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Abstract
In this paper we present strong normalisation proofs using a technique of non-deterministic
translations into Klop’s extended λ-calculus. We first illustrate the technique by showing strong
normalisation of a typed calculus that corresponds to natural deduction with general elimination
rules. Then we study its explicit substitution version, the type-free calculus of which does not
satisfy PSN with respect to reduction of the original calculus; nevertheless it is shown that typed
terms are strongly normalising with respect to reduction of the explicit substitution calculus. In
the same framework we prove strong normalisation of Sørensen and Urzyczyn’s cut-elimination
system in intuitionistic sequent calculus.
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1 Introduction

It is common to prove strong normalisation of a reduction system by a mapping into a
set equipped with a well-founded order, e.g. (N, >). In the field of λ-calculus, it is also
common to use a translation from terms of a calculus into λ-terms that are known to be
strongly normalising, e.g. simply typed λ-terms. Such a translation is usually a (deterministic)
function, and sometimes gives rise to difficulty in preserving a reduction step of the original
calculus in one or more reduction steps of λ-calculus, in particular when the translation
involves substitution.

In [19, 20], Lengrand developed a technique to cope with this sort of problem, where
the translation from terms of the original calculus is not into λ-terms but into λI[,]-terms
of [18] with additional pairing constructs. Moreover, it is defined to be non-deterministic
(i.e. to be a relation rather than a function) so that an arbitrary term can be added as the
second element of the pairing constructs inserted at random places. One can thus retain
those terms which would disappear if translated by a function, and preserve reduction steps
that take place within those terms. (For a survey on different techniques concerning λI[,] to
infer normalisation properties, see, e.g. [8].)

In this paper we first illustrate the technique by proving strong normalisation of typed
terms of a calculus that corresponds to natural deduction with general elimination rules [26].
Although the same result has already been shown by different methods (e.g. [12, 22, 24]),
our proof will help the reader to understand the contents of the later part of the paper with
results that have not been obtained by those methods.
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In the latter half of the paper, we apply the technique to systems with explicit sub-
stitutions [1]. We study a modification of the explicit substitution calculus introduced by
Nakazawa [22], for which he mentioned the difficulty in proving strong normalisation of typed
terms. We explain why the method in [22] does not work for the modified system, and prove
strong normalisation of typed terms using a non-deterministic translation into λI[,]-calculus.
The proof method provides a general framework for showing strong normalisation of systems
with various reduction rules on the same terms, which include proof terms for intuitionistic
sequent calculus. We illustrate the framework with an extension of Sørensen and Urzyczyn’s
cut-elimination system [27].

Since Melliès [21] gave an unexpected counter-example, strong normalisation for explicit
substitution calculi has been widely studied. For composition-free systems, the methods
in [6, 4, 5] are standard. They work even for type-free calculi to prove the Preservation of
Strong Normalisation (PSN) property, which states that if a term is strongly normalising in
the original calculus without explicit substitutions then it is also strongly normalising in the
explicit substitution calculus. This property, however, does not hold for the calculi we treat
in this paper. So we use techniques from [19, 20] to prove strong normalisation of typed terms
in the explicit substitution calculus, without relying on the result of the original calculus.
A similar proof can be found in [16] for the restricted case of proof terms for intuitionistic
sequent calculus. In this paper, the definition of the non-deterministic translation is extended
and improved from the one in [16]. In [27], a method closely related to the one in [16] has
been developed. However, it introduces Klop’s pairing constructs not only for λ-terms but
also for proof terms for sequent calculus, which leads to complications.

In this paper we will refer to the modification of the system in [22] as λxg, which makes
substitution of the original calculus λg explicit in the style of λx [6]. As mentioned above,
the calculus λxg does not satisfy PSN with respect to λg, but it does not mean a flaw of λxg.
To put it briefly, the reason is that λg only implements some specific strategies. (For more
details, see Remark in Subsection 3.2.)

The main subject of the paper is the technique of non-deterministic translations into λI[,]-
calculus. The technique was originally developed for proving PSN of an explicit substitution
calculus with composition [14], and later applied to a local cut-elimination procedure that
simulates β-reduction [16]. However, the proofs for those systems are not so accessible
to readers who are working in other fields. In this paper we explain the key ideas of the
technique, separating them from the formalism of explicit substitution calculi. This amounts
to extending the range of application of the technique, e.g. to proof of strong normalisation
for λµ-calculus [25], solving the so-called erasing continuation problem [23]. (cf. [17])

The paper is organised as follows. In Section 2 we recall the definitions of λg-calculus
and λI[,]-calculus, and prove strong normalisation of typed λg-terms. In Section 3 we extend
the syntax of λg-calculus by explicit substitution, and prove strong normalisation of typed
terms by extending the method in Section 2. In Section 4 we apply the proof method to
Sørensen and Urzyczyn’s cut-elimination system.

2 Strong normalisation for λg-calculus

This section provides a survey of the method of proving strong normalisation through a
non-deterministic translation into Klop’s λI[,]-calculus. Although the original formalisation
by Lengrand was explained using an explicit substitution calculus with composition [14]
(which is the only example to which the technique is applied in [19, 20]), here we apply the
method to simply typed λg-calculus without explicit substitution.
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2.1 λg-calculus
λg-calculus is introduced as a term calculus corresponding to natural deduction with general
elimination rules [26]. It has been studied, e.g. in [11, 22]. Typed terms of the calculus can
also be seen as term representation of proofs in a fragment of intuitionistic sequent calculus.
We first define the syntax of the type-free version of the calculus.

I Definition 1 (Grammar of λg). The set Λg of terms of the λg-calculus is defined by the
following grammar:

M,N,P ::= x | λx.M |M [N, x.P ]

An element of Λg is called a λg-term. The notions of free and bound variables are defined as
usual, with an additional clause that the variable x in M [N, x.P ] binds the free occurrences
of x in P . The set of free variables of a λg-term M is denoted by FV(M). The symbol ≡
denotes syntactical equality modulo α-conversion, and { / } is used for usual capture-free
substitution.

I Definition 2 (Reduction system of λg). The reduction rules are:

(βg) (λx.M)[N, y.P ] → {{N/x}M/y}P
(πg) M [N, y.P ][N ′, y′.P ′] → M [N, y.P [N ′, y′.P ′]]

The reduction relation −→βg,πg is defined by the contextual closure of the rules (βg) and (πg).
We use −→+

βg,πg
for its transitive closure, and −→∗βg,πg

for its reflexive transitive closure.
The set of λg-terms that are strongly normalising with respect to −→βg,πg is denoted by
SNβg,πg . These kinds of notations are also used for the notions of other reductions in this
paper.

The type assignment system for λg-terms is defined by the rules in Figure 1. A typing
context is defined as a finite set of pairs {x1 : A1, . . . , xn : An} where the variables are
pairwise distinct. The typing context Γ, x : A denotes the union Γ ∪ {x : A} where x does
not appear in Γ . We write Γ `λg

M :A if Γ `M : A is derivable with the rules of Figure 1.
We also write Γ `λ t :A if Γ ` t : A is derivable with the standard rules of the simply typed
λ-calculus.

Γ, x : A ` x : A (Var) Γ, x : A `M : B
Γ ` λx.M : A→ B

(Abs)

Γ `M : A→ B Γ ` N : A Γ, y : B ` P : C
Γ `M [N, y.P ] : C

(GApp)

Figure 1 Type assignment system for λg-terms.

The reduction rules (βg) and (πg), when applied to typed terms, correspond to trans-
formation of typing derivations. In Figure 2 we show the transformation corresponding
to (πg).

2.2 λI[,]-calculus
In this subsection we recall the definition and some properties of Klop’s extended λ-calculus,
which is referred to as λI[,] in [18].

CSL’13
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Γ `M : A→ B Γ ` N : A Γ, y : B ` P : C → D

Γ `M [N, y.P ] : C → D Γ ` N ′ : C Γ, y′ : D ` P ′ : E
Γ `M [N, y.P ][N ′, y′.P ′] : E

is transformed into

Γ `M : A→ B Γ ` N : A
Γ, y : B ` P : C → D Γ ′ ` N ′ : C Γ ′, y′ : D ` P ′ : E

Γ, y : B ` P [N ′, y′.P ′] : E
Γ `M [N, y.P [N ′, y′.P ′]] : E

where Γ ′ = Γ, y : B and y : B is added by weakening.

Figure 2 Derivation transformation corresponding to (πg).

I Definition 3 (Grammar of λI[,]). The set ΛI[,] of terms of the λI[,]-calculus is defined by
the following grammar:

T,U ::= x | λx.T | T U | [T,U ]

with the additional restriction that every abstraction λx.T satisfies x ∈ FV(T ).

We denote lists of λI[,]-terms using vectors, and if −→T = T1, . . . , Tn then [U,−→T ] denotes
[. . . [U, T1], . . . , Tn] when n ≥ 1, and U when n = 0.

The following property is straightforward by induction on terms.

I Lemma 4 (Stability under substitution [18]).
If T,U ∈ ΛI[,], then {U/x}T ∈ ΛI[,].

I Definition 5 (Reduction system of λI[,]). The reduction rules are:

(β) (λx.T )U → {U/x}T
(π) [T,U ]T ′ → [T T ′, U ]

The following remark is straightforward [18]:

I Lemma 6. If T −→β,π T
′ then FV(T ) = FV(T ′) and {T/x}U−→+

β,π {T ′/x}U provided
that x ∈ FV(U).

Now we recall from [19, 20] an encoding of λ-calculus into λI[,]:

I Definition 7 (Encoding of λ-calculus into λI[,]). We encode the λ-calculus into λI[,] as
follows:

i(x) := x

i(λx.t) := λx.i(t) if x ∈ FV(t)
i(λx.t) := λx.[i(t), x] if x /∈ FV(t)
i(t u) := i(t)i(u)

Note that this encoding is different from Klop’s ι [18] in that the latter does not make the
case distinction for abstractions.

A crucial property of the encoding, on which all strong normalisation results in this paper
depend, is the following:

I Theorem 8 ([19, 20]). For any λ-term t, if t ∈ SNβ then i(t) ∈ SNβ,π.
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2.3 Strong normalisation of typed λg-terms
Our aim of this section is to show that all typed λg-terms are strong normalising with respect
to βg, πg-reduction. The result has already been proved in several ways (e.g. [12, 22, 24]), but
the strong normalisation results in later sections have not been obtained by those methods.

A naive attempt is to reduce the problem to the strong normalisation of β-reduction in
the simply typed λ-calculus, using the translation F that maps all terms M [N, y.P ] into
{F(M)F(N)/y}F(P ). However, this translation does not necessarily preserve one or more
reduction steps; for instance, if M −→βg,πg M ′ then M [N, y.z] −→βg,πg M ′[N, y.z], but
F(M [N, y.z]) ≡ z ≡ F(M ′[N, y.z]). So for our purpose some modification of the translation
is needed. Here we introduce the following one, taking account of the free occurrences of y
in P for M [N, y.P ].

I Definition 9 (Encoding of λg into λ-calculus). We encode the λg into λ-calculus as follows:

G(x) := x

G(λx.M) := λx.G(M)
G(M [N, y.P ]) := {G(M)G(N)/y}G(P ) if y ∈ FV(P )
G(M [N, y.P ]) := (λy.G(P ))(G(M)G(N)) if y /∈ FV(P )

Unfortunately, this encoding does not allow simulation of reduction.

I Example 10. Let M1 ≡ m[n, y.(λx.z)[y[z, w.w], v.v]] and N1 ≡ m[n, y.z]. Then M1 −→βg

N1 holds, but for their encodings G(M1) ≡ (λx.z)(mnz) and G(N1) ≡ (λy.z)(mn), the former
cannot reduce to the latter.

The above encoding will be used not for simulation of reduction but for the lifting of a
λg-term to be proved strongly normalising. For simulation, we use as the target calculus λI[,]

instead of λ-calculus, and the translation is now defined to be non-deterministic. In Figure 3
we give the inductive definition of the relation H between λg-terms and λI[,]-terms.

x H x
M H T N H U P H S
M [N, y.P ] H {T U/y}S

y ∈ FV(S)

M H T
λx.M H λx.T

x ∈ FV(T ) M H T
M H [T,U ]

U ∈ ΛI[,]

Figure 3 Relation between λg & λI[,].

I Lemma 11. If M H T , then
1. FV(M) ⊆ FV(T )
2. T ∈ ΛI[,]

3. x /∈ FV(M) and U ∈ ΛI[,] implies M H {U/x}T
4. {y/x}M H {y/x}T

I Example 12. M1 ≡ m[n, y.(λx.z)[y[z, w.w], v.v]] H (λx.[z, x])(mnz) andN1 ≡ m[n, y.z] H
[z,mnz] as shown in Figures 4 and 5. Note that (λx.[z, x])(mnz) β-reduces to [z,mnz] in
contrast with the encodings in Example 10. The point is that yz, which corresponds to
y[z, w.w] discarded by βg-reduction from M1, is retained in the λI[,]-term [z, yz] in Figure 5.

CSL’13
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m H m n H n

z H z
z H [z, x]

λx.z H λx.[z, x]
y H y z H z w H w

y[z, w.w] H {yz/w}w v H v

(λx.z)[y[z, w.w], v.v] H {(λx.[z, x])(yz)/v}v
m[n, y.(λx.z)[y[z, w.w], v.v]] H {mn/y}((λx.[z, x])(yz))

Figure 4 Derivation of m[n, y.(λx.z)[y[z, w.w], v.v]] H (λx.[z, x])(mnz).

m H m n H n
z H z

z H [z, yz]
m[n, y.z] H {mn/y}[z, yz]

Figure 5 Derivation of m[n, y.z] H [z,mnz].

Now our aim is to show that reduction in λg is simulated in λI[,] through H . For this
we need the following lemma.

I Lemma 13. If M H T and N H U , then {N/x}M H {U/x}T .

Proof. By induction on the derivation of M H T . Here we only consider the case where the
last applied rule of the derivation is

M ′ H T ′ N ′ H U ′ P H S
M ′[N ′, y.P ] H {T ′U ′/y}S

y ∈ FV(S)

Then we have

I.H.
{N/x}M ′ H {U/x}T ′

I.H.
{N/x}N ′ H {U/x}U ′

I.H.
{N/x}P H {U/x}S

{N/x}M ′[{N/x}N ′, y.{N/x}P ] H {{U/x}T ′{U/x}U ′/y}{U/x}S

≡

{N/x}(M ′[N ′, y.P ]) H {U/x}{T ′U ′/y}S

J

Now we are in a position to prove the simulation theorem in λI[,].

I Theorem 14 (Simulation in λI[,]). Suppose M H T .
1. If M −→βg N then there exists U such that N H U and T−→+

β,π U .
2. If M −→πg

N then N H T .

Proof. By induction on the derivation of M H T .
The case of the rule

x H x

is vacuous.
For the rule

M H T
M H [T,U ]

U ∈ ΛI[,]

we simply apply the induction hypothesis.
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For the rule
M H T

λx.M H λx.T
x ∈ FV(T )

the reduction must take place within M , so we can apply the induction hypothesis,
remembering that reduction in λI[,] preserves free variables (Lemma 6), so the side-
condition remains satisfied.
The interesting case is

M H T N H U P H S
M [N, y.P ] H {T U/y}S

y ∈ FV(S)

If the reduction takes place within M , N or P , we apply the induction hypothesis again,
and the side-condition remains satisfied. Moreover, a βg-reduction step in M or N is
simulated by at least one reduction step from T or U and that step is preserved in the
reduction of {T U/y}S since y ∈ FV(S).
Otherwise, the reduction takes place at the root. We inspect the two cases, noting that
the form of the last part of the derivation is determined by the redex.
1. (λx.M)[N, y.P ] −→βg

{{N/x}M/y}P . Then the derivation has the form

M H T
λx.M H λx.T

x ∈ FV(T )

λx.M H [λx.T,−→R ] N H U P H S

(λx.M)[N, y.P ] H {[λx.T,−→R ]U/y}S
y ∈ FV(S)

By applying Lemma 13 twice, we have

N H U M H T
{N/x}M H {U/x}T Lemma 13

{N/x}M H [{U/x}T,−→R ] P H S

{{N/x}M/y}P H {[{U/x}T,−→R ]/y}S
Lemma 13

Since y ∈ FV(S), we have {[λx.T,−→R ]U/y}S−→+
β,π {[{U/x}T,

−→
R ]/y}S as required.

2. M [N, y.P ][N ′, y′.P ′] −→πg
M [N, y.P [N ′, y′.P ′]]. In this case, the derivation has the

form
M H T N H U P H S
M [N, y.P ] H {T U/y}S

y ∈ FV(S)

M [N, y.P ] H [{T U/y}S,−→R ] N ′ H U ′ P ′ H S′

M [N, y.P ][N ′, y′.P ′] H {[{T U/y}S,−→R ]U ′/y′}S′
y′ ∈ FV(S′)

Then we have

M H T N H U

P H S

P H [S,−→R ] N ′ H U ′ P ′ H S′

P [N ′, y′.P ′] H {[S,−→R ]U ′/y′}S′
y′ ∈ FV(S′)

M [N, y.P [N ′, y′.P ′]] H {T U/y}{[S,−→R ]U ′/y′}S′
y ∈ FV(S′′)

≡

M [N, y.P [N ′, y′.P ′]] H {[{T U/y}S,−→R ]U ′/y′}S′

where S′′ ≡ {[S,−→R ]U ′/y′}S′. Since y′ ∈ FV(S′) and y ∈ FV(S), we have y ∈ FV(S′′).
J
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To prove the strong normalisation of any typed λg-term, we lift it to a λI[,]-term through
the encodings G and i.

I Lemma 15. For any λg-term M , there exists a λI[,]-term T such that M H T and
i(G(M))−→∗β,π T .

Proof. By induction on M . (For the details, see Appendix A.) J

Finally we show that πg-reduction is strongly normalising.

I Lemma 16. −→πg
is strongly normalising.

Proof. We define a map h : Λg −→ N as follows: h(x) := 1, h(λx.M) := h(M), and
h(M [N, y.P ]) := h(M) × (h(N) + h(P )). Then observe that if M −→πg N then h(M) >
h(N). J

Now we can prove the strong normalisation theorem of typed λg-terms.

I Theorem 17 (Strong normalisation).
For any λg-term M , if Γ `λg

M :A then M ∈ SNβg,πg .

Proof. Suppose there is an infinite βg, πg-reduction sequence from M . Since πg-reduction is
strongly normalising (Lemma 16), the sequence has infinitely many βg-reduction steps.

Now, from Γ `λg
M :A, we have Γ `λ G(M) :A, so by the strong normalisation of typed

λ-terms, G(M) ∈ SNβ . Hence by Theorem 8, i(G(M)) ∈ SNβ,π.
By Lemma 15, there is a λI[,]-term T such that M H T and i(G(M))−→∗β,π T . Then,

applying Theorem 14 to each βg, πg-reduction step of the infinite reduction sequence from
M , we have an infinite β, π-reduction sequence

T−→+
β,π T1−→+

β,π T2−→+
β,π · · ·

which is a contradiction. J

3 Strong normalisation for λxg-calculus

In the following we extend the syntax of λg-calculus by explicit substitution and study
properties of the calculus. Strong normalisation of typed terms is proved using an extension
of the non-deterministic translation in the previous section.

3.1 λxg-calculus
In this subsection we introduce a modification of the explicit substitution calculus in [22],
which we call λxg-calculus. As shown in [22], typed terms of the calculus are isomorphic to
proofs in intuitionistic sequent calculus modulo a term quotient. First we define the syntax
of the type-free calculus.

I Definition 18 (Grammar of λxg). The set Λxg of terms of the λxg-calculus is defined by
the following grammar:

M,N,P ::= x | λx.M |M [N, x.P ] | 〈M/x〉N

The notions of free and bound variables are extended from those for λg by the clause that
the variable x in 〈M/x〉N binds the free occurrences of x in N .



K. Kikuchi 403

I Definition 19 (Reduction system of λxg). The reduction rules are:

(1) 〈M/x〉y → y (x 6≡ y)
(2) 〈M/x〉x→M

(3) 〈M/x〉(λy.N)→ λy.〈M/x〉N
(4) 〈M/x〉(y[N, z.P ])→ y[〈M/x〉N, z.〈M/x〉P ] (x 6≡ y)
(5) 〈M/x〉(x[N, z.P ])→M [〈M/x〉N, z.〈M/x〉P ] (x ∈ FV([N, z.P ]))
(6) 〈M/x〉(Q[N, z.P ])→ (〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P ] (Q is not a variable)
(7) 〈M/x〉(x[N, z.P ])→M [N, z.P ] (x /∈ FV([N, z.P ]))
(B1) (λy.M)[N, z.P ]→ 〈N/y〉〈M/z〉P
(B2) (λy.M)[N, z.P ]→ 〈〈N/y〉M/z〉P
(Pi) M [N, z.P ][N ′, z′.P ′]→M [N, z.P [N ′, z′.P ′]]

The reduction relation −→λxg
is defined by the contextual closure of all the reduction rules.

We define two subsystems of λxg: the system B consists of the rules (B1) and (B2), and the
system x consists of the rules (1)-(7) and (Pi).
I Remark. The reduction rules of Λgx in [22] are the rules (1)-(7), (B1) and the following:

(Pi′) M [N, z.P ][N ′, z′.P ′]→M [N, z.〈P/x〉(x[N ′, z′.P ′])] (x /∈ FV([N ′, z′.P ′]))

Note that the system x in [22] does not include the above rule (Pi′), while our system x
includes the rule (Pi).

The type assignment system for λxg-terms is defined by the rules in Figure 1 and the
following:

Γ `M : A Γ, x : A ` N : B
Γ ` 〈M/x〉N : B

(Sub)

We write Γ `λxg
M :A if Γ `M : A is derivable with those rules.

When applied to typed terms, the reduction rules correspond to transformation of typing
derivations. In Figure 6 we show the transformation corresponding to (B1) and (B2).

Γ, y : A `M : B
Γ ` λy.M : A→ B Γ ` N : A Γ, z : B ` P : C

Γ ` (λy.M)[N, z.P ] : C
is transformed into

Γ ` N : A
Γ, y : A `M : B Γ, y : A, z : B ` P : C

Γ, y : A ` 〈M/z〉P : B
Γ ` 〈N/y〉〈M/z〉P : C

by (B1)

and
Γ ` N : A Γ, y : A `M : B

Γ ` 〈N/y〉M : B Γ, z : B ` P : C
Γ ` 〈〈N/y〉M/z〉P : C

by (B2)

Figure 6 Derivation transformation corresponding to (B1) and (B2).

3.2 Failure of PSN with respect to βg, πg-reduction
The main result of this paper is the strong normalisation theorem of typed λxg-terms. It has
been proved by Nakazawa [22] for the case where the reduction system does not include the

CSL’13
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rule (B2). He also mentioned the difficulty in proving strong normalisation in the presence of
(B2). In this subsection we explain why the method in [22] does not work for the system
with (B2).

A standard method of proving strong normalisation of explicit substitution calculi [6, 4, 5]
uses projection onto normal forms of the substitution subcalculus. Those normal forms are
terms without explicit substitution, and the proof relies on the strong normalisation result
of the original calculus without explicit substitution. Such a proof works even for type-free
calculi to show the property called Preservation of Strong Normalisation (PSN), which states
that if a term is strongly normalising with respect to reduction of the original calculus then
it is also strongly normalising in the explicit substitution calculus. However, this property
does not hold between λg-calculus and λxg-calculus.

I Example 20. λxg-calculus does not satisfy PSN with respect to βg, πg-reduction as the
following example shows. Let ω ≡ λy.y[y, v.v]. Then

ω[ω, z.x] −→βg {{ω/y}(y[y, v.v])/z}x ≡ x

Since this is the only βg, πg-reduction sequence from ω[ω, z.x], it is in SNβg,πg . However,

ω[ω, z.x] −→B2 〈〈ω/y〉(y[y, v.v])/z〉x
−→∗λxg

〈ω[ω, v.v]/z〉x
−→B2 · · ·

Hence ω[ω, z.x] /∈ SNλxg .

In spite of the above fact, strong normalisation of typed λxg-terms may be proved,
but then one cannot use a proof method that would yield at the same time PSN of the
type-free calculus with respect to βg, πg-reduction. Specifically, a standard method as in [22],
which projects λxg-terms onto λg-terms and relies on the result of strong normalisation of
βg, πg-reduction, does not work.

I Remark. An intended meaning of the βg-rule (λy.M)[N, z.P ] → {{N/y}M/z}P of λg-
calculus is that the function λy.M is applied to the argument N and then the result of
the application is passed to the continuation z.P . In the type-free case, the computation
of the application may not produce any result as seen in the example above, but even so,
the term {N/y}M is substituted for z in P ; in particular, when z does not occur free in
P , the term {N/y}M is discarded. This means that λg-calculus can not express a natural
operational semantics that passes to the continuation the result of the application after
computing it, but only implement some specific strategies. On the other hand, λxg-calculus
and other formalisms like λµµ̃ [7] allow for such a natural operational semantics. (Those
calculi do not satisfy PSN with respect to βg, πg-reduction, but they satisfy PSN with respect
to β-reduction in an isomorphic image of the λ-calculus through appropriate embeddings.)

3.3 Strong normalisation of typed λxg-terms
Our proof of strong normalisation of typed λxg-terms proceeds in a similar pattern to
Section 2 except for the treatment of explicit substitution. To deal with explicit substitution
we use another technique from [19, 20] with the notions of safe and minimal reductions.

I Definition 21. A reduction step is minimal if every proper subterm of the redex is in
SNλxg . A minimal reduction step is safe if the redex itself is in SNλxg , and unsafe if not.
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We can restrict infinite λxg-reduction sequences to those consisting only of minimal
reduction steps.

I Lemma 22. If M /∈ SNλxg then there exists an infinite λxg-reduction sequence starting
from M such that all the reduction steps are minimal.

Proof. It suffices to take in each reduction step an innermost redex of the ones that preserve
the possibility of infinite reduction. (Such a reduction sequence is called a minimal infinite
reduction sequence, e.g. in [3].) J

I Definition 23. Let h be a subsystem of λxg, and let M −→h N . We write M −→minh N

(resp. M −→safeh N) to denote that the reduction step M −→h N is minimal (resp. safe)
(where minimality is with respect to SNλxg and not for the subsystem h).

A crucial point of our proof is that we divide minimal reduction steps into two kinds:
One is those which are simulated in λI[,] so that one or more reduction steps are preserved,
as βg-reduction steps in Section 2. The other is those which are strongly normalising in
λxg and simulated in λI[,] where one or more reduction steps are not necessarily preserved,
as πg-reduction steps in Section 2. In this section we take unsafe B-reduction steps as the
former and the rest (i.e. reduction steps by −→safeB,minx) as the latter.

To show that −→safeB,minx is strongly normalising, we briefly recall the lexicographic path
ordering [13]. For a more detailed description and proofs, the reader is referred to, e.g. [2].

I Definition 24 (Lexicographic path ordering). Let � be a transitive and irreflexive ordering
on the set of function symbols in a first-order signature, and let s ≡ f(s1, . . . , sm) and
t ≡ g(t1, . . . , tn) be terms over the signature. Then s >lpo t, if one of the following holds:
1. si ≡ t or si >lpo t for some i = 1, . . . ,m,
2. f � g and s >lpo tj for all j = 1, . . . , n,
3. f ≡ g, s >lpo tj for all j = 1, . . . , n, and s1 ≡ t1, . . . , si−1 ≡ ti−1, si >lpo ti for some

i = 1, . . . ,m.

I Theorem 25. >lpo is well-founded if and only if � is well-founded.

Now we encode λxg-terms into a first-order syntax given by the following ordered infinite
signature:

sub(_,_) � gapp(_,_,_) � abs(_) � c(m,n)

where for everym,n ∈ N, there is a constant c(m,n). Those constants are all below abs(_), and
the precedence between them is given by c(m,n) � c(m′,n′) if (m,n) > (m′, n′) lexicographically.
Then the precedence relation is well-founded, and so >lpo induced on the first-order terms is
also well-founded.

Let M be a λxg-term with M ∈ SNλxg . We define w(M) as (maxred(M), |M |) where
maxred(M) is the maximal length of all λxg-reduction sequences starting from M , and |M |
is the size of M . Then the aforementioned encoding is given in Figure 7.

I Lemma 26. If M −→safeB,minx M ′ then M >lpo M ′. Hence, −→safeB,minx is strongly
normalising.

Proof. By induction on the derivation of the reduction step. For the details, see Appendix B.
J

The relation H between λxg-terms and λI[,]-terms is inductively defined by the rules in
Figure 3 and the following:

M H T N H U
〈M/x〉N H {T/x}U x ∈ FV(U) ∨M ∈ SNλxg
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M := cw(M) if M ∈ SNλxg

otherwise
λx.M := abs(M)
M [N, y.P ] := gapp(M,N,P )
〈M/x〉N := sub(M,N)

Figure 7 Encoding of λxg into a first-order syntax.

The side-condition of the above rule is designed so that an unsafe B-reduction step in M is
simulated by at least one reduction step in {T/x}U (cf. the first paragraph of page 413). It
is also closely related to the notion of decent term in [27, Definition 4.4]. Note that in the
presence of the above rule, Lemma 11 (0a) no longer holds.

I Theorem 27 (Simulation in λI[,]). Suppose M H T .
1. If M −→minB N and the reduction step is unsafe then there exists U such that N H U

and T−→+
β,π U .

2. If M −→minB N and the reduction step is safe then there exists U such that N H U

and T−→∗β,π U .
3. If M −→minx N then N H T .

Proof. By induction on the derivation of M H T . A detailed proof is found in Appendix B.
J

I Definition 28 (Encoding of λxg into λ-calculus). We encode λxg into λ-calculus, extending
the definition of G (Definition 9) by

G(〈M/x〉N) := {G(M)/x}G(N) if x ∈ FV(N)
G(〈M/x〉N) := (λx.G(N))G(M) if x /∈ FV(N)

As in the previous section, we lift any λxg-term to a λI[,]-term through G and i.

I Lemma 29. For any λxg-term M , there exists a λI[,]-term T such that M H T and
i(G(M))−→∗β,π T .

Proof. By induction on M . (For the details, see Appendix B.) J

Now we can prove the strong normalisation theorem of typed λxg-terms.

I Theorem 30 (Strong normalisation).
For any λxg-term M , if Γ `λxg

M :A then M ∈ SNλxg .

Proof. Suppose M /∈ SNλxg . Then by Lemma 22, there exists an infinite λxg-reduction
sequence starting from M such that all the reduction steps are minimal. Since −→safeB,minx is
strongly normalising (Lemma 26), the sequence has infinitely many unsafe B-reduction steps.

Now, from Γ `λxg
M :A, we have Γ `λ G(M) :A, so by the strong normalisation of typed

λ-terms, G(M) ∈ SNβ . Hence by Theorem 8, i(G(M)) ∈ SNβ,π.
By Lemma 29, there is a λI[,]-term T such that M H T and i(G(M))−→∗β,π T . Then,

applying Theorem 27 to each minimal reduction step of the infinite λxg-reduction sequence
from M , we have an infinite β, π-reduction sequence, which is a contradiction. J
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4 Application to other systems

The proof method in the previous section provides a general framework for showing strong
normalisation of systems on λxg-terms with various reduction rules. In this section we
illustrate that with an extension of Sørensen and Urzyczyn’s cut-elimination system in
intuitionistic sequent calculus [27].

I Definition 31 (Reduction system of λxSU
g ). The reduction rules of λxSU

g are the rules (1)-(4)
of λxg (Definition 19) and the following:

(8) 〈y/x〉(x[N, z.P ])→ 〈y/x〉(y[N, z.P ])
(9) 〈y[N, z.P ]/x〉(x[N ′, z′.P ′])→ y[N, z.〈P/x〉(x[N ′, z′.P ′])]
(B3) 〈λy.M/x〉(x[N, z.P ])→ 〈λy.M/x〉〈〈N/y〉M/z〉P

The reduction relation −→λxSU
g

is defined by the contextual closure of those reduction rules.
The subsystem xSU consists of the rules (1)-(4), (8) and (9).
I Remark. The reduction rules of the system in [27, page 920] are the same as those of λxSU

g ,
but the terms are restricted to those such that M is a variable in M [N, y.P ].

The notions of minimal, safe and unsafe reductions and the encoding into the first-order
syntax are defined as in the case of λxg. We define d(M) as the number of subterms of
M that have the form 〈y/x〉(x[N, z.P ]). Then we can prove the following lemma and the
simulation theorem.

I Lemma 32. Let h := safeB3,minxSU. If M −→h M
′ then M >lpo M ′ or M = M ′ and

d(M) > d(M ′). Hence, −→h is strongly normalising.

Proof. By induction on the derivation of the reduction step. J

I Theorem 33 (Simulation in λI[,]). Suppose M H T .
1. If M −→minB3 N and the reduction step is unsafe then there exists U such that N H U

and T−→+
β,π U .

2. If M −→minB3 N and the reduction step is safe then there exists U such that N H U

and T−→∗β,π U .
3. If M −→minxSU N then N H T .

Proof. By induction on the derivation of M H T . J

Using the above lemma and theorem, we can prove strong normalisation of typed λxg-terms
with respect to reduction of λxSU

g .

I Theorem 34 (Strong normalisation).
For any λxg-term M , if Γ `λxg

M :A then M ∈ SNλxSU
g .

Proof. Similar to the proof of Theorem 30. J

Since proof terms for intuitionistic sequent calculus have the same type in the type
assignment system of [27] and in ours, it follows that the cut-elimination procedure is
strongly normalising.

As we have seen, in our framework, proving strong normalisation of systems with various
reduction rules on λxg-terms consists in

taking an appropriate subsystem h that is strongly normalising, as in Lemma 32
proving the simulation theorem in λI[,]
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In the case of λxg and λxSU
g , we can in fact prove a stronger result than Theorems 30

and 34 that typed λxg-terms are strongly normalising with respect to −→λxg,λxSU
g
, taking

h := safe(B,B3),min(x, xSU).

5 Conclusion and related work

We have presented proofs of strong normalisation of typed terms using non-deterministic
translations into Klop’s λI[,]-calculus. The method has worked for the explicit substitution
calculus in [22] extended with the rule (B2) as well as the cut-elimination system in [27].
The proof method provides a general framework for showing strong normalisation of various
reduction systems on λxg-terms.

As regards related work, the CGPS-translation [22, 9] has been used for proving strong
normalisation of calculi that correspond to proof systems with general elimination rules.
(Those calculi do not have step-by-step reduction of explicit substitutions.) It aims to
simulate every reduction step of the calculi by at least one β-reduction step in the λ-calculus.
On the other hand, the method in this paper makes such reduction steps as few as possible,
i.e., in the case of λxg, only unsafe B-reduction steps have to be simulated by at least one
β, π-reduction step in λI[,] (cf. the remark after Definition 23). This is an essential part of
our proof of strong normalisation for explicit substitution calculi.

The cut-elimination system in [27] is not intended to simulate β-reduction and was so
far difficult to classify among, and relate to, other cut-elimination procedures for sequent
calculus. Our proof of strong normalisation in the general framework helps to shed some
light on such an exotic system. The strong normalisation proof in [27] introduces Klop’s
pairing constructs not only for λ-terms but also for proof terms for sequent calculus. This
leads to complications, and in this sense, our approach is simpler than theirs.

Recent work by Espírito Santo and Pinto [10] has introduced some variants of intuitionistic
sequent calculi (without step-by-step reduction of explicit substitutions). Reduction of those
calculi is directly simulated by the explicit substitution calculus in [15], so that strong
normalisation of the calculi follows from that of the calculus in [15]. On the other hand, the
explicit substitution calculi we studied in this paper do not seem to be directly simulated
by the calculus in [15], since it is not easy to simulate a local cut-elimination procedure in
sequent calculus by an explicit substitution calculus for the usual λ-calculus.
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A Proof in Section 2

In this appendix we give a proof of Lemma 15 in Section 2.
First, note the following facts:
For any λg-term M , FV(G(M)) = FV(M).
For any λ-term t, FV(i(t)) = FV(t).
For any λ-terms t and u, i({u/x}t) = {i(u)/x}i(t).

I Lemma 15. For any λg-term M , there exists a λI[,]-term T such that M H T and
i(G(M))−→∗β,π T .

Proof. By induction on M . The case where M is a variable is straightforward. We consider
the remaining two cases.

For λx.M , we have

i(G(λx.M)) = i(λx.G(M)) =
{
λx.i(G(M)) if x ∈ FV(G(M))
λx.[i(G(M)), x] if x /∈ FV(G(M))

By the induction hypothesis, there is a λI[,]-term T such thatM H T and i(G(M))−→∗β,π T .
If x ∈ FV(G(M)) then i(G(λx.M)) = λx.i(G(M))−→∗β,π λx.T , and since FV(G(M)) =
FV(i(G(M))) = FV(T ), we have x ∈ FV(T ). From M H T , we have λx.M H λx.T .
If x /∈ FV(G(M)) then i(G(λx.M)) = λx.[i(G(M)), x]−→∗β,π λx.[T, x]. From M H T ,
we have M H [T, x], and hence λx.M H λx.[T, x].

For M [N, y.P ], we have

i(G(M [N, y.P ])) =
{
{i(G(M)) i(G(N))/y}i(G(P )) if y ∈ FV(P )
(λy.[i(G(P )), y])(i(G(M)) i(G(N))) if y /∈ FV(P )

By the induction hypothesis, there are λI[,]-terms T , U and S such that (a) M H T and
i(G(M))−→∗β,π T , (b) N H U and i(G(N))−→∗β,π U , and (c) P H S and i(G(P ))−→∗β,π S.

If y ∈ FV(P ) then i(G(M [N, y.P ])) = {i(G(M)) i(G(N))/y}i(G(P ))−→∗β,π {T U/y}S.
Since FV(P ) = FV(i(G(P ))) = FV(S), we have y ∈ FV(S). Hence, from (a), (b) and
(c), we have M [N, y.P ] H {T U/y}S.
If y /∈ FV(P ) then i(G(M [N, y.P ])) = (λy.[i(G(P )), y])(i(G(M)) i(G(N)))−→∗β,π
(λy.[S, y])(T U) −→β {T U/y}[S, y]. From (c), we have P H [S, y] and hence
M [N, y.P ] H {T U/y}[S, y].

J

B Proofs in Section 3

In this appendix we give proofs of Lemmas 26 and 29, and Theorem 27 in Section 3.
In the proof below we use the following fact:
If N is a proper subterm of M then w(M) > w(N) and hence cw(M) > cw(N).

I Lemma 26. If M −→safeB,minx M ′ then M >lpo M ′. Hence, −→safeB,minx is strongly
normalising.

Proof. By induction on the derivation of the reduction step. First we consider the cases
where the reduction takes place at the root. If the reduction step is safe, i.e. if the redex
itself is in SNλxg , then M ≡ cw(M) >lpo cw(M ′) ≡ M ′. So let the reduction step be −→minx
where the redex is not in SNλxg .
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(1) 〈M/x〉y −→minx y (x 6≡ y)

LHS : 〈M/x〉y = sub(M,y)

RHS : y = y

(2) 〈M/x〉x −→minx M

LHS : 〈M/x〉x = sub(M,x)

RHS : M = M

(3) 〈M/x〉(λy.N) −→minx λy.〈M/x〉N

LHS : 〈M/x〉(λy.N) = sub(M,λy.N)

= sub(M, cw(λy.N))

RHS : λy.〈M/x〉N = abs(〈M/x〉N)

= abs(sub(M,N))

= abs(sub(M, cw(N)))

(4) 〈M/x〉(y[N, z.P ]) −→minx y[〈M/x〉N, z.〈M/x〉P ] (x 6≡ y)

LHS : 〈M/x〉(y[N, z.P ]) = sub(M,y[N, z.P ])

= sub(M, cw(y[N,z.P ]))

RHS : y[〈M/x〉N, z.〈M/x〉P ] ≤ gapp(y, 〈M/x〉N, 〈M/x〉P )

≤ gapp(y, sub(M,N), sub(M,P ))

= gapp(cw(y), sub(M, cw(N)), sub(M, cw(P )))
where ≤ is used for = ∪ <lpo to deal with the cases where some of the subterms of RHS
are already in SNλxg , in which cases those subterms M are encoded as cw(M).

(5) 〈M/x〉(x[N, z.P ]) −→minx M [〈M/x〉N, z.〈M/x〉P ] (x ∈ FV([N, z.P ]))

LHS : 〈M/x〉(x[N, z.P ]) = sub(M,x[N, y.P ])

= sub(M, cw(x[N,y.P ]))

RHS : M [〈M/x〉N, z.〈M/x〉P ] ≤ gapp(M, 〈M/x〉N, 〈M/x〉P )

≤ gapp(M, sub(M,N), sub(M,P ))

= gapp(M, sub(M, cw(N)), sub(M, cw(P ))))

(6) 〈M/x〉(Q[N, z.P ]) −→minx (〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P ] (Q is not a variable)

LHS : 〈M/x〉(Q[N, z.P ]) = sub(M,Q[N, y.P ])

= sub(M, cw(Q[N,y.P ]))

RHS : (〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P ] ≤ gapp(〈M/x〉Q, 〈M/x〉N, 〈M/x〉P )

≤ gapp(sub(M,Q), sub(M,N), sub(M,P ))

= gapp(sub(M, cw(Q)), sub(M, cw(N)), sub(M, cw(P )))

(7) 〈M/x〉(x[N, z.P ]) −→minx M [N, z.P ] (x /∈ FV([N, z.P ]))

LHS : 〈M/x〉(x[N, z.P ]) = sub(M,x[N, z.P ])

= sub(M, cw(x[N,z.P ]))

RHS : M [N, z.P ] ≤ gapp(M,N,P )

= gapp(M, cw(N), cw(P ))
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(Pi) M [N, z.P ][N ′, z′.P ′] −→minx M [N, z.P [N ′, z′.P ′]]

LHS : M [N, z.P ][N ′, z′.P ′] = gapp(M [N, z.P ], N ′, P ′)

= gapp(cw(M [N,z.P ]), N ′, P ′)

RHS : M [N, z.P [N ′, z′.P ′]] ≤ gapp(M,N,P [N ′, z′.P ′])

≤ gapp(M,N, gapp(P ,N ′, P ′))

= gapp(cw(M), cw(N), gapp(cw(P ), N ′, P ′))

The cases where the reduction is not at the root are easily proved by the induction hypothesis,
since >lpo is context-closed. J

I Theorem 27 (Simulation in λI[,]). Suppose M H T .
1. If M −→minB N and the reduction step is unsafe then there exists U such that N H U

and T−→+
β,π U .

2. If M −→minB N and the reduction step is safe then there exists U such that N H U

and T−→∗β,π U .
3. If M −→minx N then N H T .

Proof. By induction on the derivation of M H T . Here we consider the cases where the
reduction takes place at the root and those where the derivation ends with the rule for explicit
substitution. (The other cases are proved in the same way as in the proof of Theorem 14.)

First we inspect the case where one of (B1), (B2) and (Pi) takes place at the root. Note
that, by minimality, M , N and P (in the rules below) are in SNλxg .
(B1) (λy.M)[N, z.P ] −→minB 〈N/y〉〈M/z〉P . In this case, the derivation has the form

M H T
λy.M H λy.T

y ∈ FV(T )

λy.M H [λy.T,−→R ] N H U P H S

(λy.M)[N, z.P ] H {[λy.T,−→R ]U/z}S
z ∈ FV(S)

Then we have

N H U

M H T

M H [T,−→R ] P H S

〈M/z〉P H {[T,−→R ]/z}S

〈N/y〉〈M/z〉P H {U/y}{[T,−→R ]/z}S ≡ {[{U/y}T,−→R ]/z}S

Since z ∈ FV(S), we have {[λy.T,−→R ]U/z}S−→+
β,π {[{U/y}T,

−→
R ]/z}S as required.

(B2) (λy.M)[N, z.P ] −→minB 〈〈N/y〉M/z〉P . In this case, the derivation has the same form
as the case (B1). Then we have

N H U M H T
〈N/y〉M H {U/y}T

〈N/y〉M H [{U/y}T,−→R ] P H S

〈〈N/y〉M/z〉P H {[{U/y}T,−→R ]/z}S

Again, since z ∈ FV(S), we have {[λy.T,−→R ]U/z}S−→+
β,π {[{U/y}T,

−→
R ]/z}S as required.

(Pi) M [N, z.P ][N ′, z′.P ′] −→minx M [N, z.P [N ′, z′.P ′]]. This case is proved in the same way
as the case (πg) in the proof of Theorem 14.
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Next we consider the case where the last applied rule of the derivation is
M H T N H U
〈M/x〉N H {T/x}U x ∈ FV(U) ∨M ∈ SNλxg

If the reduction takes place within M or N , we apply the induction hypothesis, remembering
that reduction in λI[,] preserves free variables (Lemma 6), so the side-condition remains
satisfied. Moreover, an unsafe B-reduction in M is simulated by at least one reduction step
from T . (Indeed, since the B-reduction is unsafe, we know that M /∈ SNλxg and hence we
must have x ∈ FV(U).) The simulating reduction step from T is therefore preserved in the
reduction of {T/x}U . This is the precise point where the distinction between safe and unsafe
reductions plays its role.

Otherwise, we have a (minimal) root reduction and the case analysis below inspects some
of the rules. Note that, by minimality, both M and N (in the rule above) are in SNλxg .
(1) 〈M/x〉y −→minx y (x 6≡ y). In this case, the derivation has the form

M H T

y H y

y H [y,−→R ]

〈M/x〉y H {T/x}[y,−→R ] ≡ [y, {T/x}−→R ]

Then we have
y H y

y H [y, {T/x}−→R ]
(2) 〈M/x〉x −→minx M . In this case, the derivation has the form

M H T

x H x

x H [x,−→R ]

〈M/x〉x H {T/x}[x,−→R ] ≡ [T, {T/x}−→R ]

Then we have
M H T

M H [T, {T/x}−→R ]
(3) 〈M/x〉(λy.N) −→minx λy.〈M/x〉N . In this case, the derivation has the form

M H T

N H U
λy.N H λy.U

y ∈ FV(U)

λy.N H [λy.U,−→R ]

〈M/x〉(λy.N) H {T/x}[λy.U,−→R ] ≡ [λy.{T/x}U, {T/x}−→R ]

Then we have
M H T N H U
〈M/x〉N H {T/x}U

λy.〈M/x〉N H λy.{T/x}U
y ∈ FV({T/x}U)

λy.〈M/x〉N H [λy.{T/x}U, {T/x}−→R ]
(6) 〈M/x〉(Q[N, z.P ]) −→minx (〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P ] (Q is not a variable). In this
case, the derivation has the form

M H T

Q H T ′ N H U P H S

Q[N, z.P ] H {T ′U/z}S
z ∈ FV(S)

Q[N, z.P ] H [{T ′U/z}S,−→R ]

〈M/x〉(Q[N, z.P ]) H {T/x}[{T ′U/z}S,−→R ]

CSL’13
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Then we have

M H T Q H T ′

〈M/x〉Q H {T/x}T ′
M H T N H U
〈M/x〉N H {T/x}U

M H T P H S
〈M/x〉P H {T/x}S

(〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P ] H {{T/x}T ′{T/x}U/z}{T/x}S
z ∈ FV({T/x}S)

(〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P ] H [{{T/x}T ′{T/x}U/z}{T/x}S, {T/x}−→R ]

≡

(〈M/x〉Q)[〈M/x〉N, z.〈M/x〉P ] H {T/x}[{T ′U/z}S,−→R ]

(7) 〈M/x〉(x[N, z.P ]) −→minx M [N, z.P ] (x /∈ FV([N, z.P ])). In this case, the derivation
has the form

M H T

x H T ′ N H U P H S
x[N, z.P ] H {T ′U/z}S

z ∈ FV(S)

x[N, z.P ] H [{T ′U/z}S,−→R ]

〈M/x〉(x[N, z.P ]) H {T/x}[{T ′U/z}S,−→R ]

where T ′ ≡ [x,
−→
R′]. Then we have

M H T

M H [T, {T/x}
−→
R′]

≡

M H {T/x}T ′
N H U

N H {T/x}U
Lemma 11 (0c) P H S

P H {T/x}S
Lemma 11 (0c)

M [N, z.P ] H {{T/x}T ′{T/x}U/z}{T/x}S
z ∈ FV({T/x}S)

M [N, z.P ] H [{{T/x}T ′{T/x}U/z}{T/x}S, {T/x}−→R ]

≡

M [N, z.P ] H {T/x}[{T ′U/z}S,−→R ]

J

I Lemma 29. For any λxg-term M , there exists a λI[,]-term T such that M H T and
i(G(M))−→∗β,π T .

Proof. By induction on M . Here we consider the case of explicit substitution. (The other
cases are proved in the same way as in the proof of Lemma 15.) Then we have

i(G(〈M/x〉N)) =
{
{i(G(M))/x}i(G(N)) if x ∈ FV(N)
(λx.[i(G(N)), x]) i(G(M)) if x /∈ FV(N)

By the induction hypothesis, there are λI[,]-terms T and U such that (a) M H T and
i(G(M))−→∗β,π T , and (b) N H U and i(G(N))−→∗β,π U .

If x ∈ FV(N) then i(G(〈M/x〉N)) = {i(G(M))/x}i(G(N))−→∗β,π {T/x}U . Since FV(N) =
FV(i(G(N))) = FV(U), we have x ∈ FV(U). Hence, from (a) and (b), we have
〈M/x〉N H {T/x}U .
If x /∈ FV(N) then i(G(〈M/x〉N)) = (λx.[i(G(N)), x]) i(G(M))−→∗β,π (λx.[U, x])T −→β

{T/x}[U, x]. From (b), we have N H [U, x] and hence 〈M/x〉N H {T/x}[U, x].
J
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