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Abstract
Full Intuitionistic Linear Logic (FILL) is multiplicative intuitionistic linear logic extended with
par. Its proof theory has been notoriously difficult to get right, and existing sequent calculi all
involve inference rules with complex annotations to guarantee soundness and cut-elimination. We
give a simple and annotation-free display calculus for FILL which satisfies Belnap’s generic cut-
elimination theorem. To do so, our display calculus actually handles an extension of FILL, called
Bi-Intuitionistic Linear Logic (BiILL), with an ‘exclusion’ connective defined via an adjunction
with par. We refine our display calculus for BiILL into a cut-free nested sequent calculus with
deep inference in which the explicit structural rules of the display calculus become admissible.
A separation property guarantees that proofs of FILL formulae in the deep inference calculus
contain no trace of exclusion. Each such rule is sound for the semantics of FILL, thus our deep
inference calculus and display calculus are conservative over FILL. The deep inference calculus
also enjoys the subformula property and terminating backward proof search, which gives the
NP-completeness of BiILL and FILL.
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1 Introduction

Multiplicative Intuitionistic Linear Logic (MILL) contains as connectives only tensor ⊗, its
unit I, and its residual ⊸, where we use I rather than the usual 1 to avoid a clash with the
categorical notation for terminal object. The connective par ` and its unit � are traditionally
only introduced when we move to classical Multiplicative Linear Logic (MLL), but Hyland
and de Paiva’s Full Intuitionistic Linear Logic (FILL) [20] shows that a sensible notion of
par can be added to MILL without collapse to classicality. FILL’s semantics are categorical,
with the interaction between the (⊗, I,⊸) and (`,�) fragments entirely described by the
equivalent formulae shown below:

(p⊗ (q ` r)) ⊸ ((p⊗ q)` r) ((p⊸ q)` r) ⊸ (p⊸ (q ` r)) (1)

The first formula is variously called weak distributivity [20, 11], linear distributivity [12], and
dissociativity [14]. The second we call Grishin (b) [16]. Its converse, called Grishin (a), is
not FILL-valid, and indeed adding it to FILL recovers MLL.

From a traditional sequent calculus perspective, FILL is the logic specified by taking a
two-sided sequent calculus for MLL, which enjoys cut-elimination, and restricting its (⊸ R2)
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rule to apply only to “singletons on the right”, giving (⊸ R1), as shown below:

Γ,A ⊢ B(⊸ R1) Γ ⊢ A⊸ B

Γ,A ⊢ B,∆(⊸ R2) Γ ⊢ A⊸ B,∆

Since exactly this restriction converts Gentzen’s LK for ordinary classical logic to Gentzen’s
LJ for intuitionistic logic, FILL arises very naturally. Unfortunately the resulting calculus
fails cut-elimination [26]. (Note that there is also work on natural deduction and proof nets
for FILL [12, 1, 24, 13]. In this setting the problems of cut-elimination are side-stepped; see
the discussion of “essential cuts” in [12] in particular.)

Hyland and de Paiva [20] therefore sought a middle ground between the too weak (⊸ R1)
and the unsound (⊸ R2) by annotating formulae with term assignments, and using them to
restrict the application of (⊸ R2) - the restriction requires that the variable typed by A not
appear free in the terms typed by ∆. Reasoning with freeness in the presence of variable
binders is notoriously tricky, and a bug was subsequently found by Bierman [4] which meant
that the proof of the sequent below requires a cut that is not eliminable:

(a` b)` c ⊢ a, (b` c⊸ d)` e⊸ d` e (2)

Bierman [4] presented two possible corrections to the term assignment system, one due to
Bellin. These were subsequently refined by Bräuner and de Paiva [6] to replace the term
assignments by rules annotated with a binary relation between formulae on the left and
on the right of the turnstile, which effectively trace variable occurrence. The only existing
annotation-free sequent calculi for FILL [15, 16] are incorrect. The first [15] uses (⊸ R2)
without the required annotations, making it unsound, and also contains other transcription
errors. The second [16] identifies FILL with ‘Bi-Linear Logic’, which fails weak distributivity
and has an extra connective called ‘exclusion’, of which more shortly.

The existing correct annotated sequent calculi [4, 6] have some weaknesses. First, the
introduction rules for a connective do not define that connective in isolation, as was Gentzen’s
ideal. Instead, they introduce ⊸ on the right only when the context in which the rule
sits obeys the rule’s side-condition. A consequence is that they cannot be used for naive
backward proof search since we must apply the rule upwards blindly, and then check the
side-conditions once we have a putative derivation. Second, the term-calculus that results
from the annotations has not been shown to have any computational content since its sole
purpose is to block unsound inferences by tracking variable occurrence [6]. Thus, FILL’s close
relationship with other logics is obscured by these complex annotational devices, leading to
it being described as proof-theoretically “curious” [12], and leading others to conclude that
FILL “does not have a satisfactory proof theory” [9].

We believe these difficulties arise because efforts have focused on an ‘unbalanced’ logic.
We show that adding an ‘exclusion’ connective *, dual to ⊸, gives a fully ‘balanced’ logic,
which we call Bi-Intuitionistic Linear Logic (BiILL). The beauty of BiILL is that it has a
simple display calculus [3, 16] BiILLdc that inherits Belnap’s general cut-elimination theorem
“for free”. A similar situation has already been observed in classical modal logic, where it has
proved impossible to extend traditional Gentzen sequents to a uniform and general proof-
theory encompassing the numerous extensions of normal modal logic K. Display calculi
capture a large class of such modal extensions uniformly and modularly [27, 22] by viewing
them as fragments of (the display calculi for) tense logics, which conservatively extend modal
logic with two modalities ⧫ and ∎, respectively adjoint to the original ◻ and ◇.

In tense logics, the conservativity result is trivial since both modal and tense logics are
defined with respect to the same Kripke semantics. With BiILL and FILL, however, there is
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no such existing conservativity result via semantics. The conservativity of BiILL over FILL
would follow if we could show that a derivation of a FILL formula in BiILLdc preserved
FILL-validity downwards: unfortunately, this does not hold, as explained next.

Belnap’s generic cut-elimination procedure applies to BiILLdc because of the “display
property”, whereby any substructure of a sequent can be displayed as the whole of either
the antecedent or succedent. The display property for BiILLdc is obtained via certain re-
versible structural rules, called display rules, which encode the various adjunctions between
the connectives, such as the one between par and exclusion. Any BiILLdc-derivation of a
FILL formula that uses this adjunction to display a substructure contains occurrences of a
structural connective which is an exact proxy for exclusion. That is, a BiILLdc-derivation of
a FILL formula may require inference steps that have no meaning in FILL, thus we cannot
use our display calculus BiILLdc directly to show conservativity of BiILL over FILL. We cir-
cumvent this problem by showing that the structural rules to maintain the display property
become admissible, provided one uses deep inference.

Following a methodology established for bi-intuitionistic and tense logics [17, 18], we
show that the display calculus for BiILL can be refined to a nested sequent calculus [21, 7],
called BiILLdn, which contains no explicit structural rules, and hence no cut rule, as long
as its introduction rules can act “deeply” on any substructure in a given structure. To
prove that BiILLdn is sound and complete for BiILL, we use an intermediate nested sequent
calculus called BiILLsn which, similar to our display calculus, has explicit structural rules,
including cut, and uses shallow inference rules that apply only to the topmost sequent in a
nested sequent. Our shallow inference calculus BiILLsn can simulate cut-free proofs of our
display calculus BiILLdc, and vice versa. It enjoys cut-elimination, the display property and
coincides with the deep-inference calculus BiILLdn with respect to (cut-free) derivability.
Together these imply that BiILLdn is sound and (cut-free) complete for BiILL. Our deep
nested sequent calculus BiILLdn also enjoys a separation property: a BiILLdn-derivation of
a formula A uses only introduction rules for the connectives appearing in A. By selecting
from BiILLdn only the introduction rules for the connectives in FILL, we obtain a nested
(cut-free and deep inference) calculus FILLdn which is complete for FILL. We then show
that the rules of FILLdn are also sound for the semantics of FILL. The conservativity of
BiILL over FILL follows since a FILL formula A which is valid in BiILL will be cut-free
derivable in BiILLdc, and hence in BiILLdn, and hence in FILLdn, and hence valid in FILL.

Viewed upwards, introduction rules for display calculi use shallow inference and can
require disassembling structures into an appropriate form using the display rules, meaning
that display calculi do not enjoy a “substructure property”. The modularity of display
calculi also demands explicit structural rules for associativity, commutativity and weak-
distributivity. These necessary aspects of display calculi make them unsuitable for proof
search since the various structural rules and reversible rules can be applied indiscriminately.
As structural rules are admissible in the nested deep inference calculus BiILLdn, proof search
in it is easier to manage than in the display calculus. Using BiILLdn, we show that the
tautology problem for BiILL and FILL are in fact NP-complete.

For full proof details we refer readers to the extended version of this paper [10].

CSL’13
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2 Display Calculi

2.1 Syntax
I Definition 1. BiILL-formulae are defined using the grammar below where p is from some
fixed set of propositional variables

A ∶∶= p ∣ I ∣ � ∣ A⊗A ∣ A`A ∣ A⊸ A ∣ A *A

Antecedent and succedent BiILL-structures (also known as antecedent and succedent parts)
are defined by mutual induction, where Φ is a structural constant and A is a BiILL-formula:

Xa ∶∶= A ∣ Φ ∣Xa,Xa ∣Xa <Xs Xs ∶∶= A ∣ Φ ∣Xs,Xs ∣Xa >Xs

FILL-formulae are BiILL-formulae with no occurrence of the exclusion connective *. FILL-
structures are BiILL-structures with no occurrence of <, and containing only FILL-formulae.
We stipulate that ⊗ and ` bind tighter than ⊸ and *, that comma binds tighter than >
and <, and resolve A⊸ B ⊸ C as A⊸ (B ⊸ C). A BiILL- (resp. FILL-) sequent is a pair
comprising an antecedent and a succedent BiILL- (resp. FILL-) structure, written Xa ⊢Xs.

I Definition 2. We can translate sequents X ⊢ Y into formulae as τa(X) ⊸ τs(Y ), given
the mutually inductively defined antecedent and succedent τ -translations:

A Φ X,Y X > Y X < Y
τa A I τa(X) ⊗ τa(Y ) τa(X) * τs(Y )
τs A � τs(X)` τs(Y ) τa(X) ⊸ τs(Y )

Hence Φ and comma are overloaded to be translated into different connectives depending on
their position. By uniformly replacing our structural connective < with >, we could have also
overloaded > to stand for ⊸ and *, which would have avoided the blank spaces in the above
table, but we have opted to use different connectives to help visually emphasise whether a
given structure lives in BiILL or its fragment FILL.

The display calculi for FILL and BiILL are given in Fig. 1.
I Remark. For conciseness, we treat comma-separated structures as multisets and usually
omit explicit use of (Ass ⊢), (⊢ Ass), (Com ⊢) and (⊢ Com). The residuated pair and dual
residuated pair rules (rp) and (drp) are the display postulates which give Thm. 3 below. Our
display postulates build in commutativity of comma, so the two (Com) rules are derivable.
If we wanted to drop commutativity [12], we would have to use the more general display
postulates from [16]. Note that (drp) may create the structure < which has no meaning in
FILL, so we will return to this issue. For now, observe that proofs of even apparently trivial
FILL-sequents such as (p` q)` r ⊢ p, (q` r) require (drp) to ‘move p out the way’ so (⊢ `)
can be applied. Another (drp) then eliminates the < to restore p to the right. The rule (⊢
Grnb) is the structural version of Grishin (b), the right hand formula of (1); the rule (Grnb
⊢) is equivalent. Fig. 2 gives a cut-free proof of the example from Bierman (2).

I Theorem 3 (Display Property). For every structure Z which is an antecedent (resp. suc-
cedent) part of the sequent X ⊢ Y , there is a sequent Z ⊢ Y ′ (resp. X ′ ⊢ Z) obtainable from
X ⊢ Y using only (rp) and (drp), thereby displaying the Z as the whole of one side.

I Theorem 4 (Cut-Admissibility). From cut-free BiILLdc-derivations of X ⊢ A and A ⊢ Y
there is an effective procedure to obtain a cut-free BiILLdc-derivation of X ⊢ Y .

Proof. BiILLdc obeys Belnap’s conditions for cut-admissibility [3]: see App. A. J
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Cut and identity:

(id) p ⊢ p X ⊢ A A ⊢ Y(cut)
X ⊢ Y

Logical rules:
Φ ⊢X(I ⊢)
I ⊢X (⊢ I) Φ ⊢ I

(� ⊢) � ⊢ Φ X ⊢ Φ(⊢ �)
X ⊢ �

A,B ⊢X(⊗ ⊢)
A⊗B ⊢X

X ⊢ A Y ⊢ B(⊢ ⊗)
X,Y ⊢ A⊗B

A ⊢X B ⊢ Y(` ⊢)
A`B ⊢X,Y

X ⊢ A,B(⊢ `)
X ⊢ A`B

X ⊢ A B ⊢ Y(⊸⊢)
A⊸ B ⊢X > Y

X ⊢ A > B(⊢⊸)
X ⊢ A⊸ B

Structural rules:

X ⊢ Y > Z(rp)
X,Y ⊢ Z

X,Y ⊢ Z
(rp)

Y ⊢X > Z
X < Y ⊢ Z(drp)
X ⊢ Y,Z

X ⊢ Y,Z
(drp)

X < Z ⊢ Y
X,Φ ⊢ Y

(Φ ⊢)
X ⊢ Y

X ⊢ Φ, Y
(⊢ Φ)

X ⊢ Y
W, (X,Y ) ⊢ Z

(Ass ⊢)
(W,X), Y ⊢ Z

W ⊢ (X,Y ), Z
(⊢ Ass)

W ⊢X, (Y,Z)
X,Y ⊢ Z(Com ⊢)
Y,X ⊢ Z

X ⊢ Y,Z(⊢ Com)
X ⊢ Z,Y

W, (X < Y ) ⊢ Z
(Grnb ⊢)

(W,X) < Y ⊢ Z
W ⊢ (X > Y ), Z

(⊢ Grnb)
W ⊢X > (Y,Z)

Further logical rules for BiILLdc:
A < B ⊢X(* ⊢)
A *B ⊢X

X ⊢ A B ⊢ Y(⊢ *)
X < Y ⊢ A *B

Figure 1 FILLdc and BiILLdc: display calculi for FILL and BiILL.

2.2 Semantics

I Definition 5. A FILL-category is a category equipped with
a symmetric monoidal closed structure (⊗, I,⊸)
a symmetric monoidal structure (`,�)
a natural family of weak distributivity arrows A⊗ (B `C) → (A⊗B)`C.

A BiILL-category is a FILL-category where the ` bifunctor has a co-closure *, so there is
a natural isomorphism between arrows A→ B `C and A *B → C.

IDefinition 6. The free FILL- (resp. BiILL-) category has FILL- (resp. BiILL-) formulae as
objects and the following arrows (quotiented by certain equations) where we are given objects
A,A′,A′′,B,B′ and arrows f ∶ A → A′, f ′ ∶ A′ → A′′, g ∶ B → B′, (♡,K) ∈ {(⊗, I), (`,�)},
and where the co-closure arrows exist in the free BiILL-category only:

Category: A
id // A A

f ′○f // A′′

Symmetric Monoidal: A♡B
f♡g // A′♡B′ (A♡B)♡C

α // A♡(B♡C)
α−1
oo

K♡A
λ // A
λ−1
oo A♡K

ρ // A
ρ−1
oo A♡B

γ // B♡A

CSL’13
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a ⊢ a b ⊢ b(` ⊢)
a` b ⊢ a, b c ⊢ c

(` ⊢)
(a` b)` c ⊢ a, b, c

(drp)
(a` b)` c < a ⊢ b, c

(⊢ `)
(a` b)` c < a ⊢ b` c d ⊢ d

(⊸⊢)
b` c⊸ d ⊢ ((a` b)` c < a) > d e ⊢ e

(` ⊢)
(b` c⊸ d)` e ⊢ (((a` b)` c < a) > d), e

(⊢ Grnb)
(b` c⊸ d)` e ⊢ ((a` b)` c < a) > d, e

(rp)
(b` c⊸ d)` e, ((a` b)` c < a) ⊢ d, e

(⊢ `)
(b` c⊸ d)` e, ((a` b)` c < a) ⊢ d` e

(rp)
(a` b)` c < a ⊢ (b` c⊸ d)` e > d` e

(⊢⊸)
(a` b)` c < a ⊢ (b` c⊸ d)` e⊸ d` e

(drp)
(a` b)` c ⊢ a, (b` c⊸ d)` e⊸ d` e

Figure 2 The cut-free FILLdc-derivation of the example from Bierman.

Closed: A⊸ B
A⊸g // A⊸ B′ (A⊸ B) ⊗A ε // B A

η // B ⊸ A⊗B

Weak Distributivity: A⊗ (A′ `A′′) ω // (A⊗A′)`A′′

Co-Closed: A *B
f*B // A′ *B A`B *A ε // B A

η // B ` (A *B)

We will suppress explicit reference to the associativity and symmetry arrows.

I Definition 7. A FILL- (resp. BiILL-) sequent X ⊢ Y is satisfied by a FILL- (resp. BiILL-)
category if, given any valuation of its propositional variables as objects, there exists an arrow
I → τa(X) ⊸ τs(Y ). It is FILL- (resp. BiILL-) valid if it is satisfied by all such categories.
In fact, we only need to check the free categories under their generic valuations.

I Remark. Those familiar with categorical logic will note that our use of category theory
here is rather shallow, looking only at whether hom-sets are populated, and not at the rich
structure of equivalences between proofs that categorical logic supports. This is an adequate
basis for this work because the question of FILL-validity alone has proved so vexed.

I Theorem 8. BiILLdc (Fig. 1) is sound and cut-free complete for BiILL-validity.

Proof. BiILLdc-proof rules and the arrows of the free BiILL-category are interdefinable. J

I Corollary 9. The display calculus FILLdc is cut-free complete for FILL-validity.

Proof. Because BiILL-categories are FILL-categories, and BiILLdc proofs of FILL-sequents
are FILLdc proofs. J

We will return to the question of soundness for FILLdc in Sec. 4.

3 Deep Inference and Proof Search

We now present a refinement of the display calculus BiILLdc, in the form of a nested sequent
calculus, that is more suitable for proof search. A nested sequent is essentially just a
structure in display calculus, but presented in a more sequent-like notation. This change
of notation allows us to present the proof systems much more concisely. The proof system
we are interested in is the deep inference system in Sec. 3.2, but we shall first present an
intermediate system, BiILLsn, which is closer to display calculus, and which eases the proof
of correspondence between the deep inference calculus and the display calculus for BiILL.
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3.1 The Shallow Inference Calculus
The syntax of nested sequents is given by the grammar below where Ai and Bj are formulae.

S T ∶∶= S1, . . . , Sk,A1, . . . ,Am ⇒ B1, . . . ,Bn, T1, . . . , Tl

We use Γ and ∆ for multisets of formulae and use P , Q, S, T , X, Y , etc., for sequents, and
S, X , etc., for multisets of sequents and formulae. The empty multiset is ⋅ (‘dot’).

A nested sequent can naturally be represented as a tree structure as follows. The nodes
of the tree are traditional two-sided sequents (i.e., pairs of multisets). The edges between
nodes are labelled with either a −, denoting nesting to the left of the sequent arrow, or a +,
denoting nesting to the right of the sequent arrow. For example, the nested sequent below
can be visualised as the tree in Fig. 3 (i):

(e, f ⇒ g), (p, (u, v⇒ x, y) ⇒ q, r), a, b⇒ c, d, (⋅ ⇒ s) (3)

A display sequent can be seen as a nested sequent, where ⊢, > and < are all replaced by
⇒ and the unit Φ is represented by the empty multiset. The definition of a nested sequent
incorporates implicitly the associativity and commutativity of comma, and the effects of its
unit, via the multiset structure.

I Definition 10. Following Def. 2, we can translate nested sequents into equivalence classes
of BiILL-formulae (modulo associativity, commutativity, and unit laws) via τ -translations:

τa(S1, . . . , Sk,A1, . . . ,Am ⇒ B1, . . . ,Bn, T1, . . . , Tl)
= (τa(S1) ⊗⋯⊗ τa(Sk) ⊗A1 ⊗⋯⊗Am) * (B1 `⋯`Bn ` τs(T1)`⋯` τs(Tl))

τs(S1, . . . , Sk,A1, . . . ,Am ⇒ B1, . . . ,Bn, T1, . . . , Tl)
= (τa(S1) ⊗⋯⊗ τa(Sk) ⊗A1 ⊗⋯⊗Am) ⊸ (B1 `⋯`Bn ` τs(T1)`⋯` τs(Tl)).

The translations τa and τs differ only in their translation of the sequent symbol ⇒ to ⊸
and * respectively. Where m = 0, A1 ⊗⋯⊗Am translates to I, and similarly B1 `⋯`Bn
translates to � when n = 0. These translations each extend to a map from multisets of
nested sequents and formulae to formulae: τa (resp. τs) acts on each sequent as above,
leaves formulae unchanged, and connects the resulting formulae with ⊗ (resp. `). Empty
multisets are mapped to I (resp. �).

A context is either a ‘hole’ [ ], called the empty context, or a sequent where exactly one
node has been replaced by a hole [ ]. Contexts are denoted by X[ ]. We write X[S] to
denote a sequent resulting from replacing the hole [ ] in X[ ] with the sequent S. A non-
empty context X[ ] is positive if the hole [ ] occurs immediately to the right of a sequent
arrow ⇒, and negative otherwise. This simple definition of polarities of a context is made
possible by the use of the same symbol ⇒ to denote the structural counterparts of ⊸ and
*. As we shall see in Sec. 3.2, this overloading of ⇒ allows a presentation of deep inference
rules that ignores context polarity.

The shallow inference system BiILLsn for BiILL is given in Fig. 4. The main difference
from BiILLdc is that we allow multiple-conclusion logical rules. This implicitly builds the
Grishin (b) rules into the logical rules (see [10]).

I Theorem 11. A formula is cut-free BiILLsn-provable iff it is cut-free BiILLdc-provable.

I Corollary 12. The cut rule is admissible in BiILLsn.

Just as in display calculus (Thm. 3), the display property holds for BiILLsn.

CSL’13
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a, b⇒ c, d
−
yy −

��
+
$$

e, f ⇒ g p⇒ q, r

−
��

⋅ ⇒ s

u, v⇒ x, y

a⇒ c
−
|| −��

+
!!

e⇒ g p⇒
−��

⋅ ⇒ ⋅

u⇒ x

b⇒ d
−
|| −

��
+
""

f ⇒ ⋅ ⋅ ⇒ q, r

−
��

⋅ ⇒ s

v⇒ y

(i) (ii) (iii)

Figure 3 A tree representation of a nested sequent (i), and its partitions (ii and iii).

Cut and identity: p⇒ p id
S ⇒ S ′,A A,T ⇒ T ′

S,T ⇒ S ′,T ′
cut

Structural rules:

S ⇒ T ,T ′

(S ⇒ T ) ⇒ T ′
drp1

S,T ⇒ T ′

S ⇒ (T ⇒ T ′)
rp1

(S ⇒ S ′),T ⇒ T ′

(S,T ⇒ S ′) ⇒ T ′
gl

(S ⇒ T ) ⇒ T ′

S ⇒ T ,T ′
drp2

S ⇒ (T ⇒ T ′)
S,T ⇒ T ′

rp2
S ⇒ (S ′ ⇒ T ′),T
S ⇒ (S ′ ⇒ T ′,T )

gr

Logical rules:

� ⇒ ⋅ �l
S ⇒ T
S ⇒ T ,� �r

S ⇒ T
S, I⇒ T Il ⋅ ⇒ I Ir

S,A,B ⇒ T
S,A⊗B ⇒ T

⊗l

S ⇒ A,T S ′ ⇒ B,T ′

S,S ′ ⇒ A⊗B,T ,T ′
⊗r

S,A⇒ T S ′,B ⇒ T ′

S,S ′,A`B ⇒ T ,T ′
`l

S ⇒ A,B,T
S ⇒ A`B,T `r

S ⇒ A,T S ′,B ⇒ T ′

S,S ′,A⊸ B ⇒ T ,T ′
⊸l

S ⇒ T , (A⇒ B)
S ⇒ T ,A⊸ B

⊸r

S, (A⇒ B) ⇒ T
S,A *B ⇒ T

*l

S ⇒ A,T S ′,B ⇒ T ′

S,S ′ ⇒ A *B,T ,T ′
*r

Figure 4 The shallow inference system BiILLsn, where gl and gr capture Grishin (b).

I Proposition 13 (Display property). Let X[ ] be a positive (negative) context. For every
S, there exists T such that T ⇒ S (respectively S ⇒ T ) is derivable from X[S] using only
the structural rules from {drp1, drp2, rp1, rp2}. Thus S is “displayed” in T ⇒ S (S ⇒ T ).

3.2 The Deep Inference Calculus
A deep inference rule can be applied to any sequent within a nested sequent. This poses a
problem in formalising context splitting rules, e.g., ⊗ on the right. To be sound, we need to
consider a context splitting that splits an entire tree of sequents, as formalised next.

Given two sequents X1 and X2, their merge set X1 ●X2 is defined inductively as:

X1 ●X2 = { (Γ1,Γ2, Y1, . . . , Ym ⇒∆1,∆2, Z1, . . . , Zn) ∣
X1 = (Γ1, P1, . . . , Pm ⇒∆1,Q1, . . . ,Qn) and
X2 = (Γ2, S1, . . . , Sm ⇒∆2, T1, . . . , Tn) and
Yi ∈ Pi ● Si for 1 ≤ i ≤m and Zj ∈ Qj ● Tj for 1 ≤ j ≤ n }

Note that the merge set of two sequents may not always be defined since mergeable
sequents need to have the same structure. Note also that, because there can be more than
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Propagation rules:

X[S ⇒ (A,S ′ ⇒ T ′),T ]
X[S,A⇒ (S ′ ⇒ T ′),T ]

pl1
X[(S ⇒ T ,A),S ′ ⇒ T ′]
X[(S ⇒ T ),S ′ ⇒ A,T ′]

pr1

X[S,A, (S ′ ⇒ T ′) ⇒ T ]
X[S, (S ′,A⇒ T ′) ⇒ T ]

pl2
X[S ⇒ T ,A, (S ′ ⇒ T ′)]
X[S ⇒ T , (S ′ ⇒ T ′,A)]

pr2

Identity and logical rules: In branching rules, X[ ] ∈X1[ ] ●X2[ ], S ∈ S1 ● S2 and T ∈ T1 ● T2.

X[ ], U and V are hollow.
X[U , p⇒ p,V] idd

X[ ], U and V are hollow.
X[�,U ⇒ V] �d

l

X[S ⇒ T ]
X[S ⇒ T ,�] �d

r

X[S ⇒ T ]
X[S, I⇒ T ] Id

l

X[ ], U and V are hollow.
X[U ⇒ I,V] Id

r

X[S,A,B ⇒ T ]
X[S,A⊗B ⇒ T ] ⊗d

l

X1[S1 ⇒ A,T1] X2[S2 ⇒ B,T2]
X[S ⇒ A⊗B,T ] ⊗d

r

X1[S1 ⇒ A,T1] X2[S2,B ⇒ T2]
X[S,A⊸ B ⇒ T ] ⊸d

l

X[S ⇒ T , (A⇒ B)]
X[S ⇒ T ,A⊸ B] ⊸d

r

X1[S1,A⇒ T1] X2[S2,B ⇒ T2]
X[S,A`B ⇒ T ] `d

l

X[S ⇒ A,B,T ]
X[S ⇒ A`B,T ] `d

r

X[S, (A⇒ B) ⇒ T ]
X[S,A *B ⇒ T ] *d

l

X1[S1 ⇒ A,T1] X2[S2,B ⇒ T2]
X[S ⇒ A *B,T ] *d

r

Figure 5 The deep inference system BiILLdn.

one way to enumerate elements of a multiset in the left/right hand side of a sequent, the
result of the merging of two nested sequents is a set, rather than a single nested sequent.
When X ∈ X1 ●X2, we say that X1 and X2 are a partition of X. Fig. 3 (ii) and (iii) show
a partitioning of the nested sequent (3) in the tree representation. Note that the partitions
(ii) and (iii) must have the same tree structure as the original sequent (i).

Given two contexts X1[ ] and X2[ ] their merge set X1[ ] ●X2[ ] is defined as follows:
If X1[ ] = [ ] and X2[ ] = [ ] then X1[ ] ●X2[ ] = {[ ]}
If X1[ ] = (Γ1, Y1[ ], P1, . . . , Pm ⇒∆1,Q1, . . . ,Qn) and
X2[ ] = (Γ2, Y2[ ], S1, . . . , Sm ⇒∆2, T1, . . . , Tn) then

X1[ ] ●X2[ ] = { (Γ1,Γ2, Y [ ], U1, . . . , Um ⇒∆1,∆2, V1, . . . , Vn) ∣
Y [ ] ∈ Y1[ ] ● Y2[ ] and Ui ∈ Pi ● Si for 1 ≤ i ≤m and
Vj ∈ Qj ● Tj for 1 ≤ j ≤ n }

If X1[ ] = (Γ1, P1, . . . , Pm ⇒∆1, Y1[ ],Q1, . . . ,Qn) and
X2[ ] = (Γ2, S1, . . . , Sm ⇒∆2, Y2[ ], T1, . . . , Tn) then

X1[ ] ●X2[ ] = { (Γ1,Γ2, U1, . . . , Um ⇒∆1,∆2, Y [ ], V1, . . . , Vn) ∣
Y [ ] ∈ Y1[ ] ● Y2[ ] and Ui ∈ Pi ● Si for 1 ≤ i ≤m and
Vj ∈ Qj ● Tj for 1 ≤ j ≤ n }

If X[ ] =X1[ ] ●X2[ ] we say X1[ ] and X2[ ] are a partition of X[ ].
We extend the notion of a merge set between multisets of formulae and sequents as

follows. Given X = Γ ∪ {X1, . . . ,Xn} and Y = ∆ ∪ {Y1, . . . , Yn} their merge set contains all
multisets of the form: Γ ∪∆ ∪ {Z1, . . . , Zn} where Zi ∈Xi ● Yi.

A nested sequent X (resp. a context X[ ]) is said to be hollow iff it contains no occur-
rences of formulae. For example, (⋅ ⇒ ⋅) ⇒ (⋅ ⇒ [ ]), (⋅ ⇒ ⋅) is a hollow context.

The deep inference system for BiILL, called BiILLdn, is given in Fig. 5. Fig. 6 shows a
cut-free derivation of Bierman’s example in BiILLdn.

CSL’13
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a⇒ a, (⋅ ⇒ ⋅) id
d
⋅ ⇒ (b⇒ b) id

d

b⇒ (⋅ ⇒ b)
pl1

a ` b⇒ a, (⋅ ⇒ b)
`d

l

⋅ ⇒ (c⇒ c) id
d

c⇒ (⋅ ⇒ c)
pl1

(a ` b)` c⇒ a, (⋅ ⇒ b, c)
`d

l

(a` b)` c⇒ a, (⋅ ⇒ b ` c) `d
r ⋅ ⇒ (d⇒ d) id

d

(a` b)` c⇒ a, (b ` c⊸ d⇒ d)
⊸d

l ⋅ ⇒ (e⇒ e) id
d

(a` b)` c⇒ a, ((b ` c⊸ d)` e⇒ d, e)
`d

l

(a` b)` c⇒ a, ((b` c⊸ d)` e⇒ d ` e) `d
r

(a` b)` c⇒ a, (b ` c⊸ d)` e⊸ d ` e ⊸d
r

Figure 6 A cut-free derivation of Bierman’s example in BiILLdn.

3.3 The Equivalence of the Deep and Shallow Nested Sequent Calculi
From BiILLdn to BiILLsn, it is enough to show that every deep inference rule is cut-free
derivable in BiILLsn. For the identity and the constant rules, this follows from the fact that
hollow structures can be weakened away, as they add nothing to provability (see [10]). For
the other logical rules, a key idea to their soundness is that the context splitting operation
is derivable in BiILLsn. This is a consequence of the following lemma (see [10]).

I Lemma 14. The following rules are derivable in BiILLsn without cut:

(X1 ⇒ Y1), (X2 ⇒ Y2),U ⇒ V
(X1,X2 ⇒ Y1,Y2),U ⇒ V

distl
U ⇒ V, (X1 ⇒ Y1), (X2 ⇒ Y2)
U ⇒ V, (X1,X2 ⇒ Y1,Y2)

distr

Intuitively, these rules embody the weak distributivity formalised by the Grishin (b) rule.

I Lemma 15. If X ∈ X1 ● X2 then the rules below are cut-free derivable in BiILLsn:

X1,X2,U ⇒ V
X ,U ⇒ V

ml
U ⇒ V,X1,X2
U ⇒ V,X

mr

Proof. This follows straightforwardly from Lem. 14. J

I Lemma 16. Suppose X[ ] ∈X1[ ] ●X2[ ] and suppose there exists Y [ ] such that for any
U and any ρ ∈ {drp1, drp2, rp1, rp2}, the figure below left is a valid inference rule in BiILLsn:

Y [U]
X[U]

ρ
Y1[U]
X1[U]

ρ
Y2[U]
X2[U]

ρ

Then there exists Y1[ ] and Y2[ ] such that Y [ ] ∈ Y1[ ] ● Y2[ ] and the second and the third
figures above are also valid instances of ρ in BiILLsn.

Proof. This follows from the fact that X[ ], X1[ ] and X2[ ] have exactly the same nested
structure, so whatever display rule applies to one also applies to the others. J

I Theorem 17. If a sequent X is provable in BiILLdn then it is cut-free provable in BiILLsn.

Proof. We show that every rule of BiILLdn is cut-free derivable in BiILLsn. We show here
a derivation of the rule ⊸d

l ; the rest can be proved similarly. So suppose the conclusion of
the rule is X[S,A ⊸ B ⇒ T ], and the premises are X1[S1 ⇒ A,T1] and X2[S2,B ⇒ T2],
where X[ ] ∈ X1[ ] ●X2[ ], S ∈ S1 ● S2 and T ∈ T1 ● T2. There are two cases to consider,
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depending on whether X[ ] is positive or negative. We show here the former case, as the
latter case is similar. Prop. 13 entails that X[S,A ⊸ B ⇒ T ] is display equivalent to
U ⇒ (S,A ⊸ B ⇒ T ) for some U . By Lem. 16, we have U1 and U2 such that U ∈ U1 ● U2,
and (U1 ⇒ V) and (U2 ⇒ V) are display equivalent to, respectively, X1[V] and X2[V], for
any V. The derivation of ⊸d

l in BiILLsn is thus constructed as follows:

X1[S1 ⇒ A,T1]
U1 ⇒ (S1 ⇒ A,T1)

Lem. 16

U1,S1 ⇒ A,T1
rp2

X2[S2,B ⇒ T2]
U2 ⇒ (S2,B ⇒ T2)

Lem. 16

U2,S2,B ⇒ T2
rp2

U1,U2,S1,S2,A⊸ B ⇒ T1,T2
⊸l

U ,S,A⊸ B ⇒ T ml;ml;mr

U ⇒ (S,A⊸ B ⇒ T )
rp1

X[S,A⊸ B ⇒ T ]
Prop. 13

J

The other direction of the equivalence is proved by a permutation argument: we first add
the structural rules to BiILLdn, then we show that these structural rules permute up over all
(non-constant) logical rules of BiILLdn. Then when the structural rules appear just below
the idd or the constant rules, they become redundant. There are quite a number of cases
to consider, but they are not difficult once one observes the following property of BiILLdn:
in every rule, every context in the premise(s) has the same tree structure as the context
in the conclusion of the rule. This observation takes care of permuting up structural rules
that affect only the context. The non-trivial cases are those where the application of the
structural rules changes the sequent where the logical rule is applied. We illustrate a case
in the following lemma. The detailed proof can be found in [10].

I Lemma 18. The rules drp1, rp1, drp2, rp2, gl, and gr permute up over all logical rules
of BiILLdn.

Proof. (Outline) We illustrate here a non-trivial interaction between a structural rule and
⊸l, where the conclusion sequent of ⊸l is changed by that structural rule. The other non-
trivial cases follow the same pattern, i.e., propagation rules are used to move the principal
formula to the required structural context.

S1,T1 ⇒ C,U1 S2,T2,B ⇒ U2

S, C ⊸ B,T ⇒ U
⊸l

S, C ⊸ B ⇒ (T ⇒ U)
rp1

↝

S1,T1 ⇒ C,U1

S1 ⇒ (T1 ⇒ C,U1)
rp1

S2,T2,B ⇒ U2

S2 ⇒ (T2,B ⇒ U2)
rp1

S ⇒ (C ⊸ B,T ⇒ U)
⊸l

S, C ⊸ B ⇒ (T ⇒ U)
pl1

J

I Theorem 19. If a sequent X is cut-free BiILLsn-derivable then it is also BiILLdn-derivable.

I Corollary 20. A formula is cut-free BiILLdc-derivable iff it is BiILLdn-derivable.

4 Separation, Conservativity, and Decidability

In this section we return our attention to the relationship between our calculi and the
categorical semantics (Defs. 5 and 6). Def. 10 gave a translation of nested sequents to
formulae; we can hence define validity for nested sequents.

CSL’13
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I Definition 21. A nested sequent S is BiILL-valid if there is an arrow I → τs(S) in the
free BiILL-category.

A nested sequent is a (nested) FILL-sequent if it has no nesting of sequents on the left
of ⇒, and no occurrences of * at all. The formula translation of Def. 10 hence maps FILL-
sequents to FILL-formulae. Such a sequent S is FILL-valid if there is an arrow I → τs(S)
in the free FILL-category.

The calculus BiILLdn enjoys a ‘separation’ property between the FILL fragment using
only �, I, ⊗, `, and ⊸ and the dual fragment using only �, I, ⊗, `, *. Let us define FILLdn
as the proof system obtained from BiILLdn by restricting to FILL-sequents and removing
the rules pr1, pl2, *dl and *dr .

I Theorem 22 (Separation). Nested FILL-sequents are FILLdn-provable iff they are BiILLdn-
provable.

Proof. One direction, from FILLdn to BiILLdn, is easy. The other holds because every
sequent in a BiILLdn derivation of a FILL-sequent is also a FILL-sequent. J

Thm. 22 tells us that every deep inference proof of a FILL-sequent is entirely constructed
from FILL-sequents, each with a τ -translation to FILL-formulae. This contrasts with display
calculus proofs, which must introduce the FILL-untranslatable < even for simple theorems.
By separation, and the equivalence of BiILLdc and BiILLdn (Cor. 20), the conservativity of
BiILL over FILL reduces to checking the soundness of each rule of FILLdn.

I Lemma 23. An arrow A⊗B → C exists in the free FILL-category iff an arrow A→ B ⊸ C

exists. Further, arrows of the following types exist for all formulae A,B,C:
(i) A⊸ B ⊸ C → A⊗B ⊸ C and A⊗B ⊸ C → A⊸ B ⊸ C

(ii) (A⊸ B)`C → A⊸ B `C.

In the proofs below we will abuse notation by omitting explicit reference to τa and τs,
writing Γ1 ⊸∆1 for τa(Γ1) ⊸ τs(∆1) for example.

I Lemma 24. Let X[ ] be a positive FILL-context. If there exists an arrow f ∶ τs(S) →
τs(T ) in the free FILL-category then there also exists an arrow τs(X[S]) → τs(X[T ]).
Hence if X[S] is FILL-valid then so is X[T ].

I Lemma 25. Given a multiset V of hollow FILL-sequents, there exists an arrow � → τs(V)
in the free FILL-category.

Proof. We will prove this for a single sequent first, by induction on its size. The base case
is the sequent ⋅ ⇒ ⋅, whose τs-translation is I ⊸ �. The existence of an arrow � → I ⊸ � is,
by Lem. 23, equivalent to the existence of �⊗ I → �; this is the unit arrow ρ. The induction
case involves the sequent ⋅ → T1, . . . , Tl, with each Ti hollow; the required arrow exists by
composing the arrows given by the induction hypothesis with � → �`⋯` �. The multiset
case then follows easily by considering the cases where V is empty and non-empty. J

I Lemma 26. Given a multiset T ∈ T1 ● T2 of sequents and formulae, there is an arrow
τs(T1)` τs(T2) → τs(T ) in the free FILL-category.

Proof. We prove this for a single sequent first, by induction on its size. The base case
requires an arrow (Γ1 ⊸ ∆1)` (Γ2 ⊸ ∆2) → Γ1 ⊗ Γ2 ⊸ ∆1 ` ∆2 (ref. Lem. 14), which
exists by Lem. 23(ii) and (i). The induction case follows similarly. The multiset case then
follows easily by considering the cases where T is empty and non-empty. J
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I Lemma 27. Take X[ ] ∈ X1[ ] ●X2[ ] and T ∈ T1 ● T2. Then the following arrows exist
in the free FILL-category for all A,B,Γ1 and Γ2:
(i) τs(X1[Γ1 ⇒ A,T1]) ⊗ τs(X2[Γ2 ⇒ B,T2]) → τs(X[Γ1,Γ2 ⇒ A⊗B,T ]);
(ii) τs(X1[Γ1 ⇒ A,T1]) ⊗ τs(X2[Γ2,B ⇒ T2]) → τs(X[Γ1,Γ2,A⊸ B ⇒ T ]);
(iii) τs(X1[Γ1,A⇒ T1]) ⊗ τs(X2[Γ2,B ⇒ T2]) → τs(X[Γ1,Γ2,A`B ⇒ T ]);

Proof. All three cases follow by induction on the size of X[ ]. In all three cases the induction
step is easy, and so we focus on the base cases. By Lem. 23 the base case for (i) requires an
arrow:

(Γ1 ⊸ A` T1) ⊗ (Γ2 ⊸ B ` T2) ⊗ Γ1 ⊗ Γ2 → (A⊗B)` T . (4)

By the ‘evaluation’ arrows ε there is an arrow from the left hand side of (4) to (A` T1) ⊗
(B`T2). Composing this with weak distributivity takes us to ((A`T1)⊗B)`T2, and then
to (A⊗B)` T1 ` T2. Lem. 26 completes the result. The base cases for (ii) and (iii) follow
by similar arguments (App. B). J

I Theorem 28. For every rule of FILLdn, if the premises are FILL-valid then so is the
conclusion.

Proof. As FILL-sequents nest no sequents to the left of⇒, we can modify the rules of Fig. 5
to replace the multisets S,S ′ of sequents and formulae with multisets Γ,Γ′ of formulae only,
and remove the hollow multisets of sequents U entirely (see App. B).

Therefore by Lem. 24 the soundness of pl1 amounts to the existence in the free FILL-
category of an arrow

Γ⊸ (A⊗ Γ′ ⊸ T ′)` T → Γ⊗A⊸ (Γ′ ⊸ T ′)` T .
This follows by two uses of Lem. 23(i). Similarly pr2 requires an arrow

Γ⊸ T `A` (Γ′ ⊸ T ′) → Γ⊸ T ` (Γ′ ⊸ T ′ `A)

which exists by Lem. 23(ii).
idd: by induction on the size of X[ ]. The base case requires an arrow I → p ⊸ p` V,

which exists by Lems. 25 and 23. Induction involves a sequent ⋅ ⇒X[p⇒ p,V],T ′, with T ′
hollow, and hence requires an arrow I → I ⊸ X[p⇒ p,V]` T ′. By Lem. 23 and the arrow
I ⊗ I → I we need an arrow I → X[p ⇒ p,V] ` T ′; by the induction hypothesis we have
I →X[p⇒ p,V]; this extends to I →X[p⇒ p,V]` �; Lem. 25 completes the proof.

�dl : by another induction on X[ ]. The base case I → �⊸ V follows by Lems. 23 and 25;
induction follows as with idd.

�dr : By Lem. 24 and the unit property of �.
Idl : By Lem. 24 we need an arrow (Γ⊸ T )⊗Γ⊗ I → T ; this exists by the unit property

of I and the ‘evaluation’ arrow ε.
Idr : another induction on X[ ]. The base case arrow I → I ⊸ I ` V exists by Lems. 23

and 25; induction follows as with idd.
⊗dl , ⊸d

r , and `dr are trivial by the formula translation.
⊗dr : compose the arrow I → I⊗I with the arrows defined by the validity of the premises,

then use Lem. 27(i). ⊸d
l and `dr follow similarly via Lem. 27(ii) and (iii). J

I Theorem 29. A FILL-formula is FILL-valid iff it is FILLdn-provable, and BiILL is con-
servative over FILL.

Proof. By Cors. 9 and 20 and Thms. 22 and 28. J
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Note that it is also possible to prove soundness of FILLdn w.r.t. FILL syntactically, i.e.,
via a translation into Schellinx’s sequent calculus for FILL [26]. See [10] for details.

Thm. 29 gives us a sound and complete calculus for FILL that enjoys a genuine subfor-
mula property. This in turn allows one to prove NP-completeness of the tautology problem
for FILL (i.e., deciding whether a formula is provable or not), as we show next. The com-
plexity does not in fact change even when one adds exclusion to FILL.

I Theorem 30. The tautology problems for BiILL and FILL are NP-complete.

Proof. (Outline.) Membership in NP is proved by showing that every cut-free proof of a
formula A in BiILLdn can be checked in PTIME in the size of A. This is not difficult to
prove given that each connective in A is introduced exactly once in the proof. NP-hardness is
proved by encoding Constants-Only MLL (COMLL), which is NP-hard [23], in FILLdn. J

5 Conclusion

We have given three cut-free sequent calculi for FILL without complex annotations, showing
that, far from being a curiosity that demands new approaches to proof theory, FILL is in a
broad family of linear and substructural logics captured by display calculi.

Various substructural logics can be defined by using a (possibly non-associative or non-
commutative) multiplicative conjunction and its left and right residual(s) (implications).
Many of these logics have cut-free sequent calculi with comma-separated structures in the
antecedent and a single formula in the succedent. Each of these logics has a dual logic with
disjunction and its residual(s) (exclusions); their proof theory requires sequents built out of
comma-separated structures in the succedent and a single formula in the antecedent. These
logics can then be combined using numerous “distribution principles” [19, 25], of which weak
distributivity is but one example. However, obtaining an adequate sequent calculus for these
combinations is often non-trivial. On the other hand, display calculi for these logics, their
duals, and their combinations, are extremely easy to obtain using the known methodology
for building display calculi [3, 16]. We followed this methodology to obtain BiILL in this
paper, but needed a conservativity result to ensure the resulting calculus BiILLdc was sound
for FILL. We finally note some specific variations on FILL deserving particular attention.
Grishin (a). Adding the converse of Grishin (b) to FILL recovers MLL. For example
(B ⊸ �) ` C ⊢ B ⊸ C is provable using Grn(b), but its converse requires Grn(a). Thus
there is another ‘full’ non-classical extension of MILL with Grishin (a) as its interaction
principle instead of (b). We do not know what significance this logic may have.
Mix rules. It is easy to give structural rules for the mix sequents A,B ⊢ A,B and Φ ⊢ Φ
which have been studied in FILL [12, 1] and so it is natural to ask if the results of this paper
can be extended to them. Intriguingly, our new structural connectives suggest a new mix
rule with sequent form A < B ⊢ B > A which, given Grishin (b), is stronger than the mix
rule for comma (given Grishin (a), it is weaker).
Exponentials. Adding exponentials [5] to our display calculus for FILL may be possible [2].
Additives. While it has been suggested that FILL could be extended with additives, the
only attempt in the literature is erroneous [15]. It is not clear how easy this extension would
be [8, Sec. 1]; it is certainly not straightforward with the display calculus. The problem
is most easily seen through the categorical semantics: additive conjunction ∧ and its unit
⊺ are limits, and p ` - is a right adjoint in BiILL but is not necessarily so in FILL. But
right adjoints preserve limits. Then BiILL plus additives is not conservative over FILL plus
additives, because the sequents (p`q)∧(p`r) ⊢ p, (q∧r) and ⊺ ⊢ p,⊺ are valid in the former
but not the latter, despite the absence of * or <. We are currently investigating solutions.
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Propagation rules:

X[Γ⇒ (A,Γ′ ⇒ T ′),T ]
X[Γ,A⇒ (Γ′ ⇒ T ′),T ]

pl1
X[Γ⇒ T ,A, (Γ′ ⇒ T ′)]
X[Γ⇒ T , (Γ′ ⇒ T ′,A)]

pr2

Identity and logical rules: In branching rules, X[ ] ∈X1[ ] ●X2[ ] and T ∈ T1 ● T2.

X[ ] and V are hollow.
X[p⇒ p,V] idd

X[ ] and V are hollow.
X[� ⇒ V] �d

l

X[Γ⇒ T ]
X[Γ⇒ T ,�] �d

r

X[Γ⇒ T ]
X[Γ, I⇒ T ] Id

l

X[ ] and V are hollow.
X[⋅ ⇒ I,V] Id

r

X[Γ,A,B ⇒ T ]
X[Γ,A⊗B ⇒ T ] ⊗d

l

X1[Γ1 ⇒ A,T1] X2[Γ2 ⇒ B,T2]
X[Γ1,Γ2 ⇒ A⊗B,T ] ⊗d

r

X1[Γ1 ⇒ A,T1] X2[Γ2,B ⇒ T2]
X[Γ1,Γ2,A⊸ B ⇒ T ] ⊸d

l

X[Γ⇒ T , (A⇒ B)]
X[Γ⇒ T ,A⊸ B] ⊸d

r

X1[Γ1,A⇒ T1] X2[Γ2,B ⇒ T2]
X[Γ1,Γ2,A`B ⇒ T ] `d

l

X[Γ⇒ A,B,T ]
X[Γ⇒ A`B,T ] `d

r

Figure 7 The deep inference system FILLdn.

A Display Calculus

We outline the conditions that are easily checked to confirm that display calculi enjoy cut-
admissibility (Thm. 4):

IDefinition 31 (Belnap’s Conditions C1-C8). The set of display conditions appears in various
guises in the literature. Here we follow the presentation given in Kracht [22].
(C1) Each formula variable occurring in some premise of a rule ρ is a subformula of some

formula in the conclusion of ρ.
(C2) Congruent parameters is a relation between parameters of the identical structure vari-

able occurring in the premise and conclusion sequents.
(C3) Each parameter is congruent to at most one structure variable in the conclusion.

Equivalently, no two structure variables in the conclusion are congruent to each other.
(C4) Congruent parameters are either all antecedent or all succedent parts of their respective

sequent.
(C5) A formula in the conclusion of a rule ρ is either the entire antecedent or the entire

succedent. Such a formula is called a principal formula of ρ.
(C6/7) Each rule is closed under simultaneous substitution of arbitrary structures for con-

gruent parameters.
(C8) If there are rules ρ and σ with respective conclusions X ⊢ A and A ⊢ Y with formula

A principal in both inferences (in the sense of C5) and if cut is applied to yield X ⊢ Y ,
then either X ⊢ Y is identical to either X ⊢ A or A ⊢ Y ; or it is possible to pass from
the premises of ρ and σ to X ⊢ Y by means of inferences falling under cut where the
cut-formula always is a proper subformula of A.

B Conservativity of BiILL over FILL

Fig. 7 explicitly gives the proof rules for FILLdn, the nested sequent calculus with deep
inference for FILL. These are easily derived from BiILLdn (Fig. 5).
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Proof of Lemma 23. This is basic category theory; we give one example to illustrate the
techniques used. Given an arrow f ∶ A ⊗ B → C, we get a new arrow A → B ⊸ C by
composing B ⊸ f with the ‘co-evaluation’ arrow η ∶ A→ B ⊸ (A⊗B). J

Proof of Lemma 24. By induction on the size of X[ ]. The base case, where X[ ] is a hole,
is trivial. The induction case involves a context Γ⇒X[ ],T and hence requires an arrow

Γ⊸X[S]` T → Γ⊸X[T ]` T .
This exists by the induction hypothesis and the inductive definitions of Lem. 6. The validity
of X[S] then transfers to X[T ] via composition with the arrow I →X[S]. J

Proof of Lemma 27(ii) and (iii). (ii): The base case requires an arrow

(Γ1 ⊸ A` T1) ⊗ (Γ2 ⊗B ⊸ T2) ⊗ Γ1 ⊗ Γ2 ⊗ (A⊸ B) → T . (5)

Applying an evaluation to the left of (5) gives (A` T1) ⊗ (Γ2 ⊗B ⊸ T2) ⊗ Γ2 ⊗ (A ⊸ B);
weak distributivity gives T1 ` (A ⊗ (Γ2 ⊗B ⊸ T2) ⊗ Γ2 ⊗ (A ⊸ B)); two more evaluations
give T1 ` T2 and Lem. 26 completes the result.

(iii): The base case requires an arrow

(Γ1 ⊗A⊸ T1) ⊗ (Γ2 ⊗B ⊸ T2) ⊗ Γ1 ⊗ Γ2 ⊗ (A`B) → T . (6)

Two applications of weak distributivity map the left of (6) to

((Γ1 ⊗A⊸ T1) ⊗ Γ1 ⊗A)` ((Γ2 ⊗B ⊸ T2) ⊗ Γ2 ⊗B).

Two evaluations and Lem. 26 complete the result. J

C Annotated Sequent Calculi Proofs

On the next page we present cut-free proofs of the Bierman example (2) in the style of the
three cut-free annotated sequent calculi in the literature: that due to Bierman [4]; that due
to Bellin reported in [4], and that due to Bräuner and de Paiva [6]. Note that all three
proofs contain the same sequence of proof rules; strip out the annotations and they are
MLL proofs of the sequent. The difference between the calculi lies in the nature of their
annotations, all of which come into play to verify that the final rule application, of (⊸ R),
is legal. The reader is invited to compare these proofs to those presented in the paper using
display calculus (Fig. 2) and deep inference (Fig. 6).
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