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Preface

The 18th International Workshop on Types for Proofs and Programs was held in Bergen,
Norway from September 8 to September 11, 2011. It was attended by 130 researchers.
The local organisers were Marc Bezem and Michał Walicki and the program committee
consisted of Marc Bezem from University of Bergen and Ana Bove, Thierry Coquand, Nils
Anders Danielsson, Peter Dybjer and Bengt Nordström (chair) from Chalmers University of
Technology and University of Gothenburg.

The TYPES workshops were first organised in the late 1980’s and were supported by
a series of EU programmes from 1989 to 2008. Previous workshops were held in Antibes
(1990), Edinburgh (1991), Båstad (1992), Nijmegen (1993), Båstad (1994), Aussois (1996),
Kloster Irsee (1998), Lökeberg (1999), Durham (2000), Berg en Dal (2002), Turin (2003),
Paris (2004), Nottingham (2006), Cividale del Friuli (2007), Turin (2008), Aussois (2009)
and Warsaw (2010).

There were 40 presentations at the workshop and 8 submissions to these open post-
proceedings, out of which 5 papers were accepted. Three of the papers represent theoretical
advances in type theory; two describe interdisciplinary applications: model-driven engineering
and climate impact research.

We wish to thank the people who served on the programme committee for these pro-
ceedings: Andreas Abel (Ludwig-Maximilians-Universität München), Hugo Herbelin (INRIA
Paris-Rocquencourt), Zhaohui Luo (Royal Holloway, University of London), Claudio Sacerdoti
Coen (University of Bologna) and Tarmo Uustalu (Tallinn University of Technology). We
also wish to thank the following additional reviewers: Robin Adams, Ferruccio Guidi, Stefan
Kahrs, Marco Maggesi, Conor McBride, Mauro Piccolo, Enrico Tassi and Tao Xue.

December 2012 Nils Anders Danielsson, Bengt Nordström
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Non-constructive complex analysis in Coq
Aloïs Brunel

Université Paris 13, Sorbonne Paris Cité, Laboratoire d’Informatique de
Paris-Nord (LIPN), CNRS, UMR 7030, F-93430, Villetaneuse, France.
alois.brunel@ens-lyon.org

Abstract
Winding numbers are fundamental objects arising in algebraic topology, with many applica-
tions in non-constructive complex analysis. We present a formalization in Coq of the wind-
ing numbers and their main properties. As an application of this development, we also give
non-constructive proofs of the following theorems: the Fundamental Theorem of Algebra, the
2-dimensional Brouwer Fixed-Point theorem and the 2-dimensional Borsuk-Ulam theorem.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Coq, complex analysis, winding numbers

Digital Object Identifier 10.4230/LIPIcs.TYPES.2011.1

1 Introduction

In this paper we present a formalization in Coq of several results in complex analysis. More
precisely, we have formalized non-constructive proofs of the following theorems: the two-
dimensional Brouwer Fixed Point theorem, the two-dimensional Borsuk-Ulam theorem and
the Fundamental Theorem of Algebra. The particularity of these proofs, besides their classical
nature (in the logical sense), is that they all rely on the notion of winding number, which is an
invariant of homotopy. The winding number around a point z ∈ C of a closed curve γ basically
counts how many time γ turns counterclockwise around z. They constitute an important
notion in algebraic topology and have applications in many domains of mathematics and
physics, including complex analysis but also differential geometry and string theory. This
wide range of applications has decided us to start the formalization of this notion in Coq,
along with examples of important applications.

Finally, we are also interested in organizing our development in a reusable set of libraries
on top of Coq Standard Library. There is still some cleaning and organizing work to do on
our development, but we think the presented work is close to that goal.

Contributions
To establish these results, we had to develop a whole library on top of the Coq Standard
Library. It includes a general purpose library for metric spaces, defined using type classes [12],
that generalize several results of the Coq Standard Library of reals. We have formalized some
properties of Euclidean spaces, including the characterization of compact sets as the bounded
closed sets. Our formalization also provides definitions and various results about the complex
plane: the definition and the continuity of common functions, the existence of a complex
logarithm and a continuous lifting theorem. Finally, a crucial part of the formalization
concerns the definition of the winding number of a closed path and its main properties,
culminating in proving that the winding number is an homotopy invariant. Results about
line integrals have also been formalised but they are just briefly discussed in this paper. To
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2 Non-constructive complex analysis in Coq

define winding numbers, we have followed [11]. The proofs of the three mentioned theorems
we have formalised can be found in [5].

The classical nature of the proofs presented here is twofold. First, we decisively use
the reasoning by contradiction to obtain the different results from the homotopy invariance
theorem (although it is not used to define winding numbers or to prove the homotopy
invariance of the winding number). Secondly, the standard library of reals of Coq is a
classical axiomatization of the field of reals.

Related work

C-CoRN Project — A constructive proof of the Fundamental Theorem of Algebra
has been formalized as part as the C-CoRN project [2]. Its proof [6] relies on elementary
properties of R and C (mostly the existence of k-th roots in C, an intermediate value theorem
for polynomials and some basic polynomial arithmetic). The constructive nature and the
careful design of the proof makes it particularly suitable for extraction [3]. In contrast, we
were interested in formalizing classical mathematics, which makes our two works completely
different in nature. Yet, it does not mean we completely give up on the possibility of
extraction, as discussed in the conclusion.

Coqtail Project — Coqtail [4] is a project intended to extend the standard Coq lib-
rary by providing clean, reusable libraries for various domains of undergraduate mathematics:
arithmetic, reals, basic complex analysis, basic topology. It has been used to formalize a
proof of Lagrange’s four square theorem, to formalize power series and solve some differential
equations [1]. It seems that many of the basic definitions about complex numbers and
functions coincide in both our works, and so it is likely that the developments described here
could easily be integrated in their library.

Other proof assistants — Numerous developments based on complex analysis,
euclidean spaces or topology have been formalized in other proof assistants. One can cite
Harrison’s works in HOL Light [8, 7] on the theory of Euclidean spaces (including a proof
of the general Brouwer Fixed-Point theorem, using combinatorial arguments) and on a
complex-analytic proof of the prime number theorem.

Outline

Basic definitions and notations are described in section 2. We then present in section 3 the
metric spaces and euclidean spaces libraries. Section 4 introduces the existence of a complex
logarithm, the continuous lifting theorem and finally the definition of the winding number
and the formalization of some of its main properties. We present the non-constructive proof
of the main theorems along with their formalization in section 5. Section 6 finally concludes
this work.

2 Basic notations and definitions

We give here the basic notations and definitions, relative to the complex plane and the
euclidean spaces in general, needed to understand the Coq statements of the next sections.
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2.1 Complex plane

We begin with the definition of the complex plane. We remind that the underlying theory
of reals that we use is the one of the Coq Standard Library. It is based on an axiomatic
definition of the field of reals. It has to be noted that this axiomatic definition of reals is
fundamentally classical.

The set C is defined as R2, the imaginary and real parts being respectively the first and
second projections.

Definition C : Set := prod R R.
Definition CRe (c : C) : R := match c with ( a, _) => a end.
Definition CIm (c : C) : R := match c with ( _, b) => b end.

co : R*R -> C denotes the trivial coercion from R*R to C, so that co a b represents the
complex number a+ ib. A coercion from R to C is defined and noted IRC.

Definition IRC (r : R) : C := co r 0.
Coercion IRC : R >-> C.

It also possible to define a complex number by its polar form.

Definition polar_form (r: R) (t : R) := co (r*cos t) (r*sin t).

We declare distinguished elements of C, noted 0, 1, Ci representing respectively 0, 1 and
the purely imaginary number i. We endow C with operations noted as in R, +, -, * and /. C
then defines a ring and a field, and is declared as such, permitting to use the ring and field
tactic families. The absolut value and the conjugation operations are noted respectively Cmod
and Cconj. The complex exponential is defined using the real exponential already defined in
the standard library and the polar form:

Definition Cexp (c : C) := polar_form (exp (CRe c)) (CIm c).

The circle of radius r can then be parametrized as follows.

Definition C_circle_par (r : R) (theta : R) : C := r * Cexp (0,theta).

2.2 Euclidean space

We also define the euclidean space Rn, using an inductive product of set.

Fixpoint prod_n (E: Set) (n:nat) : Set :=
match n with
| O => unit
| S n => prod (prod_n E n) E

end.

Hence prod_n R n represents the set Rn. We define usual operations on Rn: [+], [-], [.]
and an element [0] implementing respectively the addition, the substraction, the inner
product and the element (0, . . . , 0).

TYPES 2011



4 Non-constructive complex analysis in Coq

2.3 Domains
We define useful subsets of R and C.

Definition CUnit_Disk : C -> Prop := fun x => Cmod x <= 1.
Definition CUnit_Circle : C -> Prop := fun x => Cmod x = 1.
Definition RDom_Int (a b : R) : R -> Prop := fun x => a <= x <= b.
Definition CRect (a b c d : R) : C -> Prop := fun c => a <= CRe c <= b
/\ d <= CIm c <= e.

We define the notion of star shaped subset of C.

Definition CDom_Star (K : C -> Prop) :=
forall x y : C, K x -> K y ->
forall lam : R, 0 <= lam <= 1 -> K (lam * x + (1 - IRC lam) * y).

3 Metric spaces

To prove sophisticated complex analysis results, we need elementary regularity properties of
functions on Rn, which are consequences of the metric space structure of Rn, such as Heine
theorem (continuity on a compact implies uniform continuity). There are also properties we
need for R,R2 and R3, which are true for all euclidean spaces Rn. Instead of reproving these
results each time we consider a different set, we do it in the general case. Hence, we provide
libraries for metric spaces and euclidean spaces, which are presented in this section.

3.1 Metric spaces
We define metric spaces and of top of them, the notions of continuity, uniform continuity,
open set, closed set, and so on. We mostly follow the definitions and naming already present
in Coq reals library. Our choice has been to define metric spaces as a type class [12], hence
benefiting of features like notation overloading, parametrized instances and generalized
type-class binders. The definition is as follows:

Class MetrSpace (E: Set) :=
{

d : E -> E -> R;
pr_pos : forall x y : E, 0 <= d x y;
pr_sym : forall x y : E, (d x y) = (d y x);
pr_sep : forall x y : E, (d x y = 0) <-> x = y;
pr_tri : forall x y z : E, d x y <= (d x z) + (d z y);
pt : E

}.

I Remark. Notice that we define pointed metric spaces, that is a metric space together with
a distinguished element pt of the base set. This is just a convenient choice that simplifies a
bit some proofs abound bounded sets and the writing of some tactics about continuity (that
we don’t mention in this paper).

Different instances of the class MetrSpace are declared, like R and C. We also define the
product metric space of two metric spaces as a parametrized instance:

Instance prod_MetrSpace ‘(EM : MetrSpace E, FM: MetrSpace F) :
MetrSpace (E * F).
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This allows to declare the n-dimensional euclidean space Rn as a metric space.
In the definition of limits and continuity between two metric spaces, the latter are

introduced via generalized type-class binders, which allows to write statements and proofs in
a natural way.

Definition Metr_limit_in ‘{EM: MetrSpace E, FM: MetrSpace F}
(f : E -> F) (D : E -> Prop) (a : E) (l : F) :=
forall eps : posreal -> exists eta : posreal /\
(forall x, D x -> d x a < eta -> d (f x) l < eps).

Definition MS_continue_in ‘{EM : MetrSpace E, FM : MetrSpace F}
(f : E -> F) (D : E -> Prop) (a : E) : Prop :=

Metr_limit_in f D a (f a).

Definition MS_uniform_continuity ‘{EM : MetrSpace E, FM : MetrSpace F}
(f : E -> F) (D : E -> Prop) : Prop :=
forall eps : posreal, exists delta : posreal,

(forall x y: E, D x -> D y ->
d x y < delta -> d (f x) (f y) < eps).

I Example 1. As an example, the statement that the function x ∈ R 7→ x+ 1 is uniformly
continuous on R is simply written in Coq:

MS_uniform_continuity (fun x => x + R1) (fun x => True)

The notation is light: there is no need to specify the base set nor the metric space used here,
since the type-class constraint system permits to retrieve the previously declared metric
space on R.

The definition of compact set is adapted from the one used in the Coq Reals library. It is
however a notion of compactness with respect to a set of open sets O.

Definition MS_compact_base ‘{EM: MetrSpace E}
(X: E -> Prop) (O: (E->Prop)->Prop) : Prop :=
forall I : Type, forall IM: MetrSpace I, forall f : MS_family I E,

MS_covering_open_set X f -> MS_family_base f O ->
exists D : I -> Prop, MS_covering_finite X (MS_subfamily f D).

This amounts to say that a set X is compact if whenever we have a cover C of X
constituted by open sets of O, we can find a finite subset C′ ⊆ C which is still a cover of X.
The usual compactness property is just an alias for compactness with respect to all open sets.

Definition MS_compact ‘{EM: MetrSpace E} (X: E -> Prop) : Prop :=
MS_compact_base X (fun _ => True).

In the Real library, a cover is represented by a family of open sets (Oi)i∈R indexed by R.
Here, we can use any element of Type as a set of indexes. This is indeed necessary to prove a
crucial result: compactness is equivalent to compactness with respect to an open set basis.

Theorem MS_compact_basis ‘{EM : MetrSpace E}:
forall X : E -> Prop, forall O : (E -> Prop) -> Prop,
forall Ho: MS_open_basis O, MS_compact_base O X -> MS_compact X.

TYPES 2011



6 Non-constructive complex analysis in Coq

Here, MS_open_basis O denotes the fact that a set O of open sets is such that any open
set G can be written G =

⋃
X∈O∧X⊆GX. To prove this theorem, we need to have an index

set of type Type. Indeed, from an original cover Ci, we build the cover C(i,U) where U is an
open set such that U ⊆ Ci and U ∈ O. This amounts to use prod I (E -> Prop) as a type
for indexes, which justifies the use of Type.

I Example 2. As an example of a theorem already proved for R in the standard library, the
Heine theorem is now available for all metric spaces. It states that every continuous function
on a compact set is also uniformly continuous.

Theorem MS_Heine :
forall (f:E -> F) (D:E -> Prop),

MS_compact D -> MS_continue_on f D -> MS_uniform_continuity f X.

3.2 Euclidean spaces
Rather than defining directly euclidean spaces with the particular canonical euclidean scalar
product, we define them axiomatically as a type class:

Class Euclidean (dim : nat) :=
{

scal : prod_n R dim -> prod_n R dim -> R;
scal_sym : forall x y : prod_n R dim, scal x y = scal y x;
scal_pos : forall x : prod_n R dim, 0 <= scal x x;
scal_def : forall x : prod_n R dim, scal x x = R0 -> x = Rn_zero;
scal_add1 : forall x y z : prod_n R dim, scal (Rn_plus x y) z =

scal x z + scal y z;
scal_add2 : forall x y z : prod_n R dim, scal x (Rn_plus y z) =

scal x y + scal x z;
scal_lam1 : forall x y lam, scal (Rn_dot x lam) y= lam * scal x y;
scal_lam2 : forall x y lam, scal x (Rn_dot y lam)= lam * scal x y

}.

Each instance of an euclidean space then defines an euclidean norm, defined as follows:

Definition Eucl_norm ‘{E : Euclidean n} :=
fun x : prod_n R n => sqrt (scal x x).

We define two notations for the unit disk and the unit circle of dimension n.

Definition RnUnit_Disk ‘{E : Euclidean n} :=
fun x : prod_n R n => Eucl_norm x <= 1.

Definition RnUnit_Circle ‘{E : Euclidean n} :=
fun x : prod_n R n => Eucl_norm x = 1.

From these axioms, we derive several useful properties, like the Cauchy-Schwarz inequality.

Lemma Eucl_CauchySchwartz ‘{E: Euclidean n}:
forall x y, Rabs (scal x y) <= Eucl_norm x * Eucl_norm y.

Using the euclidean norm to define a distance, we can show that each euclidean space Rn
defines a metric space instance.



A. Brunel 7

Instance Rn_MetrSpace {n : nat} : MetrSpace (prod_n R n).

An important step in our development is the Borel-Lebesgue theorem, which states that
in Rn, the compact sets (defined in terms of covering) are exactly those sets which are both
closed and bounded.

Theorem Eucl_Borel_Lebesgue:
forall n : nat, forall X : prod_n R n -> Prop,

(MS_compact X <-> MS_closed_set X /\ MS_bounded X).

In particular, to show that a closed and bounded set is compact, we reason by induction
and use the fact that a product of compacts is compact. That is where we need the equivalence
between compactness and compactness on the product basis (which, for the product metric
space, is the set of product of open sets) stated in the previous subsection.

4 Winding number theory

There are many ways to define the winding number. Mostly, two approaches are possible:
by using path integral or by proving a lifting theorem. We have formalised both definitions,
but we focus only on the latter, since it is more general and presents many advantages, as
advocated in subsection 4.4 In this section, we present the following results: the existence of a
complex logarithm, a continuous lifting theorem, and finally the notion of winding numbers.

4.1 Complex logarithm
A complex logarithm is an inverse of the complex exponential function, similarly to the
case of the real-valued functions ln and ex. However, the situation is more complicated on
C than on R. Indeed, the complex exponential is not injective (just consider the identity
ex = ex+2iπ) and hence cannot have an inverse function. This problem is usually solved by
restricting the domain of the exponential to a subset on which it is injective. In our case,
we restrict it to R×] − π, π], and hence the logarithm will be defined only on the domain
C \ R−, which is defined in Coq as:

Definition CLog_D0 := fun c => forall x : R, x <= 0 -> c <> IRC x.

We first show that every point z of this domain has a logarithm. To prove that it suffices
to notice that by the domain restriction, the polar decomposition of z = reiθ is unique. This
fact is equivalent to the following statement.

Lemma CLog_1:
forall z, CLog_D0 z ->

exists r, exists theta, 0 < r /\ -PI < theta <= PI /\
(IRC r) * Cexp (co 0 theta) = z.

Hence, its logarithm can be defined by Log(z) = ln(r) + iθ. We can then prove the
existence of a logarithm function on the domain CLog_D0. This function is necessarily
continuous.

Lemma CLog_ex_continuous :
exists log : C -> C, log C1 = C0 /\
(forall z, CLog_D0 z ->

-PI <= CIm (log z) <= PI /\ Cexp (log z) = z /\ MS_continue_in log z).

TYPES 2011



8 Non-constructive complex analysis in Coq

To prove this theorem, we crucially need the axiom of choice in its functional form:

Axiom choice :
forall (A B : Type) (R : A->B->Prop),

(forall x : A, exists y : B, R x y) ->
exists f : A->B, (forall x : A, R x (f x)).

We could obtain an actual function log : C -> C by using the principle of constructive
indefinite description.

Axiom constructive_indefinite_description :
forall (A : Type) (P : A->Prop),

(exists x, P x) -> { x : A | P x }.

This principle is stronger than the axiom of choice. In fact, we never need to obtain a
logarithm function: the statement of its existence is enough.

4.2 Complex lifting
Given a function f : C→ C continuous on K, we say that Φ : K → C is a continuous lifting
of f if Φ is continuous and ∀x ∈ K, f(x) = ‖f(x)‖eΦ(x). We can state the existence of such
a lifting for any set K, which is both compact and star-shaped.

Theorem Complex_Lifting:
forall F : C -> C, forall K : C -> Prop,
MS_compact K -> CDom_Star K -> MS_continue_on F K ->
(forall x, K x -> F x <> C0) -> exists Phi : C -> C,

(forall x : C, K x -> F x = IRC (Cmod (F x)) * Cexp (Phi x)) /\
MS_continue_on Phi K.

The proof, which we don’t detail, crucially relies on the uniform continuity of the function,
and hence on Heine theorem.

4.3 Winding numbers
A path is a continuous function γ : [a, b] → C. We moreover say it is a closed path if
γ(a) = γ(b). From now on, we only consider closed path γ such that ∀x ∈ [a, b], γ(x) 6= 0. In
Coq, a closed path is represented as a record containing its domain together with a proof of
its continuity.

Record C_lace : Type := mklace {
gam :> R -> C;
a : R;
b : R;
ab_pr: a <= b;
gam_lace : gam a = gam b;
gam_cont: forall x, RDom_Int a b x -> MS_continue_in gam (RDom_Int a b) x

}.

Given a closed path g, we say that ψ : [a, b]→ C is an argument of g if ψ is continuous
and if ∀x ∈ [a, b], g(x) = ‖g(x)‖eψ(x). This property is denoted in Coq by
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Definition cont_arg_choice (a b : R) (F : R -> C) (psi : R -> C) :=
(forall x, RDom_Int a b x -> F x = IRC(Cmod(F x))*(Cexp (psi x)))

/\ (forall x, RDom_Int a b x -> MS_continue_in psi (RDom_Int a b) x).

If γ is nowhere vanishing (meaning it never takes the value 0 on its domain) and H is an
argument of γ, we can define its winding number (around 0) by:

Definition lace_WN_param (g : C_lace) (psi : R -> C) : C :=
(psi (b g) - psi (a g))/(co 0 (2*PI)).

Moreover, we prove that whatever the choice of argument we have made, the winding
number is the same.

Lemma lace_WN_param_equal:
forall g, (forall x, RDom_Int (a g) (b g) x -> g x <> C0) ->
forall psi1 psi2,

cont_arg_choice (a g) (b g) g psi1 ->
cont_arg_choice (a g) (b g) g psi2 ->

lace_WN_param g psi1 = lace_WN_param g psi2.

I Remark. Usually, because the winding number is invariant by the choice of argument, it is
defined as an actual number using a specific continuous argument ψ obtained by the complex
lifting theorem.

n(γ, 0) = ψ(b)− ψ(a)
2iπ

We choose not to do that since it would mean using the principle of constructive indefinite
description to obtain an argument, which can be avoided. Instead, we will always carry an
assumption of the existence of a continuous argument.

An important property is that the winding number of a closed path is always an integer.

Lemma lace_WN_param_Z:
forall g psi,

(forall x, RDom_Int (a g) (b g) x -> g x <> C0) ->
cont_arg_choice (a g) (b g) g psi ->
exists z : Z, lace_WN_param g psi = IRC (IZR z).

To obtain this result, we make use of trigonometry results contained in the standard
library. Here is an informal proof.

Proof. Suppose that for every x, γ(x) is in the unit disk. Let Φ be a lifting of γ: γ(x) =
|γ(x)|eΦ(x). Then, eΦ(b)−Φ(a) = 1 (since γ(a) = γ(b). Hence, there exists some k ∈ Z such
that Φ(b)− Φ(a) = 2i(kπ). Hence n(γ, 0) = Φ(b)−Φ(a)

2iπ = k ∈ Z. J

I Example 3. As an example, we can compute the winding number of the unit circle.

Definition C_circ_unit : R -> C := fun t => Cexp (co 0 (2*PI*t)).

The winding number of the corresponding path C_circ_lace between 0 and 1 is equal
to 1. This fits the intuition of the path turning one time around the point 0.

Lemma C_circ_fact2:
forall psi, cont_arg_choice 0 1 (C_circ_lace) psi ->

lace_WN_param C_circ_lace psi = C1.

TYPES 2011



10 Non-constructive complex analysis in Coq

The final and important theorem is the invariance of the winding number by homotopy.
Formally, supposing two closed paths g0, g1 : C_lace are homotopically equivalent, that
is there exists a continuous function H : C -> C such that:

Definition CHomotopyEqu (g0 g1 : C_lace) (H : C -> C) :=
a g0 = a g1 /\ b g0 = b g1 /\
(forall x, a g0 <= x <= b g0 -> H(0,x) = g0 x) /\
(forall x, a g1 <= x <= b g1 -> H(1,x) = g1 x) /\
(MS_continue_on H (CRect 0 1 (a g0) (b g0))) /\
(forall x, RDom_Int 0 1 x -> H(u, a g0) = H(u, b g0)).

And if moreover, H never equals to O (which ensures that neither g0 nor g1 do), then the
winding numbers of g0 and g1 are equal. This is summarized in the following theorem:

Theorem Clace_WN_homotopy_invariant:
forall g0 g1 : C_lace, forall H : C -> C,
(forall c, (CRect 0 1 (a g0) (b g0) c) -> H c <> C0) ->
CHomotopyEqu g0 g1 H ->
forall psi0 psi1 : R -> C,

cont_arg_choice (a g0) (b g0) g0 psi0 ->
cont_arg_choice (a g1) (b g1) g1 psi1 ->

lace_WN_param g0 psi0 = lace_WN_param g1 psi1.

I Remark. Notice that here again, the theorem is stated without fixing a choice of argument
for the closed paths.

4.4 Winding numbers: path integral versus continuous lifting
We have presented here a definition of winding number of a closed path by using a choice of
argument for it. It is however often defined using line integrals. We can indeed define the
winding number of a closed path γ : [a, b]→ C around a point c as:

n(γ, c) = 1
2iπ

∮
γ

dz

z − c

where the line integral is defined using∮
γ

f(z)dz =
∫ b

a

f(γ(t))γ′(t)dt

We have also formalized this alternative definition and proved that it yields the same result
as the other. It has shown several disadvantages over the definition we have presented:

To define path integrals, we need a good definition of integration for complex valued
functions over R. We have experimented using the Riemann integral from the Standard
Library of Coq. It allows one to define winding numbers without the path lifting theorem,
but always reasoning on integrals rather than in terms of complex exponentials and
logarithms is definitely more difficult.
The main problem is that because we use path integrals, we also need the path γ to be
differentiable (it can be then extended for continuous paths, but it involves sophisticated
results about complex analysis we have not formalised). This is indeed a severe restriction,
since we could prove the Fundamental Theorem of Algebra, but not the Brouwer Fixed-
Point theorem or the Borsuk-Ulam theorem, which are stated for continuous functions.
In contrast, coupled with the continuous lifting theorem, our definition immediately only
requires continuity of γ.
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5 Applications of the winding number homotopy invariance

We now detail the proofs we have formalized of the Fundamental Theorem of Algebra, the
Brouwer Fixed-Point theorem and finally of the Borsuk-Ulam theorem. All these proofs rely
on corollaries of the invariance by homotopy of the winding number and classical principles.

5.1 Prerequisites
We briefly give the statements and sketch the proofs of two fundamental lemmas needed for
the proofs of the Borsuk-Ulam and Brouwer Fixed Point theorems.

I Lemma 4. Suppose f : C → C is continuous and nowhere vanishing on the unit disk.
Then if γ(t) = f(e2iπt), we have n(γ, 0) = 0.

Proof. The path γ is homotopically equivalent to the constant path t 7→ f(0). Indeed,
H(u, t) = f(u ∗ e2iπt) is such that H(0, t) = f(0) and H(1, t) = γ(t). It is moreover
continuous because f is, and vanishes nowhere. Hence, because any constant path has a
winding number equal to 0, we conclude by homotopy invariance of the winding number. J

I Lemma 5. There does not exist a map f : C → C which is continuous, odd (that is
f(−x) = −f(x)) and nowhere vanishing on the unit disk.

Proof. We will prove that if such a map f exists, then if we pose the lace γ(t) = f(eiπt),
there exists k ∈ Z such that n(γ, 0) = 2k + 1 (we skip the proof here, but it only involves
simple calculations). Hence, because of Lemma 4, it leads to a contradiction. J

5.2 Fundamental Theorem of Algebra
The first application is a classical proof of the Fundamental Theorem of Algebra, which
states that any complex polynomial has a root. A complex polynomial is represented as a
list of complex coefficients, begining with the coefficient of higher degree and ending with
the one of degree 0.

Definition C_polynom : Set := Clist.
Definition C_polynom_deg (P : C_polynom) := pred (Clength P).

But of course, we need to remove the extra elements equals to C0 in order to be able to calculate
the true degree of the polynomial. This is the job of the function C_polynom_without_zero
which has the type C_polynom -> C_polynom. The evaluation of a polynomial is done
inductively by the function C_polynom_eval : C_polynom -> C. We now prove the following
statement.

Theorem FTA: forall P : C_polynom,
(1 <= C_polynom_deg (C_polynom_without_zero a)) ->
exists x : C, C_polynom_eval P x = C0.

So suppose the existence of a polynomial P of degree n (and we note its dominating
coefficient an 6= 0) such that

Variable pr_deg : n >= 1.
Variable pr_root: forall x, C_polynom_eval a x <> C0.

We then define the lace Gamma_circle r whose underlying function is the parametrization
of the circle of radius r deformed by the polynomial P (and by hypothesis pr_root, it makes
sense to speak of its winding number):

TYPES 2011



12 Non-constructive complex analysis in Coq

fun theta : R => C_polynom_eval P (C_circle_par r theta)

Now if R1 is big enough, the polynomial becomes dominated by its coefficient of larger
degree C_polynom_domcoeff P, and then the winding number is the same wether or not you
consider the other coefficients:

Definition nu (r : R) (theta : R) : C :=
C_polynom_domcoeff P * IRC (r^n) * Cexp (co 0 ((INR n)*theta)).

Lemma Alembert_theo5:
exists M : R, 0 < M /\ forall R1, forall pr : 0 < R1,
forall pr2 : M < R1, forall psi1 psi2 : R -> C,
cont_arg_choice 0 2*PI (nu_path R1 pr) psi1 ->
cont_arg_choice 0 2*PI (Gamma_circle R1) psi2 ->
lace_WN_param (nu_path R1 pr) psi1 = lace_WN_param (Gamma_circle R1) psi2.

But the winding number of ν(θ) = anr
neinθ can be shown by a simple calculation

to be equal to n. When the circle is of radius 0, the obtained path Gamma_circle 0 is
constant and hence its winding number is equal to 0. On the other hand, we can show that
whatever the positive reals R1 R2 : R, the paths Gamma_circle R1 and Gamma_circle R2
are homotopically equivalent, and so have the same winding number.

Lemma Alembert_theo3:
forall R1, 0 <= R1 -> forall R2, 0 <= R2 ->

(forall psi1 psi2 : R -> C,
cont_arg_choice 0 2*PI (Gamma_circle R1) psi1 ->
cont_arg_choice 0 2*PI (Gamma_circle R2) psi2 ->

forall Arg: R -> (R -> C), forall Harg: (forall r,
Rmin R1 R2 <= r <= Rmax R1 R2 ->
cont_arg_choice 0 2*PI (Gamma_circle r) (Arg r)),

lace_WN_param (Gamma_circle R1) psi1 = lace_WN_param (Gamma_circle R2) psi2.

The contradiction comes immediately, since when going from 0 to a real R big enough,
the winding number changes from 0 to n (by Lemma Alembert_theo5). This is contradicted
by the previous lemma Alembert_theo3 and because 1 <= n.

5.3 Brouwer Fixed-point theorem
We now prove the 2-dimensional version of the celebrated Brouwer Fixed-Point theorem.
It is a classical (in the sense of classical reasoning) corollary of the following no retraction
theorem.

Theorem No_Retraction:
~(exists r : C -> C,

(forall x, CUnit_Disk x -> CUnit_Disk (r x)) /\
(forall x, CUnit_Circle x -> r x = x) /\
(forall x, CUnit_Disk x -> MS_continue_in r CUnit_Disk x)).

Proof. Suppose by contradiction that we have such a retraction r. By hypothesis, for every x
in the unit disk, r(x) 6= 0, and r is continuous. Hence, by Lemma 4, the lace γ : t 7→ r(e2iπt)
is such that n(γ, 0) = 0. But, γ(t) = e2iπt since r is the identity on the unit circle. By
Lemma 5, however, we have n(γ, 0) 6= 0, which is contradictory. J
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We are now able to formalize a proof of the Brouwer Fixed-Point theorem, which is stated
as follows.

Theorem BrouwerFixedPoint:
forall f : C -> C, (forall x, CUnit_Disk x -> CUnit_Disk (f x)) ->

MS_continue_on f CUnit_Disk ->
exists x, CUnit_Disk x /\ f x = x.

The key point is to reason classicaly by supposing the existence of a map which has no
fixpoint and build a retract CUnit_Disk to CUnit_Circle out of it, which will lead to a
contradiction by the no retraction theorem.

Proof. The proof is carried using the following classical principle

not_all_not_ex: forall P:U->Prop, ~(forall n:U, ~P n) -> exists n:U, P n.

We suppose that f : C -> C is continuous on the unit disk and has no fixpoint, and derive
a contradiction.

Hypothesis Br_H1: forall x, CUnit_Disk x -> CUnit_Disk (f x).
Hypothesis Br_H2: forall x, CUnit_Disk x -> MS_continue_in f CUnit_Disk x.
Hypothesis Br_H3: forall x, CUnit_Disk x -> f x <> x .

We want to define a continuous retract brouwer_retract : C -> C from the unit disk
to the circle. Informally, consider a point z of the unit disk and its image f(z). Since we
have supposed that f(z) <> z, we can continue the segment that joins f(z) to z until it
reaches the unit circle. brouwer_retract z is this intersection point. Formally, given two
distinct points x0 and x of the unit disk, we need to solve the equation

(E) x0 + λ(x− x0) = 1

Finding λ amounts to solve a second degree (real) polynomial, which can be done using the
standard Coq library. Given a polynomial aX2 +bX+c, if its discriminant b2−4ac is positive,
the two roots (which are possibly equal) are given by sol_x1 a b c and sol_x2 a b c.
We use this to obtain a function LC_lambda x x0 : x <> x0 -> R that calculates the λ of
Equation (E).

Lemma line_circle_intersect (x0 x : C) (H : x <> x0) :
CUnit_Disk x0 ->

Cmod (x0 + IRC (LC_lambda x x0 H) * (x - x0)) = 1 /\
Cmod x = 1 -> LC_lambda x x0 = 1.

The map brouwer_retract is then defined, and if z is in the unit disk (we have a proof
Hunit : CUnit_Disk z), it is equal to

f z + IRC (LC_lambda z (f z) (Br_H3 z Hunit)) * (z - f z)

To conclude, we need to show that brouwer_retract is indeed a continuous retract,
which amounts to prove the three following lemmas. The first one is the continuity of
brouwer_retract on the unit disk. This proof involves a lot of bureaucracy, since we have
to show that LC_lambda is continuous on C∗.

Lemma Br_retract_continue : MS_continue_on brouwer_retract CUnit_Disk.

Secondly, restricted to the circle, brouwer_retract is the identity.
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14 Non-constructive complex analysis in Coq

Lemma Br_retract_circle :
forall z : C, CUnit_Circle z -> brouwer_retract z = z.

And finally brouwer_retract is actually a map from the unit disk to the unit circle.

Lemma Br_retract_unit :
forall z : C, CUnit_Disk z -> CUnit_Circle (brouwer_retract z).

These two last lemmas are direct consequences of the lemma line_circle_intersect.
Under these hypothesis, we conclude to a contradiction.

Lemma BrouwerNoFix : False.

J

5.4 Borsuk-Ulam theorem
The last application is the Borsuk-Ulam theorem, which states that for any continuous
complex-valued function f on the unit sphere, there exists a point x such that f(x) = f(−x).

Theorem BorsukUlam:
forall f : Rcube -> C, MS_continue_on f RnUnit_disk ->
exists x, RnUnit_disk x /\ f (-x) = f x.

The proof of this theorem will be a consequence of the following intermediate lemma.

Lemma BU_lemma2: #(AC)
forall f : Rcube -> C, MS_continue_on f RnUnit_disk ->
(forall x, BU_disk x -> f([-]x) = - f(x)) ->
exists p, RnUnit_circle p /\ f p = 0.

Proof. Here again, we reason by contradiction using not_all_not_ex. So we suppose having
a map f which is odd, continuous and nowhere vanishing. Then consider the following map
(where S2 is the 2-sphere):

φh : R2 → S2

φh(x, y) = (x, y,
√

1− x2 − y2)

Now, it is clear that if we pose γ(t) = f(e2iπt, 0), then γ(t) = (f ◦ φh)(e2iπt). We know
by hypothesis that f ◦ φh never vanishes on C and is continuous. Hence, by Lemma 4, we
have n(γ, 0) = 0. But by Lemma 5, because f ◦φh is nowhere vanishing, odd and continuous,
we have n(γ, 0) 6= 0 which is contradictory. J

Given this last lemma, we obtain Borsuk-Ulam Theorem.

Proof of Borsuk-Ulam Theorem. We reason classicaly by supposing the existence of a
function f : R3 → C, continuous on the unit ball and such that for every point x of the unit
ball, f(x) 6= f(−x). Then, consider the map

F (x) = f(x)− f(−x)
‖f(x)− f(−x)‖

Then F is well-defined and continuous by hypothesis, and F is clearly odd. Hence, using
BU_lemma2, there exists x in the unit sphere such that F (x) = 0, which contradicts the
hypothesis since it means f(x) = f(−x). J
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6 Conclusion and remarks

We have described in this paper a library implementing metric spaces, euclidean spaces and
winding numbers, and we have employed it to prove sophisticated results in classical complex
analysis. One future direction of research is the generalization of the results in arbitrary
dimension. In this development, we have only proved the 2-dimensional version of Brouwer
Fixed-Point and Borsuk-Ulam theorems, but their n-dimensional versions still can be proved.
The proofs are quite similar to those we have briefly sketched here. However, it requires to
use a generalization of the notion of winding number: the degree of a continuous mapping. It
can be defined for maps from Rn to Rn (which is sufficient) but also for continuous mapping
between oriented compact manifolds of the same dimension. To do this, one would need to
formalize some parts of classical homotopy theory.
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Abstract
We provide a coinductive definition of strongly convergent reductions between infinite lambda
terms. This approach avoids the notions of ordinals and metric convergence which have appeared
in the earlier definitions of the concept. As an illustration, we prove the existence part of the
infinitary standardization theorem. The proof is fully formalized in Coq using coinductive types.
The paper concludes with a characterization of infinite lambda terms which reduce to themselves
in a single beta step.
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1 Introduction

In the untyped lambda calculus [1], one observes that the fixed point combinator Y has
Böhm tree

λf.f(f(f · · · ))

which looks like a “limit” of the infinite reduction sequence

Y → λf.Y f → λf.f(Y f)→ . . .

Infinitary rewriting [6, 13, 2, 3, 17, 9] makes such statements precise by considering
infinite reduction sequences together with the topology on infinite terms generated by finite
prefixes: the basic opens are of the form

OC[] = {t | ∃t1, . . . , tn. t = C[t1, . . . , tn]}

where C[] is a finite multi-hole context. Alternatively, this topology is given by the metric d
where

d(s, t) = inf{2−n | s and t have the same symbols up to depth n}

Since the infinite terms can themselves be seen as formal limits of Cauchy sequences of
finite terms with the metric above, it is natural to consider rewriting sequences together with
this topological structure. Specifically, a reduction sequence

t0 → t1 → t2 → · · · → tn → · · ·
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is said to converge weakly to the limit t if the sequence {ti} converges to t in the metric d.
For example, reducing Curry’s fixed point combinator Y f = WW , where W = λx.f(xx),

yields the infinite sequence

Y f = WW → f(WW )→ f2(WW )→ · · · → fn(WW )→ . . .

which converges to the limit fω.
However, the above notion of infinite reductions does not yet yield a satisfactory rewriting

theory (intuitively, because topology does not respect the “rewriting structure” in any way).
As has been often stressed by Jan Willem Klop, a much superior notion of transfinite
reduction is the so-called strongly convergent reduction. This is a reduction as above which
satisfies the additional condition that the depth of redexes contracted in the infinite sequence
must tend to infinity. This constraint is sufficient to recover fundamental rewriting notions,
including descendants, projections of reductions, and standardization.

In the present paper, we observe that an alternative, “coordinate-free” definition of
strongly convergent reductions results from interpreting the binary reduction relation as a
coinductive type family.

1.0.0.1 Related Work.

Catarina Coquand and Thierry Coquand have explored a similar approach in [4], giving a
coinductive definition of standard reductions in infinitary combinatory logic. In his PhD
thesis [11] and the paper [12], Felix Joachimski investigates finite reductions between coin-
ductively defined infinite terms. To prove confluence, Joachimski introduces a coinductive
definition of infinite developments, but not infinite reductions in general. Our proof of stand-
ardization for infinite reductions is a generalization of Plotkin’s proof of standardization [15]
for finitary rewriting; see also [19].

2 Setup

The set of infinite lambda terms is generated coinductively by the grammar

Λ∞ ::= x | Λ∞Λ∞ | λx.Λ∞

For infinite terms s and t, we write s = t if s and t are bisimilar, that is, the predicate = is
coinductively defined by:

x = x

s = s′ t = t′

st = s′t′
r = r′

λx.r = λx.r′

Thus = is the largest relation R such that every s R t is of one of the forms:

1. x R x,
2. st R s′t′ for terms s, s′, t, t′ with s R s′ and t R t′, or
3. λx.r R λx.r′ for terms r, r′ and a variable x with r R r′.

Here and henceforth, we use double inference lines to emphasize that the given derivation
system defines a predicate or type family by coinduction rather than by induction.

We frequently denote regular infinite terms by systems of equations, e.g.:

M = (λx.x)M

It is to be understood that the term M is the infinite tree unfolding of this equation, see
Figure 1.
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Figure 1 A regular infinite term.

The operation of capture-avoiding substitution, written s[u/x], is defined by guarded
corecursion

s s[u/x]
x u

y y y 6= x

s1s2 s1[u/x]s2[u/x]
λy.r λy.r[u/x] y /∈ FV(u)

We will not discuss here the problem of implementing Barendregt’s variable convention
in the infinitary setting. It does present an interesting issue: if the variables are represented
by a countable set, then each variable might occur freely in a lambda term. Then it is not
possible to find a fresh name which does not occur in it. (We note that the trick of Hilbert’s
Hotel is not applicable here, since we cannot rename free variables.)

In our Coq formalization, we have used classical deBruijn representation which successfully
solves this problem, but it entails proving a number of lifting lemmas. Perhaps the most
natural approach to formalizing infinitary rewriting would be to use an explicit substitution
calculus based on explicit scope delimiters, as in [10], [18].

The substitution operator satisfies the following, provided that x /∈ FV(u):

s[t/x][u/y] = s[u/y][t[u/y]/x] (1)

The one-step beta reduction is a binary relation on Λ∞, defined inductively by the rules

(λx.r)t −→ r[t/x]
s −→ s′

st −→ s′t
t −→ t′

st −→ st′
r −→ r′

λx.r −→ λx.r′

The relation −→−→ of a finite beta reduction is the reflexive-transitive closure of −→,
defined inductively by the rules

t −→−→ t
s −→−→ t t −→ t′

s −→−→ t′

(We note that we could also append the single beta step on the left.)
The notion of one-step weak head reduction −→w is obtained by restricting −→ to only

the first two rules:

(λx.r)t −→w r[t/x]
s −→w s

′

st −→w s
′t

Correspondingly, −→−→w is the reflexive-transitive closure of −→w.
The infinite beta reduction −→−→−→ is defined coinductively by requiring that every node

in the syntax tree becomes “frozen” after finitely many steps. This is made explicit by the
following derivation rules, which are this time interpreted coinductively:
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s −→−→ x
s −→−→−→ x

s −→−→ t1t2 t1 −→−→−→ t′1 t2 −→−→−→ t′2

s −→−→−→ t′1t
′
2

s −→−→ λx.r r −→−→−→ r′

s −→−→−→ λx.r′

I Example 1. Let us reconsider Curry’s fixed point combinator Y = λf.WW with W =
λx.f(xx). Then the infinite rewrite sequence Y f −→−→−→ fω with fω = f(fω) can be derived
as follows:

Y f −→−→ f(WW ) f −→−→−→ f

WW −→−→ f(WW ) f −→−→−→ f WW −→−→ fω

WW −→−→−→ fω

Y f −→−→−→ fω

Note that this is an infinite proof term, as indicated by the loop .

Classically, transfinite reduction sequences are defined as follows (here we view ordinals
α as the set of all smaller ordinals α = {β | β < α}):

I Definition 2. Let s ∈ Λ∞, and let α be an ordinal.
A map t : (α∪{α})→ Λ∞, together with steps σβ : t(β)→ t(β+ 1))β<α for every β < α,

is a strongly convergent reduction of length α from t(0) to t(α), if the following conditions
hold:

1. If γ ≤ α is a limit ordinal, then t(γ) is the limit, in the metric topology on infinite terms,
of the ordinal-indexed sequence (t(β))β<γ ;

2. If γ ≤ α is a limit ordinal, then for every d ∈ N, there exists β < γ, such that, for all β′
with β ≤ β′ < γ , the redex contracted in the step σβ′ occurs at depth greater than d.

The proof of the following theorem will be given in Section 4.

I Theorem 3. s −→−→−→ t if and only if s reduces to t via a strongly convergent reduction
sequence.

One advantage of the coinductive approach is that it provides a simple and natural
definition of standard reductions.

The infinitary standard reduction is obtained by the same rules as the infinite beta
reductions, except that the finite prefixes are now required to be weak head reductions.

s −→−→w x
s −→−→−→s x

s −→−→w t1t2 t1 −→−→−→s t
′
1 t2 −→−→−→s t

′
2

s −→−→−→s t
′
1t
′
2

s −→−→w λx.r r −→−→−→s r
′

s −→−→−→s λx.r
′

TYPES 2011
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3 Standardization

We now seek to prove the following fact:

s −→−→−→ t =⇒ s −→−→−→s t

The intuition is as follows. In order to replace beta-prefixes with weak head-prefixes, we
standardize the beta prefix, extract the initial weak head reduction, and absorb the remainder
into the coinductive call. However, the standardization of a finite beta reduction can give rise
to an infinite reduction, as in the following counterexample to the Church–Rosser theorem
for finite reductions between infinite terms:

(λf.fω)(Ix) −→ (λf.fω)x −→ xω

when standardized, yields

(λf.fω)(Ix) −→ (Ix)ω −→−→−→ xω

As an intermediate step, we therefore first convert the prefixes to infinite standard
reductions. This suggests the introduction of one more auxiliary reduction −→−→−→a, which
follows the above scheme but takes for prefixes infinite standard reductions defined previously.

s −→−→−→s x
s −→−→−→a x

s −→−→−→s t1t2 t1 −→−→−→a t
′
1 t2 −→−→−→a t

′
2

s −→−→−→a t
′
1t
′
2

s −→−→−→s λx.r r −→−→−→a r
′

s −→−→−→a λx.r
′

Infinitary standardization theorem now follows by a series of simple lemmas:

I Lemma 4. We have

1. s −→−→w t, t −→−→w u =⇒ s −→−→w u

2. s −→−→w t, t −→−→−→s u =⇒ s −→−→−→s u

3. s −→−→−→s s
′, t −→−→−→s t

′ =⇒ s[t/x] −→−→−→s s
′[t′/x]

4. For −→R∈ {−→,−→−→,−→−→w},

s −→−→−→s t, t −→R u =⇒ s −→−→−→s u

5. s −→−→−→s t, t −→−→−→s u =⇒ s −→−→−→s u

Proof. 1. By induction.
2. By case distinction, using 1 to concatenate the prefix.
3. By coinduction, using that

s −→w t =⇒ s[u/x] −→w t[u/x]
s −→−→w t =⇒ s[u/x] −→−→w t[u/x]

4. By induction on t −→R u, using 3 for the redex base case.
5. By coinduction on t −→−→−→s u

Case 1 t −→−→w x = u. Then s −→−→−→s x by 4.
Case 2 u = u1u2, t −→−→w t1t2, and ti −→−→−→s ui. By 4, s −→−→−→s t1t2. Hence s −→−→w t′1t

′
2,

with t′i −→−→−→s ti. By coinduction, t′i −→−→−→s ui. Using that s −→−→w t′1t
′
2, we get

s −→−→−→s u1u2.
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Case 3 u = λx.v, t −→−→w λx.r, and r −→−→−→s v. By 4, s −→−→−→s λx.r. Hence s −→−→w λx.r
′,

with r′ −→−→−→s r. By coinduction, r′ −→−→−→s v. Using that s −→−→w λx.r′, we get
s −→−→−→s λx.v. J

I Lemma 5. We have

1. s −→−→−→s t, t −→−→−→s u =⇒ s −→−→−→s u

2. s −→−→−→s t, t −→−→−→a u =⇒ s −→−→−→a u.
3. s −→−→−→a s

′, t −→−→−→a t
′ =⇒ s[t/x] −→−→−→a s

′[t′/x]
4. For −→R∈ {−→,−→−→,−→−→w,−→−→−→s},

s −→−→−→a t, t −→R u =⇒ s −→−→−→a u

5. s −→−→−→a t, t −→−→−→a u =⇒ s −→−→−→a u

Proof. 1 was proved in the previous lemma. The rest follows the proof there mutatis
mutandis. J

I Lemma 6. We have

1. s −→−→−→s t =⇒ s −→−→−→ t

2. s −→−→ t =⇒ s −→−→−→s t

3. s −→−→−→ t =⇒ s −→−→−→a t

4. s −→−→−→s t =⇒ s −→−→−→a t

5. s −→−→−→a t =⇒ s −→−→−→s t

Proof. 1. Immediate: every weak head prefix is also a beta prefix.
2. By induction on s −→−→ t, using Lemma 4.4 and reflexively of −→−→−→s.
3. Immediate by 2.
4. By composition of 1 and 3.
5. By coinduction on s −→−→−→a t:

Case 1 s −→−→−→s x = t. Done.
Case 2 t = t1t2, s −→−→−→s s1s2, and si −→−→−→a ti. Hence s −→−→w s

′
1s
′
2, with s′i −→−→−→s si. By

4, s′i −→−→−→a si. By Lemma 5.5, s′i −→−→−→a ti. By coinduction, s′i −→−→−→s ti. Using that
s −→−→w s

′
1s
′
2, we get s −→−→−→s t1t2 by constructor.

Case 3 t = λx.v, s −→−→−→s λx.r, and r −→−→−→a v. Hence s −→−→w λx.r
′, with r′ −→−→−→s r. By

4, r′ −→−→−→a r. By Lemma 5.5, r′ −→−→−→a v. By coinduction, r′ −→−→−→s v. Using that
s −→−→w λx.r

′, we get s −→−→−→s λx.v.
J

I Theorem 7. s −→−→−→ t =⇒ s −→−→−→s t

Proof. By composing parts 3 and 5 of Lemma 6. J

I Remark. Technically speaking, we have only proved the existence part of Curry’s standard-
ization theorem; as some rewriting theorists would argue, in the finitary case, the theorem
also asserts that the standard reduction is strongly equivalent with the given one in the sense
of Lévy, and is furthermore a unique representative of this equivalence class.

We find it an interesting problem to give a coinductive formulation of the notion of
Lévy-equivalence for infinite reductions.

The Coq formalization of the coinductive treatment of infinitary rewriting — in particular,
the proof of standardization — can be downloaded from http://joerg.endrullis.de. All
coinductive proofs in Coq have to adhere to a strict syntactic guardedness condition [5]
for guaranteeing constructive well-definedness, also known as productivity [7]. We have
employed a proof transformation method from [8], in order to transform productive into
guarded proofs.
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4 Coinductive Reductions are Strongly Convergent

We now prove Theorem 3:

s −→−→−→ t ⇐⇒ s reduces to t via a strongly convergent reduction sequence

Theorem 3. (⇒) Suppose that s −→−→−→ t. By traversing the infinite derivation tree of s −→−→−→ t

in the breadth-first order, and accumulating the finite beta-prefixes by concatenation, we get
a reduction sequence of length ω which satisfies the depth requirement by construction.

(⇐) Let R be a strongly convergent reduction sequence from s to t of length α; we write
this as s R−→α t. By induction on α, we show that s −→−→−→a t. This suffices for s −→−→−→ t by
Lemma 6.5 and 6.1.
Zero case: s R−→0 t. Then s = t, hence s −→−→−→s t and s −→−→−→a t.
Successor: s R−→α+1 t. Then s R−→α s

′ −→ t. Then s′ −→−→−→s t and s′ −→−→−→a t, and by the
induction hypothesis, s −→−→−→a s

′. Thus s −→−→−→a t by Lemma 5.5.
Limit: s R−→α t, α a limit ordinal. We define an infinite derivation of s −→−→−→ t coinductively.

By the depth condition, there exists β < α such that, for every γ ≥ β, the redex contracted
by R at γ occurs at depth greater than zero. Let tβ be the term at index β in R. Then by
induction hypothesis we have s −→−→−→a tβ , and s −→−→−→s tβ by Lemma 6.5. We distinguish
three possible shapes of tβ .
Variable: tβ = x. This is impossible, since then tβ cannot reduce to anything, while we

assumed that β < γ.
Abstraction: tβ = λx.r. Then t = λx.u, and r −→≤α u. Then r −→−→−→a u by coinduction.

Now s −→−→−→ λx.u by the abstraction constructor of −→−→−→a.
Application: tβ = t1t2. Then t = u1u2 and the tail of reduction R past β can be split

into two parts {ti −→≤α ui | i = 0, 1} of length at most α. Then t0 −→−→−→a u0 and
t1 −→−→−→a u1 by coinduction. Now s −→−→−→ u1u2 by the application constructor of −→−→−→a.

J

5 Loops Loops Loops Loops Loops Loops Loops Loops Loops Loops

One might wonder which infinite reductions converge in the weak sense of topology but
not in the strong/coinductive sense above. One example is the infinite head reduction of
Ω = (λx.xx)(λx.xx).

Ω→ Ω→ Ω→ · · · (2)

which converges to Ω in the metric on infinite terms, but is not strongly convergent. Here we
nevertheless have Ω −→−→−→ Ω due to finite prefixes of the infinite reduction (in particular, the
empty reduction). Not every topologically convergent reduction has a strongly convergent
counterpart. This is illustrated by the following reduction:

M = (λx0.(λx1.(λx2. . . .)(x1I))(x0I))I
→ (λx0.(λx1.(λx2. . . .)(x1I))(x0I))(II)
→ (λx0.(λx1.(λx2. . . .)(x1I))(x0I))(III) (3)
...

→ (λx0.(λx1.(λx2. . . .)(x1I))(x0I))(Iω) = N

This reduction converges only topologically, every rewrite step occurs at the root. In fact,
there exists no strongly convergent reduction from M to N , we do not have M −→−→−→ N .
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We note that both examples of topologically convergent reductions (2) and (3) contain a
term that admits a loop: Ω→ Ω and N → N , respectively. A recent theorem of [16] states
that these examples are paradigmatic: if R is a reduction sequence which is weakly, but not
strongly, convergent, then R contains a term which reduces to itself in one beta-reduction
step.

We conclude this paper by giving a characterization of all such terms.

I Definition 8. For M ∈ Λ∞, we define:

1. A one-cycle is a rewrite step M →M .
2. A loop is a rewrite step M →M at the root of the term.
Note that every one-cycle M →M is of the form M ≡ C[M ′]→ C[M ′] for some context C
and a loop M ′ →M ′. As a consequence, the interesting objects are the loops, and we are
interested in a characterization of terms that admit loops. For the case of (ordinary) finitary
λ-calculus, this problem has been studied and solved by Lercher in 1976 [14] who showed
that Ω is the only finite looping λ-term:

I Theorem 9 (Lercher). The only finite λ-term M such that M → M via a root step is
Ω ≡ (λx. xx)(λx. xx).

In infinitary lambda calculus, the situation becomes more involved. It turns out, that
there are 3 looping terms with a finite spine (among which of course Ω), and there is a whole
scheme of uncountably many terms with an infinite spine.

I Theorem 10. The looping terms in infinitary λ-calculus are precisely the terms that are
of one of the following forms:

1. Iω,
2. Ω ≡ (λx. xx)(λx. xx),
3. BB where B is the infinite solution of B ≡ λx.xB, or
4. (λx0.(λx1.(λx2....)s2)s1)s0 such that for every i ∈ N, the term si+1 is obtained from si

by replacing all xj by xj+1 followed by replacing an arbitrary (possibly infinite) number
of occurrences of s0 by x0. We call such a term a cascade.

The terms in cases (1), (2) and (3) are displayed in Figure 2.

Ω ≡ (λx. xx)(λx. xx)

@

λx

@

x x

λx

@

x x

Iω ≡ (λx.x) Iω

@

λx

x

@

λx

x

@

λx

x

@

λx

x

...

BB where B ≡ λx.xB

@

λx

@

x λx

@

x λx

@

x ...

λx

@

x λx

@

x λx

@

x ...

Figure 2 Looping terms in infinitary λ-calculus, except for cascades.
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The case (4) of cascades is illustrated in Figure 3, and an example of a cascade is shown in
Figure 4. A cascade (λx0.(λx1.(λx2....)s2)s1)s0 can equivalently be characterized as follows:
for every n ∈ N, the term si is obtained from si+1 by a substitution replacing x0 by s0 and
all variables xj+1 by xj .

4th (class of) solution(s): M ≡ (λx0.(λx1.(λx2. . . .)s2)s1)s0
with si = si+1[ x0 = s0, x1 = x0, . . . , xi+1 = xi ] for i ≥ 1

@

λx0

@

λx1

@

λx2

...

s0

s0
s0

s0
s0

s0

s0

s0

s0
s0

s0
x0s0

s0
x0

s0
x1

The recipe for cascades:
take any term s0
obtain si+1 from si by:
(a) replacing all occurrences of
xi by xi+1 (for all i ∈ N in par-
allel),
(b) replacing some (zero or
more) occurrences of subterms
s0 by x0

Figure 3 The structure of cascades in infinitary λ-calculus. The gray occurrences s0 indicate that
this term is obtained from s0 by replacing subterms by variables.

@

λx0

@

λx1

@

λx2

@

λx3

...

@

Ω x2

@

Ω x1

@

Ω x0

@

Ω @

Ω @

Ω @

Ω ...

Figure 4 Example of a cascade.

Proof of Theorem 10. Let M ∈ Λ∞ be a term that admits a loop M →M . Then M has a
redex at the root, thus M ≡ (λx.M ′)C for some M ′, C ∈ Λ∞. We distinguish the following
cases for M ′:
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(ia) M ′ is a variable, M ′ ≡ x. Then M ≡ (λx.x)C → C ≡ M , and hence M ≡ Iω. This is
case (1) in the theorem.

(ia) M ′ is a variable, M ′ ≡ y 6= x. Then M ≡ (λx.y)C → y 6≡M , contradiction.
(ii) M ′ is an abstraction. Then the reduct would be an abstraction, contradiction
(iii) M ′ is an application, M ≡ AB. We analyse this case below.
For (iii) we have: M ≡ (λx.AB)C and by assumption M ≡ (AB)[x := C]. Hence

(a) A[x := C] ≡ λx.AB, and
(b) C ≡ B[x := C].
We consider the left spine L of A, depicted thick and red in the following picture:

M
≡

@

λx

@

A B

C

→
@

A[x=C] B[x=C]

Now there are two possibilities, either the spine L is finite or infinite:

(1) L is finite.

Assume that the spine would end in a variable y 6≡ x. This assumption yields a
contradiction by (a) since then the spine of A[x := C] in the reduct would be shorter
than the left spine of (λx.AB).
As a consequence, the spine ends in the variable x. This situation is surveyed in the
following picture:

M
≡

@

λx

@

A B

C

→
@

A[x=C] B[x=C]

x

bo
un
d
by

→
@

A[x=C] B[x=C]

C

λz

z

λz

z

We conclude that A ≡ x as otherwise the variable at the end of the spine in A[x := C]
cannot be bound at the root as in (λx.AB). Then C ≡ λx.xB by (a) and together with
(b) we get:

λx.xB ≡ B[x := λx.xB] (†)

We consider the right spine R of B, displayed red in the following picture:
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M
≡

@

λx

@

x

B

λx

@

x

B

→
@

λx

@

x

B

B
[x

=
λ
x
. x
B

]

Again, there are the following possibilities:

(i) R is finite. As before, it follows that B ≡ x since otherwise the right spine of
the reduct would be shorter than the right spine of M . Hence we have found the
well-known looping term M ≡ Ω ≡ (λ.xx)(λ.xx).

(ii) R is infinite. Then the right spine of λx.xB is the same as that of B, and hence is
an alternation of abstraction and application. Thus:

B ≡ λx0.s0(λx1.s1(λx2.s2(. . .)))

for some terms si. From (†) it follows s0 ≡ x0, and this in turn implies that
s1 ≡ x1, and then s2 ≡ x2, ans so forth. Using induction we obtain si ≡ xi. Thus
B ≡ λx.xB, C ≡ B and M ≡ (λx.xB)B ≡ BB.

(2) L is infinite.

Then the spine of A must be the same as that of (λx.AB), and thus is an alteration of
lambda and application. As a consequence, we have

M ≡ (λx0.(λx1.(λx2....)s2)s1)s0

for some terms si. As a consequence the loop M →M , it follows that:

M ≡ (λx0.(λx1.(λx2....)s2)s1)s0 =α (λx1.(λx2....)s2)s1)[x0 := s0]

Thus, for every i ≥ 1 we have that si is be obtained from si+1 by replacing x0 by s0 and
all variables xj+1 by xj (the α-renaming).

J
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Abstract
Sometimes, a diagram can say more than a thousand lines of code. But, sadly, most of the
time, software engineers give up on diagrams after the design phase, and all real work is done in
code. The supremacy of code over diagrams would be leveled if diagrams were code. This paper
suggests that model and instance diagrams, or, which amounts to the same, class and object
diagrams, become first level entities in a suitably expressive programming language, viz., type
theory.

The proposed semantics of diagrams is compositional and self-describing, i.e., reflexive, or
metacircular. Moreover, it is well suited for metamodelling and model driven engineering, as it
is possible to prove model transformations correct in type theory. The encoding into type theory
has the additional benefit of making diagrams immediately useful, given an implementation of
type theory.
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Model diagrams can be translated to linear notation (Figure 1 and Sect. 4), and this
linear notation can be completely formalized (Sect. 5) in a suitably expressive programming
language like intuitionistic type theory [24, 16] or the calculus of constructions [8]. A bene-
fit of translating into an expressive language is that model transformations can be proved
correct [29, 14]. In addition, a direct translation into an executable language, such as type
theory, has the pragmatic value of making models immediately useful when programming.

One important property of the suggested translation, from diagrams to linear notation,
is that the resulting semantics is compositional. That is, a small addition to the diagram
cannot give rise to a large change in its meaning. For example, the notion of inheritance
is difficult to understand compositionally, as adding an inheritance relation between two
classes (a small addition) may create an inheritance cycle (a large change in meaning). This
phenomenon is further discussed in Sect. 8, and the modelling language of Figure 9 uses
generalisation instead of inheritance to preserve compositionality.

an element of M is an element of I(m) is
UML a class diagram an instance of m
MOF a metamodel a metamodel instance of m
DSD a DSD schema a document valid w.r.t. m
EBNF an EBNF grammar a string conforming to m
RDB a database schema a database instance of m
types a type an object of type m

Table 1 Examples of modelling languages of different
kinds: syntax description languages, like EBNF [35], XML
schema languages, like DSD [26], the language of relational
databases (RDB) [7], and any type system, fit the definition
of modelling language.

The translation from diagrams
to type theory will first be applied
to a simple modelling language
(Figure 4) with only three notions,
and then to a less simple language
(Figure 9). Both of these model-
ling languages are self-describing
(Sect. 2 and the Theorem). That
is, there is a particular model of
the language, that describes the
whole language.

Turing’s discovery [34] of the
universal machine, capable of in-
terpreting any program, was of paramount importance as it lead to the design of the stored
program computer [11]. The dichotomy between code and data makes it plausible that
analogues of Turing’s universal machine in the space of data, i.e., self-describing modelling
languages, are more important than currently appreciated. This is one reason for studying
self-describing modelling languages: further motivation is given in Sect. 2.

2 Self-describing modelling languages

A pair{
M : set
I : M → set. (1)

will be called a modelling language.1 In a given modelling language (M, I), an element of
M is called a model, and an element of I(m), for a model m, is called an instance of m. An
example of a modelling language is displayed in Figure 2. It has two models, and each model
has two instances. There are many interesting examples of modelling languages according
to this definition, not all of them with a corresponding visual notation. Some noteworthy
examples are given in Table 1.

1 Or, to be more precise, a formal modelling language. This structure is known elsewhere in the literature
as world [19, 17] or container [22].

TYPES 2011



30 A new approach to the semantics of model diagrams

A universal model of a modelling language (M, I) is a model u : M where the set I(u)
is isomorphic to M . The parts of the isomorphism will be named ρ (reflection) and π

(reification), i.e., the diagram

I(u)
ρ ++ M
π

ll (2)

commutes. In particular, π(u) : I(u). A modelling language will be called self-describing,
metacircular, or reflexive, if it has a universal model.2

•m1

22I

I(m)

•m

M

•m2 •n1

00
I

I(n)

•n •n2

Figure 2 The leftmost oval shape
represents the set of all models M in a
modelling language (M, I).

For example, the DSD schema language for XML
is self-describing in the sense that an XML docu-
ment is a well-formed DSD schema if and only if it
validates against the universal DSD schema [26, § 4].
Other schema languages for XML lack this feature.

Wirth succinctly describes the gist of EBNF’s
syntax by a universal EBNF grammar (Table 2). The
only notions that remain to be explained are charac-
ter and identifier. See Wirth’s communication [35]
for details. EBNF is probably the most concise self-
describing language in current use.

There are at least three reasons why a modelling language should admit a (natural)
universal model.

syntax = { production }.
production = identifier "=" expression ".".
expression = term { "|" term}.
term = factor { factor }.
factor = identifier | literal | "(" expression ")" |

"[" expression "]" | "{" expression "}".
literal = """" character { character } """".

Table 2 The syntax of EBNF described by a EBNF
grammar, verbatim after Wirth [35].

(1) The same query language
can be used to query user models
and metamodels alike. Relational
database administrators have used
this feature for decades to query the
information schema [23]. Strictly
speaking, only reification (π) is re-
quired for this to work. But at least
a partial inverse ρ of π is needed if
the results are to be useful.

(2) A modelling language that
is not self-describing lacks, in a sense, expressivity, viz., the features necessary to describe
itself. Moreover, a universal model exhibits a consistency among the notions used to explain
the modelling language, and works as a kind of sanity check. The discussion about the
notion of identifier in Sect. 7 exemplifies this form of sanity checking.

(3) The four layers of the OMG3 pyramid [33] can be reduced to three, viz., the level of
real-world entities (M0), the level of model instances (M1), and the level of models (M2).
Given a modelling language (M, I), elements of M are M2 models and elements of I(m), for
an M2 model m, are M1 models. Clearly, a universal model u : M resides in the M2 layer,
despite being, as it were, a metamodel.

2 To be precise, we should say that a model u : M of a modelling language (M, I), is universal with
respect to an isomorphism (ρ, π) between I(u) and M . If the isomorphism is, as it were, unnatural, so
is the universality of u.

3 OMG (Object Management Group) is an international not-for-profit computer industry consortium and
standards organization, responsible for, among other things, UML (Universal Modelling Language) and
MOF (Meta-Object Facility).
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3 A simple type system

Another example of a self-describing modelling language is the type system (D,T), that will
be used in the definition of the simple modelling language (Sect. 5). It is defined by

D = {string,money, type}, (3)

and

T(string) = {character strings}
T(money) = {monetary amounts}

T(type) = {string,money, type}.
(4)

In particular, T(type) = D, so ‘type’ is a universal model with ρ and π the identity function.
This rudimentary type system can be extended in several directions. For example, any

number of basic types can be added, and the set D can be made closed under sum, product,
and function space.

However, there are limitations on how the set of datatypes can be extended while main-
taining the rule that type : T(type). It is for example known that the addition of the rule
U : T(U) to the rules for the type-theoretic universe U [24] leads to the paradox discovered
by Girard [15].

4 From model diagrams to telescopes

Data modelling is first and foremost a process: relational modelling [7], entity-relationship
modelling [6], object-role modelling [18], model driven engineering [30], etc. This process
typically results in a set of diagrams. However, we are not trying to formalize the model-
ling process or the resulting diagrams, but the meanings underlying the diagrams. This is
nontrivial, as, what a diagram refers to, denotes, or means, is elusive.

EmployeeEmployeeEmployee
name : string

salary : money
oo managedBy ProjectProjectProject

budget : money

Figure 3 The model EP in the simple model-
ling language consists of two classes with attrib-
utes and a function between them.

A first attempt is to say that a diagram
refers to a state of affairs, so that, e.g., the
symbol Employee of Figure 3 refers to a set
of employees, etc. The problem with this
explanation is that the diagram’s state of
affairs typically changes over time, so the
diagram does not refer to any particular
state of affairs: rather, the diagram signi-
fies something general that various states
of affairs fall under. That is, the entities of a diagram are variable, just as the relations of
relational databases [10, pp. 17–18], [7, p. 4].

The next observation is that, if there is to be any hope of systematically assigning mean-
ings to diagrams, the meaning of a diagram somehow has to be composed of the meanings
of its constituent parts. That is, the language behind the diagram has to adhere to the
principle of compositionality, familiar from the philosophy of language [16, pp. 6–8]. Put
differently, the meaning of a diagram should not change much due to a small change in the
diagram.

To simplify the interpretation of diagrams, the following conventions will be adopted.
(1) A slanted font is used for uninterpreted symbols (e.g., Employee) and an upright font

for interpreted symbols (e.g., string).
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FunFunFun D --

V
11

ClassClassClass AttribAttribAttrib
Γ : typeC

oo

Figure 4 The universal model U of the simple
modelling language: note that each construct of
the modelling language (class, attribute, and func-
tion) is used by U.

(2) Interpreted symbols (e.g., money)
may occur any number of times, whereas, if
an uninterpreted symbol occurs more than
once, it must be possible to disambiguate
it.

(3) Uninterpreted symbols of a diagram
range over certain categories of a formal lan-
guage (e.g., salary ranges over money and

Project ranges over the category of classes).
These conventions are best explained by taking Figure 3 as an example. Imagine a simple

modelling language with only three notions: class, attribute of class, and function between
classes.

In this language, Figure 3 is completely described by the following six assertions:
(1) Project is a class.
(2) Employee is a class.
(3) budget is an attribute of Project of type money.
(4) name is an attribute of Employee of type string.
(5) salary is an attribute of Employee of type money.
(6) managedBy is a function from Project to Employee.
The same assertions can be succinctly expressed using a yet to be defined formal lan-

guage:

Project : class
Employee : class
budget : attrib(Project,money)
name : attrib(Employee, string)
salary : attrib(Employee,money)
managedBy : fun(Project,Employee)

(5)

Such a sequence of assertions is similar to what a mathematician would write on the black
board at the outset of an investigation: much like setting the stage for a play.

Now, we take a step back and recognize the above as a sequence of variable declarations.
Thus, we have arrived at what de Bruijn [12] called a telescope and completed the informal
path from model diagrams to telescopes. The reader is not required to be familiar with
de Bruijn’s telescopes, as the notion will only be used for purposes of comparison.

5 A simple modelling language

The simple modelling language is a fragment of UML’s or MOF’s class diagrams, with only
three notions: class, attribute, and function. The benefit of treating such a limited language
is that the semantics can be worked out in full detail without becoming too lengthy.

A class is the extension of a concept of the application domain;4 and the first category
of the simple modelling language is ‘class’.

4 This, and other explanations of UML concepts, serve only to guide the modelling process. They have
no impact on the formal treatment. The use of the word class in logic originates with Peano who
defines it as an “aggregation of entities” [28, p. x].
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P:EmployeeP:EmployeeP:Employee

name : string=“Peter”

salary : money=2,000

M:EmployeeM:EmployeeM:Employee

name : string=“Mary”

salary : money=4,000

Acc:ProjectAcc:ProjectAcc:Project

budget : money=30,000

managedByoo

J:EmployeeJ:EmployeeJ:Employee

name : string=“John”

salary : money=3,000

Fin:ProjectFin:ProjectFin:Project

budget : money=20,000

managedByoo

Figure 5 The instance ep of the model EP in the simple
modelling language. The names of the instances are writ-
ten before the class names, the values of the attributes
are written after their declarations, and the value of a
function at an instance is indicated by an arrow.

An attribute of a class is a charac-
teristic applicable to every object in
the extension of the class. Each at-
tribute of a class is typed by a data-
type drawn from the set D, called the
value type of the attribute. For any
given object of the class, the value
of the attribute is of this type. The
second category of the simple model-
ling language is attrib(A,Γ ), where
A : class and Γ : D.

A function from one class to an-
other is an assignment of exactly one
object of the second class to each ob-
ject of the first class. The third cat-
egory of the simple modelling lan-
guage is f : fun(A,B). The classes
A and B will be called, respectively,
the domain and value classes of the function f .

A model is a sequence of uninterpreted symbols (variables) declared to be of categories
of the language, i.e., a telescope [12]. The categories of a model have to be well-formed in
virtue of previously introduced uninterpreted symbols.5 Thus, in general, a model has the
form

X1 : class, . . . , Xm : class,
Y1 : attrib(Xc1 , γ1), . . . , Yn : attrib(Xcn , γn),
Z1 : fun(Xd1 , Xv1), . . . , Zp : fun(Xdp

, Xvp
),

where the symbols Xi are distinct, as are Yi and Zi; moreover, 1 ≤ ci, di, vi ≤ m, and γi : D.
If needed, this can be encoded in type theory by

M =
∑

(X,Y,Z) : enum3

{c : XY , γ : DY , d : XZ , v : XZ}, (6)

where ‘enum’ is the set of finite collections of names, the curly braces denote a standard
record type, and XY means the same as Y → X.

C : FunC : FunC : Fun D
..

V
**

Attrib : ClassAttrib : ClassAttrib : Class Γ : AttribΓ : AttribΓ : Attrib
Γ : type = type

C
qq

Class : ClassClass : ClassClass : Class

D : FunD : FunD : Fun
D 11

V

44

Fun : ClassFun : ClassFun : Class V : FunV : FunV : Fun
Dll

Voo

Figure 6 The instance u of the universal model U with the
property that ρ(u) = U and π(U) = u. Compare with Figure 4.

A class diagram (Figure 3)
is the representation of a model
as boxes and arrows according
to the correspondence explained
above. From this point on-
wards, the class diagram and
the formal notation for the
model will be considered inter-
changeable — as two expres-
sions of the same thought.

This formalisation of the no-
tion of class diagram means, in

5 So that, e.g., a class has to be introduced before its attributes, and the domain and value classes of a
function have to be introduced before the function. Cf., the notion of context [16, 32].
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particular, that it is easy to decide whether a given diagram is well-formed or not: simply
write down the corresponding model and make sure it is well-formed.

An instance i of a model m is an interpretation of its uninterpreted symbols according
to the following scheme:6

(1) a class symbol A : class is interpreted by a finite set Ai;
(2) an attribute symbol a : attrib(A,Γ ) is interpreted by a function ai : Ai → T(Γ );
(3) and a function symbol f : fun(A,B) is interpreted by a function f i : Ai → Bi.

Note that there is at least one instance of any model, viz., the empty instance, in which all
class symbols are interpreted by the empty set, and all attribute and function symbols by
the “empty” function (from the empty set).

Instances can also be displayed as diagrams. For example, the instance ep (Figure 5) of
the model EP (Figure 3) is defined as follows:

Employeeep = {P,M, J},
Projectep = {Acc,Fin},
nameep = {P 7→ “Peter”,M 7→ “Mary”, J 7→ “John”},
salaryep = {P 7→ 2, 000,M 7→ 4, 000, J 7→ 3, 000},
budgetep = {Acc 7→ 30, 000,Fin 7→ 20, 000},
managedByep = {Acc 7→ M,Fin 7→ J}.

Encoded in type theory, the set of instances of a given model is defined by

I((X,Y, Z), {c, γ, d, v}) =
∑

|·| : X→enum

( ∏
y : Y
|c(y)| → γ(y)

)
×
( ∏
z : Z
|d(z)| → |v(z)|

)
. (7)

Recall that Σ and Π stand for disjoint union and Cartesian product of indexed families of
sets.

6 A universal model for the simple modelling language

A universal model, written U, of the simple modelling language is presented in Figure 4. It
corresponds to the following sequence of assertions:

Class : class,
Attrib : class,
Fun : class,
Γ : attrib(Attrib, type),
C : fun(Attrib,Class),
D : fun(Fun,Class),
V : fun(Fun,Class).

I Theorem. The simple modelling language described in Sect. 5 is self-describing.

Proof. We must show that U is a universal model, i.e., we must define ρ and π and show
that they are inverse of each other. Let s be a instance of the model U. Assume that

Classs = {A1, . . . , Am},
Attribs = {a1, . . . , an},
Funs = {f1, . . . , fp},
Γ s : Attribs → T(type),
Cs : Attribs → Classs,

6 Using the terminology of logic, a model is an uninterpreted language and an instance is an interpretation
of its uninterpreted symbols. Cf. [31] and [2].
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Ds : Funs → Classs,
V s : Funs → Classs.

Recall that a model is a sequence of uninterpreted symbols declared to be of certain cat-
egories. The model ρ(s) is defined as follows:

A1 : class, . . ., Am : class,
a1 : attrib(Cs(a1), Γ s(a1)), . . ., an : attrib(Cs(an), Γ s(an)),
f1 : fun(Ds(f1), V s(f1)), . . ., fp : fun(Ds(fp), V s(fp)).

This model is always well-formed in the sense described above, i.e., symbols are unique
within each form of category (class, attrib, and fun).

Conversely, let S be a model of the simple modelling language, given by
B1 : class, . . ., Bm : class,
b1 : attrib(Bc1 , γ1), . . ., bn : attrib(Bcn , γn),
g1 : fun(Bd1 , Bv1), . . ., gp : fun(Bdp , Bvp),

where γ1, . . . , γn are elements of the set D = T(type), and each of the numbers c1, . . . , cn,
d1, . . . , dp, and v1, . . . , vp are in the range 1, . . . ,m. Then π(S) is an instance of U given by

Classπ(S) = {B1, . . . , Bm},
Attribπ(S) = {b1, . . . , bn},
Funπ(S) = {g1, . . . , gp},
Γπ(S)(bx) = γx : T(type),
Cπ(S)(bx) = Bcx

: Classπ(S),
Dπ(S)(gy) = Bdy

: Classπ(S),
V π(S)(gy) = Bvy : Classπ(S).

To show that π(ρ(s)) = s, let s and S be defined as above, and consider π(ρ(s)), where
S = ρ(s). Comparing the definition of S with the definition of ρ(s), we get Ai = Bi (as
symbols), ai = bi, fi = gi, Cs(ax) = Bcx , Γ s(ax) = γx, Ds(fy) = Bdy , and V s(fy) = Bvy .
The result follows from a comparison with the definition of π(S).

To show that π is also a right inverse of ρ, let S be given as above and plug π(S) into
the definition of ρ. The result is S. J

An obvious use of this Theorem is to apply the function π to the model U. The resulting
instance, Figure 6, should be studied carefully. It is also instructive to compare it with
Table 2.

Figure 7 shows the reification of the diagram of Figure 3.

7 A less simple modelling language

This Section is deliberately brief, and many details are left to the reader. It is best viewed
as an extended example of how to apply the techniques introduced earlier in the paper. The
example is based on Figure 9, showing the universal model of a significant fragment of the
class diagrams of xUML [25].7 The main differences between this less simple language and
the previously introduced simple language are outlined below.

First, there is one more datatype, viz., ‘mult’, of multiplicities, i.e.,

D = {string,money, type,mult},
T(mult) = {a..b | a : N, b : N ∪ {?}, a ≤ b},

(8)

7 xUML is a fragment of UML that is designed to facilitate the execution of models.
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Model Instance i
A : class Ai : set
a : attrib(A,Γ ) ai : Ai → T(Γ )
R : assoc(A,B) Ri : Ai ×Bi → prop
r : rrole(A,B,R, o) ri

1(x) : o, ri
2(x) : ri

1(x) ↪→ Bi, ri
3(x)(y) : Ri(x, y)↔ (∃z : ri

1(x))ri
2(x)(z) = y

l : lrole(A,B,R, λ) li1(y) : λ, li2(y) : l1(y) ↪→ Ai, li3(y)(x) : Ri(x, y)↔ (∃z : li1(y))li2(y)(z) = x

e : ident(A, a, Γ ) ei : T(Γ )→ Ai + {?}, s.t. ei(x) = left(y) iff ai(y) = x

g : gen(A,S1, . . . , Sn) gi : Ai ∼= Si
1 × · · · × Si

n

s : assclass(C,A,B,R) si : Ci ∼= (Σ (x, y) : Ai ×Bi)Ri(x, y)

Table 3 The forms of assertion of the less simple modelling language, together with their inter-
pretations in an instance.

where a..b is the set {a, a + 1, . . . , b} if b is finite, and a..? stands for {a, a + 1, . . .}. The
datatypes ‘string’ and ‘money’ are as before, and ‘type’ is still universal.

Table 3 lists the forms of assertions used when translating a less simple diagram to linear
notation, together with their interpretations in an instance. Classes and attributes work
exactly as for the simple modelling language.

name:Attribname:Attribname:Attrib

Γ : type=string

C ��

salary:Attribsalary:Attribsalary:Attrib

Γ : type=money

C

ss

budget:Attribbudget:Attribbudget:Attrib

Γ : type=money

C ��
Employee:ClassEmployee:ClassEmployee:Class Project:ClassProject:ClassProject:Class

managedBy:FunmanagedBy:FunmanagedBy:Fun

V

VV
D

HH

Figure 7 The instance ep of the universal model U
with the property that ρ(ep) = EP and π(EP) = ep.
Compare with Figure 3.

Instead of functions, the less simple
modelling language uses associations,
which may have two kinds of roles:
left and right. An association R :
assoc(A,B) is interpreted in type the-
ory by a binary relation Ri on Ai and
Bi. A right role r : rrole(A,B,R, o),
where o is a multiplicity, is interpreted
as a triple valued function ri(x) =
(ri1(x), ri2(x), ri3(x)), where x : Ai. The
first component ri1(x) : o gives the mul-
tiplicity of x; the second component
ri2(x) : ri1(x) ↪→ Bi is an injection
of the multiplicity into Bi;8 the third
component is a proof that an element

y of Bi is related to x by Ri if and only if y is in the image of ri2(x). Another way to put it
is that ri(x) identifies the subset of Bi, with a finite cardinality drawn from the set o, that
is related by Ri to x : Ai. Left roles are treated analogously to right roles.

As a special case, when the multiplicity is o = 1..1, a right role induces a normal function
Ai → Bi. The virtue of this treatment of roles is that it is compositional, i.e., a left or right
role can be added to a diagram without changing the interpretation of the original diagram.
In fact, formally, nothing prevents an association from having several left or right roles.

Identifiers in xUML serve the same purpose as unique keys in relational databases, i.e.,
they make it possible to retrieve an instance (row or tuple in database parlance) from the
value of an attribute. For example, if there were an identifier of the name attribute of the
Employee class of Figure 3, names would have to be unique, and it would be possible to
retrieve the instance corresponding to a name, if any.

8 Here the number ri
1(x) is identified with the set on ri

1(x) elements.
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Γ : type

�
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this
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Figure 9 The universal model of a fragment of the modelling language xUML, capable of ex-
pressing the notions class, attribute, association, generalisation, association class, identifier, and
left and right role.

Ai

b0

Bi

a

Ri(a,b1)

Ri(a,b0)
b1

! Ri

1..3
ri

Figure 8 The interpretation a right role
r : rrole(A,B,R, 1..3) in an instance i, where
Ai has an element a related to exactly two ele-
ments b0 and b1 of Bi. In particular, ri

1(a) = 2,
and ri

2(a) : {0, 1} ↪→ B, with ri
2(a)(j) = bj .

An identifier e : ident(A, a, Γ ) of an attrib-
ute a indicates that the values of the attribute
are different for different instances of the class
A.9 The identifier e is interpreted in an in-
stance i as a function ei from T(Γ ) to the set
Ai+{?}, such that ei is a partial inverse of ai,
i.e., for all x : Ai and y : T(Γ ), ei(x) = inl(y)
if and only if ai(y) = x. Here ‘inl’ denotes the
canonical injection Ai ↪→ Ai + {?}.

A generalisation g : gen(A,S1, . . . , Sn) is
interpreted in an instance i as an isomorphism
between the interpretation of the superclass
Ai and the interpretations of its subclasses
Si1 × · · · × Sin.

An association class s : assclass(C,A,B,R) between a class C and an association R is
interpreted as an isomorphism between Ci and the set of pairs (x, y) in Ai × Bi that are
related by Ri.

8 Related work

There are several approaches to the semantics of UML and MOF class diagrams, e.g., logic
based [3], graph based [33], coinductive [29], or, like this paper, algebraic [5, 13].

Our modelling languages depart from the MOF in two important respects. We con-
sider generalisation instead of inheritance; and, as opposed to UML and MOF, we have no
common genus of datatypes and classes.

Generalisation and inheritance are sometimes taken as synonymous, but I think there is

9 This paper makes a significant departure from xUML identifiers (and database uniqueness constraints)
by only allowing one attribute to participate in an identifier; a faithful encoding would require the mul-
tiplicity of the role key of Figure 9 to be one to many. However, if the multiplicity was simply changed,
the model of Figure 9 would no longer be universal, as instances would include identifiers combining
several attributes of different classes. Thus, the modelling language would have to be significantly
strengthened to cater for identifiers with higher multiplicity.
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an important distinction to be made. By inheritance, I mean the relation B inherits from
A, that would be interpreted by Bi ⊂ Ai in an extensional framework. This is difficult to
formalize in type theory as there is no subset relation. However, the relation B is generalised
by A can be interpreted by an injection Bi ↪→ Ai.

As regards the existence of a common genus of datatypes and classes, it is interesting to
review what Date [9, p. 865] calls the great blunder. There are three notions involved: the
notion of datatype, i.e., our D or what Date calls domain; the notion of relational variable
(relvar in relational database theory); and the notion of class. Date’s main point is that
datatype 6= relvar, and this distinction is maintained in this paper. In fact, our notion of
class is similar to the notion of relvar — to begin with, both are variables.

However, what Date actually calls the great blunder is the identification relvar = class
(made here): that is, he considers the identification datatype = class correct. Date’s identi-
fication is based on the conception of a class as a record type.

In this paper, the notion of class is identified with the notion of relvar (rather than with
the notion of datatype) because object-oriented programming is based on the idea that a
program can create a new instance of a class. The classes of this paper support the new
operation, and relvars support the insert operation: in both cases, one element is added to
the set interpreting the variable. Datatypes, on the other hand, are more like mathematical
sets, and, e.g., the idea of creating a new number is repugnant. To conclude, this paper
makes the great blunder in words, but not in spirit.

My approach to the translation of model diagrams into type theory differs from that of
Poernomo et al. [29, 14] in one important respect: type-theoretic concerns have influenced
my design of the modelling languages, while Poernomo et al. have taken the MOF at face
value. Encoding the full MOF requires coinductive datatypes and definitions by corecur-
sion, which soon lead to rather complex formalisations. In addition, the semantics becomes
noncompositional, due to the outermost fixpoint operator in the definition of models. I have
avoided these problems by simplifying the modelling language.

An analog to the notion of class diagram, with respect to how its semantics has evolved
from a mere “blackboard” semantics, is the notion of state chart, as expounded by Harel
[20]. A precise constructive semantics for a species of state charts is given by André [1].

9 Conclusion and future work

In my opinion, one of the main obstacles to model driven approaches gaining wide accept-
ance in the industry is insufficient tool support. One step in the right direction would be to
formalize the simple (or less simple) modelling language inside a proof assistant like Coq [4]
or Agda [27].

In addition to allowing formal manipulation of models, such a tool could make it possible
to generate a diagram from a possibly annotated model instance, thus reinforcing the point
that diagrams are valid formal expressions and, with time, changing a view held by many
software engineers, viz., that diagrams are inherently vague [31].

The reader may have noticed that the two modelling languages presented in this pa-
per, although using the notation of UML class diagrams, are semantically more akin to the
entity-relationship model [6] or ORM [18]. It would be interesting to find out what charac-
terises features of data modelling and object-oriented programming that can be interpreted
using the direct approach of Sect. 4.

A difference between Figure 4 and Figure 9 is that, in the forme, all features of the mod-
elling language are used to define the universal model, whereas, in the latter, the four notions
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class, attribute, association, right role would suffice. That is, the notions generalisation, as-
sociation class, left role, and identifier are like appendices to a smaller modelling language.
Does a modelling language with an irreducible universal model have any advantage over a
modelling language with redundant features?

One potential direct application of the simple modelling language is as a data model for
a non-relational database management system, using the identification database schema =
model. Several database maintenance operations could be simplified by using the universal
model U. For example, to define a new database schema one would simply have to define
an instance of U. This definition would use the same syntax as the definition of an instance
of any other model.

In this context, it would also be interesting to consider how data manipulation operations
interact with ρ and π. For example, creating a new instance of the class Class in an instance
of U could create a new class in the corresponding model.
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Abstract
Higher-order properties arise naturally in some areas of climate impact research. For example,
“vulnerability measures”, crucial in assessing the vulnerability to climate change of various regions
and entities, must fulfill certain conditions which are best expressed by quantification over all
increasing functions of an appropriate type. This kind of property is notoriously difficult to
test. However, for the measures used in practice, it is quite easy to encode the property as a
dependent type and prove it correct. Moreover, in scientific programming, one is often interested
in correctness “up to implication”: the program would work as expected, say, if one would use
real numbers instead of floating-point values. Such counterfactuals are impossible to test, but
again, they can be easily encoded as types and proven. We show examples of such situations
(encoded in Agda), encountered in actual vulnerability assessments.
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1 Introduction

Climate impact research is not the same as climate research: it does not deal, for example,
with building the detailed simulations of the climate system that run on massively parallel
machines of incredible, yet always insufficient computational power. Rather, climate impact
research attempts to analyze the broad, first-order effects of various policies meant to mitigate
or alleviate the problems caused by human-induced climate change. The Potsdam Institute
for Climate Impact Research (the acronym PIK comes from the more compact German
version: Klimafolgenforschung) has on its web page the following introduction:

At PIK researchers in the natural and social sciences work together to study global change
and its impacts on ecological, economic and social systems. They examine the Earth
system’s capacity for withstanding human interventions and devise strategies for a sustainable
development of humankind and nature.
PIK research projects are interdisciplinary and undertaken by scientists from the following
Research Domains: Earth System Analysis, Climate Impacts and Vulnerabilities, Sustainable
Solutions and Transdisciplinary Concepts and Methods.
Through data analysis, computer simulations and models, PIK provides decision makers
with sound information and tools for sustainable development. In addition to publishing
results in scientific journals the Institute gives advice to national and regional authorities
and, increasingly, to global organisations such as the World Bank.
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The important point here is the following: many complex systems are studied together by
scientists from many different disciplines. In this kind of enterprise, the concepts that tend
to be most used across disciplines have a high intuitive content, which ensures that they
are quickly grasped by all the different parties (“vulnerability” will be our running example,
but consider also “stability”, “resilience”, “global change”, “sustainable growth”, “green
path”, and so on). The danger is that each party will grasp it in a different way, hence the
importance of definitions. In general, the more formal the definition, the less the risk it will
be misunderstood (though the chance of being understood might also decrease), and here is
where a first connection to logic and computer science appears.

Additionally, such “fulcrum” concepts that leverage our everyday intuitions and help
structure the interdisciplinary discourse also provide natural candidates for assessments, for
measurement and comparison, which then, in turn, can be used as the basis for “giving
advice to national and regional authorities”. Many of these assessments are computer-based,
and subject to the usual concerns of reuse, genericity, efficiency and correctness (especially
important, one would think, when giving advice “to global organizations such as the World
Bank”).

This is the computer scientists’ playground, and the game plan is: formalize the concepts
involved in order to be able to write specifications against which to assess program correctness.
Do it generically, in order to unify and reuse as much as possible of the existing code. Since
the subject is largely mathematical, use a high-level language with an expressive type system,
in order to minimize the distance from specification to implementation. Hopefully, the
end-result will be a domain-specific language, which will simplify writing the particular sort
of programs we started with, while at the same time making their correctness easier to assess.

This paper presents some of the results we obtained while playing this game within the
field of (computer-assisted) vulnerability assessment. The next section is a whirlwind tour
of definitions of vulnerability and the resulting (simplified) Haskell formalization. We then
take up the question of correctness: we want to ensure that key conditions are met by an
implementation. The first idea, presented in Section 3, is in tune with current software
engineering best practices: apply automatic property-based testing (for example, using
QuickCheck [8]). It turns out that writing good tests is somewhere between hard and
impossible, but proving on paper that the conditions hold is really easy. Therefore, we
re-implemented parts of the system in a dependently-typed programming language (Agda1,
[21, 26]) and found that expressing the conditions as types was at least as easy as thinking
up good tests, and that convincing the type checker that the conditions were met was at least
as easy as implementing those tests. Moreover, things that were impossible before become
not even hard. This is presented in Section 4, which raises questions such as: if proving
things is so easy, why does it get such a bad reputation? We have an opinion about this, and
you can read it in the conclusions.

2 Vulnerability

In the past decade, the concept of “vulnerability” has played an important role in fields such
as climate change, food security and natural hazard studies. Vulnerability studies have often
been successful in alerting policymakers to precarious situations. The importance of the

1 The choice of Agda over, say, Coq, was motivated partly by similarity with Haskell (since we could
translate our Haskell code-base), partly by aesthetic considerations and by ease of use. Perhaps the
largest role was played by the fact that PIK has quite close ties to Chalmers, where Agda was developed.
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concept in the particular field of climate change is described, for example, as follows [13]:

. . . Studies based primarily on the output of climate models tend to be characterized
by results with a high degree of uncertainty and large ranges, making it difficult to
estimate levels of risk. In addition, the complexity of the climate, ecological, social and
economic systems that researchers are modeling means that the validity of scenario
results will inevitably be subject to ongoing criticism. . . . Such criticisms should not
be interpreted as questioning the value of scenarios; indeed, there is no other tool
for projecting future conditions. What they do, however, is emphasize the need for a
strong foundation upon which scenarios can be applied, a foundation that provides a
basis for managing risk despite uncertainties associated with future climate changes.
This foundation lies in the concept of vulnerability.

No doubt, vulnerability is one of the “fulcrum” concepts mentioned in the introduction and,
alerted to the importance of definitions in an interdisciplinary context, we expect this one
to be very well defined. Unfortunately, this is only the case if by “well defined” we mean
“defined many times”. Figure 1 contains a sample of vulnerability “definitions” found in the
literature:

[16]: Vulnerability is defined as the extent to which a natural or social system is susceptible
to sustaining damage from climate change. Vulnerability is a function of the sensitivity
of a system to changes in climate (the degree to which a system will respond to a given
change in climate, including beneficial and harmful effects), adaptive capacity (the degree
to which adjustments in practices, processes, or structures can moderate or offset the
potential for damage or take advantage of opportunities created by a given change in
climate), and the degree of exposure of the system to climatic hazards.
[28]: The conditions determined by physical, social, economic, and environmental factors
or processes, which increase the susceptibility of a community to the impact of hazards.
[7] Vulnerability, therefore, is a human-induced situation that results from public policy
and resource availability/distribution, and it is the root cause of many disaster impacts.
Indeed, research demonstrates that marginalized groups invariably suffer most in disasters.
Higher levels of vulnerability are correlated with higher levels of poverty, with the
politically disenfranchised, and with those excluded from the mainstream of society.
[6] Vulnerability (in contrast to poverty which is a measure of current status) should
involve a predictive quality: it is supposedly a way of conceptualizing what may happen
to an identifiable population under conditions of particular risk and hazards. Is the
complex set of characteristics that include a person’s: initial well-being (health, morale,
etc.); self-protection (asset pattern, income, qualifications, etc.); social protection (hazard
preparedness by society, building codes, shelters, etc.); social and political networks and
institutions (social capital, institutional environment, etc.).
[9] Vulnerability (V) = Hazard Coping,
with Hazard = H (Probability of the hazard or process; shock value; predictability;
prevalence; intensity/strength);
and Coping = C (Perception of risk and potential of an activity; possibilities for trade;
private trade, open trade).

Figure 1 A sample of vulnerability definitions from several different papers.

There are many, many more such definitions, a large percentage of which wouldn’t pass
Pascal’s requirement of “application of a name to things which are clearly designated by
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terms perfectly known” [25]; the curious reader is referred to Thywissen’s summary of some
thirty-odd definitions [27].

There is a corresponding diversity in the way in which vulnerability is measured. Ex-
amining the technical details of computer-assisted vulnerability assessments is tedious, but
has a clear advantage over reading definitions such as the above: one can unambiguously
determine what is being measured.

Virtually all vulnerability assessments have the following structure. First, one tries to
estimate the evolution of various parameters of interest, for example, the average temperature
in a given region, the gross domestic product of a country, the sea-level of some coastal area,
but also less immediately relevant values, such as literacy rate or number of telephone lines
in a region [17]. Sometimes, the result of this forecasting analysis is a list of values, one
element for each time period (week, month or year) of the time horizon (typically measured
in decades). Most times, the result will consist of several such trajectories, perhaps with
some additional information about their likelihood. Thus, one can have lists of possible
trajectories, or a probability distribution over trajectories, or a fuzzy set of trajectories, etc.

Next, each trajectory is examined in order to determine the harm that befalls the region
or population under consideration: damages, negative impacts, losses caused by the factors
of interest (for example, human-induced climate change). Harm is represented in many ways,
but it is always assumed that the resulting values can be at least partially compared, i.e.,
that they are members of a preordered set.2

Depending on how the forecast of the parameters was achieved, we have so far a list
of harm values, or a probability distribution over harm values, or a fuzzy set, etc. Now
comes the final step: aggregating all these harm values, obtaining the final vulnerability
assessment. This is usually done either by taking some representative value, for example the
maximal or the likeliest harm, or by an integral measure of the possibilities (such as their
sum or average). The final value does not need to lie in the same set as the harm values, but
vulnerability values also need to form at least a preorder: the purpose of the assessment is
often to compare the relative vulnerabilities of regions, or of the same region under different
scenarios.

In Haskell, these explanations can be expressed more concisely and precisely:

data State = ... -- an appropriate type for the values of the
-- parameters of interest

type Trajectory = [State ] -- a trajectory is a list of states
type Possible = ... -- a functor which represents the structure

-- of possible trajectories, e.g. List
data V = ... -- datatype of harm values
instance Preorder V where ... -- harm values must be preordered
data W = ... -- datatype for vulnerability values
instance Preorder W where ... -- vulnerability values must be preordered
vulnerability :: Possible Trajectory → -- possible trajectories

(Trajectory → V ) → -- harm evaluation
(Possible V → W ) → -- aggregation of harm values
W -- type of final result

vulnerability possible harm measure = measure (fmap harm possible)

2 The reason for not requiring anti-symmetry is that harm values are often compared via cost functions.
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Possible trajectories are collected together in a functorial structure. Besides the fact that
all our examples (probability distributions, fuzzy sets, lists) are functors, this makes sense
because of the need to apply the harm evaluation function to each trajectory. Otherwise, the
code follows literally the description above.

Most of the work in a vulnerability assessment is put in computing the structure of
possible trajectories. To do this, existing models are used (and reused), which are usually
written by specialists in the relevant disciplines: economists, climate scientists, geographers,
social scientists, etc. The models are then combined by the team that does the vulnerability
assessment. Sometimes, these models have different types: a climate model might yield a
deterministic trajectory of the average global temperature, while a demographic model might
offer only a list of possible evolutions of the population, and an economic model a probability
distribution over possible future values of the gross domestic product. Accordingly, most of
the work we have done was in extracting the general structure of these models and of the
means of combining them, in order to simplify the task of the vulnerability assessment in its
most difficult part. The result was a domain-specific language for describing and combining
monadic dynamical systems, described extensively by Ionescu [11] and concisely by Lincke et
al. [14].

Here, however, we concentrate on the computationally less intensive part: the interplay
between the evaluation of harm and the measurement of vulnerability. There is very little
one can say to better describe the possible candidates for these functions: one cannot claim,
for example, that only certain preordered sets are suitable and exclude others. But there is a
condition which virtually everybody agrees on: if the harm evaluations along all trajectories
in a structure are increased, then the vulnerability measure should also increase. This kind
of monotonicity can be taken as the defining condition for a vulnerability measure:

I Definition 1. Let V and W be two preorders, and F a functor. A function m : F V → W
is called a vulnerability measure if, for any increasing function i : V → V (that is, v 6 i v
for all v : V), and any x : F V we have m x 6 m (F i x).

If we use the order x vm y = m x v m y on F V we can say that m is a vulnerability
measure if “(F i) is increasing when i is increasing”. We will use this formulation in Section 4.
No matter how good the models used to forecast the possible trajectories are, no matter
how well combined, if a vulnerability assessment uses a function which is not a vulnerability
measure in order to aggregate the harm values, then it must be regarded as flawed.

Are there any vulnerability assessments which fail in this respect? Unfortunately, yes.
The “likeliest harm value” we mentioned above does not fulfill this condition, and neither do
other “democratic” methods (the most frequent result of harm values, for instance). There is,
therefore, scope for error, and so we come to the idea of testing, for a given implementation,
that the vulnerability measure condition holds.

3 Testing vulnerability measures

To test a candidate vulnerability measure m : F V → W we first turn to the question of the
functoriality of the structure of type F V that collects the harm values. How do we know
that the implementation of the mapping function preserves identities and compositions? The
Haskell type system does not detect the problem with

mapTry :: (a → b) → [a ] → [b ]
mapTry f [ ] = [ ]
mapTry f (a : as) = mapTry f as
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The problem is that mapTry id = const [ ] 6= id, so the first functor law fails (but the
second functor law holds). As an aside, mapTry is the version suggested by Agda’s automatic
theorem prover / type inhabitant searcher, called Agsy [15]. (To Agsy’s defence should be
said that it only aims at, and succeeds in, finding some value of the correct type.)

If we want to test if polymorphic properties like the functor laws hold for a polymorphic
function like mapTry, we need to pick some monomorphic type to test them on. It is not
in general enough to pick a trivial type like () or a small type like Bool, but most often
it is enough to test with the type of natural numbers. For the functor laws the results of
Bernardy et al. [2] allow us to reduce testing the polymorphic map function to just one type
(and in fact, just we can even fix the function argument f ), but there is still the question of
coverage:

map :: (a → b) → [a ] → [b ]
map f [ ] = [ ]
map f (a : as) = if length as > bigNumber

then map f as
else f a : map f as

Granted, this is a malicious example, but the problem remains, especially in the case of
functors that require more complex implementations (such as the simple probability functor).
Still, let us accept for now that the implementation of the mapping function is likely to be
used in many programs and therefore verified in so many different cases that we can take it
to be correct.

For concreteness, let us fix the functor to be the non-empty list functor given by

data List a = Wrap a | Cons a (List a)
deriving (Ord,Eq,Show)

fold :: (a → b) → (a → b → b) → List a → b
fold w c (Wrap a) = w a
fold w c (Cons a as) = c a (fold w c as)
instance Functor List where

fmap f = fold (Wrap ◦ f ) (λ a bs → Cons (f a) bs)

A typical type for harm values is a tuple: pairs of floating-point numbers representing
(monetary) damages and natural numbers representing lost lives. The least controversial way
of comparing such values is given by the dominance relation:

instance POrd a where
leq :: a → a → Bool

instance (POrd a,POrd b) ⇒ POrd (a, b) where
(a1 , b1 ) ‘leq‘ (a2 , b2 ) = a1 ‘leq‘ a2 ∧ b1 ‘leq‘ b2

We defined a new type class for preorders, similar to the Ord class provided by Haskell.
Instances of the Haskell Ord class are required to be total orders, while instances of POrd
should be preorders. Neither of these requirements can be expressed in Haskell, so there is no
automatic check that instances really satisfy them. Anyway, let us grant that the preorder
properties also do not need to be tested here (either because they are tested elsewhere, or
because the implementation can be trivially seen to be correct).

The biggest problem that we encounter in testing vulnerability measures is its higher-
order nature, namely the quantification over all possible increasing functions. In QuickCheck
notation, one might write
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testMonotonicity m i x = increasing i > m x ‘leq‘ m (fmap i x)

This naive translation of the requirement would check that i is an increasing function, and
then check that v assigns an increased measure to the increased x. Even assuming the
unlikely case in which the property of being increasing is decidable (this only works for
functions with finite domain – not the case in our example), we still have the problem that
arbitrarily generated functions are unlikely to be increasing, and QuickCheck will stop with
an inconclusive result once it reaches the maximum number of attempts for which it is
configured.

Thus, we need to use a custom generator which guarantees that the functions it generates
are increasing:

testMonotonicity m genInc x = forAll genInc (λ i →
m x ‘leq‘ m (fmap i x))

The problem of coverage will still stay with us, but at least we can ensure that we reach
the test of m. For the concrete example we have taken, we can, for example, implement a
custom generator by:

genInc :: Gen ((Float, Int) → (Float, Int))
genInc = do dx ← choose (0 , 10 )

dn ← choose (0 , 10 )
return (λ (x,n) → (x + dx,n + dn))

and, in fact, we have done so [11]. Unfortunately, this can cause an error: large integers
can overflow and result in large negative integers. To do a proper job, the generator has
to examine its arguments, and make sure that the returned values really fulfill the desired
condition.

Even with the best generator, we still have a problem. Consider a measure which just
sums up the elements of the list of potential results:

sumList :: List (Float, Int) → (Float, Int)
sumList = fold id f

where f (x,n) (x ′,n′) = (x + x ′,n + n′)

This should be a vulnerability measure: increasing the values in a list increases their sum.
However, testing it can again fail if the integral part overflows, or if summing up the floating
point leads to round-off errors. This means that we need to control also the generation
of the arguments, not just the generation of the increasing functions. This is particularly
annoying, considering that an alternative popular measure, taking the maximal elements on
components, has the same structure as summing the values:

supList :: List (Float, Int) → (Float, Int)
supList = fold id f

where f (x,n) (x ′,n′) = (max x x ′,max n n′)

The similarity of their names reflects the similarity of their implementations: both functions
are folds, the only difference being the use of max instead of +. Nevertheless, we cannot
with impunity use the generators for supList when testing sumList. Moreover, in writing
more and more complicated generators, we mix up the test for the “interesting” monotonicity
condition, with the “implementational” defending against overflow or round-off errors. And
we still have a coverage problem, because only with knowledge of the implementation of
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the measure can we estimate how well the sampling of the space of increasing functions is
achieved.

It might be thought that we can always get around implementational aspects by choosing
better representations for numerical values. For example, we can avoid round-off errors by
replacing Float with rational numbers. Unfortunately, we cannot do that if the vulnerability
measure requires computations which cannot be carried out on rational numbers, such as the
geometric mean. Resorting to exact real numbers does not solve our problem either, because
the order relation on these is not decidable, and we just trade one type of interference from
the implementational aspects (defending against round-off errors) for another (guarding
against undecidable comparisons).

To sum up:
We need detailed analysis of the implementation of the function under test, and, in
particular, of the datatypes they act on.
We often need to write different custom generators even for very similar cases (such as
sumList and supList).
We mix the conceptual part of the tests with the implementational part.
Good coverage is hard to achieve.

4 Proving correctness of vulnerability measures

It is tempting to point an accusing finger at the higher-order nature of the formalization of
the vulnerability measure condition. If we hadn’t used Haskell, with its functional nature
and expressive type system, we might not have run into so much trouble testing the resulting
implementations. Testing higher-order functions is not a topic in common textbooks on
software testing [1, 20].

On the other hand, thinking about the problems we saw in the discussion of testing
functoriality, it might just be that the culprit is not the exaggerated expressivity of Haskell,
but on the contrary: the fact that it is not expressive enough!

In a dependently-typed programming language such as Agda, we can formulate the
functor laws as types via the Curry-Howard isomorphism3:

_ .=_ :{A B : Set } → (f g : A → B) → Set
f .= g = ∀ a → f a ≡ g a
record Functor (F : Set → Set) : Set1 where

field
fmap : {A B : Set } → (A → B) → F A → F B
idLaw : {A : Set } →

fmap (id {A}) .= id {F A}
compLaw : {A B C : Set } → (f : B → C ) → (g : A → B) →

fmap (f ◦ g) .= (fmap f ◦ fmap g)

Now we can also prove that the mapping function we defined is indeed functorial. The
implementation of non-empty lists is virtually identical to the Haskell version:

3 We use everywhere the propositional equality type (_≡_) provided by Agda as if it were the only
equivalence relation of interest. Parameterising by different equivalence relations (using setoids instead
of sets) does not introduce difficulties, but makes the examples more tedious and wastes space. Similar
remarks apply to universe-polymorphism.
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data List (A : Set) : Set where
[ ] : A → List A
_::_ : A → List A → List A

fold :{A B : Set } → (A → B) → (A → B → B) → List A → B
fold w c [a ] = w a
fold w c (a :: as) = c a (fold w c as)
map :{A B : Set } → (A → B) → (List A → List B)
map f = fold ([ ] ◦ f ) (λ a bs → f a :: bs)

Proving that the map function defined preserves identities and composition is actually
almost entirely performed by Agsy, the only nudging it needed was to “use the congruence of
something” in the inductive step.

mapId : {A : Set } →
map (id {A}) .= id

mapId [a ] = refl
mapId (a :: as) = cong (λ as → a :: as) (mapId as)
mapComp : {A B C : Set } → (f : B → C ) → (g : A → B) →

map (f ◦ g) .= (map f ◦ map g)
mapComp f g [a ] = refl
mapComp f g (a :: as) = cong (λ as → f (g a) :: as) (mapComp f g as)

Therefore, we can construct an element of type Functor List and clinch the proof that
our map is a suitable choice:

FunctorList : Functor List
FunctorList = record {fmap = map;

idLaw = mapId;
compLaw = mapComp}

No problems with the polymorphism or higher-order nature of map, and, of course, no
coverage problems. Motivated by this easy success, we proceed to formalize the vulnerability
measure condition, starting first with the definition of increasing functions. We use the Agda
standard library IsPreorder record for preorders, which is parameterized on the underlying
equivalence (for which we use _≡_ throughout):

IsIncreasing : {A : Set } (_6_ : A → A → Set) →
(A → A) → Set

IsIncreasing (_6_) f = ∀ a → a 6 f a
VulnMeas : {F : Set → Set } → Functor F →

{V : Set } → {_6_ : V → V → Set } → IsPreorder _≡_ _6_ →
{W : Set } → {_v_ : W → W → Set } → IsPreorder _≡_ _v_ →
(m : F V → W ) → Set

VulnMeas {F } fF {V } {_6_} p6 {W } {_v_} pv m =
(i : V → V ) → IsIncreasing _6_ i →

IsIncreasing _vm_ (fmap i)
where fmap = Functor .fmap fF

_vm_ : F V → F V → Set
x vm y = m x v m y

This is a virtually literal translation of Definition 1, and not more trouble to write than
the testMonotonicity function above.
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The Agda versions of our vulnerability measure candidates are also cut & paste productions
from the Haskell code, except for renamings due to the lack of type classes in Agda:

sumList : List (Float × Int) → Float × Int
sumList = fold id f

where f : Float × Int → Float × Int → Float × Int
f (x,n) (x ′,n′) = (x +f x ′,n +i n′)

supList : List (Float × Int) → Float × Int
supList = fold id f

where f : Float × Int → Float × Int → Float × Int
f (x,n) (x ′,n′) = (maxf x x ′,maxi n n′)

In both cases, the arguments (id and f ) that fold receives are monotonic functions, and it is
easy to see that this is a sufficient condition for a vulnerability measure. Formulating this
property in Agda raises no unexpected difficulties:

IsMonotonous : {A : Set } → {_6A_ : A → A → Set } → (pA : IsPreorder _≡_ _6A_) →
{B : Set } → {_6B_ : B → B → Set } → (pB : IsPreorder _≡_ _6B_) →
(A → B) →
Set

IsMonotonous {A} {_6A_} pA {B} {_6B_} pB f =
(a1 a2 : A) → (a1 6A a2 ) → f a1 6B f a2

IsMonotonous2 : {A : Set } → {_6A_ : A → A → Set } → (pA : IsPreorder _≡_ _6A_) →
{B : Set } → {_6B_ : B → B → Set } → (pB : IsPreorder _≡_ _6B_) →
{C : Set } → {_6C_ : C → C → Set } → (pC : IsPreorder _≡_ _6C_) →
(A → B → C ) →
Set

IsMonotonous2 {A} {_6A_} pA {B} {_6B_} pB {C } {_6C_} pC f =
(a1 a2 : A) → (a1 6A a2 ) →
(b1 b2 : B) → (b1 6B b2 ) → f a1 b1 6C f a2 b2

foldMeas : {A : Set } → {_6A_ : A → A → Set } → (pA : IsPreorder _≡_ _6A_) →
{B : Set } → {_6B_ : B → B → Set } → (pB : IsPreorder _≡_ _6B_) →
(w : A → B) → IsMonotonous pA pB w →
(c : A → B → B) → IsMonotonous2 pA pB pB c →
VulnMeas FunctorList pA pB (fold w c)

Folding monotonic functions over non-empty lists produces vulnerability measures: how
hard is it to convince the type checker of this fact? Perhaps surprisingly, not hard at all.
Agsy finds out all by itself that increasing the elements of a singleton list and applying a
monotonic function to the result is going to result in an increased measure:

foldMeas pA pB w monw c mon2c i isInc [a ] = monw a (i a) (isInc a)

More impressively, in the inductive case, after the gentle nudge to apply the monotonicity of
the second argument to fold, Agsy can fill in all the arguments to mon2c except for the last
one, the induction hypothesis:

foldMeas pA pB w monw c mon2c i isInc (a :: as) =
mon2c a (i a) (isInc a)

(fold w c as)
(fold w c (fold (λ x → [i x ]) (λ x → _::_ (i x)) as))
?
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which we fill in and, after tempering a bit Agsy’s eagerness to reduce every term to normal
form, we reach the final version:

foldMeas pA pB w monw c mon2c i isInc (a :: as) =
mon2c a (i a) (isInc a)

(fold w c as) (fold w c (map i as)) (foldMeas pA pB w monw c mon2c i isInc as)

All that remains to do in order to ensure that our candidates, sumList and supList are
indeed vulnerability measures is to prove the monotonicity of id,+f ,+i,maxf ,maxi. Well,
we cannot! Float and Int are machine built-in types, which Agda allows us access with a bit
of builtin-trickery:

postulate Float : Set {-# BUILTIN FLOAT Float #-}
primitive

primFloatPlus : Float → Float → Float
primFloatLess : Float → Float → Bool

_+_ : Float → Float → Float
_+_ = primFloatPlus
_6_ : Float → Float → Bool
_6_ = primFloatLessThan

And the same thing again for Int. But, beyond the signature of these functions, the type
checker knows nothing about them, and any additional property must be postulated, for
example:

postulate 6fRefl : (x : Float) → x 6f x
postulate 6fTrans : (x y z : Float) →

x 6f y → y 6f z → x 6f z
postulate +fmon : (x y x ′ y′ : Float) →

x 6f x ′ → y 6f y′ →
(x +f y) 6f (x ′ +f y′)

where 6f is a suitably lifted representation of the primitive boolean relation. The type
checker accepts then (but does not guarantee) that these properties hold, and we obtain thus
a conditional proof of correctness, with the implementational aspects nicely tucked away and
signalled by the postulate keyword.

Alternatively, we can use Peano naturals instead of Int and rationals instead of Float, for
which we can prove the required properties, and obtain an unconditional result (and a less
efficient program). Eventually, one expects such properties to be part of standard libraries,
and have an even easier time switching from one datatype to another. In any case, the most
difficult part of the job, proving that a fold gives a vulnerability measure, is independent of
the specific datatype considered.

To sum up, formulating the vulnerability measure condition via the Curry-Howard
isomorphism is not more difficult than coming up with the corresponding tests, while proving
it for the cases we considered is easier and more general than implementing those tests. The
conceptual and implementational aspects are cleanly separated, and the problematic spots
highlighted by the postulate keyword.
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5 Conclusions

There have been several papers lately that show the advantages of dependently-typed
programming languages for embedded domain-specific languages [5, 19, 24], and we have
just provided another example.

A feature that distinguishes our work from the others is that it brings us in contact with
scientific programming: the kind of programming that covers the models used to generate the
possible trajectories to be measured. The scientific programming community often tackles
problems with the sort of features our example illustrates, where exhaustive testing is not
feasible and formal proofs of correctness might be easier. Scientific programmers tend also
to be familiar with mathematical proof in an informal context: many numerical methods
are justified by some sort of informal proof of correctness, which is then a candidate for
translating to a formal context. The question therefore is, why is formal proof not used more
frequently in scientific programming?

One reason is probably that usable implementations of dependently-typed programming
languages have not been around very long. Moreover, the experience we have accumulated
with them has been more on the discrete, algebraic side and rather less on the continuous,
real analysis side which is important for scientific programming. The Agda standard library
[26], young as it is (currently at version 0 .6 ), implements many kinds of algebraic structures,
but has no mention of the Float datatype or real numbers. There are, to our knowledge, no
dependently-typed libraries available for doing the sort of things that a scientific programmer
takes for granted: solving linear systems, factorizing matrices, interpolating real functions,
optimization, and so on.

Developing such libraries in a dependently-typed programming language is quite chal-
lenging. Consider, for example, that in order to implement an optimization method, one
has to specify exactly what is meant by “optimization”: does the method return the exact
solution or just an approximation of it?

We can attempt to obtain the exact solution if we work with constructive real numbers in
the realm of constructive real analysis, as suggested, for example, by Bishop [3]. There are
several representations of exact real numbers: the ones most used in constructive numerical
analysis are based on the work of Russell O’Connor in Nijmegen [22, 23]. Validated numerical
methods via constructive analysis is still a research subject. There are promising results [12],
but they are quite far from providing a usable basis for scientific programming. In particular,
there are no library functions available yet for solving a linear system of equations.

An alternative approach is to content ourselves with an approximate solution. After all,
the vast majority of numerical libraries available today work with floating point numbers
and thus abandon the search for an exact solution from the beginning. Here the challenge
is to specify what is being computed: what guarantees are made about the quality of the
approximation delivered? Existing libraries tend to be surprisingly vague here, encouraging
a trial-and-error approach and relying on the expertise of the user. The arguments for
why a certain method should lead to a good approximation of the solution are also often
expressed in terms of exact real numbers and therefore can only be formalized with the help
of postulates, as we have done above.

To do better, one has to formalize the properties of floating-point numbers as expressed
in the IEEE 754 or 854 floating-point arithmetic standard. Several such formalizations
have been achieved in PVS [18], HOL [10], and Coq [4], and have been used to verify the
implementation of algorithms for fundamental and relatively simple functions, such as the
square root or the exponential. To our knowledge, no substantial numerical methods have
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yet been verified. Moreover, this kind of work is hard to do in an academic context, and we
might have to wait until industry is motivated enough to fund it.

Until such a time, the best that we can do is to separate the problems that require the
continuous / analytic from those that deal more with the discrete / algebraic, and prove the
correctness of the latter conditional on (postulated) correctness of the former, which we can
at most test. In this sense, in the above examples, we were indeed lucky, having to deal only
with algebraic structures such as preorders and lists, and being satisfied with correctness
conditioned on the field structure of floating-point numbers and integers (a structure they, in
fact, do not have!).
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Abstract
Finite triangular matrices with a dedicated type for the diagonal elements can be profitably
represented by a nested data type, i. e., a heterogeneous family of inductive data types, while
infinite triangular matrices form an example of a nested coinductive type, which is a heterogeneous
family of coinductive data types.

Redecoration for infinite triangular matrices is taken up from previous work involving the
first author, and it is shown that redecoration forms a comonad with respect to bisimilarity.

The main result, however, is a validation of the original algorithm against a model based
on infinite streams of infinite streams. The two formulations are even provably equivalent, and
the second is identified as a special instance of the generic cobind operation resulting from the
well-known comultiplication operation on streams that creates the stream of successive tails of
a given stream. Thus, perhaps surprisingly, the verification of redecoration is easier for infinite
triangular matrices than for their finite counterpart.

All the results have been obtained and are fully formalized in the current version of the Coq
theorem proving environment where these coinductive datatypes are fully supported since the
version 8.1, released in 2007. Nonetheless, instead of displaying the Coq development, we have
chosen to write the paper in standard mathematical and type-theoretic language. Thus, it should
be accessible without any specific knowledge about Coq.
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1 Introduction

Redecoration for the finite triangles has been verified against a list-based model in previous
work [10]. This is the point of departure for our present paper.

Finite triangles can be represented by “triangular matrices”, i. e., finite square matrices,
where the part below the diagonal has been cut off. Equivalently, one may see them as sym-
metric matrices where the redundant information below the diagonal has been omitted. The
elements on the diagonal play a different role than the other elements in many mathematical
applications, e. g., one might require that the diagonal elements are invertible (non-zero).
This is modeled as follows: a type E of elements outside the diagonal is fixed throughout
(we won’t mention it as parameter of any of our definitions), and there is a type of diagonal
elements that enters all definitions as an explicit parameter. More technically, if A is the
type of diagonal elements, then Trifin A shall denote the type of finite triangular matrices
with A’s on the diagonal and E’s outside (see Figure 1). Then, Trifin becomes a family of
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types, indexed over all types, hence a type transformation. Moreover, the different Trifin A

are inductive datatypes that are all defined simultaneously, hence they are an “inductive
family of types” or “nested datatype” [4].

E E E
E E

E

A
A

A
A

. . .

Figure 1 Dividing a triangle into columns

If we cut the triangle into the first column and the rest, we get one element of A and
a “trapezium”, with an uppermost row solely consisting of E’s. In order not to have to
ensure explicitly by a dependent type that the number of columns is coherent, the solution
is to transform the trapezium into a triangle, integrating the side diagonal (just above the
diagonal) into the diagonal itself, as shown in Figure 2. From the left to the right, the
lowermost element of E in each column is paired with the element of A on the diagonal, and
the other elements of E remain untouched.
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E × A
E × A

E × A
E × A

. . .
triangle

trapezium

Figure 2

Following this remark, the triangles can be defined theoretically [1], and in Coq and
Isabelle by the following constructors [10]:

a : A
sgfin a : Trifin A

a : A t : Trifin(E ×A)
constrfin a t : Trifin A

I Remark. In this paper, single-lined inference rules denote inductive definitions, double-lined
inference rules are for coinductive definitions.

In more theoretical terms, Trifin is modeled as the least solution to the fixed-point
equation

Trifin A = A+A× Trifin (E ×A)

The left summand corresponds to a triangle that only consists of a single element of A (a
singleton), thus ensuring the base case.

The algorithm of redecoration (see work by Uustalu and Vene for the general categorical
notion [14]) is the following: for a given redecoration rule f : Trifin A→ B, it is a function
redec f that redecorates A-triangles t (elements of Trifin A) into B-triangles by applying f
to the whole triangle t to obtain the new top element, and then by successively applying
the same operation to the triangle cut out from the remaining trapezium. This ends in the
singleton case where f is applied to it and the result is turned into a triangle by applying
sgfin. This algorithm only changes the diagonal elements in A into elements of B, as shown
in Figure 3. We do not give the formal definition of redecoration for finite triangles here.
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Figure 3 Redecoration

The redecoration for infinite triangles [1] has not yet been verified. This is what we intend
to do in this paper.

Reasoning about nested coinductive types naturally rests on observational equality, just
as for ordinary coinductive types, and since version 8.2, Coq greatly helps in using the
rewrite mechanism for Leibniz equality also for the notion of bisimilarity of infinite triangular
matrices. With respect to that notion of equality, redecoration is shown to form a (sligthly
weakened form of) comonad, and its implementation is compared with an alternative one
based on streams of streams.

These new results come with a full formalization in Coq [9], and limitations of what Coq
recognizes as a guarded definition make the theoretical development more challenging, but
we still obtained smooth results without an excessive overhead that would be imposed by a
naive dualization of the formalization for the finite triangles [10].

In Section 2, inspired by the previous theoretical development [1], we introduce the
dual to the definition of finite triangles [10]. We present it with all the tools necessary to
define redecoration. We then propose a definition for the redecoration algorithm on these
infinite triangles and add further tools and properties. In Section 3, we change the point of
view in the observation of the triangles. We give an alternative definition for the infinite
triangles, considering this new approach, and provide various tools. We also show that
this new representation is equivalent to the previous one. Finally, we propose two ways of
defining redecoration, trying always to simplify and generalize our definitions and show their
adequation with previous definitions.

Since the results are fully formalized in the current version of Coq, hence ensuring
complete and sound proofs, we took the liberty to write the paper in standard mathematical
and type-theoretic language and also to omit most proofs. Therefore, it should be accessible
without any specific knowledge about Coq. For the study of the development [9], the Coq’Art
book [3] should mostly suffice, but the (type) class mechanism [12] and the revised setoid
rewriting mechanism based on it have to be consulted elsewhere – by default in the Coq
Reference Manual [13].

2 Reference Representation with a Coinductive Family

Dually to the representation of finite triangles discussed in the introduction, “triangular
matrices” are now introduced as infinite square matrices, where the part below the diagonal
has been cut off. Recall that a type E of elements outside the diagonal is fixed throughout.
If A is the type of diagonal elements, then Tri A shall denote the type of infinite triangular
matrices with A’s on the diagonal and E’s outside. The different Tri A are coinductive
datatypes that are all defined simultaneously, as was the case for Trifin, hence they are a
“coinductive family of types” or “nested codatatype”, as will be developed below.
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58 Verification of redecoration for infinite triangular matrices using coinduction

2.1 Infinite triangles as nested coinductive type
Infinite triangles can also be visualized as in Figure 1, this time with the dots representing
an infinite extension.

If we now cut the triangle into the first column and the rest, we get one element of A (as
before for Trifin) and a trapezium, with an uppermost row consisting of infinitely many E’s.

The n-th column consists of an element of A on the diagonal and n elements of E above
the diagonal, as in the case of Trifin. As before, we do not want to parameterize the type of
the columns by their index and instead integrate the side diagonal into the diagonal – and
this has to be done corecursively [1]. This integration is possible since trapeziums are again
in one-to-one correspondence to triangles, as shown in Figure 2, now interpreted infinitely.
In this figure, the trapezium to the left is considered as the “trapezium view” of the triangle
to the right. Vice versa, the triangle to the right is the “triangle view” of the trapezium to
the left.

We now formalize triangles through the following constructor that has to be interpreted
coinductively.

I Definition 1 (Tri, defined coinductively).

a : A t : Tri(E ×A)
constr a t : Tri A

with A a type variable.

This means that the types Tri A for all types A are simultaneously conceived as greatest
solution to the fixed-point equation

TriA = A× Tri(E ×A),

and constr has two arguments instead of a pair of type A× Tri(E × A) just for technical
convenience.

The second argument to constr corresponds to the triangle view of the trapezium in our
visualization in Figure 1, but there is no passage between a trapezium and a triangle – this
is only the motivation. In the formalization, there are only infinite triangles, but we set
TrapA := Tri(E ×A) to hint to the trapezium view of these triangles.

I Definition 2 (Projections).

top : ∀A.Tri A→ A rest : ∀A.Tri A→ TrapA
top (constr a r) := a rest (constr a r) := r

This definition by pattern matching implicitly uses the direction from right to left in the
above fixed-point equation. Thus, the top element and the trapezium part of a triangle are
calculated by unfolding the fixed point.

In order to obtain the triangle that arises by cutting off the top row of a trapezium, we
have to go through all the columns.

I Definition 3 (cut : ∀A.TrapA→ Tri A, defined corecursively).

cut (constr 〈e, a〉 r) := constr a (cut r)

The definition does pattern matching on elements of TrapA and constructs an element
of the coinductive type Tri A. The subterm cut r represents a corecursive call to cut, which
is accepted also by the Coq system as admissible corecursion since it is placed directly as an
argument to the constructor constr .
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2.2 Redecoration for infinite triangles
We are heading for a corecursive definition of the generic redecoration operation redec on
triangles. It has type

∀A∀B. (Tri A→ B)→ Tri A→ Tri B,

which is the type of a coextension operation for Tri viewed as support of a comonad.
Coextension – also called cobind – is the dual of the extension / bind operation of a monad,
which is so successfully used in the functional programming language Haskell. The counit for
the comonad we are about to construct is our top operation.

Redecoration for Tri follows the same pattern as for Trifin , but the successive applications
of the same operation will never reach a base case, as there is none in Tri.

Formally, this is done by a corecursive definition, where redec f t for t of type Tri A has
to call itself with second argument of type TrapA, hence f is not even type-correct as a first
argument in that corecursive call. Instead of f : Tri A→ B, a “lifted” version of f is needed
that has type Tri(E ×A)→ E ×B.

I Definition 4 (lift : ∀A∀B. (Tri A→ B)→ Tri(E ×A)→ E ×B).

lift f r := 〈fst(top r), f(cut r)〉 ,

where fst is the first projection (from a pair to its first component).

The definition is illustrated in Figure 4.

E E E
E E

E
A

A
A

. . .
E × B

id

f

Figure 4 Definition of lifting

The formal definition of redecoration is as follows:

I Definition 5 (redec : ∀A∀B. (Tri A→ B)→ Tri A→ Tri B, defined corecursively).

redec f t := constr (f t)
(
redec (lift f) (rest t)

)
,

see Figure 5. This definition is accepted since it is guarded: the corecursive call to redec is
as second argument to constr , and it does not matter that the argument f becomes lift f
there. A function argument that becomes more complicated in the recursive call is typical of
recursion on nested datatypes, see, e. g., [1].

This completes the definition, but leaves open the question if this is really (in what sense)
the cobind of a comonad and if it corresponds to operations that are easier to understand
than corecursion on nested codatatypes. We note that recursion schemes for nested datatypes
have been subject of a long line of research, starting from work by Bird and colleagues [4, 5].

2.3 Properties of redecoration
It is well-known that propositional equality = (called Leibniz equality in Coq since t1 = t2
allows the replacement of t1 by t2 in any mathematical context) cannot suffice as criterion for
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Figure 5 Definition of redecoration

the correctness of elements that are calculated in coinductive types. Propositional equality
cannot be established by coinductive reasoning because this is confined to coinductively
defined conclusions, and propositional equality is not coinductive (in Coq, it is defined
inductively). We write Rel C for the type of the binary relations on C, and we use these
relations in infix notation. In Coq, their type is C → C → Prop, where Prop is the universe
of propositions.

I Definition 6 (' : ∀A.Rel(Tri A), defined coinductively).

t1 , t2 : Tri A top t1 = top t2 rest t1 ' rest t2
t1 ' t2

It is easy to show that ' is an equivalence relation for any argument type A. It is an
equivalence relation but not a congruence: for every operation of interest we have to establish
compatibility with bisimilarity. This is in particular easily done for the projection functions
top and rest and for the cut operation.

Using this notion of bisimilarity, we can show that redec is extensional in its function
argument (modulo '), using full extensionality of lift:

I Lemma 7. ∀A∀B∀(f f ′ : Tri A→ B). (∀t, f t = f ′ t)⇒ ∀t, lift f t = lift f ′ t

I Lemma 8. ∀A∀B∀(f f ′ : Tri A→ B). (∀t, f t = f ′ t)⇒ ∀t, redec f t' redec f ′ t

The main properties of redec we are interested in express that top and redec together
constitute a comonad for “functor” Tri. The precise categorical definition in coextension
form (with a cobind operation instead of the traditional comultiplication) is, e. g., given in
[14]. Here, we give the constructive notion we use in this paper, and it is parameterized by
an equivalence relation while classically, only mathematical equality = is employed.

I Definition 9 (Constructive comonad). A constructive comonad consists of a type transforma-
tion T , a function counit : ∀A. T A→ A, a function cobind : ∀A∀B.(T A→ B)→ T A→ T B

and an equivalence relation u : ∀A.Rel(T A) such that the following comonad laws hold:

∀A∀B∀fT A→B∀tT A. counit(cobind f t) = f t (1)
∀A∀tT A. cobind counitA tu t (2)
∀A∀B∀fT A→B∀gT B→C∀tT A. cobind (g ◦ cobind f) tu cobind g (cobind f t) (3)

Here, in order to save space, we gave the type information for the term variables as superscripts.
The index A to counit is meant to say that the type parameter to counit is set to A – in all
other cases, we leave type instantiation implicit.



R. Matthes and C. Picard 61

I Definition 10 (Constructive weak comonad). A constructive weak comonad is defined as a
constructive comonad, but where the equation in (3) is restricted to functions g that are
compatible with u in the following sense: ∀t t′, tu t′ ⇒ g t = g t′.

I Lemma 11. The type transformation Tri, the projection function top and redec form a
constructive weak comonad with respect to '.

The first comonad law is satisfied in an especially strong form: top(redec f t) actually is
f t by definition. The other comonad laws go through with suitable generalizations of the
lemmas – in order to ensure guardedess of the proofs. The current solution is unspectacular,
but it was not obvious how to do it (much more complicated solutions were found on the
way and are now obsolete). We only show the strengthening of the second comonad law, but
it is the same style for the third one.

I Lemma 12 (strengthened form of second comonad law for redec).

∀A∀(f : Tri A→ A). (∀(t : Tri A), f t = top t)⇒ ∀(t : Tri A). redec f t' t

The proof is by coinduction and uses Lemma 7. Obviously, this implies the second comonad
law. For all the details, see our formalization in Coq [9]. We only get a weak comonad
because proving pointwise equality of lift(g ◦ (redec f)) and (lift g) ◦ (redec(lift f)) requires
compatibility of g with ', and this is a crucial step for proving the third comonad law.

When defining the cut operation, one might naturally want to get also the part that has
been cut out (the elements of E). These elements are given by the following function:

I Definition 13 (es_cut : ∀A.TrapA→ Str E, defined corecursively).

es_cut (constr 〈e, a〉 r) := e :: (es_cut r)

I Remark. In the standard library of Coq, the type of streams with elements in type C are
predefined, and we can represent this definition as follows:

c : C s : Str C
c :: s : Str C

The projection functions are called hd and tl. They are such that hd(c :: s) = c and
tl(c :: s) = s. We will also use the map function defined by map f (c :: s) = f c :: (map f s).
Using es_cut, we can define the first row of E elements in a triangle as

frow : ∀A.Tri A→ Str E frow t := es_cut (rest t)

Once we have these definitions, we might want to be able to “glue” the two cut parts in
order to recreate the original trapezium. This is done by the function addes

I Definition 14 (addes : ∀A.Str E → Tri A→ TrapA, defined corecursively).

addes (e :: es) (constr a r) := constr 〈e, a〉 (addes es r)

And it is then easy to show that addes indeed performs the gluing:

∀A∀(r : TrapA). addes (es_cut r) (cut r)' r

3 Another Conception of Triangles

In this section, we show another way to perceive and represent infinite triangles. And we
propose two ways of defining redecoration on this new representation.
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62 Verification of redecoration for infinite triangular matrices using coinduction

3.1 A new definition using streams
In the previous section, we always visualized the infinite triangles by their columns. Indeed,
we said that a triangle was a first column with only one element of type A (the element of
the diagonal) and a trapezium, itself actually a triangle, as suggested in Figure 1.

While elements of the finite triangles in Trifin A (see Section 1) are (globally) finite, also
all the columns of our infinite triangles in Tri A are finite. In the work that we started from
for this article [10], redecoration on Trifin is verified against a model where triangles are
represented by finite lists of columns, where each column consists of the diagonal element in
A and a finite list of elements in E. A naive dualization of that approach would consist in
taking as representation of infinite triangles streams of columns that would be formed as for
the finite ones. This mixture of inductive and coinductive datatypes is notoriously difficult to
handle. We have been confronted with this problem many times in the last few years, as can
be seen in the second author’s thesis [11] which deals with this kind of problems particularly
in Coq. But in other proof assistants, the same kind of issues has appeared; there is also
an experimental solution in Agda [6, 7]. Still, the representation of infinite triangles mixing
inductive and coinductive datatypes can be carried out, but we refrain from presenting this
column-based approach here.

However, we can also visualize triangles the other way around. We now consider the
triangle by its rows, as suggested in Figure 6. Then, on any row, we have one element of

E E E
E E

E

A
A

A
A

. . .

Figure 6 Dividing a triangle into rows

type A and infinitely many elements of type E. And we also have infinitely many rows.
Here, nothing is finite (only the single element of A at the head of each row, but this is
not a problem), therefore, we do not have any embedded inductive type in our description –
unlike in the columnwise decomposition mentioned above. This new visualization can be
represented as a stream of pairs made of one element of type A and a stream of elements of
type E.

I Definition 15. Tri ′A := Str(A× Str E)

Actually, following the definition of Str , we can read this new definition of the triangles as
consisting of three parts: the top element, the stream of elements of E of the first row and
the triangle corresponding to the rest, as shown in Figure 7.
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. . .

top′
frow′

rest′

Figure 7 Conceptualizing a triangle as a triple

We define functions that allow us to access to each of these elements:
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I Definition 16 (Projections).

top′ : ∀A.Tri ′A→ A frow′ : ∀A.Tri ′A→ Str E rest′ : ∀A.Tri ′A→ Tri ′A
top′ (〈a, es〉 :: t) := a frow′ (〈a, es〉 :: t) := es rest′ (〈a, es〉 :: t) := t

Notice that rest and rest′ are conceptually different – the former yields the trapeziums after
cutting off the first column, the latter triangles after cutting off the first row.

To compare two elements of Tri ′, we need a notion of bisimilarity, which on Str is
pre-defined in Coq as follows:

I Definition 17 (≡ : ∀C.Rel(Str C), defined coinductively).

s1 , s2 : Str C hd s1 = hd s2 tl s1 ≡ tl s2
s1 ≡ s2

However, we cannot use it directly. Indeed, we would need to prove, for two triangles t1
and t2 that their first rows are Leibniz-equal, i. e., frow′ t1 = frow′ t2. This is too strict, since
the rows are defined partially coinductively (because of the stream of E’s). Therefore, we
need to define a new relation on Tri ′ that will compare the three elements of the triangles.
The tops can be compared through Leibniz equality, the first rows can be compared using ≡
and the rests with the relation on Tri ′, corecursively.

I Definition 18 (∼= : ∀A.Rel(Tri ′A), defined coinductively).

t1 , t2 : Tri ′A top′ t1 = top′ t2 frow′ t1 ≡ frow′ t2 rest′ t1 ∼= rest′ t2
t1 ∼= t2

It is immediate to show that ∼= is an equivalence relation.
In order to validate this view of the triangles, we want to show that it is indeed equivalent

to the original one. Therefore, we are going to show that there is a bijection between the
two definitions (modulo pointwise bisimilarity). To do so we define two conversion functions
(toStreamRep, from Tri to Tri ′ and fromStreamRep for the other way around) and show that
their compositions are pointwise bisimilar to the identity.

The two conversion functions are quite natural. To transform an element of Tri A into
an element of Tri ′A, we need to reconstruct from the original triangle the three elements of
Tri ′A. The top remains the original top, this is trivial. The first row of elements of E is
given by frow. Finally, the triangle has to be transformed again by toStreamRep from the
rest of the triangle with the first row cut out by the function cut. The calculation for the
different parts is represented in Figure 8.
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top
frow

cut rest

Figure 8 Definition of toStreamRep

I Definition 19 (toStreamRep : ∀A.Tri A→ Tri ′A, defined corecursively).

toStreamRep t := 〈top t, frow t〉 :: toStreamRep (cut (rest t))
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64 Verification of redecoration for infinite triangular matrices using coinduction

The definition of fromStreamRep is also quite intuitive. We have to construct the two elements
that compose elements of type Tri. The top remains the top as before, this is again trivial.
For the rest, we have to “glue” the first row to the rest of the triangle (basically the inverse
of the cut and es_cut functions on Tri ′) before transforming it again. We call addes′ the
function that performs this operation, as shown in Figure 9.
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Figure 9 Definition of addes′

I Definition 20 (addes′ : ∀A.Str E → Tri ′A→ Tri ′(E ×A), defined corecursively).

addes′ (e :: es) t := 〈〈e, top′ t〉, es〉 :: addes′ (frow′ t) (rest′ t)

I Definition 21 (fromStreamRep : ∀A.Tri ′A→ Tri A, defined corecursively).

fromStreamRep t := constr (top′ t)
(
fromStreamRep (addes′ (frow′ t) (rest′ t))

)
I Remark. Our first idea was to do the gluing after the transformation. Indeed, as the
transformation does not affect the elements of E, it seemed more natural to us not to
submit this part to the corecursive call of the transformation. Thus, we wanted to define
fromStreamRep coinductively as follows:

fromStreamRep t := constr (top′ t) (addes (frow′ t) (fromStreamRep (rest′ t)))

However, even if this seems harmless, this definition cannot be accepted by Coq since the
corecursive call to fromStreamRep is not guarded (it is an argument of addes and not of
a constructor). Nevertheless, we have shown that the solution to the previous equation
is unique with respect to pointwise bisimilarity and that fromStreamRep of Definition 21
satisfies it.

I Lemma 22. ∀A∀(t : Tri ′A). toStreamRep (fromStreamRep t)∼= t

Proof. To prove this result, we actually prove the following stronger result that we then
only instantiate to finish the proof:

∀A∀(t : Tri ′A)(u : Tri A), toStreamRep (fromStreamRep t)∼= u⇒ t∼= u

The proof of this statement is a simple coinduction, that uses some straightforward results
on cut and addes′. J

I Lemma 23. ∀A∀(t : Tri A). fromStreamRep (toStreamRep t)' t

Proof. We use the same technique as before. We prove a stronger result that we instiantiate
to prove our lemma:

∀A∀(t : Tri A)(u : Tri ′A). fromStreamRep (toStreamRep t)' u⇒ t' u

Here again, the proof is a straightforward coinduction using compatibility of top and rest
with ' and a simple result on addes′. J
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3.2 Redecoration on Tri ′

Thus, we have a completely different view of the triangles, but still, it is fully equivalent
to the original one. The interest of this view is that now the redecoration is very easy to
perform. Indeed, before, the tricky part was that we had to lift the function f to trapeziums,
and therefore to cut out the elements of E remaining (implicitly) from the first row. The
problem was that we roughly had to cut out a row, while we were reasoning on columns.
Here, as we directly reason on rows, it is much easier. As shown in Figure 10, the three
elements of the transformed triangle will be:

the top is the application of f to the whole triangle (as before)
the first row of elements of E is the same row as in the original triangle (and as we said
we have direct access to it)
the rest of the triangle is the application of the redecoration function to the rest
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Figure 10 Definition of redecoration

Therefore, we can define the redecoration function for Tri ′ as follows:

I Definition 24 (redec′ : ∀A∀B. (Tri ′A→ B)→ Tri ′A→ Tri ′B, defined corecursively).

redec′ f t := 〈f t, frow′ t〉 :: redec′ f (rest′ t)

We can finally show that this new version of the redecoration is equivalent to the previous
one, modulo compatibility, using the conversion functions. We show that:

I Lemma 25.

∀f, (∀t t′, t∼= t′ ⇒ f t = f t′)
⇒ ∀t, redec′ f t∼= toStreamRep (redec (f ◦ toStreamRep) (fromStreamRep t))

I Lemma 26.

∀f, (∀t t′, t' t′ ⇒ f t = f t′)
⇒ ∀t, redec f t' fromStreamRep (redec′ (f ◦ fromStreamRep) (toStreamRep t))

I Remark. The compatibility hypotheses here are needed to work with Tri. Up to these
extra requirements, the two conversion functions yield an isomorphism of comonads (the
associated properties for top and top′ are immediate by definition).

3.3 Simplifying redecoration again
As the representation of infinite triangles Tri ′ is only as a stream of streams, we can use
standard functions on streams to define redecoration. Indeed, redecoration can be interpreted
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as consisting of applying a function to each element of the diagonal of an infinite triangle,
where each element of the diagonal is itself a triangle (iterated tails of the given triangle).
We can thus decompose the redecoration operation into two steps: first transform the infinite
triangle into a triangle of triangles and then apply the transformation function on the elements
of the diagonal, as shown in Figure 11.
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Figure 11 Idea of another definition of redecoration

I Remark. Figure 11 is only a visualization of what happens, and has to be taken lightly. In
particular, all the elements of the diagonal of the middle triangle are infinite triangles, as we
said. But, in order to visualize better what we do, their size seems to decrease since we cut
out the first row of the previous element of the diagonal.
These two steps are then trivial to define on streams. Indeed, the first step consists of
replacing all the elements of A by the corresponding iterated tail of the triangle itself. In
fact, the information about the elements of E is redundant. Indeed, it is contained in the
terms of the diagonal themselves (the row of elements of E “to the right” of an element of
the diagonal is the first row of this element, minus the element of A). Therefore, we can
omit them and only concentrate on the triangles. Thus, we need to obtain the stream of all
the iterated tails of the initial triangle (see the first part of Figure 12). This is given by the
classical tails operation defined below:

I Definition 27 (tails : ∀C.Str C → Str(Str C), viewed coinductively). tails s := s :: tails(tl s)

I Remark. The function tails has the signature of the comultiplication operation in a comonad
based on Str according to the classical definition of comonads [8] (the term “comultiplication”
is not used there, but only the letter δ that is dual to the multiplication of a monad). See
Lemma 32 below for the constructive comonad based on Str .
In Figure 11, the second step only consists of applying f to all the elements of the diagonal.
In fact, the first step corresponds to transforming t of type Tri ′A into

map
(
λx.〈x, frow′ x〉

)
(tails t) ,

and the second one consists in transforming s of type Tri ′(Tri ′A) into

map
(
λ〈u, es〉. 〈f u, es〉

)
s .

We can alternatively see the transformation of t into tails t as the first step, and the two
successive map operations as the second step, which is therefore (by applying the functor law
for map saying that map’s compose) performed by map (lift′ f), with lift′ defined as follows:

I Definition 28 (lift′ : ∀A∀B. (Tri ′A→ B)→ Tri ′A→ B × Str E).

lift′ f := λx.〈f x, frow′ x〉
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As for rest and rest′, lift and lift′ are unrelated and belong to the respective point of view.
This new version of the redecoration operation is shown in Figure 12.
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Figure 12 Another definition of redecoration

Thus, we define a new version of the redecoration operation as follows:

I Definition 29 (redec′alt : ∀A∀B. (Tri ′A→ B)→ Tri ′A→ Tri ′B).

redec′alt f t := map (lift′ f) (tails t)

One can then easily show that this operation is equivalent to the previous one:

I Lemma 30. ∀A∀B∀(f : Tri ′A→ B)∀(t : Tri ′A). redec′ f t≡ redec′alt f t

The proof is a straightforward coinduction.
It is interesting to note that here, we do not need the bisimulation relation defined on

Tri ′. We can directly use the standard relation on Str , ≡. This should not be surprising.
Indeed, here we only really manipulate streams. Those streams are made of pairs and we
only manipulate the finite part of each pair (the first element). The second one is only a
copy. Therefore the relation ∼= would be artificial here.

Let’s continue abstracting and define redec′gen as follows:

I Definition 31 (redec′gen : ∀A∀B. (Str A→ B)→ Str A→ Str B).

redec′gen f s := map f (tails s)

As we remarked previously, tails has the signature of a comultiplication for a comonad (in the
triple format [8]) based on Str , and it is well known that map is the functor (on morphisms)
for Str . Therefore, redec′gen becomes the cobind operation of this comonad, generically. We
do not develop this piece of constructive category theory here, but only state the result for
this instance:

I Lemma 32. The type transformation Str, the projection function hd and redec′gen form a
constructive comonad with respect to ≡.

This section is inspired by Adriano [2] who suggested a redecoration function for Haskell
lists just in this form. More precisely, a function slide :: ([a] -> b) -> [a] -> [b]
was defined by slide f = map f.tails. Note that Haskell lists can be finite and infinite,
thus this definition captured streams as well.

The function redec′alt is an instance of redec′gen, i. e., the following lemma is trivial:

I Lemma 33. ∀A∀B∀(f : Tri ′A→ B)(t : Tri ′A). redec′alt f t = redec′gen (lift′ f) t
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Therefore, it is natural to show the three laws of comonads for redec′alt and the proofs are
much simplified by the use of redec′gen. In particular, we can show a kind of commutativity
of lift′ with redec′alt .

I Lemma 34. The type transformation Tri ′, the projection function top′ and redec′alt form a
constructive comonad with respect to ≡ (more precisely, the equivalence relation is ≡A×Str E

for every A).

I Remark. Through the functions toStreamRep and fromStreamRep, one can then transfer
this comonad structure back to Tri. Since Lemma 25 and Lemma 26 require compatibility
of f with bisimilarity, this will not even give a constructive weak comonad, but the first
and third law have to be relativized to compatible f ’s as well. Still, this does not seem a
problematic constraint. Anyway, Lemma 11 has been proved independently of streams.

4 Conclusion

In this paper we have presented various verifications of the redecoration algorithm for infinite
triangles. We have first dualized directly the representation for finite triangles by a nested
inductive datatype to obtain a nested coinductive datatype. In both cases, the triangles are
visualized by their columns. We have implemented the corresponding redecoration algorithm
redec (already available [1] in higher-order parametric polymorphism) and shown that we
(only) obtained a constructive weak comonad (because of the compatibility hypothesis
required). In this part, the redecoration algorithm, although deduced directly from the finite
case, is quite tricky to manipulate because of the cutting and lifting it requires.

We then noticed that we could also consider the triangles by their rows, representing this
time the triangles by purely coinductive datatypes, Tri ′, where we only took advantage of
the existing type of streams (Str). This new visualization allowed us to define – keeping
the same algorithmic idea as before – a function of redecoration redec′ already simpler than
redec and equivalent to it, modulo compatibility. But taking advantage of this representation
by streams, we can simplify again the redecoration algorithm, using only standard functions
on streams. This new function redec′alt is fully equivalent to redec′. Generalizing again, we
get nearly for free the cobind of the comonad Str , redec′gen. This finally allows us to prove
the three comonad laws for redec′alt .

In short, we have shown that the redecoration function, which is a quite subtle operation
if we translate it directly from the finite triangles, reduces to something very basic in the
completely infinite (i. e., in both directions) view of the infinite triangles. In this case, it is
much easier to work with only infinite elements than with partially finite ones in the sense of
consisting of infinitely many finitely presented columns. In fact, the stream representation is
even easier to manipulate than the representation of finite triangles, and the comonad laws
even hold with less restrictions due to constructivity.

Notice that the row-based view would not have given new insights for finite triangles.
Indeed, as they are symmetric, we would have obtained exactly the same representation as
for the column-based approach, only perceived with interchanged roles of rows and columns.

As a final remark on the Coq side, the improved support for setoid rewriting and the
class mechanism [12] has shown to be of great help for the formalization and verification
decribed in this paper.
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