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Abstract
Modern hard real-time systems still employ static memory management. However, dynamic stor-
age allocation (DSA) can improve the flexibility and readability of programs as well as drastically
shorten their development times. But allocators introduce unpredictability that makes deriving
tight bounds on an application’s worst-case execution time even more challenging. Especially
their statically unpredictable influence on the cache, paired with zero knowledge about the cache
set mapping of dynamically allocated objects leads to prohibitively large overestimations of ex-
ecution times when dynamic memory allocation is employed. Recently, a cache-aware memory
allocator, called CAMA, was proposed that gives strong guarantees about its cache influence and
the cache set mapping of allocated objects. CAMA itself is rather complex due to its cache-aware
implementations of split and merge operations.

This paper proposes PRADA, a lighter but less general dynamic memory allocator with equally
strong guarantees about its influence on the cache. We compare the memory consumption of
PRADA and CAMA for a small set of real-time applications as well as synthetical (de-) allocation
sequences to investigate whether a simpler approach to cache awareness is still sufficient for the
current generation of real-time applications.
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1 Introduction

(Hard) real-time applications raise the requirements on dynamic memory allocators. Constant
(de-) allocation times and a bounded, predictable cache behaviour become equally important
as good response times and low memory consumption. Short, constant response times can be
guaranteed by a large set of dynamic memory allocators, ranging from conventional buddy
systems [9, 13] to specialized real-time allocators like Half-Fit [12] and TLSF [11]. However,
none of these allocators provide guarantees about their effects on the cache that a cache
analysis may exploit to provide a subsequent timing analysis with a tight approximation of
the program’s cache behaviour.

With CAMA [8, 6], the first cache-aware constant-time dynamic memory allocator was
proposed. This allocator guarantees constant execution times as well as a bounded cache
influence on just a statically known set of cache sets for allocations and deallocations.
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Furthermore, CAMA can be guided to which cache sets newly allocated objects shall be
mapped. Common techniques to counteract memory fragmentation like splitting1 and
merging2 are used. To implement these operations without introducing unpredictable cache
effects, CAMA relies internally on an indirect management of free blocks. Internal free lists and
split/merge operations work on so-called descriptors instead of the free blocks themselves.
Strict memory placement policies exist for descriptors to ensure a statically predefined cache
mapping of descriptors as well as the absence of accesses to unknown cache sets.

PRADA is a lighter implementation without the need for descriptors, providing the same
predictability guarantees: constant execution times and a statically known effect on the
cache. PRADA tackles the challenge of not introducing cache unpredictabilities by performing
(partial) splits/merges only when no other cache set than the one already touched during
the (de-) allocation procedure is accessed. To enable PRADA to choose when to perform
(partial) split/merge operations, all these operations are initially deferred and executed
when the prerequisites for the operation are met. However, the allocator does not provide
any guarantee that these deferred actions will be executed at all. It only stores a fixed,
but configurable amount of deferred actions. Surplus ones are simply dropped, i.e., never
executed.

For general purpose dynamic memory allocators, deferred split and merge actions have
been shown to be inferior to immediate splits and merges [14]. But does this still hold true
when restricting the class of programs in which an allocator may be used to (hard) real-time
applications? In this paper, we investigate on whether an implementation as complex as
CAMA is actually necessary to fulfil the raised demands of hard real-time systems; or whether
we can do with a simpler approach like PRADA.

In Section 2, we describe PRADA, an alternative cache-aware constant time dynamic
memory allocator that uses deferred actions in order to implement split and merge operations
in a (cache- and time-) predictable manner. Section 3 studies the memory consumption of
several dynamic memory allocators when presented (de-) allocation sequences representative
for real-time applications. Related work is summarized in Section 4.

2 PRADA

PRADA is a dynamic memory allocator which manages free memory blocks in segregated free
lists to allow for constant time allocation and deallocation routines. It defers actions which
would introduce unpredictable behaviour when always immediately executed by remembering
them in form of requests. These actions are executed during subsequent (de-) allocations
to the cache set they need to access. This section briefly summarizes how PRADA works and
achieves its predictability goals. A more detailed description of PRADA can be found in [3].

The memory managed by PRADA is divided into memory blocks. Every memory block
consists of a size field storing its current size and the actual payload area itself. PRADA uses
the payload area of currently free blocks to build-up its free lists. Therefore, the payload area
of deallocated memory blocks contains three fields. Two list pointers linking to the previous
block and the next block within the free list, respectively. The third field is a pointer to a
potentially pending request.

PRADA and CAMA use their respective free lists in the same way. They use an adapted

1 Splitting denotes the use of (split parts of) larger blocks in order to satisfy a request for a smaller block.
2 Merging denotes the joining of two physically consecutive free blocks in order to have a larger block
with higher probability to be useful in satisfying an allocation request.
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Figure 1 Logical view on the partitioning of the memory in PRADA and CAMA and how to connect
(de-) allocation requests to free lists.

version of TLSF’s two-level approach of building size classes (which in turn correspond to its
free lists). During an allocation, the first block of a suitable free list, i.e. size class, is used to
satisfy the request. How does the two-level approach to set-up size classes of TLSF, PRADA,
and CAMA work? The (logically) first level sorts blocks in exponentially growing size classes,
i.e., for class i all associated memory blocks are of size ∈ [2i, 2i+1). A higher granularity
for sorting blocks is achieved by a second level which is a linear subdivision of these classes.
For an allocation of size s, two computations are needed. First, the base class needs to be
determined, then the correct subclass. Both classes can be computed in two constant-time
computations:

class = blog2(s)c and subclass =
⌊

(s− 2class) · jmax

2class

⌋
where jmax is the number of linear subclasses. CAMA and PRADA add an additional level to
setting up free lists by firstly sorting free blocks according to the cache set they start in. In
contrast to non-cache-aware allocators, they use an additional argument which allows to
guide their allocations to a certain cache set. This additional argument selects which free
list structure is searched. Figure 1 illustrates how (de-) allocation requests are mapped to a
suitable free list.

PRADA defers split and merge actions to avoid unpredictable effects on the cache during
allocations and deallocations. Therefore, actions need to be remembered. Remembering
actions has to be done in a way which preserves the predictable behaviour of the allocator.
Therefore, we use an array of fixed size which contains requests for actions. These requests
are used for the deferred performing of splits and merges. For each cache set, there is the
same, fixed amount of entries reserved. Since this array is statically allocated, the impact on
the cache state of accesses to this array is known. Due to this static setting, requests are
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Figure 2 WCET bounds of PRADA0, PRADA7, and PRADA32.

never created or deleted, but get filled and cleared. These requests differ from the descriptors
used by CAMA in two ways. The number of descriptors managed by CAMA depends on the
number of managed memory blocks. For PRADA, the reserved space for requests is fixed.
Furthermore, a request itself is smaller than a descriptor (8 bytes and 24 bytes, respectively).

PRADA executes one pending request, if there exists one for the current cache set during
each allocation and deallocation. The following two paragraphs describe the procedures for
allocations and deallocations and highlight when deferred requests are executed.

PRADA allocates memory blocks aligned to cache sets. Hence, all allocations (including
the added space for the block header) are rounded up to the next multiple of a cache line.
With the provided cache set mapping and the computed class and subclass, the free list
containing the smallest blocks suitable to satisfy the allocation request is fully determined.
If there exists a suitable block, i.e., the free list is not empty, there may also exist a pending,
now obsolete merge request for this block. This request needs to be cleared first. Then, one
pending request for the current cache set can be executed. If the selected block is exactly of
the requested size, the block is simply returned. Otherwise, i.e. the found block is larger than
requested, its size is set to the requested size and a split request is created. If no suitable
block is found, new memory is requested from the operating system to create a suitable
block, possibly requiring a deferred split operation. Even in case that no block was found, a
requested action for the current cache set can be executed.

At deallocation, PRADA first checks whether there is still a pending split request for the
deallocated block. If there is one, this split request is dropped and the blocks original size
is restored. Then, one pending request for the current cache set is executed if one exists.
Finally, the current block is inserted into the appropriate free list and marked as available
for merges, i.e., a merge request is created.

Figure 2 depicts the WCET bounds for allocations of different sizes and mapped to different
cache sets derived by aiT[4] for our prototype implementation of PRADA. For comparison,
Figure 3 shows the respective WCET bounds derived for TLSF and CAMA. Deallocations
take only a single pointer as an argument. For PRADA, the WCET bound for deallocations
still depends on the number of requests. WCET bounds of 2,437 cycles, 59,947 cycles, and
182,783 cycles where derived for 0, 7, and 32 requests, respectively. For TLSF and CAMA, the
bounds are 6,018 cycles and 98,156 cycles, respectively.

3 Evaluation

For the evaluation of PRADA and the comparison with CAMA, we used the relevant programs
from the MiBench benchmark suite [2], i.e., those using dynamic memory allocation. The
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Figure 3 WCET bounds of TLSF and CAMA.

MiBench suite itself consists of a set of embedded programs, considered to be representative
for commercial applications. However, most embedded systems avoid dynamic memory
management. Therefore, we have only six relevant test cases from this suite. These six test
cases run the programs Susan, Patricia, and Dijkstra, each on a set of small and large
input data, respectively. Susan was developed for recognizing corners and edges in magnetic
resonance images of the brain. The software is, however, also used as image recognition
in unmanned vehicles. The small input data run processes a black and white image of a
rectangle, while the large input data run processes a complex picture. A patricia trie is
a data structure used in place of full trees with very sparse leaf nodes. Patricia tries are
often used to represent routing tables in network applications. Patricia uses patricia tries
to construct a routing table. Dijkstra constructs a large graph (as an adjacency matrix)
and then computes the shortest paths between pairs of nodes using repeated applications of
Dijkstra’s algorithm.

To get a better impression on their respective memory performances, we compare the
total memory consumption of CAMA and PRADA against several other allocators:

TLSF: a constant time, but cache-unaware real-time allocator.
aobf (address ordered best fit), aoff (first fit), and aowf (worst fit): simple sequential fits
with different allocation policies (best, first, and worst fit) that are able to allocate blocks
according to a predefined cache set mapping. However, no useful WCET for allocation
and deallocation requests can be given.
DLMalloc: Doug Lea’s allocator [10] which is considered to be the best general purpose
dynamic memory allocator. However, this allocator is neither cache-aware nor does it
provide useful WCET bounds for allocation requests.

We also measure the maximum amount of memory live, i.e. allocated, contemporaneously for
the different benchmarks. Comparing Doug Lea’s allocator and TLSF gives a good impression
of the (isolated) costs in terms of memory consumption for constant response times. I.e.,
the spatial costs for switching from a best fit strategy to a good fit strategy in order to
achieve constant allocation times. Our sequential fit allocators isolate the spatial costs of
enforcing a certain, statically fixed cache set mapping on allocations. The difference between
the maximum amount of live memory and DLMalloc’s memory consumption illustrates the
spatial costs inherent to dynamic memory allocation; even without further demands for
constant response times and cache guarantees.

For an unbiased comparison, we want to compare just the (de-) allocation routines
without the actual program computations for the different allocators. Therefore, we record
a trace of allocations and deallocations during one run of the benchmark application. In a
subsequent step, we use this trace to synthesize a one-path program which only consists of
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these allocations and deallocations. This program is then compiled once for each allocator.
Since the used subset of the MiBench benchmark suite may not be as representative as

the suite as a whole, we added three additional, synthetic benchmarks. These benchmarks
are artificial traces which describe different types of typical behaviours of hard real-time
systems. Due to their artificial character, these traces only cover some basic characteristics
of real programs. The three characteristics we used for our evaluation are suggested by [14],
which also points out the weaknesses of generating synthetic, randomized (de-) allocation
sequences. Namely that real programs simply do not behave randomly, but exhibit regularities
that a dynamic memory allocator may exploit. Hence, results from randomly generated
(de-) allocation sequences generally tend to be overly pessimistic. One typical behavioural
pattern is having all allocations in a set-up phase. After this phase, the application works
on these allocated objects without allocating more objects. This behaviour is covered in
the trace called ramp. Another typical behaviour pattern consists of round-wise allocations.
This pattern is widely found in reactive systems. These programs often run in a loop and
everything which gets allocated during one iteration gets deallocated in the same iteration.
This behaviour is modelled in the trace called peak. The third behavioural pattern that
we consider is a combination of the two patterns discussed so far. I.e., there is a base of
allocated objects on which the program works, but there are also additional allocations and
subsequent deallocations per iteration as in the peak pattern. This pattern is implemented
in the trace called plateau.

Life spans and requested block sizes are randomly selected according to an exponential
distribution with rate parameter λ = 0.25. However, we shifted this distribution such that
we have 1 as the smallest possible life span. The random values were furthermore multiplied
by 4 to obtain reasonable, aligned block sizes. The programs ramp and peak run until 10,000
allocations are performed. The plateau in the third program consists of 1,500 allocations
on top of which 10,000 allocations and deallocations are performed. The additional cache
set arguments of PRADA and CAMA are selected according to the same heuristics used in [6].
Those heuristics are intentionally very simple, with the intention that any programmer would
use a heuristics at least as good. We use two simple heuristics A and B depending on the
benchmark application. Heuristics A assumes that memory is never deallocated and just put
consecutively in memory. It then simulates this behaviour and sets cache set arguments to
the cache set that the start addresses of allocated blocks are mapped to in its simulation.
Heuristics B simply returns cache set a n-times, then n-times cache set (a+ 1) and so on.
This heuristics assumes that n successively allocated memory blocks fit into one cache line.
We used heuristics A for the Susan test cases as well as for all synthetical benchmarks. For
Dijkstra and Patricia test cases, heuristics B was used.

The number of deferred actions in PRADA can be configured. We used two configurations
for our benchmarks. One with splitting and merging completely disabled, i.e. allowing for 0
actions to be stored, and one with space for 32 actions, denoted PRADA0 and PRADA32. PRADA
and CAMA are configured for an architecture with 128 cache sets, with imin = 0, imax = 18,
jmin = 0, and jmax = 3. TLSF used 24 base classes with 32 subclasses, each. Figure 4 shows
the memory consumption for all allocators on the MiBench programs.

We observe a measurable impact of disabling splitting and merging on the MiBench test
cases. On these real-life benchmarks, forcing the allocator to adhere to a given cache set
mapping for allocated blocks (aobf, aoff, and aowf) also causes a measurable increase in
memory consumption. While this is to be expected, this increase is surprisingly lower than the
increased memory consumption due to constant response times, i.e., when compared to TLSF.
Comparing our sequential fits with the (also) cache-set guided allocations to PRADA and CAMA,
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Figure 4 Memory consumption on (de-) allocation traces generated from the MiBench bench-
marks.

we observe a significant jump in memory consumption. While we expect a small increase
due to internal fragmentation from the employed segregated-list approach as well as the
additional memory needed for CAMA’s descriptors, those allocators also introduce yet another
kind of fragmentation. What kinds of fragmentation do exist and why do our constant-time
cache-aware allocators exhibit those? General purpose dynamic memory allocators suffer
from two kinds of fragmentation: internal fragmentation and external fragmentation. Internal
fragmentation denotes the memory overhead when the allocator returns blocks larger than
requested. This may be due to round-up block sizes, memory alignment, the allocator’s
inability to manage the remaining part of the block, etc. External fragmentation occurs when
there is enough free memory to satisfy a request, but there is not a single block large enough.
I.e. the free memory is interspersed with allocated memory. PRADA and CAMA additionally
suffer from an incomplete memory use. This denotes the inability to find a suitable, large
enough block that could be split in order to serve an allocation request simply because this
block is assigned to another cache set’s free lists. The term incomplete memory use was
coined by Ogasawara to describe a similar problem of Half-Fit [12]. In Half-Fit, free blocks
larger than the base size of their respective free list will not be used to serve requests for
blocks of sizes larger than this base size; even if they are just one byte larger. Analytically,
this leads to a worst-case memory consumption of roughly twice the maximal live memory
just due to Half-Fit’s incomplete memory use. While TLSF, CAMA, and PRADA use a similar
segregated-list approach as Half-Fit, they do not inherit this problem. TLSF introduced finer
grained segregated lists and always rounds up block sizes to the next segregated list base.
While this simply transforms incomplete memory use into internal fragmentation, much lower
analytical worst-case bounds can be given, depending on the number of second level size
classes. Unfortunately, simply rounding up block sizes does not help counteracting the type
of incomplete memory use occurring in PRADA nor CAMA. Still, the incomplete memory use of
the cache-aware allocators can be counteracted by increasing their WCET for allocations.
Currently, both allocators maintain a bit sequence indicating whether the segregated lists
corresponding to the bits contain free blocks or are empty. This sequence is sorted in
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Figure 5 Memory consumption on our synthetic (de-) allocation traces.

ascending cache set numbers and (per cache set) ascending size classes. The allocator handles
an allocation request for size bytes mapped to cache set k by computing which segregated list
L would contain the smallest blocks large enough to satisfy this request. The bit sequence
is then read and the first bit set to 1 is searched within the sub-string starting at the bit
associated with L and ending with the bit associated with the list containing the largest
free blocks whose starting addresses are mapped to cache set k. If no such bit is found, we
would like to also consider other cache sets and search for larger block to split to prevent
incomplete memory use. We can do this in constant time by having a second sequence of
bits with the same semantics but different order. This sequence is sorted by descending size
classes and (per size class) descending cache sets. On this sequence, we again search for the
first bit set and take the first block from the free list corresponding to this bit and check
whether it can be split to yield a block suitable to serve the original request. In other words,
if the allocator’s constant time good fit approach finds no suitable block, it reverts to a slower
(in the worst-case the whole bit sequence is read), but still constant time bad fit approach.
This fall-back mechanism is, however, not implemented yet.

Figure 5 shows the actual memory use for our randomly generated traces. On these
synthetical traces, an even larger impact on the memory consumption is observable when
splitting and merging is disabled. We also observe that enforcing a statically predefined
cache set mapping raises memory consumption more than ensuring constant response times
on these traces. Also, incomplete memory use turns out to be again the greatest source of
memory waste.

4 Related Work

Dynamic memory allocators with bounded worst-case execution times have been investigated
for many years. The binary buddy system is a long-known allocation algorithm whose
WCET can be bounded by a constant. However, it may suffer from a relatively high internal
fragmentation. The first dynamic memory allocation algorithm especially aiming at satisfying
the requirements of real-time applications, Half-Fit, was proposed by Takeshi Ogasawara in
1995 [12]. His segregated lists approach was further refined in TLSF [11]. The first real-time
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allocator also considering its cache effects was CAMA [8, 6].
Chilimbi et al. proposed a so-called cache-conscious memory allocator (ccmalloc), however,

they aimed to improve program execution times [1]. Chilimbi’s ccmalloc also takes an
additional argument like CAMA and PRADA. However, instead of a fixed cache set, ccmalloc
takes a pointer to an existing object that is likely to be accessed contemporaneously with the
object to be allocated. ccmalloc achieves its goal by trying to allocate the newly requested
storage next to the one pointed to by its second argument. As a result, newly allocated
storage is often located in the same cache set as the referenced one.

Besides efforts to make memory allocators more predictable, automatically transforming
dynamic memory allocation into static memory allocation was proposed as a means to allow
programmers to employ dynamic memory allocation in real-time applications. Approaches
to algorithmically find suitable static allocations schemes for a given program with dynamic
allocation are proposed in [7] and [5].

5 Conclusions

The contributions of this paper are twofold. We propose PRADA, an alternative approach to
cache-aware dynamic memory allocation. We also present a small case study investigating
the sources of fragmentation and general spatial costs of dynamic memory allocation in
real-time applications.
PRADA overcomes the disadvantages of general purpose dynamic memory allocators in hard
real-time systems. Its implementation is simpler than that of CAMA. For the proposed allocator,
a tight bound on the WCET for allocations and deallocations can be derived. The effect
of allocations and deallocations on the cache state is bounded to a single cache set. This
introduces predictable cache behaviour that does not hinder a static cache analysis to derive
precise information about an application’s cache performance. Which, again, can be used
by a timing analysis to derive tight WCET bounds for the application. PRADA achieves
this predictability by deferring a fixed amount of actions (splits/merges) which would cause
unpredictable behaviour if always directly executed. This bound can be configured. Lower
bounds may yield higher fragmentation, but lower WCET estimates. Resources on embedded
hardware are restricted. And the possibility of configuration may widen the space of possible
applications of our allocator.
With respect to memory consumption, we make several observations:

Enforcing a cache set mapping on dynamically allocated objects does not necessarily
significantly increase the application’s memory consumption.
CAMA’s most general approach to immediately execute splits and merge (and never drop
such an action) may not be needed in current real-time applications to keep memory
consumption low. However, generally, deferred splits and merges cause higher memory
usage[14], so once real-time applications become more and more complex, this may change.
Completely disabling splitting and merging does significantly increase the memory con-
sumption, even for (generally simpler) current real-time applications.
Current approaches pay for strong guarantees about their cache influence with potentially
drastic increases in memory consumption due to incomplete memory use. However, there
is a potential trade-off to reduce this type of fragmentation at the price of increased
WCET bounds and increased, although predictable cache usage.
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