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—— Abstract

Common data-types, such as N, can be identified with term algebras. Thus each type can be
construed as a global set; e.g. for N this global set is instantiated in each structure S to the
denotations in S of the unary numerals. We can then consider each declarative program as an

axiomatic theory, and assigns to it a semantic (Curry-style) type in each structure. This leads
to the intrinsic theories of [18], which provide a purely logical framework for reasoning about
programs and their types. The framework is of interest because of its close fit with syntactic,
semantic, and proof theoretic fundamentals of formal logic.

This paper extends the framework to data given by coinductive as well as inductive declara-
tions. We prove a Canonicity Theorem, stating that the denotational semantics of an equational
program P, understood operationally, has type 7 over the canonical model iff P, understood as
a formula has type 7 in every “data-correct” structure. In addition we show that every intrinsic
theory is interpretable in a conservative extension of first-order arithmetic.
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1 Introduction

The notion of program typing, first introduced by Curry [5, 32|, views types as semantic
properties of pre-existing untyped objects. A function f has type 7 — o if it maps objects
of type 7 to objects of type o; f may well be defined for input values that are not of type
7. In contrast, Church [4] considered types as inherent properties of objects: a function
has type 7 — ¢ when its domain consists of the objects of 7, and its codomain consists of
objects of type 0. The difference between semantic and inherent typing is thus ontologically
significant in a way that phrases such as “explicit" and “implicit" do not convey.

A distinction between inherent and semantic typing can also be made for inductive data
types T, such as the booleans, natural numbers, and strings. While each such data-type
has a canonical intended meaning, it is isomorphic to the term algebra over some set C
of constructors. That syntactic representation suggests a global semantics for such types.
Namely, T is a global predicate, that is a mapping that to each structure S (for a vocabulary
V containing C') assigns the set of denotations of closed C-terms.

(Recall that global semantics is an organizing principle for descriptive and computational
devices over a class of structures, such as all finite graphs [6, 9]. An example is Fagin’s
celebrated result that a global relation over finite structures is NP iff it is definable by an
existential second-order formula [7].)

The global viewpoint is of particular interest with respect to programs over inductive
data. Each such program P may be of type T'— T in one V-structure and not in another;
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e.g. if P is non-total on N, then it is of type N — N in the flat-domain structure with N
interpreted as N, but not when N is interpreted as N. Already this simple observation
resolves the status of an incorrect proposal by Herbrand, by which a set of equations P is
said to compute a function f : N— N iff f is the unique solution of P.!

This proposal was corrected by Godel [8], who replaced the Tarskian semantics of a
set of equations (i.e. true or false in a given structure) by an operational semantics. But
in fact Herbrand was right to equate operational semantics with Tarskian semantics, with
one caveat: P computes f in the standard structure iff f has, by Tarskian semantics, type
N — N in every model of P. We elaborate on this below.

Within the global framework, it makes sense to consider formal V-theories for proving
global typing properties of equational programs. We adopt as programming model equa-
tional programs, since these mesh directly with formal reasoning: a program’s equations can
be construed as axioms, computations as derivations in equational logic, and types as formu-
las. Moreover, equational programs are amenable to term-model constructions, which turn
out to be a useful meta-mathematical tool. Theories for reasoning directly about equational
programs were developed in [18], where they were dubbed intrinsic theories. Among other
benefits, they support attractive proof-theoretic characterizations of major function classes,
such as the provable functions of Peano Arithmetic and the primitive recursive functions
[18, 19].

In this paper we generalize the global semantics approach of [18] to data-systems, that
is collections of data-types generated by both inductive and coinductive definitions. To do
so we shall start by describing a syntactic framework, in analogy to the term algebras, in
which a syntactic representation of the intended data-types is possible. We shall continue by
giving an operational semantics for equational programs over data-systems, i.e. when data-
objects may be infinite. We then prove a generalized Canonicity Theorem, which states that
a program over a data-system is correctly typed in the standard structure (e.g. terminating
for inductive output and fair for coinductive output) just in case such typing is correct by
Tarskian semantics in all structures. Finally we show that the obvious first-order theories
for proving correct-typing of equational programs are no stronger than Peano Arithmetic.

2 Data systems

2.1 Symbolic data

A constructor-vocabulary is a finite set C of function identifiers, referred to as constructors,
each assigned an arity > 0; as usual, constructors of arity 0 are object-identifiers. We'll
posit the presence of a master constructor-vocabulary, and consider its sub-vocabularies.
Given a constructor-vocabulary C, the replete term-set for C is the set R¢ consisting of all
finite or infinite ordered trees of constructors, where each node with constructor c of arity
r has exactly r children. Obviously R¢ is definable coinductively, but we will be interested
primarily in its subsets, defined both inductively and coinductively.
The replete C-structure is the structure Re with?

Actually, Herbrand’s proposal also called < for a constructive proof that a solution exists and is
unique. But that < additional condition is ill-formed, and cannot be replaced by provability in <
some intuitionistic theory, since that would imply that the computable total functions < form a semi-
decidable collection.

We use typewriter font for actual identifiers, boldface for meta-level variables ranging over syntactic
objects, and italics for other meta-level variables.
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1. C as vocabulary (i.e. similarity-type);

R¢ as universe; and

3. a syntactic interpretation of the constructors: for an r-ary c € ¢ [c](a1...a,) is the
tree with ¢ at the root and a; ...a, as immediate sub-trees.

N

2.2 Equational programs

In addition to the set C of constructors we posit an infinite set X of variables, and an infinite
set F of function-identifiers, dubbed program-functions, and assigned arities > 0 as well. The
sets C, X and F are, of course, disjoint. If £ is a set consisting of function-identifiers and
(possibly) variables, we write £ for the set of terms generated from £ by application: if
g € & is a function-identifier of arity =, and t; ... t, are terms, then sois gty --- t,.. We use
informally the parenthesized notation g(ti,...,t,), when convenient.® We refer to elements

of C,CUX and CUX U F as data-terms, base-terms, and program-terms, respectively.*

We adopt equational programs, in the style of Herbrand-Goédel, as computation model.
There are easy inter-translations between equational programs and program-terms such as
those of FLR [21]. We prefer however to focus on equational programs because they inte-
grate easily into logical calculi, and are naturally construed as axioms. Codifying equations
by terms is a conceptual detour, since the computational behavior of such terms is itself
spelled out using equations or rewrite-rules.

A program-equation is an equation of the form f(tq,...,t;) = q, where f is a program-
function of arity k£ > 0, t; ...ty are base-terms, and q is a program-term. Two program-
equations are compatible if their left-hand sides cannot be unified. A program-body is a finite
set of pairwise-compatible program-equations. A program (P,f) (of arity k) consists of a
program-body P and a program-function f (of arity k) dubbed the program’s principal-
function. We identify each program with its program-body when in no danger of confusion.

Programs of arity 0 can be used to define objects. For example, the singleton program
T consisting of the equation t = sssO defines 3, in the sense that in every model § of T'
the interpretation of the identifier t is the same as that of the numeral for 3. Consider
instead a O-ary program defining an infinite term such as singleton program I consisting of
ind = s(ind). This does not have any solution in the free algebra of the unary numerals,
that is: the free algebra cannot be expanded into the richer vocabulary with ind as a new
identifier, so as to satisfy the equation I.> But I is modeled, for example, in any structure
where s is interpreted as identity, and ind as any structure element. Also, I is modeled over
any ordinal a > w, with s interpreted as the function z — 1+ x and I as any infinite 8 € a.

2.3 Operational semantics of programs

If (P,f) is a program over the set C of data-terms (which are all finite) then we can say
that it computes the partial function ¢: C —C when g(p) = ¢ iff the equation f(p) =
q is derivable from P in equational logic. But non-trivial replete term-structures have
infinite terms, so the output of a program over R¢ must be computed piecemeal from finite
information about the input values.

To express piecemeal computation of infinite data, without using extra constants or tools,
we posit that each program over C has defining equations for destructors and a discriminator.

3 In particular, when g is of arity 0, it is itself a term, whereas with parentheses we’d have g().
4 Data-terms are often referred to as values, and base-terms as patterns.
5 As usual, when a structure is an expansion of another they have the same universe.
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That is, if the given vocabulary’s k constructors are c; ... cg, with m the maximal arity, then
the program-functions include the unary identifiers m; ,, (¢ = 1..m) and d, and all programs
contain the equations (for ¢ an r-ary constructor)

mim(c(@1,...,zp)) = (i=1.r)
mim(c(@1,...,z)) = c(z1,...,2,) (=r+1l.m)
6(ei(t), 21, zk) = (i =1.k)

We call a repeated composition of destructors a deep destructor. For a € R¢ and variable
v let A,y consist of all statements 0(II(v),z1,...,2r) = x; where II is a deep destructor,
that are true when v = a. That is, A,/, conveys, node by node, the structure of the
syntactic tree a, using v as a name for a.

» Definition 1. We say that a unary program (P,f) computes the partial function g :
Rec — R¢  when for every a,b € R¢ we have g(a) = b iff for each deep-destructor II the
equation  §(II(f(v)),Z) = x; is derivable in equational logic from P and A, , where c;
is the main constructor of II(b).

That is, one can establish in equational logic the equality of f(a) and of b at each
“address" II, given unbounded information about the structure of a.

The definition for programs of arity > 1 is similar.

Note that the piecemeal definition of computability is made necessary only by the pres-
ence of infinite data:

» Proposition 2. If, in definition (1) above, the terms a,b are finite, then g(a) = b just in
case f(a) = b is derivable from P in equational logic. <

The proof is straightforward, and omitted here since Proposition 2 is not used in the
sequel.

2.4 Inductive Data systems

To motivate the general definition, let us consider first purely inductive types. One defines
a single type by its closure rules: the natural numbers are given by the two rules N(0)
and N(z) — N(s(z)). Similarly, words in {0,1} can be construed as terms using unary
constructors 0 and 1, as well as nullary constructor e, and generated by the rules W(e),
W(z) — W(0(x)) and W(x) — W(1(z)). If G names a given type G, then the type of binary
trees with leaves in G is generated by the rules G(x) — T(z), and T(x) A T(y) — T(p(x,y))-
We can similarly generate types jointly (i.e. simultaneously). For example, the following
rules generate the 01-strings with no adjacent 1’s, by defining jointly the set (denoted by
E) of such strings that start with 1, and the set (denoted by Z) of those that don’t: Z(e),
Z(x) — Z(0(x)), Z(z) = E(1(z)), and E(z) — Z(0(x)).
Generally, a definition of inductive types from given types G consists of:
1. Alist D of unary relation-identifiers, dubbed type identifiers;
2. a set of composition rules, of the form

Ql(xl) e Qr(xr)

D;(cxzy---x,)

where c is a constructor, and each Qg is one of the data-predicates in é, D.
These rules delineate the intended meaning of inductive D from below. Namely, elements of
D, are built up by the composition rules. Thus the data-predicates in D are defined jointly,
potentially using also the given types G.
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Conjuncting the composition rules, we obtain a single rule, consisting of the the universal
closure of conjunctions of implications into the data-type being defined.

2.5 Coinductive decomposition rules

Inductive composition rules state sufficient reasons to assert that a term has a given type,
implied by the types of its immediate sub-terms. The intended semantics of an inductive
type D is thus the smallest set of terms closed under those rules. Coinductive decomposition
rules state necessary conditions for a term to have a given type, by implying the types of
its immediate sub-terms. The intended semantics is the largest set of terms satisfying those
conditions.

For instance, the type of w-words over 0/1 is given by the decomposition rule

W (x) = Fy W (y) Aw = 0y) vV (Fy W (y) Aw = 1y) (1)

This is not quite captured by the implications W¥(0z) — W¥(z) and W¥(1z) — W¥(z),
since these do not guarantee that every element of W* is of the right form.

The implication W (x) — W¥(m1,1(x)) also fails to capture the rules (1), as shown by
the following example. In analogy to the inductive definition above of the words with no
adjacent 1’s, the w-words over 0/1 with no adjacent 1’s are delineated jointly by the two
decomposition rules

Z(z) — (Fyz(y) Az =0(y)) V (3yE(y) Az =0(y))
and
E(z) — Jyz2(y) Ne =1(y)

These rules cannot be captured using destructors, since those do not differentiate between
cases for the input’s main constructor.
These observations justify the following definition.

» Definition 3. A decomposition definition of coinductive types from given types G consists
of:

1. Alist D of type identifiers;

2. for each of the types D; in Da decomposition rule, of the form

Di(z) = V-V
where each 9, is of the form

Jyr.cyrx=c(@) AN Qulyr) A AQu(yr)

Here c is a constructor of arity r, and each Qy is one of the data-predicates in 6‘:7 D.
Thus, the single decomposition rule for each D; is an implication from D; to the disjunction
of existential statements.

2.6 Data systems

We now define data-systems, where data-types can be defined by any combination of in-
duction and coinduction. Descriptive and deductive tools for such definitions were studied
extensively, e.g. referring to typed lambda calculi, with operators p for smallest fixpoint and
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v for greatest fixpoint. For instance, the Common Algebraic Specification Language CASL
has been used as a unifying standard in the algebraic specification community, and extended
to coalgebraic data [27, 29, 22, 30]. Several frameworks combining inductive and coinductive
data, such as [24], strive to be comprehensive, including various syntactic distinctions and
categories, in contrast to our minimalistic approach.

» Definition 4. A data-system D over a set C of constructors consists of:

1. A double-list D;...Dy (the order matters) of unary relation-identifiers, dubbed type-
identifiers, where each D; is dubbed a data-bundle, and designated as either inductive
or coinductive.

2. For each inductive data-bundle D; an inductive definition given as a (finite) set of data-
composition rules of the form

( A\ Qulz) = Dijlcay - x)

=1..r

where each Qg is one of the data-predicates in D, ...D,. Note that r may be 0.
These rules delineate the intended meaning of inductive D; from below. Namely, elements
of D;; are built up by the data-introduction rules. Thus the data-predicates in each D,
are defined simultaneously, potentially using also previously defined predicates among
]_jl . ]32'_1.

3. For each coinductive data-predicate D;; a coinductive definition consisting of a data-
decomposition rule, of the form

where each 1, is of the form
3yl-~-:’Jr-73:c(g) A Ql(yl) A A Qr(yr)

with ¢ a constructor, and each Qy in I_jj, j<i.

2.7 Examples of data-systems

1. Let C consist of the identifiers 0, 1, e, s, and c, of arities 0,0,0,1, and 2, respectively.
Consider the following data-system, for the double list ((B), (N), (F,8), (L)) with inductive
B and N (booleans and natural numbers), coinductive F and S (streams with alternating
boolean and numeral entries starting with booleans (respectively, with natural num-
bers)), and finally an inductive L for lists of such streams.

N(0) N(z) — N(sz)
F(x) = Jy,z (x = cyz) A B(y) A S(2)
S(z) = Jy,z (x =cyz) A N(y) A F(z)
L(0) L(e) F(x)AL(y) — L(czy) S(x)AL(y) — L(cxy)
Note that constructors are reused for different data-types. This is in agreement with our
untyped, generic approach, where the intended type information is conveyed by the data-

predicates, and the data-objects are untyped. In other words, data-types are semantic
(Curry style) rather than ontological (Church style).
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2. Here is a data system with a type for infinite binary trees with nodes decorated by
finite/infinite binary trees with booleans as leaves. The constructors are 0, 1, p, and
d of arities 0,0,2 and 3 respectively. The data-predicates are an inductive B, and two
coinductive D (for trees) and T (for trees of trees). The composition rules for B are

B(0) and B(1)
The decomposition rules for T and D (as a single bundle) are

D(x) = B(z) V Iy1,y2 = =p(y1,¥2) A D(y1) A D(y2)

and
T(x) = Ju,y1,92 © =d(u,y1,92) A D(u) A T(y1) A T(y2)

2.8 Computational completeness of equational programs

The equivalence of equational programs over N with the p-recursive functions was implicit
already in [8], and explicit in [13]. Their equivalence with A-definability [3, 14] and hence
with Turing computability [35] followed quickly. When equational programs are used over
infinite data, a match with Turing machines must be based on an adequate representation
of infinite data by functions over inductive data. For instance, each infinite 0/1 word w can
be identified with the function @ : N — B  defined by @w(k) = the k’th constructor
of w. Similarly, infinite binary trees with node decorated with 0/1 can be identified with
functions from W = {0,1}* to {0,1}. Conversely, a function f: N — B can be identified
with the w-word f whose n’th entry is f(n).

It follows that a functional g : (N — B) — (N — B) can be identified with the function
g: BY — B, defined by g(w) = (g(w))¥. Conversely, a function h : B* — B can be
identified with the functional A : (N — B) — (N — B) defined by  h(f) = (h(f)".

We state without proof the straightforward, albeit tedious, observation that the two
notions are equivalent. (The Theorem and its proof are unrelated to other parts of the
present paper.)

» Theorem 5. A partial function h : BY — B“ is computable by an equational program iff
the functional h is computable by some oracle Turing machine.

Dually, a functional g : (N — B) — (N — B) is computable by an oracle Turing machine
iff the function § is computable by an equational program.

3 A Canonicity Theorem: operational semantic is equivalent to
Tarskian semantic

3.1 Data-correct expansions and the canonical structure

Let D be a data-system with C as constructor-set, and S a structure over a vocabulary that
includes all identifiers in C, but not the type-identifiers of D. The data-correct expansion®
of § is the expansion to the full vocabulary of D, with the data-predicates D;; interpreted

as follows. (Recall that the interpretation of the constructors is already given in S.)

6 As usual, we say that a structure S is an expansion of a structure Q if S differs from Q only in
interpreting additional vocabulary identifiers. E.g. N with addition and multiplication is an expansion
of N with addition only.
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1. If D, is inductive, then the sets [D;;] are obtained from [D:] ... [Di_1] by the data
composition rules for ]_jz That is, each inductive bundle is interpreted as the minimal
subsets of the R¢ closed under the bundle’s composition rules.

2. Dually, if D; is coinductive, then [D;;] are the sets of finite and infinite terms obtained
from [D1] ... [D;_1] by the decomposition rules for D;. That is, each coinductive data-
bundle is interpreted as the maximal vector of subsets of R¢ for which the decomposition
rules are applicable (i.e. every element is subject to a decomposition rule) and true.

The canonical model A = Ap = [D] of a data-system D is the data-correct expansion of

the replete structure Re.

3.2 Typing statements

Suppose (P,f) is a program (unary, say) over C. The program computes a partial function
g: Re — Re.

» Definition 6. Given a data-system D over C, with D and E among its data-predicates,
we say that g is of type D — E if for every a € [D] 4 the function g is defined for input
a, and g(a) € [E]4. We also say in that case that P is of type D — E. The definition for
(P,f) of arity > 1 is similar.

Note that each function, including the constructors, can have multiple types. Also, a
program may compute a non-total mapping over R¢, and still be of type D — E, i.e.
compute a total function from type D to type E. To adequately capture the computational
behavior of equational programs, multiple representations of divergence might be necessary;
see [18] for examples and discussion.

The partiality of computable functions is commonly addressed either by allowing par-
tial structures [16, 1, 23], or by considering semantic domains, with an object L denoting
divergence. The approach here is based instead on the “global" behavior of programs in all
structures.

When a function f: Re — Re fails to be of a type D — E then the restriction of f to
D is a partial function. That is, values f(a) € Rc — [E] correspond to the divergence of the
program for input a € Re¢.

3.3 Canonicity for inductive data

Definition 1 provides the computational semantics of a program (P, f). But as a set of
equations a program can be construed simply as a first-order formula, namely the conjunction
of the universal closure of those equations. As such, a program has its Tarskian semantic,
referring to arbitrary structures for the vocabulary in hand, that is the constructors and
the program-functions used in P. A model of P is then just a structure that satisfies each
equation in P.

Herbrand proposed to define the computable functions (over N) as those that are unique
solutions of equational programs.” It is rather easy to show that every computable function
is indeed the unique solution of a set of equations. But the converse fails, as illustrated by
the following example.® Let G[x] = Jy. Go(z,y) be undecidable, with G decidable. Clearly

" This proposal was made to Gédel in personal communication, and reported in [8]. A modified proposal,
incorporating an operational-semantics ingredient, was made in [11].

8 The first counter-example to Herbrand’s proposal is probably due to Kalmar [12]. The example given
here is a simplification of an example of Kreisel, quoted in [28].
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there is a program for the function f defined by

1 if  Jy<wv. Go(z,y)
2 f(z,v+1) otherwise

e ={

If, for a given x, Jy. Go(x,y), then Av.f(z,v) has a unique solution, with f(z,0) > 0.
Otherwise f(z,v) = 0 is the unique solution. So if f were computable, then G would be
decidable.

In fact, Herbrand’s definition yields precisely the hyper-arithmetical functions [28]. But
Herbrand was not far off: he only needed to refer collectively to all data-correct structures:

» Theorem 7. (Canonicity Theorem for N) [18] An equational program (P,f) over N com-
putes a total function iff the formula N(z) — N(f(z)) is true in every data-correct model

of P.

3.4 Canonicity Theorem for Data Systems

We generalize Theorem 7 to all data-systems. Let D be a data-system for a constructor
set C.

» Theorem 8. (Canonicity Theorem for Data Systems) An equational program (P, f) over C
computes a function f: D—E (using the operational semantics of equational logic) iff the
formula D(z) — E(f(x)) is true (in the sense of Tarskian semantic of first-order formulas)
in every data-correct model of P.

We present the proof in the rest of the present subsection. Given a program (P, f) over a
data-system D, we construct a canonical model M(P) to serve as a “test-structure" for the
program. Let C’ consist of the program-functions in P, and T(P) be Rg for the vocabulary
B = CUC'. Thus the elements of T(P) are finite and infinite terms built using both the
constructors and the program-functions used in P. (Using only terms with a finite number
of program-functions along each branch would suffice, but this restriction, albeit natural, is
immaterial here.) Let ~p be the binary relation over T(P) that holds between two terms
t,t’ € T(P) iff P+ IIt = IIt’ for every deep destructor II; that is, the pointwise equality of
t and t’ can be proved from P in equational logic. This is trivially an equivalence relation.

Now define B(P) to be the structure for the vocabulary C UC’ whose universe is the quo-
tient T(P)/ ~p, and where each function-identifier is interpreted as symbolic application:
a function-identifier g, unary say, maps each equivalence class [t]~ to the equivalence class
[g(t)]~; and similarly for arities > 1.

Let M(P) be the data-correct expansion of B(P). The following observation implies an
alternative, more direct, definition of M (P).

» Lemma 9. Fach data-predicate D is interpreted in M(P) as {[a]~ | a € [D]a }.

Proof. The closure conditions defining the sets [D] r¢(p) for data-predicates D of D are the
same as for the canonical model A = R¢. <

Theorem 8 now follows from the following Lemma.

» Lemma 10. The following are equivalent.

1. The program (P,f) computes a function g: D — E.

2. M(P) EVaD(z) — E(f(x)).

3. SEVaD(z) — E(f(x)) for every data-correct structure S.
The equivalence above lifts to arities > 1.

477

CSL’13



478

Global coinductive typing

Proof. (1) implies (3) since the equational computation of P over [D] remains correct in
every data-correct model of P.

(3) implies (2), since M(P) is data-correct by definition.

Finally, towards proving that (2) implies (1), assume (2). Let g : Re¢ — Rc be the
function computed by (P,f), unary say. Taking an input a € R¢ such that a € [D] 4, we
have [a]~ € [D]aqpy, by Lemma 9. This implies by (2) that [f(a)] € [E]r¢p). But by
Lemma 9 again, this implies that f(a) & b for some b € [E]s, establishing (1). <

4 Intrinsic theories

4.1 Intrinsic theories for inductive data

Intrinsic theories for inductive data-types were introduced in [18]. They support unob-
structed reference to partial functions and to non-denoting terms, common in functional
and equational programming. Each intrinsic theory is intended to be a framework for rea-
soning about the typing properties of programs, including their termination and fairness.
In particular, declarative programs are considered as formal theories. This contrasts with
two longstanding approaches to reasoning about programs and their termination, namely
programs as modal operators [31, 25, 10], and programs (and their computation traces) as
explicit mathematical objects [15, 16].

Let D be a data-system consisting of a single inductive bundle D. The intrinsic theory
for D, is a first order theory over the vocabulary of D, whose axioms are

The closure rules of D.

Inductive delineation (data-elimination, Induction), which are the dual of the

closure rules. Namely, if a vector @[z] of first order formulas satisfies the composition

rules for f), then it contains D:

Complp] — NiVa Di(z) — ¢;[x]

where Comp[@] is the conjunction of the composition rules for the bundle, with each
D, (t) replaced by ¢;]t].

Separation Axioms, stating that every constructor is injective, and ¢(Z) # d(y) for
all distinct constructors ¢ and d. These imply that all data-terms are distinct. The
Separation Axioms are superfluous for

Examples: N, ie. A(0,s).

The Intrinsic theory for N has for vocabulary the constructors 0 and s, and a unary
relation identifier N. The axioms, given as natural deduction rules, are

Data-introduction:

Data-elimination:

N(t) ¢[0] ¢[s(2)]
()
Identifying W = {0,1}* with the free algebra generated from the nullary constructor e

and the unary 0 and 1, the intrinsic theory IT(W) has as vocabulary these constructors and
a unary data-predicate W. The deductive rules are:
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Data-introduction:

Data-elimination:

4.2 Provable typing in intrinsic theories

» Definition 11. A unary program (P,f) is provably of type D — E in a theory T if
D(z) — E(f(z) is provable in T from the universal closure of the equations in P.

For example, consider the doubling function dbl over N defined by the program db1(0) =
0, dbl(s(z)) = s(s(dbl(x))). The following is a proof of N(x) — N(dbl(x)), using induction
on the predicate [z] = N(dbl(z)). The double-bars indicate the omission of trivial steps.

Va dbl(s(z)) = s(s(dbl(z)))  N(dbl(2))
N(0) dbl(s(z)) = s(s(dbl(z))) N(s(s(dbl(2))))
N(db1(0)) N(dbl(s(z)))
N(dbl(z))

In fact, we have:

» Theorem 12. [18]. The provable programs of the intrinsic theory IT(N) for the natural
numbers are precisely the provably-recursive programs of Peano’s Arithmetic.

Note that Theorem 12 gives a characterization of the provable functions of PA without
involving any particular choice of base functions (such as additional and multiplication).

4.3 Intrinsic theories for arbitrary data-systems

Let D be a data-system. The intrinsic theory for D, denoted IT(D), is a first order theory
over the vocabulary of D, whose axioms are the inductive composition rule and coinductive
decomposition rules of D, as well as their duals:
Inductive delineation (data-elimination, Induction): If a vector @[z] of first order
formulas satisfies the composition rules for an inductive bundle [_5, then it contains D:

Comp[@] — AiVa Di(z) — ¢,z

where Comp[g] is the conjunction of the composition rules for the bundle, with each
D, (t) replaced by ¢;t].
Coinductive delineation (data-introduction, Coinduction): If a vector @[z of
first order formulas satisfies the decomposition rule for a coinductive bundle ]3, then it
is contained in D:

Dec[@] — ANz p;[z] — D;(z)

where Dec[@] is the conjunction of the decomposition rules for the bundle, with each
D, (t) replaced by ¢;]t].

Separation axioms, stating that every constructor is injective, and ¢(Z) # d(y) for all
distinct constructors ¢ and d.
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5 Proof theoretic strength

Our general intrinsic theories refer to infinite basic objects (coinductive data), in contrast
to intrinsic theories for inductive data only, as well as traditional arithmetical theories.
However, the deductive machinery itself does not imply the existence of any particular
coinductive object, as would be the case, for example, in the presence of some form of the
Axiom of Choice or of a comprehension principle. As a consequence, any intrinsic theory,
merging inductive and coinductive constructions in any way, is interpretable in a formal
theory which proof theoretically is no stronger than Peano Arithmetic.

Consider the formalism PR A of Primitive Recursive Arithmetic, with function identifiers
for all primitive recursive functions, and their defining equations as axioms. In addition, we
have the Separation Axioms for N (as above), and the schema of Induction for all formulas.?
Let PRA" be PRA augmented with function variables and quantifiers over them. The
schema of Induction applies now to all formulas in the extended language, but otherwise
there are no axioms stipulating the existence of additional functions. It is well known that
PRA is interpretable in Peano’s Arithmetic (where only addition and multiplication are
given as functions with their defining equations).

» Lemma 13. The theory PRA™ is conservative over PRA. That is, if a formula in the
language of PRA is provable in PRA”, then it is provable already in PRA.

The proof is a simplified version of the proof in [34, §2.4.8] that the hereditarily recursive
operators form a model of arithmetic in all finite types. Here it suffices to observe that the
function quantifiers in PRA™ can be interpreted as ranging over the computable (or even
the PR) functions.

Lemma 13 implies, in particular, that PRA™ is not proof-theoretically stronger than PA.

» Theorem 14. (Arithmetic interpretability) Every intrinsic theory is interpretable in
PRA".

Proof. Each t € R¢ can be represented by a function f; : N — N, that maps addresses
a = (by---bx) € N to the code c* of the constructor ¢ at address (b; ...by) of ¢, if such a
constructor exists, and to a reserved code (0 say) if ¢ has no constructor at address a. For
instance, if ¢ = p(e,0(e)) then fi() = p¥, f:(0) = e, fi(1) = 0F, f,(1,0) = e, and f;(a) =0
for every other address a.

Suppose D is a data-system over R¢, with successive bundles ]31, . ﬁk. If D, =
(D11 ...Dyy) is inductive, then we can define E? formulas D; ... D,, with a single free
unary-function variable f, such that D;[f] is true just in case f codes a tree t € R¢ which
is in Dl

If ]31 is coinductive, then the same holds with the formulas D; taken to be H(l). Next,
we can define formulas 132 in the second level of the arithmetical hierarchy, with a free
unary-function variable f, which are true of f iff it codes some ¢ € R¢ in the bundle D..
Thus, the entire data-system can be interpreted in PRA™ by formulas of some level < k in
the arithmetical hierarchy.

We can then define, for each (first-order) formula ¢ of an intrinsic theory T, a formula
©* of PRA™, such that ¢ is true in the canonical model of the data-system iff ©* is true in
the standard model of PRA.

9 See e.g. [33] for details and related discussions.
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Next we show that if ¢ is provable in the intrinsic theory, then ¢* is provable in PRA™.
Indeed, it is easy to observe that induction for inductive data can be proved, for the x-
interpreted formulas, by induction. More interestingly, coinduction for coinductive data is
also provable, for the interpretable formulas, by induction. For example, consider coinduc-
tion for the binary w-words, represented by the data-predicate W:

elt] Vo elr] = Jy ely] A (z=0(y) Va = 1(y))
W(t)

For the H? formula W interpreting W, we need to prove Wt*] from the formula

V(@ [l =39 " gl AN (f=(0)xg V f=(1)*g)) (2)

(Here (u) * g is the function that maps the root to u and an address 0°*! to g(0%).) But
recall that W[t*] states for every address a that the function denoted by t*, has at each
address a a certain (trivial) local property. This can now be proved by induction on the
height n of a, using (2). The induction basis needs only the value of the function t* at the
root, which is given by (2). The induction’s step is similar.

Note that although we refer here to the iterated tails of t*, thus seemingly to infinitely
many functions, any function h among these can be referred to indirectly via Ju h =
u okt <

6 Applications and further developments

Intrinsic theories provide a minimalist framework for reasoning about data and computa-
tion. The benefits were already evident when dealing with inductive data only, including
a characterization of the provable functions of Peano’s Arithmetic without singling out
any functions beyond the constructors, a particularly simple proof of Kreisel’s Theorem
that classical arithmetic is IT9-conservative over intuitionistic arithmetic [18], and a particu-
larly simple characterization of the primitive-recursive functions [19]. The latter application
guided a dual characterization of the primitive corecursive functions in terms of intrinsic
theories with positive coinduction [20].

Intrinsic theories are also related to type theories, via Curry-Howard morphisms, pro-
viding an attractive framework for extraction of computational contents from proofs, using
functional interpretations and realizability methods. The natural extension of the framework
to coinductive methods, described here, suggests new directions in extracting such methods
for coinductive data as well.

Finally, intrinsic theories are naturally amenable to ramification, leading to a transparent
Curry-Howard link with ramified recurrence [2, 17] as well as ramified corecurrence [26].
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