approaches are the class of FDNC programs [2], i.e. programs having infinite answer sets in
general, but a finite representation that can be exploited for knowledge compilation and fast
query answering, and the proposal of [3], where functions are replaced by relations defined
over finite domains.

S. Greco, F. Spezzano, and I. Trubitsyna 325

Contribution. We first introduce the concept of safe arguments (a restriction of finite
domain arguments), by also analyzing how rules may fire each other. As safe arguments can
range only on a finite set of values, the instantiation of safe programs (that is, programs
whose arguments are all safe) results in a finite ground program. Consequently, safe programs
have a finite number of finite stable models and we show that the class of safe programs is
decidable. We also show that the class of safe programs extends the class of finite domain
programs, but is not comparable with the class of argument restricted programs.

Next we introduce a further criterion, called Γ-acyclicity, which analyzes the role of
function symbols used in the program. We introduce the concept of labelled propagation
graph, representing how complex terms in non-safe (or affected) arguments are created
and used during bottom-up evaluation. The class of Γ-acyclic programs is defined by only
considering affected arguments and cycles spelling strings of an underlying context free
language. We show that this class is decidable, strictly extends both classes of safe programs
and argument restricted programs and that it has a finite set of finite stable models which
can be computed using current ASP systems, by a simple rewriting of the source program.

Finally, we discuss how the new criterion can be used in bound query answering.

Organization. The paper is organized as follows. Section 2 introduces basic notions on logic
programming and recalls two main criteria guaranteeing the termination of logic programs
with function symbols under bottom-up evaluation. Section 3 presents the class of safe
programs. Section 4 introduces the class of Γ-acyclic programs. Section 5 shows how Γ-acyclic
programs are rewritten so that their semantics can be computed by current ASP systems.
Section 6 discusses bound query answering.

2 Logic programs with function symbols

Syntax. We assume to have infinite sets of constants, variables, predicate symbols and
function symbols. Predicate and function symbols have associated a fixed arity. For a
predicate p of arity n, we denote by p[i], for 1 ≤ i ≤ n, its i-th argument.

A term is either a constant, a variable or a complex term of the form f(t1, ..., tm), where
t1, ..., tm are terms and f is a function symbol of arity m; each term ti, for 1 ≤ i ≤ m, is a
subterm of f(t1, ..., tm). The subterm relation is reflexive (each term is subterm of itself) and
transitive (if ti is subterm of tj and tj is subterm of tk, then ti is subterm of tk). An atom is
of the form p(t1, ..., tn), where t1, ..., tn are terms and p is a predicate symbols of arity n. A
literal is either a (positive) atom A or its negation ¬A. A (disjunctive) rule r is a clause of
the form:

a1 ∨ · · · ∨ am ← b1, · · · , bk,¬c1, · · · ,¬cn

where m > 0 k, n ≥ 0 and a1, · · · , am, b1, · · · , bk, c1, · · · , cn are atoms. The disjunction
a1 ∨ · · · ∨ am is called the head of r and is denoted by head(r) while the conjunction
b1, · · · , bk,¬c1, · · · ,¬cn is called the body and is denoted by body(r). If m = 1, then r is
normal (i.e. ∨-free); if n = 0, then r is positive (i.e. ¬-free); if both m = 1 and n = 0, then r
is normal and positive. A program P is a finite set of rules. A term (resp. an atom, a rule or
a program) is said to be ground if no variables occur in it. A ground normal rule with an
empty body is also called fact.

With a little abuse of notation we often use the same notation to denote a conjunction of
body literals and a set of body literals, that is body(r) is also used to denote the set of literals
appearing in the body of r. We also denote the positive body of r by body+(r) = {b1, . . . , bk}

ICLP’12

326 On the Termination of Logic Programs with Function Symbols

and the negative body of r by body−(r) = {c1, . . . , cn}. A predicate p depends on a predicate
q if there is a rule r such that p appears in the head and q in the body, or there is a predicate
s such that p depends on s and s depends on q. A predicate p is said to be recursive if
it depends on itself, whereas two predicates p and q are said to be mutually recursive if p
depends on q and q depends on p.

Generally, predicate symbols are partitioned into two different classes: extensional (or
EDB or base), i.e. defined by the ground facts of a database, and intensional (or IDB or
derived), i.e. defined by the rules of the program. The definition of a predicate p consists of
all the rules (or facts) having p in the head. A database D consists of all the facts defining
EDB predicates, whereas a program P consists of the rules defining IDB predicates. The
program consisting of rules defining IDB predicates and facts defining EDB predicates is
denoted by PD. When there is no ambiguity we shall use the symbol P to denote the complete
set of rules and database facts. Given a set of ground atoms S and an atom g(t), S[g] (resp.
S[g(t)]) denotes the set of g-tuples (resp. tuples matching g(t)) in S. Analogously, for a
given set of sets of atoms M we shall use the following notations M [g] = {S[g] | S ∈ M}
and M [g(t)] = {S[g(t)] | S ∈M}. We also assume that programs are range restricted [18],
i.e. variables appearing in the head or in negated body literals are range restricted, that is
they also appear in some positive body literal, and that possible constants in P are taken
from the database domain1.

Semantics. The Herbrand universe HP of a program P is the possibly infinite set of
ground terms which can be built using constants and function symbols appearing in P.
The Herbrand base BP of a program P is the set of ground atoms which can be built
using predicate symbols appearing in P and ground terms of HP . A rule r′ is a ground
instance of a rule r, if r′ is obtained from r by replacing every variable in r with some
ground term in HP ; ground(P) denotes the set of all ground instances of the rules in P.
An interpretation of a program P is any subset of BP . The value of a ground atom L

w.r.t. an interpretation I is valueI(L) = L ∈ I, whereas valueI(¬L) = L 6∈ I. The truth
value of a conjunction of ground literals C = L1, . . . , Ln is the minimum over the values
of Li, i.e. valueI(C) = min({valueI(Li) | 1 ≤ i ≤ n}), while the value of a disjunction
D = L1 ∨ ... ∨ Ln is its maximum, i.e. valueI(D) = max({valueI(Li) | 1 ≤ i ≤ n}); if
n = 0, then valueI(C) = true and valueI(D) = false. A ground rule r is satisfied by I if
valueI(head(r)) ≥ valueI(body(r)). Thus, a rule r with an empty body is satisfied by I if
valueI(head(r)) = true. An interpretation M for P is a model of P if M satisfies all the
rules in ground(P).

The model-theoretic semantics for a positive program P assigns the set of its minimal
models MM(P). A model M for P is minimal, if no proper subset of M is a model for
P. The more general disjunctive stable model semantics generalizes stable model semantics
previously defined for normal programs [19] and also applies to programs with (unstratified)
negation [20].

Let P be a logic program and let I be an interpretation for P, PI denotes the ground
positive program derived from ground(P) by (1) removing all the rules that contain a
negative literal ¬a in the body and a ∈ I, and (2) removing all the negative literals from
the remaining rules. An interpretation I is a (disjunctive) stable model for P if and only
if I ∈ MM(PI). The set of stable models of P is denoted by SM(P). It is well known

1 Range restricted programs are often called safe programs. We will use the term safe to denote a set of
program arguments.

S. Greco, F. Spezzano, and I. Trubitsyna 327

that stable models are minimal models (i.e. SM(P) ⊆MM(P)) and that for negation-free
programs minimal and stable model semantics coincide (i.e. SM(P) =MM(P)) and that
positive normal programs have a unique minimal model.

Finite domain programs. The class of finite domain programs is defined by analyzing the
structure of programs and is based on the concept of argument graph.

The argument graph GA(P) of a program P is a direct graph containing a node for each
argument p[i] of an IDB predicate p of P ; there is an edge (q[j], p[i]) iff there is a rule r ∈ P
such that: i) an atom p(t) appears in the head of r; ii) an atom q(v) appears in body+(r); iii)
p(t) and q(v) share the same variable within the i-th and the j-th term, respectively. Given
a program P, an argument p[i] is said to be recursive if it appears in a cycle of GA(P).

I Definition 2 (FD Program [13]). Given a program P, the set of finite-domain arguments
(FD arguments) of P is the maximal set FD(P) of arguments of P such that, for each
argument q[k] ∈ FD(P), every rule r with head predicate q satisfies the following condition.
Let t be the term corresponding to argument q[k] in the head of r. Then, either i) t is
variable-free, or ii) t is a subterm of (the term of) an FD argument of a positive body
predicate, or iii) every variable appearing in t also appears in (the term of) an FD argument
of a positive body predicate which is not recursive with q[k]. If all arguments of the predicates
of P are FD, then P is said to be an FD program. �

The main properties of FD programs are the following: (i) recognizing whether P is an
FD program is decidable, and (ii) every FD program is an FG program. Checking whether
a program P is FD or not can be done by assuming that all arguments are in FD(P) and
eliminating, iteratively, arguments appearing in the head of a rule such that none of the
three conditions of Definition 2 holds.

Argument Restricted programs. For any atom p(t1, ..., tn), p(t1, ..., tn)0 denotes the pre-
dicate symbol p, whereas p(t1, ..., tn)i, for 1 ≤ i ≤ n, denotes its argument term ti. The
depth of a variable X in a term t that contains X, denoted by d(X, t), is defined recursively
as follows:

d(X, t) =
{

0 if t = X

1 +maxi:ti contains Xd(X, ti) if t = f(t1, ..., tn)

I Definition 3 (AR Program [16]). An argument ranking for a program P is a function φ
from arguments to integers such that, for every rule r of P, every atom A occurring in the
head of r, and every variable X occurring in an argument term Ai, body+(r) contains an
atom B such that X occurs in an argument term Bj satisfying the condition

φ(A0[i])− φ(B0[j]) ≥ d(X,Ai)− d(X,Bj)

A program is argument restricted (AR) if it has an argument ranking. �

I Example 4. Consider the following logic program P4:

r1 : succ(X, f(X))← nat(X).
r2 : nat(0).
r3 : nat(Y)← succ(X, Y), bounded(Y).

where bounded is a base predicate. The argument graph GA(P4) contains the following
edges (nat[1], succ[1]), (nat[1], succ[2]), (succ[2], nat[1]) and (bounded[1], nat[1]). The pro-
gram is not finite domain as the argument succ[2] is not finite domain. However, P4 is

ICLP’12

328 On the Termination of Logic Programs with Function Symbols

argument restricted as it is possible to assign the following consistent ranking to arguments:
φ(bounded[1]) = φ(nat[1]) = φ(succ[1]) = 0 and φ(succ[2]) = 1. �

The class of argument restricted programs is contained in finitely ground, generalizes the
finite domain class and is decidable.

3 Safe programs

In this section we introduce a new criterion guaranteeing that there is a finite instantiation,
equivalent to the source program and, therefore, a finite set of finite stable models.

I Definition 5 (Activation Graph). Let P be a program, the activation graph Ω(P) = (P, E)
consists of a set of nodes denoting rules and a set of edges E defined as follows: for each pair
of rules r and s there is an edge (r, s) from r to s if there is a set of ground facts DB1 and
two matchers θ1 and θ2 such that
1. DB1 |= body(r)θ1 ∧DB1 6|= head(r)θ1 and
2. let DB2 = DB1 ∪ head(r)θ1, the following conditions hold:
• DB2 |= body(s)θ2 ∧DB2 6|= head(s)θ2 and
• DB1 6|= body(s)θ2 ∨DB1 |= head(s)θ2. �

I Example 6. Consider the program P1 of Example 1 and let Ω(P1) = (P1, E) its activation
graph. We have that (r1, r2) ∈ E, but (r2, r2) 6∈ E, as the firing of r2 cannot fire r2 again.
Clearly, being r1 a fact, it cannot be fired by another rule. Therefore, Ω(P1) is acyclic. �

I Definition 7 (Safe Function). For any program P, let A be a subset of arguments of P,
ΨP(A) denotes the set of arguments occurring in P such that for all rules r ∈ P where q
appears in the head
1. r does not appear in a cycle of Ω(P), or
2. let t be the term corresponding to argument q[k], for every variable X appearing in q[k]

in the head of r (considering all head occurrences), X also appears in some argument in
body+(r) belonging to A. �

The function ΨP is monotonic and, for every set of arguments A occurring in P, the
sequence ΨP(A), Ψ2

P(A), ... , Ψi
P(A), ... converges in a finite number of steps, that is, there

is some finite n such that Ψn
P(A) = Ψn+1

P (A).

I Definition 8 (Safe Arguments). For any program P , safe(P) = Ψ∞P (A), where A = FD(P)
is the set of finite domain arguments of P , denotes the set of safe arguments of P . A program
P is said to be safe if all arguments are safe. �

It is worth noting that the starting set to compute safe arguments could be the set of
finite domain arguments satisfying condition i) or ii) of Definition 2, that is condition iii) is
not necessary to compute safe arguments. We shall denote by args(P) the set of arguments
of a program P and by aff(P) = args(P) − safe(P) the set of affected arguments. The
class of safe programs will be denoted by SP.

I Example 9. Consider the program P4 of Example 4. Although the activation graph is not
acyclic (there is a cycle between r1 and r3), we have that i) bounded[1], nat[1] and succ[1]
are safe as they are finite domain, and ii) succ[2] is safe as the variable X in the first rule
appears in a safe body argument. Since all arguments are safe, we have that the program P4
is safe. �

S. Greco, F. Spezzano, and I. Trubitsyna 329

I Example 10. The program P1 of Example 1 is safe, as rule r2 does not fire itself and
the graph Ω(P1) is empty. Moreover, it is not argument-restricted as it is not possible
to assign a rank to p[1] and p[2] such that φ(p[1]) − φ(p[j]) ≥ d(X, f(X)) − d(X,X) and
φ(p[2])− φ(p[j]) ≥ d(X, g(X))− d(X,X), with j = 1, 2. �

I Proposition 11. The problem of deciding whether a program P is safe is decidable. �

The following theorem states that the class of safe programs i) strictly contains the
class of finite domain programs, ii) is not comparable with the class of argument-restricted
programs, and iii) is contained in the class of finitely ground programs.

I Theorem 12. FD (SP (FG, AR 6⊆ SP and SP 6⊆ AR. �

I Corollary 13. For any safe program P, the stable models of P are finite. �

From Theorem 12 it also follows that any safe program P has finitely many stable models and
both brave and cautious reasoning over safe programs are computable even for non-ground
queries.

4 Exploiting function symbols

In this section we further improve our technique by exploiting the role of function symbols
for checking program termination under bottom-up evaluation. We assume that if the same
variable X appears in two terms occurring in the head and body of a rule, then one of the two
terms must be a subterm of the other and that the nesting level of complex terms is at most
one. There is no real restriction in such an assumption as every program could be rewritten
into an equivalent program satisfying such a condition. For instance, a rule of the form
p(f(h(X))) ← q(g(X)) could be rewritten into the following two rules: p(f(X)) ← p′(X),
p′(h(X))← p′′(X) and p′′(X)← q(g(X)).

The following example shows a program admitting finite stable models, but previous
criteria, included the safety criterion, are not able to detect it.

I Example 14. Consider the below program P14:

r(f(X))← s(X).
q(f(X))← r(X).
p(X)← q(X).
n(X)← p(g(X)).
s(X)← n(X).

The program is neither safe, as all arguments are affected, nor argument restricted. �

The (labelled) propagation graph ∆(P) is the graph derived from the argument graph
GA(P) by only considering affected arguments and adding labels to arcs.

I Definition 15 (Labelled argument and propagation graphs). Let P be a program, the labelled
argument graph GAL (P) = (args(P), E), where E is a set of labelled edges defined as follows.
For each pair of nodes p[j], q[i] ∈ args(P) and for every rule r ∈ P such that i) there is an
atom q(u) ∈ body+(r), ii) head(r) = p(v) and iii) the same variable X occurs in both q[j]
and p[i], there is an arc (q[j], p[i], α) ∈ E where

α = ε if q[j] = p[i] and both arguments contain variables;
α = f if q[j] = X and p[i] = f(..., X, ...);
α = f if q[j] = f(..., X, ...) and q[j] = X.

ICLP’12

330 On the Termination of Logic Programs with Function Symbols

Figure 1 Criteria relationships.

The (labelled) propagation graph ∆(P) is the graph derived from the labelled argument graph
GAL(P) by only considering affected arguments. �

A path π is a sequence n1 α1 n2 α2 ...nk αk nk+1, where k ≥ 1 and for each i ∈ [1..k]
(ni, ni+1, αi) is an edge of ∆(P). For any path π = n1 α1 n2 α2 ...nk αknk+1, we denote with
λ(π) the string α1 ...αk.

I Definition 16. Let P be a program and let F = {f1, ..., fm} be the set of function symbols
occurring in P. The grammar ΓP is a 4-tuple (N,T,R, S), where N = {S, S1, S2} is the set
of nonterminal symbols, T = {f | f ∈ F} ∪ {f | f ∈ F} is the set of terminal symbols, S is
the start symbol and R is the set of production rules below defined:

S → S1 fi S2, ∀fi ∈ F ;
S1 → fi S1 fi S1 | ε, ∀fi ∈ F ;
S2 → (S1 | fi)S2 | ε, ∀fi ∈ F . �

The language L(ΓP) is the set of strings generated by ΓP . As ΓP is context free, the
language L(ΓP) can be recognized by means of a pushdown automaton. Given a grammar
Γ = {N,T,R, S} and a graph G, we say that path π in G spells a string w ∈ L(Γ) if λ(π) = w.

I Definition 17 (Γ-acyclic Programs). A program P is said Γ-acyclic if there is no cycle in
∆(P) spelling a string of L(ΓP). �

Considering previous Example 14, the program P14 is Γ-acyclic, but not safe. Indeed,
there is a cycle spelling the strings “f f g”, “f g f” and “g f f”, but all strings do not belong
to the language L(ΓP14). Observe that, in order to correctly recognize a cycle in ∆(P)
spelling a string of L(ΓP), we have to start from an edge with a positive label f (i.e. starting
from an unlabelled edge or from an edge with a label f is not useful).

I Proposition 18. The problem of deciding whether a program is Γ-acyclic is decidable. �

The below theorem states that the class of acyclic programs strictly contains both classes
of safe programs and argument restricted programs and is contained in the class of finitely
ground programs.

I Theorem 19. SP ∪ AR (AP (FG �

I Corollary 20. For any Γ-acyclic program P, the stable models of P are finite. �

The relationships among previous criteria and the new ones are reported in Fig. 1.

S. Greco, F. Spezzano, and I. Trubitsyna 331

5 Computing stable models for Γ-acyclic programs

We now show how stable models for Γ-acyclic programs can be computed using current
algorithms based on the grounding of programs. The idea is that, considering that positive
normal Γ-acyclic programs have a finite minimum model, from a Γ-acyclic program P , we first
generate a standard Γ-acyclic program st(P) such that all stable models of P are contained
in the minimum model of st(P) and next we generate a new program ext(P) equivalent to
P, such that there is a ground, finite, equivalent version. The computation of the stable
models of ext(P) could be carried out by current answer set systems [4, 5, 6].

I Definition 21 (Standard program). Let P be a logic program, st(P) denote the normal,
positive program, called standard version, obtained by replacing i) each disjunctive rule r
having m atoms a1, ..., am in the head with m positive rules of the form ai ← body+(r), for
1 ≤ i ≤ m, and ii) each derived predicate symbol q with a new derived predicate symbol Q. �

I Example 22. Consider the program P22 consisting of the two rules

p(X) ∨ q(X)← r(X),¬a(X).
r(X)← b(X),¬q(X).

where p, q and r are derived predicates (mutually recursive), whereas a and b are base
predicates. The derived standard program st(P22) is:

P(X)← R(X).
Q(X)← R(X).
R(X)← b(X).

I Lemma 23. Let P be a program and let P ′ = st(P) ∪ {q(X̄) ← Q(X̄) | q ∈ dpred(P)},
where dpred(P) denotes the set of derived predicate symbols in P. For any stable model
M ∈ SM(P), M ⊆MM(P ′)[SP], where SP denotes the set of predicate symbols in P. �

For any rule r such that head(r) = q1(u1) ∨ · · · ∨ qk(uk), headconj(r) denotes the
conjunction Q1(u1), ..., Qk(uk).

I Definition 24 (Extended program). Let P be a disjunctive program and let r be a rule
of P, then, ext(r) denotes the (disjunctive) extended rule head(r)← headconj(r), body(r)
obtained by extending the body of r, whereas ext(P) = {ext(r) | r ∈ P} ∪ st(P) denotes
the (disjunctive) program obtained by extending the rules of P and adding (standard) rules
defining the new predicates. �

I Example 25. Consider the program P22 of Example 22. The extended program ext(P22)
is as follows:

p(X) ∨ q(X)← P(X), Q(X), r(X),¬a(X)
r(X)← R(X), b(X),¬q(X)

plus the rules in st(P22) showed in Example 22. �

The following theorem states that P and ext(P) are equivalent w.r.t. the set of predicate
symbols in P.

I Theorem 26. For every program P, SM(P)[SP] = SM(ext(P))[SP], where SP is the set
of predicate symbols occurring in P. �

ICLP’12

332 On the Termination of Logic Programs with Function Symbols

6 Bound queries

The bottom-up computation of queries whose related programs are not range-restricted, could
not be carried out, as the ground instantiation is infinite. The application of well known
rewriting techniques, such as magic-set, may allow bottom-up evaluators to (efficiently)
compute bounded queries, by rewriting queries so that the top-down evaluation is emulated
[21, 22, 23, 17]. Before presenting our technique, let us introduce some notations.

A query is a pair Q = 〈q(u1, .., un),P〉, where q(u1, .., un) is an atom called query goal
and P is a program. An adornment of predicate p with arity n is a string α ∈ {b, f}∗ such
that |α| = n. The symbols b and f denote, respectively, bound and free arguments. Given a
query Q = 〈q(u1, .., un),P〉, MagicS(Q) = 〈qα(u1, .., un),MagicS(q(u1, .., un),P)〉 denotes
the rewriting of Q, where MagicS(q(u1, .., un),P) denotes the rewriting of rules in P with
respect to the query goal q(u1, .., un) and α is the adornment associated with the query goal.

Since the magic-set rewriting technique has been defined for subclasses of queries (e.g.
stratified queries), we assume that our queries are positive2, although we could consider
larger classes with the only necessary condition being that after their rewriting queries must
be range restricted.

I Definition 27. A query Q = 〈G,P〉 is said Γ-acyclic if either P or MagicS(G,P) is
Γ-acyclic. �

It is worth noting that it is possible to have a query Q=〈G,P〉 such that P is Γ-acyclic,
but the rewritten program MagicS(G,P) is not Γ-acyclic and vice versa.

I Example 28. Consider the query Q = 〈p(f(f(a))),P28〉, where P28 is defined below:

p(a).
p(f(X))←p(X).

P28 is not Γ-acyclic, but if we rewrite the program using the magic-set method, we obtain
the Γ-acyclic program:

pb(a)← magic_pb(a). magic_pb(f(f(a))).
pb(f(X))← magicb

p(f(X)), pb(X). magic_pb(X)← magic_pb(f(X)).

Consider now the query Q = 〈p(a),P ′28〉, where P ′28 is defined as follows:

p(f(f(a))).
p(X)←p(f(X)).

The program is Γ-acyclic, but after the magic-set rewriting we obtain the below set of rules:

pb(f(f(a)))← magic_pb(f(f(a))). magic_pb(a).
pb(X)← magicb

p(X), pb(f(X)). magic_pb(f(X))← magic_pb(X).

which is not Γ-acyclic. �

Thus, we propose to first check if the input program is Γ-acyclic and, if it does not satisfy
Γ-acyclicity, to check the property on the rewritten program, which is query-equivalent to
the original one.

2 For positive queries we mean queries 〈G, P〉 such that P is positive.

S. Greco, F. Spezzano, and I. Trubitsyna 333

References
1 P. A. Bonatti, “On the decidability of fdnc programs,” Intellig. Artific., vol. 5, no. 1, 2011.
2 T. Eiter and M. Simkus, “Fdnc: Decidable nonmonotonic disjunctive logic programs with

function symbols,” ACM Trans. Comput. Log., vol. 11, no. 2, 2010.
3 F. Lin and Y. Wang, “Answer set programming with functions,” in KR, pp. 454–465, 2008.
4 N. Leone, G. Pfeifer, W. Faber, F. Calimeri, T. Dell’Armi, T. Eiter, G. Gottlob, G. Ianni,

G. Ielpa, K. Koch, S. Perri, and A. Polleres, “The dlv system,” in Jelia, pp. 537–540, 2002.
5 P. Simons, I. Niemel“a, and T. Soininen, “Extending and implementing the stable model

semantics,” Artif. Intell., vol. 138, no. 1-2, pp. 181–234, 2002.
6 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “clasp : A conflict-driven answer

set solver,” in LPNMR, pp. 260–265, 2007.
7 S. S. Huang, T. J. Green, and B. T. Loo, “Datalog and emerging applications: an interactive

tutorial,” in SIGMOD Conference, pp. 1213–1216, 2011.
8 D. D. Schreye and S. Decorte, “Termination of logic programs: The never-ending story,” J.

Log. Program., vol. 19/20, pp. 199–260, 1994.
9 D. Voets and D. D. Schreye, “Non-termination analysis of logic programs with integer

arithmetics,” TPLP, vol. 11, no. 4-5, pp. 521–536, 2011.
10 R. Krishnamurthy, R. Ramakrishnan, and O. Shmueli, “A framework for testing safety and

effective computability,” J. Comput. Syst. Sci., vol. 52, no. 1, pp. 100–124, 1996.
11 P. A. Bonatti, “Reasoning with infinite stable models,” Artif. Intell., vol. 156, no. 1, 2004.
12 S. Baselice, P. A. Bonatti, and G. Criscuolo, “On finitely recursive programs,” TPLP, vol. 9,

no. 2, pp. 213–238, 2009.
13 F. Calimeri, S. Cozza, G. Ianni, and N. Leone, “Computable functions in asp: Theory and

implementation,” in ICLP, pp. 407–424, 2008.
14 T. Syrjänen, “Omega-restricted logic programs,” in LPNMR, pp. 267–279, 2001.
15 M. Gebser, T. Schaub, and S. Thiele, “Gringo : A new grounder for answer set program-

ming,” in LPNMR, pp. 266–271, 2007.
16 Y. Lierler and V. Lifschitz, “One more decidable class of finitely ground programs,” in

ICLP, pp. 489–493, 2009.
17 M. Alviano, W. Faber, and N. Leone, “Disjunctive asp with functions: Decidable queries

and effective computation,” TPLP, vol. 10, no. 4-6, pp. 497–512, 2010.
18 J. D. Ullman, Principles of Database and Knowledge-Base Systems, Volume I. Computer

Science Press, 1988.
19 M. Gelfond and V. Lifschitz, “The stable model semantics for logic programming,” in

ICLP/SLP, pp. 1070–1080, 1988.
20 M. Gelfond and V. Lifschitz, “Classical negation in logic programs and disjunctive data-

bases,” New Generation Comput., vol. 9, no. 3/4, pp. 365–386, 1991.
21 C. Beeri and R. Ramakrishnan, “On the power of magic,” J. Log. Program., vol. 10,

no. 1/2/3&4, pp. 255–299, 1991.
22 S. Greco, “Binding propagation techniques for the optimization of bound disjunctive quer-

ies,” IEEE Trans. Knowl. Data Eng., vol. 15, no. 2, pp. 368–385, 2003.
23 G. Greco, S. Greco, I. Trubitsyna, and E. Zumpano, “Optimization of bound disjunctive

queries with constraints,” TPLP, vol. 5, no. 6, pp. 713–745, 2005.

ICLP’12

Logic Programming in Tabular Allegories∗

Emilio Jesús Gallego Arias1 and James B. Lipton2

1 Universidad Politécnica de Madrid
2 Wesleyan University

Abstract
We develop a compilation scheme and categorical abstract machine for execution of logic pro-
grams based on allegories, the categorical version of the calculus of relations. Operational and
denotational semantics are developed using the same formalism, and query execution is performed
using algebraic reasoning. Our work serves two purposes: achieving a formal model of a logic
programming compiler and efficient runtime; building the base for incorporating features typi-
cal of functional programming in a declarative way, while maintaining 100% compatibility with
existing Prolog programs.

1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, F.3.2 Semantics of
Programming Languages, F.4.1 Mathematical Logic

Keywords and phrases Category Theory,Logic Programming,Lawvere Categories,Programming
Language Semantics,Declarative Programming

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.334

1 Introduction

Relational algebras have a broad spectrum of applications in both theoretical and practical
computer science. In particular, the calculus of binary relations [37], whose main operations
are intersection (∪), union (∩), relative complement \, inversion (_)o and relation composition
(;) was shown by Tarski and Givant [40] to be a complete and adequate model for capturing all
first-order logic and set theory. The intuition is that conjunction is modeled by ∩, disjunction
by ∪ and existential quantification by composition.

This correspondence is very useful for modeling logic programming. Logic programs are
naturally interpreted by binary relations and relation algebra is a suitable framework for
algebraic reasoning over them, including execution of queries.

Previous versions of this work [24, 32, 9, 22], developed operational and denotational
semantics for constraint logic programming using distributive relational algebra with a
quasi-projection operator. In this approach, all relations range over a unique domain or
carrier: the set of hereditary sequences of terms generated by the signature of the program.
For instance, the identity relation can be used to relate sequences of terms of an unbounded
size.

Execution is performed using a rewriting system, but making it efficient is difficult given
that untyped relations don’t capture the exact number of logical variables in use. When a
predicate call happens, the constraint store is duplicated, with one belonging to the caller
environment and one used by the called predicate. At return time, the constraint stores are
merged. The propagation of constraints posted inside a procedure call is delayed.

∗ The authors wants to acknowledge Wesleyan University for supporting this work with Van Vleck funds.
This work is part of DESAFIOS10 (TIN2009-14599-C03-00)

© E.J. Gallego Arias and James B. Lipton;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 334–347

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.334
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E.J. Gallego Arias and J.B. Lipton 335

We propose to remedy this shortcoming by using typed relations. The theory of alle-
gories [21], provides a categorical setting for distributive relational algebras. In this setting,
relations are typed and the semantics for our relations becomes sequences of fixed-length.
Now, the notion of categorical product and its associated projections interpret in an adequate
way the shared context required to have an efficient execution model.

The most important concepts in our work are the notion of strictly associative product
and tabular relation. Given types A, B (or objects in categorical language), we write A×B
for their cartesian product. As usual A × (B × C) is isomorphic (≈) to (A × B) × C.
We say our products are strictly associative if the isomorphism is an equality. That is,
(A×B)×C = A× (B ×C). We are thus allowed to write A×B ×C. This is a crucial fact
for our machine, since if we interpret a chosen type H as a memory cell, then a memory
region of size n is interpreted as Hn.

Second, we say a relation R : A ↔ B is tabulated by an injective (monic) function
(arrow) f : C → A × B if every pair of the relation is in its image. We may split f into
its components f ;π1 : C → A and f ;π2 : C → B, and state that the pair (f ;π1, f ;π2)
tabulates R. Such a concept is fundamental for two reasons: the types of the tabulations
carry important information about the memory use of the machine. The domain of the
tabulations corresponds to global storage or heap and the co-domain represents the number
of registers our machine is using at a given state.

The execution mechanism is entirely based on the composition of tabular relations, an
operation fully characterized by the pullback of its tabulations. Relation composition models
unification, parameter passing, renaming apart, allocation of new temporary variables and
garbage collection.

The first important benefit of our use of categorical concepts is the small gap from the
categorical specification to the actual machine and proposed implementation. This allows
us to reason using a very convenient algebraic style, immediately witnessing the impact of
such reasoning on the machine itself. Our philosophy is that in an fully algebraic framework,
efficient execution should belong to regular reasoning. Real world implementations usually
depart from this view in the name of efficiency, and one key objective of this work is to
achieve efficiency without abandoning the algebraic approach. It is also worth noting that in
our framework, we replace all the custom theory and meta-theory used in logic programming
with category theory. The precise statement is that a Σ-allegory captures all the needed
theory and meta-theory for a Logic Program with signature Σ, from set-theoretical semantics
down to efficient execution.

The second — and in our opinion, most innovative benefit — is the possibility of seamlessly
extending Prolog using constructions typical of functional programming in a fully declarative
way. In [23], we sketch some of these extensions, adding algebraic data types, constraints,
functions and monads to Prolog, all of it without losing source code compatibility with
existing programs.

2 Logic Programming

Assume a permutative convention on symbols, i.e., unless otherwise stated explicitly, distinct
names f, g stand for different entities (e.g. function symbols) and the same with distinct
names i, j, for indices. A first-order language consists of a signature Σ = 〈CΣ,FΣ〉, given
by CΣ, the set of constant symbols, and FΣ, the set of term formers or function symbols.
P will denote the set of predicate symbols. Function α : P ∪ FΣ → N returns the arity of
its predicate argument. We assume a set X of so-called logic variables whose members are

ICLP’12

336 Logic Programming in Tabular Allegories

denoted xi. We write TΣ for the set of closed terms over Σ. We write TΣ(X) for the set of
open terms (in the variables in X) over Σ. We drop Σ when understood from context. We
write sequences of terms using vector notation: ~t = t1, . . . , tn. The length of such a sequence
is written |~t| = n. We assume standard definitions for atoms, predicates, programs, clauses,
and SLD resolution. For more details see [33].

3 Category Theory

A category C = 〈O,A〉 consists of a collection of objects O and typed arrows A. For every
object A ∈ O, there is an identity arrow idA : A → A ∈ A. Given arrows f : A → B and
g : B → C, its composition f ; g : A→ C is defined. For f : A→ B, we call A the domain
of f and B its codomain. Composition is associative and idA; f = f ; idB = f . We assume
knowledge of the concepts of commutative diagram, product, equalizer, pullback, monic arrow
and subobject [6, 5, 30].

For a product A×B, we will write πA×B
1 : A×B → A and πA×B

2 : A×B → B for the
projections. For arrows f : C → A, g : C → B we write 〈f, g〉 for the unique product former.
Several definitions exist for Regular Categories [11, 6, 27, 21]; we use the latter presentation.

I Definition 1 (Regular Category). A category C is a Regular Category if it has products,
equalizers, images and pullback transfer covers. A Regular Category can be used to generate
a tabular allegory. Indeed, Regular Categories give rise to categories of relations.

3.1 Categorical Relations
I Definition 2 (Monic Pair). f : C → A and g : C → B is a monic pair iff 〈f, g〉 : C 7→ A×B
is monic. A monic pair is a subobject of A×B, thus we can see it as a relation from A to B:

C

A
�

f

B

g
-

I Definition 3 (Composition of Relations). The composition (u, v) of a relation (f, g) with
(h, i) is defined by the diagram on the left in Fig. 1. Note that the purpose of the cover in
that diagram is to ensure that the resulting relation remains a monic pair. The right diagram
shows the already composed relation.

I Definition 4 (Categories of Relations). For a regular category C, the category Rel(C) of
relations has the same objects as C, arrows A→ B are monic pairs (f : C → A, g : C → B)
and composition is defined as above. C is a sub-category of Rel(C). The inclusion functor
sends an arrow f : A→ B to the pair (id, f). If a morphism of Rel(C) is in C, we call it a
map.

Given a relation (f, g), its inverse, or reciprocal is (g, f). The natural order-isomorphism
Sub(A×B) ≈ Rel(A,B) yields a semi-lattice structure on Rel(A,B).

3.2 Lawvere Categories
A Lawvere category is a category C with a denumerable set N of distinct objects, where each
object N is the n-th power of the object 1. 0 is the terminal object. We write !A : A→ 0
for the terminal arrow. The product of Tm × Tn is Tm+n. Products are strictly associative

E.J. Gallego Arias and J.B. Lipton 337

D

P

a

M

�
u

�
N

v
--

A
�

f

B
�

hg -

C

i -

⇒

D

A
�
u;
f

C

v; i
-

Figure 1 Composition of Relations.

since addition is associative, thus ((1 × 1) × 1) = (1 × 2) = 3. Note that this means
(id2 × id) : 2× 1→ 2× 1 = id3 : 3→ 3, or for f : 2→ 2, (f × id2) = 〈f ;π1, f ;π2, id1, id1〉,
etc. . .

For a given signature Σ of a logic program, we build the corresponding (free or syntactic)
Lawvere Category CΣ as follows:

For every constant a ∈ TΣ, we freely adjoin an arrow a : 0→ 1.
For every function symbol f ∈ TΣ with arity α(f) = N , we freely adjoin an arrow
f : N → 1.

A model of a Lawvere Category C is a functor F : C → Set which preserves finite products
and pullbacks. A homomorphism of C-models is a natural transformation. The category of
models Mod(C, Set) for C is the usual functor category.

Lawvere Categories are a natural framework for categorically representing algebraic
theories. Examples of such categories C may be seen in [31], and some good treatments are
in [6, 26].

3.3 Allegories
I Definition 5 (Allegory). An allegory R = {O,A} is an enriched category, with objects
O and relations A. We write R;S : A → C for composition of relations R : A → B and
S : B → C. When there is no confusion possible we may also write RS for R;S. We add
two new operations:

For every relation R : A→ B and S : A→ B, (R ∩ S) : A→ B is a relation.
For every relation R : A→ B, R◦ : B → A is a relation.

We write R ⊆ S for R ∩ S = R. The new operations obey the following laws:

R ∩R = R R ∩ S = S ∩R
R ∩ (S ∩ T) = (R ∩ S) ∩ T R◦◦ = R

(RS)◦ = S◦;R◦ (R ∩ S)◦ = (R◦ ∩ S◦)
R; (S ∩ T) ⊆ (R;S ∩R;T) (R;S ∩ T) ⊆ (R ∩ T ;S◦);S

A map is a relation such that R◦;R ⊆ id and id ⊆ R;R◦. We use capital letters for relations
and small letters for maps. A relation R is coreflexive iff R ⊆ id. For an allegory R, we shall
denote its subcategory of maps by Map(R). A pair of maps f, g tabulates a relation R iff
f◦; g = R and f ; f◦ ∩ g; g◦ = 1. The latter condition is equivalent to stating that f, g form
a monic pair.

ICLP’12

338 Logic Programming in Tabular Allegories

C

A �
R -

f
◦ -

B

g
- =

C

A �
R -

�

f

B

g
-

C

B �
R◦ -

�

g

A

f
-

It is easy to prove that a tabulation is unique up to isomorphism. A coreflexive relation
R ⊆ id is tabulated by a pair of the form (f, f). If R = f◦; g, then R◦ = g◦; f .

An allegory is a tabular allegory iff every relation has a tabulation. For an allegory R,
Map(R) is a regular category. The following lemma tells us that a tabular allegory really is
the relational extension generated by its maps and that the concepts of regular category and
tabular allegory intimately connected:

I Lemma 6. If R is a tabular allegory then R ≈ Rel(Map(R)). If C is a regular category
then C ≈Map(Rel(C)). If R ≈ Rel(C) then Map(R) ≈ C.

Proof. See [21] 2.147 and 2.148, 2.154. J

Composition of relations in a tabular allegory is thus defined in the same way as for categories
of relations arising from a regular category, see Def. 3.

A distributive allegory is an allegory with a new relation denoted 0AB for every object A,
B, and given relations R, S with the same type, R ∪ S is an arrow. They obey the following
laws:

R ∪R = R R ∪ S = S ∪R
R ∪ (S ∪ T) = (R ∪ S) ∪ T 0 ∪ S = S

R ∪ (R ∩ S) = R R; 0 = 0
R(S ∪ T) = RS ∪RT R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∪ T)

4 Regular Lawvere Categories and Σ-Allegories

The key idea is to use Lem. 6 to build an allegory from a Lawvere category. In order to do
that, we need to define the concept of Regular Lawvere Category (RLC) C first. Then Rel(C)
generates a pre-Σ-allegory. However, this category is not distributive, so we ∪-complete it in
order to obtain what we call a Σ-allegory.

I Definition 7 (Regular Lawvere Category). Given a Lawvere Category C, we build its regular
completion Ĉ by adjoining an initial object ⊥, the corresponding initial arrows ?A : ⊥ → A

for every object A and applying the quotient ?A; f =?B for any arrow f : A→ B.

This completion effectively replaces the Lawvere Category concept of existence of an equalizer
by the question: What is the domain of the equalizing arrow? Arrows not having an equalizer
in C are equalized by ⊥ in Ĉ.

I Definition 8 (Initial Model). Given a choice 〈,〉 of product in Set, and a choice of symbols
for the signature Σ generating the Regular Lawvere Category C and set TΣ, the initial model
of a Regular Lawvere Category C — that is to say, the initial object in Mod(C, Set) — is the
functor JK, with object and arrow components (JKO, JKA):

E.J. Gallego Arias and J.B. Lipton 339

J⊥KO = ∅ J0KO = {•} JNKO = T N
Σ N > 0

J?N KA = ∅ ∅−→ JNKO

J!N KA = λx. •
Jc : 0→ 1KA = λ • . c
Jf : N → 1KA = λ(n1, . . . , nN). f(n1, . . . , nN)
Jπi : N → 1KA = λ(n1, . . . , nN). ni

J〈t1, . . . , tN 〉 : M → NKA = λn.〈JnKA; Jt1KA, . . . , JnKA; JtN KA〉

I Lemma 9. The regular completion of a Lawvere Category is a regular category.

4.1 Σ-Allegories
A RLC cannot model disjunctive clauses in logic programs, as it doesn’t tabulate distributive
allegories, which are tabulated by a Pre-Logos [21]: regular categories whose subobjects form
a complete lattice, not just a semi-lattice.

I Definition 10 (Σ-Allegory). Given a Regular Lawvere Category C, we define a Σ-allegory
R∪ as the distributive allegory generated from the allegory R ≈ Rel(C) by freely adding
all union arrows and taking the quotient by the distributive laws. An inclusion functor
F : R → R∪ exists, and it is easy to see that all the relations in R∪ that possess a union-free
representation are tabular.

5 Translation of the Program

The translation procedure is almost identical to the one defined in [22]. A predicate is
translated to a coreflexive relation. We use two helper relations, a partial identity I, is
meant to create and destroy local (or existentially quantified) variables, and a permutation
W , which puts the arguments in the right order for relation composition.

IDefinition 11 (I Relation). The relation IMN , withM < N is tabulated by (〈π1, . . . , πM 〉, idN).

This relation formalizes the intuition that the reciprocal of a projection creates a new variable,
indeed I12 = π◦1 .

I Definition 12 (W Relation). For a projection w : N →M , with N ≥M and K = N −M ,
we denote by w′ : N → N any of its extensions to a permutation such that the following
equations are satisfied: {w′(K) = w−1(1), . . . , w′(K +M) = w−1(M)}. For a given w′, W is
tabulated by (N, 〈πw′(1), . . . , πw′(N)〉).

First, we complete every predicate in a similar way to Clark’s [15]. The set of n variables
occurring in the terms is renamed from y1 to yn. Then, every term ti occurring as an
argument in the head and tail is replaced by a fresh variable xi, and the equation xi = ti is
added to the clause. After that process, clauses are of the form:

p(~x′)← ~x = ~t(~y), p1(~x1), . . . , pn(~xn).

~x′ a prefix of ~x, ~xi a selection of variables in ~x and ~t a sequence of terms using variables in ~y.
We replace ~xi for projections wi(~x) such wi(~x) = ~xi. Clauses are now of the form:

p(~x′)← ~x = ~t(~y), p1(w1(~x)), . . . , pn(wn(~x)).

ICLP’12

340 Logic Programming in Tabular Allegories

Now we are ready to transform the clause into a relational term. The equation ~x = ~t(~y)
is translated to a coreflexive relation between sequences of terms K(~t), of type |~t| → |~t|,
tabulated by an arrow |~y| → |~t|.

I Definition 13 (Term Translation). The translation function K takes a sequence of terms
~t, using ~y ≡ [y1, . . . , y|~y|] variables and returns a coreflexive tabular relation K(~t) : |~t| → |~t|
with tabulation f : |~y| → |~t|.

K(~t[~y]) = 〈K~y(t1), . . . ,K~y(tn)〉◦; 〈K~y(t1), . . . ,K~y(tn)〉
where
K~y(a) = !|~y|; a : |~y| → 1
K~y(yi) = πi : |~y| → 1
K~y(f(t1, . . . , tn)) = 〈K~y(t1), . . . ,K~y(tn)〉; f : α(~y)→ 1

The tabulation could be seen as a constructor for ~t from a supply of fresh variables ~y. We must
wrap the predicates with the relational projection Wi generated from wi, let Ai = N −α(pi):

K(~t);W1; (idA1 × p1);W ◦1 ; . . . ;Wn; (idAn
× pn);W ◦n

Note that we have replaced ∪ by composition. This is possible thanks to the fact that the
relation (idA1 × p1) is coreflexive, thus the equation A ∩ B = A;B holds. Note that the
presented arrow has type N = |vt|, while the arrow for the predicate should have a type of
M . We use the IMN : M → N to fix this and we obtain the final form. The final translation
for the clause is:

IMN ; (K(~t);W1; (idA1 × p1);W ◦1 ; . . . ;Wn; (idAn
× pn);W ◦n); I◦MN

A predicate p consisting of several clauses is then translated using ∪:

p(~x)← cl1 ∨ · · · ∨ clm →
p = C1 ∪ · · · ∪ Cm

where Ci is the arrow corresponding to the translation of the clause cli.

I Theorem 14 (Adequacy of the Translation). Given a predicate p of arity N translated to
the arrow p : N → N , the initial model maps p to the subobject JpKA7−−−→ T N

Σ such that its image
is precisely the set of ground terms making p true.

6 Specification of The Machine

We abuse notation to profit from the fact that a coreflexive relation is uniquely tabulated by
a monic f◦; f to write f for f◦; f when it can be deduced from the context.

We define the categorical machine as a set of transition rules over relations. We write
(f | g) for tabular relations. Then, (f | g); (f ′ | g′) is rewrote to (h; f | h′; g′) using the
pullback (h, h′) of g, f ′. This corresponds to a substitution, where the arrow h : M → N

takes a current state of the machine using N variables to a state using M variables, and
h′ : M ′ → N ′ does the same, usually instantiating the translations of a clause to the right
variables. This mechanism is also used for variable creation/destruction. The pair of arrows
(h, h′) above the transition arrow denotes the result of the pullback.

A union R1 ∪ · · · ∪Rn is used to represent disjunctive search, while predicate calls are
represented as (f | 〈g, [R]〉), where R is the relation pertaining to the call in-progress. Note

E.J. Gallego Arias and J.B. Lipton 341

that g and the left tabulation of R share the same domain, allowing the propagation of
substitutions resulting from reducing R to the outer context.

(f | g); (f ′ | g′) (h,h′)===⇒ (h; f | h′; g′)
(f | 〈gK , gN 〉); (idK × pN) =⇒ (f | 〈gK , [(gN | gN); p1]〉) ∪

... ∪
(f | 〈gK , [(gN | gN); pn〉])

(f | 〈g, [(g′ | g′)]〉) =⇒ (f | 〈g, g〉)
(f | 〈g, [E]〉) =⇒ (h; f | 〈h; g, [E′]〉) iff E =⇒ E′

R ∪ S =⇒ R′ ∪ S iff R =⇒ R′

0 ∪ S =⇒ S

The first rule represents composition of tabular relations. The second one represents predicate
call. First, disjunctive predicates are unfolded using the rule f ; (R ∪ S) = f ;R ∪ f ;S.
Computing the predicate call is performed by the relation (gN | gN); p1. The third rule deals
with return. The three last rules encode the search strategy of the machine. We include an
example in Appendix A.

I Theorem 15 (Operational equivalence). 〈p1(~u1), . . . , pn(~un)〉 → · · · → � is the SLD
derivation with substitution σ iff

K(~u);W1; p1;W ◦1 ; . . . ;Wn; pn;W ◦n ⇒ K(σ(~u)) ∪R

7 The Pullback Algorithm

The core of the machine is pullback calculation. We present a pullback calculation algorithm
for an arbitrary Regular Lawvere Category C generated from a signature Σ. The equational
theory of C is the basis for the algorithm.

To improve the presentation, we reduce the pullback problem to its equivalent equalizer
formulation. We start with a non commutative diagram and rewrite it until we reach
a commutative one, which is an equalizer, and thus we obtain a pullback. The notion of
substitution is an arrow composition followed by normalization modulo the product equational
theory.

I Definition 16 (Pullback Problem). A pullback problem is given by two arrows f : N →M

and g : N ′ →M .

I Definition 17 (Arrow Normalization). We write →!
R for the associated normalizing relation

based on →R:

h; 〈f, g〉 →R 〈h; f, h; g〉 〈f, g〉;π1 →R f

〈f, g〉;π2 →R g f ; !N →R !M f : M → N

I Definition 18 (Starting Diagram). For a pullback problem, its pre-starting diagram P is:

N ×N ′
π1; f-

π2; g
- M

Products are strictly associative, so π2 is a renaming, for instance if f = 〈π1〉 and g =
〈〈π1, π2〉; f〉, then π2 : 3 → 2 is equal to 〈π2, π3〉, and π2; g = 〈〈π2, π3〉; f〉. If π1; f →!

R f ′

ICLP’12

342 Logic Programming in Tabular Allegories

and π2; g →!
R g′, the starting diagram P is:

N +N ′
id = 〈π1, . . . , πN+N ′〉- N +N ′

f ′ -

g′
- M

N +N ′ is the type of the pullback problem.

I Definition 19 (Algorithm State). For a pullback problem of type N , the algorithm state
is (S | h), h : N → N an arrow and S an ordered set of equations f ≈ g between arrows
f, g : N → 1.

I Definition 20 (Auxiliary Substitution). The helper substitution function is S(i, f : N →
1, h : N → N) = h′, where 〈π1, . . . , πi−1, f, πi+1, . . . , πN 〉;h →!

R h′. This function replaces
any πi in h for f .

I Definition 21 (Pullback Calculation Algorithm). The input of the algorithm is two arrows
f0 : N →M and g0 : N ′ →M . First, build the starting diagram P, which produces arrows
f ′0 and g′0, and a type of the problem N +N ′ = NT . f ′0 and g′0 are of the form 〈f1, . . . , fM 〉,
〈g1, . . . , gM 〉, then build the initial set S = {f1 ≈ g1, . . . , fM ≈ gM}. The initial state is
(S | 〈π1, . . . , πN+N ′〉). The algorithm proceeds to transform the state (S | h) iteratively until
S = ∅ using the following rules

Pick an equation from S such that S = {f ≈ g}∪S′. Compute h; f →!
R f ′ and h; g →!

R g′.
Then, do case analysis on f ′ ≈ g′:

!M ; a ≈ !M ; b ⇒ Fail πi ≈ πj ⇒ (S′ | S(j, πi, h))
!M ; a ≈ h; f ⇒ Fail πi ≈ g; f ⇒ (S′ | S(i, g; f, h))
g; f ≈ g′; f ′ ⇒ Fail !M ; a ≈ πi ⇒ (S′ | S(i, !M ; a, h))
!M ; a ≈ !M ; a ⇒ (S′ | h) g; f ≈ g′; f ⇒ ({g1 ≈ g′1} ∪ . . .

{gn ≈ g′n} ∪ S′ | h)

When S = ∅, our diagram is commutative but may not be an equalizer due to having an
incorrect domain. We create a new arrow from h such that it is a monic. Discarding the K
unused elements of M — is enough. Compose h : M →M with any extension of idM−K to
M to obtain h′ : (M −K)→M . This process is similar to garbage collection and memory
de-fragmentation. If the algorithm fails, the equalizer is the initial arrow. Like many actual
Prolog implementations, we don’t implement occur-check. To get full soundness we would
need to implement the occurs check in rule 7.

8 Implementation Discussion

We briefly present the most important points about the efficient implementation of the machine
presented in Sec. 6 and Sec. 7. An implementation should be based on the interpretation of
projections as pointers, with any πi appearing inside a term being a pointer to a cell i.

The codomain of the tabulations may be seen as a set of registers, thus, for a pullback
between 〈!1; f, π1〉 and 〈a, b〉, we may assume that the registers are X1 =!1; f and X2 = π1
and emit instructions testc a, X1 and testc b, X2.

Note that the model presented here forces garbage collection and compaction. Every
unused slot is eliminated by the pullback algorithm. We may fix our model by creating N
copies of the object T with their corresponding products. Then, the Ti object becomes a
representative of the memory cell i, and the denotational model captures the instantiation of

E.J. Gallego Arias and J.B. Lipton 343

a variable as the variation of the tabulation domain from (T1 × T2 × T3) to (T1 × T3). This
yields a memory behavior close to a standard WAM without garbage collection.

In order for the code to look reasonable we need to implement two optimizer engines.
The first one is an algebraic one and perform tasks like statically computing the tabulation
of IMN ;K(~t). The second one is a peephole optimizer.

9 Related Work

Algebraic approaches to logic programming have been tried in [29, 3, 20, 2, 16, 4]. The most
important difference with our work is that all of them are based on the notion of indexed
category and don’t make a proposal for a concrete implementation. As in our proposal, the
use of pullbacks is key point.

A different line of work is interpretation of logic programming as functional programs. The
most representative works are [39, 41, 8, 36]. In [7], the authors study relational semantics for
lazy functional logic programming language, modeling adequately the interactions between
function call and non-determinism. In [10] the authors propose a diagram-based semantics
for Logic Programming. An very interesting related work is [34]. This is the only proposal
that we know of for the use of tabular allegories in programming. Unfortunately, McPhee’s
work does not develop an executable model. The use of category theory as a foundational
tool for a machine is not new, the best known work is [17].

Several approaches to virtual machine generation [35, 18] and compiler verification [38] for
Prolog exist. Several relation-based programming languages exist [19, 14, 13, 12, 25]. In [42],
a similar effort to our semantics is developed, but the framework chosen is Tarski’s cylindrical
algebras instead Freyd’s allegories. The author doesn’t consider the implementation and
efficiency of his approach.

In [1], the authors propose a first-order encoding for allegories. This is related our previous
relation rewriting approach and indeed we consider their work very useful for mechanizing our
theory. An encoding of allegories in a dependently-typed programming language is presented
in [28]. We think Kahl’s approach may help us to certify our compiler.

10 Conclusions and Future Work

We have presented an algebraic approach to Logic Programming, from the semantic base of
category and allegory theory down to an actual machine based on which can be efficiently
implemented. Our approach is new and has important advantages. First, as the algebraic
connection between the different layers of the machine is not lost, reasoning in a layer is
immediately reflected by the others. Additions on the semantics foster modifications to
the algorithm as can be seen in [23]. In the other direction, a good example is the effect
that memory layout has on incorporating Ti objects representing memory cells. Second,
the correctness of the machine is easy to check. Composition of relations together with the
equation R; (S ∪ T) = R;S ∪R;T) capture in a simple way the operational semantics and
memory layout of Prolog. Our framework is well suited to prove semantic properties, given
that our semantics are compositional and use the well established frameworks of category
theory and relation algebra. Third, the use of such frameworks favors the reuse of existing
technologies in other areas of programming.

We are actively working on an definitive instruction set. We don’t want it to be specific to
an operational choice like SLD, given that our approach is well suited to accommodate other
strategies like breadth-first search. On the other hand, we are already developing extensions

ICLP’12

344 Logic Programming in Tabular Allegories

to Prolog in [23], and some of them, such as higher-order types may require that we add
second primitive of reduction to our machine.

In the future, we will mechanize all the theory presented here, and indeed we hope that
effort will bring us close to the goal of having a fully verified implementation. We are working
in extending Regular Lawvere Categories to Pre-Logos.

A An Example

We use as example the classical add predicate implementing Peano addition:
add(o,X,X).
add(s(X), Y, s(Z)) :- add(X, Y, Z).

A.1 Translation
We perform the renaming procedure similar to Clark’s completion:
add(X1 ,X2 ,X3) :- X1 = o, X2 = Y1 , X3 = Y1.
add(X1 ,X2 ,X3) :- X1 = s(Y1), X2 = Y2 , X3 = s(Y3), X4 = Y1 , X5 = Y3 ,

add(X4 , X2 , X5).

Note that we have two kinds of variables, the ones starting by X which may only appear as
arguments to predicates and the Y variables, which represent the “real” variables used inside
the predicate. Externally, add only uses three X variables, but internally it needs two more.
In our relational translation, we will capture this fact by using a relation I35 : 3→ 5 that
takes care of creating X4 and X5. Recall that 〈f, g〉 is the categorical product constructor.
Then, storing all our X variables in such a product, we may try to express add in a relational
pseudo-notation:

add = 〈o, Y 1, Y 1〉
∪ I35; (〈s(Y 1), Y 2, s(Y 3), Y 1, Y 3〉 ∩ (id2 × add)); I◦35

the recursive call to add is wrapped into a vector of size 5, but we are calling it with the
wrong parameters! The above expression is equivalent to add(X3, X4, X5). We need to call
it with the right parameters, so we compose the call with a permutation of the vector. We
replace Y variables by categorical projections and the actual translation is:

add = 〈o, π1, π1〉◦; 〈o, π1, π1〉
∪ I35; 〈π1s, π2, π3s, π1, π3〉◦; 〈π1s, π2, π3s, π1, π3〉;W ; (id2 × add);W ◦; I◦35

where I35 : 3→ 5 = 〈π1, π2, π3〉◦ and W : 5→ 5 = 〈π1, π3, π4, π2, π5〉. In order to save space
we will abuse notation and will write f for a coreflexive relation f◦; f . With this abuse in
mind, the tabulation of 〈π1s, π2, π3s, π1, π3〉 is:

3

5 �
〈π1s, π2, π3s, π1, π3〉 -�〈π

1s
, π

2,
π3s
, π

1,
π3〉

5

〈π1 s, π2 , π3 s, π1 , π3 〉-

The reader can see how domain of the tabulations reflects the number of free variables in use
by the machine, information which is usually associated to global storage. The codomain of
the tabulations — the actual domain of the relations — should be interpreted as the number
or working “temporal registers” that are used for parameter passing and unification.

E.J. Gallego Arias and J.B. Lipton 345

A.2 Execution
A query add(s(X), Y, Z) is translated to 〈π1s, π2, π3〉; add and its execution trace is:

〈π1s, π2, π3〉; add ⇒
(〈π1s, π2, π3〉; 〈o, π1, π1〉) ∪ . . . ⇒
0 ∪ 〈π1s, π2, π3〉; I35; 〈π1s, π2, π3s, π1, π3〉;W ; (id2 × add);W ◦; I◦35 ⇒
〈π1s, π2, π3〉; I35; 〈π1s, π2, π3s, π1, π3〉;W ; (id2 × add);W ◦; I◦35 ⇒
(〈π1s, π2, π3〉 | 〈π1s, π2, π3, π4, π5〉); 〈π1s, π2, π3s, π1, π3〉;W ; (id2 × add);W ◦; I◦35 ⇒
(〈π1s, π2, π3s〉 | 〈π1s, π2, π3s, π1, π3〉);W ; (id2 × add);W ◦; I◦35 ⇒
(〈π1s, π2, π3s〉 | 〈π1s, π3s, π1, π2, π3〉); (id2 × add);W ◦; I◦35 ⇒
(〈π1s, π2, π3s〉 | 〈π1s, π3s, [〈π1, π2, π3〉; 〈o, π1, π1〉]〉;W ◦; I◦35 ∪ . . . ⇒
(〈os, π1, π1s〉 | 〈os, π1s, [〈o, π1, π1〉]〉;W ◦; I◦35 ∪ . . . ⇒
(〈os, π1, π1s〉 | 〈os, π1s, o, π1, π1〉);W ◦; I◦35 ∪ . . . ⇒
(〈os, π1, π1s〉 | 〈os, π1, π1s, o, π1〉); I◦35 ∪ . . . ⇒
〈os, π1, π1s〉 ∪ . . .

then 〈os, π1, π1s〉 is translated back to the answer X = o, Z = s(Y).

References
1 Bahar Aameri and Michael Winter. A first-order calculus for allegories. In Harrie de Swart,

editor, Relational and Algebraic Methods in Computer Science, volume 6663 of Lecture
Notes in Computer Science, pages 74–91. Springer Berlin / Heidelberg, 2011. 10.1007/978-
3-642-21070-9_8.

2 Gianluca Amato and James Lipton. Indexed categories and bottom-up semantics of logic
programs. In Robert Nieuwenhuis and Andrei Voronkov, editors, LPAR, volume 2250 of
Lecture Notes in Computer Science, pages 438–454. Springer, 2001.

3 Gianluca Amato, James Lipton, and Robert McGrail. On the algebraic structure of declar-
ative programming languages. Theoretical Computer Science, 410(46):4626 – 4671, 2009.
Abstract Interpretation and Logic Programming: In honor of professor Giorgio Levi.

4 Andrea Asperti and Simone Martini. Projections instead of variables: A category theoretic
interpretation of logic programs. In ICLP, pages 337–352, 1989.

5 Michael Barr and Charles Wells. Category theory for computing science (3. ed.). Sentre de
REcherches Mathématiques, 1999.

6 Francis Borceux. Handbook of Categorical Algebra 2. Categories and Structures, volume 51
of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1994.

7 Bernd Braßel and Jan Christiansen. A relation algebraic semantics for a lazy functional logic
language. In Rudolf Berghammer, Bernhard Möller, and Georg Struth, editors, RelMiCS,
volume 4988 of Lecture Notes in Computer Science, pages 37–53. Springer, 2008.

8 Pascal Brisset and Olivier Ridoux. Continuations in lambda-prolog. In ICLP, pages 27–43,
1993.

9 Paul Broome and James Lipton. Combinatory logic programming: computing in relation
calculi. In ILPS ’94: Proceedings of the 1994 International Symposium on Logic program-
ming, pages 269–285, Cambridge, MA, USA, 1994. MIT Press.

10 Roberto Bruni, Ugo Montanari, and Francesca Rossi. An interactive semantics of logic
programming. THEORY AND PRACTICE OF LOGIC PROGRAMMING, 1(6):647–690,
2001.

11 Carsten Butz. Regular categories and regular logic. Technical Report LS-98-2, BRICS,
October 1998.

ICLP’12

346 Logic Programming in Tabular Allegories

12 Dave Cattrall and Colin Runciman. Widening the representation bottleneck: A functional
implementation of relational programming.

13 Dave Cattrall and Colin Runciman. A relational programming system with inferred repre-
sentations. In Maurice Bruynooghe and Martin Wirsing, editors, Programming Language
Implementation and Logic Programming, volume 631 of Lecture Notes in Computer Science,
pages 475–476. Springer Berlin / Heidelberg, 1992. 10.1007/3-540-55844-6_156.

14 D.M. Cattrall. The Design and Implementation of a Relational Programming Systema.
PhD thesis, University of York, 1992.

15 Keith L. Clark. Negation as failure. In Gallaire and Minker, editors, Logic and Data Bases,
pages 293–322. Plenum Press, 1977.

16 Andrea Corradini and Andrea Asperti. A categorial model for logic programs: Indexed
monoidal categories. In J. W. de Bakker, Willem P. de Roever, and Grzegorz Rozenberg,
editors, REX Workshop, volume 666 of Lecture Notes in Computer Science, pages 110–137.
Springer, 1992.

17 Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The categorical abstract machine.
Sci. Comput. Program., 8(2):173–202, 1987.

18 Stephan Diehl, Pieter H. Hartel, and Peter Sestoft. Abstract machines for programming
language implementation. Future Generation Comp. Syst., 16(7):739–751, 2000.

19 B. Dwyer. Programming using binary relations: a proposed programming languague. Tech-
nical report, University of Adelaide, 1994.

20 Stacy E. Finkelstein, Peter J. Freyd, and James Lipton. A new framework for declarative
programming. Theor. Comput. Sci., 300(1-3):91–160, 2003.

21 P.J. Freyd and A. Scedrov. Categories, Allegories. North Holland Publishing Company,
1991.

22 Emilio Jesús Gallego Arias, James Lipton, and Julio Mariño. Constraint logic programming
with a relational machine. Technical report, Universidad Politécnica de Madrid, 2012.
http://babel.ls.fi.upm.es/~egallego/iclp/clprm.pdf.

23 Emilio Jesús Gallego Arias, James Lipton, and Julio Mariño. Extensions to logic program-
ming in tabular allegories: Algebraic data types, functions, constraints and monads. 2012.
Submitted to ICLP 2012 http://babel.ls.fi.upm.es/~egallego/iclp/lpta-ext.pdf.

24 Emilio Jesús Gallego Arias, James Lipton, Julio Mariño, and Pablo Nogueira. First-order
unification using variable-free relational algebra. Logic Journal of IGPL, 19(6):790–820,
2011.

25 Patrick A. V. Hall. Relational algebras, logic, and functional programming. In Beatrice
Yormark, editor, SIGMOD Conference, pages 326–333. ACM Press, 1984.

26 Martin Hyland and John Power. The category theoretic understanding of universal algebra:
Lawvere theories and monads. Electr. Notes Theor. Comput. Sci., 172:437–458, 2007.

27 Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford
University Press, 2003.

28 Wolfram Kahl. Dependently-typed formalisation of relation-algebraic abstractions. In
Harrie de Swart, editor, Relational and Algebraic Methods in Computer Science, volume
6663 of Lecture Notes in Computer Science, pages 230–247. Springer Berlin / Heidelberg,
2011. 10.1007/978-3-642-21070-9_18.

29 Yoshiki Kinoshita and A. John Power. A fibrational semantics for logic programs. In
Roy Dyckhoff, Heinrich Herre, and Peter Schroeder-Heister, editors, ELP, volume 1050 of
Lecture Notes in Computer Science, pages 177–191. Springer, 1996.

30 J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge
University Press, Cambridge, 1986.

http://babel.ls.fi.upm.es/~egallego/iclp/clprm.pdf
http://babel.ls.fi.upm.es/~egallego/iclp/lpta-ext.pdf

E.J. Gallego Arias and J.B. Lipton 347

31 F. William Lawvere. Functorial Semantics of Algebraic Theories and Some Algebraic Prob-
lems in the context of Functorial Semantics of Algebraic Theories. PhD thesis, Columbia
University, 1968.

32 Jim Lipton and Emily Chapman. Some notes on logic programming with a relational
machine. In Ali Jaoua, Peter Kempf, and Gunther Schmidt, editors, Using Relational
Methods in Computer Science, Technical Report Nr. 1998-03, pages 1–34. Fakultät für
Informatik, Universität der Bundeswehr München, July 1998.

33 J. W. Lloyd. Foundations of logic programming. Springer-Verlag New York, Inc., New York,
NY, USA, 1984.

34 Richard McPhee and Richard Mcphee. Towards a relational programming language, 1995.
35 José F. Morales, Manuel Carro, Germán Puebla, and Manuel V. Hermenegildo. A generator

of efficient abstract machine implementations and its application to emulator minimization.
In Maurizio Gabbrielli and Gopal Gupta, editors, ICLP, volume 3668 of Lecture Notes in
Computer Science, pages 21–36. Springer, 2005.

36 Maciej Pirog and Jeremy Gibbons. A functional derivation of the warren abstract machine.
2011. Submitted for publication.

37 Vaughan R. Pratt. Origins of the calculus of binary relations. In Logic in Computer Science,
pages 248–254, 1992.

38 David M. Russinoff. A verified prolog compiler for the warren abstract machine. Journal
of Logic Programming, 13:367–412, 1992.

39 Silvija Seres, J. Michael Spivey, and C. A. R. Hoare. Algebra of logic programming. In
ICLP, pages 184–199, 1999.

40 Alfred Tarski and Steven Givant. A Formalization of Set Theory Without Variables, vol-
ume 41 of Colloquium Publications. American Mathematical Society, Providence, Rhode
Island, 1987.

41 Eneia Todoran and Nikolaos S. Papaspyrou. Continuations for parallel logic programming.
In Proceedings of the 2nd ACM SIGPLAN international conference on Principles and prac-
tice of declarative programming, PPDP ’00, pages 257–267, New York, NY, USA, 2000.
ACM.

42 Maarten H. van Emden. Compositional semantics for the procedural interpretation of logic.
In Sandro Etalle and Miroslaw Truszczynski, editors, ICLP, volume 4079 of Lecture Notes
in Computer Science, pages 315–329. Springer, 2006.

ICLP’12

Tabling for infinite probability computation
Taisuke Sato1 and Philipp Meyer2

1 Tokyo Institute of Technology
2-12-1 Ookayama, Meguro, Tokyo, Japan
sato@mi.cs.titech.ac.jp

2 Technische Universität München
Arcisstrasse 21, 80333 München, Germany
meyerphi@in.tum.de

Abstract
Tabling in logic programming has been used to eliminate redundant computation and also to stop
infinite loop. In this paper we add the third usage of tabling, i.e. to make infinite computation
possible for probabilistic logic programs. Using PRISM, a logic-based probabilistic modeling
language with a tabling mechanism, we generalize prefix probability computation for PCFGs to
probabilistic logic programs. Given a top-goal, we search for all SLD proofs by tabled search
regardless of whether they contain loop or not. We then convert them to a set of linear probability
equations and solve them by matrix operation. The solution gives us the probability of the top-
goal, which, in nature, is an infinite sum of probabilities. Our generalized approach to prefix
probability computation through tabling opens a way to logic-based probabilistic modeling of
cyclic dependencies.

1998 ACM Subject Classification D.3.3 Language Constructs and Features

Keywords and phrases probability, tabling, PRISM

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.348

1 Introduction

Combining logic and probability in a logic programming language provides us with a powerful
modeling tool for machine learning. The resulting language allows us to build complex yet
comprehensible probabilistic models in a declarative way. PRISM [12, 13, 14] is one of the
earliest attempts to develop such a language. It covers a large class of known models including
BNs (Bayesian networks), HMMs (hidden Markov models) and PCFGs (probabilistic context
free grammars) and computes probabilities with the same time complexity as their standard
algorithms1, as well as unexplored models such as probabilistic graph grammars [11].

The efficiency of probability computation in PRISM is attributed to tabling [16, 17, 10,
20, 19]2 that eliminates redundant computation. Given a top goal G, we search for all SLD
proofs of G by tabled search and translating them to a set of propositional formulas with a
graph structure called an explanation graph for G [13]. By applying dynamic programming
to the explanation graph which is acyclic and partially ordered we can efficiently compute
the probability of G in proportion to the size of the graph. The use of tabling also gives us
another advantage over non-tabled computation: it stops infinite loop by detecting recurrence

1 For example, the junction tree algorithm for BNs, the forward-backward algorithm for HMMs and the
inside-outside algorithm for PCFGs.

2 Tabling is also employed in other probabilistic logic programming languages such as ProbLog [5] and
PITA [9].

© Taisuke Sato and Philipp Meyer;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 348–358

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.348
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Sato and P. Meyer 349

patterns of goals. Tabled logic programs thus allow us to directly use left recursive rules in
CFGs without the need of converting them to right recursive ones.

In this paper we pursue yet the third advantage of tabling that has gone unnoticed in
the non-probabilistic setting. We apply tabling to compute an infinite sum of probabilities
that typically appears in the context of prefix probability computation in PCFGs. PCFGs
(probabilistic context free grammars) are a probabilistic extension of CFGs in which CFG
rules have probabilities and the probability of a sentence is computed as a sum-product of
probabilities assigned to the rules used to derive the sentence [1, 4]. A prefix w is an initial
substring of a sentence. Then the probability of the prefix w given by a PCFG is a sum of
probabilities of infinitely many complete sentences of the form wv for some string v [3, 15, 7].
Prefix probabilities are useful in speech recognition as discussed in [3]. We generalize this
prefix probability computation that originated in PCFGs to probability computation on
cyclic explanation graphs which are generated by tabled search in PRISM. We emphasize that
this approach, i.e. probability computation via cyclic explanation graphs, makes it possible
to model probabilistic cyclic dependencies abundant in real life from economics to biological
systems by probabilistic logic programs.

Technically the generation of cyclic explanation graphs is not difficult in PRISM. Just
setting appropriately a certain PRISM flag that controls tabled search is enough. However
computing probabilities from such graphs is difficult in general except for the case of linear
cyclic explanation graphs that can be turned into a set of linear probability equations
straightforwardly solvable by matrix operation. So the real problem is to guarantee the
linearity of cyclic explanation graphs. We specifically examine a PRISM program for prefix
probability computation in PCFGs and prove that the program always generates linear cyclic
explanation graphs. We also prove that the probability equations obtained from the linear
cyclic explanation graphs are solvable by matrix operation under some mild assumptions on
PCFGs.

2 Probability computation in PRISM

2.1 Tabling and explanation graphs
PRISM is a probabilistic extension of Prolog with built-in predicates for machine learning
tasks such as parameter learning and Bayesian inference [13, 14]. Theoretically a PRISM
program DB is a union of a set of definite clauses and a set of probabilistic atoms of the
form msw(id,v) that simulate dice throwing3. It defines a probability measure (an infinite
joint distribution) PDB(·) over possible Herbrand interpretations from which the probability
of an arbitrary closed formula is calculated. Practically however PRISM programs are just
Prolog programs that use msw atoms as probabilistic primitives. msw atoms are introduced
by special declarations values/3 specifying their properties as shown in the program DB0 in
Figure 1.

In PRISM, probabilities of ground atoms defined by a program DB are computed indirectly
in two steps. In the first step, for a top-goal G of which we wish to compute the probability, we
logically reduce it through DB by a top-down proof procedure, SLD search, to an equivalent
propositional DNF formula E1∨ . . .∨Ek such that comp(DB) ` G⇔ E1∨ . . .∨Ek. Here each
Ei (1 ≤ i ≤ k), an explanation for G, corresponds to an SLD proof of G. It is a conjunction
of ground msw atoms that records probabilistic choices made in the construction of the SLD

3 msw(id,v) reads that throwing a dice named i yields an outcome v.

ICLP’12

350 Tabling for infinite probability computation

proof4. In the second step, using the fact that G and E1 ∨ . . . ∨ Ek denote an identical
random variable in terms of the distribution semantics for PRISM [13], we compute the
probability of G as PDB(G) = PDB(E1 ∨ . . . ∨ Ek) where PDB(·) is the probability measure
defined by DB.

In general there are exponentially many SLD proofs and so are explanations which result
in an exponential size DNF. Nonetheless by introducing a tabling mechanism in the exhaustive
SLD search process, we can often produce an equivalent but much smaller boolean formula
by factoring out common sub-conjunctions in explanations as intermediate goals [13, 20].
The resulting boolean formula is expressed as a conjunctive set of defining formulas that take
the form H ⇔ B1 ∨ . . . ∨Bh. Here H is the top-goal G or an intermediate goal. Hereafter
the top-goal and intermediate goals are collectively called defined goals. Each Bi (1 ≤ i ≤ h)
is a conjunction C1 ∧ . . . ∧ Cm ∧ msw1 ∧ . . . ∧ mswn (0 ≤ m,n) of defined goals {C1, . . . , Cm}
and msw atoms {msw1, . . . , mswn}. We say that H is a parent of Cj (1 ≤ j ≤ m). We call
the closure of this parent-child relation the ancestor relation over ground atoms in DB. The
whole set of defining formulas, denoted by Exp(G), is called the explanation graph for G.

2.2 From explanation graphs to probability computation
The probability PDB(G) of a given goal G is precisely defined in terms of the distribution
semantics for PRISM. But the problem is that the semantics is so abstractly defined and we
cannot know the actual value of PDB(G) easily. Here we describe how to compute it under
some assumptions.

To compute PDB(G), we convert each defining formula H ⇔ B1 ∨ . . . ∨Bh in Exp(G) to
a set of probability equations for H:

P (H) = P (B1) + · · ·+ P (Bh)
where

P (Bi) = P (C1) · · ·P (Cm)P (msw1) · · ·P (mswn) (1 ≤ i ≤ h)
for Bi = C1 ∧ . . . ∧ Cm ∧ msw1 ∧ . . . ∧ mswn.

We denote by Eq(G) the entire set of probability equations thus obtained. Note that the
conversion assumes exclusiveness among disjuncts {B1, . . . , Bk} and independence among
conjuncts {C1, . . . , Cm, msw1, . . . , mswn}5. We consider P (H)s in Eq(G) as numerical variables
representing unknown probabilities and refer to them as P -variables. What is important
about Eq(G) is that Eq(G) always has a solution P (H) = PDB(H) for every defined goal
H[13]. So if Eq(G) has a unique solution for P (G), it coincides with PDB(G).

When defined goals appearing in Exp(G) are hierarchically ordered by the parent-child
relation (with G as top-most element) as is usually the case, the P-variables in Eq(G) are
also hierarchically ordered so that Eq(G) is uniquely and efficiently solved by dynamic
programming using the generalized IO algorithm [13] in time linear in the size of Eq(G).
There are cases however in which Exp(G) is not hierarchically ordered and some defined goals
are their own ancestors. We say Exp(G) is cyclic if there is a defined goal having itself as an
ancestor in Exp(G). If Exp(G) is cyclic, Eq(G) is also cyclic, and hence it is impossible to
apply dynamic programming to Eq(G), or even worse Eq(G) may not have a unique solution.

4 comp(DB) is the completion of DB. It is a union of if-and-only-if form of DB and so called Clark’s
equational theory.

5 We assume in this paper that these conditions are always satisfied.

T. Sato and P. Meyer 351

values(s,[[s,s],[a],[b]],set@[0.4,0.3,0.3]).
pre_pcfg(L):- pre_pcfg([s],L,[]). % L is a ground list

pre_pcfg([A|R],L0,L2):- % L0 ground, L2 variable when called
(values(A,_)-> msw(A,RHS), % if A is a nonterminal

pre_pcfg(RHS,L0,L1) ; L0=[A|L1]), % rule A->RHS selected
(L1=[] -> L2=[] ; pre_pcfg(R,L1,L2)).

pre_pcfg([],L1,L1).

Figure 1 Prefix parser DB0 for PCFGs.

In the next section, using a concrete example, we have a close look at cyclic Eq(G)s and
investigate their properties.

3 Prefix computation for PCFGs using PRISM

In this section, we formulate prefix computation for PCFGs using PRISM.

3.1 A prefix parser

Before proceeding we introduce some terminology about CFGs for later use. Let X be a
nonterminal in a CFG, α, β a mixed sequence of terminals and nonterminals. A rule for X is
a production rule of the form X ⇒ α. If there is a rule of the form X → Y β, we say X and
Y are in the direct left-corner relation. The transitive closure of the direct left-corner relation
is called the left-corner relation and we write as X →L Y if X and Y are in the left-corner
relation. The left-corner relation is cyclic if X →L X holds for some nonterminal X. We say
that a rule is useless if it does not occur in any sentence derivation. A nonterminal is useless
if every rule for it is useless. Otherwise it is useful. In this paper we assume that CFGs have
“s” as a start symbol and have no epsilon rule and no useless nonterminal.

In addition let θ1 : X → α1, . . . , θn : X → αn be the set of rules for X in a PCFG with
selection probabilities θ1, . . . , θn where

∑n
i=1 θi = 1. We assume that every rule has a positive

selection probability. If the sum of probabilities of sentences derived from the start sym-
bol is unity, the PCFG is said to be consistent [18]. We also assume that PCFGs are consistent.

Now we here look at a concrete example of prefix probability computation based on cyclic
explanation graphs. Consider a PCFG, PG0 = {0.4 : s → s s, 0.3 : s → a, 0.3 : s → b}.
Here “s” is a start symbol and 0.4 : s → s s says that the rule s → s s is selected with
probability 0.4 when “s” is expanded in a sentence derivation.

A PRISM program DB0 in Figure 1 is a prefix parser for PG0. It is a slight modification
of a standard top-down CFG parser and parses prefixes acceptable by PG0 such as “aab” (as
list [a,a,b]). The difference from the usual CFG parser is that it immediately terminates
successfully as soon as the input prefix is consumed even if there remain nonterminals to be
processed.

values(s,[[s,s],[a],[b]],set@[0.4,0.3,0.3]) in Figure 1 is a value declaration
which encodes PG0. pre_pcfg([A|R],L0,L2) is read that [A|R], a substring of α in some

ICLP’12

352 Tabling for infinite probability computation

pre_pcfg([a]) <=> pre_pcfg([s],[a],[])
pre_pcfg([s],[a],[]) <=>

pre_pcfg([s,s],[a],[]) & msw(s,[s,s]) v pre_pcfg([a],[a],[]) & msw(s,[a])
pre_pcfg([s,s],[a],[]) <=>

pre_pcfg([a],[a],[]) & msw(s,[a]) v pre_pcfg([s,s],[a],[]) & msw(s,[s,s])
pre_pcfg([a],[a],[])

Figure 2 Explanation graph for prefix “a”.

rule X → α, spans a d-list L0-L2 as a sublist of the input list [w1, . . . , wN]6. We remark
that DB0 is general, applicable to any PCFG just by replacing values/3 with appropriate
value declarations.

When this program is run with PRISM-flag error_on_cycle set to “off” for a com-
mand ?-G where G = pre_pcfg([w1, . . . , wN]) and [w1, . . . , wN] (wi ∈ {a, b}) is a list
representing a prefix w1, . . . , wN , the proof procedure, the SLD search, simulates the leftmost
derivation of the sentence by recursively calling the second clause. As soon as [w1, . . . , wN]
is derived, the search terminates with success while ignoring nonterminals in R that may
be non-empty as if R were successfully expanded to the remaining sentence7. We call this
type of success pseudo success. During the search, a call to pre_pcfg/3 is always of the
form pre_pcfg(v,[wi, . . . , wN],L2) where v is a substring of RHS of some production rule
and i ≤ N . On return of the call, the variable L2 is instantiated either to [wj , . . . , wN]
(i < j ≤ N) or to [] in the case of pseudo success. Therefore there are only a finitely many
number of calling and returning patterns of prefix_pcfg/3 and hence, the tabled search for
all proofs of the top-goal G always terminates.

After all proof search done, PRISM constructs an explanation graph for the top-goal G
by scanning the answer table in the memory. One thing to be noticed is that goals calling
themselves and thereby suspended by tabling are also recorded in the table in addition
to goals that normally succeeded. When PRISM encounters such goals, it looks at the
PRISM-flag error_on_cycle and if the value is “off”, those goals are treated as succeeded
and as a result a cyclic explanation graph is generated.

3.2 Computing prefix probabilities: an example
In this subsection, we see, using a small example, how prefix probabilities are computed from
cyclic explanation graphs. Figure 2 is the explanation graph for pre_pcfg([a]) obtained
by executing a command ?- probf(pre_pcfg([a]))8 w.r.t. DB0. As can be seen, there is
a cyclic goal pre_pcfg([s,s],[a],[]) that calls itself. We convert the cyclic explanation
graph to the corresponding set of probability equations shown in Figure 3. Here we used
abbreviations: θs→ss = P (msw(s, [s, s])) and θs→a = P (msw(s, [a])).

Although we know that the set of probability equations in Figure 3 are made true if we
assign the probabilities defined by the distribution semantics[13] to X, Y, Z and W, we do not
know their actual values. To know their actual values, we need to compute them by solving

6 In the following strings beginning with lower case letters are ground terms.
7 This is justifiable as we assume that every nonterminal is useful.
8 probf/1 is a built-in predicate in PRISM and probf(G) displays the explanation graph of G.

T. Sato and P. Meyer 353


X = Y
Y = Z · θs→ss + W · θs→a

Z = W · θs→a + Z · θs→ss

W = 1

where


X = P (pre_pcfg([a]))
Y = P (pre_pcfg([s], [a], []))
Z = P (pre_pcfg([s, s], [a], []))
W = P (pre_pcfg([a], [a], [])) = 1

Figure 3 Probability equations for prefix “a”.

the equations. Fortunately, equations are linear in the P-variables X, Y, Z and W and easily
solvable.

By substituting θs→ss = 0.4 and θs→a = 0.39 for the equations and solving them, we
obtain X = Y = 0.5, P (pre_pcfg([s, s], [a], [])) = Z = 0.5 and W = 1, respectively. Hence the
prefix probability of “a” is 0.5. Note that this prefix probability is larger than the probability
of “a” as a sentence which is 0.3. This is because the prefix probability of “a” is the sum of
the probability of sentence “a” and the probabilities of infinitely many sentences extending
“a”.

By looking at the set of probability equations in Figure 3 more closely, we can understand
the way our approach computes prefix probabilities in PCFGs. For example, consider
Z = P (pre_pcfg([s, s], [a], [])) and the equation Z = W · θs→a + Z · θs→ss. We can expand the
solution Z into an infinite series:

Z = 1
1− θs→ss

W · θs→a = (1 + θs→ss + θ2
s→ss + · · ·)W · θs→a

It is easy to see that this series represents the probability of infinitely many leftmost
derivations of prefix “a” from nonterminals “s s” by partitioning the derivations based on
the number of applications of rule s→ s s, i.e. 1 for no application (s s⇒s→a a s), θs→ss for
once (s s⇒s→ss s s s ⇒s→a a s s) and so on10.

3.3 Properties of explanation graphs generated by a prefix parser
Let PG be a PCFG and PG’ its backbone CFG. Also let DBPG be a prefix parser for PG
obtained by replacing the values/3 declaration in DB0 in Figure 1 with an appropriate
set of values/3 declarations encoding PG. In this section, we first prove that a necessary
and sufficient condition under which a prefix parser DBPG generates cyclic explanation
graphs. We then prove that DBPG always generates a system of linear equations for prefix
probabilities. Finally we prove that the linear system is solvable by matrix operation under
our assumptions on PCFGs.

I Theorem 1. Let G` = pre_pcfg(`) be a goal for a prefix ` = [w1, . . . , wN] in PG’
and Exp(G`) an explanation graph for G` generated by DBPG. Suppose there is no useless
nonterminal in PG’. Then there exists a cyclic explanation graph Exp(G`) if-and-only-if the
left-corner relation of PG’ is cyclic.

9 values(s,[[s,s],[a],[b]],set@[0.4,0.3,0.3]) in the program sets θs→ss = P (msw(s, [s, s])) = 0.4,
θs→a = P (msw(s, [a])) = 0.3 and θs→b = P (msw(s, [b])) = 0.3 respectively.

10Recall that we assume that PCFGs are consistent. So the sum of probabilities of sentences derived from
“s” is 1. Consequently for example we may ignore s in “a s” when computing the probability of prefix
“a” derived from “a s”.

ICLP’12

354 Tabling for infinite probability computation

Proof. Suppose Exp(G`) is cyclic. Then some defined goal pre_pcfg([a|β],`0,`2) with
a nonterminal “a” must call itself as a descendant in Exp(G`) where `0 and `2 are sublists
of `. So an SLD derivation exists from :-prefix_pcfg([a|β],`0,L2),K to its descendant
:-prefix_pcfg([a|β],`0,L2’),K’ that contains no return of goals because the list `0 is
preserved. Consequently there is a corresponding leftmost derivation s ∗⇒ aδ

∗⇒ aδ′ by PG’,
the backbone CFG of PG. So the left-corner relation is cyclic.

Conversely suppose the left-corner relation of PG’ is cyclic. Then there is a nonterminal
“a” such that a →L a. As there is no useless nonterminal by our assumption, there is a
leftmost derivation starting from “s” such that s ∗⇒ γaδ

∗⇒ γaδ′
∗⇒ w1 . . . wN for some

sentence w1, . . . , wN . In what follows, for simplicity we assume that γ is empty (but
generalization is straightforward). Let `0 = w1, . . . , wj (j ≤ N) be a prefix derived from a

whose partial parse tree has a as the root and no a occurs below the root a. Then it is easy
to see that the tabled search for all SLD proofs of G`0 generates Exp(G`0) containing a goal
prefix_pcfg([a|β],`0,[]) which is an ancestor of itself. So Exp(G`0) is cyclic. J

Let Exp(G`) be an explanation graph for G`. We introduce an equivalence relation A ≡ B
over defined goals appearing in Exp(G`): A ≡ B if-and-only-if A is an ancestor of B and vice
versa. We partition the set of defined goals into equivalent classes [A]≡. Each [A]≡ is called
an SCC (strongly connected component). We say that a defining formula H ⇔ B1 ∨ . . . ∨Bh

is linear if there is no Bi = C1 ∧ . . . ∧ Cm ∧ msw1 ∧ . . . ∧ mswn (1 ≤ i ≤ h, 0 ≤ m,n) such
that two defined goals, Cj and Ck (j 6= k), belong to the same SCC. Also we say Exp(G`) is
linear if every defining formula in Exp(G`) is linear.

I Lemma 2. No two defined goals in the body of a defining formula in Exp(G`) belong to
the same SCC.

Proof. Let H ⇔ B1 ∨ . . . ∨Bh be a defining formula in Exp(G`). Suppose some Bi contains
two defined goals belonging to the same SCC. Looking at DB0 in Figure 1, we know that
the only possibility is such that H ⇔ B1 ∨ . . . ∨ Bh is a ground instantiation of the first
(compound) clause about pre_pcfg/3:

pre_pcfg([a|β],`0,`2):-

msw(a,α),pre_pcfg(α,`0,`1),pre_pcfg(β,`1,`2) (1)

and the two defined goals, pre_pcfg(α,`0,`1) and pre_pcfg(β,`1,`2), are in the same
SCC. In this case, since pre_pcfg(α,`0,`1) is a proved goal, `1 is shorter than `0. On the
other hand since pre_pcfg(β,`1,`2) is an ancestor of pre_pcfg(α,`0,`1) in Exp(G`), `0
is identical to or a part of `1, and hence `0 is equal to or shorter than `1. Contradiction.
Therefore there is no such defining formula. Hence Exp(G`) is linear. J

I Theorem 3. Let Exp(G`) be an explanation graph for a prefix ` generated by DBPG.
Exp(G`) is linear.

Proof. Immediate from Lemma 2. J

We next introduce a partial ordering [A]≡ � [B]≡ over SCCs by [A]≡ � [B]≡ if-and-only-if
A is an ancestor of B but not vice versa in Exp(G`). We then extend this partial ordering to
a total ordering [A]≡ > [B]≡ over SCCs. Likewise we partition P-variables by the equivalence
relation: P (A)≡P (B) if-and-only-if [A]≡ = [B]≡. We denote by [P (A)]≡ the equivalence

T. Sato and P. Meyer 355

class of P-variables corresponding to [A]≡. By construction [P (A)]≡s are totally ordered
isomorphically to SCCs: [P (A)]≡ > [P (B)]≡ if-and-only-if [A]≡ > [B]≡. In the following
we treat SCCs and P-variables as isomorphically stratified by this total ordering. We use
Eq([P (A)]≡) to stand for the union of sets of probability equations for defined goals in [A]≡.

Notice that Eq([P (A)]≡) is a system of linear equations by Theorem 3 if we consider
P-variables in the lower strata as constants. Hence Eq(G`) is solvable inductively from lower
strata to upper strata.

Now we prove that Eq([P (A)]≡) is always solvable by matrix operation under our
assumptions on PCFGs. Let “a” be a nonterminal in the backbone CFG PG’ and A a
defined goal in Exp(G`). Put A = pre_pcfg([a|β],`0,`2). Since A is a proved goal, A
successfully calls some ground goals Bj = pre_pcfg(αj,`0j,`1j) shown in (1) where a→ αj

is a CFG rule in PG’. By repeating a similar proof for Lemma 2, we can prove that the
third goal pre_pcfg(β,`1,`2) in the clause body in (1) does not belong to [A]≡, the SCC
containing A. Thus [A]≡ > [pre_pcfg(β,`1,`2)]≡. So only some of the Bjs can possibly
belong to [A]≡ as far as A is concerned.

Let P (A1), . . . , P (AK) be an enumeration of P-variables in [P (A)]≡. Introduce a column
vector XA = (P (A1), . . . , P (AK))T . It follows from what we have argued that we can
write Eq([P (A)]≡) as a system of linear equations XA = MXA + YA where M is a K ×K
non-negative matrix and YA is a non-negative vector whose component is a sum of P-variables
in the lower strata multiplied by constants. M is irreducible because in Exp(G`), every goal
in [A]≡ directly or indirectly calls every goal in [A]≡. YA is non-zero because some Ai must
have a proof tree that only contains defined goals in the lower strata. For vectors U, V , we
write U > 0 (resp. U ≥ 0) if every component of U is positive (resp. non-negative) and
U ≥ V if U − V ≥ 0 where 0 is a zero vector.

I Theorem 4. Let PG be a consistent PCFG such that there is no epsilon rule and every
production rule has a positive selection probability. Also let DBPG be a prefix parser for
PG and Exp(G`) an explanation graph for a prefix `. Suppose Eq([P (A)]≡) is a system of
linear equations for a defined goal A in Exp(G`). Put [P (A)]≡ = {P (Ai) | 1 ≤ i ≤ K} and
write Eq([P (A)]≡) as XA = MXA + YA where XA = (P (A1), . . . , P (AK))T . It has a unique
solution XA = (I −M)−1YA.

Proof. We prove that I −M has an inverse matrix. To prove it, we assume hereafter that
P-variables in [P (A)]≡ are assigned as their values probabilities defined by the distribution
semantics and hence all equations in Eq([P (A)]≡) are true.

By applying XA = MXA + YA k repeatedly to itself, we have XA = MkXA + (Mk−1 +
· · ·+ I)YA for k = 1, 2, . . . Since M , XA, and YA are non-negative, we have XA ≥ MkXA

and XA ≥ (Mk−1 + · · ·+ I)YA for every k. On the other hand since {(Mk−1 + · · ·+ I)YA}k

is a monotonically increasing sequence of non-negative vectors bounded by XA, it converges
and so does {MkXA}k.

Let ρ(M) be the spectral radius ofM11. Suppose ρ(M) > 1. In general ρ(M) ≤ ‖Mk ‖
1
k

∞
holds for every k where ‖ · ‖∞ is the matrix norm induced from the∞ vector norm. It follows
from ρ(M)k ≤ ‖Mk ‖∞ that limk→∞ ‖Mk ‖∞ = +∞. Consequently since XA > 0 holds

11 ρ(M) is the largest eigenvalue of M . As M is irreducible, the right eigen vector and the left eigen vector
associated with ρ(M) are both positive by the Perron-Frobenius theorem.

ICLP’12

356 Tabling for infinite probability computation

because every proved goal has a positive probability from our assumption, some element of
MkXA goes to +∞, which contradicts the convergence of {MkXA}k. So ρ(M) ≤ 1.

Suppose now ρ(M) = 1. Then in this case, we note that
{
Mk−1 + · · ·+ I

k

}
k

converges to

a positive matrix (proof omitted), and hence (Mk−1 + · · ·+ I)YA =
(
Mk−1 + · · ·+ I

k

)
·kYA

diverges as k goes to infinity, which contradicts again the convergence of {(Mk−1+· · ·+I)YA}k.
Therefore ρ(M) < 1. So (I −M)−1 exists. J

Note that XA = (I −M)−1YA = (I + M + M2 + · · ·)YA. By further analyzing the
matrix M , we understand that multiplying M by YA for example corresponds to growing
partial parse trees by one step application of production rules (reduce operation in bottom-up
parsing). Hence P (Ai), a component of XA, is an infinite sum of probabilities and so is the
probability of the top prefix goal P (pre_pcfg(`)).

Summing up, we compute prefix probabilities for a PCFG PG as follows. Let DB be a
prefix parser for PG and G = pre_pcfg(`) a goal for a prefix `.

[Step 1]: From G and DB, construct an explanation graph Exp(G).
[Step 2]: Extract the set of probability equations Eq(G) from Exp(G).
[Step 3]: Solve Eq(G) inductively from lower strata by matrix operation and obtain PDB(G),

the prefix probability of `.

The above procedure is general and applicable to arbitrary (cyclic) linear explanation
graphs, not restricted to those generated by a PCFG prefix parser. We computed prefix
probabilities for PLCGs (probabilistic left-corner grammars) similarly to PCFGs, but we
omit the detail due to space limitations.

4 Related work

Prefix probability computation is mostly studied about PCFGs [3, 15, 7]. Jelinek and
Lafferty [3] proposed a CKY like algorithm for prefix probability computation in PCFGs
in CNF (Chomsky normal form). Their algorithm does not perform parsing but instead
uses a single matrix whose dimension is the number of nonterminals which is constructed
from a given PCFG. It runs in O(N3) where N is the length of an input prefix. Stolcke
[15] applied the Earley style parsing to compute prefix probabilities. His algorithm uses
a matrix of “probabilistic reflexive, transitive left-corner relation” computed from a given
PCFG, independently of input sentences similarly to [3]. Our approach differs from them
in that it works for probabilistic logic programs and it deals with explanation graphs
constructed for each input prefix. Nederhof and Satta [7] generalized prefix probability
computation for PCFGs to infix probability computation for PCFGs. They also studied
prefix probability computation for a variant of PCFGs [8]. Nederhof et al. proposed prefix
probability computation for stochastic tree adjoining grammars [6].

Approximate computation of prefix probabilities is possible for example by the iterative
deepening algorithm used in ProbLog[2], but it is out of the scope of this paper.

5 Conclusion

We have proposed an innovative use of tabling: infinite probability computation based on
cyclic explanation graphs generated by tabled search in PRISM. Our approach generalizes

T. Sato and P. Meyer 357

prefix probability computation in PCFGs and is applicable to probabilistic models described
by PRISM programs in general as well as PCFGs. In particular it is applicable to non-PCFG
probabilistic grammars such as PLCGs though we omitted the result of prefix computation
for PLCGs due to space limitations. We are developing a tool that generates a (cyclic)
explanation graph for a given goal and computes its probability by solving the system linear
equations associated with it. We expect that our approach provides a declarative way of
logic-based probabilistic modeling of cyclic dependencies.

References

1 J. K. Baker. Trainable grammars for speech recognition. In Proceedings of Spring Confer-
ence of the Acoustical Society of America, pages 547–550, 1979.

2 L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic Prolog and its
application in link discovery. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI’07), pages 2468–2473, 2007.

3 F. Jelinek and J. Lafferty. Computation of the probability of initial substring generation
by stochastic context-free grammars. Computational Linguistics, 17(3):315–323, 1991.

4 C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing.
The MIT Press, 1999.

5 T. Mantadelis and G. Janssens. Dedicated tabling for a probabilistic setting. In Pro-
ceedings of the 26th International Conference on Logic Programming (ICLP’10) (Technical
Communications), pages 124–133, 2010.

6 M. Nederhof, A. Anoop Sarkar, and G. Satta. Prefix probabilities from stochastic tree
adjoining grammars. In Proceedings of the 36th Annual Meeting of the Association for
Computational Linguistics (ACL’98), pages 953–959, 1998.

7 M. Nederhof and G. Satta. Computation of infix probabilities for probabilistic context-
free grammars. In Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing (EMNLP’11), pages 1213–1221, 2011.

8 M. Nederhof and G. Satta. Prefix probability for probabilistic synchronous context-free
grammars. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics (ACL’11), pages 460–469, 2011.

9 F. Riguzzi and T. Terrance Swift. The PITA system: Tabling and answer subsumption
for reasoning under uncertainty. Theory and Practice of Logic Programming (TPLP), 11(4-
5):433–449, 2011.

10 R. Rocha, F.M.A. Silva, and V.S. Costa. On applying or-parallelism and tabling to logic
programs. Theory and Practice of Logic Programming (TPLP), 5(1-2):161–205, 2005.

11 T. Sato. A glimpse of symbolic-statistical modeling by PRISM. Journal of Intelligent
Information Systems, 31(2):161–176, 2008.

12 T. Sato and Y. Kameya. PRISM: a language for symbolic-statistical modeling. In Proceed-
ings of the 15th International Joint Conference on Artificial Intelligence (IJCAI’97), pages
1330–1335, 1997.

13 T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research, 15:391–454, 2001.

14 T. Sato and Y. Kameya. New Advances in Logid-Based Probabilistic Modeling by PRISM.
In L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton, editors, Probabilistic Inductive
Logic Programming, pages 118–155. LNAI 4911, Springer, 2008.

15 A. Stolcke. An efficient probabilistic context-free parsing algorithm that computes prefix
probabilities. Computational Linguistics, 21(2):165–201, 1995.

ICLP’12

358 Tabling for infinite probability computation

16 H. Tamaki and T. Sato. OLD resolution with tabulation. In Proceedings of the 3rd In-
ternational Conference on Logic Programming (ICLP’86), volume 225 of Lecture Notes in
Computer Science, pages 84–98. Springer, 1986.

17 D. S. Warren. Memoing for logic programs. Communications of the ACM, 35(3):93–111,
1992.

18 C. S. Wetherell. Probabilistic languages: a review and some open questions. Computing
Surveys, 12(4):361–379, 1980.

19 N.-F. Zhou, Y. Kameya, and T. Sato. Mode-directed tabling for dynamic programming, ma-
chine learning, and constraint solving. In Proceedings of the 22th International Conference
on Tools with Artificial Intelligence (ICTAI-2010), 2010.

20 N.-F. Zhou, T. Sato, and Y.-D. Shen. Linear tabling strategies and optimization. Theory
and Practice of Logic Programming (TPLP), 8(1):81–109, 2008.

ASP at Work: An ASP Implementation of
PhyloWS∗

Tiep Le, Hieu Nguyen, Enrico Pontelli, and Tran Cao Son

Department of Computer Science
New Mexico State University
(tile,nhieu,epontell,tson)@cs.nmsu.edu

Abstract
This paper continues the exploration started in [3], aimed at demonstrating the use of logic pro-
gramming technology to support a large scale deployment and analysis of phylogenetic data from
biological studies. This application paper illustrates the use of ASP technology in implementing
the PhyloWS web service API—a recently proposed and community-agreed standard API to
enable uniform access and inter-operation among phylogenetic applications and repositories. To
date, only very incomplete implementations of PhyloWS have been realized; this paper demon-
strates how ASP provides an ideal technology to support a more comprehensive realization of
PhyloWS on a repository of semantically-described phylogenetic studies. The paper also presents
a challenge for the developers of ASP-solvers.

1998 ACM Subject Classification J.3 Life and Medical Sciences, I.2.3 Logic programming

Keywords and phrases Answer sets, phylogenetic inference, systems, applications

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.359

1 Introduction

Phylogenetic inference is the task of constructing a phylogenetic tree that accurately charac-
terizes the evolutionary lineages among a set of given species or genes. Phylogenetic trees
allow us to understand the lineages of various species and how various functions evolved,
to inform multiple alignments, and to identify what is the most conserved or important in
some class of sequences. As such, phylogenetic trees have gained a central role in modern
biology. They have become fundamental tools for building new knowledge, thanks to their
explanatory and comparative-based predictive capabilities. In [9], 20 uses of evolutionary
trees are discussed. Phylogenies are also used with increased frequency in several fields, e.g.,
genomics [5] and ecology [22]. Indeed, an ambitious goal in system biology is the construction
of the Tree of Life, a phylogeny representing the evolutionary history of all species [2].

The explosive growth of phylogenetic data and the central role of phylogenetic knowledge
in system biology led to the development of a database of phylogenies, called TreeBASE
(e.g., [14, 18], www.treebase.org). The database contains phylogenetic trees and data
matrices, together with information about the relevant publication, taxa, morphological
and sequence-based characters, and published analyses. The trees are stored as text field
strings structured in the Newick format [8]. The database provides retrieval capabilities
via web interface, allowing users to locate phylogenies and to obtain datasets for different
studies. Users can also retrieve data via a web service interface API (sourceforge.net/

∗ This work was partially supported by NSF grant IIS-0812267.

© Tiep Le, Hieu Nguyen, Enrico Pontelli, and Tran Cao Son;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 359–369

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.359
www.treebase.org
sourceforge.net/apps/mediawiki/treebase/index.php?title=API
sourceforge.net/apps/mediawiki/treebase/index.php?title=API
sourceforge.net/apps/mediawiki/treebase/index.php?title=API
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

360 PhyloWS in ASP

apps/mediawiki/treebase/index.php?title=API). This interface can deliver data in several
different formats, including Newick, NEXUS [12], JSON, NeXML [21].

The creation of TreeBASE is a significant step towards the goal of creating the Tree of
Life. Yet, it has been recognized that the lack of interoperability and standards in data and
services between tools for the inference of phylogenies prevent large-scale and integrative
analyses. To address these shortcomings, several efforts have been made. One of such
efforts led to the development of an interoperation stack (EvoIO Stack) for the encoding and
exchange of evolutionary structures. EvoIO comprises of (i) an ontology for data description
(Comparative Data Analysis Ontology (CDAO)) [17], (ii) an exchange format (NeXML) [21],
and (iii) a web service interface (PhyloWS) [11].

The PhyloWS interface specification [11] identifies several classes of queries specifically tied
to phylogenies. The interface is comprehensive and represents the most extensive collection
of queries and transformations for biological phylogenies ever proposed—in particular, it
largely subsumes previous attempts to characterize access to phylogenetic databases (e.g.,
the approach of [15], implemented in Prolog by [3]). The implementation of these queries on
an RDF representation of phylogenies proved to be challenging; in particular, traditional
languages for RDF (e.g., SPARQL) do not provide the power to perform the type of
computations on phylogenies required by PhyloWS—e.g., they lack the expressive power to
capture recursive computations and transitive closures (which are essential, e.g., to determine
ancestors and lineage in a phylogeny).

In this paper, we propose a new and modular implementation of PhyloWS using answer
set programming (ASP) [13, 16]. We present the encoding of PhyloWS and evaluate the
performance of the implementation using the data extracted from TreeBASE which shows
that ASP is sufficiently expressive for answering various types queries of specified in the
PhyloWS specification. The experimental results show that ASP-solver is efficient but
pre-processing is needed for such a data intensive application.

2 Background—PhyloWS: Phylogenetic Web Service API

PhyloWS [11] is a web-services standard for accessing phylogenetic trees, data matrices,
and their associated metadata from online phylogenetic data. Together with NeXML and
CDAO, PhyloWS is a part of the platform, called EvoIO Stack [19], that combines support
for exchange of data and their semantics and predictable programmatic access. PhyloWS is
proposed to address the lack of a web-service API that allows for the integration of phylogen-
etic data and tools into new services for large-scale analysis. To date, PhyloWS only exists
as a specification. The implementation proposed in this paper is its first implementation1.
PhyloWS contains specification for a variety of tasks necessary for the creation, maintaining,
retrieving, and manipulating of phylogenetic data (e.g., trees, matrices). In this paper, we
will focus on the services for retrieving phylogenetic data. Based on the specification of
PhyloWS [11], queries can be grouped into the following four categories:

Node-oriented queries: Queries of this type ask for nodes satisfying certain conditions,
e.g., the most recent common ancestor of two (or more) terminal nodes in the specified
tree; or the nodes which have the distance to the root greater than a given distance; or
determine the relationships among nodes, e.g., obtain the patristic distance between two
nodes tn707506 and tn444001; etc.

1 The implementation of PhyloWS at sourceforge.net/apps/mediawiki/treebase/index.php?title=
API is tailored to TreeBASE and limited to simple retrievals.

sourceforge.net/apps/mediawiki/treebase/index.php?title=API
sourceforge.net/apps/mediawiki/treebase/index.php?title=API
sourceforge.net/apps/mediawiki/treebase/index.php?title=API
sourceforge.net/apps/mediawiki/treebase/index.php?title=API

T. Le, H. Nguyen, E. Pontelli, and T.C. Son 361

Figure 1 Overall Structure: System Implementation.

Clade-oriented queries: Queries of this type are related to clades with some properties—
e.g., determine the clades consisting of a species and all its descendants; or find the
minimum spanning clade in a tree that contains the TUs (taxonomic units) Ilexanomala
and Ilex glabra.
Tree-oriented queries: These queries ask for trees satisfying some criteria, e.g., the
trees created by Knapp S. no later than 2003-08-20 ; or determine relationships among
trees, e.g., the Robinson-Foulds distance between two trees.
Data-oriented queries: These queries extract the metadata for different phylogenetic
data, e.g., the taxonVariant id or ncbi id of a node; the creator of a tree; or the character
matrix from all matrices containing a given set of OTUs.

3 System Organization

The overall implementation of PhyloWS is depicted in Figure 1. The top part shows the
components of the system necessary to populate CDAOStore; CDAOStore [3] is triple store,
build using CDAO, used for our experiments. First, data from current phylogenetic tree
repositories (e.g., TreeBASE) is extracted into NeXML data files (Extractor) and converted
to CDAO representation (Converter). This process is executed only once to populate the
repository of phylogenetic data in CDAO representation. A standard XML-parser is used to
generate triples from NeXML and import them into the CDAOStore.

The main contribution of this paper is the PhyloWS box. User queries are analyzed by a
query analyzer that determines the actual ASP-code and the necessary data type from the
CDAOStore repository. This information is passed on to the Triples Extractor module. The
ASP program (facts and code) is sent to the ASP solver to compute its answer sets. The
export module obtains the answer sets from the solver and generates answer for the user.
Let us emphasize that the PhyloWS implementation in this paper is fully modular, and can
be applied to any data source that can provide phylogenetic data as CDAO RDF triples.

Observe that in the construction of the CDAOStore, we were able to reuse the prototype
described in [3]. The present system includes several improvements over the reported
prototype—e.g., it is able to extract all studies from TreeBASE, the conversion to CDAO is
more precise. The key differences between the current paper and the system described in
[3] lie in (i) our focus here is on the full implementation of PhyloWS, instead of the simple
querying covered in [3]; and (ii) the complete use of ASP technology in the implementation
of the PhyloWS, instead of a mixture of Prolog and SPARQL.

ICLP’12

362 PhyloWS in ASP

4 PhyloWS in ASP

In this section, we will present the ASP implementation for the web services described
in Section 2. For efficiency purpose, we develop a front-end that analyzes the queries
and determines the type of phylogenetic data that needs to be extracted from the CDAO
repository. Presently, the type of data corresponds to the type of queries. For example, for a
node-oriented query, information about the trees (nodes and edges) will be extracted. The
Triples Extractor module is responsible for extracting the necessary information from the
CDAO representation and generating ASP facts for use to answer the query. Observe that
this task can be combined and executed via ASP extensions such as dlvhex [4]. We will
discuss the reason behind our design choice in the discussion part of the paper.

Representing CDAO in ASP. The information about phylogenies can be easily encoded
as ASP facts. Following are some sample facts generated by the Triples Extractor module:

tree(t_id). % t_id is a tree
tree_label(t_id,lab). % t_id has label "lab"
tree_is_defined_by(t_id,s_id). % t_id is studied in s_id
tree_ntax(t_id,n_Taxa). % t_id has n_Taxa taxa
edge(t_id,n1,n2). % t_id contains an edge from n1 to n2
edge_length(t_id,n1,n2,l). % l is the length of the edge (n1,n2) in t_id
represents_TU(t_id,n1,tu_id). % node n1 of t-id represents tu_id
taxon_id(tu_id,taxon_id). % tu_id represents taxon_id
matrix_type(m_id,m_type). % matrix m_id is of the type "m_type"
belongs_to_TU(m_id,cell,tu_id). % cell in matrix m_id belongs to tu_id

ASP Encoding of PhyloWS. The encoding of the PhyloWS in ASP starts with the
definition of a set of rules that will be frequently used in several types of queries. The
following code (syntax of clingo [10]) defines the predicates node, leaf, root, parent,
and ancestor within a tree. It also defines the predicate common_ancestor of a set of taxa,
identified by the predicate set_of_taxa, whose elements will be specified by member/2.

node(T,N):- edge(T,N,_). node(T,N):- edge(T,_,N).
leaf(T,N):- node(T,N),{edge(T,N,_)}0. root(T,N):- node(T,N),{parent(T,_,N)}0.
parent(T,N1,N2):- tree(T), edge(T,N1,N2).
ancestor(T,N1,N2):- parent(T,N1,N2). ancestor(T,N1,N2):- ancestor(T,N1,Nb), parent(T,Nb,N2).
common_ancestor(T,N,S):- tree(T),node(T,N),set_of_taxa(S),{member(E,S):not ancestor(T,N,E)}0.

Most of the above rules are simple. The last rule states that node N in the tree T is a
common ancestor of a set of taxa S if N is an ancestor of every member of S. We will next
present the detailed encodings for the different types of queries.

Node-oriented Queries. We currently consider four frequently used node-oriented queries.
Query N1: compute the most recent common ancestor of two or more leaf nodes in a
specified tree. The input consists of a tree t and a set s of leaf nodes in t. The output
should be the most recent common ancestor n of elements in s, denoted by mrca(n, s),
determined using the ASP rule:

mrca(N, S):- tree(T), node(T,N), set_of_taxa(S), common_ancestor(T,N,S),
{common_ancestor(T,Nb,S): ancestor(T,N,Nb)}0.

The rule elegantly encodes that the most recent common ancestor of a set S is a common
ancestor of S that does not have a descendant which is also a common ancestor of S.
Query N2: compute the patristic distance between two taxa in a given tree. The patristic
distance between taxa n1 and n2 of a tree t is defined as the sum of the distances from
the most recent common ancestor to each node:

T. Le, H. Nguyen, E. Pontelli, and T.C. Son 363

set_of_taxa(s). member(n1,s). member(n2, s).
distance_to_ancestor(T,N1,N2,L):- parent(T,N1,N2),edge_length(T,N1,N2,L).
distance_to_ancestor(T,N1,N2,D):- parent(T,Nb,N2),edge_length(T,Nb,N2,L),

distance_to_ancestor(T,N1,Nb,L2), D=L+L2.
patristic_distance(T,N1,N2,D):- mrca(M, s), D=L1+L2,

distance_to_ancestor(T,M,n1,L1), distance_to_ancestor(T,M,n2,L2).

The rules are simple thanks to the definition of the most recent common ancestor of a set
in Query N1. Rules for computing the distance are standard.
Query N3: identify the set of matching nodes of a tree whose distance to the root is greater
than a predefined distance. Given a tree t (e.g., by identifier) and a distance c, output
the matching nodes whose distance to the root is greater than c. This is implemented by
the following rule:

matching_nodes(T,N):- root(T,R), distance_to_ancestor (T,R,N,L), L>=c.

Query N4: output the lineage of ancestors of a given node. Given a tree t, a node n, the
lineage of ancestors for n can be determine by the following rule, built using the facts
has_Ancestor(t, n, x) representing that x is an ancestor of n in the tree t.

lineage_node(t,n,Ancestor_node_id) :- has_Ancestor(t,n,Ancestor_node_id).

Clade-oriented Queries. Two typical clade-oriented queries are implemented.
Query C1: find the minimum spanning clade and the TUs of the clade for a set of taxa in
a specified tree. Given a set of taxa s, determine the minimum spanning clade of s and its
TUs. Nodes belong to the minimum spanning clade are represented by the atoms of the
form minimum_clade(s, n). Atoms of the form label(x, y) represent the label associated
to the nodes in the clade. Since the answer is the tree whose root is the mrca n of s and
all n’s descendants, this can be implemented as follows.

minimum_clade(S,N):- tree(T), node(T,N), mrca(N, S).
minimum_clade(S,D):- tree(T), node(T,N), mrca(N, S), ancestor(T,N,D).
label(D,TU_Label):- tree(T), minimum_clade(_,D),

represents_TU(T,D,TU),tu_label(T,TU,TU_Label).

The first rule states that the given most recent common ancestor belongs to the minimum
clade. The next rule obtains all of its descendants.
Query C2: find a clade in a tree whose taxa has a given character, i.e., given a tree t and
a character c, find a clade (or all) s of t s.t. every taxon in s has the character c.

clade(s). {in_clade(s,N) : leaf(t,N)}. member(N,s):- in_clade(s,N).
:- minimum_clade(s, N),not in_clade(s, N).
:- in_clade(s,N), represents_TU(T,N,TU),

belongs_to_TU(M,Cell,TU), not belongs_to_Character(M,Cell,c).

The fact clade(s) specifies the name s of the clade produced. The choice rule states that
a leaf might or might not belong to the clade. The third rule defines the membership of
the node in the set of taxa s that has been selected for use to determine the minimum
clade (Query C1). The first constraint ensures that the elements of the clade are only
those that are selected. The second removes clades that contain taxa that do not have
the specified character.

ICLP’12

364 PhyloWS in ASP

Tree-oriented Queries. We consider eight types of tree-oriented queries.
Query T1: find trees matching a topology. The topology can be given by (i) the range of
the numbers of taxa count of the tree, i.e., between n− c and n + c for two constants n

and c; (ii) the range of the width of the tree; etc.
Most of the above queries can be straightforwardly encoded in ASP. For example, given a
constant c and the tree tr1386, the following rule determines all trees with their taxa
count in the range [n− c, n + c] where n is the number of taxa of tr1386. The rule makes
use of the predicate tree_ntax(t, n) that represents the number of taxa of a tree.

matching_ntax(T,Cnt):- tree_ntax(tr1386,N),tree_ntax(T,Cnt),Cnt <= N+c,Cnt>=N-c.

Query T2: find trees whose length is shorter (or longer) than the length of a given tree
(or a constant) where the tree length is defined as the maximal distance from the root of
the tree to its taxa (leaves). This type of queries can be answered with the definition of
the tree length, implemented as follows.

distance_to_root(T,N,L):- root(T,R),leaf(T,N),distance_to_ancestor(T,R,N,L).
tree_length(T,L):- root(T,R), leaf(T,N), distance_to_root(T,N,L),

{distance_to_root(T,X,L1): L1>L}0.

Query T3: find trees with the shortest distance from the root to a given node n. This can
be easily implemented using the predicate distance_to_root.
Query T4: given a set s of OTUs (or taxa), find a tree containing this set. We present
the rules for identifying trees with a set of OTU, specified by the atom otu_set(s) and
the membership atoms member(x, s).

connect_tu(TU,S,T):- tree(T),otu_set(S),member(TU,S),represents_TU(T,_,TU).
tree_otus(T,S):- tree(T),otu_set(S),{member(TU,S):not connect_tu(TU,S,T)}0.

Query T5: find trees based on tree metadata. For example, trees that were (i) created
by some author; (ii) created before a given date; (iii) built with a given type of data;
etc. Since the data included in each study contains information such as has_creator,
has_creationDate, matrix_type, etc. this type of queries can be easily encoded in ASP.
Again, we omit the detail ASP rules for brevity.
Query T6: identify trees by the parsimony tree length which is defined by the total number
of characters of its taxa. This can be implemented as follows.

parsimony_length(T,L):- tree(T),
L = #count {belongs_to_Character(_,Cell_id,Character):

belongs_to_TU(_,Cell_id,TU_id):represents_TU(T,_,TU_id)}.

Query T7: determine trees with size greater (or smaller) than a given constant c, or a
certain ratio r of internal to external nodes. Again, using the aggregate function #count,
this type of query can be implemented as follows2.

matching_tree_size(T,S):- tree(T), S = #count {node(T,_)}, S>=c.
internal_node(T,N):- node(T,N), not leaf(T,N).
matching_tree_ratio(T):- tree(T),R=R1/R2, R>=r,

R1 = #count {internal_node(T,_)}, R2 = #count {leaf(T,_)}.

2 The code assumes that the ration is an integer. Using the scripting feature available for clingo, this
assumption can be removed.

T. Le, H. Nguyen, E. Pontelli, and T.C. Son 365

Query T8: computing the Robinson-Foulds distance [1] between two trees. The Robinson-
Foulds distance is frequently used to compare phylogenetic trees. It measures the number
of clusters of descendant leaves that are not shared by the two trees. The Robinson-Foulds
distance of two trees T1 and T2 can be computed using the following algorithm:

Compute the multi-set of clusters of each tree, where each cluster is a set of taxa
(leaves) that are descendants of an internal node n. Let us denote the set of clusters of
T1 and T2 by C(T1) and C(T2), respectively.
Compute D1 (resp. D2), the number of clusters which belong C(T1) \ C(T2) (resp.
C(T2) \ C(T1)).

The Robinson-Foulds distance is then defined by (D1 + D2)/2. Given two trees T1 and T2,
we define the predicate rf_distance(T1, T2, D1, D2) that encodes the Robinson-Foulds
distance. This can be implemented using the following set of ASP rules.

in_cluster(T,N,L):- internal(T,N), leaf(T,L), ancestor(T,N,L).
neq_cluster(X,Y):- internal(T1,X),internal(T2,Y),T1!=T2,in_cluster(T1,X,L),

not in_cluster(T2,Y,L).
neq_cluster(X,Y):- internal(T1,X),internal(T2,Y),T1!=T2,not in_cluster(T1,X,L),

in_cluster(T2,Y,L).
eq_cluster(X,Y,T1,T2):- internal(T1,X),internal(T2,Y),T1!=T2,not neq_cluster(X,Y).
{matched(X,Y,T1,T2) : eq_cluster(X,Y,T1,T2)}.
2{used(T1,X), used(T2,Y)}:- matched(X,Y,T1,T2).
matched(X,Y,T1,T2):- matched(Y,X,T2,T1).
:-matched(X,Y,T1,T2),matched(X,Z,T1,T2),Y!=Z.
:-matched(Y,X,T1,T2),matched(Z,X,T1,T2),Y!=Z.
:-eq_cluster(X,Y,T1,T2), not used(T1,X), not used(T2,Y).
not_matched(T,N):- internal(T,N),not used(T,N).
rf_distance(T1,T2,D1,D2):- tree(T1), tree(T2), T1!=T2,

D1 = #count {not_matched(T1,N)}, D2 = #count{not_matched(T2,N)}.

The clusters are named by the internal nodes. The first rule defines the elements of a
cluster. Next two rules state that two clusters from different trees are different when their
sets of taxa are different. The third rule defines when two clusters are identical. The
choice rule defines the predicate matched(X, Y, T1, T2) among identical clusters of the
trees. The next two rules define the predicates matched(X, Y, T1, T2) and used(X, T1)
(used(Y, T2)) which say that the cluster X of tree T1 is identical to the cluster Y of tree
T2 and will not be counted towards D1 and D2 respectively. The constraints ensure that
each cluster is used to match with at most one cluster and the matching should be done
as long as it is possible. not_matched(T, N) indicates the cluster that is not matched
with any cluster of another tree. The last rule encodes the Robinson-Foulds distance.

Data-oriented Queries. We consider four types of data-oriented queries.
Query D1: list metadata for a given taxon n or a given tree t. Such information can be
obtained from the facts associated to the tree. Some of the rules are:

metadata_belongs_to(n,T,Study_id):- node(T,n), tree_is_defined_by(T,Study_id).
metadata_represents(n,TU_id,TU_label,Taxon_id,TaxonVariant_id,Ncbi_id,Ubio_id):-

represents_TU(T,n,TU_id), tu_label(T,TU_id,TU_label),
taxon_id(TU_id,Taxon_id),taxonVariant_id(TU_id,TaxonVariant_id),
ncbi_id(TU_id,Ncbi_id), ubio_id(TU_id,Ubio_id).

metadata_character(n,Character_id):-
represents_TU(_,n,TU_id),belongs_to_TU(_,Cell_id,Tu_id),
belongs_to_Character(_,Cell_id,Character_id).

Query D2: identify all matrices containing a given OTU (tu_id); or determine all
characters in a matrix (m_id) that have data for an OTU. This query is encoded as
follows.

ICLP’12

366 PhyloWS in ASP

matrices_with_otu(M,tu_id):- has_TU(M,tu_id).
character_has_otu(C,m_id,tu_id):- belongs_to_TU(m_id,Cell,tu_id),

belongs_to_Character(m_id,Cell,C).

Query D3: identify all OTUs in a matrix which have a given set of characters:

has_character(Tu,C):- belongs_to_TU(M,Cell,Tu), belongs_to_Character(M,Cell,C).
obtain_otus_having_characters(Tu,S):- has_TU(M,Tu), set_characters(S),

{member(C,S): not has_character(Tu,C)}0.
obtain_otus_having_characters_belonging_matrix(matrix_id,Tu,S):-

has_TU(M,Tu), set_characters(S),{member(C,S): not has_character(Tu,C)}0.

Query D4: identify the character that appears in all matrices containing data for a given
set of OTUs. The ASP rules for this query are:

matching_matrices(M,S):- otu_set(S), has_TU(M,_),{member(E,S): not has_TU(M,E)}0.
has_character(M,C):- belongs_to_Character(M,_,C).
character_in_all_matrices(C):- matching_matrices(M,S), has_character(M,C),

{matching_matrices(M1,S): not has_character(M1,C)}0.

The first rule identifies the matrix that contains all the given OTUs. The other rules
search for the characters that appear in all those matrices.

5 Evaluation

We have successfully extracted all data from the TreeBASE and created various types of
NeXML files for studies (2989 files, 2.55GB), matrices (5794 files, 1.96GB), and trees (8621
files, 500MB). So far, we have converted them into 9558 CDAO files and stored them in study
(861), matrix (76), and tree (8621) files. The space requirement for CDAO study, matrix,
and tree files is 18GB, 3410MB and 2214MB, respectively. We observe that the conversion
is fairly time consuming and space demanding. However, most of the time is spent in the
conversion of Character State Data Matrix, e.g., the program takes 3.25 hours to convert
the Character State Data Matrix of the study S715, stored in a 3.36MB file, that has 44
OTUs and each OTU has 2721 characters. On the other hand, the conversion of the largest
tree (identifier Tr47158), stored in a 3MB file, into CDAO took less than 5 minutes. From
this data, we have built around 4GB fact data from study and matrix files and 172MB fact
data from tree files and populated CDAOStore with both sets of data. The huge size of the
data is the main reason for the design decisions discussed in the next section.

Table 1 contains sample results of the system for several queries discussed in the previous
section. The experiment is conducted using 261 CDAO files. The ASP solver used in the
experiment is clingo version 3.0.3. The machine used in the experiment uses Linux OS with
a Genuine Intel(R) CPU T2400 @ 1.83GHz and 1015 MB. Because the Triples Extractor is
fairly efficient (it takes usually less than 15 seconds to extract the necessary data from the
CDAOStore), we only report the time (in ms.) used by the ASP solver.

6 Related Work and Discussion

Related Work. ASP has been used in the construction of phylogenetic network such as
the evolutionary history of Indo-European languages [7]. The method was later applied to
the analysis of parasite-host systems [6]. Our use of ASP in this paper is different in that we
use ASP in the development of phylogenetic web services.

The present work is most closely related to our previous work [3]. As we have indicated
in Section 3, the present work is much advanced comparing to the early work. In particular,

T. Le, H. Nguyen, E. Pontelli, and T.C. Son 367

Table 1 Evaluation of queries.

Query Data size Execution time Query Data size Execution time

N1 644.5 KB 2.360 N2 698.8 KB 2.840
N3 685.2 KB 1.060
C1 1.5 MB 2.940 C2 31.9 MB 13.420
T 1 698.8 KB 1.210 T 2 698.8 KB 1.000
T 3 698.8 KB 0.810 T 4 1.2 MB 0.450
T 5 65.6 KB 0.020 T 6 31.9 MB 1913.820
T 7 644.5 KB 0.830 T 8 6.2 KB 0.820
D1 44.0 MB 15.270 D2 34.9 MB 10.310
D3 34.9 MB 14.020 D4 19.1 MB 5.940

the set of queries implemented in this paper—as indicated in the PhyloWS specification and
agreed by the community—is broader and addresses the need of the community. Furthermore,
the implementation described in this paper employs only ASP for the query evaluation.

Design Choices. ASP technologies have been extended to allow ASP programs interact
with ontologies such as the system dlvhex [4]. As such, it is natural to ask the question of
whether PhyloWS could be implemented using dlvhex and how would the system perform.
To answer these questions, we have experimented with the web interface at the URL
http://asptut.gibbi.com/. With a few changes in the syntax to conform with the dlvhex
syntax, most queries can be executed with sample data. The difficulty arises when we
attempt to run with the real data. As it turns out, converting everything into triples using
dlvhex using the command: triple(X,Y,Z):-&rdf[file_URI](X,Y,Z) and then defining
necessary predicates such as has_TU, belongs_to_TU using standard LP rules such as3

has_TU(X,Z) :- triple(X,"<http://___/cdao.owl#has_TU>",Z).
belongs_to_TU(X1,Y1,Z1) :-

triple(X1,"<http://___/cdao.owl#has_Character>",Z2),
triple(Y1,"<http://___/cdao.owl#belongs_to_Character>",Z2),
triple(Y1,"<http://___/cdao.owl#belongs_to_TU>", Z1).

does not provide the desired efficiency. For example, our parser took 30 minutes to process
the study S261 (12 MB in CDAO representation); the web-interface does not return the
result after 1.5 hours. This indicates that a straightforward application of dlvhex features
to simplify the amount of programming will not yield an acceptable result. We are planning
to further experiment with dlvhex without using the web-interface.

The huge size of the CDAO files and the lack of an efficient interface between ASP and
ontologies led to the use of the parser (using JAVA and the Jena framework) to generate
facts from CDAO and store them in the CDAOStore.

As noted, the current size of the CDAOStore is about 5GB. Intuitively, any query listed
in Section 4 could have been processed using this data. However, clingo cannot deal with
file of 70 MB. We observed this during our experiment: whenever the amount of data is
more than 70MB, a killed message is displayed and the computation is aborted. The Query
Analyzer and Triple Extractor modules are developed to deal with this issue.

Limitations and Challenges. The previous discussion details some limitations of the
current system. While it would be interesting whether the use of dlvhex will help us to

3 ___ stands for www.evolutionaryontology.org/cdao/1.0.

ICLP’12

http://asptut.gibbi.com/
triple(X,Y,Z):- &rdf[file_URI](X,Y,Z)

www.evolutionaryontology.org/cdao/1.0

368 PhyloWS in ASP

eliminate the intermediate steps of the Query Analyzer and Triple Extractor modules, the
critical limitation lies in the scalability of ASP-solver. As we have mentioned, clingo cannot
yet deal with input larger than 70MB. Considering that in the current experiment, we only
use data from 261 studies (around 1/10 of the total number of studies) and the necessary
data could go up to 44MB, a full fledged implementation of PhyloWS using ASP will require
additional techniques and/or better ASP-solvers. This also raises the question of whether
other ASP extensions (e.g., DLVDB [20]) will provide a more scalable implementation.

7 Conclusion and Future Work

We described an ASP based implementation of PhyloWS, a web services API for phylogenetic
applications. The implementation focuses on retrieval services, expressed by four different
types of queries. We discussed the ASP implementation of the queries and evaluated with
data from 261 studies extracted from TreeBASE. We detailed the design choices and discussed
the limitation of the implementation that presents a challenge to the ASP community.

To continue with the development of PhyloWS, we plan to exploit the strengths of ASP to
enrich PhyloWS with (i) constraints over the answers; and (ii) preferences between answers.
We envision that this can be achieved via a web-interface that not only allows users to specify
their queries but also the additional constraints and preferences. We plan to experiment
with other ASP-extensions such as dlvhex or DLVDB to identify a more scalable system. In
addition, we will also investigate whether different methods of computing answer sets (e.g.,
using reactive answer set solver) could be useful. Finally, we plan to complete the import of
data from the 9558 CDAO files to CDAOStore.

References
1 T. Asano, J. Jansson, K. Sadakane, R. Uehara, and G. Valiente. Faster computation of the

Robinson-Foulds distance between phylogenetic networks, 2010.
2 O. R. P. Bininda-Emonds. Phylogenetic Supertrees: Combining Information to Reveal the

Tree of Life, Computational Biology Series, Vol. 4. Kluwer Academic Publisher, 2004.
3 B. Chisham, E. Pontelli, T. C. Son, and B. Wright. Cdaostore: A phylogenetic repository

using logic programming and web services. In Technical Communications of the 27th ICLP,
Vol. 11, LIPIcs, 209–219. 2011.

4 T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. ACM international conference on web
intelligence. In Web Intelligence, pages 1073–1074. IEEE Computer Society, 2006.

5 H. Ellegren. Comparative genomics and the study of evolution by natural selection. Mo-
lecular Ecology, 17(21):4586–4596, 2008.

6 E. Erdem. PHYLO-ASP: Phylogenetic Systematics with Answer Set Programming. In
LPNMR, 567–572. Springer, 2009.

7 E. Erdem, V. Lifschitz, and D. Ringe. Temporal phylogenetic networks and logic program-
ming. TPLP, 6(5):539–558, 2006.

8 J. Felsenstein. The newick tree format, 1986. http://evolution.genetics.washington.
edu/phylip/newicktree.html.

9 W. M. Fitch. Uses for evolutionary tree. Phi. Trans. R. Soc. Lond. B, 349:93–102, 1995.
10 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven answer

set solver. In LPNMR, 260–265. Springer-Verlag, 2007.
11 H. Lapp and R. Vos. Phyloinformatics Web Services API: Overview. https://www.nescent.

org/wg/evoinfo/index.php?title=PhyloWS, NESCE, 2009.
12 D. Maddison, D. Swofford, and W. Maddison. NEXUS: an Extensible File Format for

Systematic Information. Syst. Biol., 46(4):590–621, 1997.

http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html
https://www.nescent.org/wg/evoinfo/index.php?title=PhyloWS
https://www.nescent.org/wg/evoinfo/index.php?title=PhyloWS

T. Le, H. Nguyen, E. Pontelli, and T.C. Son 369

13 V. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-year Perspective, 375–398, 1999.

14 V. Morell. TreeBASE: the roots of phylogeny. Science, pages 273–569, 1996.
15 L. Nakhleh, D. Miranker, F. Barbancon, W. Piel, and M. Donoghue. Requirements of

phylogenetic databases. In 3rd IEEE Symposium on Bioinf. and Bioeng., 141–148, 2003.
16 I. Niemelä. Logic programming with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence, 25(3,4):241–273, 1999.
17 F. Prosdocimi, B. Chisham, E. Pontelli, J.D. Thompson, and A. Stoltzfus. Initial imple-

mentation of a comparative data analysis ontology. Evol. Bioinfor., 5:47–66, 2009.
18 M. Sanderson, B. G. Baldwin, G. Bharathan, C. S. Campbell, D. Ferguson, J. M. Porter,

C. VonDohlen, M. F. Wojciechowski, and M. J. Donoghue. The growth of phylogenetic
information and the need for a phylogenetic database. Syst. Biol., 42:562–568, 1993.

19 A. Stoltzfus, N. Cellinese, K. Cranston, H. Lapp, S. McKay, E. Pontelli, and R. Vos. The
evoio interop project. http://www.evoio.org/wiki/Main_Page, NESCE, 2009.

20 G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with recursive queries in
database and logic programming systems. TPLP, 8(2):129–165, 2008.

21 R. Vos. nexml: Phylogenetic data in xml. http://www.nexml.org, 2008.
22 C. Webb, D. Ackerly, M. McPeek, and M. Donoghue. Phylogenies and communtiy ecology.

Annu. Rev. Ecol. Syst., 33(1), 2002.

ICLP’12

http://www.evoio.org/wiki/Main_Page
http://www.nexml.org

CHR for Social Responsibility
Veronica Dahl1, Bradley Coleman2, J. Emilio Miralles3, and
Erez Maharshak4

1 School of Computing Science, Simon Fraser University
Burnaby, B.C. Canada
veronica@cs.sfu.ca

2 School of Computing Science, Simon Fraser University
Burnaby, B.C. Canada
bradley@proxydemocracy.org

3 Department of Physics, Simon Fraser University
Burnaby, B.C. Canada
emiralle@sfu.ca

4 Cognitive Science Department and School of Computing Science, Simon Fraser
University
Burnaby, B.C. Canada
erez@proxydemocracy.org

Abstract
Publicly traded corporations often operate against the public’s interest, serving a very limited
group of stakeholders. This is counter-intuitive, since the public as a whole owns these corpor-
ations through direct investment in the stock-market, as well as indirect investment in mutual,
index, and pension funds. Interestingly, the public’s role in the proxy voting process, which
allows shareholders to influence their company’s direction and decisions, is essentially ignored by
individual investors. We speculate that a prime reason for this lack of participation is inform-
ation overload, and the disproportionate efforts required for an investor to make an informed
decision. In this paper we propose a CHR based model that significantly simplifies the decision
making process, allowing users to set general guidelines that can be applied to every company
they own to produce voting recommendations. The use of CHR here is particularly advantage-
ous as it allows users to easily track back the most relevant data that was used to formulate the
decision, without the user having to go through large amounts of irrelevant information. Finally
we describe a simplified algorithm that could be used as part of this model.

1998 ACM Subject Classification D.3.2 Language Classifications - Constraint and logic lan-
guages, H.4.2 Types of Systems – Decision support, K.4.3 [Computers and Society] Organiza-
tional Impacts

Keywords and phrases Constraint handling rules, principled decision making, informed voting,
client directed voting, social responsibility.

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.370

1 Introduction

The financial crisis of 2008 showed us all how deeply corporations impact our lives, and in
turn the importance of Corporate Social Responsibility (CSR). In this paper we argue that
modern information technology can promote CSR, both from the perspective of investing
in socially responsible companies or investment vehicles, and in using the voting rights
that shareholders are given to impact companies in a way that can make them both more
profitable and more socially responsible.

© Veronica Dahl, Bradley Coleman, J. Emilio Miralles, and Erez Maharshak;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 370–380

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.370
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

V. Dahl, B. Coleman, J.E. Miralles, and E. Maharshak 371

In particular we argue that Constraint Handling Rules (CHR) [3] is an effective tool
for this, and we propose a CHR-based model of Informed Advice capable of recommending
investment and voting decisions that are consistent with a user’s stated preferences (values),
and of explaining the reasons for these recommendations.

As well, we propose a practical and novel method of making automatic proxy voting
recommendations based on a user’s values. Currently, only around 5% [4] of retail investors
vote their proxies, and the rate of informed participation is even lower. Our tool addresses the
root causes of this dearth, namely information overload and under-load, and could increase
the quantity and quality of decisions. We propose a method that only asks users to choose
how aggressively they wish to vote on various classes of proposals, like sweat-shop labor, the
environment, and director elections.

The paper is structured as follows: in section 2 we discuss the main issues around making
effective and principled decisions. Section 3 presents the model itself, exemplified through
principled decision making on investment in a company or mutual/index fund. In section 4,
we describe our novel method of making automatic proxy voting recommendations. Section
5 presents our concluding remarks.

Consistent use of our proposed model would inform users who might otherwise be unaware
of which decisions would clash with their value system and why. More importantly, it would
spare users from going through the incredible amount of information needed in order to make
informed decisions. Our model potentially allows presenting users with specific and focused
information relevant to the decision at hand. Insofar as users become empowered to vote
and decide according to their value systems, a wider range of stakeholders and owners would
take part in the corporate governance process. This could promote a healthy evolution in
management concepts and higher corporate governance standards.

2 Making effective and principled decisions

There is growing recognition of the fact that the public needs to be given choices that reflect
their values and principles. For instance, ethical investment is increasing in popularity.
Ethical investing indices are those that only include companies satisfying environmental or
social criteria. Among these, Wikipedia names as examples those of FTSE4Good Index,
and Dow Jones Sustainability Index. It also explains that strict mechanical criteria for
inclusion and exclusion in such indices is important to prevent accusations of ideological bias
in selection, as well as to prevent market manipulation, e.g. in Canada when Nortel was
permitted to rise to over 30% of the TSE 300 index value1.

However, it is not easy to effectively recognize which choices really do reflect one’s values
and principles. As also pointed out in Wikipedia, mechanical criteria can yield misleading
results, since a firm can satisfy mechanical “ethical criteria”, e.g. regarding board composition
or hiring practices, but fail to perform ethically with respect to shareholders, e.g. Enron.
There is indeed the risk that the seeming “seal of approval” of an ethical index may facilitate
scams by putting investors more at ease.

For instance, self descriptions regarding sustainability or ethics could induce mechanical
criteria to include the self-describing company among ethical ones, even though their ethical
traits may be questioned elsewhere. Thus, a company such as Dow Chemical, which Wikipedia
describes as responsible for actions that some consider unethical or against sustainability2,

1 http://en.wikipedia.org/wiki/Stock_market_index#Ethical_stock_market_indices
2 Such as managing a nuclear weapons production facility that produced plutonium triggers for hydrogen

ICLP’12

http://en.wikipedia.org/wiki/Stock_market_index#Ethical_stock_market_indices

372 CHR for Social Responsibility

would probably be rated as ethical by an automatic rating agent looking at Dow Chemical’s
own website.

Even if we instruct automatic criteria to avoid using self descriptions, indices deemed to
be sustainable could give high ratings even to companies that are believed not to be, and
this inclusion alone could induce mechanical criteria to advise ethically-conscious investors
to invest in those companies. A case in point, the Dow Jones Sustainability World Index
recently rated the Dow Chemical Company as “one of the top performers in the global
chemical industry”, giving it the highest scores in the sector for operational eco-efficiency,
customer relationship management and environmental reporting.

An alternative to mechanical criteria might be provided by market transparency and
disclosure, but the problem remains how to collect the data into a knowledge base and how
to use it together with users’ stated principles and preferences in order to guide the search
for advice that is consistent with those values. We shall argue that to solve this problem, we
can resort to databases where the information is verified by specialists (e.g., international
lawyers in charge of lawsuits concerning a questionable firm can verify whether the firm was
found guilty), together with a CHR program which can be tailored for specialization into
various applications that consult those databases (e.g. informed voting, informed investment,
etc.).

3 Our proposed model for responsibly-informed decision making

As discussed, mechanical selection and disclosure and transparency are the present options
for dealing with the fact that corporations are, in general, not trustworthy. None of these
options is satisfactory, since mechanical selection can actually perpetuate scam by creating a
false sense of security, and there always will be corporations that pretend to disclose and to
exhibit transparency while not being totally sincere.

This dilemma between unsatisfying options can be overridden by a) placing relevant and
reliable information in a database which can then be consulted, b) placing the description of
users’ values, companies’ values and any other relevant information as initial constraints for
a CHR program, and c) letting the CHR program run over the database when given some
kind of “question”, e.g. who should a given user vote for, or what decision should he/she
make when faced with some specific problem.

We next introduce our proposed model through examples in the specific financial domain
of choosing companies to invest on. There will be a system-defined part of the program,
which the user needs not be concerned with, and which will adequately process the user’s
definitions.

3.1 Priority definitions
These are done through propagation rules, in which each criterion is associated with either a
high, low, or medium priority3. To exemplify:

bombs (the Rocky Flats Plant), manufacturing napalm B, supplying the dioxin containing Agent Orange
that was used as a weapon, or producing a soil fumigant, DBCP, which was responsible for sterilizing
male workers in banana plantations in Latin America after most domestic uses of DBCP were banned
in 1977 due to the successful lawsuits from workers at Dow’s DBCP production who were made sterile
by exposure to the compound.

3 Alternatively, we could allow for numeric measures such as 0.9, or perhaps automatically translate less
precise measures such as high, low, and medium into numeric values according to some algorithm that
takes all the user’s priorities into account.

V. Dahl, B. Coleman, J.E. Miralles, and E. Maharshak 373

priorities ==> priority(environmentalSafety,high),
priority(humanSafety,high),
priority(transparency,medium),
priority(goodHistoricYield,medium), ...

3.2 Goal definitions
These are also described through propagation rules, e.g. the user can set goals such as to get
at least 5% on average yearly, e.g.:

goals ==> goal(minimumAvgeYield,5), ...

3.3 The knowledge base: its sources, reasons, and trustworthiness
We use a knowledge base that lists for all candidate companies specific incidents that justify
a given score with respect to each of the criteria. We do this through a 5-ary predicate
“criterion”, whose first argument names the criterion in question, whose second argument
refers to a company, whose third argument rates the level at which the company satisfies the
criterion (i.e., low, medium, or high), whose fourth argument summarizes the reason for said
rating, and whose fifth and last argument records the URL from which this summary was
extracted, e.g.:

criterion(humanSafety,’DowChemical’,low,’because it sells
chemicals that damage the human nervous system and have been
banned from the US for that reason, to third world countries
that do not yet have protective regulations’,
’http://en.wikipedia.org/wiki/Dow_Chemical_Company#DBCP’).

The database also lists historic average yields and any other goal defined under “goals”, e.g.4:

achievedHistorically(minimumAvgeYield,DowChemical,40).

It is important to consider from what sources the database will be constructed in each
case. For instance having consulted Dow Chemical’s own description, which presents itself as
a sustainable company, the following contradicting information could co-exist in the same
database:

criterion(humanSafety,’DowChemical’,high,’because it addresses
many of the world’s most challenging problems such as the need
for clean water, renewable energy generation and conservation,
and increasing agricultural productivity’,
’http://www.dow.com/news/corporate/2011/20110908a.htm’).

As we can see, the information to be included in the knowledge base can be unreliable in
some cases, or partial, or even contradictory (as in the case of Dow Chemical listing itself as
sustainable, which clashes with the belief of some that several of its actions were far from
sustainable or ethical). We can adopt some criteria to decrease the risk of error in rating,
such as adding a marker of trustworthiness to each of the above rules related to the quality of
independent verification, e.g. the international lawyers that participated in the legal actions
against Dow Chemical could give faith that the first rule is accurate.

4 This is an example, not an actual yield.

ICLP’12

374 CHR for Social Responsibility

We postulate that in the long run, the best way to achieve enough information is to allow
for information to come from various sources, to allow for the potential contradictions that
this can generate, and to simply output both the (perhaps contradicting) advice and its
rationale in each case. The human user can then make up his mind on which of the info to
follow, or in a later stage of our system, we could resort to argumentation theory [7, 1, 2] to
weigh the merits of each argument and counter-argument automatically.

Our proposal is innovative because previous solutions to the problem of preventing market
manipulation are based on either mechanical selection, which is always less discriminative
than humans’, and as we saw facilitates scams, or on just trusting the corporations, which
many people believe to be imprudent at the least.

It is important to note that in a world in which web documents can contain timely
information not easily found elsewhere, and in which concept extraction from web documents
is becoming more and more efficient, we will likely tend to rely increasingly on them as
sources of information. For this additional reason we believe that it is important to allow
contradicting information to enter our database, while giving the user appropriate tools
to deal with it a posteriori, such as argumentation theory. In any case, since some of the
issues at hand might be controversial, we feel it is best to allow diverse points of view to be
reflected, and leave it to the user to decide which one he or she wants to adhere to. The
important thing for this is that we provide the rationale and the URL source which will allow
them to make a truly informed decision.

3.4 The system
The system’s shell itself can be created in just a few, relatively simple, CHR rules. To
exemplify, the following CHR rule expresses that a Company meets a given criterion and
goal if the user’s values for that criterion and goal coincide with the values of the company.
Now since the goal is met, the reason and its justifying link get printed as well.

priority(Criterion,Value), goal(G,N)
==> criterion(Criterion,Company,Value,Reason,Link),
achievedHistorically(G,Company,N1),
N1> N,
print_reason(Company,Reason,Link)
| ok(Company).

Of course, we could modify such rules in various ways as needed, e.g. demanding that the
user’s value either coincides with, or is less than, the value the company gets, or we could
check all goals, not just the single one of the example.

The result will be a list of companies that are eligible according to each goal and criterion.
This can be sorted out by the user or further processed by the system.

4 Principled and informed voting

The above will rapidly turn relevant as financial data-tagging becomes the standard practice
mandated by the U.S. Securities and Exchange Commission5. This will allow matching various
complex criteria in large data-sets. One especially practical and interesting implementation

5 http://www.forbes.com/sites/tomgroenfeldt/2011/09/16/mandated-data-tagging-makes-sec-reports-
useful-to-investors/

V. Dahl, B. Coleman, J.E. Miralles, and E. Maharshak 375

would be matching individuals’ beliefs and voting principles with financial and proxy data.
This would assist users in arriving at a voting decision when a large volume of data is
available and only a tiny subset is relevant for the decision. One simplified possibility for
this will be explored in the next section.

4.1 Motivation
As corporate power grows and the power of governments falls, mechanisms to govern
corporations become more important. As governmental power falls, their power to regulate
corporations falls as well. Further, as the influence of corporations over governments increases
(eg. lobbying), the will of governments to regulate corporations also falls. This can form a
positive feedback loop.

Hope is not lost though, since there is an existing structure at every publicly traded
company wherein its shareholders – the corporation’s actual owners – vote on high level
decisions at the company. This mechanism is aptly referred to as corporate governance.
Loosely, shareholders do not vote on which product the company should release, but instead
they help elect a board of directors that will steer management well.

Furthermore, if a shareholder owns a fixed amount of shares, they may place a proposal of
their own on the company’s ballot for all of the shareholders to vote on. This is known as a
shareholder proposal. As a policy, management supports management proposals and opposes
shareholder proposals, because if management agreed with a shareholder proposal, then they
would implement it themselves. Shareholder proposals can range in subject matter from
the genocide in Darfur, to the environment, to sweat-shop labor, to executive compensation,
to disclosing political contributions, to amending the corporate by-laws to, for instance,
separate the Chairman and CEO positions. These proposals can call for an action, or for
disclosure from the company. Since the range of management and shareholder proposals is so
wide, good voting can lead to corporations that are both more profitable, and more socially
responsible.

Shareholders are the literal owners of a company. Indeed, the ownership relationship
is very powerful, arguably more so than the citizenship relationship between citizens and
their governments, yet only about 5% of retail investors vote their shares [4], and even
fewer investors cast informed votes. This is because of apathy, information overload, and
information under-load.

ProxyDemocracy.org is a non-partisan, non-profit website that attempts to solve these
(and related) issues, primarily in the U.S.. The website is essentially an interactive database
of votes cast by institutional investors. Most of these votes were collected by scraping
mandatory disclosure filings which are disclosed after the votes have been cast. However,
for the purposes of this paper, we will focus on institutions who disclose votes prior to
meetings. There are ten such institutions whose votes can be found on ProxyDemocracy.
These institutions primarily predisclose in an effort to gain support for their positions by
getting out ahead of other investors. Other investors, very large and very small, can and
do see these early votes on ProxyDemocracy.org and use them to inform their own voting
decisions.

4.2 Client directed voting
Client directed voting (CDV) seeks to improve voting rates and/or voting quality by auto-
mating the voting process. Mark Latham introduced this concept in [5], but [6] is more
current. Still, the term “Client Directed Voting” was coined by Stephen Norman of American

ICLP’12

376 CHR for Social Responsibility

Political
Contributions

Director
Elections

Figure 1 Left is passive, right is activist.

Express in 2006. There are many ways to envision this and to implement it. Here we propose
a method which we argue will improve both participation and voting quality.

The state-of-the-art in computing sciences is such that modern information systems could
aggregate the votes of institutions that publish their votes before meetings and use them to
make voting recommendations congruent with a user’s stated values. The user need only
declare his voting preferences once and these can be used to automatically generate suggested
votes on an on-going basis. The user would still likely need to approve each suggested vote for
regulatory purposes. Automated voting is surely not foolproof, but the automation largely
overcomes information overload, and the basis of respected institutional investors (that have
the expertise and resources to vote well) largely overcomes information under-load.

We will use the term passive to describe a vote in favor of management, and activist to
describe a vote against management. There is no value judgement intended by this word
choice. We use these two terms to abstract the type of proposal so that we do not have
to distinguish between management and shareholder proposals and votes that are “For”,
“Against”, or “Withhold”. Each vote will simply be considered to be either activist or passive.

The back-end of this CDV implementation requires predisclosing institutions, their voting
histories, and a simple mechanism for automatically classifying proposals by type (e.g.
director elections, political contributions). ProxyDemocracy currently shows the early votes
of ten institutions, as well as their voting histories broken down by issue type, so these three
requirements are straight-forward and attainable with a moderate effort.

The front-end requires only that for each issue type, the user indicates how activist or
passive they want to vote. The user will indicate how activist or passive they wish to vote on
each issue type by moving a slider, where the leftmost position will be as passive as possible,
and the rightmost position will be as activist as possible (see Figure 1).

Voting decisions will be based entirely on the early votes of these predisclosers, their
voting histories, and the user’s slider positions.

This algorithm does not ask users to decide which predisclosing institutions they want
factored into their voting decisions. This is a tempting, but problematic design choice,
because most users are not familiar with these institutions, nor do they have opinions on
their voting records. In fact, this algorithm only asks users the one question that any CDV
scheme that aims to help users vote their values must ask, namely how they want to vote on
the issues.

Furthermore, the algorithm we propose uses each and every predisclosing institution to
make the decision. This is regardless of whether, for some issue, an institution’s voting record
aligns with the user’s given values or not. This approach is inspired by the mathematical
field of Information Theory, in that there is useful information in each and every voting
decision, and thus each one should be factored into the final decision.

V. Dahl, B. Coleman, J.E. Miralles, and E. Maharshak 377

4.3 Our algorithm
This algorithm only decides a users’ vote for one single proposal. For this vote, assume that
k institutions have disclosed their vote by this time. We will use all k votes to make our
decision. Let vi be the vote of institution i, where vi = {activist, passive}. These votes are
represented by:

v1, v2, . . . , vk.

Also, let pi, where 0 ≤ pi ≤ 1, be the historical probability of institution i casting an
activist vote. More specifically, pi is exactly the frequency with which institution i has cast
activist votes on this issue in the past, which we know from this institution’s voting record.
For example, if some pi is close to 0 on this issue, then institution i is passive on this issue.
These probabilities are represented by:

p1, p2, . . . , pk.

For a given issue (like director elections, see figure 1), the position the user chooses
will become the value s, where −1 ≤ s ≤ 1. For example, if s = −1, then the the user is
maximally passive on this issue, if s = 0, then the user is neutral, and if s = 1, then the user
is maximally activist. The users voting preference for this issue is represented by s.

Note that the the pi for these k institutions may conform to any probability distribution.
For instance, all k institutions might be very passive. We will use a weighting function
f : {1, . . . , k} → R to attempt to mitigate any bias in this probability distribution by
assigning each vote a weight. The function f is just one possible weighting function, there
may be many that work well.

fi =
{

1− pi if vi = activist,
pi if vi = passive.

The function f assigns a very small weight to a passive vote of an institution that votes
passively on this issue, and similarly assigns a very small weight to an activist vote from
an institution that is an activist on this issue. Conversely, f will assign a large weight to a
passive vote from an activist institution, and the symmetric. Thus, if all of the predisclosers
are historically passive on an issue, but the user wants to be activist, then if at least one
prediscloser cast an active vote, this scheme will weight that vote high and the passive votes
low.

The intuition behind this is that if an institution that is passive on directors votes
against a director, then this director must be significantly unsatisfactory. Similarly, if a
very environmentalist institution votes against an environmental proposal, there is a high
likelihood that there is a significant problem with this proposal.

Now we will explain the second weighting function g : {1, . . . , k} → R. This function
scales some of the weightings that f created, and using the slider value s, creates new
weightings, gi:

gi =


fi if vi = activist and s ≤ 0,

fi(2− (1− s)) if vi = activist and s > 0,

fi(2− (1 + s)) if vi = passive and s < 0,

fi if vi = passive and s ≥ 0.

ICLP’12

378 CHR for Social Responsibility

Again, function g is just one of many possible weighting functions. Further, it is limited
in that, if the user is passive on this issue, it will only scale the passive votes by at most two.
Observe that if the user picks the value −1, it will multiply the weight of each passive vote
by 2. The function g can indeed scale either the passive or activist votes by at least 1 and
at most 2. This scaling factor is an arbitrary choice, and can likely only be justified with
rigorous experimentation with this and other weighting functions.

The intuition behind f and g is that first f helps to mitigate the bias from the vote
sources, and then g applies the user’s bias. Finally if

∑
vi=Activist gi >

∑
vi=P assive gi, then

we cast an activist vote, and otherwise we vote passively. Below is an example.
Prior to demonstrating this simple approach in the next section, it is worth noting

that we have tested it on a very large data set of approximately one million historical
proxy votes, which has so far showed the effectiveness of the general approach. You can
find a detailed account of the trial in this URL: https://docs.google.com/open?id=
0B57uHUYhCLdCRi15RGtoQlRvX2c.

4.4 Example
In this example, we show how four institutions voted in a 2010 proposal to elect Charles
Prince to serve on the board of directors of Johnson & Johnson. Some believe Mr. Prince
to be a controversial director. He served as the chairman and chief executive officer of the
investment bank Citigroup from 2002 until his resignation in November of 2007, shortly
before the financial crisis of 2008. Thus, some claim he might have been involved in the
decisions that, shortly after his resignation, brought about Citigroup’s collapse (market
capitalization crashed from $244B down to $20B) and subsequent bailout by the U.S. federal
government. While some people may question his competence, his experience and influence
as a chief executive and banker may be important to Johnson & Johnson. He was first
appointed in 2006 and continues to serve on Johnson & Johnson’s board.

The institutional voters for this proposal include CalSTRS, the pension fund for the
teachers of California, AFSCME, a labor union pension fund, CBIS, a Catholic ministry
pension fund, and Vanguard, the world’s largest mutual fund company with more than $2T
in assets under management. The first three institutions predisclose their proxy votes, but
Vanguard does not. Hence, we would not have been privy to their vote (vi value) in advance.
Yet, being a past proposal we can include it just to represent a more conservative school of
thought.

In the first table, we are given the pi’s and the vi’s of the predisclosing voters (including
Vanguard, which did not actually predisclose), and we compute the fi’s and the gi’s for four
different values of s.

Institution pi vi fi gi (s=-.7) gi (s=-.3) gi (s=0) gi (s=1)
CalSTRS .470 Activist .530 .530 .530 .530 1.060
AFSCME .438 Passive .438 .745 .569 .438 .438
CBIS .500 Passive .500 .850 .650 .500 .500
Vanguard .085 Passive .085 .145 .111 .085 .085

In the second table, we show the sums of the activist and passive votes for each of the
four values of s and the vote that is actually cast. With these four predisclosers, when s = 1,
the algorithm casts an activist vote. This is because the sum of the weighted passive votes is
less than the one weighted and scaled activist vote cast by CalSTRS (an activist vote is a
vote against Mr. Prince). Similarly, the algorithm casts a passive vote when s is −.7,−.3

https://docs.google.com/open?id=0B57uHUYhCLdCRi15RGtoQlRvX2c
https://docs.google.com/open?id=0B57uHUYhCLdCRi15RGtoQlRvX2c

V. Dahl, B. Coleman, J.E. Miralles, and E. Maharshak 379

or 0. Note that if the f value of CalSTRS, which is .530 had been only slightly higher, the
algorithm would have voted for Mr. Prince regardless of the s (slider value) chosen by the
user.

s
∑

vi=Activist
gi

∑
vi=P assive

gi vote cast
-.7 .530 1.739 Passive
-.3 .530 1.330 Passive
0 .530 1.023 Passive
1 1.060 1.023 Activist

5 Conclusion

We have presented arguments in favor of developing computerized systems for responsible
decision making based on CHR, and exemplified our ideas in the context of automatic-
ally helping a user choose among investment possibilities in accordance with the user’s
values. We have also proposed an algorithm for client directed voting which can be read-
ily incorporated as well into our CHR based system, thanks to its high modularity, and
implemented a toy CHR program as proof of concept (see: https://docs.google.com/
open?id=0B57uHUYhCLdCRi15RGtoQlRvX2c)The idea that the world is a symbol for thought,
or thought materialized, can be postulated at various levels, from the most literal to the
most metaphysical. By allowing principled thought guided by humanistic ends to become a
matter of fact embedded in computer systems we can contribute both to humanize computers
and to expand human consciousness in ways direly needed at the present juncture in our
civilization. In particular, automating informed decision making could, through forcing
corporations to choose between meeting users’ values or losing their support, revolutionize
the way corporations are run enough to transform them into agents of positive change. With
this paper we hope to stimulate further work along these lines.

It is also important to note that, while we have focused on the specific areas of financial
advice and voting, our described methodology can be readily adapted to other areas where
informed decision-making can be supported by computers. Thus, other than by empowering
voters and investors, the social implications of our proposed model’s research could be mind-
boggling from the point of view of potential systematic contributions to societal participation
(through making wider consultation possible) and to the elevation of the world’s educational
levels, given that even poor areas of the world are gaining affordable access to mobile phones
to which the needed databases could be fed and consulted. For instance our informed advice
system adapted to medicine could allow patients to make more educated, conscious, and
personally germane decisions on their treatments through relevant automatic expansion
of the information received at a doctor’s visit. In the long run, our research will make it
possible to implement a model of machine informed human cognition around guidelines that
consistently focus on human values and concerns, hence promoting an expansion of global
consciousness around humanistic lines, with profound transformational effects.

6 Acknowledgements

This work was supported by V. Dahl’s NSERC grant 31611024. We would like to thank the
anonymous referees for their feedback, Henry Saint Dahl for timely advice, and Andy Eggers
at ProxyDemocracy/the London School of Commerce for his work on the database of votes.

ICLP’12

https://docs.google.com/open?id=0B57uHUYhCLdCRi15RGtoQlRvX2c
https://docs.google.com/open?id=0B57uHUYhCLdCRi15RGtoQlRvX2c

380 CHR for Social Responsibility

References
1 Xiuyi Fan and Francesca Toni. Assumption-based argumentation dialogues. In Toby Walsh,

editor, IJCAI, pages 198–203. IJCAI/AAAI, 2011.
2 Xiuyi Fan and Francesca Toni. Conflict resolution with argumentation dialogues. In Liz

Sonenberg, Peter Stone, Kagan Tumer, and Pinar Yolum, editors, AAMAS, pages 1095–
1096. IFAAMAS, 2011.

3 Thom Frühwirth and Frank Raiser, editors. Constraint Handling Rules: Compilation,
Execution, and Analysis. March 2011.

4 Chris Kentouris. Broadridge to u.s. corporations: Tell employees to vote. http://www.
securitiestechnologymonitor.com/news/-27412-1.html, March 2011.

5 Mark Latham. The internet will drive corporate monitoring. Corporate Governance In-
ternational, 3(2), 2000. Available at votermedia.org/publications. 1999 version at SSRN
eLibrary".

6 Mark Latham. Proxy voting brand competition. Journal of Investment Management, 5(1),
2007. Available at votermedia.org/publications.

7 Iyad Rahwan and Guillermo R. Simari, editors. Argumentation in Artificial Intelligence.
Springer Publishing Company, Incorporated, 1st edition, 2009.

http://www.securitiestechnologymonitor.com/news/-27412-1.html
http://www.securitiestechnologymonitor.com/news/-27412-1.html

A Logic Programming approach for Access
Control over RDF
Nuno Lopes1, Sabrina Kirrane2, Antoine Zimmermann3,
Axel Polleres4, and Alessandra Mileo1

1 Digital Enterprise Research Institute
{nuno.lopes,alessandra.mileo}@deri.org

2 Digital Enterprise Research Institute and Storm Technology
sabrina.kirrane@deri.org

3 École Nationale Supérieure des Mines, FAYOL-ENSMSE, LSTI, F–42023
Saint-Étienne, France
antoine.zimmermann@emse.fr

4 Siemens AG Österreich, Siemensstrasse 90, 1210 Vienna, Austria
axel.polleres@siemens.com

Abstract
The Resource Description Framework (RDF) is an interoperable data representation format
suitable for interchange and integration of data, especially in Open Data contexts. However,
RDF is also becoming increasingly attractive in scenarios involving sensitive data, where data
protection is a major concern. At its core, RDF does not support any form of access control
and current proposals for extending RDF with access control do not fit well with the RDF
representation model. Considering an enterprise scenario, we present a modelling that caters for
access control over the stored RDF data in an intuitive and transparent manner. For this paper
we rely on Annotated RDF, which introduces concepts from Annotated Logic Programming into
RDF. Based on this model of the access control annotation domain, we propose a mechanism
to manage permissions via application-specific logic rules. Furthermore, we illustrate how our
Annotated Query Language (AnQL) provides a secure way to query this access control annotated
RDF data.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Logic Programming, Annotation, Access Control, RDF

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.381

1 Introduction

Enterprises rely on stand-alone systems, commonly known as Line Of Business (LOB) applic-
ations, to efficiently perform day-to-day activities: interactions with clients in a Customer
Relationship Management (CRM) application, employee information in a Human Resources
(HR) application, project documentation in a Document Management System (DMS), etc.
These systems, although independent, often contain different information regarding the same
entities; for example, if an organisation needs to know the projects commissioned by a cus-
tomer, the employees that worked on those projects and the revenue that was generated,
they need to obtain information across these systems. However, such integration is not a
simple task, not only due to the heterogeneity of the systems, but also due to the presence
of access control mechanisms in each system. In fact, since much of the information within
the enterprise is highly sensitive, this integration step could result in information leakage to
unauthorised individuals.

© Nuno Lopes, Sabrina Kirrane, Antoine Zimmerman, Axel Polleres, and Alessandra Mileo;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 381–392

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.381
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

382 A Logic Programming approach for Access Control over RDF

RDF is a flexible format for representing such integrated data, however it does not provide
any mechanisms to avoid the problem of information leakage. In this paper we rely on an
integration solution that extracts information from the underlying LOB applications into
RDF. Based on this integrated data, we define a mechanism to enforce access control over the
resulting RDF graph, implemented via logic programming. Our approach provides a flexible
representation for the access control policies and also caters for permission propagation via
logic inference rules.

The solution we present builds upon an extension of the RDF data model to supply
context information (called Annotated RDF), that provides a backwards compatible model
to attach domain-specific metadata to each RDF triple. The main contribution of this
paper in relation to access control over RDF data consists of defining an annotation domain
that models access control permissions in RDF. Based on this model, access control can
be enforced by relying on an extension of SPARQL, the standard query language for RDF.
Although in this paper we are considering that the access control annotated data stems from
the integration of the data from LOB applications, the presented model can be applied as a
general model for access control in RDF, without requiring the information integration step.

The remainder of the paper is structured as follows: in Section 2 we briefly introduce
concepts from the Semantic Web research area and their extension to the annotated case.
Section 3 formalises the access control annotation domain and details our implementation
of the domain in logic programming. Finally, we describe the related work in Section 4 and
present conclusions and directions for future work in Section 5.

2 Preliminaries

In this section we provide the necessary background information regarding the semantics
of Annotated RDFS. We start by presenting the data model, giving an overview of RDF
and its extension towards Annotated RDFS which draws inspiration from Annotated Logic
Programming [13]. We then present the extension of the RDF Schema (RDFS) inference
rules for the annotated case and the extension of the SPARQL query language for query-
ing Annotated RDFS, AnQL. Finally, we present the current prototype implementation of
Annotated RDFS and AnQL which is implemented in SWI Prolog.

2.1 Annotated RDFS Data Model
We present an overview of the concepts of RDF and its extension to Annotated RDFS.

I Definition 1 (RDF triple, RDF graph). Considering the disjoint sets U, B and L, rep-
resenting respectively URIs, blank nodes and literals, an RDF triple is a tuple (s, p, o) ∈
UB×U×UBL,1 where s is called the subject, p the predicate, and o the object. An RDF
graph G is a finite set of RDF triples.

An RDF triple has the intuitive meaning that the subject is connected to the object by the
predicate relation. In this work, we avoid introducing details about the concrete syntaxes of
RDF, and we omit minutiae. Please refer to [15] and [9] for specifics.

Several extensions were presented to introduce meta-information into the RDF data
model. For example, [7] define temporal RDF, which allows for the allocation of a validity

1 For conciseness, we represent the union of sets simply by concatenating their names.

N. Lopes, S. Kirrane, A. Zimmerman, A. Polleres, and A. Mileo 383

interval to an RDF triple; [20] presents fuzzy RDF in order to attach a confidence or mem-
bership value to a triple. These and other approaches can be represented within a common
framework, called Annotated RDF [23] and further extended to include RDFS inference
rules by [21]. Annotated RDFS introduces the notion of an annotation domain into the
RDF model and defines an extension of the RDFS inference rules that, by relying on the ⊗
and ⊕ (cf Definition 2) operations defined by the annotation domain, can be specified in a
domain independent fashion. Next we present the definition of an annotation domain

I Definition 2 (Annotation Domain). Let L be a non-empty set, whose elements are con-
sidered the annotation values. We say that an annotation domain for RDFS is an idem-
potent, commutative semi-ring D = 〈L,⊕,⊗,⊥,>〉 , where ⊕ is >-annihilating. That is, for
λ, λ1, λ2 ∈ L:

1. ⊕ is idempotent, commutative, associative;
2. ⊗ is commutative and associative;
3. ⊥⊕ λ = λ, >⊗ λ = λ, ⊥⊗ λ = ⊥, and >⊕ λ = >;
4. ⊗ is distributive over ⊕, i.e. λ1 ⊗ (λ2 ⊕ λ3) = (λ1 ⊗ λ2)⊕ (λ1 ⊗ λ3);
An annotation domain D = 〈L,⊕,⊗,⊥,>〉 induces a partial order � over L defined as:
λ1 � λ2 iff λ1 ⊕ λ2 = λ2 .

I Example 3 (Annotation Domain). The Fuzzy Annotation Domain is defined as D[0,1] =
〈[0, 1],max,min, 0, 1〉. We can specify that :joeBloggs is a part-time employee of :westportCars
as follows:

(:joeBloggs, :worksFor, :westportCars) : 0.5

For the definitions of other domains, such as the temporal domain, the reader is referred
to [21]. In Section 3.1 we present the definition of an annotation domain to model access con-
trol. Further to the above annotation domain definition, we extend RDF towards annotated
RDFS:

I Definition 4 (Annotated triple, graph). An annotated triple is an expression τ : λ, where
τ is an RDF triple and λ is an annotation value. An annotated RDFS graph is a finite set
of annotated triples.

The entailment between two Annotated RDFS graphs, G |= H is defined by a model-
theoretic semantics presented in [21].

2.2 Inference Rules
RDF Schema (RDFS) [4] consists of a predefined vocabulary that assigns specific meaning to
certain URIs, allowing a reasoner to infer new triples from existing ones. A set of inference
rules can be used to provide a sound and complete reasoner for RDFS [22]. These rules
can be extended to support Annotated RDFS reasoning, in a domain-independent fashion,
simply by relying on the ⊗ and ⊕ operations (presented in Definition 2). Such rules can be
represented by the following meta-rule:

τ1 : λ1, . . . , τn : λn, {τ1, . . . τn} `RDFS τ

τ :
⊗

i λi
. (1)

This rule reads that if a classical RDFS triple τ can be inferred by applying an RDFS
inference rule to triples τ1, . . . τn (denoted {τ1, . . . , τn} `RDFS τ), the same triple can be

ICLP’12

384 A Logic Programming approach for Access Control over RDF

inferred in the annotated case with annotation term
⊗

i λi, where λi is the annotation of
triple τi. The ⊕ operation is used to combine information about the same statement: if
the same triple is inferred from different rules or steps in the inference, the following rule is
applied:

τ : λ1, τ : λ2

τ : λ1 ⊕ λ2
. (2)

It is also possible to specify a custom set of rules in order to provide application specific
inferencing.

2.3 AnQL: Annotated Query Language
The proposed query language for Annotated RDFS is AnQL [14], which consists of an ex-
tension to the W3C recommended query language for RDF, SPARQL [18], while also taking
into consideration features from the upcoming SPARQL 1.1 language revision. Consider
V a set of variables disjoint from UBL. In SPARQL, a triple pattern consists of an RDF
triple with optionally a variable v ∈ V as the subject, predicate and/or object. Sets of triple
patterns are called basic graph patterns (BGP) and BGPs can be combined to create generic
graph patterns. The semantics of SPARQL is based on the notion of basic graph pattern
matching, where a substitution is a partial function µ : V→ UBL.

For the extension of SPARQL towards the AnQL query language, we propose a specific
annotation domain instance of D of the form 〈L,⊕,⊗,⊥,>〉. Let A denote the set annota-
tion variables, disjoint from UBLV and λ be an annotation value from L or an annotation
variable from A, called an annotation label. For a SPARQL triple pattern τ , we call τ : λ
an annotated triple pattern and sets of annotated triple patterns are called basic annotated
patterns (BAP). Similar to SPARQL, BAPs can be combined to create an annotated graph
pattern and for further details we refer the reader to [14].

An AnQL query is defined as a triple Q = (P,G, V) where: (1) P is an annotated
graph pattern; (2) G is an annotated RDF graph; and (3) V ⊆ VA is the set of variables
to be returned by the query. Given an annotated graph pattern P , we further denote by
var(P) ⊆ V and avar(P) ⊆ A the set of variables and annotation variables respectively
present in a graph pattern P . As presented in Example 5, the annotated graph pattern P is
specified following the WHERE keyword where the variables are specified after the SELECT
keyword.

I Example 5 (AnQL query). Considering the fuzzy domain presented in Example 3, we can
pose the following query:
SELECT ?v ?av WHERE { ?v a : Company ?av }

where ?v is a variable from V and ?av is an annotation variable from A.

The semantics of AnQL BAP matching is defined by extending the notion of SPARQL basic
graph pattern matching to cater for annotation variables and their mapping to annotation
values. For any substitution µ and variable v, µ(v) corresponds to the value assigned to v
by µ. For a BAP P , µ(P) represents the annotated triples that correspond to P except that
any variable v ∈ vars(P) ∪ avars(P) is replaced with µ(v).

I Definition 6 (BAP matching, extends [16, Definition 2]). Let P be a BAP and G an
Annotated RDFS graph. We define the evaluation of P over G, denoted [[P]]G, as the list
of substitutions that are solutions of P , i.e. [[P]]G = {µ | G |= µ(P)}, according to the
model-theoretic definition of entailment presented by [21].

N. Lopes, S. Kirrane, A. Zimmerman, A. Polleres, and A. Mileo 385

Reasoner / AnQL
Query Engine

Annotation Domain

Temporal FuzzyAccess control

Inference Rules

RDFS Custom Rules
Annotated

RDF
Graph

Figure 1 Annotated RDFS implementation schema.

The semantics of arbitrary annotated graph patterns is defined by an algebra that is built
on top of this BAP matching. For further details we refer the reader to [14] and a combined
overview of Annotated RDFS and AnQL is provided by [25].

2.4 Implementation
The system architecture of our prototype implementation, based on SWI-Prolog’s Semantic
Web library [24], is sketched in Figure 1. The main component of the system consists of
the Reasoner / AnQL Query Engine, which is composed of a forward-chaining reasoner
engine with a fix-point semantics that calculates the closure of a given Annotated RDF
Graph [21] and an implementation of the AnQL query language. This main component can
be tailored to a specific Annotation Domain and to include different Inference Rules
describing how triples and their annotation values are propagated. Such inference rules can
be specified, in domain independent fashion, by using a high-level language that abstracts
the specific details of each domain. An example of an Annotated RDFS rule is presented in
Example 7.

I Example 7 (Annotated RDFS Inference Rule). The following rule provides subclass inference
in the RDFS ruleset:

rdf(O, rdf:type , C2 , V) <== rdf(O, rdf:type , C1 , V1),
rdf(C1 , rdfs:subClassOf , C2 , V2),
infimum (V1 , V2 , V).

where the rdf/4 predicate is used to represent the annotated triples and the infimum/3
predicate corresponds to the implementation of the ⊗ domain operation (c.f. Definition 2).

More information and downloads of the prototype implementation can be found at http:
//anql.deri.org/.

3 Access Control Annotation Domain

In this section we formalise our access control annotation domain, following the definitions
presented in Section 2.1, starting by defining the entities and annotation values and then
presenting the ⊗ and ⊕ domain operations. Finally, we briefly describe the implementation
of the presented annotation domain.

3.1 Entities and Annotations
For the modelling of the Access Control Domain (ACD) consider, in addition to the previ-
ously presented sets of URIs U, blank nodes B, and literals L, a set of credential elements
C. The elements of C are used to represent usernames, roles, and groups. To represent
attributes, we propose a set T of pairs of form (k, v), represented as key–value pairs where

ICLP’12

http://anql.deri.org/
http://anql.deri.org/

386 A Logic Programming approach for Access Control over RDF

k ∈ U and v ∈ L. For example “(:age, 30)” or “(:institute,DERI)” are elements of T.2 We
allow shortcuts to represent intervals of integers, for example “(:age, [25, 30])” to indicate
that all entities with attribute “:age” between 25 and 30 are allowed access to the triple.

Considering an element e ∈ CT, e and ¬e are access control elements, where e is called
a positive element and ¬e is called a negative element.3 An access control statement S
consists of a set of access control elements and an Access Control List (ACL) consists of
a set of access control statements. An access control statement S is consistent if and only
if, for any element e ∈ CT, only one of e and ¬e may appear in S. This restriction
avoids conflicts, where a statement is attempting to both grant and deny access to a triple.
Furthermore, we can define a partial order between access control statements S1 and S2,
as S1 ≤ S2 iff S1 ⊆ S2. This partial order can be used to eliminate redundant access
statements within an ACL: if a user is granted access by statement S2, he will also be
granted access by statement S1 (and thus S2 can be removed). Finally, an ACL is consistent
if and only if all statements therein are consistent and not redundant. In our domain
representation, only consistent ACLs are considered as annotation values. Intuitively, an
annotation value specifies which entities have read permission to the triple, or are denied
access when the annotation is preceded by ¬.

I Example 8 (Access Control List). Assume a set of entities C = {jb, js, hr, it}, where jb
and js are employee usernames and hr and it are shorthand for humanResources and in-
formationTechnology, respectively. The following annotated triple:

τ : [[it], [hr,¬js]]

states that the entities identified with it or hr (except if the js credential is also present)
have read access to the triple τ .

An ACL A can be considered as a non-recursive Datalog with negation (nr-datalog¬) pro-
gram, where each of the access control statements S ∈ A corresponds to the body of a rule
in the Datalog program. The head of each Datalog rule is a reserved element access 6∈ CT
and the evaluation of the Datalog program determines the access permission to a triple given
a specific set of credentials. The set of user credentials is assumed to be provided by an ex-
ternal authentication service and consists of elements of CT which equates to a non-empty
ACL representing the entities associated with the user. As expected, we assume that this
ACL consists of only one positive statement, i.e. the ACL will contain one statement with
all the entities associated with the user and does not contain any negative elements.

I Example 9 (Datalog Representation of an ACL). Taking into account the annotation
example presented in Example 8. The nr-datalog¬ program corresponding to the ACL
[[it], [hr,¬js]] is:

access← it.
access← hr,¬js.

The set of credentials of the user session, provided by the external authentication system
eg. [[js, it]], are facts in the nr-datalog¬ program.

2 In these examples, the default URI prefix is http://urq.deri.org/enterprise#.
3 Here we are using ¬e to represent strong negation. In our access control domain representation, ¬e
indicates that e will be specifically denied access.

http://urq.deri.org/enterprise#

N. Lopes, S. Kirrane, A. Zimmerman, A. Polleres, and A. Mileo 387

Further domain specific information, for example the encoding of hierarchies between the
credential elements, can be encoded as extra rules within the nr-datalog¬ program. These
extra rules can be used to provide implicit credentials to a user, allowing the access control
to be specified based on credentials that the authentication system does not necessarily
assign to a user.

I Example 10 (Credential Hierarchies). If the entity emp represents all the employees within
a specific company, and that jb and js correspond to employee usernames (as presented in
Example 8), the following rules can be added to the nr-datalog¬ program from Example 9:

emp← js.
emp← jb.

These rules ensure that both jb and js are given access when the credential emp is required
in an annotation value.

These rules can be used not only to express hierarchies between entities but any form of
nr-datalog¬ rules are allowed.

3.2 Annotation Domain
We now turn to the annotation domain operations ⊗ and ⊕ that, as presented in Sec-
tion 2.2, allow for the combination of annotation values catering for RDFS inferences. A
naive implementation of these domain operations may produce ACLs which are not consist-
ent (and would not be considered valid annotation values). To avoid such invalid ACLs, we
rely on a normalisation step that ensures the result is a valid annotation value by check-
ing for redundant statements and applying a conflict resolution policy if necessary. If an
annotation statement contains a positive and negative access control element for the same
entity, e.g [jb,¬jb], there is a conflict. There are two different ways to resolve conflicts in
the annotation statements: (i) apply a brave conflict resolution (allow access); or (ii) safe
conflict resolution (deny access). This is achieved during the normalisation step, through
the resolve function, by removing the appropriate element: ¬jb for brave or jb for safe
conflict resolution. In our current modelling, we are assuming safe conflict resolution. The
normalisation process is defined as follows:

I Definition 11 (Normalise). Let A be an ACL. We define the reduction of A into its
consistent form, denoted norm(A), as:

normalise(A) = {resolve(Si) | Si ∈ A and 6 ∃Sj ∈ A, i 6= j such that Si ≤ Sj} .

The ⊕ operation is used to combine annotations when the same triple is deduced from
different inference steps (cf. Rule (2)). For the access control domain, the ⊕ac operation
involves the union of the annotations and the subsequent normalisation operation. The result
of this operation intuitively creates a new nr-datalog¬ program consisting of the union of
all the rules from the original nr-datalog¬ programs. Formally,

A1 ⊕ac A2 = normalise (A1 ∪A2) .

The following example presents an application of the ⊕ac operation:

I Example 12 (⊕ac operation). Consider the triples τ1 = (:johnSmith, :salary, 40000) : [[js]]
and τ2 = (:johnSmith, :salary, 40000) : [[hr]]. Combining these triples with the ⊕ac operation
(by applying Rule (2)) should result in providing access to all the entities which are allowed
to access the premises:

(:johnSmith, :salary, 40000) : [[js], [hr]] .

ICLP’12

388 A Logic Programming approach for Access Control over RDF

In turn, the ⊗ operation is used when inferring new triples, with the application of Rule (1),
and for the access control domain, this operation (⊗ac) consists of merging the rules be-
longing to both annotation programs and then performing the normalisation and conflict
resolution. This equates to restricting access to inferred statements to only those entities
that have access to the both the original statements. Thus, the ⊗ operation corresponds to:

A1 ⊗ac A2 = normalise ({S1 ∪ S2 | S1 ∈ A1 and S2 ∈ A2}) ,

where S1 ∪ S2 represents the set theoretical union. Unlike the ⊕ac operation, the ⊗ac may
produce conflicts in the annotation statements. For example, the application of the ⊗ac

operation with the Annotated RDFS dom rule is as follows:

I Example 13 (⊗ac operation). Let τ1 = (:westportCars, :netIncome, 1000000) : [[hr,¬jb]]
and τ2 = (:netIncome, dom, :Company) : [[it, jb]] be triples. The annotation resulting from
applying the ⊗ac operation should provide access to the resulting triple only to entities
which are allowed to access all the premisses. Thus we can infer, not only that :westportCars
is of type :Company, but also the appropriate annotation value:

(:westportCars, type, :Company) : [[hr, it,¬jb]] .
Please note that the aforementioned conflict resolution mechanism simplifies [¬jb, jb] to [¬jb].

Lastly, the smallest and largest annotation values in the access control domain, ⊥ac and >ac

respectively, correspond in turn to an empty nr-datalog¬ program and another that provides
access to all entities e ∈ CT: ⊥ac = [] and >ac = [[]]. The ⊥ac annotation value element
indicates that the annotated triple is not accessible to any entity, since no annotation state-
ments will provide access to the triple, and an annotation value of >ac states that the triple
is public, since any credential contained in the user session will trivially provide access to the
triple. Intuitively, the >ac annotation is translated into the nr-datalog¬ program containing
only the “access” fact, while ⊥ac corresponds to an empty program. However, for practical
reasons, it might be necessary to assume a “super-user” role, for example represented as
the reserved element “su”, which will be allowed access to all triples and therefore would be
used as the ⊥ac annotation.

I Definition 14 (Access Control Annotation Domain). Let F be the set of annotation values
over CT, i.e. consistent ACLs. The access control annotation domain is formally defined
as: Dac = 〈F,⊕ac,⊗ac,⊥ac,>ac〉 .

The presented modelling of the access control domain can be easily extended to handle
other permissions, like update, and delete by representing the annotation as an n-tuple of
ACL 〈P,Q, . . .〉, where P specifies the formula for read permission, Q for update permission,
etc. In this extended domain modelling, the domain operations can also be extended to
operate over the corresponding elements of the annotation tuple. A create permission has a
different behaviour as it would not be attached to any specific triple but rather as a graph-
wide permission and thus is out of scope for this modelling. In this paper, we are considering
only read permissions in the description of the domain and thus restrict the modelling to a
single access control list. It is worth noting that the support for create and update of RDF
is only included in the forthcoming W3C SPARQL 1.1 Recommendation [8].

3.3 Prolog Implementation
Considering the prototype described in Section 2.4, the implementation of the access control
annotation domain consists of a Prolog module that is imported by the reasoner. This

N. Lopes, S. Kirrane, A. Zimmerman, A. Polleres, and A. Mileo 389

@prefix : <http :// urq.deri.org/ enterprise #> .
: westportCars rdf:type : Company "[[jb]]".
: westportCars : netIncome 1000000 .
: joeBloggs : worksFor : westportCars .
: joeBloggs : salary 80000 "[[jb]]".
: johnSmith : worksFor : westportCars .
: johnSmith : salary 40000 "[[js]].

Figure 2 RDF triples annotated with access control permissions.

module defines the domain operations ⊗ac and ⊕ac, represented as the predicates infimum/3
and supremum/3 respectively. The annotation values are represented by using lists (in this
case lists of lists), following the notions presented in the previous section.

The implementation of the ⊕ac operation involves concatenating the list representation
of both annotations and then performing the normalisation operation. As for the ⊗ac

operation, we follow a similar procedure to the ⊕ac operation, with the additional step of
applying either the brave or the safe conflict resolution method. The evaluation of the nr-
datalog¬ program can be performed based on the representation of the annotation values,
by checking if the list of credentials of a user is a superset of any of the positive literals of
the statements of our annotation values and also that it does not contain any of the negative
literals of the statement.

An example of RDF data annotated with access control information is presented in
Figure 2, where the salary information is only available to the respective employee. In this
figure we are representing the RDF triples and annotation element using the NQuads RDF
serialisation.4 Using AnQL, the extension of the SPARQL query language described in
Section 2.3, it is possible to perform queries that take into consideration the access control
annotations. An example of an AnQL query over this data is presented in the following
example:

I Example 15 (AnQL Query Example). This query specifies that we are interested in the
salary of employees that someone with the permissions [[jb, hr, it]] is allowed to access.

SELECT * WHERE { ?p : salary ?s "[[jb , hr , it]]" }

The answers for this query (when matched against the data from Figure 2) under SPARQL
semantics, i.e. if the annotation was omitted, would be:

{{?p→ :joeBloggs, ?s→ 80000} , {?p→ :johnSmith, ?s→ 40000}} .

However, when the domain annotations are present, an AnQL query engine must also per-
form the following check: [[jb, hr, it]] satisfies the nr-datalog¬ program λ, where λ is the
program represented by the annotation of each matched triple, thus yielding only the fol-
lowing answer:

{{?p→ :joeBloggs, ?s→ 80000}} .

4 http://sw.deri.org/2008/07/n-quads/

ICLP’12

http://sw.deri.org/2008/07/n-quads/

390 A Logic Programming approach for Access Control over RDF

4 Related Work

The topic of access control has been long studied in relational databases and the approach of
enforcing access policies by query rewriting was also considered for the Quel query language
by [19]. However, the presented system does not rely on annotating the relational data but
rather access control is specified using constraints over the user credentials which are then
included in the rewritten query. A good overview of common issues, existing models and
languages for access control is provided by [5], who focus on topics also discussed in this
paper such as user hierarchy, allowing and denying access and conflict resolution.

For the Semantic Web, well known policy languages such as KAoS [3], Rei [12] and
PROTUNE [2] are based on logical formalisms and consequently have well defined semantics.
Although such policy languages enable policy specification using semantic web languages in
their current form, they do not support reasoning based on RDF data relations.

In contrast, [11], [17], and [1] propose access control models for RDF graphs and like us
allow for policy propagation and inference based on semantic relations. The policy language
proposed by [11] is not based on well defined semantics and no implementation details are
provided. [17] propose a path-based approach to policy composition. [1] state that they use
an analytical tableaux system, however they do not provide a mechanism for merging or for
inference of permissions based on RDF structure.

[6] describe the requirements an RDF store needs from a Semantic Wiki perspective.
Apart from efficiency and scalability, the authors refer to the need for access control on a
triple level and to integrate the structure of the organisation in the access control methods.
The described system relies on a query engine (SPARQL is mentioned but no details are
given) and a rule processor to decide the access control enforcement at query time. [10]
present the possibility of maintaing metadata for RDF to enforce access control and touch
upon of the work presented here, such as using rules for specifying access control, as possible
extensions of their model. Providing access control on a resource level is also left as an open
question, one we are tackling by the specification of rules.

5 Conclusions and Future Work

The Resource Description Framework (RDF) can be used for large scale integration of in-
formation from existing LOB applications. In this paper, we propose an access control model
that can be used to protect RDF data and demonstrate how a combination of Annotated
RDF and SPARQL can be used to control access to integrated enterprise data. Our model
is based on the previously proposed Annotated RDF framework and attaches the access
control information on a triple basis i.e. each RDF triple can contain different annotation
values. The proposed solution provides a flexible representation method for the access con-
trol annotations, based on access control rules that define which entities have access to the
triple. However, on very large datasets, challenges will arise with respect to optimal ac-
cess control policy administration. To tackle this issue we propose managing permissions
by specifying domain-specific inference rules for the annotation domain. We also suggest a
possible implementation structure for a framework to enforce the access control based on
rewriting a SPARQL query into an Annotated SPARQL query (AnQL) which relies on a
secure authentication service.

Our initial work touches on how rules can be used to simplify the management of RDF
access control permissions. In future work, we propose to investigate the interdependencies
between usernames, groups, roles, and attributes and how we can further exploit the RDF
graph structure to streamline the management of RDF access control policies. Although the

N. Lopes, S. Kirrane, A. Zimmerman, A. Polleres, and A. Mileo 391

modelling presented in this paper provides a suitable representation model for the annotation
values, its implementation and evaluation for large RDF graphs remains an open issue. To
provide acceptable query performance when compared to its non-annotated counterpart,
different optimisation strategies for both annotation storage and query evaluation will be
necessary.

Acknowledgements. This work is supported in part by the SFI under Grant No. SFI/08/
CE/I1380 (Líon-2), the IRCSET EPS and Storm Technology Ltd. We would like to thank
Gergely Lukácsy, Aidan Hogan, and Umberto Straccia for their comments on this paper.

References
1 M. Amini and R. Jalili. Multi-level authorisation model and framework for distributed

semantic-aware environments. IET Information Security, 4(4):301, 2010.
2 P.A. Bonatti, J.L. De Coi, Daniel Olmedilla, and Luigi Sauro. Rule-based policy repres-

entations and reasoning. In Semantic techniques for the web, pages 201–232, 2009.
3 J.M. Bradshaw, Stewart Dutfield, Pete Benoit, and J.D. Woolley. KAoS: Toward an

industrial-strength open agent architecture. In Software Agents, pages 375–418, 1997.
4 Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema.

W3C Recommendation, W3C, February 2004. Available at http://www.w3.org/TR/
rdf-schema/.

5 Sabrina De Capitani di Vimercati, Pierangela Samarati, and Sushil Jajodia. Policies, Mod-
els, and Languages for Access Control. In Subhash Bhalla, editor, Databases in Networked
Information Systems, 4th International Workshop, DNIS 2005, Aizu-Wakamatsu, Japan,
March 28-30, 2005, Proceedings, volume 3433, pages 225–237. Springer, 2005.

6 Sebastian Dietzold and Sören Auer. Access Control on RDF Triple Stores from a Semantic
Wiki Perspective. In Chris Bizer, Sören Auer, and Libby Miller, editors, Proc. of 2nd
Workshop on Scripting for the Semantic Web at ESWC, Budva, Montenegro., volume 183,
June 2006.

7 Claudio Gutierrez, Carlos A. Hurtado, and Alejandro A. Vaisman. Introducing Time into
RDF. IEEE Transactions on Knowledge and Data Engineering, 19(2):207–218, February
2007.

8 Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C
working draft, W3C, January 2012. Available at http://www.w3.org/TR/2012/
WD-sparql11-query-20120105/.

9 Patrick Hayes. RDF Semantics. W3C Recommendation, W3C, February 2004. Available
at http://www.w3.org/TR/rdf-mt/.

10 James Hollenbach, Joe Presbrey, and Tim Berners-Lee. Using RDF Metadata To Enable
Access Control on the Social Semantic Web. In Tania Tudorache, Gianluca Correndo,
Natasha Noy, Harith Alani, and Mark Greaves, editors, Proceedings of the Workshop on
Collaborative Construction, Management and Linking of Structured Knowledge (CK2009),
volume 514. CEUR-WS.org, 2009.

11 S Javanmardi, M Amini, R Jalili, and Y. GanjiSaffar. SBAC: A Semantic Based Access
Control Model. In 11th Nordic Workshop on Secure IT-systems (NordSec’06), Linkping,
Sweden, 2006.

12 L. Kagal and T. Finin. A policy language for a pervasive computing environment. In
Proceedings POLICY 2003. IEEE 4th International Workshop on Policies for Distributed
Systems and Networks, pages 63–74. IEEE Comput. Soc, 2003.

13 Michael Kifer and V. S. Subrahmanian. Theory of Generalized Annotated Logic Program-
ming and its Applications. J. Log. Program., 12(3&4):335–367, 1992.

ICLP’12

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/2012/WD-sparql11-query-20120105/
http://www.w3.org/TR/2012/WD-sparql11-query-20120105/
http://www.w3.org/TR/rdf-mt/

392 A Logic Programming approach for Access Control over RDF

14 Nuno Lopes, Axel Polleres, Umberto Straccia, and Antoine Zimmermann. AnQL: SPAR-
QLing Up Annotated RDF. In Proceedings of the International Semantic Web Conference
(ISWC-10), number 6496 in LNCS, pages 518–533. Springer-Verlag, 2010.

15 Frank Manola and Eric Miller. RDF Primer. W3C Recommendation, http://www.w3.
org/TR/rdf-primer/, W3C, February 2004.

16 Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics and complexity of
SPARQL. ACM Transactions on Database Systems, 34(3):1–45, 2009.

17 Tatyana Ryutov, Tatiana Kichkaylo, and Robert Neches. Access Control Policies for Se-
mantic Networks. In 2009 IEEE International Symposium on Policies for Distributed Sys-
tems and Networks, pages 150–157. IEEE, July 2009.

18 Andy Seaborne and Eric Prud’hommeaux. SPARQL Query Language for RDF.
W3C Recommendation, W3C, January 15 2008. Available at http://www.w3.org/TR/
rdf-sparql-query/.

19 Michael Stonebraker and Eugene Wong. Access control in a relational data base manage-
ment system by query modification. In Proceedings of the 1974 annual conference - Volume
1, ACM ’74, pages 180–186, New York, NY, USA, 1974. ACM.

20 Umberto Straccia. A Minimal Deductive System for General Fuzzy RDF. In Axel Polleres
and Terrance Swift, editors, RR, volume 5837, pages 166–181. Springer, 2009.

21 Umberto Straccia, Nuno Lopes, Gergely Lukacsy, and Axel Polleres. A General Framework
for Representing and Reasoning with Annotated Semantic Web Data. In Maria Fox and
David Poole, editors, Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. AAAI Press, July
2010.

22 Herman J. ter Horst. Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. J. Web Sem., 3(2-3):79–
115, 2005.

23 Octavian Udrea, Diego Reforgiato Recupero, and V. S. Subrahmanian. Annotated RDF.
ACM Trans. Comput. Logic, 11(2):1–41, 2010.

24 Jan Wielemaker, Zhisheng Huang, and Lourens van der Meij. SWI-Prolog and the Web.
Theory and Practice of Logic Programming, 8(3):363–392, 2008.

25 Antoine Zimmermann, Nuno Lopes, Axel Polleres, and Umberto Straccia. A general frame-
work for representing, reasoning and querying with annotated Semantic Web data. Web
Semantics: Science, Services and Agents on the World Wide Web, 11(0):72 – 95, 2012.

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

LOG-IDEAH: ASP for Architectonic Asset
Preservation
Viviana Novelli1, Marina De Vos2, Julian Padget2, and
Dina D’Ayala1

1 Department of Architecture and Civil Engineering
University of Bath, BA2 7AY
Bath, UK
E-mail: {v.i.novelli,d.f.d’ayala}@bath.ac.uk

2 Department of Computer Science
University of Bath, BA2 7AY
Bath, UK
E-mail: {mdv,jap}@cs.bath.ac.uk

Abstract
To preserve our cultural heritage, it is important to preserve our architectonic assets, comprising
buildings, their decorations and the spaces they encompass. In some geographical areas, occa-
sional natural disasters, specifically earthquakes, damage these cultural assets. Perpetuate is a
European Union funded project aimed at establishing a methodology for the classification of the
damage to these buildings, expressed as “collapse mechanisms”. Structural engineering research
has identified 17 different collapse mechanisms for masonry buildings damaged by earthquakes.
Following established structural engineering practice, paper-based decisions trees have been spe-
cified to encode the recognition process for each of the various collapse mechanisms. In this paper,
we report on how answer set programming has been applied to the construction of a machine-
processable representation of these collapse mechanisms as an alternative for these decision-trees
and their subsequent verification and application to building records from L’Aquila, Algiers and
Rhodes. As a result, we advocate that structural engineers do not require the time-consuming
and error-prone method of decisions trees, but can instead specify the properties of collapse
mechanisms directly as an answer set program.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Answer set programming, structural engineering, knowledge representa-
tion

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.393

1 Introduction

It is useful to be able to make a rapid and reliable assessment of the vulnerability of a building
after a seismic shock, to determine (i) the stability of the building and hence the acceptable
proximity of public access (ii) what immediate preservation actions are appropriate, and
(iii) potential risks from subsequent seismic activity.

The Perpetuate project aims to combine two approaches in order to deliver assessments
with a higher degree of confidence. The one on which we report here takes the form of an
expert survey, based on an approach called LOG-IDEAH (LOGic trees for the Identifica-
tion of Damage due to Earthquakes for Architectural Heritage) [10]. The complementary
mechanical model-based approach is called FaMIVE (Failure Mechanism Identification and
Vulnerability Evaluation) [2, 3, 4]. Both procedures are aimed at identifying the seismic

© Viviana Novelli, Marina De Vos, Julian Padget, and Dina D’Ayala;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 393–403

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.393
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

394 LOG-IDEAH: ASP for Architectonic Asset Preservation

behaviour of an architectonic asset on the basis of data collected by rapid survey or by pho-
tographic observation. The difference between the two methodologies is that LOG-IDEAH
is an intuitive (human) logic procedure that relies on seismic damage collection for the
identification of the failure modes of the architectonic assets, while FaMIVE is a numerical
approach which uses geometric and mechanical (based on the properties of the building
materials involved) data for the calculation of the performance of historical buildings.

The remainder of the paper is structured as follows: (i) we next (section 2) provide
the context for the application, introduce the necessary domain terminology used in the
rest of the paper and explain the hierarchical approach to the identification of individual
building elements that forms the basis for the constructive procedure for the recognition
of collapse mechanisms (ii) we then set out (section 3) how this damage and asset data is
used to determine the possible collapse mechanisms; we start from the traditional structural
engineering method of decision trees; this is followed by a much easier, declarative and com-
putational approach of representing the building data and requirements for the individual
collapse mechanisms as an answer set program (iii) in section 4 we briefly describe the data
capture mechanism used to acquire the data to be used by the analysis, and (iv) in section 5
review the process and outline plans for future development.

2 Architectonic Asset Analysis

LOG-IDEAH depends upon an hierarchical approach, in which the architectonic asset is
deconstructed into façades, the façades into structural elements and the structural elements
into artistic assets. On the basis of this hierarchical approach, a logical methodology for the
acquisition of the data has been developed in order to collect seismic damage data on site
or by photographic observation.

Data collection for LOG-IDEAH entails the recording of information related to the dam-
age position, damage type and damage level, that are observed at the level of the structural
elements and artistic assets of the architectonic asset under inspection.

The collected data is then interpreted by means of logic trees that represent the know-
ledge and expertise of structural engineers, as they would use it for the identification of
the global behaviour of an architectonic asset, and to recognise the failure modes of the
architectonic asset in question.

2.1 Ontology

As with all disciplines, a comprehensive ontology1 has been developed to capture and pre-
cisely define domain concepts and their relationships. Because the description of the analysis
process is necessarily expressed in terms of this ontology, we give a brief overview of the
elements required for reading the remainder of this paper. A formal representation in OWL
has been developed, but that is not the subject of this paper and is not used directly in
what follows. There are four top-level concept classes:
Architectonic asset (AA): This covers seven classes of buildings (A, ..., G) from man-

sions, through mosques, aqueducts, city walls and obelisks to historical centres (such
as L’Aquila, in which the case-study building treated here is located).

1 While using the word ontology we are not referring to semantic annotation in terms of an XML
description, but an establied set of related concepts in the field of structural engineering

V.I. Novelli, M. De Vos, J.A. Padget, and D. D’Ayala 395

Macro-element (ME): This is a set of abstract concepts, used to group structural elements,
comprising four classes: vertical, horizontal, vaulted and staircases.

Structural element (SE): This comprises four groups, corresponding to the MEs above, of
concrete classes such as piers and spandrels (vertical), rafters and tie-beams (horizontal),
buttresses and bosses (vaulted) and cantilever and steps (staircases).

Artistic asset (AA): This is a set of three groups of three abstract classes, used to categorize
the various forms of decoration that may be attached to a structural element. Fresco’s,
friezes are just two examples of artistic assests.

2.2 Localisation and Identification of Damage
The essence of the the survey approach is to construct a rectilinear map of each façade,
based on the structural elements (SE) of which it is composed, label each SE by type (pier,
pillar, spandrel, arch) and associate with it the kind of damage (vertical crack, horizontal
crack, diagonal crack) and the degree of damage (light, severe, near collapse, collapsed).
This data then forms the input to the encoding of the structural engineer’s decision tree
that identifies the collapse mechanism.

The zone under consideration (and the buildings within it) may be thought of as a n-ary
tree, rooted at the zone identifier, with whichever district the building is located, whose
leaves are, in the extreme, the artistic assets, such as a carving or a balcony, that decorate
the building and the interior nodes are everything in between.

The ultimate objective, from an engineering perspective, is to establish a relationship
between each artistic asset and the façade to which it is attached, since this is how it may
be damaged if the façade is subject to a collapse mechanism. This is achieved by defining
a hierarchical naming scheme. The method starts by dividing the urban map into blocks
and enumerating the blocks and the buildings located therein. Thus, the name associated
with a particular asset is given by (block number + building number), followed by the
façade orientation. The final suffix is the number of the region (in a rectilinear map) of the
façade plus a letter that refers to the type of topological relationship between the asset and
the façade. For example (see Figure 1), in the map of the historical centre of L’Aquila –
damaged by an earthquake in 2009 – the building highlighted in red is named 10.4, since this
building is the fourth building of the block number 10. Furthermore, a sequence of façades
is associated with this building, describing those which have been inspected, namely 10.4sw
and 10.4nw, while those on the remaining sides are still to be inspected.

The relationship between façades and the structural elements is established after identi-
fying vertical (piers/pillars/columns) and horizontal (spandrels/arches) structural elements
of the façade, as shown in Figure 1. Each structural element is labelled by a pair of pos-
itive integers, where the first is the number of the floor, encoding the horizontal alignment
of the elements and the second is the position of the element, encoding the vertical align-
ment. Thus, looking at Building 10.4 (Figure 1d) and façade 10.4sw, the identification of
its structural elements is clear.

Once these relationships have been established, seismic damage information at the level
of SEs is collected, then interpreted, first at the level of MEs (for example, façade) and then
at the level of AA (building).

The damage type classification is given by: (i) H, denoting a horizontal crack (ii) V, a
vertical crack (iii) D1, a diagonal crack from upper right to bottom left (iv) D2, a diagonal
crack from upper left to bottom right (v) X, being the occurrence of D1 and D2 in the same
structural element (vi) Sp, denoting spalling, which indicates surface fragmentation of the
(building) material, and (vii) Cr, denoting crushing, which indicates interior fragmentation.

ICLP’12

396 LOG-IDEAH: ASP for Architectonic Asset Preservation

10

22
44

7

9

5

22

13

14

15
17

18

19
29

10

22
44

7

9

5

22

13

14

15
17

18

19
29

(a) The division of L’Aquila into districts

(b) Identification of the façades on
individual buildigs in district 10

Horizontal Elements

Vertical Elements

Horizontal Elements

Vertical Elements

(c) The structural enumeration convention

10.4sw10.4sw

(d) Facade sw of building 10.4 is
broken into structural elements to en-
able reference to pier 2 on floor 1

Figure 1 The division of L’Aquila into districts, façade identification on individual buildings in
district 10, the structural enumeration convention and the referencing of pier 2 on floor 1.

The damage level severity classification is given by: (i) LD: light damage (ii) SD: severe
damage (iii) NC: near collapse, and (iv) C: collapsed.

All of the above is carried over directly into the ASP encoding (see Figure 4).

3 Representation and Reasoning

3.1 Decision Trees

One of the primary deliverables of the Perpetuate project is a process for determining the
various collapse mechanisms for earthquake-damaged masonry buildings, by examining the
damage to the structural elements and the artistic assets of the building. So far, the archi-
tects have identified 19 distinct such mechanisms, each of which is depicted in Figure 2.

The original (manual) method developed for identifying the collapse mechanism uses the
traditional structural engineering approach of decision trees. Figure 3 shows the decision
tree for collapse mechanism A. This mechanism occurs when there are vertical cracks on
either side of a façade starting from the top floor. The graphics on the right highlight on
which floor the decision tree is operating at a given time.

Such a manual approach, which also requires specialized knowledge on the part of the
observer, is not very efficient at scale for dealing with an earthquake zone where several
hundreds of buildings are damaged, like for example the sites involved in the Perpetuate
Project: L’Aquila and the Casbah of Algiers. This led to the requirement for a compu-
tational mechanism to support the survey process by non-experts. Given the intrinsically
procedural nature of decision trees, a procedural programming approach could have been
chosen. However, given the declarative description of the collapse mechanisms (e.g. vertical

V.I. Novelli, M. De Vos, J.A. Padget, and D. D’Ayala 397

A A2 (vertical Cracks) B2 (diagonal cracks)

B1-Left B1-Right

C-Left C-Right (left or right corner of the facade)

D-Left or D-Right (left or
right corner of the facade)

E1 (piers-pillars) E2
(spandrels-arches)

F

G
H1 (piers-pillars) H2

(spandrels-arches)
M1 M2

Figure 2 Illustration of the variety of collapse mechanisms.

cracks on either side of a façade) provided by the architects on the project, we believed
the declarative paradigm would be more suitable. In addition to providing a computa-
tional model, it also allowed us to verify and validate the decision trees provided by the
arhcitects. We have chosen to implement the collapse mechanism inference procedure and
the description of the buildings using answer set programming[8, 9] with AnsProlog as the
implementation language[1].

3.2 Answer Set Programming
Answer-set programming (ASP) [8] is a declarative programming paradigm in which a logic
program is used to describe the requirements that must be fulfilled by the solutions of a
certain problem. The solutions of the problem can be obtained through the interpretation
of the answer sets of the program, usually defined through a variant or extension of the
stable-model semantics [8].

In this paper we use AnsProlog as our implementation language. Its basis component
are atoms, elements that can be either true or false. An atom a can be negated using
negation as failure. A literal is an atom a or a negated atom not a. We say that not a is true
if we cannot find evidence supporting the truth of a. Using atoms and literals as building
blocks we can create rules. In their general form they are represented as:

a : −b1, . . . , bm, not c1, . . . , not cn.

where a, bi, and cj are atoms. Intuitively, this can be read as: if all atoms bi are known/true
and no atom ci is known/true, then a must be known/true.

ICLP’12

398 LOG-IDEAH: ASP for Architectonic Asset Preservation

nf=nfloor

(nf.1) e PierCrackLocation(k)

and

(nf.a(nf)) e PierCrackLocation(k)

Yes

PierCrackLocation(k)(Index1).crack

is V

Yes

nf=nf-1

nf=0

Mechanism A of VeME(K)
from nfloor to nf

Yes

No

nf=nf+1

A
go to A-r

Logic tree: A

Index1=Index of (nf.1) in PierCrackLocation(k)

Index2=Index of (nf.a(nf)) in PierCrackLocatio(k)

PierCrackLocation(k)(Index1).crack=

PierCrackLocation((k)(Index2).crack
No

No

(nf.1) e PierCrackLocation(k)

and

(nf.a(nf)) e PierCrackLocation(k)

Yes

PierCrackLocation(k)(Index1).crack

is V

Index1=Index of (nf.1) in PierCrackLocation(k)

Index2=Index of (nf.a(nf)) in PierCrackLocation(k)

PierCrackLocation(k)(Index1).crack=

PierCrackLocation((k)(Index2).crack

go to F

Yes

No

Yes

No

No

No

Yes

go to A-r

go to A-r

Figure 3 The logic tree for mechanism A (left) and sketches (right).

We refer to a as the head and b1, . . . , bm, not c1, . . . , not cn as the body of the rule. Rules
with empty bodies are called facts. Rules with empty heads are referred to as constraints,
indicating that no solution should be able to satisfy the body. A program is a set of rules.
The semantics is defined in terms of answer sets, i.e. assignments of true and false to all
atoms in the program that satisfy the rules in a minimal and consistent fashion, taking into
account that the truth of an atom cannot be based on the absence of proof (i.e. the truth
of an atom cannot indirectly be inferred by its own negation). A program has zero or more
answer sets, each corresponding to a solution.

Algorithms and implementations for obtaining answer sets of logic programs are referred
to as answer-set solvers. The most popular and widely used solvers are DLV [6], providing
solver capabilities for disjunctive programs, and the SAT inspired clasp [7].

V.I. Novelli, M. De Vos, J.A. Padget, and D. D’Ayala 399

% @block buildingconstants {
% provides the constants used in damage description of buildings
% @atom damageType(T)
% type of damage from vertical;horizontal;diagonal crack / ;
% diagonal crack \ ;
% x shape;spalling;crushing
% @atom damageLevel(L)
% severity of damage from damage limitation;significant damage;
% near collapse;collapse

damageType(v;h;d1;d2;x;s;cr).
damageLevel(ld;sd;nc;c).

Figure 4 The facts describing the damage types and levels of buildings.

3.3 AnsProlog for Collapse Mechanisms

Instead of using the procedural decision-trees as our starting point, we used the sketches of
the collapse mechanisms together with a discussion with a domain expert as our starting
point. Since the answer set program will be integrated with web-interface (see next section)
that collects data for each building individually, our answer set program only needs to
consider the representation of a single building at any given time.

To start the modelling process, it was necessary to decide upon the representation of
the various structural elements of the building. With the objective of making the logic
accessible to the architects, we annotated all our program fragments with a description of
the atoms used. To do so, we used a subset of the annotation language lana[5]. This
language uses program comments plus semantic tags in the style of Javadoc t o describe the
various components of the program. We only used the @block tag, indicating a collection
of rules, and the @atom tag to describe individual atoms and their terms.

We first defined facts to denote the various damage types and damage levels. The
encoding is shown in Figure 4.

This was followed with facts for the description of the structural elements themselves.
The ultimate goal is that this information is automatically generated on the basis of in-
formation gathered by non-expert surveyors on site (see next section for more information
on the data collection). For some of the collapse mechanisms, numerical information is re-
quired, such as the number of piers with a vertical crack or the percentage of piers that are
damaged. Since this data can be generated during the data collection process, we choose to
incorporate it as facts rather than compute it in the answer set program.

Figure 5 contains the description of a synthetic building with one visible façade which
exhibits an out-of-plane collapse mechanism of type A.

Having the description of the building, the different collapse mechanisms can be encoded.
Rather than using the rather procedural decision trees as a starting point, the encoding is
derived solely from the schematic pictures (see right-hand side of Figure 5 for an example).
Each collapse mechanism is encoded in a separate file and LANA block for ease of testing,
flexibility and readability.

In this paper we illustrate this process with the intra-façade collapse mechanism A.
To demonstrate the ease of use of the ASP-encoding, we subsequently extend this to the
inter-façade mechanism A2.

Figure 6 shows the block of AnsProlog code that allows us to detect collapse mechanism
A. Most encodings of collapse mechanisms, and mechanism A is not an exception, start from
the top floor of a façade and try to identify a certain crack pattern. If found, lower floors
are tested until a floor is found which does not have this desired pattern. The system will
then return the specific pattern with the range of floors involved in the pattern. For the

ICLP’12

400 LOG-IDEAH: ASP for Architectonic Asset Preservation

%This code is automatically generated from the
% xml data gathered through the web-site
%
facade(1..1).

A simple building with just one facade
and three floors

floorNumber(1,1..3).

pierCrack(1,3,1,v,sd).

Crack data for floor level 3: vertical
cracks in the first and last piers, with
severe damage

pierCrack(1,3,4,v,sd).
piersFloorNumber(1,3,1..4).
spandrelFloorNumber(1,3,1..3).

pierCrack(1,2,1,v,sd).

Crack data for floor level 2: vertical
cracks in the first and last piers, with
severe damage

pierCrack(1,2,4,v,sd).
piersFloorNumber(1,2,1..4).
spandrelFloorNumber(1,2,1..3).

pierCrack(1,1,1,v,sd).

Crack data for floor level 1: vertical
cracks in the first and last piers, with
severe damage

pierCrack(1,1,4,v,sd).
piersFloorNumber(1,1,1..4).
spandrelFloorNumber(1,1,1..3).

numberOfPiers(1,12).

This block computes the number of ele-
ments that constitute 75% of each kind.
This data is used to identify collapse
mechanisms H1 and H2

percent75Piers(1,9).
numberOfSpandrels(1,9).
percent75Spandrels(1,7).

pierVCracks(1,6).

This block summarizes pier crack data
for facade 1: in this case there are 6
vertical cracks

pierHCracks(1,0).
pierD1Cracks(1,0).
pierD2Cracks(1,0).
pierXCracks(1,0).

spandrelVCracks(1,0).

This block summarizes spandrel crack
data for facade 1: in this case there are
no cracks

spandrelHCracks(1,0).
spandrelD1Cracks(1,0).
spandrelD2Cracks(1,0).
spandrelXCracks(1,0).

Figure 5 The encoding of a single façade exhibiting collapse mechanism A (out of plane).

% LANA comments omitted for spacial reasons

patternAl(Fa,Fl) :-

This rule determines whether the top leftmost pier/
top rightmost has a vertical crack. Partial crack pat-
terns to stimulate reuse

pierCrack(Fa,Fl,1,v,L1),topFloor(Fa,Fl),
floorNumber(Fa,Fl), facade(Fa),damageLevel(L1).

patternAr(Fa,Fl) :- rightPierFloor(Fa,Fl,R),
pierCrack(Fa,Fl,R,v,L2),topFloor(Fa,Fl),
facade(Fa), floorNumber(Fa,Fl), damageLevel(L2).

patternAl(Fa,Fl) :-

For a given floor, if a leftmost/rightmost vertical
crack pattern was determined on the floor above,
check if this also so for the current floor

pierCrack(Fa,Fl,1,v,L1), floorNumber(Fa,FlH),floorNumber(Fa,Fl),
patternAl(Fa,FlH), Fl = FlH - 1, facade(Fa),damageLevel(L1).

patternAr(Fa,lL) :-
pierCrack(Fa,Fl,R,v,L2), rightPierFloor(Fa,Fl,R),
floorNumber(Fa,FlH),floorNumber(Fa,Fl), ,damageLevel(L2)
patternAr(Fa,FlH), Fl = FlH - 1, facade(Fa).

lowpatternAl(Fa,Fl) :-

This rule determines the lowest floor on which a left-
/right vertical crack was determined

patternAl(Fa,Fl), not patternAl(Fa,Fll), Fl = Fll + 1,
floorNumber(Fa,Fl),floorNumber(Fa,Fll), facade(Fa).

lowpatternAr(Fa,Fl) :-
patternAr(Fa,Fl), not patternAr(Fa,Fll), Fl = Fll + 1,
floorNumber(Fa,Fl),floorNumber(Fa,Fll), facade(Fa).

lowpatternAl(Fa,1) :- patternAl(Fa,1).

Starting position to check for finding the lowest floor
with continuous vertical cracks on the left/right

lowpatternAr(Fa,1) :- patternAr(Fa,1).

lowpatternA(Fa) :-

This rule establishes that both left and right side have
a vertical cracks. Is used the exclude other collapse
mechanisms

lowpatternAl(Fa,Fl), lowpatternAr(Fa,Fll), facade(Fa),
floorNumber(Fa,Fl), floorNumber(Fa,Fll).

collapseMechanism(outOfPlaneAt(Fa,FlT,Fr),patternA) :-

Indicates when a collapse mechanism of PatternA
occurs from the top of the facade to the floor where
there is vertical crack on both sides

lowpatternAl(Fa,Fl), lowpatternAr(Fa,Fr), Fl < Fr, topFloor(Fa,FlT),
floorNumber(Fa,Fl), floorNumber(Fa,Flt), facade(Fa).

collapseMechanism(outOfPlaneAt(Fa,FlT,Fl),patternA) :-
lowpatternAl(Fa,Fl), lowpatternAr(Fa,Fr), Fl >= Fr, topFloor(Fa,FlT),
floorNumber(Fa,Fl), floorNumber(Fa,Flt), facade(Fa).

Figure 6 The rules used to recognise collapse mechanism A.

encoding, distinct parts of a sought crack pattern are tested separately (e.g. patternAr
and patternAl) to support reuse for other mechanism using the same partial patterns. For
each partial pattern, the lowest floor (e.g. lowpatternAl(Fa, Fl) and lowpatternAr(Fa, Fl))
where the partial patterns occurs, is determined to be combined to form the collapse mech-
anism (e.g. collapseMechanism(outOfPlaneAt(Fa, FlT, Fr), patternAa)).

The scenario described here in detail is one relatively simple type of collapse mechanism
where, there are vertical cracks down both sides within a façade, leading to the collapse
of the entire front of the building. Most collapse mechanisms are intra-façade, but there

V.I. Novelli, M. De Vos, J.A. Padget, and D. D’Ayala 401

% LANA comments omitted for spacial reasons.

lowpatternAa(Fa) :-
lowpatternAl(FaR,Fl), lowpatternAr(FaL,Fll), Uses atoms derived in scenarioA

floorNumber(FaR,Fl),floorNumber(FaL,Fll),
rightFacade(Fa,FaR),leftFacade(Fa,FaL),facade(Fa;FaR;FaL).

collapseMechanism(
outOfPlanePortion(Fa,FlT,Fll),
patternAb) :- Uses atoms derived in scenarioA

lowpatternAl(FaR,Fl), lowpatternAr(FaL,Fll),Fl<Fll,
floorNumber(FaR,Fl),floorNumber(FaL,Fll),
floorNumber(FaL,FlT),
rightFacade(Fa,FaR),leftFacade(Fa,FaL),facade(Fa;FaR;FaL).

collapseMechanism(
outOfPlanePortion(Fa,FlT,Fl),
patternA2) :-

lowpatternAl(FaR,Fl), lowpatternAr(FaL,Fll),Fll<=Fl,
floorNumber(FaR,Fl),floorNumber(FaL,Fll),
floorNumber(FaL,FlT),
rightFacade(Fa,FaR),leftFacade(Fa,FaL),facade(Fa;FaR;FaL).

Figure 7 The A2 detection rules.

is a more complicated class of inter-façade mechanisms, such as illustrated by mechanism
A2 (Figure mechanisms). This has much in common with mechanism A, in that there are
vertical cracks on either side of the façade concerned, but those cracks are in the adjacent
façades, and in consequence, the reasoning process must be applied not at the macro-element
level, but across the architectonic asset as a whole. The relative ease with which is it
possible to extend the analysis illustrates the benefit of the hierarchical approach to the
representation of the building and the declarative nature of the encoding. In the encoding
(Figure 7), we use reuse the partial patterns for vertical cracks on the left and right side of
a façade, something which is not possible in the decision trees.

With all the 19 collapse mechanisms implemented, we can pass the building descrip-
tion, the encodings of each mechanism and some auxiliary files for computing, for ex-
ample, the rightmost pier of a floor or the top floor of a façade, and for showing only
the collapsemechanism/2 to the answer set solver clingo[7] to determine which mechan-
ism(s) are found for this building. Applying this to our synthetic Mechanism A Building, as
encoded in Figure 5, the result is the identification of an out-of-plane collapse across three
floors, as expected.

The verification process was approached by the creation of unit test cases for each of the
19 collapse mechanisms. While initially created manually, they were later re-created through
the web-site described in the next section. Determining the collapse mechanisms for an entire
building takes at most 1 or 2 seconds, which is signicantly faster than experienced human
can manually go through the 19 decision trees.

4 Data Capture

The record of the collected seismic data has been facilitated by the use of a web-site2 which
permits expert and non-expert users to: (i) create of new architectonic asset records, effect-
ively from anywhere (ii) draw simplified sketches of inspected façades (iii) record damage
type and damage level to structural elements and artistic assets, (iv) upload photographic
records of assets and asset damage, and (v) assess probable collapse mechanisms using the
reasoning process described in the previous section.

Surveys are in progress and at this stage have collected records from buildings in L’Aquila
and the Casbah in Algiers. Information regarding the buildings and their structural elements
is stored in XML format, which can be converted to AnsProlog code, like in Figure 5.
Integration between the Perpetuate web-site and LOG-IDEAH is currently in progress.

2 http://perpetuate.cs.bath.ac.uk/

ICLP’12

http://perpetuate.cs.bath.ac.uk/

402 LOG-IDEAH: ASP for Architectonic Asset Preservation

Figure 8 Extract from completed data entry in web browser.

5 Discussion and Future Work

In this paper, we introduced a computational representation and an alternative approach
to the established structural engineering methodology of decision trees, which we believe is
more efficient, flexible, intuitive and less error-prone. In the process of writing the answer
set programs, a number of subtle errors were uncovered in the decision trees, as well as some
oversights and shortcomings of building’s representation, that would have been hard to find
using the traditional pen-and-paper verification technique or a procedural implementation
of the decision trees. Encoding the collapse mechanisms took us only a few days, including
the time to get aquinted with the domain ontology. We hope in the future to apply a similar
approach to other problem for which structural engineers use decision trees. By doing so,
we hope to demonstrate ASP might be a good alternative to decision trees.

At the moment buildings are assumed to be relative regular for the purpose of continuous
cracks. Piers and spandrels on different floors have similar size, lined-up are consecutive.
The next version of the model and software will relax this constraint by using (structural)
element as the basic component of a building rather pier or spandrel. In this way, wider
piers can conceptually be encoded as three elements of type pier to allow for elements on
several floors to be lined up.

The Perpetuate project is attracting attention from conservationists from across the
world who would also like to enter building information into the repository. This will provide
more data for architects to identify and specify more collapse mechanisms and to extend the
approach to other types of buildings, such as stone, wood or earth.

Acknowledgements. This work is partially supported by the European Commission funded
FP7 project PERPETUATE (ENV.2009.3.2.1.1). See http://www.perpetuate.eu for more
information.

http://www.perpetuate.eu

V.I. Novelli, M. De Vos, J.A. Padget, and D. D’Ayala 403

References
1 Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.

Cambridge University Press, Cambridge, England, 2003.
2 D D’Ayala and E Speranza. Definition of collapse mechanisms and seismic vulnerability of

historic masonry buildings. Earthquake Spectra, 19:479—509, August 2003.
3 D. F. D’Ayala. Force and displacement based vulnerability assessment for traditional build-

ings. Bulletin Of Earthquake Engineering, 3:235—265, December 2005.
4 Dina D’Ayala and Sara Paganoni. Assessment and analysis of damage in l’aquila his-

toric city centre after 6th april 2009. Bulletin of Earthquake Engineering, 9:81–104, 2011.
10.1007/s10518-010-9224-4.

5 Marina De Vos, Doga Kiza, Johannes Oetsch, Jörg Pührer, and Hans Tompits. Annotating
answer-set programs in lana. Theory and Practice of Logic Programming, 2012.

6 Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scarcello. The
KR system dlv: Progress report, comparisons and benchmarks. In Proceedings of the 6th
International Conference on Principles of Knowledge Representation and Reasoning (KR
1998), pages 406–417. Morgan Kaufmann, 1998.

7 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI
2007), pages 386–392. AAAI Press/The MIT Press, 2007.

8 Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In Proceedings of the 5th International Conference and Symposium on Logic Programming,
pages 1070–1080. MIT Press, 1988.

9 Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunct-
ive databases. New Generation Computing, 9(3-4):365–386, 1991.

10 Viviana Novelli and Dina D’Ayala. Seismic damage identification of cultural heritage assets.
In Seismic Protection of Curtural Heritage, page 13, Antalya, Turkey, 2011.

ICLP’12

Extending C+ with Composite Actions for
Robotic Task Planning
Xiaoping Chen1, Guoqiang Jin1, and Fangkai Yang2

1 School of Computer Science, University of Science and Technology of China
2 Department of Computer Science, University of Texas at Austin

Abstract
This paper extends action language C+ by introducing composite actions as sequential execu-
tion of other actions, leading to a more intuitive and flexible way to represent action domains,
better exploit a general-purpose formalization, and improve the reasoning efficiency for large do-
mains. Our experiments show that the composite actions can be seen as a method of knowledge
acquisition for intelligent robots.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases Reasoning about Actions, Action Languages, Robotic Task Planning

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.404

1 Introduction

The problem of describing changes caused by the execution of actions plays an important
role in knowledge representation. Actions may be described

1. by specifying their preconditions and effects, as in STRIPS [5], PDDL-like languages,
action languages such as B and C [7], C+ [8], situation calculus [14];

2. in terms of execution of primitive actions, such as programs in GoLog [10], ASP [17],
extended event calculus [16], ABStrips [15] and HTN [4]; or

3. as a special case of actions of more general kind, as in MAD [11] and ALM [6].

Actions formalized in the first and third approach are used to automate planning, and
more generally, to automate commonsense reasoning tasks such as temporal projection and
postdiction, with an emphasis on addressing the problem of generality in AI [12]. However,
actions formalized in the second approach are usually used for complementary purposes: they
are abstractions or aggregates that characterize the hierarchical structure of the domain and
improve search efficiency. This paper extends action language C+ with composite actions
defined as sequential execution of other actions, and shows that these composite actions can
be used for the purposes of the first and third approaches as well.

The extended C+ has three advantages. First, it provides one more way to formalize
actions in C+. Second, composite actions can be defined by exploiting the general purpose
formalization of actions, a step of addressing the problem of generality in AI, or by exploiting
natural language information for knowledge acquisition. Third, composite actions can be
used to characterize the hierarchical structure of problem and improve planning efficiency.

To achieve this goal, we add a new construct to C+ that defines composite actions as
sequential executions of actions a0, . . . ak under conditions (written as formulas) E0, . . . Ek.
For instance, consider a domain of a robot with a hand which can deliver small objects from
one place to another. The primitive actions represent the basic functions of the robot such

© Xiaoping Chen, Guoqiang Jin, and Fangkai Yang;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 404–414

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.404
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

X. Chen, G. Jin, and F. Yang 405

as move, pickup, putdown. We can define a composite action Fetch(s, l) as the consecutive
executing of the actions Move(l1) and Bring(s, l)

Fetch(s, l) is Move(l1) if Loc(s) = l1 ∧ Loc(Robot) 6= l1;Bring(s, l).
However, to define the semantics of the construct is not a trivial task. In C+, all actions

are assumed to be executed over 1 time interval. This assumption affects the design of both
description language and query language of CCalc1: descriptions of action domains don’t
involve formalizing time, leading to a concise representation; when formulating queries, time
instances can be named explicitly and conveniently based on the assumption. In presence
of composite actions, it is natural to talk about their lengths and how their lengths affect
the design of the language. It happens that defining the length of a composite action in
terms of the number of primitive actions it involves leads to a cumbersome query language,
since the number is not fixed for a composite action: the length of Fetch(s, l) depends on
the location of the robot and s. Therefore, when formulating queries, the user may need to
explicitly name the indefinite lengths of actions, which becomes complicated when doing
distant projection, postdiction or planning. For simplicity of the syntax, we extend the
assumption to composite actions so that it is fully compatible with CCalc input, but use a
notion of subintervals in their semantics to characterize execution trajectories of composite
actions.

The new language is implemented by modifying the software cplus2asp [1], which
translates the input into an incremental answer set program and calls the solver iclingo2.
We formalize a version of a service robot domain with composite actions, and show that
composite actions can be used for knowledge acquisition, and improve planning efficiency for
large problems.

The work presented in this paper is somewhat similar to [9] but composite actions defined
there have fixed and explicitly specified length.

2 Preliminaries

The review of action language C+ follows [8]. A (multi-valued) signature is a set σ of symbols,
called (multi-valued) constants, along with a non-emtpy finite set Dom(c) of symbols, disjoint
from σ, assigned to each constant c. Each constant belongs to one of the three groups: action
constants, simple fluent constants and statically determined fluent constants.

Consider a fixed multi-valued signature σ. An atom is an expression of the form c = v

(“the value of c is v”) where c ∈ σ and v ∈ Dom(c). A formula is a propositional combination
of atoms. An interpretation maps every constant in σ to an element of its domain. A formula
is called fluent formula if it does not contain action constants, and action formula if it
contains at least one action constant and no fluent constants.

An action description consists of a set of causal laws of the form
caused F if G (1)

where F and G are formulas. The rule is called static law if F and G are fluent formulas, or
action dynamic law if F is an action formula; and rules of the form

caused F if G after H (2)
where F and G are fluent formulas, and H is a formula, called fluent dynamic law.

Many useful constructs are defined as abbreviations for the basic forms (1) and (2) shown
above. For instance, the law

1 http://www.cs.utexas.edu/users/tag/cc/
2 http://potassco.sourceforge.net/

ICLP’12

406 Extending C+ with Composite Actions for Robotic Task Planning

a causes F if G, for an action constant a, (3)

stands for caused F if > after a ∧G;

inertial c, for a fluent constant c, (4)

stands for caused c if c after c;

exogenous a, for an action constant a, (5)

stands for caused a if a and caused ¬a if ¬a;

default a, for an action constant a, (6)

stands for caused a if a; and

nonexecutable H if F, for an action formula H, (7)

stands for caused ⊥ after H ∧ F .

A causal theory contains a finite set of causal rules of the form F ⇐ G where F and G are
formulas. Following [8], the semantics of an action description D is defined by a translation
to the union of an infinite sequence of causal theories Dm (m ≥ 0). The signature of Dm

consists of pairs of form i : c such that i ∈ {0, . . . ,m} and c is a fluent constant of D, or
i ∈ {0, . . . ,m− 1} and c is an action constant of D. The rules of Dm are

i : F ⇐ i : G, for static law (1) in D and i ∈ {0, . . . ,m}, and action dynamic law (1) in
D and i ∈ {0, . . . ,m− 1};
i+1 : F ⇐ (i+1 : G) ∧ (i : H), for every fluent dynamic law (2) and i ∈ {0, . . . ,m− 1};
0 : c = v ⇐ 0 : c = v, for simple fluent constant c and v ∈ Dom(c).

A model of causal theory Dm can be seen as a path of length m in the transition diagram,
as described in proposition 8 of [8].

Example 1. Consider a robot that uses a manipulator to transfer small objects from one
place to another. It can perform actions Move(l), Pickup(s), Putdown(s) which affects
inertial fluents Loc(o), Hold(s), where l denotes the places in the domain, o the objects, s
the small objects which can be grasped by the robot. The action description is

inertial Loc(o) = l inertial Hold(s)
exogenous Move(l) exogenous Pickup(s) exogenous Putdown(s)

caused Loc(s) = l if Hold(s) ∧ Loc(Robot) = l

Move(l) causes Loc(Robot) = l nonexecutable Move(l) if Loc(Robot) = l

Pickup(s) causes Hold(s) nonexecutable Pickup(s) if ¬Hold(Nothing)
nonexecutable Pickup(s) if Loc(Robot) 6= Loc(s)

Putdown(s) causes Hold(Nothing) nonexecutable Putdown(s) if ¬Hold(s)

The action desriptionD0 is obtained by setting the variables l ∈ {L1, L2}, o ∈ {Robot, S}, s ∈
{S}. A model of D0

4 can be represented as a path of length 4 in the transition diagram of D0.

..
Loc(Robot) = L1,

Loc(S) = L2,
Hold(Nothing).

.
Loc(Robot) = L2,

Loc(S) = L2,
Hold(Nothing).

.
Loc(Robot) = L2,

Loc(S) = L2,
Hold(S).

.
Loc(Robot) = L1,

Loc(S) = L1,
Hold(S).

.
Loc(Robot) = L1,

Loc(S) = L1,
Hold(Nothing).

.
Move(L2) .

Pickup(S)
.

Move(L1).
Putdown(S)

1Figure 1 One path in the transition diagram D0.

X. Chen, G. Jin, and F. Yang 407

3 Defining Composite Actions

3.1 Syntax
We consider a fragment of general action descriptions in C+ containing static laws of the
form (1), action dynamic laws of the form (5) and (6), and fluent dynamic laws of the form
(3), (4) and (7).

Given an action description D with a set of fluent constants σfl and a set of action
constants σact, an extended action description D+ introduces a set of composite action
constants σcomp and composite action definition laws of the form

b is (a0 if E0); . . . ; (ak if Ek) (8)
where b ∈ σcomp is the head of the law, called a composite action constant. a0, . . . , ak ∈
σact ∪ σcomp, and E0, . . . , Ek are fluent formulas. Intuitively, this law means executing
composite actions b is defined as executing a0 if E0 holds, then executing a1 if E1 holds, ...,
then executing ak if Ek holds. If Ei does not hold, action ai will be skipped.

A composite action defined in (8) is acyclic if there exists a mapping λ : σact ∪ σcomp →
{0, 1, 2, . . .}, such that λ(b) > λ(ai) for every i ∈ {0, . . . , k}. In the following we assume
composite actions are acyclic to forbid infinite recursion such as b is b; a.

An action description is acyclic if there exists one mapping λ such that every composite
action definition law in the action description is acyclic.
Example 1, continued. We would like to extend the action description D0 by introducing
two composite actions Fetch(s, l), and Bring(s, l):

Fetch(s, l) is Move(l1) if Loc(s) = l1 ∧ Loc(Robot) 6= l1;Bring(s, l).
Bring(s, l) is Pickup(s);Move(l);Putdown(s). (9)

Intuitively, Fetch(s, l) means “fetch the object s from some other location to l”, and
Bring(s, l) means “bring the object s from here to location l”.

3.2 Semantics
Given an acyclic action description D+, let S be the set of composite action definition laws
in D+. For each r ∈ S, an associate action tuple t(r) is a pair 〈b, A〉 where b is the head of r,
A is an ordered list over σact ∪ {ε}.each t(r) is defined sequentially on the ordered list of
[r1, r2, . . . , rm], where ri ∈ S and λ(head(ri)) ≤ λ(head(rj)) for i < j such that

t(r) = 〈b, [a0, . . . , ak]〉 if for every i ∈ {0, . . . , k}, ai ∈ σact of r.
otherwise, t(r) = α(〈b, [a0, . . . , ak]〉). For all α(〈b, A〉) of the form 〈b, A′〉, A′ is a list
obtained from replacing every ai ∈ σcomp in A with all elements of an corresponding
ordered list Bi such that

for every ai ∈ σcomp in A, there is an associate action tuple t′ = 〈ai, Ai〉 which is
already defined for some r ∈ S, and
Bi is an ordered list of the same length as Ai, with the first element ai and the
remaining elements ε.

For example, the associate action tuples of the two rules in (9) are:
t(r1) = 〈Bring, [Pickup,Move,Putdown]〉 ,

t(r2) = α(〈Fetch, [Move,Bring]〉) = 〈Fetch, [Move,Bring, ε, ε]〉 .
For a composite action definition law r and its associate action tuple 〈b, [a0, a1, . . . , ak′]〉,

index(b, ai) = i if ai 6= ε.
For instance, in (9), we have

ICLP’12

408 Extending C+ with Composite Actions for Robotic Task Planning

index(Fetch,Move) = 0, index(Fetch,Bring) = 1,
index(Bring,Pickup) = 0, index(Bring,Move) = 1, index(Bring,Putdown) = 2.
The intuitive meaning of index(b, a) = t is that a is the t-th action that defines b.
Let k∗ be the maximal length of A in the associate action tuples of S, σ0 be the set of all the

actions that defines the composite actions. Intuitively, it is the maximal number of primitive
actions expanded by a composite action. e.g k∗ = 4 for (9), the action Fetch(s, l) can be
expanded to 4 primitive actions at most. Since we specify that a composite action is executed
in 1 time interval as well as a primitive action, we can only represent its executing trajectory in
a different dimension to specify time. As a result, a time interval (i, i+1) is divided by subtime
points i = i.0, . . . , i.k∗ = i+1 and into k∗ subintervals (i, i.1), (i.1, i.2) . . . , (i.k∗−1, i+1), and
fluents have values in all subtime points.

Formally, an extended action description D+ can be translated into an infinite sequence
of causal theories D+

m (m ≥ 0).
The signature of D+

m contains all the symbols occurring in the signature of Dm, and in
addition, for each composite action definition law (8), the triples:

i.j : at, where i ∈ {0, . . . ,m− 1}, j ∈ {0, . . . , k∗−1} and at ∈ σ0 , and
i.j : c, where i ∈ {0, . . . ,m− 1}, j ∈ {0, . . . , k∗} and c is a fluent constant.

The causal theory translated by D+
m contains rules of the following parts (assuming i ∈

{0, . . .m− 1}, j ∈ {0, . . . , k∗−1} unless stated otherwise):

1. all rules in Dm except rules obtained from (4). That means the primitive actions are
executed in 1 time interval.

2. for every fluent dynamic law (4) and v ∈ Dom(c), rules
i.j+1 : c = v ⇐ (i.j+1 : c = v) ∧ (i.j : c = v).

The rules state that the original inertial laws form (4) are replaced by a group of inertial
laws specifying the values of fluents at subtime points.

3. for every v ∈ Dom(c), the synonymity rules
i.0 : c = v ↔ i : c = v ⇐ >, i+1 : c = v ↔ i.k∗ : c = v ⇐ >.

These rules states that every simple fluent has the same value at time point i and i.0, as
well as i.k∗ and i+1.

4. for each static law (1) and t ∈ {1, . . . , k∗−1}, rules
i.t : F ⇐ i.t : G.

The rules mean that the static laws defining the relationship between fluents at time
points are also used for subtime points.

5. for every law (3), rules
i.j+1 : F ⇐ (i.j+1 : G) ∧ (i.j : H).

These rules say that the action aj leads to the same effect in the subinterval.
6. for every law (7) where H contains only one action symbol, rules

⊥ ⇐ (i.j : H ∧ F).
The rules state that when an action is nonexecutable at some timepoint, it is also
nonexecutable at the subtime point with the same condition.

7. for each law (8),

a. for each fluent dynamic rule (7) and there is at least one action symbol other than a0
occurs in H, rules

⊥ ⇐ (i : Hb
a0
∧ F),

where Hb
a0

means to replace every occurrance of a0 with b in H. The rules say that
any action that can not be concurrently executed with the first action of the composite
action can also not be executed concurrently with the composite action itself.

X. Chen, G. Jin, and F. Yang 409

b. for 0 ≤ n ≤ k, set of rules
i : b⇐ i : b i : ¬b⇐ i : ¬b i.j : ¬at ⇐ i.j : ¬an

i.t : bj ⇐ (i : b) ∧ (i.t : Ej) ∧ index(b, bj) = t

i.j+t : bj ⇐ (i.j : b) ∧ (i.j+t : Ej) ∧ index(b, bj) = t

⊥ ⇐ i : an ∧ i : b.
These rules say that any composite action is exogenous, and its primitive actions
can only be “triggered” when the condition Ej is true at the shifted subtime point,
which is determined by the value of index over the action pair. Also, we state that the
composite action can not be executed concurrently with its primitive actions.

8. for bm, bn ∈ σcomp, rules
⊥ ⇐ i : bm ∧ i : bn.

The rules state that composite actions cannot be concurrently executed.

4 Properties of Extended Action Description

In this section we investigate the properties of the semantics of extended action descriptions
by generalizing the notion of using a transition diagram to characterize the model of an
action description proposed in [8]. We will identify an interpretation I of a causal theory
with the set of atoms that are satisfied by this interpretation, that is to say, with the set of
atoms of the form c = I(c). Such a convention allows us to represent a model of an extended
action description D+

m as⋃
0≤i≤m

i : si ∪
⋃

0≤i≤m−1
i : ei ∪

⋃
0≤i≤m−1

(
⋃

0≤j≤k∗

i.j : si.j ∪
⋃

0≤j≤k∗−1
i.j : êi.j) (10)

where e0, . . . , em−1 are interpretations of σact ∪ σcomp, s0, . . . sm, si.1, . . . , si.k are interpreta-
tions of σfl , and êi.0, . . . , êi.k∗ are interpretations of σ0.

A state is an interpretation s of σfl such that 0 : s is a model of D+
0 . States are vertexes

of the transition diagram represented by D+.
The transitions are defined by models of D+

1 , a model of D+
1 can be represented in (10)

with m = 1.
An explicit transition is a triple 〈s, e, s′〉 where s and s′ are interpretations of σfl and e is

an interpretation of σact ∪ σcomp such that (0 : s) ∪ (0 : e) ∪ (1 : s′) belongs to a model of
D+

1 . If for some b ∈ σcomp, e(b) = t, then 〈s, e, s′〉 is called a composite transition, otherwise
it is called a simple transition.

An elaboration is a tuple of the form 〈s, ê0, s1, . . . , sk∗ , êk∗ , s
′〉, where êi is an interpretation

of σ0 and si is an interpretation of σfl , such that
(0 : s) ∪ (0.0 : ê0) ∪ (0.1 : s1) ∪ . . . ∪ (0.k∗−1 : sk∗−1) ∪ (0.k∗−1 : êk∗−1) ∪ (1 : s′)

belongs to a model of D+
1 . An elaboration can be seen as a list of k∗ triples 〈s, ê0, s1〉, . . . ,

〈sk∗−1, êk∗−1, s
′〉. Each of the triples is called an implicit transition. If êj(aj) = f for any aj

occurring in (8) for j ∈ {0, . . . , k}, the elaboration is called a trivial elaboration for b. The
edge of the transition diagram of D+ are the transitions in the models of D+

1 .
The above definition implicitly relies on the following properties of transitions.

I Proposition 1. For any explicit transition 〈s, e, s′〉 or implicit transition 〈s, êi, s
′〉, s and s′

are states.
This proposition is a generalization of Proposition 7 in [8]. Again, the validity of this

proposition depends on the fact that statically determined fluents are not allow to occur in
the head of a fluent dynamic law (2).

To relate the model of the causal theory obtained from an extended action description,
Proposition 8 of [8] is generalized to include composite transitions and elaborations.

ICLP’12

410 Extending C+ with Composite Actions for Robotic Task Planning

I Proposition 2. For any m > 0, an interpretation (10) on the signature of D+
m is a model

of D+
m iff for 0 ≤ i ≤ m− 1 each triple 〈si, e, si+1〉 is an explicit transition, and each tuple

〈si, êi, si.1, . . . , si.k∗−1, êi.k∗−1, si+1〉 is an elaboration.
Proposition 1 and Proposition 2 allow us to represent an extended action description as a

transition graph.
Now we investigate the soundness of the new language. Following [3], for action description

D and D′ such that the signature of D is a part of the signature of D′, D is a residue of
D′ if restricting the states and events of the transition system for D′ to the signature of D
establishes an isomorphism between the transition systems for D′ and D.
I Proposition 3. Let D be an action description of a signature σ and b be a constant such
that b /∈ σ. If D′ is an action description of the signature σ ∪ {b} obtained from D by adding
a composite action definition law of b in terms of σ, then D is a residue of D′.

For instance, in the simple robotic domain, the transition system represented by (D0)+

is isomorphic to the transition system represented by D0, by restricting the events of the
transition system for (D0)+ to the action constants other than Fetch(s, l), Bring(s, l).

In addition to showing that an extended action description inherits all “good” things
from the original action description, we also show that it doesn’t introduce anything “bad”:
a primitive action aj , if executed at subtime point, is the exact simulation of the action aj

executed at some time point as a primitive action, their transitions are in 1-1 correspondence.
I Proposition 4. Each implicit transition 〈s, ê, s′〉 of D+ corresponds to a transition 〈s, e, s′〉
of D.

Based on this proposition, it is easy to see that an elaboration in D+ corresponds to a
path of length k∗ in the transition diagram of D. Figure 2 shows the transitions of a model
of (D0

1)+, where the implicit transitions are represented as dashed arrows. It can be seen
that every implicit transition corresponds to a transition in D0, as shown in Figure 1.

..
Loc(Robot) = L1,

Loc(S) = L2,
Hold(Nothing).

.
Loc(Robot) = L2,

Loc(S) = L2,
Hold(Nothing).

.
Loc(Robot) = L2,

Loc(S) = L2,
Hold(S)

.
Loc(Robot) = L1,

Loc(S) = L1,
Hold(S)

.
Loc(Robot) = L1,

Loc(S) = L1,
Hold(Nothing)

.....
Move(L2) .

Pickup(S)
.

Move(L1).
Putdown(S)

..

Fetch(S,L1)

...

Bring(S, L1)

.

1Figure 2 A model of (D0
1)+ represented as transitions.

5 Experiments—KeJia’s Domain

5.1 Formalizing and Reasoning with Composite Actions
In this section, we use composite actions to formalize the domain of the robot KeJia [2].
The robot has a manipulator that can operate various kinds of appliances. The actions that
he can perform include Move(l), Pickup(s), Putdown(s), Open(m), Close(m), Putin(s,m),
Takeout(s,m), Start(m). Typical scenarios include fetching objects from different places
according to the requests of humans and doing other housework such as heating the food with
the microwave oven. In addition to do usual task planning, KeJia can acquire knowledge
from either human user or textual materials to enrich its knowledge base and planning
abilities. For instance, when KeJia is asked to heat the food with microwave oven while he
doesn’t know how to use the appliance, he can either try to download microwave manuals
from internet, did textual analysis to extract instructions, or ask help from humans.3

3 A video of using microwave is at http://wrighteagle.org/en/demo/ServiceRobot_oven.php

X. Chen, G. Jin, and F. Yang 411

The instructions of using many household appliances is usually acquired from either
textual manuals or humans. The structure of these instructions are usually quite similar,
such as “first put the object into the machine, then close the door of the machine, and start
the machine, after a while, open the door, finally take out the object from the machine”.
Instructions of this kind can be converted to composite action definition law by KeJia’s
natural language understanding module:

Use(o,m) is Putin(o,m);Close(m);Start(m);Open(m);Takeout(o,m).
Therefore, heating food with a microwave oven and washing clothes with a washer can be

formalized by refering to the knowledge of using the machine as:
Heat(f) is Move(l) if Loc(Microwave) = l ∧ Loc(Robot) 6= l;Use(f,Microwave).

Wash(c) is Move(l) if Loc(Washer) = l ∧ Loc(Robot) 6= l;Use(c,Washer).
These laws are added into the knowledge base incrementally without modifying any other

parts in the knowledge base, due to the feature of elaboration tolerance of the formalism.
Composite actions make it easier for a robot to gain useful procedural knowledge in many
ways, such as oral instructions, or information from internet. More generally, the actions can
be defined by referring to actions in a general-purpose library.

A complete formalization of the domain is available at http://wrighteagle.org/kejiaexp/.
In the following we assume four places (l1, l2, l3, l4).
Prediction. Initially, the robot is at l2, the popcorn is at l3 and not heated, the microwave
oven is at l2 with the door open, the washer is at l4 and the door is closed, and the milk
is in the robot’s hand. The robot heats the milk with the microwave oven, and then put to
milk into her plate. Does it follow that in the resulting state, the robot, the milk and the
microwave oven are at the same location?

To solve this problem, we add the following query rules into the causal theory
:- query
maxstep :: 2;
0:loc(robot)=l2, loc(microwave)=l2, loc(popcorn)=l3, -heated(popcorn),

-heated(milk), dooropen(microwave), loc(washer)=l4, doorclosed(washer),
inside(hand)=milk, heat(milk,microwave);

1:putintoplate(milk).
2:loc(robot) \= loc(milk) ++ loc(milk) \= loc(microwave).

The extended cplus2asp return “UNSATISFIABLE”, indicating that at time 2, the robot
is at the same location with the milk and the microwave.
Planning. Given the same initial state as above, find a plan within 10 steps so that the milk
and the popcorn are both heated by the robot.

When the corresponding query is specified, one of the answer sets returned by the extended
cplus2asp contains atoms:
0:heat(milk), 0.1:use(milk,microwave), 0.1:putin(milk,microwave),
0.2:close(microwave), 0.3:operate(microwave), 0.4:open(microwave),
0.5:takeout(milk,microwave), 1:toplate(milk), 2:move(l3), 3:pickup(popcorn),
4:heat(popcorn), 4.0:move(l2), 4.1:use(popcorn,microwave),
4.1:putin(popcorn,microwave), 4.2:close(microwave), 4.3:operate(microwave),
4.4:open(microwave), 4.5:takeout(popcorn,microwave).

We have three observations. First, composite actions occur as building blocks of the plan,
for example, we see 0:heat(milk), 0.0:use(milk,microwave), etc in the result. Second,
when a composite action is executed, all details about the executions of the primitive actions
in the composite action are also included, for instance, when 0:heat(milk) is executed,
we also have the details 0.0:use(milk,microwave), . . . , 0.4:takeout(milk,microwave).

ICLP’12

412 Extending C+ with Composite Actions for Robotic Task Planning

Table 1 The results of the KeJia domain.

Length of Plans #Instances #Time-Outs Time ratio
≤20 35 0 0.138
21–25 13 0 0.274
26–30 24 0 1.505
31–35 23 3 1.553
36–40 6 2 2.096
41–45 1 1 –

Third, composite actions can have different kinds of execution trajectory, for instance, the
execution trajectory of the action 4:heat(popcorn) has the action 4.0:move(l2) more than
that of 0:heat(milk).

5.2 Performance
We test planning performance by two representations of the domain KeJia: a traditional
representation KeJia1 without any composite actions, and an extended representation KeJia2
by adding some composite actions into KeJia1. We consider 120 different instances, for every
instance, the numbers of locations and objects, the initial states and the goal states are
randomly generated. We set the longest acceptable length of a plan for a instance using
KeJia1 to 50 and time limit for computing to be 30min4.

The result is shown in Table 1. There are 18 problems which can be solved by neither
representations. We classify the other instances into 6 categories by the length of the plans
generated using KeJia1. For each category, the third column shows the number of instances
that cannot be computed using KeJia1. The last column shows the average ratio of times
on computing a instance using KeJia1 and KeJia2 where time-out instances are excluded.
There are no time-outs using KeJia2.

In Table 1, we notice that when the plan length increases from ≤20 to 36–40, the ratio
increases simultaneously, especially, when the length of a plan is up to 26-30, the time
ratio is always > 1, indicating that the composite actions help improve the efficiency as the
complexity of domain tasks increases. The reason the time ratio is < 1 is that there are more
rules introduced by composite actions, which may also become overhead of computation. For
large domains, the composite actions in the plan contain a lot of consecutive executions of
the primitive actions. Making use of composite actions allows the solver iClingo to find the
“cumulative effects” at earlier stages of grounding.

Therefore, when the task domain has a “hierarchical structure” such that its plan consists
of many consecutive executions of primitive actions which can compose to an action in
a different abstraction space, composite actions may be worthwhile and can improve the
efficiency.

6 Conclusion

In this paper we introduce composite actions into a fragment of C+. Action description
equipped with composite actions leads to a more intuitive and flexible way to formalize
action domains by exploiting general-purpose formalization, a step to address the problem of

4 The detailed representation, instances and logs, as well as the extended Cplus2ASP system can be
found at http://wrighteagle.org/kejiaexp/

X. Chen, G. Jin, and F. Yang 413

generality, and improve efficiency of reasoning and planning by characterizing the hierarchical
structure of the problem domain. Extended action descriptions can be processed by the
extended cplus2asp system.

A direct next step is to apply cplus2asp on robot KeJia to solve the real-life problems for
real-time computation. In the future, we would like to introduce composite action definition
to MAD, where modular actions can be defined as special case or sequential executions of
actions, by referring to a general-purpose library. Composite actions should also be defined
on C+ in its full generality.

Acknowledgements. This work is supported by the National Hi-Tech Project of China under
grant 2008AA01Z150 and the Natural Science Foundation of China under grant 60745002
and 61175057, as well as the USTC Key Direction Project and the USTC 985 Project. The
authors are grateful to Vladimir Lifschitz, Michael Gelfond, Alfredo Gabaldon, Daniela
Inclezan and the anonymous reviewers for their constructive comments and suggestions.

References
1 Michael Casolary and Joohyung Lee. Representing the language of the causal calculator in

answer set programming. In Technical Communications of the 27th International Confer-
ence on Logic Programming (ICLP 2011), pages 51–61, 2011.

2 X. Chen, J. Ji, J. Jiang, G. Jin, F. Wang, and J. Xie. Developing high-level cognitive
functions for service robots. In Proc. of 9th Int. Conf. on Autonomous Agents and Multi-
agent Systems (AAMAS 2010), 2010.

3 Selim T. Erdoğan and Vladimir Lifschitz. Actions as special cases. In Proceedings of
International Conference on Principles of Knowledge Representation and Reasoning (KR),
pages 377–387, 2006.

4 Kutluhan Erol, James A. Hendler, and Dana S. Nau. Htn planning: Complexity and
expressivity. In AAAI, pages 1123–1128, 1994.

5 Richard Fikes and Nils Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3–4):189–208, 1971.

6 Michael Gelfond and Daniela Inclezan. Yet another modular action language. In Pro-
ceedings of the Second International Workshop on Software Engineering for Answer Set
Programming, pages 64–78, 2009.

7 Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactions on
Artificial Intelligence, 3:195–210, 1998.

8 Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson
Turner. Nonmonotonic causal theories. Artificial Intelligence, 153(1–2):49–104, 2004.

9 Daniela Inclezan and Michael Gelfond. Representing Biological Processes in Modular Action
Language ALM. In Proceedings of the 2011 AAAI Spring Symposium on Formalizing
Commonsense, pages 49–55. AAAI Press, 2011.

10 Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard B.
Scherl. Golog: A logic programming language for dynamic domains. J. Log. Program.,
31(1-3):59–83, 1997.

11 Vladimir Lifschitz andWanwan Ren. A modular action description language. In Proceedings
of National Conference on Artificial Intelligence (AAAI), pages 853–859, 2006.

12 John McCarthy. Generality in Artificial Intelligence. Communications of the ACM,
30(12):1030–1035, 1987. Reproduced in [13].

13 John McCarthy. Formalizing Common Sense: Papers by John McCarthy. Ablex, Norwood,
NJ, 1990.

ICLP’12

414 Extending C+ with Composite Actions for Robotic Task Planning

14 John McCarthy and Patrick Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 4,
pages 463–502. Edinburgh University Press, Edinburgh, 1969.

15 Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. In Proceedings of the 3rd
international joint conference on Artificial intelligence. Morgan Kaufmann Publishers Inc.,
1973.

16 Murray Shanahan. Event calculus planning revisited. In Proceedings 4th European Con-
ference on Planning (ECP 97), Springer Lecture Notes in Artificial Intelligence no. 1348,
pages 390–402. Springer, 1997.

17 Tran Cao Son, Chitta Baral, and Sheila A. McIlraith. Planning with different forms of
domain-dependent control knowledge - an answer set programming approach. In LPNMR,
pages 226–239, 2001.

Improving Quality and Efficiency in Home Health
Care: an application of Constraint Logic
Programming for the Ferrara NHS unit∗

Massimiliano Cattafi1, Rosa Herrero2, Marco Gavanelli1,
Maddalena Nonato1, Federico Malucelli3, and Juan José Ramos2

1 ENDIF, Università di Ferrara, Italy
{massimiliano.cattafi, marco.gavanelli, maddalena.nonato}@unife.it

2 Dept. de Telecomunicació i Enginyeria de Sistemes, UAB, Spain
rherrero.math@gmail.com, juanjose.ramos@uab.cat

3 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
malucell@elet.polimi.it

Abstract
Although sometimes it is necessary, no one likes to stay in a hospital, and patients who need to
stay in bed but do not require constant medical surveillance prefer their own bed at home. At
the same time, a patient in a hospital has a high cost for the community, that is not acceptable
if the patient needs service only a few minutes a day.

For these reasons, the current trend in Europe and North-America is to send nurses to visit
patients in their home: this choice reduces costs for the community and gives better quality of
life to patients. On the other hand, it introduces the combinatorial problem of assigning patients
to the available nurses in order to maximize the quality of service, without having nurses travel
for overly long distances.

In this paper, we describe the problem as a practical application of Constraint Logic Program-
ming. We first introduce the problem, as it is currently addressed by the nurses in the National
Health Service (NHS) in Ferrara, a mid-sized city in the North of Italy. Currently, the nurses
solve the problem by hand, and this introduces several inefficiencies in the schedules.

We formalize the problem, obtained by interacting with the nurses in the NHS, into a Con-
straint Logic Programming model. In order to solve the problem efficiently, we implemented
a new constraint that tackles with the routing part of the problem. We propose a declarative
semantics for the new constraint, and an implementation based on an external solver.

1998 ACM Subject Classification D.3.2 Constraint and logic languages

Keywords and phrases CLP(FD), Nurse Scheduling Applications, Home Health Care

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.415

1 Introduction

One of current trends to reduce costs and maintain service quality of health services is to
close peripheral hospitals, reduce patients hospitalization, and concentrate the service at

∗ We thank Andrea Peano for his help with the significance tests. This work was partially supported by
EU project ePolicy, FP7-ICT-2011-7, grant agreement 288147. Possible inaccuracies of information
are under the responsibility of the project team. The text reflects solely the views of its authors. The
European Commission is not liable for any use that may be made of the information contained in this
paper.

© M. Cattafi, R. Herrero, M. Gavanelli, M. Nonato, F. Malucelli, and J.J. Ramos;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 415–424

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.415
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

416 A CLP application for Home Health Care

few, big structures, able to provide specialized treatments and high quality consultancy. At
the same time, though, those patients who do not need to be treated in a hospital, must be
provided health care directly at their homes. The challenge is to keep costs at a low level,
while achieving high service quality standards, comparable to those achievable at a hospital.

In this paper we describe an application concerning home health care in the city of
Ferrara, Italy. We describe the problem as stated by the workers in the local agency of the
National Health Service (NHS), together with the data they provided us. Then, we model
the problem in Constraint Logic Programming on finite domains (CLP(FD)).

1.1 The home health care service in Ferrara
At present, the home health care (HHC) service in the city of Ferrara, Italy, is managed by
the local agency of the National Health Service (NHS), namely AUSL 109. All patients who
are not self sufficient and in need for medical treatment are eligible for HHC. Each request is
thus characterized by a patient identifier (name and address), a medical treatment, and the
specific day of the week when the treatment must be delivered (each patient can have more
than one request per week).

Service is provided by a set of qualified nurses. Every day, each nurse starts his/her duty
at the city hospital, visits the patients in his/her list, delivers the required treatments and
travels by car from one patient’s home to the next, until (s)he finally returns to the hospital.

A treatment lasts from 5 to 60 minutes, depending on its specific characteristics.
While Ferrara is a medium-size town (about 150,000), the area administered by AUSL 109

is rather large and its population ageing. Although most of the population is concentrated
in town, a number of elderly people live in the countryside and they are those more likely to
be enrolled in the service. Therefore, the service is characterized at the same time by a high
variance of duration and a significant geographical dispersion of the requests.

Scheduling such a service poses several challenges; good solution should achieve:
from the NHS point of view, the minimization of the travel time over the service time; in
fact during travel a nurse is on duty but is not delivering any service.
from the nurses point of view, the equidistribution of the workload, which can not be
guaranteed by simply equally subdividing patients, due to heterogeneous requests.
from the patient point of view, a good degree of loyalty, i.e., the number of different
nurses who are in charge of a single patient should be kept as low as possible.

A total of 15 nurses is involved. A duty should last up to 7 hours and 12 minutes. As a
representative sample, in February 2010 there were 3323 requests, subdivided among 458
patients.

At present, nurses organize their duties themselves. In order to simplify the subdivision of
the patients to the nurses, the territory pertaining AUSL 109 has been partitioned statically
into 9 zones Each nurse receives in charge most of the patients belonging to one such area.
Then the nurse tries to fit the patients requests into the working shifts while complying with
the maximum workload allowed. Such decisions are not driven by any optimization criteria,
and the routing is not necessarily optimal within the day, leaving apart what could be gained
in terms of travelled distance if requests would be exchanged between nurses. Due to the
greedy procedure followed, the nurse weekly schedules have very different workloads and
balancing this load over the months leads to a detriment in loyalty. Nurses complain about
such disparities, and have difficulties adapting their schedule to new incoming patients, new
treatments, or to any other change. Moreover, if the workload balance could be improved by
optimizing the routing component, nurses could be available at the hospital for others tasks,

M. Cattafi, R. Herrero, M. Gavanelli, M. Nonato, F. Malucelli, and J.J. Ramos 417

thus reducing the overall costs. In addition, an improved routing plan would impact on the
direct expenses related to gas and car usage, which contribute to the overall cost.

2 A Constraint for the Traveling Salesman Problem

Before delving into the actual CLP model of the problem, we present a new constraint useful
to address efficiently the routing component of the problem. Intuitively, the new constraint
provides the length of the shortest Hamiltonian cycle connecting a given subset of the nodes
in a graph.

Given a fully-connected graph G ≡ (N,E) with a special node 0 ∈ N , a weighting
function d : N ×N 7→ R (also represented in matrix notation D = (di,j)), and a selection
function s : N 7→ {0, 1} (also represented as a list, or a 1-dimensional matrix S) constraint

traveltime(N,D, S, T trv) (1)

solves a TSP and computes the length of the shortest Hamiltonian cycle associated to the set
of nodes N ′ = {n ∈ N |S(n) = 1}. More precisely, given a list of nodes N = (p1, p2, . . . , pm),
a matrix of distances D, and a list of values S = (s1, . . . , sm), constraint (1) is true iff

T trv = min
P ath

∑
(i,j)∈P ath

di,j

such that
Path is a sequence of the form

0, (0, pk1), pk1 , (pk1 , pk2), pk2 , . . . (pkn−1 , pkn
), pkn

, (pkn
, 0), 0

that alternates nodes with edges, starting and ending at node 0;
the visited nodes are exactly those corresponding to elements in the list S:

pi ∈ Path⇐⇒ Si = 1.

Pseudocode in Figure 1 outlines the implementation of the traveltime constraint. Op-
erationally, it awakes every time one of the si variables is instantiated. If si = 1, it means
node pi must be visited. Note that, in a generic node of the search tree, some of the si

variables will have value 1, some will have been set to 0, and some will still be unassigned.
The predicate in line 2 selects in DefinitelyV isited the nodes that have definitely to be
visited. This variable is, in turn, passed as an argument to the predicate which computes the
corresponding TSP (line 3). The TSP thus takes into account at this stage the nodes which
are currently known to be visited, i.e., those for which the S variable has been set to 1.

If not all of the S variables are ground (test on line 4), the TSP cost provides a valid
lower bound to the actual travel time (line 6) and can be used in a branch-and-bound search.
In fact, if the lower bound is higher than the elements in the domain of the variable T trv

(for example, because the working hours of the nurse are almost all used for servicing the
patients, so there is not enough time for traveling), we can immediately fail and backtrack,
avoiding to continue the search in a wrong branch of the search tree.

When all of the S variables are ground, the cost of the TSP becomes the real travel time,
and we are able to finally fix the value of T trv to the TSP cost (line 5).

ICLP’12

418 A CLP application for Home Health Care

1 traveltime (P ,D,S,T trv):-
2 select_definitely_visited_nodes (P ,S,DefinitelyV isited),
3 compute_tsp (DefinitelyV isited,D,LowerBound),
4 (ground(S)
5 -> T trv = LowerBound

6 ; T trv ≥ LowerBound,
7 suspend(traveltime (P ,D,S,T trv))
8).
9 select_definitely_visited_nodes ([] ,[] ,[]).
10 select_definitely_visited_nodes ([Pi|P],[Si|S], Definitely):-
11 (ground(Si), Si =1 -> Definitely = [Pi|LV] ; Definitely = LV),
12 select_definitely_visited_nodes (LP ,LS ,LV).

Figure 1 Pseudocode for the traveltime constraint.

3 A Constraint Logic Programming Model

Formally, the input data consists of:
a set Sserv of services, of size Ns; for each service s we know the patient pats, the day
days and the duration durs

a matrix of distances D; the element di,j is the travel time from patient i to patient j (if
i and j are both greater than 0), or from/to the hospital (if i = 0 or j = 0)
Snurse = {1, . . . , Nn} is the set of available nurses
Nd is the number of days considered in the scheduling
MpD is the amount of minutes available per day for each nurse; this includes both service
time and travel time

A solution is an assignment of a nurse to each service, respecting all the constraints. The
quality of the solution depends on how balanced the week workloads of the nurses are and
on how many different nurses take care of the same patient during the week.

3.1 The CLP Model
To each service s we associate a decision variable Nurses that can take a value between 1
and the number of available nurses Nn.

It can be useful to represent the nurses variables also in their Boolean channeling version,
using constraint reification; this simplifies the definition of some requirements, as will be
clear in the following. We have a matrix SN of size Ns ×Nn such that

SNs,n = 1 ⇐⇒ Nurses = n. (∀s ∈ Sserv,∀n ∈ Snurse) (2)

We are interested in computing the workload of each nurse n in each day d: DayWLn,d.
Each day workload is the sum of the total service time and the travel time of that nurse:

DayWLn,d = T svc
n,d + T trv

n,d (∀n ∈ Snurse, ∀d ∈ 1 . . . Nd). (3)

The total day workload for each nurse cannot exceed MpD, so for each day d and each nurse
n, the domains of variables DayWLn,d, T svc

n,d and T trv
n,d are from 0 to MpD.

The week workload WeekWLn of nurse n is the sum of the respective day workloads

WeekWLn =
∑Nd

d=1 DayWLn,d (∀n ∈ Snurse). (4)

M. Cattafi, R. Herrero, M. Gavanelli, M. Nonato, F. Malucelli, and J.J. Ramos 419

The service time is the total time of the durations of the services given by nurse n in day d:

T svc
n,d =

∑
s∈Sserv,days=d

durs · SNs,n. (5)

As mentioned in Section 2, the routing part is addressed by constraint traveltime (Eq. 1)
that solves the TSP of a nurse that visits a subset of the patients. In order to compute the
travel time T trv

n,d of nurse n in day d, we need to provide to such constraint
1. the nodes of the graph, that are the patients’ locations
2. the matrix of distances D,
3. the selection function S (in its list representation), that is a sub-matrix of the SN matrix,
4. and the (finite domain) variable that represents the travel time: T trv

n,d .
More precisely, since we want to compute the travel time for day d, item 1 will be the set
Patientsd , {pats|s ∈ Sserv, days = d} of those patients that will be visited in day d, while
item 3 will be the sub-matrix SNd

n , {SNs,n|s ∈ Sserv, days = d} containing only those
services to be given in day d. In other words, the actual parameters passed to constraint
traveltime to compute the traveltime of nurse n in day d will be:

traveltime(Patientsd, D, SNd
n, T

trv
n,d).

3.2 The Objective Function
The requirements given by the chief nurse are to optimize two main objectives, namely the
equal repartition of the workload to the various nurses and the loyalty, although psychological
factors or tiredness can also affect the quality of the service.

Concerning the first objective, there are various ways to achieve balanced week workloads
for the nurses [14]. We chose to minimize the maximum week workload, obtained as

MaxWeekWL = max
n∈Snurse

WeekWLn

One way to obtain maximum loyalty is to minimize the number of nurses that visit a
same patient. Let ServicePatp be the set of services of patient p. The information if a
patient p is visited during the week by nurse n is given by:

PNp,n =
∨

s∈ServiceP atp
SNs,n ∀p ∈ Spatient,∀n ∈ Snurse

(where we identify truth values true and false with 1 and 0, respectively); then

LoyaltyPenalty =
∑

p∈Spatient,n∈Snurse

PNp,n

The global objective can be given as a weighted sum of the two components

min(α1 ·MaxWeekWL+ α2 · LoyaltyPenalty), (6)

where α1 and α2 are positive real numbers that can be chosen by the user in order to reflect
the current priorities adopted in the AUSL. Of course, such values can be tuned later on.

4 Example

As an example, we have three patients, requesting a total of 5 services, whose durations are
in Fig 2 and the distance matrix (in upper triangular form) is in Figure 3. Assume we have
two nurses, n1 and n2, and that the limit on the day workload is MpD = 30.

One solution could be to assign

ICLP’12

420 A CLP application for Home Health Care

patient mon thu
p1 10 5
p2 20
p3 20 5

Figure 2 Patients’ requests with durations.

h p1 p2 p3

h 3 3 5
p1 2 7
p2 8

Figure 3 Distance Matrix.

on mon, nurse n1 to patient p1 (formally, Nurse(p1,mon) = n1) and nurse n2 to p3

on tue, nurse n1 to patients p1 and p3, and nurse n2 to p2.

In this assignment, we have DayWLn1,mon = T svc
n1,mon + T trv

n1,mon = 10 + (3 + 3) = 16
(going from the hospital h to p1 and coming back); DayWLn2,mon = 20 + (5 + 5) = 30;
DayWLn1,tue = (5 + 5) + (3 + 8 + 5) = 26; DayWLn2,tue = 20 + (3 + 3) = 26. The total
week workload is WeekWLn1 = 16 + 26 = 42 for nurse n1 and WeekWLn2 = 30 + 26 = 52
for n2. The loyalty penalty will be 1 for patients p1 and p2 (that are visited by one nurse)
and 2 for p3, that is visited by both nurses. So, the value of the objective function will be
α1 ·max{42, 52}+ α2 · (1 + 1 + 2) = 52α1 + 4α2.

5 Implementation

The TSP solving algorithm (predicate compute_tsp in Figure 1) can be implemented in
CLP(FD), with different constraint models.

One model assigns a decision variable for each city to be visited. We have a sequence
of decision variables X1, . . . , Xn, each of them ranging on the set of cities to be visited,
and where X1 is the first city to be visited, X2 is the second, . . . , Xn is the last city to
be visited. The fact that all cities must be visited is imposed through an alldifferent
constraint [13]. In this model, the cost is the sum of the distances d(X1, X2) + d(X2, X3) +
· · ·+ d(Xn−1, Xn) + d(Xn, X1).

A second model uses the circuit constraint [4] for which various propagation algorithms
have been proposed [6, 10]. Again, we have a sequence of decision variables X1, . . . , Xn,
each ranging on the set of possible cities, but in this case the meaning is different: X1 is
the city to be visited immediately after city number 1, X2 is the city to be visited after city
whose name is “2”, . . . , Xn is the city that is visited after the city named n. The circuit
constraint ensures that allowed assignments form a Hamiltonian circuit, and the cost is the
sum d(1, X1) + d(2, X2) + · · ·+ d(n,Xn).

However, it is well known in the literature [6] that solving large TSPs in CLP(FD) is very
demanding in terms of computing time, so we decided to implement predicate compute_tsp
as an invocation of an efficient TSP solver [9], based on the Lagrangian Relaxation technique
used in Operations Research. We could have used other solvers, but we found that our
choice performed well on the typical size of the considered TSP instances. Although the
TSP instances were very difficult for a CLP(FD) implementation, they were rather easy
for Lagrangian Relaxation, and solving them through LR did not show a deterioration in
performance with respect to state-of-the-art TSP solvers [1], so we preferred to use a solver for
which we had access to the source code. A detailed description of the Lagrangian Relaxation
technique is out of the scope of this work; the interested reader can refer to [9].

M. Cattafi, R. Herrero, M. Gavanelli, M. Nonato, F. Malucelli, and J.J. Ramos 421

6 Search Strategies

We tried our model with five search strategies. The first four were developed with the goal
of obtaining a good general-purpose search strategy; then we tried to improve by exploiting
better the structure of the problem.

The Generic Search (GS) strategy is a depth-first search in which the next variable
to be assigned is selected with the smallest domain heuristic. Since the decision variables
are the Nurse variables (Section 3.1), we select first the service that can be assigned to the
smallest number of nurses. The assigned nurse is selected at random. The Generic Search
with Restarts (GSR) also applies restarts with the optimal timeout sequence [11].

We also modified the variable selection heuristics; instead of selecting the variable with
the smallest domain within the services of the whole week, we try to complete the assignments
of a single day before starting with another day (first assign all the services of the first day,
then the second day, etc). The idea is that if we made some wrong decisions in one day, so
that it is impossible to assign all the patients of that day, we want to fail as soon as possible
before initiating the assignments in other days. Within each day, we select first the variable
with the smallest domain. This strategy was applied without restarts, Generic Search by
Day (GSD) and with restarts Generic Search by Day with Restart (GSDR).

Finally, we defined a search strategy more tailored to the problem at hand, called Loyalty
Guided Search (LGS). We first sort the services in decreasing order of duration, so that
those services with higher duration will be assigned first. The idea is to try to fit first the
most difficult services into the available time for the nurses. Then, given a service s of
patient pats, we try to assign him/her a nurse who is already visiting this patient, in order to
minimize the LoyaltyPenalty. The domain of Nurses is divided into two parts: the nurses
who are already visiting this patient and those who are not; we try first the first part, then
the second. Moreover, both parts are sorted by the current WeekWL of the nurse; in this
way, we try first the nurses that are less occupied, in order to balance the workload.

7 Experiments and Results

The program was implemented in the open-source CLP system ECLiPSe 6.0 [2], and linked to
a Java part implementing Lagrangian Relaxation (LR) for the TSP. All tests were performed
on an Intel i5 processor 2.40GHz computer with 4GB of RAM on four weekly instances.

Figure 4 shows the computation time required by the routing aspect of the problem with
the various methods described in Section 5. The values are obtained by imposing a full
weekly assignment of services to nurses and then computing the Nn×Nd resulting TSPs with
each of the different methods. It can be noticed that the circuit-based one is more efficient
than the alldifferent-based one, however solving the TSPs with Lagrangian Relaxation is
orders of magnitude faster than both of them (times are reported on a logarithmic scale).
Using CLP(FD) as a unifying framework, it is practical and convenient to take advantage of
the efficiency of LR on this specific subproblem by enclosing it in our traveltime constraint.

Table 1 shows the best results obtained for the five search strategies described in Section 6
running them for a maximum of 10 minutes. The randomized algorithms (the GS* strategies)
were run 20 times each. For each week, we show the Objective and the corresponding
MaxWeekWL and LoyaltyPenalty. The Objective is given by the weighted sum in Eq. 6;
in these particular experiments, we used α1 = α2 = 1, so Objective is simply the sum of
the two subsequent columns. The results are compared to the solution hand-made (HMS)
by the nurses considering the division of the city into 9 areas. We can see that the model
was very effective, as all the search strategies were able to improve on the hand-made

ICLP’12

422 A CLP application for Home Health Care

Table 1 Best results for each search strategy.

First Week Second Week Third Week Fourth Week
Objective=WL+LP Objective=WL+LP Objective=WL+LP Objective=WL+LP

GS 2203 1918 + 285 2371 2064 + 307 2331 2033 + 298 2387 2063 + 324

GSR 2125 1841 + 284 2347 2040 + 307 2270 1963 + 307 2345 2022 + 323

GSD 2185 1905 + 280 2351 2052 + 299 2255 1963 + 292 2389 2071 + 318

GSDR 2097 1811 + 286 2345 2033 + 312 2263 1958 + 305 2342 2011 + 331

LGS 1982 1782 + 200 2277 2042 + 235 2181 1954 + 227 2290 2034 + 256

HMS 2356 2124 + 232 2405 2153 + 252 2395 2141 + 254 2433 2146 + 287

1 2 3 4

0.01

0.1

1

10

100

1000

10000

alldiff
circuit
LR

instance

tim
e

 (
se

co
n

d
s)

Figure 4 Comparison of computing time re-
quired to solve the TSPs with the different meth-
ods.

2000

2050

2100

2150

2200

2250

2300

2350

2400

GS GSR GSD GSDR LGS HMS
Search Strategies

First Week

O
bj

ec
tiv

e

Figure 5 Box plot of the 5 strategies
and the hand-made solution (HMS).

solution. Moreover, LGS was able to improve on the hand-made solution both in terms of
equidistribution of the workload and in terms of loyalty, thus improving both the working
conditions of the nurses and the service quality for the patients. Unluckily, we were not able
to compute the optimal solution, so we cannot compare with it.

Since some of the search strategies use randomization, we also show the box plots of the
20 repetitions (Figure 5). The plots reveal that restarts are the most important factor in the
general purpose strategies. The strategies not using restarts often were unable to improve
the hand-made solution. Labeling on single days can sometimes give a further improvement.
However, a search strategy tailored for the problem is able to provide a large improvement
with respect to the general purpose ones. Notice that LGS and HMS are strategies that do not
include randomization, so they always provide the same solution each time they are executed;
this explains why the box plot reduces to a single line. A significance test supports the
conjecture that LGS improves upon the hand made solution. The Wilcoxon-Mann-Whitney
test [3] rejects the hypothesis that LGS is worse than HMS with a p-value of 0.01429, well
below the usual significance threshold of 0.05.

8 Related Work

The efficient delivery of HHC service attracted the attention of the CLP and the Operations
Research communities. Application papers are generally focused on the particular type of
service that has to be optimized. In many countries for example the Home Health Care
service is managed together with the Home Care that involves other types of services and

M. Cattafi, R. Herrero, M. Gavanelli, M. Nonato, F. Malucelli, and J.J. Ramos 423

most of the times requires the specification of time windows in which the services have to be
delivered and this is one of the main differences that we found with our case.

For example, Bertels and Fahle [5] adopt a hybrid approach, combining Constraint
Programming, local search and Linear Programming. The approach takes advantage of the
presence of tight time windows: “Due to time window constraints, in the HHC only few
permutations correspond to feasible orderings. In our approach we enumerate those orderings
by a CP approach, and we use an LP to find optimal start times . . . ”. In our case time
windows are not present thus enumerating the feasible orderings is not viable.

Laps Care [7] is a system adopted in Sweden for Home Care, although it is also able
to consider some of the issues in HHC. Laps Care uses an iterative method, in which an
initial solution uses a single route for each service; then routes are joined until no further
improvement is possible. To escape from the local optimum, one of the routes is split into
one route for each patient, and the joining phase restarts.

Looking at the problem from a more abstract viewpoint, one may see some similarities
with the classical Capacitated Vehicle Routing Problem (CVRP). In the CVRP a set of
disjoint routes for a fleet of vehicles has to be found so that all customers (nodes) are visited,
the required quantity of goods is delivered to each customer, the capacity of the vehicles is
not exceeded and the objective function is minimized. The usual objective function is the
overall traveled distance or the number of vehicles. In our case we can see nurses as vehicles
and patients as customers. There are some important differences with CVRP that make
all the efficient method developed for the classical problem not applicable in our case. One
difference concerns the capacity. As in CVRP we may consider nurse daily duty time as a
capacity constraint, however, unlike the CVRP, in our case the sequence in which patients
are visited matters on how the capacity is consumed. This actually turns our problem into a
time constrained VRP which is not as easy as the CVRP and for which the classical CVRP
methods are not so efficiently adapted.

The other difference concerns the objective function. On the one hand, as in VRP, we
would have to minimize the total traveled distance, in order to make the service as efficient
as possible, on the other hand we have to balance the workload among nurses. Thus this
component of the objective function is a kind of bottleneck (min-max), that is difficult to
address with OR methods. Finally the loyalty factor is component of the objective function
that makes our problem very peculiar, not to say unique.

Various works consider how to solve the TSP, or its variant with Time Windows, in CP
or with hybrid algorithms [6, 12, 8]; the TSP is only a component of the HHC problem.

9 Conclusions

In this paper, we presented a Constraint Logic Programming application for a Home Health
Care problem. We modelled the problem that is currently solved by hand by the nurses
of the National Health Service unit of the city of Ferrara, in Italy. The novelty of the
model stands in two issues that are peculiar of the problem in Ferrara. The first issue
is the objective: reducing the disparities in workload of the nurses, while at the same
time improving the quality of service from the patients’ viewpoint, by keeping minimal
the number of different nurses that take care of a same patient. The second issue is the
implementation of a new constraint that addresses the routing component of the problem.
The constraint was implemented by embedding into a constraint an efficient solver for the
Travelling Salesperson Problem. Although the new constraint is implemented through a
technique used in Operations Research (namely, Lagrangian Relaxation), it has a clear logical

ICLP’12

424 A CLP application for Home Health Care

semantics, that smoothly integrates into the constraint model.
We implemented various general-purpose search-strategies, then we moved to a new search

strategy that is more tailored to the given problem, obtaining strong improvements.
Experimental results show a large improvement with respect to the currently used

solutions, showing that Logic Programming can be effective to address real life problems.
The logic program consists of about 300 lines of ECLiPSe code, including custom

constraints, and the interfacing to the Java TSP solver, plus about 600 lines of Java code.
The main objective of the application was to provide to nurses more balanced workloads,
and to patients more continuity (loyalty) in the service. In other words, the objective was to
improve the feeling of the quality of working conditions for the nurses and the perception
of the quality of service for the patients. However, as a by-product, we also reduced the
workload of the nurses, in terms of travel time. With respect to the hand-made solution, a
nurse saves about 3 hours per week. In this way, the working time of the nurses is used more
effectively to provide service to patients, instead of travelling on sub-optimal routes. The
saved time could be used to provide better service to the patients, or to serve more patients,
which is a strong improvement in a period of crisis and governmental cuts.

The application was mainly designed, developed and tested by two PhD students in about
six months. As a rough estimate, the person-months for the development will be returned in
about 8 months, which shows that Logic Programming can be an economically affordable
technology to improve working conditions and service quality.

References
1 David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook. The Traveling

Salesman Problem: A Computational Study. Princeton University Press, 2006.
2 K. Apt and M. Wallace. Constraint logic programming using ECLiPSe. 2007.
3 Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete, and Mike Preuss, editors. Ex-

perimental Methods for the Analysis of Optimization Algorithms. Springer, Germany, 2010.
4 N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathematical

and Computer Modelling, 20(12):97 – 123, 1994.
5 S. Bertels and T. Fahle. A hybrid setup for a hybrid scenario: combining heuristics for the

home health care problem. Computers & OR, 33(10), 2006.
6 Yves Caseau and François Laburthe. Solving small TSPs with constraints. In L. Naish,

editor, ICLP. The MIT Press, 1997.
7 P. Eveborn, M. Rönnqvist, H. Einarsdóttir, M. Eklund, K. Lidén, and M. Almroth. Oper-

ations research improves quality and efficiency in home care. Interfaces, 2009.
8 Filippo Focacci, Michela Milano, and Andrea Lodi. Soving TSP with time windows with

constraints. In Danny De Schreye, editor, ICLP, pages 515–529. MIT Press, 1999.
9 R. Herrero, J.J. Ramos, and D. Guimarans. Lagrangian metaheuristic for the travelling

salesman problem. In Extended abstracts of Operational Research Conference 52, Royal
Holloway, University of London, September 2010.

10 L. Kaya and J. Hooker. A filter for the circuit constraint. In F. Benhamou, editor, CP,
volume 4204 of Lecture Notes in Computer Science, pages 706–710. Springer, 2006.

11 M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms. Inf.
Process. Lett., 1993.

12 G. Pesant, M. Gendreau, J-Y. Potvin, and J-M. Rousseau. An exact constraint logic
programming algorithm for the TSP with time windows. Transp. Science, 32(1), 1998.

13 J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In B. Hayes-Roth
and R. Korf, editors, AAAI, pages 362–367. AAAI Press / The MIT Press, 1994.

14 H. Simonis. Models for global constraint applications. Constraints, 12:63–92, 2007.

A Flexible Solver for Finite Arithmetic Circuits
Nathaniel Wesley Filardo and Jason Eisner

Department of Computer Science
Johns Hopkins University
3400 N. Charles St., Baltimore, MD 21218, USA
http://cs.jhu.edu/˜{nwf,jason}/
{nwf, jason}@cs.jhu.edu

Abstract
Arithmetic circuits arise in the context of weighted logic programming languages, such as Datalog
with aggregation, or Dyna. A weighted logic program defines a generalized arithmetic circuit—
the weighted version of a proof forest, with nodes having arbitrary rather than boolean values.
In this paper, we focus on finite circuits. We present a flexible algorithm for efficiently querying
node values as they change under updates to the circuit’s inputs. Unlike traditional algorithms,
ours is agnostic about which nodes are tabled (materialized), and can vary smoothly between
the traditional strategies of forward and backward chaining. Our algorithm is designed to admit
future generalizations, including cyclic and infinite circuits and propagation of delta updates.

1998 ACM Subject Classification F.1.1 Models of Computation, I.2.3 Deduction and Theorem
Proving

Keywords and phrases arithmetic circuits, memoization, view maintenance, logic programming

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.425

1 Introduction

The weighted logic programming language Dyna [10] is a convenient and modular notation
for specifying derived data. In this paper, we begin to consider efficient algorithms for
answering queries against Dyna programs. Our methods treat arithmetic circuits, and are
relevant to other variants of logic programming, such as Datalog with aggregation [15, 5].

Many tasks in computer science involve computing and maintaining derived data. De-
ductive databases [21] store extensional (i.e., provided) data but also define additional
intensional data specified by formulas. Algorithms in artificial intelligence or business an-
alytics can often be written in this form [10]. The extensional data are observed facts, and
the resulting cascades of intensional data arise from aggregation, record linkage, analysis,
logical reasoning, statistical inference, or machine learning.

If the extensional data can change over time, keeping the intensional data up to date is
called view maintenance or stream processing [23]. This pattern includes traditional abstract
data types, which maintain derived data under operations such as “insert” and “remove.”
For example, a priority queue maintains the argmax of a function over an extensional set.

A Dyna program is a declarative specification of derived data. Like an abstract data type,
it admits many correct implementations of its update and query methods. These execution
strategies range from the laziest (“store the update stream and scan it when queried”) to
the most eager (“recompute all intensional data upon every update”). A particular strategy
might trade time for space, or more time now for less time later (e.g., investing time in finding
a faster query plan or maintaining an index). We seek a unified algorithm that subsumes as
many reasonable strategies as possible, and which supports transitioning smoothly between

© Nathaniel Wesley Filardo and Jason Eisner;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 425–438

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.425
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

426 A Flexible Solver for Finite Arithmetic Circuits

1 Compute(j ∈ Iint)
2 return fj ({i 7→ Lookup(i) | i ∈ Pj})
3
4 Lookup(j ∈ I)
5 v ← M[j]
6 if v = unk then v ← Compute(j)
7 maybe M[j] ← v

8 return v

Listing 1 Internals of basic backward
chaining with optional memoization. M
stores values for extensional items and ini-
tially stores unk for intensional items.

• 1a :
%%

• 2b :
xx ''

��

• 3
xx

f 2

$$

max 3

xx∑
7

Figure 1 An example arithmetic circuit on the
natural numbers, showing the function for each in-
tensional item (f, max,

∑
, where f(a, b) = ba) and

the symbol • for each extensional item. Item values
are shown in red, and selected item names in blue.

them. This allows different strategies to be selected for different parts of the program (static
analysis) or for different workloads (dynamic analysis).

In the present work, we discuss the development of a generic algorithm for finding and
maintaining solutions to finite arithmetic circuits, which are a subset of Datalog and Dyna
programs. Our algorithm offers several degrees of freedom, which will allow us to compare
various static and adaptive strategies in future. The algorithm can choose any initial guess
for the circuit’s solution; its agenda of pending computations may be processed in any order;
and it contains maybe directives where the algorithm has an additional free choice. Thus,
our algorithm smoothly interpolates among traditional strategies such as forward chaining,
backward chaining, and backward chaining with memoization.

2 Arithmetic Circuits

An arithmetic circuit [4] is a finite directed acyclic graph on nodes I with edges E . We
refer to the nodes as items. We denote item j’s set of parents by Pj

def= {i | (i→ j) ∈ E},
and its set of children by Cj

def= {k | (j → k) ∈ E}. Transitive parents are called ancestors,
and transitive children are called descendants. We use the term generalized arithmetic
circuit for the more general case where the graph may be infinite and/or cyclic.

Each item i ∈ I has a value in some set V. Figure 1 shows a small arithmetic circuit
over integer values. The root or input items, those without parents, are denoted Iext
(“extensional”) and receive their values from the environment.1 The remaining items are
denoted Iint (“intensional”) and derive their values by rule from their parents’ values. Each
item j ∈ Iint is equipped with a function fj to combine its parents’ values. The input to fj

is not merely an unordered collection of the parents’ values. Rather, to specify which parent
has which value, it is a map Pj → V, consisting of a collection of pairs i 7→ v.

A Datalog or pure Prolog program can be regarded as a concise specification of a gener-
alized boolean circuit, which is the case where V = {true, false}. The items I correspond
to propositional terms of the logic program, and clauses of the logic program describe how
to discover the parents or children of a given item (on demand). Specifically, each grounding
of a clause corresponds to an and node whose parents are the body items, and whose child is
an or node corresponding to the head item. This kind of circuit is called an and/or graph.

1 The literature varies as to whether extensional items are called roots or leaves, whether they are
regarded as ancestors or descendants, and whether they are drawn at the top or the bottom of a
figure. We treat them as roots and ancestors and draw them at the top. So edges and information flow
downward in our drawings. As a result, “bottom-up” reasoning (forward chaining) actually proceeds
from the top of the drawing down.

N.W. Filardo and J. Eisner 427

Datalog is sometimes extended to allow limited use of not nodes as well.
Arithmetic circuits are the natural analogue of boolean circuits for weighted logic pro-

gramming languages, such as Datalog with aggregation [15, 5] and our own Dyna [11, 9].
Suppose we are given a generalized arithmetic circuit, along with a map S : Iext → V

that specifies the extensional data. A solution to the circuit is an extension S of this map
over all of I such that S[j] = fj

({
i 7→ S[i]

}
| i ∈ Pj

)
for each j ∈ Iint. In the traditional

case where the circuit is finite and acyclic a solution S always exists and is unique. This
paper considers only that case, which also ensures that our algorithms always terminate.
However, we will avoid using methods that rely strongly on finiteness or acyclicity. This
makes our methods relevant to the harder problem of solving generalized arithmetic circuits
(see section 7), as needed for the general case of weighted logic programming languages.

3 Backward Chaining

We begin with some basic strategies for querying an item’s solution value S[j], based on
backward chaining from the item to its ancestors. We construct a map M from items
to their solution values, known as the memo table or chart. For each extensional item
j ∈ Iext, we initializeM[j] to S[j] (= S[j]). For each intensional items j ∈ Iint, the solution
value S[j] is initially unknown, so we initializeM[j] to the special object unk 6∈ V. We may
regard the map M : I → V ∪ {unk} as a partial map I → V that stores actual values for
only some items—initially just the extensional items.

We define mutually recursive functions Lookup and Compute as in Listing 1. A user may
query the solution with Lookup(j). This returns M[j] if it is known, but otherwise calls
Compute(j) to compute j’s value using fj , which in turn requires Lookups at j’s parents.

Pure Backward Chaining The simplest form of backward chaining simply recurses through
ancestors until Lookup reaches the roots. Line 7 is never used in this case, soM never changes
and intensional items remain as unk. Clearly Lookup(j) returns S[j].

Unfortunately, pure backward chaining can have runtime exponential in the size of the
circuit. Each call to Lookup(j) will in effect enumerate all paths to j. For example, consider
a circuit for computing Fibonacci numbers, where each item fib(n) for n ≥ 2 is the sum of its
parents fib(n− 1) and fib(n− 2). Then Lookup(fib(n)) has runtime that is exponential in n,
with fib(n− t) being repeatedly computed fib(t) (≈ O(1.618t)) times during the recursion.

Optional Memoization To avoid such repeated computation, a call to Lookup(j) can
memoize its work by caching the result of Compute(j) in M[j] for use by future calls,
via line 7 of Listing 1. This is the backward-chaining version of dynamic programming. It
generalizes the node-marking strategy that depth-first search uses to avoid re-exploring a
subgraph. However, the maybe keyword in line 7 indicates that the memoization step is not re-
quired for correctness; it merely commits space in hopes of a future speedup. Lookup(fib(n))
can even achieve O(n) expected runtime without memoizing all recursive Lookups: instead
it can memoize Lookups on a systematic subset of items, or on a random subset of calls.

4 Reactive Circuits: Change Propagation

Our goal is to design a dynamic algorithm for arithmetic circuits that supports not just
queries but also updates. It must handle a stream of operations of the form Query(j) for

ICLP’12

428 A Flexible Solver for Finite Arithmetic Circuits

1 RunAgenda()
2 until A = ∅
3 pop i : ^ v from A
4 if v = unk then v ← Compute(i)
5 if v 6=M[i] then % else discard
6 M[i] ← v

7 foreach j ∈ Ci

8 w ← unk
9 maybe w ← Compute(j)

10 Update(j, w)

Listing 2 The core of an agenda-driven,
tuple-at-a-time variant of the traditional
forward chaining algorithm. M is ini-
tialized to an arbitrary but total guess
and remains total (no unk values) there-
after. Hence, though Compute calls Lookup,
Lookup never recurses back to Compute.

1 Update(j ∈ I, w ∈ V t {unk})
2 delete A[j]
3 if w 6=M[j] then % else discard
4 A[j] ← ^ w

Listing 3 Updates requested by the user or
by RunAgenda are enqueued on the agenda A as
replacement updates.

• ^3 2
��

• ^5 3
ww ��
× 6 = 3

• ^3 2
��

• 5
rz ��
× ^10 6 = ^ 3

Ü

Figure 2 An example iteration of the loop
in RunAgenda. We apply the update ^ 5 to the
right parent, which makes the children inconsis-
tent with their parents, and enqueue new up-
dates that will fix the inconsistencies. Double
arrows indicate the edges used to Compute the
new value in the replacement update: 10 is 2×5.

any j, which returns S[j], and Update(i,v) for i ∈ Iext, which modifies S[i] to v ∈ V.2
In the case of pure backward chaining, we only have to maintain the stored extensional

data, as intensional values are not stored, but are derived from the extensional data on
demand. In our terminology from above, Update(i,v) can just setM[i] ← v, and Query(j)
can just call Lookup(j).

However, handling updates is harder once we allow memoization of intensional values.
The memos inM grow stale as external inputs change, yet Lookup would continue to return
outdated results based on these memos. That is, updating i may make its intensional
descendants inconsistent; this must be rectified before subsequent queries are answered. We
therefore need some mechanism for restoring consistency inM, by propagating changes to
memoized descendants.

Formally, we say that j ∈ Iext is consistent iff Lookup(j)= S[j], and that j ∈ Iint is
consistent iff Lookup(j) = Compute(j). Notice that un-memoized intensional items (those
withM[j] = unk) are always consistent. We callM consistent if all items are consistent—in
this case Lookup(j) will return the solution S[j] as desired. Equivalently, the memo tableM
is consistent iff each extensional memo is correct and each intensional memo is in agreement
with its visible ancestors. Here i and k are said to be visible to each other whenever there
is a directed path from i to its descendant k that goes only through un-memoized (unk)
items. Thus, calling Compute(k) eventually recurses to Lookup(i) at each visible parent i.

5 Pure Forward Chaining

An alternative solution strategy, forward chaining, propagates updates. We will use it in
section 6 to solve the update problem. First we present forward chaining in its pure form.

Pure forward chaining eagerly fills in the entire chartM, starting at the roots and visiting
children after their parents. Eventually M converges to S. Forward chaining algorithms
include natural-order recalculation in spreadsheets [29] and semi-naive bottom-up evaluation
for Datalog [28]. We use the “tuple-at-a-time” algorithm of Listing 2. It uses an agenda A

2 We also wish to support continuous queries, in which the user may request (asynchronous) notifications
when specified items change value. This is, however, beyond the scope of the current paper.

N.W. Filardo and J. Eisner 429

that enqueues future updates to the chart [17, 11]. A contains at most one update for each
item i, which we denote A[i], and supports modification or deletion of this update.3

Our updates are replacement updates of the form i : ^ v (where i ∈ I and v ∈ V).4
Iteratively, until the agenda is empty, our forward chaining algorithm pops (selects and
removes) any update i : ^ v from the agenda, and applies it to the chart by setting
M[i] ← v. The algorithm then propagates this update to i’s children, by pushing an
appropriate update j : ^ w onto the agenda for each child j. This push operation overwrites
any previous update to j, so we write it as A[j] ← ^ w.

The new value w is obtained by Compute(j), meaning it is recomputed from the values at
j’s parents (including the changed value at i). If M[j] already had value w, the update is
immediately discarded and does not propagate further. Ordinarily, w is Computed in line 9
when the update is constructed and pushed. But if line 9 is optionally skipped, the update
specifies w as unk, meaning to compute the new value only when the update is popped and
actually applied (line 4). Such a refresh update j : ^ unk may be abbreviated as j : ^
and simply says to refresh j’s value so it is consistent.5 In any case, an inconsistent item
always has an update pending on the agenda, which will eventually make it consistent.6

Figure 2 shows one step of pure forward chaining. In our visual notation for circuits, we
draw the state of item i as fi M[i]i : , where i (if present) names the item, fi is the item’s
function (or • if i ∈ Iext), andM[i] is the current memo if any. If an update to i is waiting
on the agenda, we display it over i’s line as fi

^vM[i]i : , omitting the new value v if it is
unk. Since information flows downward in our drawings, being above i’s line indicates that
the update has yet to be applied toM[i]. (In section 6.1 we will introduce a below-the-line
notation.) Our textual update notation i : ^ v is intended to resemble the drawing.

The process can be started from any total (unk-free) initial chartM, provided that the
initial agenda A is sufficient to correct any inconsistencies in thisM. A is always sufficient if
it updates every item: so the conservative initialization strategy defines each A[i] to be
i : ^ S[i] for extensional i, and either j : ^ Compute(j) or j : ^ for intensional j. However,
just as Listings 2–3 discard unnecessary updates, we can also omit as unnecessary any initial
updates to items that are consistent in the initialM. So we may wish to choose our initial
M to be mostly consistent. For example, under the null initialization strategy, we
initialize M[i] to a special value null ∈ V for all i ∈ I. Provided that each function fj

outputs null whenever all its inputs are null, each intensional j is initially consistent and
hence requires no initial update.7

The user method Query(j) is now defined as RunAgenda(); return Lookup(j). This runs

3 The agenda can be implemented as a simple dictionary. However, using an adaptable priority queue [14]
can speed convergence, if one orders the updates topologically or by some informed heuristic [18, 12].

4 It will be explained shortly why an underline appears in the notation for this type of update.
5 Why are there two kinds of updates? Both have potential advantages. Refresh updates ensure that j
is only recomputed once, even if the parents change repeatedly before the update pops. On the other
hand, ordinary updates have the chance of being discarded immediately, which avoids the expense
of pushing and popping any update at all; and if they are not discarded, their priority order can be
affected by knowledge of w. Later algorithms in this paper cache item values temporarily, with the
result that the cost of computing w may vary depending on when Compute(j) is called. Finally, delta
updates (section 7) must be computed at push time.

6 A consistent item might also have an update pending—a refresh that is not yet known to be unnecessary.
7 In a logic programming setting, updatingM[j] from null to non-null may be regarded as “proving j.”
Forward chaining proves the extensional items from the initial agenda, and then propagation causes it to
prove some or all of the intensional items. In unweighted logic programming, null may be interpreted as
“not proven” and identified with false. Both and and or functions then have the necessary property.
Similarly, in weighted logic programming, null means “no proven value.” Here Dyna [9] again uses
functions that guarantee the necessary property, by extending arithmetic functions (which generalize
and) as well as aggregation functions (which generalize or) over the domain that includes null.

ICLP’12

430 A Flexible Solver for Finite Arithmetic Circuits

the agenda to completion and then returnsM[j]. As for the user method Update(i, v), the
user is permitted to call Listing 3 in this case, thereby pushing a new update onto the
agenda. Forward chaining processes all such updates at the start of the next query. This
does not require recomputing the whole circuit.

It may be instructive at this point to contemplate the physical storage of the mapM :
I → V ∪{unk} (where null ∈ V). A large circuit may be compactly represented by a much
smaller logic program (section 2). In this case one might also hope to store M compactly
in space o(|I|), using a sparse data structure such as a hash table. The “natural” storage
strategy is to treat unk as the default value in the case of backward chaining, but to treat
null as the default value in the case of forward chaining. In each case this means that
initialization is fast because intensional items are not initially stored. Backward chaining
then adds items to the hash table only if they are queried (and memoized), while forward
chaining adds them only if they are provable (see footnote 7). The final storage size of
M may differ in these two cases owing to the different choice of default. It can be more
space-efficient—particularly in our hybrid strategy below—to choose different defaults for
different types of items, reflecting the fact that some type of item is “usually” unk or null
(or even 0). One stores the pair (i,M[i]) only whenM[i] differs from the default for i. The
datatype used to storeM[i] does not need to be able to represent the default value.

6 Mixed Chaining With Selective Memoization

Both pure algorithms above are fully reactive, but sometimes inefficient. Backward chaining
may redo work. Forward chaining requires storage for all items, and updates fully before
answering a query. Yet each has advantages. Backward chaining visits only the nodes that
are needed for a given query; forward chaining visits only the nodes that need updating.

A hybrid algorithm should combine the best of both, visiting nodes only as necessary
and usingM to materialize some useful subset of them. Our core insight is that

The job of backward chaining is to compute values for which the memo is missing (unk).
The job of forward chaining is to refresh any memos that are present but potentially stale.
Pure backward chaining is the case where all memos are missing. So a query triggers a
cascade of backward computation; but forward chaining is unnecessary (no stale memos).
Pure forward chaining is the dual case where all memos are present. So an initial or
subsequent update triggers a cascade of forward computation; but backward chaining is
unnecessary (no missing memos). We regard the arbitrarily initialized chart of section 5
as a complete but potentially stale memo table.

We will develop a hybrid algorithm that can memoize any subset of the intensional items.
This subset can change over time: memos are optionally created while answering queries
by backward chaining, and can be freely created or flushed at any time. Why bother?
Computing only values that are needed for a given query can reduce asymptotic time and
space requirements, a fact exploited by the magic sets technique [25]. Furthermore, ma-
terializing some or all of these values only temporarily can reduce the cost of storing and
maintaining many memos. For example, [30] thereby solve the arithmetic circuit for the
forward-backward algorithm in O(log n) rather than O(n) space, while increasing runtime
only from O(n) to O(n log n).

6.1 Updates vs. Notifications
The essential (and novel) challenge here is to make forward chaining work with an incomplete
memo table M. Intuitively, we merely need to propagate updates as usual down through

N.W. Filardo and J. Eisner 431

unmemoized regions of the circuit, so that they reach and refresh any stale memos below.
However, updates in such a region have a different nature. When we update the memo

for an item i, each visible unmemoized descendant j remains consistent (in the terminology
of section 4). After all, the result of calling Lookup(j) would already reflect the change to i.

Thus, what we propagate to j is not really an update but a notification. It does not
say “change the value of j,” but rather “the value of j has already [implicitly] changed.”
Crucially, this notification must be propagated to the descendants of j. When it finally
reaches i’s visible memoized descendants k—which became inconsistent the moment that i’s
memo was updated—it will trigger updates there to repair the inconsistencies.8

The agenda A now contains two kinds of messages: A[j] may be either an update to j

or a notification from j. Recall from section 5 that an update to j is graphically displayed
above the line. A notification from j is drawn as f ^j : , with the change displayed below
the line to indicate that it has already descended through item j. In this paper, the change
is always a replacement by an unspecified (unk) value, written textually as j : ^.9

6.2 Push-Time Updates and Invalidations

The resulting code is shown in Figure 3. Our code also takes the opportunity to exploit
notifications even for memoized items. In the old Listing 3, Update(j, w) always enqueued
j : ^ w for later. Our new Update(j, w) in Listing 4 can still choose that option provided
that j is memoized (Line 4:8, a pop-time update), but its default is to Apply the update
immediately (Line 4:14, a push-time update). If so, it pushes only the notification j : ^
and there is no need to Apply the update at pop time. What does still happen at pop time
is propagation: it is not until we pop an update or a notification to j (Line 5:5) that we
visit j’s children (Line 6:2).10

What happens if Line 6:4 is optionally skipped (so that w = unk)? Then the resulting
Update is a refresh update as before (section 5) if processed at pop time. However, if processed
at push time, it is an invalidation update that deletes a memo instead of correcting it.
Propagating invalidations can clear out stale portions of the chart at lower computational
cost. Separately, the Flush method can also be called by the user or by FreelyManipulateM
(Listing 5) to delete individual memos without the need to propagate.

Like the forward chaining algorithm, the hybrid algorithm may start from any initial
chartM—but intensional items j now have the option ofM[j] = unk. The initial agenda
does not contain any notifications, but as before, it must include enough updates to correct
any inconsistencies in the initial chart. Since unmemoized intensional unk items are always
consistent by definition (section 4), the initial agenda never needs to have updates for them.
For example, the unk initialization strategy initializes just as in backward chaining
(section 3), with extensional items set correctly and everything else initially unk.

8 This algorithm has a more complicated invariant than that of section 5: When k is inconsistent, the
agenda contains either an update at k (as in section 5) or a notification at some visible ancestor of k.

9 However, in general, any change that can appear in an update could appear in a notification, e.g., a
more specific replacement ^ w, or a delta ⊕ w (see section 7).

10Why allow both pop-time and push-time updates? Pop-time updates are required for correctness in
certain settings involving delta updates (section 7). Also, pop-time updates include refresh updates,
which are useful in avoiding premature computation of the new value w (footnote 5). On the other
hand, push-time updates ensure fresher lookup results by immediately updatingM[j] to a new value
(or invalidating it to unk). If the same update is deferred to pop time, then any calls to Lookup(j)
while the update is waiting on the agenda will unfortunately get a stale memo for j, resulting in stale
descendants that must be updated after the update pops.

ICLP’12

432 A Flexible Solver for Finite Arithmetic Circuits

6.3 Correctness: Avoiding A Subtle Bug
Returning to the setting of section 6.1, again suppose that i was updated, making its de-
scendant k inconsistent, and that j is an unmemoized intermediate item on an i-to-k path.

Updating some other visible descendant of j (i.e., other than k) may cause j to get
recursively looked up and optionally memoized before its notification arrives. If j gets
memoized, it will receive an update rather than a notification. But the Compute(j) that
computes the update value will get the same answer as the Compute(j) that computed the
memo. That is, the memo M[j] was not stale but already reflected the change to i. This
causes a subtle bug: forward chaining will discard the apparently unnecessary update, rather
than propagating it on downward to k. Thus, k may remain inconsistent forever.

To prevent this bug, memoizing j must also enqueue a notification that the memo at j

has been updated. The correct behavior is illustrated in Figure 4. This notification reflects
the past update to i; it restores the invariant mentioned in footnote 8, and it will propagate
down to k as desired. Such a notification must be enqueued when memoizing any item j

such that Compute(j) recursed to some item that had a notification on the agenda. The
functions in Listing 7 return (as a second value) a flag that is true if this condition holds,
and enqueue the required notification at Line 7:22.

6.4 Efficiency: Obligation Tracking
Recall our challenge in section 4: backward chaining with optional memoization was a good
algorithm, but to support Update, we needed change propagation to refresh stale memos.

In our hybrid algorithm, we can use the unk initialization strategy (section 6.2) to recover
backward chaining. Change propagation will now be handled correctly.

Unfortunately, our propagation of notification through unmemoized regions is overly ag-
gressive. For example, if no intensional items have been memoized, then change propagation
should be completely unnecessary—this is the pure backward chaining case of section 4—
and yet our algorithm will visit all descendants of an Updated item! Our method visits all
children of an updated item to check whether they too may need updating. In pure forward
chaining, we can stop propagating (discard the update) at a child whose value is consistent;
but for an unk child the value is unknown, so we conservatively keep propagating.

In general, we should propagate down along an edge only when this may eventually reach
a memoized descendant. This requires obligation tracking: for every item in the circuit,
we desire to know if it has descendant memos which must be visited if its value changes.

We define the predicate obl(A[i] , j) (used on Line 6:2) to mean that i is obligated to
inform its child j of the update A[i]. By definition, this is so if j is memoized or is in turn
obligated to any of j’s children. As a result, obligation of items in an arithmetic circuit
C is naturally expressed as a boolean circuit Cobl that determines transitive reachability.
Roughly speaking, Cobl has the same topology as C but with the edge direction reversed.

We can be even more precise about determining obligation. Specifically, in the recursive
definition, i is not obligated to its child j if there is a notification at i or a refresh update
at j. In these cases, j and its descendants are guaranteed to get refreshed anyway, so it is
not necessary to propagate messages to j from i or its ancestors. One can again express this
tighter definition as a boolean circuit Cobl, whose boolean inputs are updated asM and A
evolve. Line 6:2 then queries this Cobl using our algorithm.

We can maintain Cobl in turn using (Cobl)obl, or by falling back to a cheaper obligation
tracking strategy at this stage. For example, obligation tracking is cheap on a circuit that
uses a memoization and flushing policy such that the memoized items always have memoized

N.W. Filardo and J. Eisner 433

1 Query(i ∈ I)
2 RunAgenda()
3 (v, ·) ← Lookup(i) % · will be false
4 return v

5
6 Update(j ∈ I, w ∈ V t {unk})
7 maybe
8 if (A[j] 6= ^) ∧ (M[j] 6= unk) then
9 delete A[j]

10 if (w = unk) ∨ (M[j] 6= w) then
11 A[j] ← ^ w

12 return
13 % else fall through
14 Apply(j, w)
15
16 Flush(j ∈ Iint)
17 if A[j] = ^ · then A[j] ← ^
18 M[j] ← unk

Listing 4 User interface methods. (A user
call to Update must have j ∈ Iext, w ∈ V.)

1 Propagate(i ∈ I)
2 foreach j ∈ Ci such that obl(A[i] , j)
3 w ← unk
4 maybe (w, ·) ← Compute(j)
5 Update(j, w)
6 delete A[i]
7
8 % Convert update to notification
9 HandleUpdate(i : ^ v)
10 vcur ← M[i] % will not be unk
11 maybe if v = unk then
12 (v, ·) ← Compute(i)
13 if v 6= vcur then % else discard
14 foreach j ∈ Ci maybe Lookup(j)
15 maybe v ← unk
16 Apply(i, v)
17
18 Apply(j ∈ Iint, w ∈ V t {unk})
19 M[j] ← w

20 A[j] ← ^

Listing 6 Forward chaining internals.

1 RunAgenda()
2 until A = ∅
3 FreelyManipulateM()
4 peek u from A
5 case u of
6 i : ^ → Propagate(i)
7 · : ^ · → HandleUpdate(u)
8
9 FreelyManipulateM()

10 done ← false
11 until done
12 foreach i ∈ Iint maybe Lookup(i)
13 foreach i ∈ Iint maybe Flush(i)
14 maybe done ← true

Listing 5 Nondeterministic high-level
control.

1 % Derive j’s value from parents
2 Compute(j ∈ Iint)
3 foreach i ∈ Pj

4 (vi, mi) ← LookupFromBelow(i)
5 FreelyManipulateM()
6 return (fj ({i 7→ vi | i ∈ Pj}),
7 maxi∈Pj mi)
8
9 % Interaction with forward chaining

10 LookupFromBelow(i ∈ I)
11 mc ← (A[i] = ^)
12 (v, mt) ← Lookup(i)
13 return (v, mc ∨mt)
14
15 % Derive i’s value from memo or parents
16 Lookup(i ∈ I)
17 if M[i] 6= unk then
18 return (M[i], false)
19 (v,m) ← Compute(i)
20 maybe
21 M[i] ← v

22 if m then A[i] ← ^
23 return (v, m)

Listing 7 Backward chaining internals.

Figure 3 The internals of our initial mixed-chaining algorithm, which combines forward and
backward reasoning and supports arbitrary Flushes during execution.

parents. In that case, i is obligated to its child j only when j is memoized, which can be
checked directly without an auxiliary circuit. Also, obligation tracking tolerates one-sided
error: it is always safe for an obligation query to conservatively return true, which at worst
just results in unnecessary propagation. This leads to cheap approximate obligation tracking
strategies, such as always returning true, or coarse-to-fine approximations where the circuits
C, Cobl, (Cobl)obl , . . . are progressively smaller because a node in one circuit corresponds to a
set of nodes in the previous circuit and is true if any of them are obligated.

ICLP’12

434 A Flexible Solver for Finite Arithmetic Circuits

• ^2 1
��

• 4
��=
''
=
��

+ 5
��= 5

• 2
��

• 4
��= ^
))
=
��

+
��= 5

Ü

• 2
��

• 4
��= ^
%-
=
��

+ ^ 6
��= 5

Ü

Figure 4 Backward chaining may need to enqueue notifications. After the top left update (“i”)
propagates to a notification ^ at its child, the + item (“j”) is flushed. Backward chaining from
the + item (through un-memoized items) memoizes an up-to-date result of 6. Because backward
chaining encountered a ^, the memoization enqueues another ^ at the + item, which ensures that
its child (“k”) will later be updated from 5 to 6.

6.5 Related Work
The recent constraint solver Kangaroo [24] was independently motivated by similar concerns.
Like us, it mixes backward and forward chaining. In Kangaroo, queries seek out relevant
updates—the reverse of our obligation approach, in which updates seek out relevant memo-
ized queries. We are more selective about storage than Kangaroo, which stores memos at
all nodes of the circuit.11 On the other hand, Kangaroo is more selective about runtime.
While it may have more memos, it updates only stale memos that are relevant to current
queries, whereas our current algorithm updates all stale memos.

Previous mixed-chaining algorithms have been simpler. For functional programming,
Acar et al. [1, 3] answer queries by backward chaining with full memoization; they update
these memos by forward chaining of replacement updates. The same strategy is used for
Prolog by Saha and Ramakrishnan [26, 27], who contrast it with the “DRed” strategy that
forward-chains invalidation updates [16]. The “magic sets” transformation for Datalog [25]
can be seen as a variant of these strategies. It uses only forward chaining, but restricted to
items that would have been visited by backward chaining from the given query. All of these
strategies memoize every computed item. In contrast, we are more economical with space.

Acar et al. [2] do separately consider selective memoization, but do not handle updates in
this more challenging case (see section 6). A different selective strategy [19] relies primarily
on unmemoized backward chaining. It first performs forward chaining on a given sub-circuit
to identify and memoize a subset of true values. However, this relies on the special property
of Datalog that a true node of a sub-circuit is also true in the full circuit.

We believe that our framework can naturally be extended with richer computational
strategies (see section 7). This is because it integrates fully selective memoization with a
mixed chaining strategy, and because it has a general notion of an agenda of pending work,
which can support a variety of update types, prioritization heuristics, and parallelizations.

7 Extensions

Some of the following extensions to our hybrid algorithm of section 6 are not too difficult,
and we sketch them here. We defer full treatments to a longer version of this paper.

Richer Vocabulary of Updates For simplicity, this paper has focused on replacement up-
dates i : ^ v. However, our prototype of Dyna [11] actually used agenda-based forward
chaining with delta updates such as i : ⊕ v for some operator ⊕. Applying this update at

11 Selective memoization is an added reason for mixed chaining. Our forward chaining sometimes invokes
backward chaining, in order to re-Compute the value of a stale item with an unmemoized parent.

N.W. Filardo and J. Eisner 435

pop time increments the old memoM[i] toM[i]⊕ v. Similarly, Dijkstra’s shortest-path al-
gorithm [7] chooses to use forward chaining with push-time delta updates, which are applied
immediately and push delta notifications i : ⊕ v onto the agenda (where ⊕ is min). A delta
update at i is sometimes cheap to propagate to j, compared to a replacement update. This
is because one can sometimes avoid a full call to Compute(j) at Line 6:4—which looks up
or computes all the parents of j—by exploiting arithmetic properties such as distributivity
of fj over ⊕, or associativity and commutativity of ⊕ if fj = ⊕.12 Also, associativity and
commutativity of ⊕ updates can be used to simplify the agenda data structure.

Circuit Transformation Even replacement updates can sometimes be propagated to j with-
out a full call to Compute(j). Consider the case where fj aggregates a large set of parents Pj

using an associative binary operator. We can statically or dynamically transform the circuit
to replace the direct edges from Pj to j with a binary aggregation tree. As this tree is
just part of the circuit, it can use any strategy. In particular, if we maintain memos at the
tree’s internal nodes, then we can propagate a change from i ∈ Pj to j in time O(log |Pj |).

Circuits can also be rearranged into more efficient forms by refactoring arithmetic ex-
pressions. It is possible to carry out such rearrangements by transforming the weighted logic
program from which the circuit is derived [8]. But in principle, one might also rearrange the
circuit locally as inference proceeds.

Aborting Backward Chaining by Guessing Our algorithm can be extended to handle cyclic
arithmetic circuits.13 Pure forward chaining can propagate updates around cycles indefi-
nitely in hopes that the memos will converge [11]. If so, it finds a fixed-point solution S.
But backward chaining does not work on the same circuit: it can recurse around the cycles
forever without ever making progress by creating a memo. There is an interesting solution.

In general, we can interrupt any long backward-chaining recursion by allowing Compute(j)
to optionally guess an arbitrary memo for M[j] (perhaps null). In this case we must
enqueue a refresh update j : ^, which serves as a continuation. Popping this update later
will resume backward chaining and check that our guess at j is consistent with j’s ancestors
(perhaps including j itself, cyclically). If not, it will use the agenda to propagate a fix by
forward chaining (perhaps cyclically until convergence). If j is already obligated to any
children, we must also enqueue a notification j : ^ to alert them that guessing M[j] may
have changed it from the previous value of Lookup(j).

Fine-Grained Obligation Suppose j is an or node whose parent i has value true, or a ×
node whose parent i has value 0. As long as i has this value, j is insensitive to its other
parents, who should not be obligated to propagate their updates to j. This generalizes the
watched variable trick from the satisfiability community [22].

On-Demand Propagation Our current algorithm calls RunAgenda at the start of every
Query, which refreshes all stale memos—including those that are not relevant to this query.
This can be especially inefficient for cyclic or infinite circuits. We would prefer to propagate
only the currently relevant updates, as in Kangaroo [24].

12This is slightly tricky when ⊕ is not idempotent, but solved in [11].
13Our current definition of obligation is overly broad in the cyclic case. It can create self-supporting

obligation, where updates are unnecessarily propagated around cycles without actually refreshing any
memos, merely because each item believes it is obligated to the next. Restoring efficiency in this case
has been considered by [20].

ICLP’12

436 A Flexible Solver for Finite Arithmetic Circuits

Continuous Queries and Snapshots A continuous query of item i in an arithmetic
circuit is a request to be notified (e.g., via callback) whenever Updates have caused Query(i)
to change. Continuous queries are also used in databases and from functional reactive
programming [13, 6]. Some users may also like to be notified of any updates that reach i as
our algorithm runs, allowing them to peek at intermediate statesM[i].

Programs We are actively working to extend the algorithms presented here to work not
on arithmetic circuit descriptions directly but on Prolog-like weighted rules of Datalog with
Aggregation [15, 5] and Dyna [9]. These programs can describe infinite generalized arith-
metic circuits with value-dependent structure and with infinite fan-in or fan-out. A query,
update, or memo may now be specified using a pattern that makes it apply to infinitely
many items. This is the most challenging extension we have discussed.

8 Conclusion

We have developed a dynamic algorithm for solving arithmetic circuits and maintaining the
solution under updates to the inputs. The solver can smoothly mix backward and forward
chaining, while selectively memoizing results (and flushing memos). Different chaining and
memoization strategies can be used as needed for different parts of the circuit, which does
not affect correctness but can potentially improve time or space efficiency. Our framework
also provides a basis for several extensions.

Acknowledgements This research was funded in part by the JHU Human Language Tech-
nology Center of Excellence. We would further like to thank John Blatz for useful early
discussions, and an anonymous reviewer for calling our attention to Kangaroo [24].

References
1 Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional programming.

In Proc. of POPL, pages 247–259, 2002.
2 Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective memoization. In Proc. of

POPL, pages 14–25, 2003.
3 Umut A. Acar and Ruy Ley-Wild. Self-adjusting computation with Delta ML. In Pieter

W. M. Koopman, Rinus Plasmeijer, and S. Doaitse Swierstra, editors, Advanced Functional
Programming, volume 5832 of Lecture Notes in Computer Science, pages 1–38. Springer,
2008.

4 A. Borodin and I. Munro. The computational complexity of algebraic and numeric problems.
Elsevier, 1975.

5 Sara Cohen, Werner Nutt, and Alexander Serebrenik. Algorithms for rewriting aggre-
gate queries using views. In Proc. of ADBIS-DASFAA, pages 65–78, London, UK, 2000.
Springer-Verlag.

6 Antony Courtney and Conal Elliott. Genuinely functional user interfaces. In 2001 Haskell
Workshop, September 2001.

7 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

8 Jason Eisner and John Blatz. Program transformations for optimization of parsing algo-
rithms and other weighted logic programs. In Shuly Wintner, editor, Proc. of FG 2006:
The 11th Conference on Formal Grammar, pages 45–85. CSLI Publications, 2007.

N.W. Filardo and J. Eisner 437

9 Jason Eisner and Nathaniel W. Filardo. Dyna: Extending Datalog for modern AI. In Tim
Furche, Georg Gottlob, Oege de Moor, and Andrew Sellers, editors, Datalog 2.0, volume
(to be published) of LNCS. Springer, 2011.

10 Jason Eisner and Nathaniel W. Filardo. Dyna: Extending Datalog for modern AI (full
version). Technical report, Johns Hopkins University, 2011. Available at dyna.org/
Publications. A condensed version appeared as [9].

11 Jason Eisner, Eric Goldlust, and Noah A. Smith. Compiling comp ling: Weighted dynamic
programming and the Dyna language. In Proc. of HLT-EMNLP, pages 281–290, Vancouver,
October 2005. Association for Computational Linguistics.

12 Gal Elidan, Ian Mcgraw, and Daphne Koller. Residual belief propagation: Informed
scheduling for asynchronous message passing. In Proceedings of the 22nd Conference on
Uncertainty in Artificial Intelligence, 2006.

13 Conal Elliott and Paul Hudak. Functional reactive animation. In International Conference
on Functional Programming, 1997.

14 Michael T. Goodrich and Roberto Tamassia. Data Structures and Algorithms in JAVA.
Wiley, 1998.

15 Sergio Greco. Dynamic programming in datalog with aggregates. IEEE Transactions on
Knowledge and Data Engineering, 11(2):265–283, 1999.

16 Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views in-
crementally. In Peter Buneman and Sushil Jajodia, editors, SIGMOD Conference, pages
157–166. ACM Press, May 1993.

17 Martin Kay. Algorithm schemata and data structures in syntactic processing. In B. J. Grosz,
K. Sparck Jones, and B. L. Webber, editors, Readings in Natural Language Processing,
pages 35–70. Kaufmann, Los Altos, CA, 1986. First published in 1980 as Xerox PARC
Technical Report CSL-80-12 and in the Proceedings of the Nobel Symposium on Text
Processing, Gothenburg.

18 Dan Klein and Christopher D. Manning. A∗ parsing: Fast exact Viterbi parse selection. In
Proc. of HLT-NAACL, 2003.

19 Thomas Labish. Developing a combined forward/backward-chaining system for logic pro-
grams in a hybrid expertsystem shell. Master’s thesis, Universität Kaiserlautern, June
1993. In German.

20 Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou, Zachary G. Ives, and Boon Thau Loo.
Recursive computation of regions and connectivity in networks. IEEE 25th International
Conference on Data Engineering, 2009.

21 J.W. Lloyd and R.W. Topor. A basis for deductive database systems. The Journal of Logic
Programming, 2(2):93 – 109, 1985.

22 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient sat solver. In DAC, pages 530–535, Las Vegas, NV, USA,
June 2001. ACM.

23 Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur
Datar, Gurmeet Singh Manku, Chris Olston, Justin Rosenstein, and Rohit Varma. Query
processing, approximation, and resource management in a data stream management system.
In CIDR, 2003.

24 M. A. Hakim Newton, Duc Nghia Pham, Abdul Sattar, and Michael Maher. Kangaroo:
An efficient constraint-based local search system using lazy propagation. In 17th Interna-
tional Conference on Principles and Practice of Constraint Programming, pages 645–659,
Perugia/Italy, September 2011.

25 Raghu Ramakrishnan. Magic templates: a spellbinding approach to logic programs. Journal
of Logic Programming, 11(3-4):189–216, 1991.

ICLP’12

dyna.org/Publications
dyna.org/Publications

438 A Flexible Solver for Finite Arithmetic Circuits

26 Diptikalyan Saha. Incremental Evaluation of Tabled Logic Programs. PhD thesis, Stony
Brook University, December 2006.

27 Terrance Swift and David Scott Warren. XSB: Extending Prolog with tabled logic pro-
gramming. CoRR, abs/1012.5123, 2010. Under consideration for publication in Theory
and Practice of Logic Programming.

28 Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1. Com-
puter Science Press, 1988.

29 Alan G. Yoder and David L. Cohn. Domain-specific and general-purpose aspects of spread-
sheet languages. In Proceedings of the Workshop on Domain-Specific Languages, 1997.

30 G. Zweig and M. Padmanabhan. Exact alpha-beta computation in logarithmic space with
application to map word graph construction. In Proceedings of ICSLP, 2000.

Software Model Checking by Program
Specialization
Emanuele De Angelis

University ‘G. d’Annunzio’ of Chieti-Pescara,
Viale Pindaro 42, I–65127 Pescara, Italy
Email: deangelis@sci.unich.it

Abstract
We introduce a general verification framework based on program specialization to prove properties
of the runtime behaviour of imperative programs. Given a program P written in a programming
language L and a property ϕ in a logic M , we can verify that ϕ holds for P by: (i) writing
an interpreter I for L and a semantics S for M in a suitable metalanguage, (ii) specializing I
and S with respect to P and ϕ, and (iii) analysing the specialized program by performing a
further specialization. We have instantiated our framework to verify safety properties of a simple
imperative language, called SIMP, extended with a nondeterministic choice operator. The method
is fully automatic and it has been implemented using the MAP transformation system [14].

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Software model checking, program specialization, constraint logic
programming.

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.439

1 Introduction and problem statement

Formal verification techniques allow us to prove that software artefacts (e.g., analysis and
design models and source code) satisfy some given specifications. These techniques have
recently received a growing attention as the basis for a promising methodology to increase the
reliability and reducing the cost of software production (e.g., by reducing time to market).

Software model checking is a body of formal verification techniques for imperative
programs that combine and extend ideas and techniques developed in the fields of static
program analysis and model checking (see [12] for a recent survey). In order to prove that
a program satisfies a given specification, software model checking methods automatically
construct a program model which is sound, in the sense that if the model satisfies the given
specification, then so does the actual program. Constructing such a model is a critical aspect
of software model checking, since it tries to meet two somewhat conflicting requirements.
On one hand, in order to make the verification process of large programs viable in practice,
it has to construct a model by abstracting away as many details as possible. On the other
hand, it would be desirable to have a model which is as precise as possible to reduce the
number of wrong detections. Unfortunately, even for small programs operating over integer
variables, an exhaustive exploration of the state space generated by the execution of programs
is practically infeasible, and simple properties such as safety (which essentially states that
‘something bad never happens’) are undecidable. Despite this undecidability limitation,
software model checking techniques work in many practical cases.

A huge amount of imperative languages is nowadays available. These languages provide
sophisticated features which continuously change. Thus, software model checkers are required
to be rapidly adapted to those changes. In order to develop tools which meet such a

© Emanuele De Angelis;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 439–444

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.439
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

440 Software Model Checking by Program Specialization

requirement, agile development methodologies should be employed. In this paper we consider
program specialization as a framework in which model checking of imperative programs may
be performed in a very agile, effective way. Program specialization is a program transformation
technique whose objective is the adaptation of a program to the context of use. In particular,
it turns out to be a very flexible and general methodology through which variations of the
semantics of the considered imperative language and to different logics for expressing the
properties of interest may be rapidly implemented into the software model checker. Indeed, by
following this approach, which can be regarded as a generalization of the one proposed in [16],
given a program P written in a programming language L, and a property ϕ in a logic M , we
can verify that ϕ holds for P by: (i) writing an interpreter I for L and a semantics S for M
in a suitable metalanguage, (ii) specializing the interpreter and the semantics with respect
to P and ϕ, and finally (iii) analysing the specialized program. We choose Constraint Logic
programming (CLP), which has been shown to be a very suitable language for implementing
symbolic evaluation and analysis of imperative programs [10, 11, 16, 17], as a metalanguage.

2 Background and overview of the existing literature

Constraint logic programming has been successfully applied to perform model checking of
both finite state [15] and infinite state [4] systems. In [6] a framework for the verification of
safety properties of infinite reactive systems based on CLP program specialization has been
introduced. Moreover, in [7] it has been shown that the termination of reachability analyses
of infinite state systems can be improved by encoding reachability as a CLP program and
then specializing the CLP program by incorporating the information about the initial and
the unsafe states. The use of CLP to analyse simple imperative programs has been proposed
in [16], where a CLP-based interpreter for the operational semantics of a simple imperative
language is partially evaluated w.r.t. an input program. The result of the analysis of the
residual CLP program can thus be used for annotating the original imperative program with
relations among variables occurring in the imperative program. In [8] a method is presented
for translating imperative programs supporting heap-allocated mutable data structures and
recursive procedures to CLP.

A widely used technique implemented by software model checkers (e.g. SLAM and
BLAST) is the Counter-Example Guided Abstraction Refinement (CEGAR) [12] which,
given a program P and a safety property ϕ, uses an abstract model α(P) to check whether
or not P satisfies ϕ. If α(P) satisfies ϕ then P satisfies ϕ, otherwise a counterexample,
i.e., an execution which makes the program unsafe, is produced. The counterexample is
then analysed: if it turns out to be a real execution of P (genuine counterexample) then
the program is proved to be unsafe, otherwise it has been generated due to a too coarse
abstraction (spurious counterexample) and α(P) needs to be refined. The CEGAR approach
has also been implemented by using CLP. In particular, in [17], the authors have designed a
CEGAR-based software model checker for C programs, called ARMC. In [10], another CLP-
based software model checker for C programs, called TRACER, is presented. It integrates
an abstraction refinement phase within a symbolic execution process.

3 Goal of the research

The goal of our research is to introduce a software model checking framework, based on
the specialization of CLP programs, which is parametric with respect to: (i) the imperative
language of the programs to be verified, and (ii) the specification language of the property

E. De Angelis 441

to be checked. Regardless of the actual languages, the software model checker consists
of a front-end module, which handles source code of programs, and a verification engine
module which actually performs the verification task. Since our objective is performing
software model checking of real programs we have to deal with issues arising from handling
programs consisting of thousands of lines of code and using advanced features of imperative
languages. Handling large programs introduces scalability issues which are to be carefully
considered during the realization of the front-end. Indeed, the choices made during the design
of the front-end may heavily affect the performance of the verification engine. More complex
issues arise from handling programs using static and dynamic data structures, procedures,
concurrency and objects. Consequently, a large portion of our research activity is devoted
to designing abstraction techniques to be integrated in the CLP specialization process to
prove properties which range from simple safety properties, such as array bound checking,
to more sophisticated properties dealing with contents of data structures (e.g., sortedness),
class relations (e.g., inheritance) and object interactions (e.g., effects of method invocations
on object fields) and concurrent processes.

Our first mid-term objective is to realize a software model checker for the C language,
which is still very popular, especially among device drivers and operating systems developers.
A renewed attention to the C language is demonstrated in the TACAS 2012 competition
(http://sv-comp.sosy-lab.org/2012/) in which several C software model checkers have
been tested on very large programs preprocessed by using the CIL (C Intermediate Language)
front-end (http://cil.sourceforge.net/). Thus, in order to ease the comparison with
other tools we have decided to instantiate our framework to perform model checking of the C
language by: (i) using CIL to translate the source language, and (ii) introducing a verification
engine to prove safety properties of C programs.

4 Current status of the research

As a first step of our research activity we have instantiated our framework to perform the
model checking of programs written in a simple imperative language with nondeterministic
choice (SIMP), which is an abstraction of a subset of the C language. In particular, we have
considered integer variables and the common control flow statements: while(b) { · · · } and
if(b) {· · ·} else {· · ·}. The operational, or transition, semantics of SIMP is defined in
terms of a transition relation ⇒ over states, that is, pairs of the form 〈p, e〉, where p is a
command and e is an environment, i.e, a function which maps variables occurring in p to
their values. A state s′ is said to be reachable from s if s⇒∗ s′. A specification S is a triple
〈initial-prop, p, unsafe-prop〉, where p is a command and initial-prop and unsafe-prop are two
formulas describing environments. A state 〈p, e〉 is said to be initial (unsafe) if e satisfies
initial-prop (unsafe-prop). We say that S holds, or p is safe w.r.t. S, if there is no unsafe
state which is reachable from an initial state. Performing model checking of p consists in
verifying whether or not S holds. In order to perform model checking of SIMP commands
we have defined a CLP-based interpreter of the operational semantics of SIMP as follows:

t(s(asgn(loc(X),A),E1), s(skip,E2)) :- aeval(A,E1,V), update(loc(X),V,E1,E2).
t(s(ite(B,S1,_),E), s(S1,E)) :- beval(B,E).
t(s(ite(B,_,S2),E), s(S2,E)) :- beval(not(B),E).
t(s(ite(ndc,S1,_),E), s(S1,E)).
t(s(ite(ndc,_,S2),E), s(S2,E)).
t(s(while(B,S1),E), s(ite(B,comp(S1,while(B,S1)),skip),E)).
t(s(comp(skip,S),E), s(S,E)).
t(s(comp(S1,S3),E1), s(comp(S2,S3),E2)) :- t(s(S1,E1), s(S2,E2)).

ICLP’12

http://sv-comp.sosy-lab.org/2012/
http://cil.sourceforge.net/

442 Software Model Checking by Program Specialization

where t(s(P,E), s(P1,E1)) holds iff 〈P, E〉 ⇒ 〈P1, E1〉, that is, the execution of the com-
mand P in the environment E leads to the execution of the command P1 in the environment
E1. Terms of the form s(P,E) denote states, where P ranges over ground terms built out
of the following functors: asgn for the assignment, ite for the if-then-else statement (ndc
represents the nondeterministic choice operator), while for the while loop, skip for the
empty statement, comp for the statement composition, and E is a list of terms encoding the
environment. We also have that: (i) aeval(A,E,V) holds iff V is the value of the arithmetic
expression A in the environment E, (ii) beval(B,E) holds iff the boolean expression B evalu-
ates to true in the environment E, and (iii) update(loc(X),V,E1,E2) holds iff E2 is equal
to E1 except in X which takes the value V (loc encodes a variable identifier).

Let S = 〈initial-prop, p, unsafe-prop〉 be a specification. We reduce the problem of
verifying whether or not a command is safe to a reachability problem by using the CLP
program SMC which consists of the following clauses:

unsafeProg :- initial(X), reachable(X).
reachable(X) :- unsafe(X).
reachable(X) :- t(X,X1), reachable(X1).
initial(s(p,E)) :- initial-prop.
unsafe(s(_,E)) :- unsafe-prop.

together with the clauses defining the semantics of SIMP. In the above program, p stands for
the ground term encoding the command p, while initial-prop and unsafe-prop stand for
constraints encoding the formulas initial-prop and unsafe-prop, respectively.

Our software model checking method consists in:
(Step 1) encoding the specification S into the clauses for initial, and unsafe,
(Step 2) specializing SMC with respect to unsafeProg, and
(Step 3) computing the least model M(SpSMC) of the specialized program SpSMC, and
checking whether or not unsafeProg belongs to the least model M(SpSMC).

The objective of Step 2 is to modify the initial program SMC by propagating the information
specified by initial, so that by exploiting this information, the computation of the least
model M(SpSMC) may be more effective and terminate more often than the computation of
the least model M(SMC). In particular, the interpretation overhead is compiled away by
specialization, thereby producing a CLP program where no terms encoding the command p are
present. Step 2 is performed by a rule-based program specialization strategy which makes use
of the following rules: definition introduction, unfolding, folding, and clause removal. These
rules preserve the least model semantics of CLP programs [5], thus, the specialization strategy
yield a program which is guaranteed to satisfy the same set of properties satisfied by the
original program. Indeed, we have that unsafeProg∈M(SMC) iff unsafeProg∈M(SpSMC).
In order to ensure the termination of Step 2, we use suitable generalization operators, related
to widen operators used in abstract interpretation techniques [2].

I Example 1. Let us consider the following specification 〈x = 0∧y ≥ 0, p, error = 1〉, where p
stands for: while (x < 10) { y = y+1; x = x+1; } if (y + x < 10) { error = 1; } . We
encode p into the term
comp(while(lt(loc(x),int(10)), comp(asgn(loc(y),plus(loc(y),int(1))),

asgn(loc(x),plus(loc(x),int(1))))),
ite(lt(plus(loc(y),loc(x)),int(10)), asgn(loc(error),int(1)), skip))

where the functor int encodes an integer value. By also translating the remaining components
of the specification we obtain the following clauses:

initial(s(p,[X,Y,E])) :- X=0, Y>=0, E=0.
unsafe(s(_,[X,Y,E])) :- E=1.

E. De Angelis 443

where p stands for the term encoding p. By specializing SMC with respect to unsafeProg,
we obtain the following program

new3(X,Y,E) :- X>=0, X<10, Y>=X, E=0, X1=X+1, Y1=Y+1, new3(X1,Y1,E).
new3(X,Y,E) :- X>=10, Y>=X, E=0, new5(X,Y,E).
new2(X,Y,E) :- X=0, Y>=0, E=0, X1=1, Y1=Y+1, new3(X1,Y1,E).
unsafeProg :- X=0, Y>=0, E=0, new2(X,Y,E).

whose model is used to verify whether or not p is safe. Since the program contains no
constrained fact, we have that M(SpSMC) is empty, and thus p is safe.

In [16], the interpreter is specialized w.r.t. the input program and a static analyser
for CLP programs is used to derive relations among variables occurring in the imperative
program. In our method, we discover these relations during the specialization process by
means of generalization techniques defined in terms of relations and operators on constraints
such as widening, convex-hull, and well-quasi orders.

5 Preliminary results accomplished

We have implemented our software model checking method using the MAP transformation
system [14] for the verification engine module and the Lex and Yacc tools for the front-end
module (it is currently being rewritten in CIL). We have shown the effectiveness of our method
by applying it to some examples (available at http://map.uniroma2.it/smc) taken from the
literature [9, 10], and we have compared its performance with that of ARMC and TRACER.
Among the wide variety of software model checkers nowadays available, we choose ARMC
and TRACER because they provide CLP based implementations of two dual verification
approaches: ARMC starts with a very coarse abstraction and uses counterexamples to
increase the level of details of the model and, conversely, TRACER starts with a very detailed
model and uses counterexamples to abstract away as many details as possible and, possibly,
refines it if the model is too coarse to prove the property. Our preliminary results (see
Table 1) show that our approach is viable and competitive in practice.

Table 1 Time (in seconds) for performing model checking (TRACER was run by using the option
–intp wp). ⊥ denotes ‘terminating with error’, ∞ means ‘No answer within 20 minutes’.

Tool f2 substring daggerP seesaw tracerP interp widen selectSort
ARMC ∞ 719.39 ∞ 3.98 ∞ 0.13 ∞ 0.48
TRACER 1.35 227.28 1.27 1.46 1.04 1.32 1.35 ⊥
MAP 0.21 10.20 5.37 0.03 0.03 0.06 0.07 0.06

6 Open issues and expected achievements

A challenging issue is the extension of our framework to deal with more complex language
features provided by imperative languages such as arrays, lists, procedure calls, and concur-
rency. Moreover, since it is possible to deal with imperative languages at different levels of
abstraction, it would be interesting to extend the framework to verify properties of both:
(i) high-level languages with object-oriented features, such as Java, PHP, Objective C or
C# [13], and (ii) low-level languages such as bytecode for Java [1] or for the .NET platform [3].
From the verification point of view, such extensions would require the design of suitable
interpreters for handling the newly introduced language features, posing new theoretical and
experimental challenges.

ICLP’12

http://map.uniroma2.it/smc

444 Software Model Checking by Program Specialization

Another challenging issue is the extension of the set of properties which can be proved. In
Section 3 we listed some interesting properties depending on the content of data structures,
the relations among objects and among classes, and the behavior of concurrent processes.
Handling these properties not only requires the investigation of suitable logics in which
they may be expressed, but also raises the issue of integrating them into the verification
process. In particular, it could be necessary to resort to more sophisticated logic program
transformations based on the unfold/fold method.

References
1 E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java bytecode

using analysis and transformation of logic programs. In Proc. of PADL’07, volume 4354 of
LNCS, pp. 124–139, 2007.

2 P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixpoints. In Proc. of POPL’77,
pp. 238–252. ACM Press, 1977.

3 P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor for fully auto-
matic and scalable array content analysis. In Proc. of POPL’11, pp. 105–118, 2011.

4 G. Delzanno and A. Podelski. Model checking in CLP. In Proc. of TACAS’99, LNCS 1579,
pp. 223–239, 1999.

5 S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Computer
Science, 166:101–146, 1996.

6 F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL Properties of Infinite State
Systems by Specializing Constraint Logic Programs. In Proc. of VCL’01, pp. 85-96. Revised
and extended Version: Technical Report R.657, IASI - CNR, 2007, Roma, Italy.

7 F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Improving Reachability Analysis
of Infinite State Systems by Specialization. In Proc. of RP’11, pp. 165–179, 2011.

8 C. Flanagan. Automatic software model checking via constraint logic. Sci. Comput. Pro-
gram., 50(1-3):253–270, March 2004.

9 B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani. Automatically Refining
Abstract Interpretations. In Proc. of TACAS’08, LNCS 4963, pp. 443–458, 2008.

10 J. Jaffar, J. A. Navas, and A. E. Santosa. TRACER: A symbolic execution tool for verifi-
cation. http://paella.d1.comp.nus.edu.sg/tracer/.

11 J. Jaffar, J. A. Navas, and A. E. Santosa. Symbolic execution for verification. Computing
Research Repository, 2011.

12 R. Jhala and R. Majumdar. Software model checking. ACM Comput. Surv., 41(4):21:1–
21:54, October 2009.

13 G.T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification challenges for
sequential object-oriented programs. Form. Asp. Comput., 19(2):159–189, June 2007.

14 The MAP transformation system. http://www.map.uniroma2.it/mapweb.
15 U. Nilsson and J. Lübcke. Constraint logic programming for local and symbolic model-

checking. In Proc. of CL 2000, LNAI 1861, pp. 384–398, 2000.
16 J. C. Peralta, J. P. Gallagher, and H. Saglam. Analysis of imperative programs through

analysis of constraint logic programs. In Proc. of SAS’98, LNCS 1503, pp. 246–261,1998.
17 A. Podelski and A. Rybalchenko. ARMC: The logical choice for software model checking

with abstraction refinement. In Proc. of PADL’07, LNCS 4354, pp. 245–259, 2007.

http://paella.d1.comp.nus.edu.sg/tracer/
http://www.map.uniroma2.it/mapweb

Temporal Answer Set Programming ∗

Martín Diéguez

University of Corunna
Corunna, Spain
martin.dieguez@udc.es

Abstract
Answer Set Programming (ASP) has become a popular way for representing different kinds of
scenarios from knowledge representation in Artificial Intelligence. Frequently, these scenarios
involve a temporal component which must be considered. In ASP, time is usually represented
as a variable whose values are defined by an extensional predicate with a finite domain. Dealing
with a finite temporal interval has some disadvantages. First, checking the existence of a plan
is not possible and second, it also makes difficult to decide whether two programs are strongly
equivalent.

If we extend the syntax of Answer Set Programming by using temporal operators from tem-
poral modal logics, then infinite time can be considered, so the aforementioned disadvantages
can be overcome. This extension constitutes, in fact, a formalism called Temporal Equilibrium
Logic, which is based on Equilibrium Logic (a logical characterisation of ASP).

Although recent contributions have shown promising results, Temporal Equilibrium Logic
is still a novel paradigm and there are many gaps to fill. Our goal is to keep developing this
paradigm, filling those gaps and turning it into a suitable framework for temporal reasoning.

1998 ACM Subject Classification F.4.1 Mathematical Logic/Temporal logic, I.2.3 Deduction
and Theorem Proving/Logic programming

Keywords and phrases Answer Set Programming, Temporal Equilibrium Logic, Linear Temporal
Logic

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.445

1 Introduction and motivation

Modal Temporal Logics have become a popular paradigm used in protocol specification
and representation of temporal scenarios. There are many techniques and tools that allow
checking some desirable properties over temporal systems defined by this kind of logics, but
most of them usually involve representational issues such as the limitation to propositional
definition of the scenarios and several inherent problems like the frame problem [24].

Another paradigm used for temporal reasoning is Answer Set Programming [25, 23],
whose roots are based on Logic Programming and Non-monotonic Reasoning. Thanks to
the use of variables in the representation, reasoning with incomplete information and the
existence of high performance solvers to compute the models (solutions) of the problem, ASP
has become a suitable paradigm for representing and solving search problems in Artificial
Intelligence. ASP has been commonly used to represent temporal scenarios [19] due to
both the use of variables in the specifications and the easy definition of inertia rules which
avoid the frame problem inherent to the formalisation of temporal problems. In fact, there
are several action languages that use an ASP tool as a backend [14]. Despite all these

∗ This research was partially supported by Spanish MEC project TIN2009-14562-C05-04.

© Martín Diéguez;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 445–450

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.445
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

446 Temporal Answer Set Programming

features, its main disadvantage is that time is represented by an extensional predicate with
a finite domain, and consequently, a desired property like checking the existence of a plan
for a particular representation is not possible. Furthermore, it makes checking whether two
temporal theories are strongly equivalent more difficult (or impossible if arbitrary temporal
formulas are allowed). In order to motivate our research, let us consider the following
example:

I Example 1. A wolf, a goat and a cabbage are on one bank of a river and the boatman
has to take them, safe and sound to the other side. The boatman can take at most one of
them at a time. Finally, the following condition is applied: the wolf will eat the goat, and
the goat will eat the cabbage, if they are left alone at the same side of the river.

1. time(0..max). opp(l,r). opp(r,l).
2. item(w). item(g). item(c).
3. eats(w,g). eats(g,c). object(b).
4. object(Z) :- item(Z).
5. next(I,I1) :- I1 = I+1, time(I1), time(I).

6. % Effect axiom for moving
7. at(X,A,T2):- at(X,B,T1), m(X,T1),
8. opp(A,B), next(T1,T2).

9. % The boat is always moving
10. at(b,A,T2):- at(b,B,T1), opp(A,B),
11. next(T1,T2).

12. % Inertia
13. at(Y,A,T2) :- at(Y,A,T1), not at(Y,B,T2),
14. opp(A,B), next(T1,T2).

15. % State constraint
16. :- eats(X,Y), at(X,A,T), at(Y,A,T),
17. at(b,B,T), opp(A,B).

18. % Unique value constraint

19. :- at(Y,A,T), at(Y,B,T), opp(A,B).

20. % Choice rules for action execution
21. m(X,T) :- not a(X,T), time(T),
22. item(X), T < max.
23. a(X,T) :- not m(X,T), time(T),
24. item(X), T < max.

25. % Action executability
26. :- m(X,T), at(b,A,T), at(X,B,T),
27. opp(A,B).

28. % Non-concurrent actions
29. :- m(X,T), m(Z,T), X != Z.

30. % Initial state: everything at
31. % left bank
32. at(Y,l,0):- object(Y).

33. % Goal: all items at right bank
34. g :- at(w,r,T), at(g,r,T), at(c,r,T).
35. :- not g.

As shown above, this representation encodes time in a variable I which is appended to
every temporal predicate. This variable takes its values from {0,1,2,...,max}, being max a
constant value which fixes the extension of the predicate time/1. Furthermore an example
of an inertia rule is shown in lines 13 and 14. In an LTL formalisation, the information of
this rule should be encoded in every fluent, considering every possible indirect effect.

Our proposal extends the syntax of ASP with operators to talk about time, like those
defined in Linear Temporal Logic (LTL) [22], whose semantics is shown in Definition 2. To
achieve this, we will make use of Temporal Equilibrium Logic (TEL) [10], which combines
Equilibrium Logic [26] (a logical characterization of Answer Set Programming) and the
aforementioned Linear Temporal Logic. This formalism introduces the definition of Temporal
Stable Models (analogous to stable models [15] for any temporal theory). In TEL, every
reference to time is encoded through modal operators. Therefore it is possible to consider an
infinite-length narrative, overcoming the disadvantages of the current ASP approaches.

I Definition 2. LTL semantics
Let I = {s0, s1, ..., sn} a set of set of atoms, i an integer (i ≥ 0) and α an LTL formula. We
say that I, i |= α if:

M. Diéguez 447

I, i |= p if p ∈ si.
I, i |= ¬α if I, i 6|= α.
I, i |= α ∧ β if I, i |= α and I, i |= β.
I, i |= α ∨ β if I, i |= α or I, i |= β.
I, i |= �α if ∀j ≥ i, I, j |= α.

I, i |= ♦α if ∃j ≥ i, I, j |= α.
I, i |=©α if I, i+ 1 |= α.
I, i |= αUβ if ∃n ≥ i, I, n |= β and
∀j, i ≤ j < n, I, j |= α.
I, i |= αRβ ⇐⇒ I, i |= ¬(¬αU¬β).

2 Goal of research and preliminary results accomplished

As we have mentioned before, Temporal Equilibrium Logic is a novel research topic and
of course, maturity of the results obtained so far is not comparable to the state of the art
in Answer Set Programming. The foundations of Temporal Equilibrium Logic are defined
in [10]. The property of strong equivalence among temporal logic programs has been studied
in [3] where the authors define a translation that allows us to check this property in Linear
Temporal Logic using an LTL model checker. The normal form of TEL programs is defined
in [7]. Every TEL theory can be translated, like in the non-temporal case, into a set of
implications, but in the case of TEL normal form, some of those can be under the scope of
the LTL operator “�” (read “forever”).

Recent results have focused on computing temporal equilibrium models. A first contribu-
tion [4] studies the computation of temporal equilibrium models for a subset of the already
mentioned TEL normal form, which receives the name of Splitable Temporal Logic Programs
(STLP’s). These programs are characterised by the informal condition saying that the future
does not depend on the past, that is, if the LTL operator “©” (read “next state”) appears
in the body of a rule, it also applies to every atom in its head. By the splitting theorem [20],
the authors have proven that the technique of Loop Formulas [13] can be applied to this kind
of programs, so, its temporal equilibrium models can be computed by an LTL model checker.
Such models are represented in terms of a Büchi automaton [6], which captures the whole
behaviour of the system.

STeLP 1 [9] is the first tool designed to compute Temporal Equilibrium Models. It has its
roots in the aforementioned work but it also adds some features to the input language like
the use of variables in the specifications (like most ASP tools) and the use of arbitrary LTL
expressions in the constraints. Example 1 would be formalised in STeLP as follows:

1. domain item(X). % Domain declaration
2. static eats/2,object/1, opp/2. % Static predicates
3. fluent at/2. % Fluent declaration
4. action m/1. % Action declaration
5. opp(l,r). opp(r,l). eats(w,g). eats(g,c).
6. item(w). item(g). item(c). object(b).
7. object(Z) :- item(Z).
8. o at(X,A)::- at(X,B), m(X), opp(A,B). % Effect axiom
9. o at(b,A)::- at(b,B), opp(A,B). % Effect axiom
10. ::- m(X), at(b,A), at(X,B), opp(A,B). % Action executability
11. ::- at(X,A), at(X,B), opp(A,B). % Unique value
12. o at(X,A) ::- at(X,A), not o at(X,B), opp(A,B). % Inertia
13. ::- eats(X,Y), at(X,A), at(Y,A), at(b,B), opp(A,B). % State constraint
14. m(X) ::- not a(X). % Choice action
15. a(X) ::- not m(X). % execution

1 http://kr.irlab.org/stelp_online

ICLP’12

http://kr.irlab.org/stelp_online

448 Temporal Answer Set Programming

16. ::- m(X), item(Z), m(Z), X != Z. % Non-concurrent actions
17. at(Y,l):- object(Y). % Initial state
18. g ::- at(w,r), at(g,r), at(c,r). % Goal state
19. :- always not g. % Goal must be satisfied

The input language of this tool is very similar to common ASP language but introduces
two new operators in the definition of the rules: “o” which corresponds to “©” in LTL and
“::-” which replaces the traditional “:-” of ASP but under the implicit scope of the LTL
operator “�” , that is, the rule must be satisfied in every instant of time. Furthermore,
STeLP deals with arbitrary LTL formulas in the body of constraints (as shown in line 30, in
the example above), which is useful, for instance, to check whether a temporal representation
has a plan.

Like most ASP solvers, STeLP grounds the input program before computing the models.
In this case, traditional grounding algorithms are not directly applicable because ground
atoms may change their truth value along time. As a first approach to temporal grounding,
the user has to identify a family of predicates, called static, whose truth value remains
constant along time. Furthermore, to guarantee the domain independence property of the
program2, the input program must satisfy the following safety condition:

1. Any variable X occurring in a rule B → H or �(B → H), also occurs in some positive
static predicate in B.

2. Rules of the form B → H, where at least one static predicate occurs in H, only contain
static predicates.

It is easy to see that, under this condition, static predicates cannot depend on the
non-static ones. STeLP first computes a stable model of the “static program” and then uses it
to ground the rest of the rules by instantiating any positive static predicate in their bodies.

Since static predicates must occur in any rule, this tool allows defining global variable
names with a fixed domain (by the keyword domain), in a similar way to lparse3. For
instance, in the example above item(X) means that any rule referring to variable X is
implicitly extended by including the implicitly declared static predicate item(X).

Apart from splitable programs, arbitrary temporal theories have been studied in [8].
Here, the authors present an algorithm for computing temporal equilibrium models based
on several operations over Büchi automata. Furthermore, that paper achieves first results
about the complexity of TEL, whose satisfiability is decidable in ExpSpace and, at least,
PSpace-hard.

3 Current status of research and expected achievements

As we have said before, several results have been accomplished but there is still much work
in progress. We are currently trying to improve the grounding algorithm implemented in
STeLP. Until now, only static predicates had been considered during the instantiation of a
rule. This causes a generation of irrelevant ground rules that increase the size of the resulting
ground LTL theory while they could be easily detected and removed by a simple analysis
of the temporal program. A new algorithm for temporal grounding has been considered

2 that is, its set of stable models does not change with respect to the addition of constants
3 http://www.tcs.hut.fi/Software/smodels/src/lparse-1.1.2.tar.gz

http://www.tcs.hut.fi/Software/smodels/src/lparse-1.1.2.tar.gz

M. Diéguez 449

in [2]. In this paper, the authors have proven that the safety condition of DLV [17] (every
variable which occurs in a rule, must occur in a positive predicate in its body) is enough to
guarantee the property of domain independence for STLP’s. Considering an STLP under
this safety condition, authors also define a translation to compute its set of derivable facts (a
set of ground atoms that are potentially members of at least one of its temporal equilibrium
models) which is used to determine, in grounding time, if a ground rule can be removed
from the final ground program. If a ground rule contains an atom in its positive body which
does not belong to the set of derivable facts of the program, this rule can be omitted is not
generated.

As a future work, on the one hand, we expect to keep developing the foundations of
Temporal Equilibrium Logic. In [16], it has been shown that LTL has the same expressive
power as a First Order theory of linear ordering. We conjecture that there is a corresponding
relation between Temporal Equilibrium Logic and Quantified Equilibrium Logic.

On the other hand, we are also concerned about practical results. For instance, one
of our constant goals is improving the performance of STeLP and its scalability for larger
programs. The main bottlenecks are the grounding algorithm (it has already been improved)
and the computation of the temporal equilibrium models. The latter is made translating a
final LTL formula into a Büchi automaton (which is the costliest process). In some cases, if
we just want to check the satisfiability of a formula, there are tools like TSPASS [21] that
are based on resolution techniques and can check satisfiability without computing the whole
automaton. Depending on users’ requirements, these tools are more suitable than Spot [11],
the current backend used by STeLP, due to their shorter response time.

In order to find practical applications for our work, one possibility is using STeLP as
a backend for ASP-based action languages such as DLVk [12] or ALM [14]. In the current
implementation of ASP-based action languages, checking whether a temporal or planning
problem has a solution would mean exhausting the set of possible transitions (assuming
we deal with a finite set of fluents and actions) and checking the appearance of repeated
states outside the ASP program. STeLP offers the possibility of a fully automated method
that builds the automaton from the generated temporal formulas. It could be plugged as
an alternative backend for action languages when we are interested in verifying complex
temporal properties or checking the existence of a plan. In fact our plan is to adapt the
implementation of the action language ALM to use STeLP instead of its current backend.

Finally, like in every Ph.D. thesis, it is very important to make a comparison of our
proposal with other frameworks for nonmonotonic temporal reasoning present in the literature,
for instance [1], [18] and [5]. Finding a connection between Temporal Equilibrium Logic and
those approaches would be useful to perceive the advantages and disadvantages of TEL with
respect to other strategies.

References
1 M. Abadi and Z. Manna. Temporal Logic Programming. Journal of Symbolic Computation,

8(3):277–295, 1989.
2 F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, and C. Vidal. Paving the Way for Temporal

Grounding. In ICLP ’12, 2012.
3 F. Aguado, P. Cabalar, G. Pérez, and C. Vidal. Strongly Equivalent Temporal Logic

Programs. In JELIA’08, volume 5293 of LNCS, pages 8–20. Springer, 2008.
4 F. Aguado, P. Cabalar, G. Pérez, and C. Vidal. Loop Formulas for Splitable Temporal

Logic Programs. In LPNMR’11, volume 6645 of LNCS, pages 80–92. Springer, 2011.
5 C. Baral and J. Zhao. Non-monotonic Temporal Logics for Goal Specification. IJCAI 2007.

ICLP’12

450 Temporal Answer Set Programming

6 R. Büchi. On a decision method in restricted second-order arithmetic. In International
Congress on Logic, Method and Philosophical Science’60, pages 1–11, 1962.

7 P. Cabalar. A Normal Form for Linear Temporal Equilibrium Logic. In JELIA’10, volume
6341 of LNCS, pages 64–76. Springer, 2010.

8 P. Cabalar and S. Demri. Automata-based computation of temporal equilibrium models.
In 21st International Workshop on Logic Program Synthesis and Transformation (LOP-
STR’11), LNCS. Springer, 2011.

9 P. Cabalar and M. Diéguez. STeLP - a Tool for Temporal Answer Set Programming. In
LPNMR’11, volume 6645 of LNCS, pages 370–375. Springer, 2011.

10 P. Cabalar and G. P. Vega. Temporal Equilibrium Logic: a first approach. In 11th Inter-
national Conference on Computer Aided Systems Theory (EUROCAST’07), volume 4739
of LNCS, pages 241–248. Springer, 2007.

11 A. Duret-Lutz and D. Poitrenaud. SPOT: an Extensible Model Checking Library Using
Transition-based Generalized Büchi Automata. In Proc. of the IEEE Computer Society’s
12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems (MASCOTS’04). IEEE Computer Society, 2004.

12 T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under Incomplete
Knowledge. In 1st International Conference on Computational Logic (CL ’00). Springer,
2000.

13 P. Ferraris, J. Lee, and V. Lifschitz. A generalization of the Lin-Zhao theorem. Annals of
Mathematics and Artificial Intelligence, 47(1-2):79–101, 2006.

14 M. Gelfond and D. Inclezan. Yet Another Modular Action Language. In 2nd International
Workshop on Software Engineering for Answer Set Programming (SEA’09), pages 64–78,
2009.

15 M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
ICLP’88, pages 1070–1080. MIT Press, Cambridge, MA, 1988.

16 J. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California
at Los Angeles, 1968.

17 N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computa-
tional Logic, 7:499–562, 2006.

18 H. J. Levesque, F. Pirri, and R. Reiter. Foundations for the situation calculus. Electronic
Transactions on Artificial Intelligence, 2:159–178, 1998.

19 V. Lifschitz. Answer Set Programming and Plan Generation. Artificial Intelligence, 138(1-
2):39–54, 2002.

20 V. Lifschitz and H. Turner. Splitting a Logic Program. In ICLP’94, pages 23–37. MIT
press, 1994.

21 M. Ludwig and U. Hustadt. Implementing a fair monodic temporal logic prover. AI
Communications, 23(2-3):69–96, 2010.

22 Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Spe-
cification. Springer, 1992.

23 V. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm, pages 169–181. Springer-Verlag, 1999.

24 J. McCarthy and P. Hayes. Some Philosophical Problems from the Standpoint of Artificial
Intelligence. Machine Intelligence Journal, 4:463–512, 1969.

25 I. Niemelä. Logic Programs with Stable Model Semantics as a Constraint Programming
Paradigm. Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.

26 D. Pearce. A new logical characterisation of stable models and answer sets. In Selected
papers from the Non-Monotonic Extensions of Logic Programming (NMELP’96), volume
1216 of LNAI, pages 57–70. Springer, 1996.

A Gradual Polymorphic Type System with
Subtyping for Prolog
Spyros Hadjichristodoulou

Computer Science Department, Stony Brook University
New York, U.S.A.

Abstract
Although Prolog was designed and developed as an untyped language, there have been numerous
attempts at proposing type systems suitable for it. The goal of research in this area has been
to make Prolog programming easier and less error-prone not only for novice users, but for the
experienced programmer as well. Despite the fact that many of the proposed systems have
deep theoretical foundations that add types to Prolog, most Prolog vendors are still unwilling
to include any of them in their compiler’s releases. Hence standard Prolog remains an untyped
language. Our work can be understood as a step towards typed Prolog. We propose an extension
to one of the most extensively studied type systems proposed for Prolog, the Mycroft-O’Keefe
type system, and present an implementation in XSB-Prolog. The resulting type system can be
characterized as a Gradual type system, where the user begins with a completely untyped version
of his program, and incrementally obtains information about the possible types of the predicates
he defines from the system itself, until type signatures are found for all the predicates in the
source code.

1998 ACM Subject Classification D.1.6. Logic Programming, D.3.3. Language Constructs and
Features

Keywords and phrases Type Inference, Polymorphic Type System, Gradual Typing, Tabling,
Answer Subsumption

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.451

1 Introduction and problem description

Since the seminal work of Mycroft and O’Keefe [5] in introducing a polymorphic type system
for Prolog, there has been vast research on the area. Some of it followed their direction,
and is essentially about extending or reconstructing the Mycroft-O’Keefe type system [7, 2],
while others take different paths for introducing types in logic programs [6, 1, 3].

The common denominator in these approaches, however, is that most of them are about
theoretically defining and constructing a type system for Logic Programming. Although
some early Prolog implementations contained type checking mechanisms based on the
Mycroft-O’Keefe type system (e.g. the DEC-10 compiler), most modern systems tend
to keep Prolog as an untyped language 1. Of course, there is the exception of Mercury
(http://www.mercury.csse.unimelb.edu.au/), which has become famous for the type-
checking abilities it offers to programmers; however, this comes with the price of strong
typing and “limited” polymorphism of Mercury programs.

As discussed in [5], the main purpose of developing a polymorphic type system for Prolog
is to provide the programmer with another tool which will make programming easier and

1 As we will discuss later, an implementation for the Mycroft-O’Keefe type system was developed with
the intention of being distributed with SWI-Prolog and YAP

© Spyros Hadjichristodoulou;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 451–457

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.451
http://www.mercury.csse.unimelb.edu.au/
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

452 A Gradual Polymorphic Type System with Subtyping for Prolog

less error-prone. We consider our research as a step towards that direction; our goal is to
build a working type system which will enable programmers to write correct Prolog programs
more easily than before. The challenge is to somewhat combine various aspects of the
approaches introduced in the literature and use modern techniques to implement a robust
type inference system which will be distributed with XSB Prolog. Our type checking and
inference mechanism will offer users two modes of operation; firstly, they will be able to
type-check their program, if they provide a type signature for every predicate they define.
Secondly, if some of these signatures are missing, the type inference engine will be able to
infer types for the respective predicates, in order to provide the user with information about
their newly defined predicates. This process will be conducted in an incremental, gradual
manner; the user will start with a completely untyped version of his program, and type
inference will gradually give more information about what the types of the defined predicates
may be. If the user is satisfied with the type inference engine’s suggestions, then these types
will be considered by the system as if they were declared by the user as type signatures. This
process will continue until each defined predicate in the source code has a type signature.
This kind of type systems, called Gradual Type Systems was introduced in [8].

2 Background and overview of the existing literature

The first work introducing some kind of type checking and inference in Prolog was Mycroft
and O’Keefe’s Polymorphic type system, [5]. It is based on the seminal work by Robin Milner,
[4], who created a polymorphic type system for the ML family of functional programming
languages, and first introduced the notion of “Well-typedness”. In the Mycroft-O’Keefe
type system, type signatures are provided by the user for each defined predicate, and the
type checker’s task is to verify that each definition respects the signature declaration. The
only notion of inference in this type system is with Variables; when a predicate p(X,Y) is
type-checked against its signature, a type is inferred for both X and Y. Also, it allows for
polymorphism in the usual meaning; arguments of predicates can be of any type, denoted
by type variables, and allows for user-defined type constructors as well as some predefined
ones (i.e. for lists, type list(A) –-> [] ; [A|list(A)]). Moreover, a connection is made
between the Prolog program to be type-checked and the type checker, which is itself another
Prolog meta-program. Finally, the notion of “Well-typedness” is introduced, and has the
same meaning as in the Hindley-Milner type system: “Well-typed programs can’t go wrong”.
In the context of Prolog, this means that no predicate will be called with arguments that
don’t respect the type signature declared by the user. The following example illustrates the
operations described above:

I Example 1 (append/3). The user declares a type for the well-known append/3 predicate, as
:- pred append(list(A),list(A),list(A)). This means that append/3 has 3 arguments,
and each has the same type, namely list(A). So, each argument can be a list of anything,
as long as all 3 arguments have the same type.

The user may have the definition of append/3 available:

append ([],L,L).
append ([X|L1],L2 ,[X|L3]) :- append (L1 ,L2 ,L3).

Each clause of append/3 will now be type-checked against the given signature. It’s easy to
see that each clause respects the declared signature, and so append/3 is well-typed. Finally,
if the following clause appears in the program, p(X,Y,Z) :- ... , append(X,Y,Z), ...,
then types for X, Y and Z are inferred according to append/3’s signature (and all are list(A)).

S. Hadjichristodoulou 453

A recent implementation of the Mycroft-O’Keefe type system was developed in 2009
[7]. The authors’ aim was to gradually2 introduce types in Prolog using a type-checking
library that was planned to be shipped with two of the most popular Prolog implementations,
SWI-Prolog and YAP. This type checking library makes it easy to interface typed and
untyped code, by performing runtime checks when typed predicates (i.e. predicates for which
the user has provided a type signature) are called. By doing that, the authors make sure
that the type system can be used somewhat “on-demand”, i.e. only when the programmer
gives type signatures for certain predicates, and this makes the migration from untyped to
typed Prolog easier.

A rather different approach was introduced in [1]. The authors employ a fixed-point,
bottom-up, abstract interpretation technique in order to infer types for Horn-Clause programs.
Type declarations for predicates and constructors are very similar to the Mycroft-O’Keefe
type system [5], but in this approach, the system can infer types for predicates while not
depending on a type signature provided by the user. For example, the type of append/3
can be inferred only by its definition and the definition of the list(A) constructor, as given
above.

3 Goal of the research

Our goal is to combine the advantages of each of these approaches in order to build a robust
inference system for types of both predicates and constructors. The system will be distributed
along with XSB-Prolog, and is implemented as a preprocessor of the original source code.
This allows the user to start with a completely untyped Prolog program, and with the help
of the inference engine to gradually learn more about the types of the predicates he defines.
We believe that the existence of such a system will make programming in Prolog easier and
less error-prone, while at the same time maintaining the flexibility that Prolog gives.

4 Current status of the research

Our first task was to port the type-checking library from [7] which was written for SWI-Prolog
and YAP, to work in XSB-Prolog. Based on the XPP-Preprocessor 3, we implemented a
preprocessor that gets invoked by the user with a compiler flag. If the user desires to provide
type signatures for any of the predicates he has defined, the only thing to do is include the
following declaration in his source code: :- compiler_options(xpp_on(typecheck)).

After successfuly porting the type-checking library to XSB-Prolog, we used the approach
in [1] to build a type-inference engine. We use the same notations for declaring the types as
in [5]. Defined predicates for which a type signature has been provided get type-checked,
whereas the type of the others is inferred. Despite the similarities between our approach and
the ones discussed previously, there are basic differences:

We extended the Mycroft-O’Keefe type system in order to lift the limitation that each
clause of a predicate must have the same type. Prolog programmers often want to define
facts which may have different types, and we didn’t want our engine to infer that this

2 The use of the term “gradually” here has a different meaning that the one we used to describe our
approach in the previous section. In [7] it is used to describe the migration process from untyped Prolog
to typed Prolog, whereas in our approach, it is used to describe the process of adding types to a single
program, starting from a completely untyped program and moving towards a fully typed program

3 http://www.cross-browser.com/x/docs/xpp_reference.php

ICLP’12

http://www.cross-browser.com/x/docs/xpp_reference.php

454 A Gradual Polymorphic Type System with Subtyping for Prolog

kind of predicates is ill-typed. If, for example, the user has defined two facts as p(42)
and p(a), the type-inference engine will give p/1 the type p(atomic), instead of failing.
For this scheme to work, we have introduced simple-fixed subtyping rules between the
primitive types that each program can have. For example, integer, atom and float are
all subtypes of atomic.
In [1], the authors use a “cut-off” point to stop their inference when the type of a predicate
grows bigger at each step. Instead of doing this, we are using unify_with_occurs_check,
so that when two clauses of a predicate give types that can’t be unified with the occurs
check, our system infers that the predicate is ill-typed. This approach was also taken in
type-checking in [7].
None of the previous approaches were able to handle the case of inferring types for
type constructors. We are currently developing a type inference mechanism which will
be invoked when the user requests, which will try to infer what the type of a defined
constructor may be. This may be particularly useful when using large libraries with many
new constructors but no documentation on what each constructor does. We hope that
being able to see the type of each constructor will be useful to the programmer for better
understanding external code.

Algorithm 1 Outer fixed-point
1: do_type_inference_batch(PredList,TypedListIn,TypedList) :- {Let PredList

be the list of predicates we want to infer types for, TypedListIn be the list of types for
the predicates in PredList, TypedList be the list of types that will be inferred in one
step}

2: for all Pred in PredList do
3: type_inference_batch(Pred,Type,TypedListIn)
4: end for
5: Let TypeListTemp be the list consisting of all the returned Types
6: if TypeListIn != TypeListTemp then
7: call do_type_inference(PredList,TypeListTemp,TypedList)
8: else
9: set TypedList = TypeListIn

10: end if

Algorithm 2 Inner fixed-point
1: type_inference_batch(Pred,Type,TypedList) :- {Let Pred be the predicate we

want to infer types for, Type be the type we will infer for Pred, TypedList be the list of
types that were inferred in the previous step, TypeIn be the type of Pred computed in
the previous step as it resides in TypedList}

2: for all clauses of Pred do
3: call type_inference(Pred,TypedList,TypeIn)
4: end for
5: Gather all newly constructed TypeIns in a list, TList
6: Unify all elements of TList wich each other
7: Unify Type with the Head of TList

We currently have 3 versions of the type-inference engine. In the first, which is described
in algorithms 1, 2 and 3 below, the predicates that perform type-inference are all non-
tabled. The problem with this approach, is that we needed to pass around a list of all the

S. Hadjichristodoulou 455

Algorithm 3 Find a type from only one clause of the predicate
1: type_inference(Pred,TypedList,Type) :- {Let Pred be the predicate we want to

infer types for, Type be the type we will infer for Pred, TypedList be the list of types
that will be inferred in one step}

2: for each clause of Pred do
3: Find a type for Pred from the body of the clause and store it in Type
4: Find a type for Pred from the head of the clause and store it in PredType
5: if Type and PredType can be unified with occurs check then
6: succeed
7: else
8: throw error
9: end if

10: end for

(intermediate) types that had been inferred for each predicate of the source code, in order to
use the newest information at each step.

In order to remedy this, we re-wrote the basic type-inference predicates into a tabled
version. Each time a new type is inferred for a predicate, a record is entered in the global
table kept by XSB, so when the type of any predicate is requested during the process, it can
be obtained by looking-up the table, instead of passing around a list. This approach also
enabled us to be able to give some type to mutually recursive predicates.

For the final version of our type inference engine, we employed the principle of answer
subsumption as described in [9]. In essence, whenever a new answer is produced for a
predicate that is tabled with answer subsumption, it’s joined with the answer that already
resides in the table, and that join is now the only answer for that predicate. Now, instead of
using findall/3 in lines 5-7 and 6-8 of algorithms 1 and 2 respectively to get all the types
for each clause and until the fixed point is reached, we use answer subsumption and always
keep the most specific type found for each predicate. This may seem rather illogical in the
beginning, since when two answers are produced for a predicate, we tend to keep the most
general one. The reason is that when trying to find answers for goals in Prolog, we don’t care
which clause of the goal will make the answer found true, as long as there is one that does.
However, in type inference, the type inferred must respect all the clauses of the predicate.
We can think of this difference as the duality between union and intersection; when we want
answers for a goal we are looking for the union of answers, whereas when we want to find a
type for a predicate, we want the intersection of types found.

5 Preliminary results accomplished

I Example 2. We will start with a simple recursive predicate, reverse_acc/3. It’s the
tail-recursive version of reverse/2, which binds the output with the input list, reversed.

reverse_acc ([], Acc , Acc).
reverse_acc ([Head|Tail], Acc , Reversed) :-

reverse_acc (Tail , [Head|Acc], Reversed).

Asking our engine to infer the type of reverse_acc/3 will yield:

| ?- infer_types (’test.P ’).

Inferred types for the following 1 predicates :
reverse_acc (list(A),list(A),list(A))

ICLP’12

456 A Gradual Polymorphic Type System with Subtyping for Prolog

I Example 3. In this second example, we will show how our extensions to the Mycroft-
O’Keefe type system behave. The predicate we want to infer a type for is foo/1:

foo (42).
foo(bar).

The original Mycroft-O’Keefe type system would not be able to give a type to foo/1.
Our extensions make it possible for the engine to assign the atomic type:

| ?- infer_types (’test.P ’).

Inferred types for the following 1 predicates :
foo(atomic)

I Example 4. For this last example, we will show some preliminary results of our constructor
type inference engine. We assume the following code snippet:

:- type natural ---> 0 ; s(natural).

formula (0).
formula (s(0)).
formula (s(s (0))).
formula (0 + s(0)).
formula (s(s(0)) - s(0)).

The above code declares a new type constructor natural for natural numbers, and
various versions of the same predicate, formula/1. The task is to find what is the type of
the constructors of formula/1’s argument:

| ?- infer_constructors (’test.P’, formula (_)).

Inferred the following constructors :
formula (natural)
formula (+(natural , natural))
formula (-(natural , natural))

The engine has managed to infer that the argument of formula/1 can be either a natural
(as per the type constructor above), a +(natural,natural) or a -(natural,natural).

6 Open issues and expected achievements

Although the implementation of the type inference engine has progressed over the few last
months, there are still issues that need to be resolved

The final version of the code where answer subsumption is used must be tested thoroughly
and compared to the other versions. It will be interesting to see the differences in both
runtime and table usage for large source files
The type inference for constructors must be refined; the correct type constructors for
the last example of the previous section would be expr –-> natural ; expr + expr
; expr - expr, so our engine must somehow recognize that the + and - combine more
complex things than simple naturals

S. Hadjichristodoulou 457

References
1 R. Barbuti and R. Giacobazzi. A bottom-up polymorphic type inference in logic program-

ming. Sci. Comput. Program., 19(3):281–313, 1992.
2 T.K. Lakshman and U.S. Reddy. Typed Prolog: A semantic reconstruction of the Mycroft-

O’Keefe type system. In Int. Logic Programming Symp, pages 202–217, 1991.
3 L. Lu. Polymorphic type analysis in logic programs by abstract interpretation. The Journal

of Logic Programming, 36(1):1–54, 1998.
4 R. Milner. A theory of type polymorphism in programming. Journal of computer and

system sciences, 17(3):348–375, 1978.
5 A. Mycroft and R.A. O’Keefe. A polymorphic type system for Prolog. Artificial Intelligence,

23(3):295–307, 1984.
6 T. Schrijvers and M. Bruynooghe. Towards constraint-based type inference with polymor-

phic recursion for functional and logic languages. In Proceedings of the 17th International
Workshop on Implementation and Application of Functional Languages, pages 1–16, 2005.

7 T. Schrijvers, V. Santos Costa, J. Wielemaker, and B. Demoen. Towards Typed Prolog. In
Proceedings of the 24th International Conference on Logic Programming, ICLP ’08, pages
693–697. Springer-Verlag, 2008.

8 J.G. Siek and M. Vachharajani. Gradual typing with unification-based inference. In Pro-
ceedings of the 2008 symposium on Dynamic languages, page 7. ACM, 2008.

9 T. Swift and D. S. Warren. Tabling with answer subsumption: implementation, applications
and performance. In Proceedings of the 12th European conference on Logics in artificial
intelligence, JELIA’10, pages 300–312. Springer-Verlag, 2010.

ICLP’12

ASP modulo CSP: The clingcon system
Max Ostrowski

Institut für Informatik, Universität Potsdam, August-Bebel-Str. 89, D–14482
Potsdam, Germany ostrowsk@cs.uni-potsdam.de

Abstract
Answer Set Programming (ASP; [1]) has become a prime paradigm for declarative problem
solving due to its combination of an easy yet expressive modeling language with high-performance
Boolean constraint solving technology. However, certain applications are more naturally modeled
by mixing Boolean with non-Boolean constructs, for instance, accounting for resources, fine
timings, or functions over finite domains. The challenge lies in combining the elaborated solving
capacities of ASP, like backjumping and conflict-driven learning, with advanced techniques from
the area of constraint programming (CP). I therefore developed the solver clingcon, which follows
the approach of modern Satisfiability Modulo Theories (SMT; [2, Chapter 26]). My research shall
contribute to bridging the gap between Boolean and Non-Boolean reasoning, in order to bring
out the best of both worlds.

1998 ACM Subject Classification D.1.6. Logic Programming, I.2.3 Deduction and Theorem
proving/Logic programming, D.3.2 Language Classifications/Constraint and logic languages

Keywords and phrases Answer Set Programming, Constraint Programming

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.458

1 Introduction and Motivation

clingcon is a hybrid solver for ASP, combining the simple modeling language and the high
performance Boolean solving capacities of ASP with techniques for using non-Boolean con-
straints from the area of Constraint Programming (CP). Although clingcon’s solving compo-
nents follow the approach of modern Satisfiability Modulo Theories (SMT; [2, Chapter 26])
solvers when combining the ASP solver clasp with the CP solver gecode [3], clingcon fur-
thermore adheres to the tradition of ASP in supporting a corresponding modeling language
by appeal to the ASP grounder gringo. Although in the current implementation the the-
ory solver is instantiated with the CP solver gecode, the principal design of clingcon along
with the corresponding interfaces are conceived in a generic way, aiming at arbitrary theory
solvers.

I will first give a general background over the theory of ASP and CP and will afterwards
describe the architecture of clingcon which follows the approach of SMT. Given this, the
main contribution of my work is a comparison of simple methods to compute minimal
inconsistencies and explanations for any black-box CP system. These minimal conflicts
and reasons can then be used for driving the conflict-driven learning process of the system.
These methods have been implemented in the system clingcon and yield a performance
improvement of an order of magnitude on a broad range of benchmarks.

2 Background

A (normal) logic program over an alphabet A is a finite set of rules of the form

a0 ← a1, . . . , am,not am+1, . . . ,not an , (1)
© Max Ostrowski;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 458–463

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.458
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

M. Ostrowski 459

where ai ∈ A is an atom for 0 ≤ i ≤ n.1 A literal is an atom a or its (default) nega-
tion not a. For a rule r as in (1), let head(r) = a0 be the head of r and body(r) =
{a1, . . . , am,not am+1, . . . ,not an} be the body of r. Given a set B of literals, let B+ = {a ∈
A | a ∈ B} and B− = {a ∈ A | not a ∈ B}. Furthermore, given some set B of atoms, define
B|B = (B+ ∩ B) ∪ {not a | a ∈ B− ∩ B}. The set of atoms occurring in a logic program
P is denoted by atom(P). A set X ⊆ A is an answer set of a program P over A, if X is
the ⊆-smallest model of the reduct PX = {head(r)← body(r)+ | r ∈ P, body(r)− ∩X = ∅}.
An answer set can also be seen as a Boolean assignment satisfying all conditions induced by
program P (cf. [4]).

A constraint satisfaction problem (CSP) is a triple (V,D,C), where V is a set of variables
with respective domains D, and C is a set of constraints. Each variable v ∈ V has an
associated domain dom(v) ∈ D. Following [5], a constraint c is a pair (S,R) consisting of a
k-ary relation R defined on a vector S ⊆ V k of variables, called the scope of R. That is, for
S = (v1, . . . , vk), we have R ⊆ dom(v1)× · · · × dom(vk). We use S(c) = S and R(c) = R to
access the scope and the relation of c = (S,R). For an assignment A : V →

⋃
v∈V dom(v)

and a constraint (S,R) with S = (v1, . . . , vk), define A(S) = (A(v1), . . . , A(vk)), and let
satC(A) = {c ∈ C | A(S(c)) ∈ R(c)}.

The input language of clingcon extends the one of gringo (cf. [6]) by CP-specific opera-
tors marked with a preceding $ symbol. After grounding, a propositional program is then
composed of regular and constraint atoms, denoted by A and C, respectively. The set of
constraint atoms induces an ordinary constraint satisfaction problem (CSP) (V,D,C). This
CSP is to be addressed by the corresponding CP solver, in our case gecode. As detailed
in [7], the semantics of such constraint logic programs is defined by appeal to a two-step
reduction. For this purpose, we consider a regular Boolean assignment over A∪ C (in other
words, an interpretation) and an assignment of V to D (for interpreting the variables V in
the underlying CSP). In the first step, the constraint logic program is reduced to a regular
logic program by evaluating its constraint atoms. To this end, the constraints in C asso-
ciated with the program’s constraint atoms C are evaluated w.r.t. the assignment of V to
D. In the second step, the common Gelfond-Lifschitz reduct [8] is performed to determine
whether the Boolean assignment is an answer set of the obtained regular logic program.
If this is the case, the two assignments constitute a (hybrid) constraint answer set of the
original constraint logic program.

In what follows, we rely upon the following terminology. We use signed literals of form
Ta and Fa to express that an atom a is assigned T or F, respectively. That is, Ta and
Fa stand for the Boolean assignments a 7→ T and a 7→ F, respectively. We denote the
complement of such a literal ` by `. That is, Ta = Fa and Fa = Ta. We represent a Boolean
assignment simply by a set of signed literals. Sometimes we restrict such an assignment A
to its regular or constraint atoms by writing A|A or A|C , respectively. For instance, given
the regular atom ‘person(adam)’ and the constraint atom ‘work(adam) $> 4’, we may form
the Boolean assignment {Tperson(adam),Fwork(adam) $ > 4}.

We identify constraint atoms in C with constraints in (V,D,C) via a function γ : C → C.
Provided that each constraint c ∈ C has a complement c ∈ C, like ‘x = y’ = ‘x 6= y’ or
‘x < y’ = ‘x ≥ y’ and vice versa, we can extend γ to signed constraint atoms over C as

1 The semantics of choice rules and integrity constraints is given through program transformations. For
instance, {a} ← is a shorthand for a ← not a′ plus a′ ← not a and similarly ← a for a′ ← a, not a′,
for a new atom a′.

ICLP’12

460 ASP modulo CSP: The clingcon system

follows.

γ(`) =
{
c if ` = Tc
c if ` = Fc

For instance, we get γ(Fwork(adam) $ > 4) = work(adam) ≤ 4, where work(adam) ∈ V is
a constraint variable and (work(adam) ≤ 4) ∈ C is a constraint. An assignment satisfying
the last constraint is {work(adam) 7→ 3}.

Following [4], we represent Boolean constraints issuing from a logic program under ASP
semantics in terms of nogoods [5]. This allows us to view inferences in ASP as unit prop-
agation on nogoods. A nogood is a set {σ1, . . . , σm} of signed literals, expressing that any
assignment containing σ1, . . . , σm is unintended. Accordingly, a total assignment A is a so-
lution for a set ∆ of nogoods if δ 6⊆ A for all δ ∈ ∆. Whenever δ ⊆ A, the nogood δ is said
to be conflicting with A. For instance, given atoms a, b, the total assignment {Ta,Fb} is
a solution for the set of nogoods containing {Ta,Tb} and {Fa,Fb}. Likewise, {Fa,Tb} is
another solution. Importantly, nogoods provide us with reasons explaining why entries must
(not) belong to a solution, and lookback techniques can be used to analyze and recombine
inherent reasons for conflicts. We refer the interested reader to [4] for details on how logic
programs are translated into nogoods within ASP.

3 Research Program

My research work started from the question how to combine the advantages of ASP with
Non-Boolean constraint processing techniques. In the process of writing my diploma thesis
I developed the hybrid solver clingcon. I discovered that the major difficulties lay within the
conflict-driven learning techniques of ASP. A black-box CSP solver like gecode is not able to
provide any useful evidence for its propagation. Such an evidence is needed in an advanced
learning setting to provide useful reasons and conflicts for the ASP solver. I addressed this
shortcoming by developing mechanisms for extracting minimal reasons and conflicts from
any CP solver. The method of minimizing sets of constraints that we present are similar
to the ones depicted in [9], Our method furthermore take the incremental nature of the CP
solver into account. In contrast to [10], we do not incorporate the learning mechanism into
the CP solver but rather use it for the interaction between the ASP and the CP solver.
Furthermore, we cope with the difficulty having a black-box system as a CP solver.

Clingcon is based on an algorithm for computing constraint answer sets that extends
a previous algorithm to compute standard answer sets [4] by a CP “oracle.” The ba-
sic algorithm for finding standard answer sets is called Conflict-Driven Nogood Learning
(CDNL); it includes conflict-driven learning and backjumping according to the First-UIP
scheme [11, 12, 13]. That is, whenever a conflict happens, a conflict nogood containing
a Unique Implication Point (UIP) is identified by iteratively resolving a violated nogood
against a second nogood that is a reason for some literal in it. A basic CDNL algorithm is
depicted in Algorithm 1.

The principal design of clingcon along with the corresponding interfaces are conceived
in a generic way, aiming at arbitrary theory solvers. The first extension concerns the input
language of gringo with theory-specific language constructs. Just as with regular atoms, the
grounding capabilities of gringo can be used for dealing with constraint atoms containing
first-order variables. As regards the current clingcon system, the language extensions allow
for expressing constraints over integer variables. This involves arithmetic constraints as well
as global constraints and optimization statements. These constraints are treated as atoms

M. Ostrowski 461

Algorithm 1: CDNL-ASPmCSP
input : A program Π.
output : A constraint answer set of Π.

1 loop
2 Propagation

3 if hasConflict then
4 if decisionLevel = 0 then return no Answer Set
5 ConflictAnalysis

6 Backjump

7 else if complete Assignment then
8 Labeling

9 if hasConflict then
10 Backjump

11 else
12 return Constraint Answer Set

13 else
14 Select

and passed to the ASP solver. Information about these constraints is furthermore directly
shared with the theory propagator and in turn the theory solver, viz. gecode. The theory
propagator is implemented as a post propagator. Theory propagation is done by the theory
solver until a fixpoint is reached. In doing so, decided constraint atoms are transferred to the
theory solver, and conversely constraints whose truth values are determined by the theory
solver are sent back to the ASP solver using a corresponding nogood. Note that theory
propagation is not only invoked when propagating partial assignments but also whenever a
total Boolean assignment is found. Whenever the theory solver detects a conflict, the theory
propagator is in charge of conflict analysis. Apart from reverting the state of the theory
solver upon backjumping, this involves the crucial task of determining a conflict nogood
(which is usually not provided by theory solvers, as in the case of gecode). Similarly, the
theory propagator is in charge of enumerating constraint variable assignments, whenever
needed. Determining a good conflict nogood is the main part of my research that I want to
present.

After doing theory propagation either a conflict occurs or some constraints (boolean
literals in our case) could be evaluated to true or false. In both cases an explanation is
needed, either in form of a conflict or a reason nogood. The simple version of generating
the conflicting nogood N , is just to take the entire assignment of constraint literals. In this
way, all yet decided constraint atoms constitute N = {` | ` ∈ A|C}. The corresponding list
of inconsistent constraints is

I = [γ(`) | ` ∈ A|C]. (2)

In order to reduce this list of inconsistent constraints and to find the real cause of the
conflict, we apply an Irreducible Inconsistent Set (IIS) algorithm. The term IIS was coined
in [14] for describing inconsistent sets of constraints having consistent subsets only. We use
the concept of an IIS to find the minimal cause of a conflict. With this technique, [9]
showed that it is actually possible to drastically reduce such exhaustive sets of inconsistent
constraints as in (2) and to create a much smaller conflict nogood. Similar to the algorithm

ICLP’12

462 ASP modulo CSP: The clingcon system

Algorithm 2: forward_filtering
input : An inconsistent list of constraints I = [c1, . . . , cn].
output : An irreducible inconsistent list of constraints I ′.

1 I ′ ← []
2 while I ′ is consistent do
3 T ← I ′

4 i← 1
5 while T is consistent do
6 T ← T ◦ ci

7 i← i+ 1
8 I ′ ← I ′ ◦ ci

9 return I ′

in [9], we developed a set of algorithms that exploits the features of an incremental CSP
solver even more. I will shortly explain one of these algorithms. Algorithm 2 is called
Forward Filtering; it is designed to avoid resetting the search space of the CP solver. It
incrementally adds constraints to a testing list T , starting from the first assigned constraint
to the last one (lines 5 and 6). Remember that incrementally adding constraints is easy for a
CP solver as it can only further restrict the domains. If our test list T becomes inconsistent
we add the currently tested constraint to the result I ′ (lines 5 and 8). If this result is
inconsistent (Line 2), we have found a minimal list of inconsistent constraints. Otherwise,
we start again, this time adding all yet found constraints I ′ to our testing list T (Line 1).
Now we have to create a new constraint space. But by incrementally increasing the testing
list, we already reduced the number of potential candidates that contribute to the IIS, as we
never have to check a constraint behind the last added constraint. We illustrate this again
on a little example. We start Algorithm 2 with T = I ′ = [] and

I =[work(lea) = work(adam), work(john) = 0, work(smith) = 0]
◦[work(adam) + work(lea) > 6, work(lea)− work(adam) = 1]

in Line 3. We add work(lea) = work(adam) to T , as this constraint alone is consistent,
we loop and add constraints until T = I. As this list is inconsistent, we add the last
constraint work(lea) − work(adam) = 1 to I ′ in Line 8. We can do so, as we know that
the last constraint is indispensable for the inconsistency. As I ′ is consistent we restart the
whole procedure, but this time setting T = I ′ = [work(lea) − work(adam) = 1] in Line
3. Please note that, even if I would contain further constraints, we would never have to
check a constraint behind work(lea)−work(adam) = 1. Our testing list already contained
an inconsistent set of constraints, consequently we can restrict ourself to this subset. Now
we start the loop again, adding work(lea) = work(adam) to T . On their own, those two
constraints are inconsistent, as there exists no valid pair of values for the variables. So we add
work(lea) = work(adam) to I ′, resulting in I ′ = [work(lea)−work(adam) = 1, work(lea) =
work(adam)]. With this much smaller conflict we hope to speed up the search process.

But we can do even more. Up to now we only considered reducing an inconsistent
list of constraints to reduce the size of a conflicting nogood. If the CP solver propagates
the literal l, a simple reason nogood is N = {` | ` ∈ A|C} ∪ {l}. If we have for ex-
ample A|C = {Twork(john)$ == 0,Twork(lea) − work(adam)$ == 1}, the CP solver
propagates the literal Fwork(lea)$ == work(adam). To use the proposed algorithms

M. Ostrowski 463

to reduce a reason nogood we first have to create an inconsistent list of constraints. As
J = [γ(`) | ` ∈ A|C] implies γ(l), this inconsistent list is I = J ◦ [γ(l)] = [work(john) =
0, work(lea)− work(adam) = 1, work(lea) = work(adam)]. So we can now use these var-
ious filtering methods also to reduce reasons generated by the CP solver. In this case the
reduced reason is
{Twork(lea)−work(adam)$ == 1,Twork(lea)$ == work(adam)}. Smaller reasons reduce
the size of conflicts even more, as they are constructed using unit resolution.

Evaluation on various benchmarks showed that, also filtering conflicts and reasons is a
very time consuming process, it can speed up search by order of magnitudes.

4 Future Work

In my future work I want to focus on these reasons and also on a combination of the so called
lazy approach which is implemented in clingcon with a translational approach. Currently
only the ASP solver profits from the additional knowledge of the CP solver. I want to
strengthen the CP solving capabilities with features from ASP such as dedicated heuristics
like VSIDS and BerkMin and learning.

References
1 Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press (2003)
2 Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. Volume

185 of Frontiers in Artificial Intelligence and Applications. IOS Press (2009)
3 http://www.gecode.org
4 Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.

In Veloso, M., ed.: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07), AAAI Press/The MIT Press (2007) 386–392

5 Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
6 Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A

user’s guide to gringo, clasp, clingo, and iclingo. Available at http://potassco.
sourceforge.net

7 Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In Hill, P., Warren,
D., eds.: Proc. of the 25th International Conference on Logic Programming (ICLP’09).
Volume 5649 of Lecture Notes in Computer Science., Springer-Verlag (2009) 235–249

8 Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365–385

9 Junker, U.: QuickXPlain: Conflict detection for arbitrary constraint propagation algo-
rithms. IJCAI’01 Workshop on Modelling and Solving problems with constraints (2001)

10 Moore, N.: Improving the Efficiency of Learning CSP Solvers. University of St Andrews
thesis. University of St Andrews (2011)

11 Marques-Silva, J., Sakallah, K.: GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers 48(5) (1999) 506–521

12 Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a
Boolean satisfiability solver. In: Proceedings of the International Conference on Computer-
Aided Design (ICCAD’01). (2001) 279–285

13 Mitchell, D.: A SAT solver primer. Bulletin of the European Association for Theoretical
Computer Science 85 (2005) 112–133

14 van Loon, J.: Irreducible inconsistent systems of linear inequalities. In: European Journal
of Operational Research. Volume 8., Elsevier Science (1981) 283–288

ICLP’12

http://www.gecode.org
http://potassco.sourceforge.net
http://potassco.sourceforge.net

An ASP Approach for the Optimal Placement of
the Isolation Valves in a Water Distribution
System
Andrea Peano

EnDiF, Università degli Studi di Ferrara
via G. Saragat 1 – 44122, Ferrara, Italy
andrea.peano@unife.it

Abstract
Several design issues of Water Distribution Systems can be represented as combinatorial op-
timization problems, and then addressed by means of opportune techniques and technologies
available in Computational Logic and Operational Research. My Ph.D. Thesis relates to achieve
(near-)optimal solutions to such real-life problems either by exploiting potentialities of existing
techniques and by developing ad hoc algorithms. Among all the design issues above mentioned,
the Isolation Valve Location Problem is defined as the problem of computing the optimal place-
ment, on the hydraulic network, of a limited number of isolation valves, so that any pipe can
be isolable in case of failure and the maximum service disruption (varying the broken pipe) is
minimized. About Computational Logic, different Answer Set Programming encodings to such
a problem have been developed during the first stage of my research activity, and more suitable
encodings are currently under study.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Answer Set Programming, Isolation Valves Positioning, Hydroinformatics

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.464

1 Introduction

My Ph.D. Thesis relates to real-life optimization problems in the hydraulic engineering field.
More precisely, with the collaboration of computer scientists, operational researchers and
hydraulic engineers, I investigate and exploit potentialities of various Operational Research
and Artificial Intelligence techniques in order to achieve good (and, whenever possible,
optimal) solutions for those particular design issues of the urban hydraulic network that can
be effectively modelled as known combinatorial optimization problems. Furthermore, such
design issues often require to devise new specialized variants of the known combinatorial
optimization problems.

For example, the problem of minimizing the impact of a contamination in a hydraulic
network can be seen, under opportune assumptions, as a variant of the well known Multiple
Traveling Salesman Problem (MTSP); since the quality of feasible solutions must be computed
through a burdensome hydraulic simulation, such optimization problem was addressed by us
by means of several genetic algorithms [6]. In particular, in [6], we proposed a novel genetic
encoding for the MTSP for which we defined new genetic crossover operators based on ad hoc
mixed integer linear programming (sub-)optimizations, obtaining a hybrid genetic algorithm.

Another real-life combinatorial optimization problem which is a typical issue during the
design of a hydraulic network is finding the optimal positioning of a limited number of
isolation valves on the network. Up to now, we exploited two different technologies, following

© Andrea Peano;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 464–468

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.464
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Peano 465

two independent approaches: in the first we modelled the above mentioned problem by
means of a Bilevel (Mixed Integer) Linear Programming [3] formalization, discussed in [13]; I
presented the study at the 3rd Student Conference on Operational Research (SCOR 2012). In
the second approach, we addressed such optimization problem by defining several Answer Set
Programming (ASP)[1, 11, 8] programs, discussed in [5]. Both the optimization approaches
compute the globally optimum placement of the valves.

In the next section I will briefly describe the problem of the isolation valve placement on
hydraulic networks and the ASP approach designed to solve it.

2 The Isolation Valves Location Problem

Water Distributions Systems (WDSs) are strategic urban infrastructures. Their planning is,
in turn, a strategic task in terms of costs control and to assure a fair degree of reliability. For
example, during the design of a water distribution network, one of the choices is the design
of the isolation system. It is a real-life problem for hydraulic engineers, and in recent years it
has been studied through computational methods in the hydroinformatics literature [9, 4].

A water distribution system has the main objective of providing water to homes and
facilities that require it. The water distribution network can be thought of as a labelled
indirected graph, in which the edges represent the pipes in the network. There is at least
one special node that represents the source of water (node 1 in Figure 1), and the users’
homes are connected to the edges. For each edge, we assume to have knowledge about the
average amount of water (in litres per second) that is drawn by the users insisting on that
edge (during the day); such value is the label associated to the edge, and it is called the
users’ demand.

b b b

b b b

1 2 3

4 5
6

v3,6

b b

7 8

v6,8

v5,7

v2,3

v5,4

v1,2

v1,4

1l/s

3l/s 6l/s

4l/s 5l/s

2l/s 1l/s

4l/s 1l/s

5l/s

T

Figure 1 A water distribution network with valves.

The isolation system is mainly used during repair operations: in case some pipe is
damaged, it has to be fixed or substituted. However, no repair work can be done while
the water is flowing at high pressure in the pipe: first the part of the network containing
the broken pipe should be de-watered, then workers can fix the pipe. The de-watering is
performed by closing an opportune set of isolation valves (that make up the so-called isolation
system of the water distribution network) so that the damaged pipe is disconnected from the
sources. For example, in Figure 1, if the edge connecting nodes 2 and 3 (let us call it e2,3)
is broken, workers can close valves v2,3 and v3,6 and de-water the broken pipe. Of course,
during this pipe substitution the users that take water from edge e2,3 cannot be serviced.

ICLP’12

466 An ASP Approach for the Optimal Placement of the Isolation Valves in a WDS

The usual measure of disruption is the undelivered demand: in this case, it corresponds to
the demand of the users insisting on the broken pipe, namely 6l/s.

However, we are not always this lucky: in case the damaged pipe is e7,8, workers will have
to close valves v5,7 and v6,8, de-watering pipes e7,8 and e6,8, with a total cost of 5 + 1 = 6l/s.
In fact, the minimum set of pipes that will be de-watered is that belonging to the so-called
sector of the broken pipe, i.e., the set of pipes encircled by a same set of valves. But there
can be even worse situations: if the broken pipe is e2,5, workers have to close valves v1,2
and v5,4, which means disconnecting all the pipes except e1,4 and e4,5, with an undelivered
demand of 3 + 4 + 6 + 5 + 1 + 4 + 5 + 1 = 29l/s. Notice in particular that the edges e2,3, e7,8
and e6,8 are disconnected in this way, although they do not belong to the same sector as the
broken pipe. This effect is called unintended isolation, and usually means that the isolation
system was poorly designed.

One common value used by hydraulic engineers [9] to measure the quality of the isolation
system is the undelivered demand in the worst case. In the example of Figure 1, the worst
case happens when the broken pipe is in the set {e1,2, e2,5, e5,6, e5,7}; in this case, as we have
seen, the undelivered demand is 29l/s.

In a previous work, [2] developed a system, based on Constraint Logic Programming [10]
on Finite Domains (CLP(FD)), that finds the optimal positioning of a given number of valves
in a water distribution network. The assignments found by [2] improved the state-of-the-art in
hydraulic engineering for this problem, finding solutions with a lower (worst-case) undelivered
demand than the best solutions known in the literature of hydraulic engineering [9], obtained
through genetic algorithms.

In the current work, we address the same problem in Answer Set Programming [1, 11, 8],
which is a suitable technology to address combinatorial graph problems[12], and, in particular,
we have already defined two different ASP programs [5]. One program explicitly defines the
sectors as clusters of (isolated) pipes and minimizes the undelivered demand of the worst
sector; instead, in the other program, sectors are left implicit and the aim is to maximize the
minimum satisfied demand in case of pipe isolation, by considering that a pipe is isolated if
it is not reachable from any source. In the next section we show the most important results
obtained by first experiments.

3 Results

The first experiments, presented in [5], show, in general, that the developed programs take
more computation time than the CLP(FD) approach [2]. However, we must say that the
CLP(FD) model was developed by two CLP experts, during some person-months and was
trimmed for efficiency. Instead, the two ASP formulations were mainly developed by a
first-year PhD student in about one week; this shows that ASP is very intuitive and easy to
understand even for non experts, that it is indeed very declarative. The two implemented
ASP programs consist of respectively about 20 and 25 rules, which shows that ASP is a very
interesting technology for rapid prototyping.

Experiments have been performed on a Intel based architecture with two P8400 CPUs; as
ASP solver we used the Potassco’s solver Clasp [7]. The two programs have been optimized
using a real-life instance based on the Apulian hydraulic network [9] (Figure 2) and varying
the number of available isolation valves.

Figure 3 shows the optimization performance of the two ASP programs (the one based
on sectors and the one that, instead, does not define sectors) for several number of available
valves. In particular, the better effectiveness of the sector-based program can be noticed.

A. Peano 467

b
b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

1

239

10

13

22

12

11

4

6

5

19
18

17 23

21

20

14
8

7

15 16

Figure 2 The Apulian hydraulic network.

Figure 3 Computing times of the optimization processes of the two ASP programs.

4 Future Work

In future work, we plan to improve the sector-based ASP program by defining opportune
rules in order to break the symmetries determined by the current formalization, and we will
experiment the resulting program also with other available ASP solvers. Another appealing
challenge is to compute the solution that minimizes the undelivered demand of the worst
sector as well as the undelivered demands of the other (no worst) sectors, which are not
actually optimized neither by our current MILP formalization [13] nor by the CLP(FD) one
[2]. We are also interested in trying to integrate the ASP programs with a CLP approach, to
take advantage of the strengths of the two approaches. Finally, I plan to delve into the ASP
theory and techniques in order to consolidate my competence in such Artificial Intelligence
field.

Acknowledgements. This work was partially supported by EU project ePolicy, FP7-ICT-
2011-7, grant agreement 288147. Possible inaccuracies of information are under the respons-
ibility of the project team. The text reflects solely the views of its authors. The European
Commission is not liable for any use that may be made of the information contained in this
paper.

ICLP’12

468 An ASP Approach for the Optimal Placement of the Isolation Valves in a WDS

References
1 Chitta Baral. Knowledge representation, reasoning and declarative problem solving. Cam-

bridge University Press, 2003.
2 Massimiliano Cattafi, Marco Gavanelli, Maddalena Nonato, Stefano Alvisi, and Marco

Franchini. Optimal placement of valves in a water distribution network with CLP(FD).
Theory and Practice of Logic Programming, 11(4-5):731–747, 2011.

3 Benoît Colson, Patrice Marcotte, and Gilles Savard. Bilevel programming: A survey. 4OR:
A Quarterly Journal of Operations Research, 3:87–107, 2005. 10.1007/s10288-005-0071-0.

4 Enrico Creaco, Marco Franchini, and Stefano Alvisi. Optimal placement of isolation valves
in water distribution systems based on valve cost and weighted average demand shortfall.
Water Resources Management, 24:4317–4338, 2010. 10.1007/s11269-010-9661-5.

5 Marco Gavanelli, Maddalena Nonato, Andrea Peano, Stefano Alvisi, and Marco Franchini.
An ASP approach for the valves positioning optimization in a water distribution system. In
Francesca Lisi, editor, 9th Italian Convention on Computational Logic (CILC 2012), Rome,
Italy, volume 857 of CEUR workshop proceedings, pages 134–148, 2012.

6 Marco Gavanelli, Maddalena Nonato, Andrea Peano, Stefano Alvisi, and Marco Franchini.
Genetic algorithms for scheduling devices operation in a water distribution system in re-
sponse to contamination events. In Jin-Kao Hao and Martin Middendorf, editors, Evol-
utionary Computation in Combinatorial Optimization, volume 7245 of Lecture Notes in
Computer Science, pages 124–135. Springer Berlin / Heidelberg, 2012. 10.1007/978-3-642-
29124-1_11.

7 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub,
and Marius Schneider. Potassco: The Potsdam answer set solving collection. AI Commu-
nications, 24(2):105–124, 2011.

8 Michael Gelfond. Answer sets. In Handbook of Knowledge Representation, chapter 7. El-
sevier, 2007.

9 Orazio Giustolisi and Dragan A. Savić. Identification of segments and optimal isolation
valve system design in water distribution networks. Urban Water Journal, 7(1):1–15, 2010.

10 Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. J. Log.
Program., 19/20:503–581, 1994.

11 Nicola Leone. Logic programming and nonmonotonic reasoning: From theory to systems
and applications. In Chitta Baral, Gerhard Brewka, and John Schlipf, editors, Proceedings
of the 9th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’07), volume 4483 of Lecture Notes in Computer Science. Springer, 2007.

12 Ilkka Niemelä. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence, 25:241–273, 1999.
10.1023/A:1018930122475.

13 Andrea Peano, Maddalena Nonato, Marco Gavanelli, Stefano Alvisi, and Marco Franchini.
A Bilevel Mixed Integer Linear Programming Model for Valves Location in Water Distri-
bution Systems. In Stefan Ravizza and Penny Holborn, editors, 3rd Student Conference
on Operational Research, volume 22 of OpenAccess Series in Informatics (OASIcs), pages
103–112, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Answer Set Programming with External Sources
Christoph Redl

Institute of Information Systems, TU Vienna
Karlsplatz 13, 1040 Vienna, Austria

Abstract
Answer Set Programming (ASP) is a well-known problem solving approach based on nonmono-
tonic logic programs and efficient solvers. To enable access to external information, HEX-
programs extend programs with external atoms, which allow for a bidirectional communication
between the logic program and external sources of computation (e.g., description logic reasoners
and Web resources). Current solvers evaluate HEX-programs by a translation to ASP itself, in
which values of external atoms are guessed and verified after the ordinary answer set computa-
tion. This elegant approach does not scale with the number of external accesses in general, in
particular in presence of nondeterminism (which is instrumental for ASP). Hence, there is a need
for genuine algorithms which handle external atoms as first-class citizens, which is the main focus
of this PhD project.

In the first phase of the project, state-of-the-art conflict driven algorithms were already in-
tegrated into the prototype system dlvhex and extended to external sources. In particular, the
evaluation of external sources may trigger a learning procedure, such that the reasoner gets ad-
ditional information about the internals of external sources. Moreover, problems on the second
level of the polynomial hierarchy were addressed by integrating a minimality check, based on
unfounded sets. First experimental results show already clear improvements.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving; I.2.4 Knowledge
Representation Formalisms and Methods

Keywords and phrases Answer Set Programming, Nonmonotonic Reasoning, External Compu-
tation, FLP Semantics

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.469

1 Introduction and Problem Description

1.1 The Answer-Set Programming Paradigm
In recent years, the Answer Set Programming (ASP) paradigm has emerged as an important
approach for declarative problem solving Problems are represented in terms of nonmonotonic
logic programs, such that the models of the latter encode the solutions of a problem at
hand. The most widely used notions of models in this context are stable models [11] and the
generalized notion of answer sets for a (possible disjunctive) logic program [12]. One of the
main reasons for the increasing popularity of ASP is the availability of sophisticated solvers
for the respective languages, including DLV [14] and and clasp [10].

Formally, a propositional answer set program is a set of rules r of form

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn (1)

where not denotes default-negation, and ai, 1 ≤ i ≤ k, bj , 1 ≤ j ≤ n are literals, i.e.,
propositional atoms p or strongly (classically) negated atoms ¬p. Intuitively, a rule is
satisfied by an interpretation, i.e. set of classical literals, I, iff either bi 6∈ I for some

© Christoph Redl;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 469–475

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.469
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

470 Answer Set Programming with External Sources

1 ≤ i ≤ m, bi 6∈ I for some m + 1 ≤ i ≤ n, or ai ∈ I for some 1 ≤ i ≤ k. A set of literals is
an answer set of a program P , iff it is subset-minimal and satisfies all rules of P .

1.2 External Sources

The rise of the World Wide Web and distributed systems fostered the development of
formalisms that are geared towards modularity and integrating multiple data sources. Various
extensions of ASP that allow to access information in external sources different from logic
programs have been proposed, e.g., the DLVDB system [20] and hex-programs [5]. The latter
accommodate a universal bidirectional interface for arbitrary sources of external computation
through the notion of an external atom and are in the focus of this PhD project. For
example, an external atom of the form &synonym[thes_file, car](X) might be used to access
an external thesaurus “thes_file”, and to retrieve all terms X in it that are synonyms of “car”
(i.e., the atom evaluates to true). Using such external atoms, whose semantics is abstractly
modeled by an input-output relationship, one can easily access different kinds of information
resources and reason about them in a single program.

hex-programs have been successfully used in various application domains; e.g., in the
Semantic Web. A solver for hex-programs is dlvhex [4], which implements a compilation
approach for evaluation. First external atoms are replaced by ordinary atoms, and their
truth value is guessed nondeterministically by disjunctive rules. The resulting program is
then evaluated by the use of existing reasoners for answer set programs. In a postprocessing
step, the guess for the external atoms is validated, i.e., the result is filtered to keep only
those answer sets which are stable also under external sources. However, the performance of
the reasoner is unsatisfactory. This is caused by the fact that the actual model building is
hidden in the ASP solver employed at the backend. The development of scalable genuine
algorithms is therefore the overall goal of the PhD project.

2 Background and Overview of the Existing Literature

The following subsections summarize approaches for three related topics which will play a
role for the proposed project.

2.1 Model Finding for Propositional Ordinary Answer Set Programs

Model finding strategies for ASP programs can be classified in two major groups. The first
one consists of algorithms that reduce the problem to another host logic, for which one can
apply specialized SAT solvers. Approaches of the second kind search directly for models and
are called genuine algorithms.

Genuine algorithms (as e.g. implemented by DLV) essentially boil down to an intelligent
(restricted) enumeration of truth assignments. Deterministic consequences of the rules under
partial truth assignments are computed in order to set the truth values of further atoms. If
the assignment is still partial after this step, the value of an yet undefined atom is guessed in
the style of DPLL algorithms for SAT, and again deterministic consequences are determined,
etc.; in case the guess fails, the computation backtracks and the alternative value is considered.
In contrast to DLV, the clasp system [10] employs a conflict-driven method corresponding to
conflict driven SAT solvers [15]. The distinguishing feature is learning: Whenever a conflict
emerges, the literals which were initially responsible for the conflict are determined and
recorded to prevent the reasoner from running into the same conflict again.

C. Redl 471

2.2 Intelligent Grounding
Non-ground answer set programs are like propositional programs but the atoms in a rule (1)
are of the form p(t1, . . . , tn), where p is a (first-order) predicate and the ti are terms (usually
function-free) in a first order language. The semantics of such a program P is defined in
terms of its grounding, which consists of all possible ground instances of the rules in P .

Most current ASP solvers (including DLV and clasp) step to the grounding of a program
before the actual model finding algorithms are started. In contrast, lazy grounding, as used for
instance in GASP [16] and the ASPeRiX solver [13], is an alternative to pregrounding. Rules
are only grounded when the body is satisfied, and consequently it prevents the grounding of
rules which are potentially unnecessary.

2.3 External Domains
Clingo (gringo+clasp) provides an interface which allows the user to call Lua functions (http:
//www.lua.org), a lightweight and embeddable scripting language, at certain points during
evaluation, e.g., before grounding, after a model has been found, and after termination [9].
While communication between the reasoner and external scripts is possible, it is constrained
to happen between specific evaluation phases and is not tightly coupled to and interleaved
with model building, in contrast to hex-programs.

DLV-EX and DLV-Complex are ASP systems extending DLV by external predicates and
complex values like lists and sets. This allows to use sources of computation that are defined
outside the logic program [1], which is especially useful for functions that are difficult or not
efficiently expressible by rules (e.g. string manipulation functions).

3 Goal of the Research

I now describe the expected main outcomes of the PhD project.

3.1 Algorithms
One of the main results are newly developed efficient, native model-finding algorithms for
ASP programs with external source access, which push the frontier of applicability. This
allows to evaluate programs with external calls of reasonable size efficiently, relative to the
intrinsic complexity.

3.2 Scalable Computation
The novel algorithms will relieve the current evaluation bottleneck of external accesses,
and will contribute to position ASP programs with external access better as a formalism
for declarative problem solving in real-world application settings. For programs of benign
structure, I expect an exponential speedup in certain situations. In the general case, I aim
at computation times comparable to ordinary ASP solvers, modulo complexity of external
sources.

3.3 Prototype Implementation
The theoretical contributions are then realized in the dlvhex reasoner. The main practical
outcome will be a prototype implementation of the developed evaluation algorithms as a
proof of concept. The implementation will be evaluated using existing and newly developed
benchmarks, and will be made publicly available through a website.

ICLP’12

http://www.lua.org
http://www.lua.org

472 Answer Set Programming with External Sources

4 Current Status of the Research

At this point of the project, a state-of-the-art conflict-driven ASP solver was integrated
into our prototype system dlvhex and extended by additional learning techniques to capture
the semantics of external atoms. Empirical experiments show already a significant speedup
compared to the traditional evaluation method, which is based on a translation to ordinary
ASP programs. Results were published in an accepted ICLP 2012 paper [3].

A current topic is the development of techniques for minimality checking of answer
set candidates in order to extend the algorithms to problems on the second level of the
polynomial hierarchy. While the minimality check is polynomial for ordinary disjunction-free
ASP programs, it becomes intractable in presence of disjunctions or nonmonotonic external
sources. Hence, the development of efficient algorithms is not straightforward. While the
traditional evaluation algorithm for hex does the check explicitly, i.e., it directly searches
for smaller models, I am currently working on a new algorithm based on unfounded sets [8].
Experiments show that this approach is superior to explicit minimality checking, and that
optimization techniques for search space pruning are applicable. The approach is under
preparation for being submitted as a conference paper.

Another current issue concerns syntactic criteria which allow for a simpler evaluation.
The idea is that for programs of a certain structure, tailored and more efficient algorithms
may employed.

5 Preliminary Results Accomplished

After finishing my master’s studies in July 2010 (Computational Intelligence) and October
2010 (Medical Computer Science), I started my PhD studies in October 2010 and got a
position as a research assistant at the Institute of Information Systems at TU Vienna, while
the research project at our institute (Evaluation of ASP Programs with External Source
Access), which I am currently involved in, started in January 2012 and is planned for 3 years.

In the first year my PhD studies I have published the main results of my two master’s
theses in three conference papers. The first thesis in my studies of Computational Intelligence
is on the development of a belief merging framework, called meld, for the hex-program solver
dlvhex [17]. More specifically, the integration of heterogeneous data sources is abstractly
described by tree-shaped merging plans, where the data sources appear in the leaf nodes and
different merging operators in the inner nodes [19].

The meld system is based on an extension of hex-programs which allows for program
nesting. That is, a hex-program can contain calls to other programs and reason about their
answer sets. Hence, answer sets are turned into accessible objects. Besides its application
in the belief merging framework, program nesting has turned out to be useful also for the
implementation of user-defined aggregation functions, which need to reason over multiple
answer sets of subprograms. The subsystem for the evaluation of nested programs was
described in another publication [7].

My second master’s thesis in my studies of Medical Computer Science deals with a
particular application of the belief merging framework meld in medical and biological
applications [18]. In particular, I developed concrete merging operators which are useful
for the integration of decision diagrams, which are frequently used in medicine and related
sciences to describe decision processes (e.g. for DNA classification). More results of this
thesis were published in [6].

Besides writing the mentioned publications, I participated in writing the project proposal
for our project to the Austrian science fond during the first year of my PhD studies. The

C. Redl 473

overall goal of the project is the development of new evaluation algorithms for hex-programs.
This turned out to be necessary in order to make hex-programs practically useful, as I
discovered during my work on my master’s theses that the scalability of the current algorithms
is limited. The project was approved in September 2011 and started in January 2012.

In the first phase of the project, the ASP solver clasp was integrated into dlvhex as new
backend, replacing DLV. This allows for a much tighter coupling of the solver with external
source evaluation, exploiting clasp’s extensible SMT interface, and is the foundation for the
further development. At this point of the project I have developed external behavior learning
(EBL) as a new learning strategy besides classical conflict-driven learning as used by ordinary
ASP solvers. While conflict-driven learning gains new knowledge from conflict situations,
EBL learns from evaluations of external sources. This knowledge can be used in the further
search to exclude model candidates beforehand if they are not compliant with the external
sources. The learned knowledge about external sources is itself represented as a nogood
clause and recorded in the solver. As the algorithm proceeds, this knowledge is used to guide
the search.

The prototype implementation of external behavior learning (EBL) shows already positive
effects wrt. performance. Depending on the program structure and the external atoms
involved, I could observe an up to exponential speedup in some cases, e.g., for some programs
with DL-atoms; DL-atoms allow for querying description logic knowledge bases from the
logic program by the use of external atoms. Also for string manipulation functions, which
are conceptually simple but important from a practical point of view, I could observe very
promising improvements by EBL and exploiting functionality. Details of EBL are described
in an accepted ICLP 2012 and TPLP paper [3].

6 Open Issues and Expected Achievements

The current translation-based hex-evaluation algorithm does not scale well to real-world
applications because of the high number of generated model candidates. The situation is
comparable to the evolution of the answer set semantics as a programming paradigm: at
the very beginning, the lack of efficient ASP solvers prevented its use in practice. But since
efficient algorithms and ASP systems have become available, ASP has gained momentum in
a range of applications, from science over humanities to industrial use. The main goal of the
PhD project is significantly better scalability. It is expected that an exponential speedup is
achievable in some cases, whereas a prediction in the average case is difficult to make.

One step towards this goal was the development of external behavior learning (EBL).
In the next step, the basic idea shall be refined. Additionally to deriving knowledge from
known properties of external sources, it shall also be possible to write customized learning
functions for specific sources. The idea is that the provider of an external source often has a
better insight to the behavior of the source, which can be used to help the reasoner excluding
model candidates early. For this purpose, a user-friendly language shall be developed, which
is an open issue.

Another important open issue, which was disregarded until now, concerns the minimality
check of model candidates. While I have recently developed a minimality checking algorithm
based on unfounded sets [8] (instead of the explicit minimality check, which was used until
now), it is still realized as a post-check. That is, the algorithm first constructs an answer
set candidate, and then filters out those candidates which contain unfounded sets. An open
issue is interleaving the unfounded set search with the main search for answer sets. The
idea is that one can in some cases already identify unfounded sets when the interpretation is

ICLP’12

474 Answer Set Programming with External Sources

still partial. Then it makes no sense to further complete the interpretation, but it is more
reasonable to immediately backtrack.

Case-based reasoning (CBR) is solving of current computational problems by the use
of relevant aspects of past problem solutions [2]. This topic seems to be a related to hex-
program evaluation using EBL. An open issue is therefore also the investigation to what
extend CBR techniques can be adopted for our purposes.

References
1 F. Calimeri, S. Cozza, and G. Ianni. External Sources of Knowledge and Value Invention

in Logic Programming. Annals of Mathematics and Artificial Intelligence, 50(3–4):333–361,
Aug. 2007.

2 R. L. de Mántaras and E. Plaza. Case-based reasoning: An overview. AI Communications
Journal, 10(1):21–29, 1997.

3 T. Eiter, M. Fink, T. Krennwallner, and C. Redl. Conflict-driven ASP solving with external
sources. Theory and Practice of Logic Programming: Special Issue ICLP, 2012. To appear.

4 T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. dlvhex: A Prover for Semantic-Web
Reasoning under the Answer-Set Semantics. In Proceedings of the ICLP’06 Workshop
on Applications of Logic Programming in the Semantic Web and Semantic Web Services
(ALPSWS2006), pages 33–39. CEUR WS, 2006.

5 T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effective Integration of Declarative
Rules with External Evaluations for Semantic-Web Reasoning. In Proceedings of the 3rd
European Conference on Semantic Web (ESWC 2006), volume 4011 of LNCS, pages 273–
287. Springer, 2006.

6 T. Eiter, T. Krennwallner, and C. Redl. Declarative merging of and reasoning about
decision diagrams. In A. D. Palù, A. Dovier, and A. Formisano, editors, Workshop on
Constraint Based Methods for Bioinformatics (WCB 2011), Perugia, Italy, September 12,
2011, pages 3–15. Dipartimento di Matematica e Informatica, Universita degli Studi di
Perugia, September 2011.

7 T. Eiter, T. Krennwallner, and C. Redl. Nested hex-programs. CoRR, abs/1108.5626, 2011.
8 W. Faber. Unfounded sets for disjunctive logic programs with arbitrary aggregates.

In In Logic Programming and Nonmonotonic Reasoning, 8th International Conference
(LPNMR’05), 2005, pages 40–52. Springer Verlag, 2005.

9 M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and M. Schneider. Po-
tassco: The Potsdam Answer Set Solving Collection. AI Commun., 24(2):107–124, 2011.

10 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Clasp : A conflict-driven answer
set solver. In C. Baral, G. Brewka, and J. S. Schlipf, editors, LPNMR, volume 4483 of
Lecture Notes in Computer Science, pages 260–265. Springer, 2007.

11 M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In
R. Kowalski and K. Bowen, editors, Logic Programming: Proceedings of the 5th Interna-
tional Conference and Symposium, pages 1070–1080. MIT Press, 1988.

12 M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Data-
bases. New Generation Computing, 9(3–4):365–386, 1991.

13 C. Lefèvre and P. Nicolas. The First Version of a New ASP Solver: ASPeRiX. In E. Er-
dem, F. Lin, and T. Schaub, editors, Proceedings of the 10th International Conference
on Logic Programming an Nonmonotonic Reasoning (LPNMR 2009), Potsdam, Germany,
September 14-18, 2009, volume 5753 of LNCS, pages 522–527. Springer, 2009.

14 N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computa-
tional Logic (TOCL), 7(3), July 2006.

C. Redl 475

15 D. G. Mitchell. A SAT solver primer. EATCS Bulletin (The Logic in Computer Science
Column), 85:112–133, February 2005.

16 A. Palù, A. Dovier, E. Pontelli, and G. Rossi. Answer set programming with constraints
using lazy grounding. In P. Hill and D. S. Warren, editors, Proceedings of the 25th In-
ternational Conference on Logic Programming (ICLP 2009), volume 5649 of LNCS, pages
115–129. Springer, 2009.

17 C. Redl. Development of a belief merging framewerk for dlvhex. Master’s thesis, Vienna Uni-
versity of Technology, Institute of Information Systems, Knowledge-Based Systems Group,
A-1040 Vienna, Karlsplatz 13, July 2010.

18 C. Redl. Merging of biomedical decision diagrams. Master’s thesis, Vienna University of
Technology, Institute of Information Systems, Knowledge-Based Systems Group, A-1040
Vienna, Karlsplatz 13, October 2010.

19 C. Redl, T. Eiter, and T. Krennwallner. Declarative Belief Set Merging using Merging
Plans. In R. Rocha and J. Launchbury, editors, 13th International Symposium on Practical
Aspects of Declarative Languages (PADL’11), Austin, Texas, U.S.A., January 24-25, 2011,
volume 6539 of LNCS, pages 99–114. Springer, January 2011.

20 G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with recursive queries in
database and logic programming systems. CoRR, abs/0704.3157, 2007.

ICLP’12

Together, Is Anything Possible? A Look at
Collective Commitments for Agents

Ben Wright

Department of Computer Science, New Mexico State University
Las Cruces, New Mexico, USA
bwright@cs.nmsu.edu

Abstract
In this research, commitments – specifically collective commitments – are looked at as a way to
model connections between agents in groups. Using the concepts and ideas from action languages,
we propose to model these commitments as actions along with the other basic actions that
autonomous agents are capable of performing. The languages developed will be tested against
different examples from various multi-agent system (MAS) areas and implemented to run in
answer set programming.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods,
I.2.11 Distributed Artificial Intelligence

Keywords and phrases Reasoning About Knowledge, Action Languages, Commitments, Multi-
agent systems, Modal Logic

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.476

1 Introduction and problem description

Nowadays, it is becoming more frequent to see research mentioning ‘distributed this’ or ‘that
network’. Artificial Intelligence (AI) and knowledge representation are no different. For
decades now, multi-agent systems and distributed AI have been vastly popular areas of study.

This project looks to study the organization and representation of groups - which we use
loosely as a term. Borrowing from many well known research areas, we believe that a simple
and declarative approach using action languages and commitments will be the key to
modeling many of the concepts involved in modeling certain groups.

We wish to represent this idea in both a declarative and logical way. By declarative, we
mean to say in the sense that the rules and constraints of the group will be represented
formally. When we say in a logical way, we mean a way in which the rules and how the group
may come to reason are done using aspects of traditional logics. This also comes into play
when we wish to define things the group may do either in a temporal sense, for instance:
“The group may do something in the future.”, or in an epistemic way, like “The group already
knew that it was done.” These two areas have very active research areas in temporal and
epistemic logic.

In order to test our system, we will use answer set programming as it models declarative
and logical concepts easily. Once finished, we believe this type of model will be able to
represent features in group for different areas such as negotiations, normative systems, joint
action plans, multi-agent planning, and argumentation to name a few.

© Ben Wright;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 476–480

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.476
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Wright 477

2 Background and Overview of Existing Literature

2.1 Epistemic & Temporal Logics
Epistemic logic is focused on reasoning about the knowledge that agents may have about
themselves, the world, or other agents. Two good references that define this area are [6]
and [3]. Epistemic logic captures the essence of knowledge through modal operators. For
instance Kip would read ‘Agent i knows that the fluent p is true.’ Operators are then defined
on how knowledge may change or how knowledge can be inferred from other knowledge.
Knowledge can also be nested, and this can be shown by a well known axiom rule called
‘positive introspection’ which is as follows: Kip =⇒ KiKip which can be read as “If Agent
i know p, then it knows that it knows p”.

A big area of complexity and interest in this area is the idea of common knowledge.
Common knowledge plays off of the idea “What does everyone know and knows that everyone
knows?”. From the previous example of positive introspection alone, we can see that this
type of ‘everyone knows’ can become quite large in its representation.

Like epistemic logic, temporal logic is focusing on reasoning about truths that pertain to
time. Many times in more ‘real world’ settings, fluents or values may change as the course of
time or a program runs. Expressing these snippets of time may prove difficult if there isn’t a
mechanism to frame time in. There are two main ways to approach temporal logic: linear or
branching. Linear temporal logic (LTL) treats time as a path along a string while branching
temporal logic views time as a tree in which many different branches are possible, a well
known system for this is Computation Tree Logic (CTL). There is actually a system known
as CTL* which attempts to combine both of these ideas of representation together [5].

2.2 Action Languages
Representing what agents are capable of doing or how they may change their beliefs has
always been a large area of research. One such idea for this representation is action languages.
Action languages have been around for sometime now and have been shown as a way to set
up automated reasoning or planning [9]. Various features have been implemented for agents
using action languages like incomplete knowledge, reasoning about knowledge, and time.

Action languages work based on transitions from a state of fluents to another state of
fluents. For instance, if “move_left causes left” is an action then when it occurs, left would
be true. Likewise, other features like static causal laws may show indirect effects like “left if
¬right” which would mean that “left is only true when right is false” [7].

In addition multi-agent action languages (MALs) has been growing as well in which
communication, coordination, and dispersion of fluentspaces/actionspaces all become issues
of concern when developing. Some example MALs can be found in [12] and [1].

2.3 Commitments
Commitments have been studied for sometime in the MAS research area. Commitments
formalize obligations or contracts between agents in a way that is logically representable.
For instance if Agent A says that “I’ll return the book to B within 2 days” then something
like ‘c(A, B, has_book(B), 0, 2).’ can be used to represent this.

By using this idea of commitments, more complicated ideas can be formalized. For
instance, protocols for agent communication can be formed like “If someone sends me
a message, I will respond with an acknowledgement”. With protocols, concepts such as
negotiation or argumentation can be reasoned about.

ICLP’12

478 Together, Is Anything Possible? A Look at Collective Commitments for Agents

In addition to this building up idea, commitments can also represent the tone or ‘mood’
of a system. Much like in normative systems where norms or social choice assign ‘basic
behaviors’ to all agents much like “All cars stop at a red light”.

When commitments are moved beyond the scope of agent to agent (that is one of the
sides is a group) there is some debate as to how these occur. These group, or collective,
commitments become difficult to represent. What does it mean for “If the doorbell rings,
someone in the door will answer it.”? Will everyone in the house answer the door? Will
everyone assume someone else answers the door? These are still open issues and there are
some differences in how researchers approach them. For instance, some attach intentionality
to commitments [4] while others do not [13].

3 Research Accomplishments, Goals, and Future

3.1 Goal

The goal of this research is to capture the behavior of groups effectively. To do this, we
will use collective commitments and action languages. By using commitments and action
languages, we will be able to represent the ideas in both a logical and declarative way that
leads to simple transitions among state fluents.

An example of what we are trying to represent is the idea of having a group of merchants
(suppose m1, m2, and m3) and a group of consumers (suppose c1, c2, and c3). With actions,
we can define stuff similar to ‘purchase_item causes item_bought’ for the consumers and
‘offer_item causes item_known’. Where purchase_item and offer_item are actions and
item_bought and item_known are fluents for the consumers and merchants respectively.

If we now have a collective commitment by the merchants such as “If an item is offered,
at least one of us has that item for sale” this can model an interesting behavior in a succinct
way. Rather than stating “If m1 offers an item, then either m1 or m2 or m3 has said item in
their store at the time of a purchase by a consumer” and then have similar rules for m2 and
m3 as well.

In addition to this type of commitment, another form we are looking into are epistemic
commitments which can represent things like “Consumers will only purchase items from
merchants they believe are giving them a fair deal”. In this example, ‘fair deal’ would have
to be defined more explicitly. However the interesting parts of this commitment are twofold
— first, it does not pertain to a specific agent, but a group of agents and second, it plays off
of the beliefs that that agent holds.

By intertwining these areas together in a logical and declarative way with action languages
and commitments, we feel that expressing the behaviors in groups of agents will be reduced
greatly.

3.2 Current Status of the Research

The concept of collective commitments has already been approached in some research [4, 2].
However, these do not use the idea of action languages. [13] proposes an action language to
model basic commitments, that is non-collective commitments. No implementation of the
action language exists yet with commitments.

In addition to the concept of commitments, beliefs have also been researched for action
languages. [8, 10, 11] all consider knowledge or belief in action languages. These however
only focus on single agents. [1] proposes an action language that models Kripke Structures.

B. Wright 479

An implementation of epistemic commitments could not be found. Creating and imple-
mentation an action theory that allows for commitments and beliefs will constitute a large
portion of this research.

Current progress on this research is attempting to implement base level commitment from
action languages into an answer set program model. In use currently is the MAL Lmt defined
in [13]. From this language we currently have delayed and reversible processes implemented.
So ideas like “The payment should arrive in 3 to 5 days” and “I sent the payment 2 days
ago, but wish to cancel it now” can be represented.

Connection these processes to simple commitments still needs to be done in addition to
adding in belief systems. Following this, these ideas can be raised to the level of “groups”.

3.3 Open Issues and Expected Achievements
Building up the system implementation to allow for more flexibility and group variance seems
to exponentially grow the size of our stable models returned in ASP. As many of the smaller
features in the logics and representation areas already belong in higher complexity classes,
bringing it all together in a straightforward manner may prove difficult.

Also, consideration on the upper bound for the number of agents a system may have has
not been considered in depth. With the aforementioned complexity issues, this will need to
be considered, especially for the implementation part.

In addition, some of the features we wish to add —such as epistemic commitments— are
still vague in what they actually mean or do. Some further research into specific case studies
will need to be done.

At the end of this research, we expect to have a basic implementation of epistemic and
group commitments using action theories and answer set programming. As these ideas bridge
many different areas of MAS and Logic, we will use examples from these different areas to
test our ideas and implementation. At this stage of research, the implementation will only
be concerned with satisfiability of models, rather than optimal models.

References
1 Chitta Baral, Gregory Gelfond, Enrico Pontelli, and Tran Cao Son. Logic programming

for finding models in the logics of knowledge and its applications: A case study. TPLP,
10(4-6):675–690, 2010.

2 Cristiano Castelfranchi. Commitments : From Individual Intentions to Groups and Or-
ganizations. In Proceedings of the First International Conference on Multiagent Systems,
pages 41–48, 1995.

3 Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic Logic.
Springer Publishing Company, Incorporated, 1st edition, 2007.

4 Barbara Maria Dunin-Keplicz and Rineke Verbrugge. Teamwork in Multi-Agent Systems:
A Formal Approach. Wiley Publishing, 1st edition, 2010.

5 E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not never” revisited: On
branching versus linear time temporal logic. J. ACM, 33(1):151–178, January 1986.

6 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About
Knowledge. MIT Press, 1995.

7 Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactions on AI,
3, 1998.

8 Aaron Hunter and James P Delgrande. An Action Description Language for Iterated Belief
Change. In IJAIC 2007, pages 2498–2503, 2007.

ICLP’12

480 Together, Is Anything Possible? A Look at Collective Commitments for Agents

9 Vladimir Lifschitz. Action languages, answer sets and planning. In In The Logic Program-
ming Paradigm: a 25-Year Perspective, pages 357–373. Springer Verlag, 1999.

10 Jorge Lobo, Gisela Mendez, and Stuart R. Taylor. Adding Knowledge to the Action De-
scription Language A. In AAAI-97, number 3, pages 454–459, 1997.

11 Marek Sergot and Robert Craven. The Deontic Component of Action Language n C +. In
DEON 2006, pages 222–237, 2006.

12 Tran Cao Son, Enrico Pontelli, and Ngoc-Hieu Nguyen. Planning for multiagent using
asp-prolog. In Jürgen Dix, Michael Fisher, and Peter Novák, editors, Computational Logic
in Multi-Agent Systems, volume 6214 of Lecture Notes in Computer Science, pages 1–21.
Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-16867-3_1.

13 Tran Cao Son, Enrico Pontelli, and Chiaki Sakama. Formalizing commitments using action
languages. In Chiaki Sakama, Sebastian Sardiña, Wamberto Vasconcelos, and Michael
Winikoff, editors, DALT, volume 7169 of Lecture Notes in Computer Science, pages 67–83.
Springer, 2011.

	00p001-frontmatter
	00p017-preface
	p001-01-00-bry
	Introduction
	What Led to Simulation Unification
	What is Simulation Unification?
	Rooted Graph Simulation
	Database Terms, Query Terms and Construct Terms
	Database terms
	Query terms
	Construct terms

	Term Simulation and Answers
	Simulation Unification

	Work Related to Simulation Unification
	Beyond Querying Semistructured Data
	Generalising Simulation Unification
	RDF, RDFS and OWL
	Linked Data
	Multimedia
	Web Search and Enterprise Search

	Conclusion

	p014-02-06-blockeel
	Introduction
	FO() and the IDP framework
	FO()
	The IDP framework

	Stemmatology
	The task
	An IDP solution

	Minimum common supergraphs of partially labelled trees
	The problem
	The IDP solution

	Learning deterministic finite state automata
	The problem
	The solution

	Conclusion

	p026-03-86-baral
	Introduction
	Background
	Frame-Based Knowledge Base
	Answer Set Programming

	Answering two Why/How Questions
	Knowledge Bases of Biological Processes
	Answers to two types of Why/How Questions

	ASP Encodings for General Reasoning Rules
	Encoding the Semantics of Slots
	Compositional-Connected, Behavioral-Connected, and Importantly-Connected
	Cpath, Bpath, and Ipath
	Finding Common Ancestor
	Correctness of the General Reasoning Rules

	ASP Encoding of How/Why Question and Answering
	Question Encoding
	Answer Graph
	Obtaining Complete Answer: Output All Nodes/Edges in the Answer Graph and Answer Path

	Conclusion, Discussion and Future work

	p037-04-70-maratea
	Introduction
	Preliminaries
	Answer Set Programming
	Syntax
	Semantics

	Multinomial classification for Algorithm Selection

	Benchmark data and Settings
	Dataset
	Executables and Hardware Settings

	Designing a Multi-Engine ASP Solver
	Features
	Solvers selection
	Classification algorithms and training

	Performance analysis
	Related Work
	Conclusion

	p049-05-97-balduccini
	Introduction
	The Syntax of ASP{f}
	Semantics of ASP{f}
	Knowledge Representation with ASP{f}
	Computing the Answer Sets of ASP{f} Programs
	Experimental Results
	Conclusions and Future Work

	p061-06-61-lee
	Introduction
	Preliminaries
	Syntax of Formulas with Generalized Quantifiers
	Models of GQ-Formulas

	Stable Models of GQ-Formulas
	Aggregates as GQ-Formulas
	Formulas with Aggregates
	Aggregates as GQ-Formulas

	Nonmonotonic dl-Programs as GQ-Formulas
	Review of Nonmonotonic dl-Programs
	Nonmonotonic dl-program as GQ-Formulas
	Another Semantics of Nonmonotonic dl-programs

	Related Work
	Conclusion

	p072-07-94-schanda
	Introduction
	SPARK
	Riposte architecture
	Rewrite
	Interval reasoning
	Program generation
	Interpretation

	Methodology and Modelling
	Methodology
	Encoding

	Evaluation
	Comparison
	Program statistics

	Related work
	Conclusion and Future Work

	p086-08-55-banbara
	Introduction
	Sequence Covering Arrays and Related Work
	Constraint Programming Models
	Naïve Matrix Model
	Event-Position Matrix Model
	Incidence Matrix Model

	Experiments
	An ASP Program of the Incidence Matrix Model
	Comparison
	Conclusion

	p098-09-53-albert
	Introduction
	Symbolic Execution of Concurrent Objects
	CLP Translated Programs
	Implementation of Concurrency Builtins

	From Symbolic Execution to TDG
	Task-Level Coverage and Termination Criteria
	Task-Switching Coverage and Termination Criteria
	A CLP-based TDG Engine for Concurrent Objects

	Conclusions, Related and Future Work

	p109-10-68-abdennadher
	Introduction
	Constraint Handling Rules by Example
	Related Work
	Source-to-Source Transformation for Visualization
	The Visualization
	Visualizing The Execution
	Removing Unneeded Nodes

	Visualizing Constraints

	Conclusions and Future Work

	p119-11-28-zombori
	Introduction
	Background
	The Q Programming Language
	Restriction of the Q language for type reasoning

	Related Work
	Type Inference as a Constraint Satisfaction Problem
	Type Language for Q
	Domains
	Constraints
	Constraint Reasoning

	Implementation – the qtchk program
	Representing variables
	Constraint Reasoning
	Error Handling

	Evaluation
	Conclusions

	p130-12-48-hanus
	Motivation
	Functional Logic Programming and Curry
	Compiling Non-Deterministic Programs
	Demand Analysis
	Program Transformation
	Benchmarks
	Conclusions

	p144-13-81-bacci
	Introduction
	Analysis of the issues posed by the logical features of Curry
	Formalization of equivalence notions
	Deriving Specifications from Programs
	Feasibility considerations

	Conclusions and Future Work

	p154-14-101-virseda
	Introduction
	An Example of Concurrent Execution in CFLP(FD)
	Concurrent Constraint Functional Logic Programming
	Expressions, Patterns, and Constraints
	Programs and Constrained Definitional Trees
	Goals and Answers

	A Concurrent Operational Semantics for CFLP(D)
	Concurrent Demand-Driven Narrowing and Residuation
	Concurrent Constraint Solving
	Soundness and Completeness

	Conclusions and Future Work

	p164-15-49-silverthorn
	Introduction
	Review of Application Domains
	Algorithm Portfolio Methods
	Algorithm Selection and claspfolio
	Solver Scheduling, mapp, and borg

	Automatic Algorithm Configuration
	Domain-Specific Portfolio Synthesis
	Experimental Results
	Conclusions

	p176-16-26-hoos
	Introduction
	Solver Scheduling
	Solving Timeout-Optimal Scheduling with ASP
	Solving (Timeout and) Time-Minimal Parallel Scheduling with ASP
	Experiments
	Related Work
	Conclusion

	p188-17-59-drescher
	Introduction
	Background
	Nogoods of Logic Programs with Externals
	Lazy Nogood Generation
	Conflict-Driven Nogood Learning with Lazy Nogood Generation
	Main Algorithm
	Propagation

	Constraint Answer Set Solving via Lazy Nogood Generation
	Experiments
	Related Work
	Conclusion

	p201-18-42-decat
	Introduction
	Preliminaries
	FO
	Model expansion
	Grounding

	Delayed theories
	Delays on formulae

	Introducing delayed sentences
	Tseitin introduction
	-instantiation
	Delayed grounding algorithm
	Incremental delayed grounding algorithm

	Lazy model expansion

	Experiments
	Related work
	Conclusion

	p212-19-67-andres
	Introduction
	The MSUnCore Algorithm
	Implementation of unclasp
	Experiments
	Discussion

	p222-20-38-oetsch
	Introduction
	Preliminaries
	Reduct-Based Answer-Set Semantics
	Prelude: FLP-Semantics for Elementary-Head Programs and a Straightforward Extension
	Basic Definition and Unfounded Sets

	Relation to other Semantics
	Semantics in the Tradition of Simons, Niemelä, and Soininen
	Semantics in the Style of Faber, Pfeifer, and Leone

	Conclusion

	p235-21-60-you
	Introduction
	Preliminaries
	Well-Founded Semantics for Arbitrary DL-Programs
	Representing DL-Programs by Aggregate Programs
	Relationship

	Well-Founded Semantics of DL-Programs with Aggregates
	Related Work and Further Direction

	p247-22-11-morak
	Introduction
	Preliminaries
	Preprocessing of Non-ground Rules
	Experimental Evaluation
	Conclusion

	p259-23-17-lifschitz
	Introduction
	Definitions
	Syntax
	Semantics
	Example
	Constraints
	Clausal Form

	Relation to Traditional ASP Programs
	Reduction to Programs with Strong Negation
	Complete Answer Sets in Disguise

	Relation to Causal Logic
	Representing Action Descriptions by Two-Valued Programs
	Translating B-Descriptions
	Translating Definite C-Descriptions

	Conclusion

	p267-24-93-nieves
	Introduction
	Background
	Nested Logic Programs

	Possibilistic Nested Logic Programs
	Syntax
	Possibilistic Nested Logic Semantics

	Conclusions and Future Work
	Acknowledgements

	p277-25-39-denecker
	Introduction
	Generate-Define-Test methodology
	Concepts of Tarskian model semantics
	The logic ASP-FO
	Informal semantics of ASP-FO and the Generate-Define-Test methodology
	Discussion

	p290-26-09-aguado
	Introduction
	A motivating example
	Temporal Quantified Equilibrium Logic
	Safe Variables and Domain Independence
	Derivable ground facts
	Conclusions

	p301-27-45-drabent
	Introduction
	Propositional satisfiability – first logic program
	Correctness and completeness
	Specifications
	Correctness
	Completeness

	Preparing for adding control
	The program with control
	Discussion
	Conclusions

	p312-28-65-tarau
	Introduction
	The Classic Result: Cantor's Pairing Function and its Inverse
	Implementing the Generalized Cantor n-tupling Bijection
	Binomial Coefficients, efficiently
	The Nk N bijection

	Refining the Specification of the Inverse
	Enumerating, naively
	A better algorithm, using a tighter upper limit

	The Missing Link: from Lists to Sets and Back
	Backtracking one step: revisiting the Nk N bijection
	The Efficient Inverse
	Extending the Bijection to Sets and Multisets of K Natural Numbers
	A Simple Application: Fair Search
	Related Work
	Conclusion

	p323-29-50-greco
	Introduction
	Logic programs with function symbols
	Safe programs
	Exploiting function symbols
	Computing stable models for -acyclic programs
	Bound queries

	p334-30-89-gallego-arias
	Introduction
	Logic Programming
	Category Theory
	Categorical Relations
	Lawvere Categories
	Allegories

	Regular Lawvere Categories and -Allegories
	-Allegories

	Translation of the Program
	Specification of The Machine
	The Pullback Algorithm
	Implementation Discussion
	Related Work
	Conclusions and Future Work
	An Example
	Translation
	Execution

	p348-31-47-sato
	Introduction
	Probability computation in PRISM
	Tabling and explanation graphs
	From explanation graphs to probability computation

	Prefix computation for PCFGs using PRISM
	A prefix parser
	Computing prefix probabilities: an example
	Properties of explanation graphs generated by a prefix parser

	Related work
	Conclusion

	p359-32-35-le
	Introduction
	Background—PhyloWS: Phylogenetic Web Service API
	System Organization
	PhyloWS in ASP
	Evaluation
	Related Work and Discussion
	Conclusion and Future Work

	p370-33-99-dahl
	Introduction
	Making effective and principled decisions
	Our proposed model for responsibly-informed decision making
	Priority definitions
	Goal definitions
	The knowledge base: its sources, reasons, and trustworthiness
	The system

	Principled and informed voting
	Motivation
	Client directed voting
	Our algorithm
	Example

	Conclusion
	Acknowledgements

	p381-34-05-lopes
	Introduction
	Preliminaries
	Annotated RDFS Data Model
	Inference Rules
	AnQL: Annotated Query Language
	Implementation

	Access Control Annotation Domain
	Entities and Annotations
	Annotation Domain
	Prolog Implementation

	Related Work
	Conclusions and Future Work

	p393-35-21-novelli
	Introduction
	Architectonic Asset Analysis
	Ontology
	Localisation and Identification of Damage

	Representation and Reasoning
	Decision Trees
	Answer Set Programming
	AnsProlog for Collapse Mechanisms

	Data Capture
	Discussion and Future Work

	p404-36-64-chen
	Introduction
	Preliminaries
	Defining Composite Actions
	Syntax
	Semantics

	Properties of Extended Action Description
	Experiments—KeJia's Domain
	Formalizing and Reasoning with Composite Actions
	Performance

	Conclusion

	p415-37-36-cattafi
	Introduction
	The home health care service in Ferrara

	A Constraint for the Traveling Salesman Problem
	A Constraint Logic Programming Model
	The CLP Model
	The Objective Function

	Example
	Implementation
	Search Strategies
	Experiments and Results
	Related Work
	Conclusions

	p425-38-71-filardo
	Introduction
	Arithmetic Circuits
	Backward Chaining
	Reactive Circuits: Change Propagation
	Pure Forward Chaining
	Mixed Chaining With Selective Memoization
	Updates vs. Notifications
	Push-Time Updates and Invalidations
	Correctness: Avoiding A Subtle Bug
	Efficiency: Obligation Tracking
	Related Work

	Extensions
	Conclusion

	p439-39-dc01-de-angelis
	Introduction and problem statement
	Background and overview of the existing literature
	Goal of the research
	Current status of the research
	Preliminary results accomplished
	Open issues and expected achievements

	p445-40-dc02-dieguez
	Introduction and motivation
	Goal of research and preliminary results accomplished
	Current status of research and expected achievements

	p451-41-dc03-hadjichristodoulou
	Introduction and problem description
	Background and overview of the existing literature
	Goal of the research
	Current status of the research
	Preliminary results accomplished
	Open issues and expected achievements

	p458-42-dc04-ostrowski
	Introduction and Motivation
	Background
	Research Program
	Future Work

	p464-43-dc05-peano
	Introduction
	The Isolation Valves Location Problem
	Results
	Future Work

	p469-44-dc06-redl
	Introduction and Problem Description
	The Answer-Set Programming Paradigm
	External Sources

	Background and Overview of the Existing Literature
	Model Finding for Propositional Ordinary Answer Set Programs
	Intelligent Grounding
	External Domains

	Goal of the Research
	Algorithms
	Scalable Computation
	Prototype Implementation

	Current Status of the Research
	Preliminary Results Accomplished
	Open Issues and Expected Achievements

	p476-45-dc07-wright
	Introduction and problem description
	Background and Overview of Existing Literature
	Epistemic & Temporal Logics
	Action Languages
	Commitments

	Research Accomplishments, Goals, and Future
	Goal
	Current Status of the Research
	Open Issues and Expected Achievements

