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Abstract
This paper continues the study of the two-variable fragment of first-order logic (FO2) over two-
dimensional structures, more precisely structures with two orders, their induced successor rela-
tions and arbitrarily many unary relations. Our main focus is on ordered data words which are
finite sequences from the set Σ×D where Σ is a finite alphabet and D is an ordered domain. These
are naturally represented as labelled finite sets with a linear order ≤l and a total preorder ≤p .

We introduce ordered data automata, an automaton model for ordered data words. An
ordered data automaton is a composition of a finite state transducer and a finite state automaton
over the product Boolean algebra of finite and cofinite subsets of N. We show that ordered data
automata are equivalent to the closure of FO2(+1l ,≤p ,+1p) under existential quantification of
unary relations. Using this automaton model we prove that the finite satisfiability problem for
this logic is decidable on structures where the ≤p -equivalence classes are of bounded size. As
a corollary, we obtain that finite satisfiability of FO2 is decidable (and it is equivalent to the
reachability problem of vector addition systems) on structures with two linear order successors
and a linear order corresponding to one of the successors. Further we prove undecidability of
FO2 on several other two-dimensional structures.
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1 Introduction

The undecidability of the satisfiability and finite satisfiability problem for first-order logic
[6, 32, 31] lead to a quest for decidable yet expressive fragments (see for example [3, 15]).

Here we continue the study of the two-variable fragment of first order logic (two-variable
logic or FO2 for short). This fragment is known to be reasonably expressive and its
satisfiability and finite satisfiability problems are decidable [25], in fact they are complete for
NExpTime [11]. Unfortunately many important properties as for example transitivity cannot
be expressed in two-variable logic. This shortcoming led to an examination of extensions of
two-variable logic by special relation symbols that are interpreted as equivalence relations or
orders [26, 1, 19, 20, 18, 28, 30].

In this paper we are interested in extensions of two-variable logics by two orders and
their induced successors. This can be seen as two-variable logic on 2-dimensional structures.
We restrict our attention to linear orders and preorders1. This setting yields some interesting
applications.

1 Informally, a preorder is an equivalence relation whose equivalence classes are ordered by a linear order.
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Data words, introduced in [4], extend usual words by assigning data values to every
position. Applications of data words arise for example in verification, where they can be used
for modeling runs of infinite state systems, and in database theory, where XML trees can
be modeled by data trees. Data words with a linearly ordered data domain can be seen as
finite structures with a linear order on the positions and a preorder on the positions induced
by the linear order of the data domain. Those relations, as well as their induced successor
relations, can then be referred to by two-variable logic on data words [1].

Two other logics closely related to two-dimensional two-variable logic are compass logic
and interval temporal logic. In compass logic two-dimensional temporal operators allow for
moving north, south, east and west along a grid [33]. In interval temporal logic operators like
’after’, ’during’ and ’begins’ allow for moving along intervals [14]. The connection of intervals
to the two-dimensional setting becomes clear when one interprets an interval [a, b] as point
(a, b). In [27] decidability results for two-variable logic in the two-dimensional setting have
been transferred to those two logics.

Those applications motivate working towards a thorough understanding of 2-dimensional
two-variable logic in general, and the decidability frontier for the finite satisfiability problem
in this setting in particular. Next we discuss the state-of-the-art in this area and how our
results fit in. All those results are summarized in Figure 3.

The frontier for decidability of the finite satisfiability problem for the extension of
two-variable logic by two linear order relations and their induced successor relations is
well-understood. It is undecidable when all those relations can be accessed by the logic. It is
decidable when only the two successor relations can be accessed [23]. This paper contains a
gap (the reduction to Presburger automata is wrong) which can, however, be fixed using the
same technique. In [10] an optimal decision procedure is given that uses a different approach;
and more recently the result has been generalized to two-variable logic with counting on
structures with two trees using yet another approach [5]. When two linear orders and one of
their successors can be accessed the problem is decidable as well [27]. We prove that the
remaining open case of two successors and one corresponding linear order is decidable.

The addition of two preorders to two-variable logic yields an undecidable finite satisfiability
problem [27]. We prove that also the other cases, that is (1) adding two preorder successor
relations and (2) adding one preorder relation and one (possibly non-corresponding) preorder
successor yield an undecidable finite satisfiability problems.

For the extension of two-variable logic with one linear order, one preorder and their
induced successors the picture is not that clear. However, many of the results from above
translate immediately, because in two-variable logic one can express that a preorder relation is
a linear order. Besides those inherited results the following is known for the finite satisfiability
problem. If the access is restricted to one linear order as well as a preorder and its successor,
then it is decidable in ExpSpace [27]. Access to a linear order with its successor and either
preorder or preorder successor yields undecidability. The former is proved in [2], the latter is
an easy adaption. The only remaining open case is when one linear successor, one preorder
successor and (possibly) the corresponding preorder can be accessed. We attack this case, and
show that when the preorder is restricted to have equivalence classes of bounded size, then
the finite satisfiability problem is decidable. The general case was shown to be undecidable
after the submission of this work, see Section 7.

Contributions. Besides the above mentioned results, we contribute as follows:
We introduce ordered data automata, an automaton model for structures with one successor
relation (of an underlying linear order) and a preorder and its accompanying successor

CSL’13
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relation. This model is an adaption of data automata, introduced in [2], to data words
with an ordered data domain.
Ordered data automata are shown to be equivalent to the existential two-variable fragment
of monadic second order logic (EMSO2) over such structures.
We prove that the emptiness problem for this automaton model is decidable, when
the equivalence classes of the preorder contain a bounded number of elements. The
decidability of the finite satisfiability problem of two-variable logic over structures with
two linear successor relations and one of their corresponding orders is a corollary.

Organization. After some basic definitions in Section 2, we introduce ordered data automata
in Section 3 and prove that they are expressively equivalent to
EMSO2(+1l ,+1p ,≤p) in Section 4. Section 5 is devoted to proving decidability of the
emptiness problem for ordered data automata when the equivalence classes of ≤p are
bounded. In Section 6 lower bounds for several variants are proved. We conclude with a
discussion of recent developments as well as open problems in Section 7. Due to the space
limit, most proofs will only be available in the full version of the paper.
Acknowledgements. We thank Thomas Schwentick for introducing us to two-variable logic
and for many helpful discussions. The first author was supported by funding from European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ 259454.
The second author acknowledges the financial support by the German DFG under grant
SCHW 678/6-1.

2 Preliminaries

We denote the set {0, 1, . . .} of natural numbers by N and {1, . . . , n}, for n ∈ N by [n].
A binary relation ≤p over a finite set A is a preorder2 if it is reflexive, transitive and

total, that is, if for all elements u,v and w from A (i) u ≤p u (ii) u ≤p v and v ≤p w implies
u ≤p w and (iii) u ≤p v or v ≤p u holds. A linear order ≤l on A is an antisymmetric total
preorder, that is, if u ≤l v and v ≤l u then u = v. Thus, the essential difference between a
total preorder and a linear order is that the former allows for two distinct elements u and v
that both u ≤p v and v ≤p u hold. We call two such elements equivalent with respect to ≤p
and denote this by u ∼p v. Hence, a total preorder can be seen as an equivalence relation ∼p
whose equivalence classes are linearly ordered by a linear order. Clearly, every linear order
is a total preorder with equivalence classes of size one. We write u <l v if u ≤l v but not
v ≤l u, analogously for a preorder order ≤p . Further, if C and C ′ are the equivalence classes
of u and v, respectively, then we write C ≤p C ′ if u ≤p v.

For a linear order ≤l an induced successor relation +1l can be defined in the usual
way, namely by letting +1l(u, v) if and only if u <l v and there is no w with u <l w <l v.
Similarly a preorder ≤p induces a successor relation +1p based on the linear order on its
equivalence classes, i.e. +1p(u, v) if and only if u <p v and there is no w with u <p w <p v.
Thus an element can have several successor elements in +1p .

Two elements u and v are called ≤p-close (alternatively +1p-close), if either +1p(u, v) or
u ∼p v or +1p(v, u). They are called ≤p-adjacent (alternatively +1p-adjacent) if they are
≤p-close but u ∼p v does not hold. Analogously for +1l-close, ≤l-close, +1l-adjacent and
≤l -adjacent. The elements u and v are far away with respect to ≤p if they are not ≤p -close
etc. By u�p v we denote that u and v are ≤p-far away and u ≤p v.

2 In this paper all preorders are total.
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In this paper, linear orders and their induced successor relations will be denoted by
≤l ,≤l1 ,≤l2 , . . . and +1l ,+1l1 ,+1l2 , . . .. Analogously preorders and their induced successor
relations will be denoted by ≤p ,≤p1 ,≤p2 , . . . and +1p ,+1p1 ,+1p2 , . . ..

Ordered Structures, Words and Preorder Words. In this article, an ordered structure is a
finite structure with non-empty universe and some linear orders, some total preorders, some
successor relations and some unary relations. An O-structure is a structure with some unary
relations and some binary relations indicated by O. For example, a (+1l ,+1p ,≤p)-structure
has some unary relations and a linear order, a preorder successor and its corresponding
preorder. An O-structure is a structure from FinOrd(O).

A word w over an alphabet Σ = {σ1, . . . , σk} is a finite sequence τ1 . . . τn of letters from
Σ. One can think of w as a linear order over [n] where each element i is labeled by letter
τi from Σ. Thus there is a natural correspondence between words and ≤l-structures (or,
alternatively, +1l-structures or (+1l ,≤l)-structures). Also every +1l-structure naturally
corresponds to some word.

Note that words over alphabet Σ = {σ1, . . . , σk} correspond to +1l -structures with unary
relations P = (Pσ1 , . . . , Pσk

}. On the other hand, +1l-structures with unary relations P
correspond to words over alphabet 2P . Here, and in the following, we will ignore this and
assume that appropriate alphabets and unary relations are chosen when necessary.

A preorder word w is a sequence ~v1 . . . ~vl of tuples from NΣ. A preorder word w can
be identified with a preorder ≤p with Σ-labeled elements where each ~vi = (nσ1 , . . . , nσk

) is
identified with one equivalence class Ci of ≤p . The class Ci contains

∑
j nσj

many elements
and nσj

of those elements are labeled σj . Thus a preorder word can be thought of as a
word where every position can contain several elements (as opposed to one element in usual
words). The identification of tuples with equivalence classes allows for reusing notions for
preorders in the context of preorder words, by thinking of ~vi as an equivalence class. For
example, we will say say that ~vi contains a σi-labeled element u, if nσi

> 0. Note that
there is a natural correspondence between preorder words and ordered +1p-structures (or,
alternatively, ≤p-structures or (+1p ,≤p)-structures).

Ordered Data Words. Fix a finite alphabet Σ = {σ1, . . . , σk} and an infinite set D of data
values (the data domain) which is totally ordered by a linear order ≤D

l . For the purpose of
this paper, it is sufficient to think of D as the set N of natural numbers and of ≤D

l as the
natural order on N.

An ordered data word w is a sequence of pairs from Σ×D. We introduce some important no-
tions for ordered data words. In the following fix an ordered data word w = (σ1, d1) . . . (σn, dn).
A preorder ≤p on [n] is induced by the data values of w by i ≤p j if di ≤D

l dj . A class of
w is an equivalence class of ≤p , i.e. a maximal subset C ⊆ [n] of positions of w such that
di = dj for all i, j ∈ C. Let, in the following, C1 ≤p . . . ≤p Cl be the classes of w. The
string projection of w is the word σ1 . . . σn over Σ and is denoted by sp(w). The preorder
projection pp(w) is the preorder word that corresponds to ≤p , that is pp(w) = ~c1 . . .~cl where
each ~ci = (nσ1 , . . . , nσk

) with nσj is the number of σj-labeled elements in Ci. Ordered
data words naturally correspond to (+1l ,+1p ,≤p)-structures (again with many alternative
representations). See Figure 1 for an example.

Two-Variable Logic on Ordered Structures. Existential monadic second order logic EMSO
extends predicate logic by existential quantification of unary relations. The two-variable
fragment of EMSO, denoted by EMSO2, contains all EMSO-formulas whose first-order part
uses at most two distinct variables x and y. Two-variable logic FO2 is the restriction of first
order logic to formulas with at most two distinct variable x and y.
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Figure 1 The ordered structure represent-
ing the ordered data word (b, 3)(a, 5)(c, 1)(b, 5)
(c, 2)(a, 3)(a, 2)(b, 1)(a, 1)(c, 2)(c, 5). The classes are
{3, 8, 9} ≤p {5, 7, 10} ≤p {1, 6} ≤p {2, 4, 11}, the
string projection is bacbcaabacca, and the preorder
projection is (1, 1, 1)(1, 0, 2)(1, 1, 0)(1, 1, 1) where, e.g.,
(1, 0, 2) indicates that in class {5, 7, 10} there is one
a-labeled element, no b-labeled element and two c-
labeled elements. ≤l

≤p
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Denote by EMSO(O) existential monadic second order logic over a vocabulary that
contains some unary relation symbols and binary relation symbols from O which have to
be interpreted by O-structures. For example, formulas in EMSO(+1l) can use some unary
relation symbols and the binary relation symbol +1l , and +1l has to be interpreted as a
linear successor. Similar notation will be used for FO2.

Words, that is +1l-structures, can be seen as interpretations for EMSO(+1l)-formulas.
Similarly preorder words and ordered data words are interpretations for EMSO(+1p ,≤p)-
and EMSO(+1l ,+1p ,≤p)-formulas, respectively.

The language L(ϕ) of ϕ ∈ EMSO2(+1l) is the set of words, more precisely their corres-
ponding +1l-structures, that satisfy ϕ. Similarly for other sets of relations. The classical
theorem of Büchi, Elgot and Trakhtenbrot states that EMSO(+1l ,≤l) is equivalent to finite
state automata. This holds even for EMSO2(+1l). In the next section we introduce an
automaton model which is equivalent to EMSO2(+1l ,+1p ,≤p).

I Example 1. Let L1 be the language that contains all data words w over Σ = {a, b} such
that the data value of every a-labeled position in w is smaller than the data values of all
b-labeled positions. Let L2 be the language that contains all data words w such that the
a-labeled elements with the largest data value are immediately to the left of a b-labeled
element. Then the following EMSO2(+1l ,+1p ,≤p)-formulas ϕ1 and ϕ2 define L1 and L2:

ϕ1 = ∀x∀y
(
(a(x) ∧ b(y))→ (x ≤p y ∧ ¬y ≤p x)

)
ϕ2 = ∀x

((
a(x) ∧ ¬∃y(a(y) ∧ (x ≤p y ∧ ¬y ≤p x))

)
→ ∃y

(
b(y) ∧+1l(x, y)

))
3 An Automaton Model for Ordered Data Words

In this section we introduce ordered data automata, an automaton model for structures with
one linear successor relation +1l (of an underlying linear order ≤l) and one preorder relation
≤p accompanied by its successor relation +1p . This automaton model is an adaption of data
automata as introduced in [2]. In the next section ordered data automata are shown to be
equivalent to EMSO2(+1l ,+1p ,≤p).

Very roughly, ordered data automata process a (+1l ,≤p ,+1p)-structure by reading it
once in linear-order-direction and once in preorder-direction. Therefore an essential part of
an ordered data automaton is an automaton capable of reading preorder words. We introduce
an automaton model for preorder words first.

Preorder Automata. Roughly speaking, preorder automata are finite state automata that
read preorder words w = ~w1 . . . ~wn. When reading some ~wi, a transition of such an automaton
can be applied if the transition matches the current state and the components of ~wi satisfy
interval constraints specified by the transition. We formalize this.
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An interval I = (l, r) where l ∈ N and r ∈ N ∪ {∞} contains all i ∈ N with l ≤ i < r. A
Σ-constraint ~c assigns an interval to every σ ∈ Σ, i.e. it is a tuple from (N,N ∪ {∞})Σ. A
tuple ~w ∈ NΣ satisfies a Σ-constraint ~c, if every component nσ of ~w is in the interval (l, r)
asigned to σ by ~c.

A preorder automaton A is a tuple (Q,Σ,∆, qI , F ), where the states Q, the input alphabet
Σ, the initial state qI ∈ Q and the final states F ⊆ Q are as in usual finite state automata.
The transition relation ∆ is a finite subset of Q× C ×Q where C is a set of Σ-constraints.

The semantics is as follows. When p is a state of A and ~w is a letter from NΣ, then a
transition (p,~c, q) ∈ ∆ can be applied if ~w satisfies ~c. A run of the automaton A over a word
~w1 . . . ~wn is a sequence of transitions δ1 . . . δn with δi = (pi−1,~ci, pi) such that δi is applicable
to ~wi. The run is accepting if p0 = qI and pn ∈ F . The language L(A) accepted by A is the
set of all preorder words with an accepting run of A.

I Example 2. Let L be the language of preorder words w over Σ = {a, b} where every letter
~wi of w contains an a-labeled element and at most two b-labeled elements. The preorder
automaton A with two states s and e, transitions {(s, ((1,∞), (0, 3)), s), (s, ((0, 1), (0,∞)), e),
(s, ((0,∞), (3,∞)), e)}, initial state s and single finite state s accepts L.

Preorder automata can be seen as a normal form of finite state automata over the product
Boolean algebra of finite and cofinite subsets of N This observation yields immediately:

I Lemma 3. Preorder automata are closed under union, intersection, complementation and
letter-to-letter projection.

The Theorem of Büchi, Elgot and Trakhtenbrot translates to preorder automata. The
proof is along similar lines.

I Theorem 4. For a language L of preorder words, the following statements are equivalent:
There is a preorder automaton that accepts L.
There is an EMSO2(+1p)-formula that defines L.

Ordered Data Automata. The marked string projection of an ordered data word is its
string projection annotated by information about the relationship of data values of adjacent
positions. Formally, let w = (σ1, d1) . . . (σn, dn) be an ordered data word. Then the marking
m(i) = (m,m′) of position i is a tuple from ΣM = {−∞,−1, 0, 1,∞,−}2 and is defined as
follows. If i = 1 (or i = n) then m = − (or m′ = −). Otherwise let C1 ≤p . . . ≤p Cr be
the classes of w. If Ck, Cl and Cs are the classes of di−1, di and di+1, respectively, then

m(i) =


−∞ if l > k + 1
−1 if l = k + 1

0 if l = k

1 if l = k − 1
∞ if l < k − 1

m′(i) =


−∞ if l > s+ 1
−1 if l = s+ 1

0 if l = s

1 if l = s− 1
∞ if l < s− 1

The marked string projection of w is the string (σ1,m(1)) . . . (σn,m(n)) over Σ × ΣM

and is denoted by msp(w).
An ordered data automata (short: ODA) A = (B, C) over Σ consists of a non-deterministic

letter-to-letter finite state transducer (short: string transducer) B with input alphabet Σ×ΣM
and output alphabet Σ′, and a preorder automaton C with input alphabet Σ′.

An ODA A = (B, C) works as follows. First, for a given ordered data word w, the
transducer B reads the marked string projection of w. A run ρB of the transducer defines a
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unique (for each run) new labelling of each position. Let w′ be the ordered data word thus
obtained from w. Second, the preorder automaton C runs over the preorder projection of w′
yielding a run ρC . The run ρA = (ρB , ρC) of A is accepting, if both ρB and ρC are accepting.
The automaton A accepts w if there is an accepting run of A on w. The set of ordered data
words accepted by A is denoted by L(A).

I Example 5. The language L1 from Example 1 can be decided by an ODA A = (B, C) with
Σ = Σ′ = {a, b} as follows. Let w be an ordered data word. The string transducer B does
not relabel any position. Thus the input preorder word of the preorder automaton C is the
preorder projection ~w1 . . . ~wm of w. The preorder automaton C verifies that after the first ~wi
containing an b-labeled element, no a-labeled element occurs in any ~wj with j ≥ i.

The language L2 can be decided by an ODA A = (B, C) with Σ = {a, b} and Σ′ =
{a, b} × {0, 1} as follows. Let w = (σ1, d1) . . . (σn, dn) be an ordered data word. The
automaton A processes w as follows. The string transducer B guesses the a-labeled positions
with the largest data value, relabels them with (a, 1) and checks that the following position
is b-labeled. All other letters σ are relabeled by (σ, 0). Let w′ be the ordered data word
thus obtained. The input of C is the preorder projection ~w′1 . . . ~w

′
m of w′, and C verifies that

(a, 1)-labeled elements occur only in ~w′m.

I Lemma 6. Languages accepted by ODA are closed under union, intersection and letter-to-
letter projection.

The following proposition can be proved like Lemma 3 in [23].

I Proposition 1. Languages accepted by ODA are not closed under complementation.

4 Ordered Data Automata and EMSO2(+1l , +1p ,≤p) are equivalent

In this section we prove

I Theorem 7. For a language L of ordered data words, the following statements are equival-
ent:

L is accepted by an ordered data automaton.
L is definable in EMSO2(+1l ,+1p ,≤p).

This equivalence transfers to the case where the preorder is a linear order (i.e. every
equivalence class of the preorder is of size one).

The construction of a formula from an automaton is straightforward. The other direction
proceeds by translating a given EMSO2-formula ϕ into an equivalent formula in Scott Normal
Form, i.e. into a formula of the form ∃X1 . . . Xn(∀x∀y ψ ∧

∧
i ∀x∃y χi) where ψ and χi are

quantifier-free formulas (see e.g. [12] for the translation). Since ODA are closed under union,
intersection and renaming it is sufficient to show that for every formula of the form ∀x∀y ψ
and ∀x∃y χ there is an equivalent ODA.

The proofs of the following lemmas use the abbreviations

∆= = {x = y, x 6= y},
∆l = {+1l(x, y),¬+1l(x, y),+1l(y, x),¬+1l(y, x)},
∆p = {+1p(x, y),+1p(y, x), x ∼p y, x�p y, y �p x}.

I Lemma 8. For every formula of the form ∀x∀y ψ with quantifier-free ψ there is an
equivalent ODA.
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Proof. We first write ψ in conjunctive normal form and distribute the universal quantifier
over the conjunction. Therefore, again due to the closure of ODA under intersection, we can
restrict our attention to formulas of the form

ϕ = ∀x∀y(α(x) ∨ β(y) ∨ δ=(x, y) ∨ δl(x, y) ∨ δp(x, y))

where α, β are unary formulas and δ=(x, y), δl(x, y) and δp(x, y) are as follows. Denote by
Disj(Φ) the set of disjunctive formulas over a set of formulas Φ. The formulas δ=(x, y), δl(x, y)
and δp(x, y) are in Disj(∆=), Disj(∆l) and Disj(∆p), respectively. Note that ∆p contains only
positive formulas since negation of any formula in ∆p can be replaced by a disjunction of
formulas from ∆p.

Without loss of generality we assume that neither δ=(x, y), δl(x, y) nor δp(x, y) are the
empty disjunction. (Assume that δ=(x, y) = ⊥, then δ=(x, y) ≡ x = y ∧ x 6= y. Distributing
x = y ∧ x 6= y yields two formulas of the required form.)

In the following we do an exhaustive case analysis. If ϕ is a tautology, then there is an
equivalent ODA. Therefore we assume from now on that ϕ is not a tautology.

When ϕ is not a tautology then δ= is either x 6= y or x = y. If δ= is x 6= y then we can
write ϕ as ∀x∀y

(
(α′(x) ∧ β′(y) ∧ x = y)→ γ(x, y)

)
where α′ and β′ are the negations of the

unary formulas α and β and γ(x, y) = δl(x, y) ∨ δp(x, y). Substituting x = y in γ yields a
formula that is equivalent to True or to False. Thus the property expressed by ϕ can be
checked by the string transducer of an ODA. Hence from now on we assume that δ= is the
formula x = y.

The formula δl can either contain a negative formula from ∆l or it does not contain any
negative formula. If δl contains a negative formula from ∆l we rewrite ϕ as

∀x∀y
(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′l(x, y))→ δp(x, y)

)
where δ′l is the negation of δl. Since δ′l is a conjunction that contains a positive formula from
∆l it is logically equivalent to a positive formula from ∆l, that is, it is equivalent either
to +1l(y, x) or to +1l(x, y). In this case the formula ϕ expresses a regular property over
the marked string projection of the structure. Hence it can be seen immediately that the
property expressed by ϕ can be checked by the string transducer of an ODA. Hence from
now on we assume that δl contains no negative formula from ∆l.

Then δl is either +1l(x, y)∨+1l(y, x) or +1l(y, x) or +1l(y, x). In this case we rewrite ϕ
as ∀x∀y

(
(α′(x)∧ β′(y)∧x 6= y ∧ δ′p(x, y))→ δl(x, y)

)
where δ′p is the negation of δp(x, y). As

noted before, the conjunction δ′p(x, y) can be expressed as a disjunction of formulas from ∆p.
Hence ϕ is equivalent to ∀x∀y

(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′′p (x, y))→ δl(x, y)

)
where δ′′p (x, y)

is a disjunction of formulas in ∆p. Distributing this disjunction yields a formula of the form
∀x∀y

∧(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δ′′′p (x, y))→ δl(x, y)

)
where δ′′′p (x, y) is a formula from ∆p.

By distributing the conjunction over the ∀-quantifiers and by using the closure of ODA
under intersection, it is sufficient to show that there is an equivalent ODA for formulas of
the form χ = ∀x∀y

(
(α′(x) ∧ β′(y) ∧ x 6= y ∧ δp(x, y))→ δl(x, y)

)
where δp(x, y) is a formula

from ∆p and δl is positive.
For the following, we assume that δl is the formula +1l(x, y) ∨ +1l(y, x). The cases

δl = +1l(x, y) and δl = +1l(y, x) are similar. We do a case analysis for δp(x, y).
Let δp = +1p(x, y). Assume that Ci and Ci+1 are two adjacent ≤p-classes. Then the

formula χ states that whenever Ci contains an α′-labeled element u and Ci+1 contains
a β′-labeled element v, then u and v are adjacent with respect to ≤l . This implies that
the number of α′-labeled elements in Ci and β′-labeled elements in Ci+1 is at most three.
Moreover those elements are adjacent in the linear order.
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Thus, an ODA verifying this property can be constructed as follows. The string transducer
annotates every α′-labeled element u by the number of β′-labeled elements v with +1p(u, v)
and either +1l(u, v) or +1l(v, u). Analogously the string transducer annotates every β′-
labeled element by the number of adjacent α′-labeled elements in the preceding ≤p-class.

Then the preorder automaton verifies for each ≤p-class Ci and its successor ≤p-class
Ci+1 that either

Ci contains no α′-labeled elements or Ci+1 contains no β′-labeled elements, or
Ci contains an α′-labeled element and Ci+1 contains a β′-labeled element and
Ci and Ci+1 contain more than three of those elements (then the preorder automaton
rejects)
Ci and Ci+1 contain less than three of those elements. Then it checks that those three
are adjacent by using the annotation given by the transducer (and accepts or rejects
accordingly).

The cases δp = x ∼p y and δp = x�py are very similar. J

I Lemma 9. For every formula of the form ∀x∃y χ with quantifier-free χ there is an
equivalent ODA.

The proof of Lemma 9 will be presented in the full version of the paper. This completes
the proof of Theorem 7.

5 Deciding Emptiness for Ordered Data Automata on k-bounded
Ordered Data Words

An ordered data word w is k-bounded if each class of w contains at most k elements. In this
case the preorder projection of w is a k-bounded preorder word and can be seen as a word
over the finite alphabet {0, . . . , k}|Σ|. Hence an ODA restricted to k-bounded ordered data
words can be seen as a composition of a finite state transducer and a finite state automaton.
We call such automata k-bounded ODA.

Since k-boundedness can be expressed in EMSO2(+1l ,+1p ,≤p) we can conclude that
the result from the previous section carry over to the case of k-bounded ordered data words,
i.e. a language L of k-bounded ordered data words is accepted by a k-bounded ODA if and
only if it can be defined by an EMSO2(+1l ,+1p ,≤p) formula ϕ.

The rest of this section is devoted to the proof of the following theorem.

I Theorem 10. The finite satisfiability problem for EMSO2(+1l ,+1p ,≤p) on k-bounded
data words is decidable.

I Corollary 11. The finite satisfiability problem for EMSO2(+1l1 ,+1l2 ,≤l2) is decidable.

This generalizes Theorem 3 from [23], where the finite satisfiability problem of
FO2(+1l1 ,+1l2) was shown to be decidable. We sketch the proof of Theorem 10; a de-
tailed proof will appear in the full paper. By the above remarks it is sufficient to show that
the emptiness problem of k-bounded ODA is decidable. We reduce the emptiness problem for
k-bounded ODA to the emptiness problem for multicounter automata. The latter is known
to be decidable [24, 21]. The idea is as follows. From a k-bounded ODA A = (B, C) we will
construct a multicounter automatonM such that L(A) is non-empty if and only if L(M) is
non-empty. Intuitively,M will be constructed such that if A accepts a k-bounded ordered
data word w then M accepts a word w′ which is the preorder projection of w annotated
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Figure 2 Blocks in
the ordered-structure-
representation of a 3-
bounded ordered data word
w. Each represents one
element of w, the ≤l -axis
represents positions whereas
the ≤p -axis represents data
values. Labels are omitted
for clarity.

by lots of extra information3. On the other hand ifM accepts an annotated word w′ then
an ordered data word w and an accepting run of A on w can be reconstructed from the
information encoded in w′. ThereforeM reads a k-bounded preorder word w′ = ~w′1 . . . ~w

′
m

and simultaneously verifies
that the extra information in w′ encodes an accepting run of C on w′.
that the elements occuring in w′ can be dynamically (that is while reading ~w′1, ~w

′
2, . . .)

arranged to a word x such that x encodes
a marked string y whose marking is consistent with w′ (and therefore allows for the
construction of an ordered data word w from w′ and y), and
an accepting run of B on y.

We will need the following notions for ordered data words. A block B of an ordered data
word w is a maximal subword of w such that all successive positions in B are ≤p -close in w.
See Figure 2 for an example of blocks.

Since w is k-bounded, every class of w intersects with at most k many blocks. It is easy
to see, that one can color each block B of w with a number N(B) from {1, . . . , 2k} such that
N(B) 6= N(B′) if B and B′ are ≤l -adjacent blocks or ≤p -adjacent blocks. Even more, such
a coloring can be uniquely obtained from w (for example by coloring lexicographically).

In the following we describe how to annotate every element of an ordered data word w with
extra information. A block label (N,X) with block number N and block position X is a letter
from ΣB = {1, . . . , 2k}× ({L,L+, L−, C}×{R,R+, R−, C}). Let A = (B, C) be a k-bounded
ODA with input alphabet Σ, intermediate alphabet Σ′ and let QB and QC be the states of
B and C respectively. A run label (σ′, rB, rC , rB) is a letter from ΣR = Σ′ ×Q2

B ×Q2
C ×Q2

B
where rB, rC and bB are called B-label, C-label and B-block label, respectively.

An annotated ordered data word is an ordered data word over Σ× ΣM × ΣB × ΣR where
ΣM is the alphabet {−∞,−1, 0, 1,∞,−}2 of markings. Likewise an annotated preorder word
is a preorder word over Σ× ΣM × ΣB × ΣR. The preorder projection of an annotated data
word is a preorder word over Σ× ΣM × ΣB × ΣR.

The annotation ann(w, ρ) of an ordered data word w = w1 . . . wn with respect to a run
ρ = (ρB, ρC) of an ODA A = (B, C) on w is an annotated ordered data word that labels every
element wi with its marking m; a block label τ according to the position of wi in its block;
and a run label π describing the output of B on run ρ when reading wi, the states of B and
C according to run ρ, and the states where B enters and leaves the block of wi in run ρ. The
preorder projection of the annotation of an ordered data word w is denoted by annpp(w, ρ).

3 Recall that the preorder projection of a k-bounded ordered data word is a k-bounded preorder word, i.e.
a word over {0, . . . , k}|Σ|.
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Intuitively maximal contiguous subwords of annpp(w, ρ) with the same block number N
correspond to a block in w. Therefore such contiguous subwords of annotated preorder words
are called symbolic N -blocks.

We now state the proof idea of Theorem 10 more precisely. From an ordered data
automaton A = (B, C) we construct a multicounter automaton M that reads annotated
k-bounded preorder words such that

If A accepts a k-bounded ordered data word w via run ρ thenM accepts annpp(w, ρ).
IfM accepts an annotated k-bounded preorder word w′ then a k-bounded ordered data
word w can be constructed from w′ which is accepted by A.

Given an annotated k-bounded preorder word w′ = ~w′1 . . . ~w
′
n, the multicounter automaton

M tries to reconstruct a k-ordered data word w from w′ such that w is accepted by A.
Every symbolic block B′ in w′ will represent a block B in w. We will prove that such a
reconstruction is possible whenever the following conditions (C0) – (C3) are satisfied:

(C0) a) The block position label and the label from ΣM are consistent for every element of
w′.

b) Every symbolic block B′ of w′ contains exactly one {L,L−, L+}-labeled element
and one {R,R−, R+}-labeled element.

c) All elements of a letter ~w′i have the same C-label..
d) The B- and C-labels are consistent with the Σ- and Σ′-labels for every element u

of w′.
(C1) The C-labels in w′ encode an accepting run of C.
(C2) For every symbolic block B′ = ~w′l . . . ~w

′
m of w′ there is an annotated ordered data word

B with data values from the set {l, . . . ,m} ⊂ N such that
a) B is a single block and pp(B) = B′. Further, the data value of an element u of B

is d when u corresponds to an element contained in ~w′d in B′.
b) The first position of B carries block position label L, L+ or L−. The last position

of B carries block position label R, R+ or R−. All other positions carry block
position label C.

c) All elements of B′ carry the same B-block label (p, q).
d) There is a run of B on B that starts in p, ends in q and is consistent with the
B-labels of B.

(C3) Let B′1, . . . , B′m be the symbolic blocks of w′. Further let ~w′si
be the position of B′i,

that contains4 the {L,L−, L+}-labeled element li of B′i. Analogously let ~w′ti be the
position of B′i, that contains the {R,R−, R+}-labeled element ri of B′i. There is a
permutation π of {1, . . . ,m} such that
a) If (p, q) is the B-block label of lπ(1), then p is the start state of B. Further the

block position label of lπ(1) is L.
b) If (p, q) is the B-block label of rπ(m) then q is a final state of B. Further the block

position label of rπ(m) is R.
c) If (p, q) and (p′, q′) are the B-block labels of B′π(i) and B′π(i+1), respectively, then

q = p′.
d) If ri is labeled with R+, then li+1 is labeled with L−. Further ti�psi+1.
e) Likewise if ri is labeled with R−, then li+1 is labeled with L+. Further si+1�pti.

4 Recall that ~w′
si

can be identified with the equivalence class of the preorder corresponding to B′
i.
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Intuitively, the Conditions (C2) help to reconstruct runs from C. Runs of B are recon-
structed with the help of Conditions (C2) and (C3), where (C2) helps reconstructing runs of
B on blocks whereas (C3) helps reconstructing the order of blocks.

Recall that k-bounded preorder words over Σ can be seen as a word over the finite
alphabet {0, . . . , k}|Σ|.

I Lemma 12. For every k-bounded ODA A there is a finite state automatonM that accepts
exactly the annotated k-bounded preorder words that satisfy conditions (C0) and (C1) from
above.

I Lemma 13. For every k-bounded ODA A = (B, C) there is a finite state automaton M
that accepts exactly the annotated k-bounded preorder words that satisfy condition (C2).

I Lemma 14. For every k-bounded ODA A there is a multicounter automaton M that
accepts exactly the annotated k-bounded preorder words that satisfy conditions (C3).

Using the previous lemmata we can now complete the proof of Theorem 10.

Proof of Theorem 10. For a given k-bounded ODA A = (B, C) letM1,M2 andM3 be the
multicounter automata from Lemmata 12, 13 and 14, respectively. Let M be the intersection
multicounter automaton for those three automata.

We prove that L(A) is empty if and only if L(M) is empty. The statement of Theorem 10
follows from this. First, let w be a k-bounded ordered data word accepted by A. Then there
is an accepting run ρ = (ρB, ρC) of A on w. The word w′ = annpp(w, ρ) satisfies conditions
(C0) – (C3) and is therefore accepted byM due to Lemmata 12, 13 and 14.

Second, let w′ = ~w′1 . . . ~w
′
m be a k-bounded preorder word accepted byM. We construct

a k-bounded data word w ∈ L(A) and an accepting run ρ = (ρB, ρC) of A on w with
annpp(w, ρ) = w′. Therefor let B′1, . . . , B′l be the symbolic blocks of w′. Condition (C2)
guarantees the existence of annotated data words B1, . . . , Bl with pp(Bi) = B′i and data
values from {li, . . . , ri} when B′i = w′li . . . w

′
ri
. By Condition (C2d) there is a run ρi for each

Bi starting in pi and ending in qi where (pi, qi) is the B-label of B′i.
Now let π the permutation from Condition (C3). We define the ordered data word

w = Dπ(1) . . . Dπ(l) where Dπ(i) is obtained from Bπ(i) by removing the annotations. Note
that the Dπ(i) are blocks by Conditions (C2a), (C2b), (C3d) and (C3e). The concatenation
ρB of the runs ρπ(1), . . . , ρπ(l) is an accepting run of B on w by Conditions (C3a), (C3b) and
(C3c). An accepting run of C on the output of ρB exists by Condition (C1). J

6 Hardness Results for Two-Dimensional Ordered Structures

This section aims at filling the remaining gaps for finite satisfiability of two-variable logic on
two-dimensional ordered structures. We refer the reader to Figure 3 for a summary of the
results obtained in the literature and here.

We start with a matching lower bound for the finite satisfiability problem of
EMSO2(+1l ,+1p ,≤p) over k-bounded structures. This bound already holds for
FO2(+1l1 ,+1l2 ,≤l2).

I Theorem 15. Finite satisfiability of FO2(+1l1 ,+1l2 ,≤l2) is at least as hard as the empti-
ness problem for multicounter automata.

I Corollary 16. Finite satisfiability of FO2(+1l ,+1p ,≤p) over k-bounded ordered data words
is at least as hard as the emptiness problem for multicounter automata.
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It is not surprising that the finite satisfiability problem of FO2 with two additional
preorder successor relations is undecidable, as those allow for encoding a grid. A minor
technical difficulty arises when the corresponding equivalence relations are not available.
Undecidability even holds for 2-bounded preorder successor relations.

I Theorem 17. Finite satisfiability of two-variable logic with two additional 2-bounded
preorder successor relations is undecidable.

We denote the relation +1l2 by +2l . The following slightly improves Theorem 4 in [23].

I Corollary 18. Finite satisfiability of FO2(+1l1 ,+2l1 ,+1l2 ,+2l2) is undecidable.

The following theorems complement results from [2] and [28]. The proofs use similar
methods as used in those works.

I Theorem 19. Finite satisfiability of FO2(+1l ,≤l ,+1p) is undecidable.

I Theorem 20. Finite satisfiability of FO2(+1p1 ,≤p2), i.e. two-variable logic with one
additional preorder successor relation and one additional preorder relation, is undecidable.

7 Discussion

The current status of research on two-variable logic with additional successor and order
relations is summarized in Figure 3.

We saw that EMSO2 with a linear order successor, a k-bounded preorder relation and its
induced successor relation is decidable.

After submission of this work, the finite satisfiability problem of FO2(+1l ,+1p) has been
shown to be undecidable by Thomas Schwentick and the authors of this work [22], but has
not been peer reviewed yet. We strongly conjecture that finite satisfiability for the other
remaining open case, namely FO2(+1l ,≤p), is decidable. We are actually working on the
details of the proof and plan to include both results into the full version of this paper.

It remains open whether there is some m such that FO2(+1l1 , . . . ,+1lm) is undecid-
able. A method for proving undecidability of FO2(+1l1 , . . . ,+1lm) should not extend to
FO2(F1, . . . , Fm) where F1, . . . , Fm are binary predicates that are interpreted as permuta-
tions. A successor relation +1l can be seen as a permutation with only one cycle and one
label that marks the first element. Finite satisfiability of FO2(F1, . . . , Fm) is decidable since
one can express that some arbitrary interpreted binary predicate R is a permutation by using
two-variable logic with counting quantifiers which in turn is decidable by [13]. This is an
observation by Juha Kontinen.
I Open Question 1. Is there an m such that FO2(+1l1 , . . . ,+1lm) is undecidable?
Temporal logics on data words have seen much research recently [7, 8, 16]. However, to the
best of our knowledge, most of those logics have been restricted in the sense that comparison
of data values was only allowed with respect to equality. In [29] a temporal logic that allows
for comparing ordered data values was introduced. The authors intend to use the techniques
and results obtained for two-variable logic with additional successors and orders to investigate
temporal logics on data values that allow more structure on the data value side.
I Open Question 2. Are there expressive but still decidable temporal logics on data words
with successor and order relations on the data values?

5 Under elementary reductions.
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Logic Complexity (lower/upper) Comments
One linear order

FO2(+1l) NExpTime-complete [9]
FO2(≤l) NExpTime-complete [26, 9]
FO2(+1l ,≤l) NExpTime-complete [9]

One total preorder
FO2(+1p) ExpSpace-complete ExpCorridorTiling
FO2(≤p) NExpTime/ExpSpace
FO2(+1p ,≤p) ExpSpace-complete [28]

Two linear orders
FO2(+1l1 ,+1l2) NExpTime-complete [23, 10, 5]
FO2(+1l1 ,≤l2) NExpTime/ExpSpace [28]
FO2(+1l1 ,+1l2 ,≤l2) Multicounter-Emptiness5 F, Corollary 11 and Theorem 15
FO2(+1l1 ,≤l1 ,≤l2) NExpTime/ExpSpace [28]
FO2(+1l1 ,≤l1 ,+1l2 ,≤l2) Undecidable [23]

Two total preorders
FO2(+1p1 ,+1p2) Undecidable F, Theorem 17
FO2(+1p1 ,≤p2) Undecidable F, Theorem 20
FO2(≤p1 ,≤p2) Undecidable [27]

One linear order and one total preorder
FO2(+1l ,+1p) ? (see discussion) F Special case: Theorem 10
FO2(+1l ,≤p) ? (see discussion) F Special case: Theorem 10
FO2(+1l ,≤l ,+1p) Undecidable F, Theorem 19
FO2(+1l ,≤l ,≤p) Undecidable [2]
FO2(+1l ,+1p ,≤p) ? (see discussion) F, Special case: Theorem 10
FO2(≤l ,+1p ,≤p) ExpSpace-complete [28]

Many orders
FO2(≤l1 ,≤l2 ,≤l3) Undecidable [17]
FO2(+1l1 ,+1l2 ,+1l3) ?
FO2(+1l1 ,+1l2 ,+1l3 , . . .) ?

Figure 3 Summary of results on finite satisfiability of FO2 with successor and order relations.
Cases that are symmetric and where undecidability is implied are omitted. Results in this paper are
marked by F.

We conclude with highlighting a small difference in treating successor relations for data words.
In this paper, the preorder successor is complete in the sense that every element (except for
elements contained in the last preorder equivalence class) has a preorder successor. In many
data domains, especially in those that are subject to change, it is sufficient to interpret the
preorder successor relation with respect to those data values present in the structure. Such
domains are for example the words in the English language, ISBN numbers etc.

However, for data words over the natural numbers it can be useful that some data values
are not present in a data word, i.e. that the successor relation can be incomplete. As a
complete successor relation can be axiomatized given an incomplete successor relation, this
is a more general setting. This setting is used in [28].
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