Report from Dagstuhl Seminar 13171

Customizing Service Platforms

Edited by
Luciano Baresi!, Andreas Rummler?, and Klaus Schmid3

1 Politecnico di Milano, IT, luciano.baresi@polimi.it
2 SAP Research Center — Dresden, DE, andreas.rummler@sap.com
3 Universitidt Hildesheim, DE, schmid@sse.uni-hildesheim.de

—— Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 13171 “Customizing
Service Platforms”. The aim of the seminar was to bring together researchers from different areas

of academia and industry that are related to the seminar topic and typically do not intensively in-
teract with each other. These communities are Product Line Engineering, Software Architecture,
Service Engineering, and Cloud Computing.

The ambition of the seminar was to work on the topic of “Customization of Service Platforms”,
which is related to all of these areas, in a synergistic and cooperative way to identify new research
challenges and solution approaches. As part of the seminar, we identified a number of key areas
which provided the basis for highly interactive working groups.

Seminar 21.-26. April, 2013 — www.dagstuhl.de/13171

1998 ACM Subject Classification D.2.2 Design Tools and Techniques, D.2.11 Software Archi-
tectures, D.2.13 Reusable Software

Keywords and phrases Service-Oriented Architectures, Service Platforms / Cloud Computing,

Product Line Engineering, Variability Management
Digital Object Identifier 10.4230/DagRep.3.4.114

1 Executive Summary

Luciano Baresi
Andreas Rummler
Klaus Schmid

License @@ Creative Commons BY 3.0 Unported license
© Luciano Baresi, Andreas Rummler, and Klaus Schmid

Background

Service-orientation has become a major trend in computer science over the last decade. More
recently cloud computing is leading into the same direction: a virtualization of resources
and service offerings. Especially cloud computing is getting very significant attention by
companies. While the initial idea in service orientation was to have the relevant services
standardized and distributed across the internet, we also see that an increasing amount
of customization must be done to really meet customer needs. As in traditional system
development, one size fits all is not enough.

This seminar focused on the notion of service platforms, a concept including, but not
limited to, cloud computing. A service platform is a combination of technical infrastructure
along with domain-specific or business-specific services built according to the service-oriented

Except where otherwise noted, content of this report is licensed
o

under a Creative Commons BY 3.0 Unported license
Customizing Service Platforms, Dagstuhl Reports, Vol. 3, Issue 4, pp. 114-150
Editors: Luciano Baresi, Andreas Rummler, and Klaus Schmid

\\v pagstunL Dagstuhl Reports
RePORTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13171
http://dx.doi.org/10.4230/DagRep.3.4.114
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Luciano Baresi, Andreas Rummler, and Klaus Schmid

development paradigm. Especially the latter in practice often requires significant custom-
ization in order to be practically useful. Providing such customizations on a massive scale
cost-effectively is an extremely demanding task. This is a lesson that has been learned hard
by a number of companies in traditional software engineering. As a consequence the concept
of product line engineering was conceived.

The focus of this seminar was to explore the range of different approaches towards
customized service offerings in current — and future — service-based environments. In
particular, it was a goal to address the potential for a combination of service-orientation
with product line engineering ideas. In this regard, this seminar was the first of its kind.

Diversity of Topics

The expected diversity of inputs that was desired for the seminar was well achieved. This
is shown by the diversity of individual presentations summarized in chapter 3. Also the
working groups that were established had participants from multiple communities. These
working groups discussed the following topics:

Quality Assurance and Validation in the Context of Customization: Here, a broad range
of different problems and techniques could be identified, related both to problems of
varying of the object of the quality assurance as well as to the variation of the expections
(qualities).

Mobility Devices and Customization: This working group focused particularly on the dif-
ficulties that arise from a mobile context with a lot of variation over time and limited
resources.

Architecting for Platform Customization: Architectures are fundamental to any software
system, so this group addressed what architectural techniques are important to create
customizable platforms.

Energy-Aware Customization: Here, the focus was on the issue of energy-awareness and,
in particular, energy-efficiency, which is particularly relevant to mobile platforms. By
adequate customization, this can be improved for a platform.

Customizing Service Platforms for Cloud Computing: Modern cloud computing environ-
ments pose new challenges and provide new opportunities for customizing service platforms.
It turned out that the cloud context provides a number of very special problems and
technologies for addressing them.

115

Customizing Service Platforms for Agile Networked Organizations: The organizational con-

text of service platform needs to be taken into account as well as a platform needs to fit
to the relevant business context. Hence customization needs to be done on both levels in
a synchronized manner.

Binding time aspects of service platform customization: This working group focused on
when (i.e., in which lifecycle phase) the customization is done, as this has significant
impact on the details of the technologies that can be used.

Reflections on the Format

A main goal of the seminar was to have a significant portion of the time for discussion. In
order to achieve this, we decided to not require presentations from everyone associated with

13171

116

13171 — Customizing Service Platforms

a long introduction round. Rather, we decided to ask everyone for a poster to present her-
or himself and describe the personal interest and relation to the topic. Overall this novel
approach was well received by the participants. The poster walls were set up in the coffee
break area outside the room. (Thanks to everyone at Dagstuhl for their support.) This
allowed for a casual browsing of the posters in every coffee break during the seminar. Each
poster also had a picture of the participant, this also helped to get to know each other.

Luciano Baresi, Andreas Rummler, and Klaus Schmid

2 Table of Contents

Executive Summary
Luciano Baresi, Andreas Rummler, and Klaus Schmid

Overview of Talks

Imperative versus Declarative Process Variability: Why Choose?
Marco Adello o

My View on Customizing Service Platforms
Luciano Baresi e e

Dynamic Product Lines using the HATS framework
Karina Barreto Villela

Quality-Aware Product Configuration
Karina Barreto Villela

Customization of existing industrial plants to achieve modernization
Deepak Dhungana o e

Forward Recovery for Web Service Environments
Peter Dolog e e e

Customizing Service Platforms
Holger Fichelberger 0 e e

SPASS-Meter — Monitoring Resource Consumption of Services and Service Platforms
Holger Fichelberger o e e

On-the-Fly Computing — Individualized I'T Services in Dynamic Markets
Gregor Engels e

Multi-level Service Management
Sam Guinea e e e e e e e e

Customizable Reliability and Security for Data-Centric Applications in the Cloud
Waldemar Hummer 0 i e e

Adaptation in complex service ecosystems
Christian Inzinger o e e

A Library for Green Knowledge
Patricia Lago e

Cloud Computing as a Service Platform for Mobile Systems
Grace Lewis e e

Cloudlet-Based Cyber-Foraging
Grace Lewis e

Customizing Platforms by Higher-Order Process Modeling: Product-Lining, Vari-
ability Modeling and Beyond
Tiziana Margaria 0 e e e e e e e e e e

Platform Architectures
Nenad Medvidovic

Variability Modeling & Management
Nanjangud C. Narendra o i ittt

117

13171

118

13171 — Customizing Service Platforms

Customized Mashups with Natural Language Composition
Cesare Pautasso o o i e e 129

Challenges of offering customizable domain-specific business processes as a service
Manuel Resinas Arias de Reyna 129

Customization of Large, Complex Systems
Klaus Schmid e 130

Service Networks for Development Communities
Damian Andrew Tamburri 130

Customizing Science Gateway Platforms via SaaS Approach
Wenjun Wu o 0 e e e 131

Service-based Platform Integration and Customization
Uwe Zdun o e e e e 131

Customizing Service Platforms — new or have we seen this before?
Frank van der Linden e 132

Working Groups

Quality Assurance and Validation in Customizable Service Platforms
Deepak Dhungana e e e 132

Mobility and Service Platform Customization
Grace Lewis e e e e e 139

Architecting for Platform Customization
Damian Andrew Tamburri 142

Energy-Aware Customization
Patricia Lago 143

Customizing Service Platforms for Cloud Computing
Cesare Pautasso v o i i e e e 144

Customizing Service Platforms for Agile Networked Organizations
Damian Andrew Tamburri e 144

Binding time aspects of service platform customization

Customizing Service Platforms - Development time vs. Compile time vs. Runtime

Holger Fichelberger e 146

Open Problems 149

Participants 150

Luciano Baresi, Andreas Rummler, and Klaus Schmid 119

3 Overview of Talks

3.1 Imperative versus Declarative Process Variability: Why Choose?
Marco Aiello (University of Groningen, NL)

License) Creative Commons BY 3.0 Unported license
© Marco Aiello
Joint work of Aiello, Marco; Groefsema, Heerko; Bulanov, Pavel

Variability is a powerful abstraction in software engineering that allows managing product
lines and business processes requiring great deals of change, customization and adaptation.
In the field of Business Process Management (BPM) the increasing deployment of workflow
engines having to handle an increasing number of instances has prompted for the strong
need for variability techniques.

The idea is that parts of a business process remain either open to change, or not fully
defined, in order to support several versions of the same process depending on the intended
use or execution context. The goal is to support two major challenges for BPM: re-usability
and flexibility. Existing approaches are broadly categorized as Imperative or Declarative.
We propose Process Variability through Declarative and Imperative techniques (PVDI), a
variability framework which utilizes temporal logic to represent the basic structure of a
process, leaving other choices open for later customization and adaptation. We show how both
approaches to variability excel for different aspects of the modeling and we highlight PVDI’s
ability to take the best of both worlds. Furthermore, by enriching the process modeling
environment with graphical elements, the complications of temporal logic are hidden from
the user. To show the practical viability of PVDI, we present tooling supporting the full
PVDI lifecycle and test its feasibility in the form of a performance evaluation.

3.2 My View on Customizing Service Platforms
Luciano Baresi (Polytechnic University of Milano, IT)

License @@ Creative Commons BY 3.0 Unported license
© Luciano Baresi

A service platform is a set of related services supplied by the same provider under a common
umbrella and together with some shared qualities of service. Platforms as a service are a
special class of the more general concept.

My interests in the customization of service platforms come from different motivations.
Since I have been working on services at application level for years, moving to platforms
provides a nice complement. The work done on eliciting the requirements for (self-)adaptive
service applications easily fits the customization problem since it helps one understand what
the platform is supposed to provide, and how it should be tailored to the different needs
and situations. Similarly, the work done on adapting service compositions may provide
interesting insights towards the definition of suitable customization means for the different
service platforms. In these days, I am also interested in mobile applications and in the
frameworks (platforms) that provide the bases to implement them. Since the resources of
these devices are still limited, the customization of these platforms may help preserve them,
and thus it may help the user keep the device (e.g., a smartphone) alive longer.

I am still a bit concerned, or confused, about the use of many different terms, like
customization, adaptation, evolution, and maintenance, to mean similar and possibly related

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

120

13171 — Customizing Service Platforms

concepts, but I am very interested in how the diverse services, and the infrastructure that
operates them, can evolve in the different phases of the platform’s life-cycle. Run-time
changes, and the correctness of the new platform, are also particularly intriguing.

3.3 Dynamic Product Lines using the HATS framework
Karina Barreto Villela (Fraunhofer IESE, DE)

License @ Creative Commons BY 3.0 Unported license
© Karina Barreto Villela

Typical Software Product Lines (SPL) approaches do not focus on dynamic aspects, and
the reconfiguration of products occurs mainly statically at development time. Dynamic
Software Product Lines (DSPL) enable a product to be reconfigured dynamically at runtime,
which can be understood as the transformation of a product into another valid product
without any kind of interruption in its execution. The reconfiguration, in this context,
takes place without the need to halt the system, recompile and redeploy. From a technical
perspective, dynamic reconfiguration is a challenging task due to reasons such as ensuring
that dynamically updated systems will behave correctly or ensuring that no state data is
lost. Moreover, from the Product Line (PL) perspective, not all technically possible changes
in a running system are valid and make sense. In order to preserve the consistency of the PL
products when reconfigured at runtime, there must be a way to restrict the adaptations that
can be performed at runtime.

Fraunhofer IESE has added support for runtime product reconfiguration to ABS (an
abstract but executable modeling language developed in the HATS project), by adding a
dynamic representation of the possible product reconfigurations at runtime and a state
update element responsible for data transfer, and by using the metaABS tool developed by
the University of Leuven, which allows deltas to be applied at runtime.

3.4 Quality-Aware Product Configuration
Karina Barreto Villela (Fraunhofer IESE, DE)

License @ Creative Commons BY 3.0 Unported license
© Karina Barreto Villela

The configuration of concrete products from a product line infrastructure is the process
of resolving the variability captured in the product line according to a company’s market
strategy or specific customer requirements. Several aspects influence the configuration of a
product, such as dependencies and constraints between features, the different stakeholders
involved in the process, the desired degree of quality, and cost constraints. Fraunhofer IESE
has developed a quality-aware configurator in which the user specifies the key product features
and its quality concerns and cost constraints, and the configurator gives close to optimal
configurations based on the user’s input. The configurator is based on the assumption that
the selection of a feature has an impact in the quality attributes of the final product, as
well as the interaction among the selected features. This work included the integration of
COSTABS (a static performance analyzer developed by the University of Madrid) to provide
performance annotations to features and the first steps towards a reusable security feature
model, which includes security feature implementations in ABS (an abstract but executable
modeling language developed in the HATS project).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid 121

3.5 Customization of existing industrial plants to achieve
modernization

Deepak Dhungana (Siemens AG-Wien, AT)

License @ Creative Commons BY 3.0 Unported license
© Deepak Dhungana

Industrial plants are complex and costly software-intensive systems that are operated over long
periods of time. The modernization of plants with new technologies can significantly increase
productivity while at the same time reducing energy consumption and environmental impact.
Unfortunately, it is a daunting task to find out which new technologies are appropriate
for an existing plant and to calculate the modernization costs and time. This process in
practice today relies mainly on the experience and knowledge of key employees and is not
well defined. Currently, there is no standardized method or tool for systematically eliciting
customer requirements and plant data. In our ongoing work, we are developing methods
and tools to support planning the modernization of complex industrial plants, which need
to be adapted to meet new customer requirements and environmental constraints. In this
project we first analyzed the current modernization process based on concrete scenarios and
examples (e.g., improvement of a cooling system in a steel plant, in order to reduce the water
consumption) to clearly define the requirements for tool development. The next step was to
develop tools supporting the modeling of expert knowledge, the definition and formalization
of modernization goals, as well as the definition of available resources. The optimization with
regard to global constraints and objectives like productivity, quality, and economic impact is
a complex task. We thus develop tools for capturing and modeling expert knowledge with the
goal to assist in the selection of modernization packages based on customer requirements and
in the creation of sales offers. The tools further support optimizing selected modernizations,
for example, by comparing different modernization scenarios. The tools are flexible to allow
their use within industrial plants in various domains.

3.6 Forward Recovery for Web Service Environments
Peter Dolog (Aalborg University, DK)

License) Creative Commons BY 3.0 Unported license
© Peter Dolog

In web service environments there are web services which are often long running. In this
situation, typical properties known from transactional management in databases, such as
atomicity or isolation, are relaxed. This impacts on the transactions so that when some of
the participants fail, they cannot easily undo outcomes of the web services participating
in such transactions. We have studied this problem and designed an environment where
we allow for forward recovery which means we allow for replacing failed web services with
different ones which can deliver the work required to finish the transactions. The candidate
web services are selected based on features which have been defined similarly as in product
lines methodology, with mandatory and optional features. We compare and rank suitability
of services according to matching between required feature model and those provided. The
score is higher if there are more optional features satisfied with provided candidate service.

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

122

13171 — Customizing Service Platforms

3.7 Customizing Service Platforms
Holger FEichelberger (University of Hildesheim, GE)

License) Creative Commons BY 3.0 Unported license
© Holger Eichelberger

Customization of service-based systems is current practice in industry to meet the needs
of customers in a qualitative and timely manner, e.g., to introduce novel functionality, to
optimize the quality of service (QoS), or to realize integrations with existing systems. While
many customizations can be implemented using service-oriented mechanisms such as (late)
service bindings, several situations require the customization of existing services or the
underlying service platforms, e.g., to develop domain-specific platforms. Here, systematic
customization of services and service platforms can lower development effort and increase
reusability.

Software Product Line Engineering (SPLE) is an industry best practice to achieve system-
atic customization in software systems. The key idea of SPLE is to focus on the differences
(called variabilities) among similar systems. However, the existing methods and techniques
for describing and realizing variabilities must be refined or extended to provide adequate
support for service-based systems, including heterogeneity, open-world scenarios and runtime
dynamicity which are common in service orientation. Thus, current challenges in customizing
services and service platforms are: a) variability modeling for heterogeneous environments
and, moreover, for entire software ecosystems, b) unified approaches to variability realization
in service-based systems (in contrast to current individual and unrelated techniques), and
for both, variability modeling and instantiation support for c) openness and extensibility
and d) runtime variability.

Currently, we work on methods and techniques for addressing the challenges sketched
above, in particular on

Large-scale variability modeling, in particular in terms of the INDENICA variability

modeling language (IVML), a textual language which provides concepts for variability

modeling, runtime variabilities, openness, extensibility and QoS constraints.

Generalizing and unifying the implementation of variabilities. Currently, we work on

designing and realizing a common Variability Implementation Language (VIL).

Increasing the flexibility of variability instantiations by separating the binding of variabil-

ities and their functional code so that even the binding can vary according to properties

of variabilities (meta-variability), e.g., to flexibly shift the binding time (currently applied
in physical manufacturing of embedded systems).

Observing the resource consumption of individual software parts at runtime, including

services, components and variabilities. Our approach called SPASS-meter is designed

for quality assurance for SPLE and, in particular, for supporting and simplifying the
development of resource-adaptive software systems.

Future work is planned in particular on a) dynamic software product lines based on resource
measurements and enhanced meta-variability, b) quality and resource aware variability
modeling and c¢) large-scale variability modeling as well as supporting techniques.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid

3.8 SPASS-Meter — Monitoring Resource Consumption of Services and
Service Platforms

Holger Eichelberger (University of Hildesheim, GE)

License @ Creative Commons BY 3.0 Unported license
© Holger Eichelberger

Monitoring the resource consumption of a system supports the operationalization of quality
requirements, supports quality assurance, provides a basis for the estimation of energy
consumption and supports the realization of (resource-aware) adaptive systems. Currently,
resource consumption is typically measured on application level, on operating system level
or, in contrast, on the level of individual classes. As also expressed in discussions during this
seminar, there is a clear need to provide such measurements also for units within programs
such as individual application services, for the underlying service platform or for technical
services within the service platform.

In this talk, we present SPASS-meter, a novel monitoring approach, which enables the
observation of resource consumptions for user-specified semantic units of software systems
such as services, components or variabilities. In SPASS-meter, these semantic units are
defined in the so-called monitoring scope specification, including the individual resources
to be monitored as well as the monitoring depth, i.e., whether dependent functionality in
related services, the service platform or in libraries shall be considered or not. SPASS-
meter aggregates the resources consumption of these semantic units at runtime and allows
comparing the consumptions with those on application and system level. Currently, SPASS-
meter supports the monitoring of Java applications and, in particular, of Android Apps. As
monitoring tools such as SPASS-meter execute additional code for probing and analysis, they
cause a certain memory overhead. We conclude that the monitoring overhead created by
SPASS-meter is reasonably small compared to the overhead of recent tools such as OpenCore
or Kieker, in particular regarding the provided flexibility and functionality of SPASS-meter.

3.9 On-the-Fly Computing — Individualized IT Services in Dynamic
Markets

Gregor Engels (University of Paderborn, GE)

License @@ Creative Commons BY 3.0 Unported license
© Gregor Engels

Due to a steadily increasing market and budget pressure, the development and maintenance
of IT systems have to become more efficient and more effective in the future. The tradi-
tional approach of software procurement by employing expensive and inflexible standard
IT solutions or by purchasing individually developed software systems is obviously not a
solution in the future. The new approach of cloud-based services allows an on-demand
usage of software solutions and might be a first step in the direction of a more efficient and
effective procurement of IT solutions. Combining this with the paradigm of service-oriented
architectures, individualized IT services might be composed and used to fulfill certain business
demands.

This service-oriented paradigm combined with the idea of deploying services in the
cloud was one of the motivating starting points of the Collaborative Research Center

123

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

124

13171 — Customizing Service Platforms

(CRC) 901 On-The-Fly Computing (OTF Computing), which is funded by the Deutsche
Forschungsgemeinschaft (DFG) and conducted at the University of Paderborn since 2011.

The objective of CRC 901 — On-The-Fly Computing (OTF Computing) — is to develop
techniques and processes for automatic on-the-fly configuration and provision of individual
IT services out of base services that are available on world-wide markets. In addition to the
configuration by special OTF service providers and the provision by what are called OTF
Compute Centers, this involves developing methods for quality assurance and the protection
of participating clients and providers, methods for the target-oriented further development of
markets, and methods to support the interaction of the participants in dynamically changing
markets.

In order to reach these objectives, computer scientists from different areas like software
engineering, algorithms, artificial intelligence, distributed systems, networks, and security
cooperate with scientists from the economics department, who are experts in organizing
world-wide markets.

The CRC 901 is structurally divided into three scientific project areas: Project area A
is devoted to the algorithmic and economic basic principles for the organization of large,
dynamic markets. It concerns on the one hand the algorithmic procedures for the organization
of large nets in general and for the interaction from participants in nets in particular; and on
the other hand the economic concepts for incentive systems to the control of participants in
markets.

Project area B investigates procedures for the modeling, composition and quality analysis
of services and service configurations with the goal of an on-the-fly development of high-quality
IT services.

Project area C develops reliable execution environments for the On-The-Fly Computing,
and is concerned with questions of the robustness and security of markets, the organization
of high-grade heterogeneous OTF Compute Centers and the execution of configured services
by such Centers. In addition, there is an integrated application project which is concerned
with optimization systems for supply and logistics networks and acts on a long-term basis as
an application domain for the work of the SFB.

More detailed information about the CRC 901 can be found at http://stb901.uni-paderborn.
de/stb-901.

3.10 Multi-level Service Management
Sam Guinea (Politecnico di Milano, IT)

License @ Creative Commons BY 3.0 Unported license
© Sam Guinea

Due to the growing pervasiveness of the service paradigm, modern systems are now often built
as Software as a Service, and tend to exploit underlying platforms (Platform as a Service)
and virtualized resources (Infrastructure as a Service). Managing such systems requires that
we are aware of the behaviors of all the different layers, and of the strong dependencies that
exist between them. This way we will be able to perform run-time customization and ensure
that the functional and non-functional aspects of the overall system are always preserved,
even in the wake of profound changes in the stakeholders’ requirements and in the context of
execution.

To accomplish this we are studying how to apply the traditional MAPE-K (Monitoring

http://sfb901.uni-paderborn.de/sfb-901
http://sfb901.uni-paderborn.de/sfb-901
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid

— Analysis — Planning — Execution) control loop to such multi-level systems. We advocate
that this will require novel data collection, analysis, planning, and execution mechanisms.
Indeed we will need to collect runtime data from multiple levels at the same time, and be
able to correlate them to build more detailed information of what is actually occurring inside
the system. To this extent we have developed the Multi-layer Collection and Constraint
Language. It allows us to define how to collect, aggregate, and analyze runtime data in
a multi-layered system. We also present ECoWare, a framework for event correlation and
aggregation that supports the Multi-layer Collection and Constraint Language, and provides
a dashboard for on line and off-line drill-down analyses of collected data. Our initial empirical
assessment shows that the impact of the approach on runtime performance is negligible.

In the future we will further pursue this research by evaluating our results in concrete
real-world examples, through the collaboration with key cloud-based industrial partners. We
will also study how the understanding that we gather of the system at runtime can be used
to plan coordinated recovery actions at multiple levels. Indeed, we expect that the most
cost-effective customization solutions would require coordinated intervention at multiple
levels.

3.11 Customizable Reliability and Security for Data-Centric
Applications in the Cloud

Waldemar Hummer (TU Vienna, AT)

License) Creative Commons BY 3.0 Unported license
© Waldemar Hummer

Service-oriented computing (SOC) has become a prevalent paradigm for creating loosely
coupled distributed applications and workflows. In parallel to SOC, Event-Based Systems
(EBS) in various fashions (e.g., data stream processing) are gaining considerable momentum as
a means for encoding complex business logic on the basis of correlated, temporally decoupled
event messages. More recently, advanced virtualization and resource allocation techniques
advocated by Cloud computing have further shaped the implementation possibilities of SOC
and EBS. Clouds have proven to be an ideal environment for flexible and elastic applications

which provide scalability, resource optimization, and built-in support for multi-tenancy.

Ongoing trends in the area of Data-as-a-Service (DaaS) have spurred further research efforts
towards robust data processing services, leveraging the benefits of the Cloud.

Distributed computing systems in general, and applications in the Cloud in particular,
are often burdened with stringent requirements concerning reliability and security, dictated
by business objectives (e.g., cost-benefit tradeoffs), contractual agreements (e.g., service
level agreements, SLAs), or laws. Customized support for reliability and security in service
platforms is a key issue. One approach to reliability is software testing, which attempts to
identify and avoid software-induced faults in the first place. A second important aspect of
reliability is adaptability and fault-tolerance, which involves different runtime challenges such
as fault detection, isolation, or recovery. Additionally, due to the multi-tenancy inherently
encountered in Cloud environments, security and access control play a crucial role for
application provisioning. Consideration of these aspects in the software development and
validation process requires precise knowledge about the type and nature of potential threats
to reliability.

125

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

126

13171 — Customizing Service Platforms

Within our work we tackle the aforementioned challenges and present novel techniques
for reliable and secure provisioning of data-centric service platforms and applications in the
Cloud. We strive for a robust, scalable, and secure execution environment for applications
to integrate services and data from a plurality of sources, generating added value for
service consumers. During the development phase, applications are systematically tested
for incompatibilities and integration issues. At runtime, platforms should leverage Cloud
virtualization to ensure reliability and efficiency (elastic scaling, minimal resource allocation,
optimized load distribution). Moreover, customized security policies need to be enforced to
assure responsibilities and avoid unauthorized access.

3.12 Adaptation in complex service ecosystems
Christian Inzinger (TU Vienna, AT)

License) Creative Commons BY 3.0 Unported license
© Christian Inzinger

Our current research deals with customization through adaptation of complex service ecosys-
tems operating in dynamic environments such as cloud computing systems. Based on our
work on fault detection and identification we model monitoring and adaptation behavior of
complex applications in a unified manner to allow for optimized deployment of necessary
control infrastructure.

3.13 A Library for Green Knowledge
Patricia Lago (VU University Amsterdam, NL)

License) Creative Commons BY 3.0 Unported license
© Patricia Lago
Joint work of Lago, Patricia; Gu, Qing

In spite of the investments in green ICT, industry and research both lack reusable green
practices including operational actions to re-green ICT, metrics, and examples of achieved
results. Such green action can include optimizations in customized cloud provisioning, but
also reusable patterns for engineering software exploiting service oriented principles.

Another problem is the lack of alignment between economic impact and environmental
effect in green practices. If green practices do not lead to an explicit (and significant)
reduction of costs (hence increase in revenues) they are nice but not part of the business
strategy of the company.

To address these two problems, in this project an online-library for green practices
has been built. This library provides a collection of 258 reusable green ICT practices with
explicitly documented environmental effects and economic impacts, based on which companies
are able to select and justify green ICT practices that fit best their needs.

While green practices so far mainly focus on non-software related actions, research is
maturing toward energy efficient and environmental sustainable software service engineering.
Future optimizations (green actions) will hopefully focus on how to achieve green services
and how to combine them in greener service-based applications.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid 127

3.14 Cloud Computing as a Service Platform for Mobile Systems
Grace Lewis (SEI, USA)

License) Creative Commons BY 3.0 Unported license
© Grace Lewis

Cloud computing infrastructures are used by organizations to provide access to large public
data sets such as maps and images from mobile devices, and to host mobile applications
outside of the enterprise to support front-line employees such as sales personnel. An additional
use case that is at the intersection of mobile and cloud computing is to use the cloud to
perform computation-intensive activities on behalf of mobile devices such as is currently
done by Apple Siri, Google Glass, and the coming soon Apple iWatch. The latter use
case is the one that is of interest from the perspective of customizing service platforms.
This presentation discusses cloud computing as a service platform for mobile systems in
the context of cyber-foraging — the leverage of external, nearby resource-rich surrogates
to augment the capabilities of resource-limited mobile devices. It presents two types of
cyber-foraging — code/computation offload and data staging — as well as the challenges of
customizing surrogates as service platforms.

3.15 Cloudlet-Based Cyber-Foraging
Grace Lewtis (SEI, USA)

License @ Creative Commons BY 3.0 Unported license
© Grace Lewis

Cloudlet-Based Cyber-Foraging is a strategy for extending the computation power of mobile
devices by offloading resource-intensive computation to cloudlets — discoverable, generic
servers located in single-hop proximity of mobile devices. We present the basic of cloudlet-
based cyber-foraging in addition to future work in this area to address system-wide quality
attributes beyond energy, performance and fidelity of results.

3.16 Customizing Platforms by Higher-Order Process Modeling:
Product-Lining, Variability Modeling and Beyond

Tiziana Margaria (University of Potsdam, GE)

License) Creative Commons BY 3.0 Unported license
© Tiziana Margaria
Joint work of Margaria, Tiziana; Steffen, Bernhard; Neubauer, Johannes

(Business) Process modeling languages like BPMN2 are static in the sense that they determine

at modeling time which activities may be invoked at runtime and where. We overcome this

limitation by presenting a graphical and dynamic framework for binding and execution of

(business) process models. This framework is tailored to integrate

1. ad hoc processes modeled graphically,

2. third party services discovered in the (Inter)net, and

3. (dynamically) synthesized process chains that solve situation-specific tasks, with the
synthesis taking place not only at design time, but also at runtime.

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

128

13171 — Customizing Service Platforms

Key to our approach is the introduction of type-safe stacked second-order execution contexts,
that allow for higher-order process modeling. Tamed by our underlying strict service-oriented
notion of abstraction, this approach is tailored also to be used by application experts with
little technical knowledge: users can select, modify, construct and then pass (component)
processes during process execution as if they were data. The approach has been applied
to a concrete, realistic (business) process modeling scenario: the development of Springer’s
browser-based Online Conference Service (OCS).

The most advanced feature of our new framework allows one to combine online synthesis
with the integration of the synthesized process into the running application. This ability leads
to a particularly flexible way of implementing self-adaption, and to a particularly concise
and powerful way of achieving (re-)configuration via variability not only at design time, but
also at runtime.

3.17 Platform Architectures
Nenad Medvidovic (USC — Los Angeles, USA)

License) Creative Commons BY 3.0 Unported license
© Nenad Medvidovic

The talk explores different views of service platform from the perspective of architectural
style and architectural building blocks (specifically, connectors). An argument is made that
a platform in this context is a middleware platform or a framework. Customization, then,
boils down to customizing the middleware or framework. These are software systems in
their own right and suffer from many architectural problems common to software systems.
Grid service platforms are presented as an example case study. A number of open issues are
identified as research challenges.

3.18 Variability Modeling & Management
Nanjangud C. Narendra (IBM India — Bangalore, IN)

License @ Creative Commons BY 3.0 Unported license
© Nanjangud C. Narendra

Our work is motivated by the need to improve productivity of software development solutions,
in particular, SOA-based solutions, in the IT services industry. Traditional approaches have
involved the development of solutions from scratch in every customer engagement. To that end,
we have developed the Variation Oriented Engineering (VOE) approach towards developing
reusable SOA-based solutions, by modeling variations in those solutions as first-class entities.
Currently our work has spanned the following topics:

Variation Oriented Service Design for deriving variants from Business Process specifica-

tions

Automated change impact propagation

Variability Modeling for determining legal variants

Variant and Version Management in Business Process Repositories

We foresee the following challenges in Variability Management:
Formalizing Variability via algebraic approaches

Integration with Business Process Management
Lifecycle-based approach towards Variability Management
Variability Management at runtime

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid

Our future work will comprise (but not be limited to) the following;:
Variability Algebra

Integration with adaptive workflow

Variability at runtime

Integrating variability into service ecosystems

3.19 Customized Mashups with Natural Language Composition
Cesare Pautasso (University of Lugano, CH)

License) Creative Commons BY 3.0 Unported license
© Cesare Pautasso

End-User Development (EUD) is an emerging research area aiming at empowering non-
technical users to somehow create or design software artifacts. Web mashups provide a high
potential for EUD activities on the Web. Users on the Web can tap into a vast resource
of off-the- shelf components in order to rapidly compose new, custom-made, lightweight
software applications called mashups. In this presentation we have demonstrated JOpera
(http://www.jopera.org) a visual service composition tool for Eclipse and NaturalMash a
natural mashup composition tool that combines WYSIWYG, programming by demonstration
and constrained natural language within a live programming environment that lets end users
interactively specify the behavior of custom-made mashups that are built on-the-fly.

More information:
S. Aghaee, C. Pautasso, Live Mashup Tools: Challenges and Opportunities, accepted at
the First ICSE International Workshop on Live Programming (LIVE 2013), San Francisco,
USA, May 2013.
S. Aghaee, C. Pautasso, EnglishMash: usability design for a natural mashup composi-
tion environment, 4th International Workshop on Lightweight Integration on the Web
(ComposableWeb2012) at ICWE 2012, Berlin, Germany, July 2012

3.20 Challenges of offering customizable domain-specific business
processes as a service

Manuel Resinas Arias de Reyna (University of Sevilla, ES)

License) Creative Commons BY 3.0 Unported license
© Manuel Resinas Arias de Reyna
Joint work of Resinas Arias de Reyna, Manuel; Ruiz Cortés, Antonio

The growing demand of business—driven IT systems as well as the rise of Software as a Service
(SaaS) has led to the creation of a category of SaaS known as Business Process as a Service
(BPaaS). In them, service users can access a set of domain-specific processes, customize them
according to their needs and enact them in the cloud. In this scenario, several challenges
arise. On the one hand, current mechanisms to manage the variability in business processes
should be extended to allow the customization not only of the control flow, but also of other
perspectives of the process such as the organizational or the performance perspective. On the
other hand, compliance with regulations, best practices and internal policies is a key aspect

in organizations nowadays and may vary significantly from one organization to another.

129

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.jopera.org
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

130

13171 — Customizing Service Platforms

Therefore, BPaaS must provide their users with mechanisms to ensure their processes are
customized and enacted according to the regulations that are relevant for the users. Our
current work focus on facing these challenges leveraging the work we have done on business
process compliance management systems and on models and techniques for the management
of process performance indicators and human resources

3.21 Customization of Large, Complex Systems

Klaus Schmid (University of Hildesheim, GE)

License @ Creative Commons BY 3.0 Unported license
© Klaus Schmid

The major thrust of our work is on the customization of large, complex systems and
in particular software ecosystems. We are in particular using product line engineering
technologies to perform the necessary kinds of customizations. A particular challenge in
the service platform is the need to support a range of very different artifacts and the need
also to go to later binding times like initialization time or runtime. This requires on the
hand a complex coordination among individual customizations to support the integrated
customization. On the other hand it requires different techniques to address the later binding
times.

A further challenge is the overall size and complexity of the platforms, which may often
give rise to many thousand variation points.

3.22 Service Networks for Development Communities
Damian Andrew Tamburri (VU University Amsterdam, NL)

License) Creative Commons BY 3.0 Unported license
© Damian Andrew Tamburri

Communities of developers have rapidly become global, encompassing multiple timezones
and cultures alike. In previous work we investigated the possible shapes of communities
for software development. In addition, we explored mechanisms to uncover communities
emerging during development. However, we barely scratched the surface. We found that
development communities yield properties of dynamic change and organic evolution. Much
work is still needed to support such communities with mechanisms able to proactively react
to community dynamism. We argue that service-networks can be used to deliver this support.
Service-networks are sets of people and information brought together by the internet.

The missing keystone is to support social communities with an innovative and pro-active
mechanism operating through services. The research hypothesis that drives the work in
this paper is quite simple and equally intriguing: social communities of developers can be
supported by a global network of software and socio-technical services, spanning different
organisations, sites, timezones and cultures. The result is a service-network that blends
the internet of services with large-scale, adaptable choreographies to deliver a powerful and
scalable solution that adapts to the changes of a community. On one hand, software services
are pieces of software operating under a service-dominant logic. These pieces of software
collaborate together across the web using standard protocols, to deliver complex, adaptable
functionality (e.g. cloud-based functionalities such as GoogleDocs). Much literature in service

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid 131

sciences provide ways to identify, monitor and adapt software services On the other hand,
socio-technical services are hybrid human and software services, i.e. services that explicitly
mediate the collaborative work of people within a social community, e.g. by fostering relevant
community aspects or by increasing situation awareness of community members.

http://www.dagstuhl.de/mat/Files/13/13171/13171. TamburriDamian Andrew.Paper.pdf

3.23 Customizing Science Gateway Platforms via SaaS Approach
Wengjun Wu (Beihang University — Beijing, CN)

License) Creative Commons BY 3.0 Unported license
© Wenjun Wu

A Science Gateway is a computational web portal that includes a community-developed set
of tools, applications, and data customized to enable scientists to run scientific simulations,
data analysis, and visualization through their web browsers. Because scientists always have
different requirements for their data processing pipeline, science gateway developers have
to cope with the customization of GUI, workflow, applications and runtime environment.
So the research problem is how to effectively support multi-tenant customization in science
gateway platforms.

The talk introduces a SaaS framework to enable customization of life science gateway
through four levels: GUI, workflow, bio-application and workspace.

It allows users to rapidly generate Web GUI and deploy their pipelines in heterogeneous
environments

3.24 Service-based Platform Integration and Customization
Uwe Zdun (University of Vienna, AT)

License @@ Creative Commons BY 3.0 Unported license
© Uwe Zdun

In service-based integration, platform customization, and similar areas, our research group
addresses the following challenges: understand and support architecture and design decision
making; link architectures, designs, and implementations; automate recurring tasks; base
these solutions on time-proven architectural knowledge; provide empirical evidence. Our
work and interests in this area concerns

reusable decision models and corresponding tools

design patterns; model-driven techniques (MDD) to bridge between architectural decisions

and designs

view-based architecture for service platform

MDD generators

full traceability

empirical studies

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

132

13171 — Customizing Service Platforms

3.25 Customizing Service Platforms — new or have we seen this
before?

Frank van der Linden (Philips Medical Systems — Best, NL)

License @@ Creative Commons BY 3.0 Unported license
© Frank van der Linden

I have the feeling that, although the problems are new, I have seen this before. Over the
year people have struggled with customization or variability at higher levels of abstraction.
The initial programming languages tamed the variability into a few constructs: if, case,
while, ... and goto. When the programs became complex, functions and subroutines were
introduced. This added parameters and recursion to the palette of variability. Separate
compilation added IFDEF. Again systems became complex, and again variability needed to
be tamed. Functions were grouped into object classes, and related data into objects. This
added inheritance to the mechanisms variability. A next step added configurations of object
classes into components.

Each time, the new concept reduced the choices of how variability can be used. Special
configurations were supported others were not. Sometimes a new mechanism was introduced,
but it also kept the programs comprehensible, because the mechanism provided abstraction
and hiding of internal details. Presently configurations of components are combined into
services. This provides, again, abstraction and hiding of internal details. The situation is
somewhat different because now it is apparent that services can and will be provided by
different providers. This was also the case for previous mechanisms, as there are third party
libraries, object frameworks, and COTS. However, the services structure is getting complex,
and we cannot track, control or trust all the code will be executed. As in previous times we
have to apply the mechanisms we have used before — variability management, negotiation,
service configuration modeling, reduction of configurations that will be allowed to those for
which the trust can be assessed. This still needs partially to be done, and that is the goal of
this seminar.

4 Working Groups

4.1 Quality Assurance and Validation in Customizable Service
Platforms

Deepak Dhungana (Siemens, AT)

Participants: Deepak Dhungana, Waldemar Hummer, Georg Leyh, Frank van der Linden,
Antonio Ruiz Cortés

License @ Creative Commons BY 3.0 Unported license
© Deepak Dhungana

4.1.1 Introduction

With the increasing importance of service oriented applications in many businesses and new
application fields such as cloud computing, many new challenges are arising in this area. The
initial effort required for customization of a service platform or associated services is already
very high, but at the same time the nature of these applications requires them to consider
customizations at runtime, too. Apart from the technical difficulties related to customization

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid

of the functionality, we see serious needs to discuss the impact of developing and deploying
customizable services on the quality of the overall system.

4.1.1.1 Quality Assurance

Software quality assurance is often defined as a means of monitoring the software engineering
processes and methods used to ensure quality. Quality assurance therefore needs to consider
both how such services can be developed or deployed and the runtime monitoring to ensure
required quality.

Service based applications (SBA) are described by functional and non-functional properties.
Non-functional properties include some QoS dimensions such as accuracy, coverage, network-
related QoS, performance, reliability, robustness, and scalability. Our discussion in this
section is focused on the relationship between customizability of applications and the impact
on the quality attributes.

4.1.1.2 Open Questions

We summarize the key issues related to customization of SBA and quality of the overall
system.
What is the effect of customizability (having a flexible and customizable platform)
on the quality of the system? What kind of activities is additionally (as opposed to
fixed /monolithic environments) needed during development and runtime to ensure required
quality?
What support can be provided to different stakeholders (which roles do they have?) in
customizing a service based application to achieve the required quality?
How can variability of the quality attributes of a SBA be defined, so that the customization
processes and tools can deal with them?

4.1.2 Case Studies

In oder to demonstrate the industrial need for “quality-aware” service based applications, we
present two case studies.

4.1.2.1 Case Study 1 — Image Processing Service Platform

The first case study is about an image processing service platform at Philips medical systems.
The platform provides image processing services to clients that are, in general, hospitals.
Dependent of the hospital infrastructure, but also to the terminal capabilities, more or less
processing can be done at the client side. A solution for this is to split the service platform in
several abstraction layers and provide services in between the abstraction layers. Dependent
on the situation, the client can take one or more top level abstraction layers and the server
provides the remainder. Note, that the client platforms are not in control of the service
provider and can be very diverse. The hospital pays for the services provided. It is the
business model that determines how this is done, and will not be part of this description.

This all needs to be done in an environment where several quality concerns are important.
These are related to performance, latency, throughput, but also to security, privacy and legal
rules. All these quality requirements may vary dependent on the customer. In addition, the
user expects personalization.

In summary, the customization deals with personalization, quality requirements, and the
level of abstraction that will be provided.

133

13171

134

13171 — Customizing Service Platforms

4.1.2.2 Case Study 2 — Logistics Management Platform

The second case study is about a platform for logistics, e.g., Warehouse Management solutions
or solutions for spare parts logistics. Usually, the platform vendor provides (delivers) many
variants of the platform based on domain specific service platforms. The goal is to reuse the
service platforms for different customers, however, different users usually have a different
prioritization of qualities (e.g., a small warehouse may prefer a very cost-efficient solution,
which may be based on open source software, while a big warehouse needs a solution that is
available 24/7). Therefore, we need to customize the prioritization of qualities.

In spare parts logistics, the platform usually makes heavy use of existing legacy systems
installed at the end-users site. Sometimes, different legacy systems are deployed e.g. in
different countries. Here we need a uniform customization, even if the services use different
legacy platforms / data.

4.1.3 Identified Challenges

Based on the case studies, we have identified the following challenges related to quality
assurance in customizable service platforms.

4.1.3.1 Quality Monitoring

Many service platforms use resources from existing legacy systems. Those systems usually
have no formal SLAs. To model qualities of systems that include legacy systems, at least the
quality monitoring for legacy systems is necessary. The monitoring information can be used
instead of a formal SLA, e.g. to calculate the overall availability of the SBA.

4.1.3.2 Quality(-Driven) Adaptation

As seen in case study 2, for reusing domain specific service platforms it is necessary to adapt
the prioritization of different qualities. Since the qualities of the SBA need to be adjusted, a
check whether these qualities can be achieved with the existing base services needs to be
made. If the base services cannot be used to achieve the necessary quality, other services
must be checked for conformance.

4.1.3.3 Quality Assurance in the Development Lifecycle

Quality assurance has to be performed at several stages in the development lifecycle. Already
at development time software engineering has to provide the right mechanisms to do quality
assurance. In addition, certain development patterns may be used to ensure a level of
quality assurance upfront. A candidate service needs to be tested. For instance, it has to
become clear whether it performs according to its SLA (see below). This action is similar to
acceptance tests for COTS integration in the software. However, run-time testing needs to
be added, as the service provision may change unexpectedly. In this case a fault tolerance
mechanism needs to be added. In the case that a service fails to perform with the right
quality, this should be repaired. There are several options for this: renegotiation, adding a
similar service to the configuration, or escalating the fault to the higher level — i.e. announce
on-conformance to the own SLA to the client.

Luciano Baresi, Andreas Rummler, and Klaus Schmid

4.1.3.4 SLA Modeling

An SLA (Service Level Agreement) is the interface of a service towards its clients. Based on
the SLA a client decides whether to use the service. An SLA describes the function that
is provided; in addition it describes the level of relevant qualities the function is delivered.
Today a SLA is usually static, which means that for each quality a certain quality range is
given. Note, that this implies that there is a metric to measure the quality level. Sometimes
a few configurations are offered that the client might select.

At the client side the situation is less simple. Quality levels might be related by conditions,
such as: if quality A is less than level U then quality B must be more than level V. Also
qualities might have priorities: If one of the quality levels needs to be dropped than C is
the last one to choose from. The client also might have quality requirements that cannot be
measured, e.g. data quality (such as: does the picture show the right features).

This all asks for a model to incorporate all the qualities that are relevant for the client
and this needs to be used for SLA management. A model will describe a region in a multi-
dimensional space, where qualities are dimensions. The region is the level of acceptable
quality. Note that in this model cost is just one of the quality dimensions.

4.1.3.5 SLA Management

SLA management deals with negotiating and monitoring the services provided. Negotiation
deals with finding a service configuration that provides the service fitting in the acceptable
region defined by the model. Note that we may need a configuration, as it might be the
case that a single service cannot provide the right SLA; e.g. if two services both have an
availability of 98%, using them both for 50% of the time we can get an availability level of
99%. Note that finding the right configuration can be posed as an optimization problem. In
the case that a standard modeling language exists for SLA, it might be expected that service
providers might offer more complex service offerings, which makes negotiation more complex
as well.

The importance of temporal awareness is rising in SOA solutions. Temporal awareness
refers to managing service demands and offers which are subject to validity periods, i.e. their
evaluation depends not only on QoS values, but also on time. For example, the QoS of some
web services can be considered critical in working hours (9:00 to 17:00 from Monday to Friday)
and irrelevant at any other moment. Until now, the expressiveness of such temporal-aware
specifications has been quite limited. This issue also makes negotiation and monitoring more
complex.

After negotiation the SLA management is not finished. At run-time SLA monitors the
services for several reasons:

Does the service work according to its SLA? If not, then fault management needs to
be incorporated to manage the fault, which might lead to re-negotiation, changing the
service configuration, or escalation to the client.

Establish levels of qualities that are not mentioned in the SLA, or that might be difficult
to measure

4.1.4 Possible Solutions

Some possible solutions to deal with the identified challenges could be summarized as follows.
However, these are rather open issues, that need to be elaborated further and are topics for
future research.

135

13171

136

13171 — Customizing Service Platforms

4.1.4.1 SLA Management Facilities

There are a number of activities that may be performed one or more times during the SLA
management lifecycle and the operation of a SLA-aware service platform such as:
Prior to advertising an offer (quality guaranteed by the service provider) and issuing a
demand (customer quality requirements), they both should be checked for consistency,
i.e. to check that they do not have any internal contradictions.
Checking whether an offer fulfills a given demand, i.e. checking them for conformance
a.k.a compliance.
Finding the optimal offer out of a set of offers conformant to a given demand, mandatory
if we want to automatically create the optimum SLA.
Checking whether an SLA has been violated.
Finding out all the SLAs which are ‘outside the law’ defined by a set of governance
policies.
Finding out the set of SLAs that may be violated during a given time window with a
cost below a given amount.
Giving explanations about why an offer or demand is not consistent, why there is no
possibility to reach an agreement, why the SLA has been violated, etc.

The degree of difficulty of implementing these facilities depends on the degree of express-
iveness of the SLA model used. Furthermore, implementing some of these facilities may lead
to NP-hard problems, especially if features such as conditional terms, temporal-awareness,
non-linear selection criteria are allowed.

These activities could be organized by using a catalogue of common operations a.k.a
facilities (this approach has been widely accepted in the Automated Analysis of Software
Product Lines). In this catalogue it would be possible to distinguish between basic and
composite operations (only if it is possible to define it as a combination of basic operations)
as well as to provide a reference implementation.

4.1.4.2 Support during development

The issue of customization and service quality assurance influences all phases of the service
engineering lifecycle, including design, implementation, validation, deployment, and runtime.
We categorize this lifecycle into development phases (design, implementation, validation)
and runtime phases (deployment, execution time). To assure quality in service environments,
it needs to be clearly understood which quality parameters are influenced by different parts
of the lifecycle.

During the development phase, all aspects related to quality assurance need to be collected
and encoded in a multi-dimensional quality model. The quality model should capture the
requirements, goals, and risks associated with different quality assurance scenarios. The
quality model then serves as the basis to derive measurable quality metrics as well as potential
actions to take in case of quality issues (e.g., SLA violations). We distinguish between static
consistency checks and dynamic conformance checks. Static consistency checks are required
to determine whether the quality model can generally satisfy important properties such
as soundness, completeness or satisfiability. Dynamic conformance checks are employed
to determine, for concrete instantiations of service platforms, whether the current state
corresponds to the target quality requirements and goals.

The development phase is particularly important for quality assurance, for two main
reasons. Firstly, certain quality characteristics like correctness, availability, consistency, or
fault tolerance need to be modeled and systematically tested for. Secondly, all capabilities

Luciano Baresi, Andreas Rummler, and Klaus Schmid

required to assure quality at runtime (e.g., monitoring, optimization, adaptation) need to be
accounted for during the development phase.

4.1.4.3 Runtime Support

During runtime, one of the key concerns is to monitor the conformance of the service platform
to customized quality metrics, in order to timely react to occurring SLA violations or potential
upcoming quality issues. In recent years, event-based monitoring based on the complex event
processing (CEP) paradigm has emerged as the key technology to support loosely coupled
monitoring infrastructures. CEP leverages the concept of complex events, which aggregate
and correlate streams of raw events to provide higher-level knowledge about the current
quality and health status of a system, i.e., service platform. Efficiency and non-intrusiveness
are among the core research questions related to monitoring of service quality.

Certain quality problems allow timely correction by adapting the system within the current
phase of the provisioning lifecycle. For instance, a service platform which is configured to
react to load bursts should be able to acquire new computing resources as soon as a quality
degradation is measured at runtime due to high request load. However, if elasticity is not
correctly implemented and runtime monitoring detects that the acquired resources are not
released once the load decreases, the problem needs to be escalated and fixed in previous

phases, re-iterating through the development phases of design/implementation/validation.

As of today, the research community still lacks a deep understanding of how to support this
type of escalation by systematically modeling the connections between quality metrics and
different development lifecycle phases.

4.1.4.4 Domain-Specific Solutions

In recent years, research and industry have experienced the emergence of new paradigms
related to service platforms and service-oriented computing.

Arguably one of the most important trends is Cloud Computing, which introduces
advanced virtualization and resource allocation techniques, providing for a new class of
applications with a high degree of dynamism, scalability, and elasticity. These elastic
applications often require non-trivial re-configurations, because once the elasticity state
is changed (i.e., a resource gets added or removed), the connections and dependencies on
potentially many other resources need to be updated and re-configured. To ensure that the
transitions between elasticity states function properly, comprehensive testing and verification
efforts need to be undertaken. Moreover, quality agreements in Cloud Computing are
inherently related to multiple tenants. To avoid redundant detection and enforcement efforts,
quality assurance mechanisms should be efficiently tailored to multiple tenants, for instance
by grouping together tenants with similar or overlapping quality requirements.

A second important trend is the increasing integration of humans in the service delivery
process. Novel concepts like crowd-sourcing or human-provided services (HPS) are finding
adoption in service-based applications. Since humans operate distinctly different from
machines, advanced quality characteristics and metrics such as trust, skills, or reputation
need to be taken into account.

4.1.5 Open Issues

Some issues need further discussions and more industrial cases to support their practical
relevance.

137

13171

138

13171 — Customizing Service Platforms

4.1.5.1 Variability in SLA Definitions

Currently, it is not possible to describe variability in SLAs. In addition, it is not possible to
check SLAs that contain variability information for conformance with other SLAs. E.g., a
variable SLA may state that it has a const / availability variation point. 99% availability
with 0.01 EUR per call for low budget, 99.99% availability with 0.05 EUR, per call for high
availability customers. Three services are available: Service A with 99.999% availability and
0,03 EUR / call, Service B with 99.9% availability and 0,005 EUR per call, Service C with
99,99% availability and 0,01 EUR per call.

Service A would partially comply (only high availability customers), Service B would
partially comply (only low budget customers), Service C would fully comply to the variable
SLA. A formal language and calculus for this kind of problems is currently missing.

4.1.5.2 Systematic Decision Support

Quality assurance, in customizable service platforms, requires decision making in complex
multi-dimensional spaces. This implies that automatic decision support is requested. It
is needed in static and run-time SLA management during negotiation and configuration
selection to decide which offering fits best to the request. Decision support needs optimization
algorithms to execute its ask.

The decision making has to find matches of regions in multi-dimensional spaces, where
certain dimensions are described as ranges, others are described as a probability distribution,
and others are even not really measurable, but are based on human “expert” based decisions.
In addition there are relationships between different dimensions, and there are dimensions
that have higher priority than others. Optimization algorithms exist, but they often are
restricted to certain kinds of input only.

The main issue here is to find algorithms that deal with the complexity above. In addition,
it needs to be made clear in which form the regions in the spaces can be described. This latter
point is related to SLA modeling, but modeling needs to address the issue of decidability as
well.

The output of decision support will be the best offer that fits the requirement, but it
should also indicate margins between the solution and the best fit. This margin should be
expressed in such a way that it can be understood by the human client.

4.1.5.3 Integrated Tooling for SLA Languages and Models

Probably it makes no sense to design a universal (domain-independent) language to describe
SLAs. In fact, the WS-Agreement specification identifies up to nine regions where for each
and every region a DSL (Domain Specific Language) must be provided by the SLA editor.
Thus, it is possible to have an unbounded number of different WS-Agreement compliant
DSLs. Probably, this circumstance may explain at a given extent why the WS-Agreement
has not been (widely) used.

However, it does not seem reasonable to implement the SLA management facilities
(see above) from scratch to the management of the SLAs of each SBA, especially for very
expressive SLAs. Therefore, there is an important room for improvement in this issue.

4.1.5.4 Bootstrapping

In this document we have discussed various aspects of quality assurance, including modeling,
monitoring, adaptation, decision support, and more. An additional complexity dimension is

Luciano Baresi, Andreas Rummler, and Klaus Schmid

the question of how quality requirements can be introduced into an (existing) platform in
the first place. Assume that the current state of quality provided by a service platform is
expressed as X, and that the provider plans to achieve the customized quality level Y. First,
the delta between X and Y needs to be identified. In order to enact the required changes, a
semi-automated procedure can be employed to identify the required steps to be taken. For
high-availability applications the key concern is that these quality adaptation steps should
be enforced with the shortest possible downtime. Moreover, since these steps may involve
non-trivial re-configurations and adjustments within the platform, a critical aspect of the
adaptation procedure is to maintain correctness and not to introduce any new issues (e.g.,
bugs, misconfigurations).

4.1.5.5 Maturity Model for Customizability

In general terms, a maturity model can be viewed as a set of structured levels that describe
how well the behaviors, practices and processes of an organization can reliably and sustainably
produce required outcomes. In this sense, a maturity model can be used as a benchmark for
comparison and as an aid to understanding — for example, for comparative assessment of
different organizations where there is something in common that can be used as a basis for
comparison. In the case of the CMM, for example, the basis for comparison would be the
organizations’ software development processes. (from Wikipedia)

Assuming that service platforms have a considerable number of customization points that
may crosscut different perspectives implies that the customization degree may vary signific-
antly among service platforms. Moreover, the existing dependencies among customization
degree and other quality factors such as maintainability increase the complexity of this issue.

In these circumstances having a maturity model to assess the service platform’s customiz-
ation capabilities could be really useful for both customers and providers.

4.2 Mobility and Service Platform Customization

Grace Lewis (SEI, USA)

Participants: Luciano Baresi, Schahram Dustdar, Sam Guinea, Grace Lewis, Tiziana Mar-
garia, Andreas Rummler, Karina Villela, Wenjun Wu, Uwe Zdun

License @@ Creative Commons BY 3.0 Unported license
© Grace Lewis

Mobile computing is transforming the way in which people interact with the world and
with each other far beyond the simple use of a smartphone as a communication device. In
recent years, there has also been a rapid explosion of mobile devices and sensors that are not
only pervasive but often interconnected. Mobility and ubiquity therefore create a potential
for mobile devices to (1) become service platforms for local applications as well as service
platforms for other nearby mobile devices and (2) extend their computational capabilities
by taking advantage of service platforms in the cloud. This working group explores both
options.

139

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

140

13171 — Customizing Service Platforms

4.2.1 Mobile Devices and Customization

We define mobile device as any device that is battery-powered, has wireless capabilities, and
a small form factor. Examples of mobile devices therefore include smartphones, tablets,
wearable devices (e.g., Google Glass, iWatch), devices built on top of small single-board
computers (e.g., RaspberryPi), sensors, drones, sports devices (e.g., FitBit), medical devices,
and navigation devices.

Examples of design-time and runtime customization for service platforms deployed on
mobile devices to serve local applications as well as other mobile devices include:

Sensors to enable/disable

Exploitation of context-awareness to adjust sensor sampling rates to drive energy efficiency
or data quality/precision

Data consumed and provided

Definition of swarming behavior for groups of mobile devices

Location of deployed sensors

User interaction (e.g., touch, gesture) or action patterns based on specific applications or
content

Add/remove computation or change algorithms

Communication mechanisms to enable/disable (e.g., WiFi, Bluetooth)

As can be seen in the previous examples, it is difficult to differentiate between services
that are provided by the operating system, services that are provided as part of a more
traditional service platform, and the applications themselves. This is probably due to the
small form factor but also because mobile applications are tied to a specific platform/OS
and typically make use of sensors that are part of the platform.

4.2.2 Mobility and Service Platforms

There are two areas related to mobility and service platforms that are interesting from a

customization perspective:

1. Mobile device as a service platform: These are mobile devices that act as mobile limited-
resource service platforms that can exploit on-board sensors and humans for data collection
or collections of devices combining to form a single platform.

2. Cloud computing as a service platform for mobile systems: Mobile devices can use service
platforms in the cloud in multiple ways:

Mobile device as a data collection platform that is uploaded to a service in a surrogate
or the cloud

Surrogates as a service platform for multiple mobile platforms

Mobile devices connecting directly to services in the cloud

4.2.3 Sample Scenario: First Responders

There are multiple scenarios that would benefit from customizable mobile service platforms:

First Responders: Personnel operating in emergency situations can use a variety of mobile
devices to support dynamic mission activities such as situational awareness, exploration
of unsafe areas and medical assistance.

Asset tracking: Mobile devices can be attached to any asset to determine location, usage
patterns, or environment characteristics. An example of an asset is a container that can
be tracked from origin to destination, varying the data sampling and rate according to
location.

Luciano Baresi, Andreas Rummler, and Klaus Schmid

Smart homes/cities: Data collected and potentially pre-processed by mobile devices that
are spread throughout homes or cities can help in task automation, emergency detection
and response, surveillance,

Remote locations: Mobile devices can be located or dispatched to locations where it is
difficult, impossible or dangerous for a human to go to.

The first responder scenario is of particular interest from a customization perspective
because of the dynamic nature of the environment as a disaster or emergency situation
evolves from panic to medical attention to supplies to connecting people.

Imagine a scenario in which a bomb detonates in a very public place leaving lots of
people trapped and hurt. In addition, the bomb damages the communication network. In
this situation, first responders are equipped with smartphones and tablets with sensors
and communication mechanisms that are particular to the type of emergency and network
situation and can receive and install services on-the-fly. Disposable surrogates that can
execute expensive computations and have access to the cloud are deployed in strategic
locations. Robots with mounted cameras are sent in to explore the damaged areas and
throwable cameras are used to create a picture of the damaged areas. Surveillance cameras in
the area are automatically configured to capture high-resolution video of the affected areas.

As the scenario unfolds, first responder mobile devices use contextual information to
adjust sensor sampling rates to extend battery life. Nearby mobile devices create an adhoc
network to deal with the damaged network and combine to form a single platform where
each devices performs certain tasks according to their capabilities. These mobile devices also
reconfigure (manually or automatically) as deployed devices gather information about the
context.

4.2.4 Open Challenges

Satisfying the scenario that was just described requires addressing a number of open challenges
related to the customization of mobile service platforms:

Challenges introduced by mobility: The main challenge is ephemerality — they don’t
last long and you don’t know when they will fail. Because of limited resources, platforms
and applications have to be very efficient in terms of energy and bandwidth usage and
have to deal with unstable connection.

Privacy, Security and Trust: Mobile devices that act as customizable service platforms
have many issues related to data privacy and trust in new features.

Multiple stakeholders have different concerns that could be in conflict — users, mobile
peers, providers (platform, apps, network, storage), government agencies, and certification
organizations.

Multiple Roles: In a multi-platform scenario, devices may play multiple roles at different
points in time — consumer, provider, host. Switching between roles requires, in addition,
continuous discovery and coordination.

Business models: Creating a business model that motivates users to add services on-the-fly
is a challenge. There may be the need for third-party certifiers that certify that services
do what they say they do.

141

13171

142

13171 — Customizing Service Platforms

4.3 Architecting for Platform Customization

Damian Andrew Tamburri (VU University Amsterdam, NL)

Participants: Florian Rosenberg, Cesare Pautasso, Damian Andrew Tamburri, Leonardo
Passos, Nenad Medvidovic, Manuel Resinas Arias de Reyna, Patricia Lago, Peter Dolog,
Gregor Engels, Nanjangud C. Narendra, Klaus Schmid!

License) Creative Commons BY 3.0 Unported license
© Damian Andrew Tamburri

The group discussed the architectural implications and underpinning of platform custom-
ization problems. First, the group explored the architecture decision to adopt certain
technologies as opposed to others, for adaptation and architecture flexibility. These technolo-
gies include: REST vs JSON/RPC vs SOAP/RPC vs MQ. These decisions are revisited when
needs arise for (re-)integration of platforms for networked organizations. These scenarios
require a customization cutting across service definitions. The following discussions rotated
around the following research questions:

RQ 1: What is customization?
Depends on the context (service consumer, provider, platform)
From consumer perspective it is: “Service selection, service configuration, platform
configuration/constraint”
From consumer/provider perspective it is: “Negotiable, flexible billing/accounting
model”
From platform: “Resource allocation, platform service selection”
RQ 2: How is customization expressed at the interface/service abstraction level?
Request/job submission metadata/constraints
Platform feature selection, activate/deactivate services for which you will be charged
Product lines?
RQ 3: What are the platform mechanisms to allow customization?
Strategy pattern: one abstract interface with multiple implementations
Extension point: plugin additional implementations
Architectural patterns for customization such as?
Tuning/controller component for self-adaptive architectures
RQ 4: How can you design an architectural style for service-oriented architectures that
facilitates customization?
Loose coupling -> easier to customize
Granularity of services: small -> easy to recompose
Formalize customization with a customization algebra
RQ 5: How are existing services/platforms customizable? How are customization done
today? — How is this unique to services/service platforms? How are different “features”
of the platform customized and exposed?

Separate branches in the code, then compile and deploy separate branches to enable
different customizations

One branch with feature toggles and turn toggles on and off at runtime through
configuration

! Further information can be found at http://ep.sonyx.net:9000/dagstuhl

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://ep.sonyx.net:9000/dagstuhl

Luciano Baresi, Andreas Rummler, and Klaus Schmid 143

Consumer

Customization =
service selection &

+ tuning

Service provider

Architecture of
the service

*

Customization =
platform configuration

Architecture of
the SBA

Figure 1 Architecture of the SBA.

= Ul-level composition of widgets
- Fifdef

- if (config)

- Interface o = Class.new(config)

(coposls)

Customization = feature/
service identification and

composition

Platform provider

Architecture of
the Platform

Customization = configure execution
environment and allocate resources

= Dynamic discovery and composition as a form of customization

= AOP for Devops languages

What are typical binding times:

m Very early (design time, select-integrate-test)

= Early (compile, deploy)
= Late (deploy, runtime)
m Very late (runtime after failure)

It is important to include the customization context as shown in Figure 1.

4.4 Energy-Aware Customization

Patricia Lago (VU University Amsterdam, NL)

Participants: Patricia Lago, Luciano Baresi, Sam Guinea, Grace Lewis, Marco Aiello, Holger
Eichelberger, Nenad Medvidovic, Antonio Ruiz Cortez, Jacek Serafinski, Wenjun Wu

License @@ Creative Commons BY 3.0 Unported license

© Patricia Lago

The group discussed what energy-aware customizations from the platform level up to the
application level should entail. Requirements include measure, platform self-optimization,
and mapping of the elements that belong to an energy context, both within and across levels.

The unanimous conclusion was that:

13171

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

144

13171 — Customizing Service Platforms

1. past research in optimizations driven by scarcity of resources could be partially applicable
for reducing energy consumption, and that

2. new research is needed due to the complexity of the current IT contexts, and due to
the fact that energy efficiency requires tradeoffs between optimization costs and energy
savings.

While promising, this area needs much more research in the future.

4.5 Customizing Service Platforms for Cloud Computing

Cesare Pautasso (University of Lugano, CH)

Participants: Florian Rosenberg, Waldemar Hummer, Christian Inzinger, Cesare Pautasso,
Manuel Resinas, Peter Dolog, Klaus Schmid

License) Creative Commons BY 3.0 Unported license
© Cesare Pautasso

Service Platforms for Cloud Computing are highly customizable. In this working group
we have analyzed the variability points for Infrastructure-as-a-Service (IaaS) offerings and
performed a practical comparison of concrete public cloud platforms (Amazon EC2, Microsoft
Azure, Google Compute) and also the OpenStack framework for private clouds.

The variability points concern:

the mechanism used for the compute, storage, and network abstraction offered by the

platform

the possibility of configuring image flavours (and how these flavours are defined)

the way images are managed and whether it is possible to bring-your-own customized

images for deployment

the possibility to customize images upon their activation

the structure of the metering and billing model of the provider (whereas most providers

differ in the way they charge for using their infrastructure, it is not always possible to

negotiate customized billing agreements with a provider)

the mechanism used for offering elastic scalability (and whether it is possible to customize

it with specific policies)

the set of security mechanisms that can be enabled and the corresponding policies

the presence of explicit “geographic regions” and how these are represented.

4.6 Customizing Service Platforms for Agile Networked Organizations
Damian Andrew Tamburri (VU University Amsterdam, NL)
Participants: Uwe Zdun, Georg Leyh, Karina Villela, Gregor Engels, Tiziana Margaria,

Andreas Rummler, Deepak Dhungana, Nanjangud Narendra, Frank van der Linden, Damian
Andrew Tamburri

License) Creative Commons BY 3.0 Unported license
© Damian Andrew Tamburri

The group explored the challenge of understanding how to customise service platforms to
allow IT-intensive organizations to network with each other. Organizational networking

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid

Enterprise

Organizational A
and Social
Structure
Software
Architectures \

IT

Figure 2 Relationship of Business, Organization, and Architecture in Networked Organizations.

scenarios include any situation in which a set of organizaitons partner up to achieve shared
business goals. Similarly, organizations need to network when one organization subsumes or
merges with another one. Making this transition into an “agile”, i.e., adaptable, smooth,
and painless transition is still a big challenge.

The group agrees that the customization problem at hand is a “Business-IT alignment”
problem, since the agile networked organization stems to align business drivers with IT-
Architecture and vice versa. Also, the problem is strongly affected by market speed, key
driver for organizational dynamism. The organizational artefact, which is being adapted in
the process of organizational networking, is the organizational and social structure emerging
between networked organizations.

To evaluate strategies and approaches currently adopted by companies to tackle this
problem, the group evaluated industrial scenarios of networked organizations during companies
merging.

SCENARIO 1: when Philips Corp. acquires companies, architects from both companies
use software architecture as a brokering artefact to decide which IT infrastructure in either
company needs adaptation to the other one. The “best” architecture between the two com-
panies is used as a basis for integration/customization to support the networked organization.
This process also requires to “decorate” the software architecture with business (e.g. business
processes, business requirements, etc.) and organizational /social structure information (roles,
responsibilities, locations, governance guidelines, etc.). Reference frameworks exist within
Philips to drive this process but are currently an industrial secret. NEED: research into
networked organizations creation and governance.

SCENARIO 2: when IBM acquires a company, they integrate the company’s software
products into IBM’s product portfolio via a process known as “blue washing”. This makes
the creation of the networked organization much simpler and smoother, but has the potential
to create social and organizational integration issues. NEED: research into understanding
and mitigation of social aspects for networked organizations.

The group agrees that additional requirements come from the intense and increasing
presence of service-based and cloud-based technologies. The problem of networked organiza-
tions in the cloud is still an open problem. Also, architecting for networked organizations is
still an open problem. Both problems require the definition of architectural viewpoints and
reference frameworks to specify and analyse software architectures from four perspectives:

145

13171

146

13171 — Customizing Service Platforms

e

Business

1T

Organization
Organizational Process

4.7 Binding time aspects of service platform customization

Customizing Service Platforms - Development time vs. Compile time vs. Runtime

Holger FEichelberger (Universitit Hildesheim, DE)

Participants: Marco Aiello, Christian Inzinger, Jacek Serafinski, Holger Eichelberger

License @ Creative Commons BY 3.0 Unported license
© Holger Eichelberger

This group discussed temporal aspects of the customization of service platforms, in particular,

the role of (self-)adaptation as a customization technique. This section summarizes the main

findings of the group discussions in terms of (agreed) terminology, examples and scenarios

for customizations at different points in time as well as research challenges.

4.7.1 Main Questions and Terminology

Several questions and terminology issues were discussed:

What is the system being configured, i.e., what shall be subject to configuration? In
this discussion, the group considered traditional systems (software product lines), service
platforms, as well as service ecosystems.

What is the semantics of time with respect to a customization? The group discussed two
alternatives:

Application time: This denotes the point during the software production process
when the customization is (actually) applied.

Binding time: The latest point in time when the decision for a customization must
be made. This complies with the typical notion of binding time in Software Product
Lines. In particular, a customization may be applicable at multiple binding times.

During the discussion, the group adopted the binding time semantics.
Which types of customizations are relevant and can those types be (partially) ordered?
The group identified the following types:

Configuration: Simple as well as sophisticated mechanisms to configure a system,
its settings or its code. Although pre-runtime configuration is frequently applied in
traditional software product lines, configuration techniques may also be applied at
runtime.

Adaptation: An external mechanism defines the configuration of the system at
runtime. This does not imply that the adaptation mechanism itself can also be
configured (through appropriate configuration approaches).

Self-adaptation: The system itself determines and applies appropriate configura-
tions during its runtime. Thus, the adaptation mechanism itself may be subject to
configurations within the same system.

The group agreed that the given sequence expresses a (partial) order of increasing
flexibility (and typically also complexity) of the underlying configuration mechansisms.
While some work, e.g., [1, 2, 4, 7], make the distinction between adaptive and self-adaptive

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Luciano Baresi, Andreas Rummler, and Klaus Schmid

systems, the group finally decided to focus only on two types, namely Configuration and
Self-adaptation.

Can a combination of customization type and the time aspect be used to classify exist-
ing systems and their applied customization mechanisms, in particular with respect to
the timing aspects discussed by the group? The implied space can be considered as a
coordinate-system with two axis, namely customization time and binding time. As dis-
cussed, the customization type depends on the (binding) time aspect, i.e., (self-)adaptation
can only be applied during runtime of the system, e.g., for startup, initialization, or
runtime customizations.

4.7.2 Examples / Scenarios

The group identified several examples and scenarios for applying customizations at different

(binding) times. In particular, the group focused on service-based systems, service platforms,

and service ecosystems. These examples were classified as shown below:

[N B SI V

Configuration at development time: Decisions in architecture, manual customiza-
tions in code, the build process, etc. The group considered this as a typical approach to
the customization of systems and did not discuss specific scenarios.

Configuration at compile time: This is most frequently applied in traditional software
product lines. However, customization at compile time is not uncommon in service-oriented
systems as well [3]. In particular, the group discussed the approach of the SAS-LeG
project (Software As Service for the varying needs of Local eGovernments)?, where (static)
customization at compile time is applied to customize services for the needs of several
municipalities in the Netherlands.

Configuration at deployment time: In the INDENICA warehouse management case
study [5], customizations are applied prior to or at deployment time so that the customized
service platform and the services become active at deployment.

Configuration at startup time: Software in this category reads configuration files
and binds the customization with specific values at that point in time, i.e., during early
runtime. Examples for traditional software systems are Apache httpd® or relational
database management systems such as MySQL*. Further, all three service-based case
studies in the INDENICA-project [5], namely the warehouse management system, the
yard management system or the remote management system also rely on startup time
mechanisms.

Configuration at runtime: One particular example is the INDENICA warehouse
management case study [5], where the user may determine and change the actual binding
of customizations at runtime (although these capabilities are introduced at compile time).
Adaptation at runtime: Here, in particular semi-automated or automated mechanisms
such as adaptivity managers may change the actual customization of a system at runtime.
This is for example applied in the SM4ALL project (Smart Homes for All)> on an
embedded middleware for pervasive and immersive environments in order to enable a
continuous adaptation of sensors, devices, services and appliances to user context and
habits. Further, the virtual service platform researched in the INDENICA-project®, which

http://www.sas-leg.net/web/
http://httpd.apache.org/
http://www.mysql.com
http://http://www.sm4all-project.eu/
http://www.indenica.eu

147

13171

http://www.sas-leg.net/web/
http://httpd.apache.org/
http://www.mysql.com
http://http://www.sm4all-project.eu/
http://www.indenica.eu

148

13171 — Customizing Service Platforms

integrates the INDENICA case studies mentioned above, contains an adaptation manager
[6], which affects the configurations of the integrated customizable platforms, in particular
the remote management system.
Customization at late runtime: This class encompasses systems, which enable (open)
customizations during runtime, which may even extend the system. Basically, this class
includes multi-tenant systems or concepts relized by user-programmable systems such as
Cloud9” or the Heroku® ecosystem.
The group assigned the examples and scenarios listed in this section to the two-dimensional
coordinate system sketeched above. All examples and scenarios in this section are located
below the bisecting line, which separates static from dynamic customizations. According to
our findings, there is a clear relationship between binding time and flexibility, i.e., the later
the binding time, the more flexibility is supported by the customizations, while extremely
dynamic and flexible customizations are not applied at early binding times such as design or
compile time.

4.7.3 Challenges

During the discussion we identified the following challenges:
Quantify the trade-offs among different (binding) times in order to determine
(relative) benefits, impacts or even risks. This quantification may happen in terms of
metrics such as costs, revenue or downtime. Such tradeoffs enable the objective selection
among available binding times for an individual customization opportunity, to support
(risk) mitigation strategies or even to support temporal relationships across applied
customizations, e.g., to trace failures to (combinations of) customizations applied at
different points in time.
Support understandability of managing customizations at different points in
time: Are the actual capabilities sufficient for modeling and managing customizations
which apply at different points in time? How can the different roles in the software
development process be supported in understanding the effect (and the impact) of
temporal customization aspects, in particular in the dynamic and open environment of
service platforms?
Ensure semantically meaningful configurations when temporal aspects be-
come customization alternatives. This includes consistency issues (avoid selecting
the wrong service, the wrong service interface or wrong data) or means to show the
correctness of configurations.
Combine platform evolution and service platform lifecycle management with
temporal configuration aspects. How can upgrades of services and service platforms
with temporal customizations be upgraded? How can staged upgrades be supported?
How can integrity and consistency of service bindings and data be guaranteed?
Analyze the mutual influence of temporal customization aspects on the open-
ness of service platforms. By construction, service platforms support open-world
scenarios, e.g., services can be discovered and bound at runtime. Do temporal aspects
introduce another dimension of openness? How can openness be considered in the chal-
lenges state above, for example, how do customizations interrelate with openness and

7 https://c9.io
8 https://www.heroku.com

https://c9.io
https://www.heroku.com

Luciano Baresi, Andreas Rummler, and Klaus Schmid

extensibility, e.g., in terms of customizable extension bundles with own development
lifecycle?

Analyze the impacts of temporal aspects in customizing multi-tenant envir-
onments, e.g., with respect to tenant-specific isolation mechanisms (regarding resource
usage, data and tenant-specific functions) or mapping of functionality or resources to
physical infrastructures. Shall (temporal) customization be available for tenant-specific
extensions (e.g., as part of a development introduce new temporal customization aspects
such as a replication of binding times (a “development” time as part of runtime) or can
this be considered as views (the system is still at runtime while the tenant has its own
time scale).

References

1

5

N. Abbas. Towards autonomic software product lines. In Proceedings of the 15th Interna-
tional Software Product Line Conference, Volume 2, SPLC 11, pages 44:1-44:8, New York,
NY, USA, 2011. ACM.

N. Abbas, J. Andersson, and D. Weyns. Knowledge evolution in autonomic software product
lines. In Proceedings of the 15th International Software Product Line Conference, Volume 2,
SPLC’11, pages 36:1-36:8, New York, NY, USA, 2011. ACM.

H. Eichelberger, C. Kroher, and K. Schmid. Variability in Service-Oriented Systems: An
Analysis of Existing Approaches. In Conf. on Service-Oriented Computing (ICSOC’12),
pages 516-524, 2012.

D. Garlan, B. Schmerl, and S.-W. Cheng. Software architecture-based self-adaptation. In
Y. Zhang, L. T. Yang, and M. K. Denko, editors, Autonomic Computing and Networking,
pages 31-55. Springer US, 2009.

INDENICA project consortium. Description of Feasible Case Studies. Technical Report
Deliverable D5.1, 2011. http://www.indenica.eu [validated: April 2013].

INDENICA project consortium. Report Describing a Framework for Deployment, Monit-
oring & Controlling of Virtual Service Platforms. Technical Report Deliverable D4.1, 2012.
http://www.indenica.eu [validated: April 2013].

M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst., 4(2):14:1-14:42, May 2009.

Open Problems

Open problems were described throughout the previous sections, in particular, in the working
group summaries.

149

13171

http://www.indenica.eu
http://www.indenica.eu

150

13171 — Customizing Service Platforms

Participants

= Marco Aiello
University of Groningen, NL

= Luciano Baresi
Polytechnic Univ. of Milan, IT

= Karina Barreto Villela
Fraunhofer IESE —
Kaiserslautern, DE

= Deepak Dhungana
Siemens AG — Wien, AT

= Peter Dolog
Aalborg University, DK

= Schahram Dustdar
TU Wien, AT

= Holger Eichelberger
Universitat Hildesheim, DE

= Gregor Engels
Universitdt Paderborn, DE

= Sam Guinea
Politecnico di Milano, IT

= Waldemar Hummer
TU Wien, AT

= Christian Inzinger
TU Wien, AT

= Patricia Lago
Free Univ. of Amsterdam, NL

= Grace A. Lewis
Carnegie Mellon University, US

= Georg Leyh
Siemens AG — Erlangen, DE

= Tiziana Margaria
Universitdt Potsdam, DE

= Nenad Medvidovic
USC - Los Angeles, US

= Nanjangud C. Narendra
IBM India — Bangalore, IN

= Leonardo Passos
University of Waterloo, CA

= Cesare Pautasso
University of Lugano, CH

= Manuel Resinas Arias de
Reyna
University of Sevilla, ES

= Florian Rosenberg
IBM TJ Watson Res. Center —
Yorktown Heights, US

= Antonio Ruiz Cortés
University of Sevilla, ES

= Andreas Rummler

SAP Research Center —
Dresden, DE

= Klaus Schmid

Universitat Hildesheim, DE
= Jacek Serafinski
NextDayLab Sp. z o0.0. —
Poznan, PL

= Damian Andrew Tamburri
VU - Amsterdam, NL

= Frank van der Linden
Philips Medical Systems —
Best, NL

= Wenjun Wu

Beihang University — Beijing, CN
= Uwe Zdun

Universitdt Wien, AT

	Executive Summary Luciano Baresi, Andreas Rummler, and Klaus Schmid
	Table of Contents
	Overview of Talks
	Imperative versus Declarative Process Variability: Why Choose? Marco Aiello
	My View on Customizing Service Platforms Luciano Baresi
	Dynamic Product Lines using the HATS framework Karina Barreto Villela
	Quality-Aware Product Configuration Karina Barreto Villela
	Customization of existing industrial plants to achieve modernization Deepak Dhungana
	Forward Recovery for Web Service Environments Peter Dolog
	Customizing Service Platforms Holger Eichelberger
	SPASS-Meter – Monitoring Resource Consumption of Services and Service Platforms Holger Eichelberger
	On-the-Fly Computing – Individualized IT Services in Dynamic Markets Gregor Engels
	Multi-level Service Management Sam Guinea
	Customizable Reliability and Security for Data-Centric Applications in the Cloud Waldemar Hummer
	Adaptation in complex service ecosystems Christian Inzinger
	A Library for Green Knowledge Patricia Lago
	Cloud Computing as a Service Platform for Mobile Systems Grace Lewis
	Cloudlet-Based Cyber-Foraging Grace Lewis
	Customizing Platforms by Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond Tiziana Margaria
	Platform Architectures Nenad Medvidovic
	Variability Modeling & Management Nanjangud C. Narendra
	Customized Mashups with Natural Language Composition Cesare Pautasso
	Challenges of offering customizable domain-specific business processes as a service Manuel Resinas Arias de Reyna
	Customization of Large, Complex Systems Klaus Schmid
	Service Networks for Development Communities Damian Andrew Tamburri
	Customizing Science Gateway Platforms via SaaS Approach Wenjun Wu
	Service-based Platform Integration and Customization Uwe Zdun
	Customizing Service Platforms — new or have we seen this before? Frank van der Linden

	Working Groups
	Quality Assurance and Validation in Customizable Service Platforms Deepak Dhungana
	Mobility and Service Platform Customization Grace Lewis
	Architecting for Platform Customization Damian Andrew Tamburri
	Energy-Aware Customization Patricia Lago
	Customizing Service Platforms for Cloud Computing Cesare Pautasso
	Customizing Service Platforms for Agile Networked Organizations Damian Andrew Tamburri
	Binding time aspects of service platform customization Customizing Service Platforms - Development time vs. Compile time vs. Runtime Holger Eichelberger

	Open Problems
	Participants

