
The Complexity of Abduction for Equality
Constraint Languages
Johannes Schmidt∗ and Michał Wrona†

Linköping University
IDA
Linköping
{johannes.schmidt, michal.wrona}@liu.se

Abstract
Abduction is a form of nonmonotonic reasoning that looks for an explanation for an observed
manifestation according to some knowledge base. One form of the abduction problem studied
in the literature is the propositional abduction problem parameterized by a structure Γ over
the two-element domain. In that case, the knowledge base is a set of constraints over Γ, the
manifestation and explanation are propositional formulas.

In this paper, we follow a similar route. Yet, we consider abduction over infinite domain.
We study the equality abduction problem parameterized by a relational first-order structure Γ
over the natural numbers such that every relation in Γ is definable by a Boolean combination of
equalities, a manifestation is a literal of the form (x = y) or (x 6= y), and an explanation is a set
of such literals. Our main contribution is a complete complexity characterization of the equality
abduction problem. We prove that depending on Γ, it is ΣP2 -complete, or NP-complete, or in P.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.2.2 Nonnumerical Algorithms
and Problems

Keywords and phrases Abduction, infinite structures, equality constraint languages, computa-
tional complexity, algebraic approach

Digital Object Identifier 10.4230/LIPIcs.CSL.2013.615

1 Introduction

Abduction is a form of logical inference that aims at finding explanations for observed
manifestations, starting from some knowledge base. It found many different applications
in artificial intelligence [21], in particular to explanation-based diagnosis (e.g. medical
diagnosis [10]), text interpretation [18], and planning [17].

In this paper we are interested in the complexity of abduction in a well-defined framework
explained below. In a certain sense we follow a series of papers concerning the complexity
of propositional abduction [16, 15, 20]. Roughly speaking, an instance of a propositional
abduction problem for a relational structure Γ over the two element domain consists of
a knowledge base KB — a conjunction of constraints over Γ, a set of hypotheses H —
propositional literals formed upon variables in KB, and a manifestation M — a propositional
formula. The question is whether there exists an explanation, i.e., a set E ⊆ H such that
(KB∧

∧
E) is satisfiable and (KB∧

∧
E) entailsM . For every Γ, this propositional abduction

problem is in ΣP
2 [16]. Depending on the restrictions, e.g., on Γ, one can obtain variants

which are polynomial, NP-complete, coNP-complete or ΣP2 -complete [20].

∗ Supported by the National Graduate School in Computer Science (CUGS), Sweden.
† Supported by the Swedish Research Council (VR) under grant 621-2012-3239.

© Johannes Schmidt and Michał Wrona;
licensed under Creative Commons License CC-BY

Computer Science Logic 2013 (CSL’13).
Editor: Simona Ronchi Della Rocca ; pp. 615–633

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2013.615
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

616 The Complexity of Abduction for Equality Constraint Languages

Here, we follow a similar scheme. The difference is that Γ is not a structure over the
two-element domain but a structure that has a first-order definition in (N; =), that is, the
set of natural numbers with equality only. In what follows we call such structures equality
(constraint) languages and the corresponding abduction problem the equality abduction
problem. Since all structures first-order definable in (N; =) have also first-order definitions in
all other infinite structures, it is natural to start classifying the complexity of abduction for
infinite structures considering equality languages first. The motivation for studying abduction
for infinite constraint languages is strong and presented below. Equality languages are also
of independent interest. They were studied in the context of CSPs [5] and QCSPs [3], see
also Section 4.1. In [4], these languages were classified with respect to primitive positive
definability.

An instance of the equality abduction problem for Γ consists of a knowledge base φ that
is a conjunction of constraints over Γ, a subset V of the set of variables occurring in φ, and
a manifestation which is a literal L(x, y) of the form (x = y), or (x 6= y). The question
is whether there exists an explanation, i.e., a conjunction ψ of such literals formed upon
variables in V such that (φ ∧ ψ) is satisfiable and (φ ∧ ψ) entails L(x, y). For instance,
a possible explanation for the knowledge base ((x1 = y1 ∧ x2 = y2) → z = v) and the
manifestation (z = v) is (x1 = y1 ∧ x2 = y2). We give a precise definition in Section 4. The
notions used in the introduction are pretty standard. Most of them are, nevertheless, defined
in Section 2.

The main contribution of this paper is a trichotomous complexity classification of the
equality abduction problem. As we show, this problem is always in ΣP2 . Moreover, depending
on Γ, it may be ΣP2 -hard, or NP-complete, or solvable in polynomial time.

This way of parameterizing computational problems by relational structures is also
referred to as Schaefer’s framework or Schaefer’s approach and dates back to Schaefer’s
paper on the complexity of constraint satisfaction problems (CSPs) over the two-element
domain [22]. Modern proofs of Schaefer’s theorem (see, e.g., [12]), as well as many other
classifications of the complexity of related problems (for a survey, see [14]) including also
propositional abduction take advantage of the so-called algebraic approach. In this approach
the complexity of the problem, e.g., a constraint satisfaction problem or an abduction problem
for a fixed Γ, is related directly to the set of operations preserving Γ. To enjoy the benefits of
the algebraic tools, it is not necessary to restrict to the two-element domain, neither to any
finite domain. Indeed, algebraic tools are equivalently powerful in classifying the complexity
of CSPs for certain infinite structures [2], called ω-categorical structures [19].

Very natural examples of such structures are (N; =) but also (Q;<), that is, the order of
rational numbers. Several classifications of constraint satisfaction problems for ω-categorical
structures were obtained in the literature [2]. All of them follow the following scheme. One
starts from some ω-categorical structure ∆ such as (N; =) or (Q;<), then considers the class
of all structures Γ with a first-order definition in ∆, which are also ω-categorical. The cases
where ∆ is (N; =) and (Q;<) were treated in [5] and [6], respectively. In both situations it
appeared that the problem CSP(Γ) is either in P, or it is NP-complete. Here, we adopt this
framework to study the complexity of the equality abduction problem.

To motivate the study of CSPs for ω-categorical structures, it is worth to mention that
many problems studied independently in temporal reasoning, e.g., network satisfaction
problems for qualitative calculi such as the Point Algebra [23] or Allen’s Interval Algebra [1]
can be directly formulated in this framework. In fact the complexity classification of Γ with
a first-order definition in (Q;<) substantially generalizes the result on tractability for the
network satisfaction problem for the Point Algebra. Furthermore, the network satisfaction

J. Schmidt and M. Wrona 617

problem for Allen’s Interval Algebra may be also modelled as a CSP for an ω-categorical
structure, see [2].

Back to the issue of abduction, a kind of this problem handling time dependencies between
events is called temporal abduction. Among others it is studied in [8, 13] in the framework [9]
based on already mentioned, formalisms: Point Algebra, and Allen’s Interval Algebra. It
motivates the study of the complexity of abduction for ω-categorical structures, which we
initiate in this paper.

1.1 Outline of the paper

We start in Section 2 by providing some preliminaries. In Section 3 we give a general
definition of an abduction problem for a relational structure Γ. This definition captures many
variants of propositional abduction as well as the equality abduction problem we study in
this paper. We believe that the general definition will be employed in our future research on
abduction. In that section we also show that two primitive positive interdefinable structures
Γ1 and Γ2 give rise to abduction problems that are polynomial-time equivalent. Using the
Galois connection in [7], it follows that if Γ1 and Γ2 are ω-categorical and preserved by
the same operations, then their abduction problems are polynomial-time equivalent. We
conclude that part of the paper by proving a useful result which links the complexity of the
abduction and the constraint satisfaction problem.

A set of operations preserving a given structure Γ forms an algebraic structure called
a clone. Clones corresponding to equality languages were classified in [4]. To provide our
classification, which is presented in detail in Section 4, we express it in terms of clones, see
Section 5. Then it remains to prove the complexity results, which are provided in Sections 6,
7, and 8. The paper is concluded in Section 9, where also the issue of future work is adressed.

The appendix contains proofs of: Theorem 5, Proposition 26, Lemma 28, and Proposi-
tion 29.

2 Preliminaries

Always, when it is possible, the notation is consistent with [19], [11], and [2], which we
recommend as further reading on model theory, ω-categoricity and CSPs over ω-categorical
structures, respectively. We write [n] to denote {1, . . . , n}.

2.1 Structures and Formulas

In this paper, we consider relational structures, which are typically denoted here by capital
Greek letters such as Γ, or ∆. A signature is usually denoted by τ . If it is not stated
otherwise, then we assume that the signature is finite. For the sake of simplicity, we use the
same symbols to denote relations and their corresponding relation symbols. We mainly focus
on countably infinite and ω-categorical structures. We say that a countably infinite structure
is ω-categorical if all countable models of its first-order theory are isomorphic.

Let σ and τ be signatures with σ ⊆ τ . When ∆ is a σ-structure and Γ is a τ -structure
with the same domain such that R∆ = RΓ for all R ∈ σ, then Γ is called an expansion of ∆.

For a τ -structure Γ over the domain D we define ∆ := Γk, where k > 0 is a natural
number, to be a k-fold direct product of Γ, that is, the τ -structure on the domain Dk such
that for every n-ary relation symbol R in τ we have ((d1

1, . . . , d
1
k), . . . , (dn1 , . . . , dnk)) ∈ R∆ iff

(d1
i , . . . , d

n
i) ∈ RΓ for all i ∈ [k].

CSL’13

618 The Complexity of Abduction for Equality Constraint Languages

In this paper, we say that a relational structure Γ is first-order definable in ∆ if Γ has
the same domain as ∆, and for every relation R of Γ there is a first-order formula φ in the
signature of ∆ such that φ holds exactly on those tuples that are contained in R. If Γ is
first-order definable in ∆, then we say that Γ is a first-order reduct of ∆. We say that two
formulas are equivalent if they are over the same variables and define the same relation.

We are in particular interested in equality (constraint) languages, that is, first-order
reducts of (N; =). All equality languages are ω-categorical structures. Furthermore, since
(N; =) has quantifier elimination, every equality language has a quantifier-free first-order
definition in (N; =) in conjunctive normal form. Such formulas over the signature {=, 6=}
will be called equality formulas, and equality formulas of the form (x = y) and (x 6= y) will
be called (equality) literals. The set of all literals that can be formed upon a set of variables
V will be denoted by L(V).

A Γ-constraint is an atomic formula over the signature of Γ of the form R(x1, . . . , xn).
Of special interest for abduction are Γ-formulas which are conjunctions of Γ-constraints.
Furthermore, primitive positive formulas (pp-formulas) over the signature of Γ are first-order
formulas built exclusively from conjunction, existential quantifiers, Γ-constraints and atomic
formulas of the form (x = y). The set of relations with a pp-definition in Γ is denoted by [Γ].

For a quantifier-free first-order formula φ, we write Var(φ) to denote the set of variables
occurring in φ. Let φ1 and φ2 be two equality formulas over the same set of variables
{v1, . . . , vn}. We say that φ1 entails φ2 if (N; =) |= (∀v1 · · · ∀vn.φ1 → φ2).

2.2 Polymorphisms and Clones
Let Γ be a structure. Homomorphisms from Γk to Γ are called polymorphisms of Γ. When R
is a relation over domain D, we say that f : Dk → D preserves R if f is a polymorphism
of (D;R), and that f violates R otherwise. The set of all polymorphisms of a relational
structure Γ, denoted by Pol(Γ), forms an algebraic object called a clone. A clone on some
fixed domain D is a set of operations on D containing all projections and closed under
composition. A clone C is locally closed iff for all natural numbers n, for all n-ary operations
g on D, if for all finite B ⊆ Dn there exists an n-ary f ∈ C which agrees with g on B, then
g ∈ C. We say that a set of operations F (locally) generates an operation f (or that an
operation f is (locally) generated by F) if f is in the smallest locally closed clone containing
F , denoted by 〈F 〉. If F = {g} then we also say that g generates f or that f is generated by
g.

I Proposition 1 (see e.g. [2]). Let F be a set of operations on some domain D. Then the
following are equivalent: (i) F is the polymorphism clone of a relational structure; and (ii) F
is a locally closed clone.

For ω-categorical structures we have the following Galois connection.

I Theorem 2 ([7]). Let Γ1,Γ2 be ω-categorical structures. We have that Pol(Γ1) ⊆ Pol(Γ2)
if and only if [Γ2] ⊆ [Γ1].

A special kind of a polymorphism is an automorphism. Observe that the set of auto-
morphisms of (N; =) is exactly SN, that is, the set of all permutations on N. By the theorem
of Engeler, Ryll-Nardzewski and Svenonius (see, e.g., [19]), it follows that a structure is
an equality language if and only if it is preserved by SN. Thus, by Theorem 2 and results
obtained in Section 3, studying the complexity of the equality abduction problem amounts to
studying locally closed clones on N containing SN. In what follows, such clones will be called
equality clones. These clones form a complete lattice, where the least element is the clone

J. Schmidt and M. Wrona 619

generated by SN and the greatest element is the set of all operations on N, denoted here
by O. By O(k), we denote a subset of O containing the operations of arity k. For a given
family of clones (Ci)i∈I , the meet is just an intersection

⋂
i∈I Ci, and the join is 〈

⋃
i∈I Ci〉.

The lattice of equality clones was described in [4]. In this paper, we take advantage of this
classification. The clones which are important for us are recalled in Section 5.

2.3 Complexity Classes
In this paper we study decision problems. The complexity classes we deal with are P, NP and
ΣP

2 . Recall that ΣP
2 = NPNP is the class of decision problems solvable in nondeterministic

polynomial time with access to an NP-oracle. In general, we write CC2
1 for the class of

languages solvable in C1 with access to a C2-oracle.

2.4 Propositional Abduction
Abduction has been intensively studied in the propositional case, see e.g., [15] and [20] for
complexity classifications. Similarly as in this paper, these classifications are based on the
closure properties of constraint languages. To prove hardness results on the equality abduction
problem, we will use the complexity classification for a special kind of propositional abduction
problem called PQ-ABDUCTION(Γ), where Γ is a structure over the two-element domain.
By Lit(V) we denote the set of propositional literals that can be formed upon variables
in V . An instance of PQ-ABDUCTION(Γ) is a triple (φ, V, q), where φ is a Γ-formula,
V ⊆ Var(φ), and q ∈ Var(φ) \ V . We ask whether there is a set of literals Lit ⊆ Lit(V) such
that (φ ∧

∧
Lit) is satisfiable but (φ ∧

∧
Lit ∧ ¬q) is not. We will need the following version

of Theorem 7.6 in [15]. Beforehand, however, consider the following operations over the two-
element domain: i) majority(b1, b2, b3) = (b1∧b2)∨(b1∧b3)∨(b2∧b3), ii) minority(b1, b2, b3) =
(b1 ∧¬b2 ∧¬b3)∨ (¬b1 ∧ b2 ∧¬b3)∨ (¬b1 ∧¬b2 ∧ b3)∨ (b1 ∧ b2 ∧ b3), iii) min(b1, b2) = b1 ∧ b2,
iv) max(b1, b2) = b1 ∨ b2, v) c0(b) = 0, vi) c1(b) = 1, vii) opzero(b1, b2, b3) = b1 ∧ (b2 ∨ b3),
and viii) opone(b1, b2, b3) = b1 ∨ (b2 ∧ b3).

I Theorem 3 ([15]). Let Γ be a structure over the two-element domain.

If Γ is preserved by i) majority, ii) minority, iii) min and c1, iv) opzero, or v) opone,
then PQ-ABDUCTION(Γ) is in P.
Otherwise, if Γ is preserved by min or max, the problem PQ-ABDUCTION(Γ) is NP-
complete.
In all other cases, we have that PQ-ABDUCTION(Γ) is ΣP2 -hard.

3 The Abduction Problem and Algebra

Let ∆ be a relational structure over some domain D and let Γ,HYP,M be three first-order
reducts of ∆. Let ΓHYP be an expansion of Γ by the relations in HYP , that is, the structure
whose relations are either from Γ or HYP; and ΓHYP,M be an expansion of ΓHYP by the
relations inM.

I Definition 4. An instance of the abduction problem ABD(Γ,HYP,M) is a triple T =
(φ, V,M), where:

φ is a Γ-formula (the knowledge base),
V is a subset of Var(φ),
M is anM-constraint (the manifestation).

CSL’13

620 The Complexity of Abduction for Equality Constraint Languages

The triple T = (φ, V,M) is a positive instance of ABD(Γ,HYP,M) if there exists an
explanation for T , that is, a HYP-formula ψ built upon variables from V such that both of
the following hold:

(φ ∧ ψ) is satisfiable in ΓHYP ,
(φ ∧ ψ) entails M (or equivalently, (φ ∧ ψ ∧ ¬M) is not satisfiable in ΓHYP,M).

In this case ψ is called an explanation for T .

This definition allows to model many variants of the propositional abduction problem as
defined in [20]. For instance, the basic problem PQ-ABDUCTION(Γ) discussed in Section 2
(called V-ABD(Γ, PosLits) in [20]) can be modelled in the following way. We start from
∆ = ({0, 1};T, F), where T = {(1)} and F = {(0)}, and consider Γ with a first-order
definition in ∆, that is, Γ may be an arbitrary structure over the two-element domain. Then,
we set HYP to ({0, 1};T, F), andM to ({0, 1};T).

We observe in the following that the algebraic approach is applicable to the abduction
problem under consideration. We first show that when HYP and M are fixed, then
the complexity of ABD(Γ,HYP,M) is fully determined by the set [Γ], the closure of
Γ under primitive positive definitions. For Γ1 ⊆ [Γ2] and an instance T1 = (φ1, V,M)
of ABD(Γ1,HYP,M), we create an instance T2 = (φ2, V,M) of ABD(Γ2,HYP,M) by
transforming a Γ1-formula φ1 into a Γ2-formula φ2 in the following standard way: (1) replace
in φ1 every Γ1-constraint by its pp-definition in Γ2, (2) delete all existential quantifiers,
(3) delete all equality constraints and identify variables that are linked by a sequence of =.

It is easily observed that this transformation preserves satisfiability. Similarly as in [20],
one can show that an explanation for T1 can be easily rewritten into an explanation for T2,
and vice versa.

I Theorem 5. Let ∆ be a relational structure and Γ1,Γ2,HYP,M be first-order reducts
of ∆, where Γ1 and Γ2 are over finite signatures. If Γ1 has a pp-definition in Γ2, then
ABD(Γ1,HYP,M) reduces to ABD(Γ2,HYP,M) in polynomial time.

By Theorems 2 and 5, we have that the complexity of ABD(Γ,HYP,M) for ω-categorical
Γ is fully captured by the set of polymorphisms preserving Γ.

I Corollary 6. Let ∆ be an ω-categorical structure and Γ1, Γ2, HYP, and M first-order
reducts of ∆, where Γ1 and Γ2 are over finite signatures. If Pol(Γ2) ⊆ Pol(Γ1), then
ABD(Γ1,HYP,M) reduces to ABD(Γ2,HYP,M) in polynomial time.

We will conclude this section by providing a simple but useful link between the complexity
of CSP(ΓHYP,M) and ABD(Γ,HYP,M).

I Proposition 7. Let ∆ be a relational structure and Γ,HYP,M be first-order reducts of ∆,
where HYP is over a finite signature. If CSP(ΓHYP,M) is in the complexity class C, then
ABD(Γ,HYP,M) is in NPC .

Proof. Let T = (φ, V,M) be an instance of ABD(Γ,HYP,M). By assumption, the signature
of HYP is finite and therefore we can assume that if an explanation for T exists, then it is of
polynomial length with respect to the number of variables in V , and thereby with respect to
the length of T . Thus, we can guess a ψ and verify in polynomial time with two calls to the
C-oracle whether the instances (φ ∧ ψ) and (φ ∧ ψ ∧¬M) of CSP(ΓHYP,M) are, respectively,
satisfiable and not satisfiable in ΓHYP,M. J

J. Schmidt and M. Wrona 621

4 Equality Abduction

In this paper, we treat a special case of the abduction problem ABD(Γ,HYP,M). In the
rest of the paper, Γ is always an equality language over a finite signature, and HYP andM
are always (N; =, 6=).

We now formally define the equality abduction problem. Recall from Section 2 that
equality literals are equality formulas of the form (x = y) or (x 6= y); and that the set of all
equality literals that can be formed upon variables in V is denoted by L(V).

I Definition 8 (Equality Abduction Problem). The equality abduction problem ABD(Γ) for
an equality language Γ (over a finite signature) is the computational problem, whose instance
is a triple T = (φ, V, L(x, y)), where:

φ is a Γ-formula,
V is a subset of Var(φ),
L(x, y) is a literal and x, y ∈ Var(φ).

The triple T is a positive instance of ABD(Γ) if there exists an explanation for T , that is, a
set of literals L ⊆ L(V) such that both of the following hold:

(φ ∧
∧
L) is satisfiable in (N; =, 6=),

(φ∧
∧
L) entails L(x, y) (or equivalently, (φ∧

∧
L∧¬L(x, y)) is not satisfiable in (N; =, 6=)).

We would like to remark that since Γ is always over a finite signature, the complexity of
ABD(Γ) does not depend on the representation of relations in Γ.

Consider the following example. Let Γ = (N; I), where I = {(x, y, z) | (x = y → y = z)},
be an equality language. Consider the instance T = (φ, {x, y, v}, (z = w)) of ABD(Γ) where
φ is ((x = y → y = z) ∧ (v = z → v = w)). Consider the set of literals L = {x = y, y = v}.
Observe that (φ∧

∧
L) is equivalent to ((x = y → y = z)∧(v = z → v = w))∧(x = y)∧(y = v).

It is straightforward to verify that this formula is satisfiable and that it entails (z = w).
Therefore, L is an explanation. As we will see, the problem ABD(N; I) is NP-complete.

The following classes of equality languages are crucial to understand the complexity of
the equality abduction problem.

I Definition 9. We say that a first-order formula is a negative (equality) formula if it is a
conjunction of clauses of the form

(x1 6= y1 ∨ · · · ∨ xk 6= yk) or (x = y).

A relation R is called negative if it can be defined by a negative formula. An equality language
Γ is negative if every its relation is negative.

I Definition 10. We say that a first-order formula is a Horn (equality) formula if it is a
conjunction of clauses of the form

(x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ x = y),

where it is permitted that k = 0 and the clause is simply an equality, i.e., of the form
x = y. It is also permitted that we skip the equality and the clause is simply a disjunction of
disequalities. A relation R is called Horn if it can be defined by a Horn formula. An equality
language Γ is Horn if every its relation is Horn.

We will now present the main contribution of this paper. The following theorem completely
classifies the complexity of the equality abduction problem.

CSL’13

622 The Complexity of Abduction for Equality Constraint Languages

I Theorem 11 (Complexity Classification of the Equality Abduction Problem). Let Γ be an
equality language (over a finite signature). Then exactly one of the following holds.
1. Γ is negative and ABD(Γ) is in P;
2. Γ is not negative but Horn and ABD(Γ) is NP-complete;
3. Γ is not Horn and ABD(Γ) is ΣP2 -complete.

We will now break the proof of Theorem 11 into smaller steps. Keeping in mind that NPP
is equal to NP, by Proposition 7 and the complexity results in [5], which are also discussed
in Section 4.1, we have the following upper bounds.
I Proposition 12. Let Γ be an equality language. Then we have both of the following.
1. The problem ABD(Γ) is in ΣP2 .
2. If Γ is Horn, then ABD(Γ) is in NP.

In the remainder of the paper, we focus on hardness and tractability results. We first
characterize those equality languages for which the abduction problem is of the highest
complexity.
I Proposition 13. Let Γ be an equality language. If Γ is not Horn, then ABD(Γ) is ΣP2 -hard.

Then, we take care of those that are NP-hard.
I Proposition 14. Let Γ be an equality language. If Γ is not negative, then ABD(Γ) is
NP-hard.

As we show, there is also a nontrivial class of equality abduction problems that are in P.
For those, we will provide an appropriate algorithm.
I Proposition 15. Let Γ be an equality language. If Γ is negative, then ABD(Γ) is in P.

Propositions 13, 14, and 15 are proved in Sections 6, 7, and 8, respectively. Now assuming
these propositions we will prove Theorem 11.

Proof of Theorem 11. It obviously holds exactly one of the following cases.
1. Γ is negative, or
2. Γ is not negative but Horn, or
3. Γ is not Horn.
We obtain the corresponding memberships by Propositions 15 and 12. The required hardness
results follow by Propositions 13 and 14. J

4.1 Related Classifications on Equality Languages
As we already mentioned, equality languages were studied in the context of CSPs [5] and
QCSPs [3]. Just to recall, an instance of CSP(Γ) may be seen as a Γ-formula where every
variable is existentially quantified, and an instance of QCSP(Γ) as Γ-formula where every
variable is either existentially or universally quantified. In both cases, the question is whether
a given sentence is true in Γ.

The problem CSP(Γ) for an equality language Γ is always in NP, it is in P if Γ is Horn
or it is preserved by a constant operation. Preservation under a constant function makes
neither QCSP(Γ) nor ABD(Γ) tractable.

The problem QCSP(Γ) is always in PSPACE. Moreover, it is known to be in P if Γ is
negative, and to be NP-hard if Γ is positive, that is, it may be defined as a conjunction
of clauses of the form (x1 = y1 ∨ · · · ∨ xk = yk), but not negative. Otherwise QCSP(Γ) is
coNP-hard. In particular QCSP(N; I) is coNP-hard. We remark that the equality abduction
problem for positive equality languages is ΣP2 -hard unless it may be defined as a conjunction
of equalities (i.e., unless it is negative).

J. Schmidt and M. Wrona 623

5 Equality Clones

To prove Theorem 11 we take advantage of the classification of equality clones classified
in [4]. Here, we recall only the definitions of clones that are relevant to our classification.

We say that an operation f : Nn → N is essentially unary if there exists i ∈ [n] and
g : N→ N such that f(x1, . . . , xi, . . . , xk) = g(xi).

I Definition 16. For every i ∈ N, we define Ki to be the set of operations containing all
essentially unary operations as well as all operations whose range has at most i elements.

We say that an operation f : Nn → N is up to fictitious coordinates, injective if there
exists {i1, . . . , ik} ⊆ [n] where i1 < . . . < ik and an injective function g : Nk → N such that
for all (x1, . . . , xn) ∈ Nn we have that f(x1, . . . , xn) = g(xi1 , . . . , xik).

I Definition 17. (The Horn clone H). We define H to be the set of operations which are,
up to fictitious coordinates, injective.

Let i ∈ [n]. We call an operation f ∈ O(n) injective in the i-th direction if f(a) 6= f(b)
whenever a, b ∈ Nn and ai 6= bi. We say that f ∈ O(n) is injective in one direction if there is
an i ∈ [n] such that f is injective in the i-th direction.

I Definition 18. (Richard R). We define R to be the set of operations injective in one
direction.

Let f3 ∈ O(3) be any operation satisfying the following.

For all a ∈ N we have f3(a, 1, 1) = 1, f3(2, a, 2) = 2, and f3(3, 3, a) = 3.
For all other arguments, the function arbitrarily takes a value that is distinct from all
other function values.

I Definition 19. (The odd clone S). We define S to be the set of operations generated by
f3, and S+ to be the superset of S containing additionally all constant operations.

In [4], one can find the proof that the sets of operations S,S+,R,H and Ki for every
i ∈ N are locally closed clones. The following theorem is a direct consequence of Theorems 8,
13, and 15 in that paper.

I Theorem 20. Let Γ be an equality language. Then either
1. Pol(Γ) is contained in Ki for some i ∈ N, or
2. Pol(Γ) contains H. In this case:

1. either Pol(Γ) is contained in S+, or
2. Pol(Γ) contains R.

Further, we get from [4] (Propositions 43 and 68) the algebraic characterizations for
negative constraint languages and Horn constraint languages.

I Proposition 21. Let Γ be an equality constraint language. Then:
1. Γ is negative if and only if R ⊆ Pol(Γ);
2. Γ is Horn if and only if H ⊆ Pol(Γ).

We will use the following version of Corollary 6.

I Proposition 22. Let Γ1 and Γ2 be equality languages such that Pol(Γ2) ⊆ Pol(Γ1), then
ABD(Γ1) has a polynomial time reduction to ABD(Γ2).

CSL’13

624 The Complexity of Abduction for Equality Constraint Languages

6 ΣP
2 -hard Equality Abduction Problems

We start by presenting an infinite family of relations H2,H3, . . . that give rise to the abduction
problems whose complexity meets the upper bound from Proposition 12.

Let i ∈ N \ {0, 1}. We define Hi to be an equality relation of arity (i + 4) which
is the union of: (1) {(b0, . . . , bi, x, y, z) ∈ Ni+4 | (|{b0, . . . , bi, x, y, z}| < i + 1)} and
(2) {(b0, . . . , bi, x, y, z) ∈ Ni+4 |

∧
k 6=l;k,l∈{0,...,i}(bk 6= bl) ∧ (x = b0 ∨ x = b1) ∧ (y = b0 ∨ y =

b1) ∧ (z = b0 ∨ z = b1) ∧ (b0 = x ∨ b0 = y ∨ b0 = z) ∧ (b1 = x ∨ b1 = y ∨ b1 = z)}.
Observe that item (1) has a first-order definition over (N; =). Indeed, one can define it

by a conjunction of the formulas of the form ¬(
∧
v,w∈S v 6= w) where S ⊆ {b0, . . . , bi, x, y, z}

is of size greater or equal than (i+ 1).
The real purpose of this chapter is, however, to prove that ABD(Γ) is ΣP

2 -complete
whenever Pol(Γ) ⊆ Ki for some i. The next lemma reduces that problem to showing that
every ABD(N;Hi) for every i is ΣP

2 -complete. The lemma also explains why item (1) is
included in the definition of Hi: assure that Hi is preserved by all operations in Ki.

I Lemma 23. Let i ∈ N \ {0, 1}. Then Hi is preserved by all operations in Ki.

Proof. Directly from the definition of Hi, it follows that this relation contains all tuples with
at most i pairwise different entries. Thus it is preserved by all operations with range of at most
i elements. It remains to show that Hi is preserved also by all essentially unary operations.
We therefore consider some f : N → N and t ∈ Hi. Observe that either f(t) = α(t) for
some automorphism α of (N; =), or the number of pairwise different entries in f(t) is strictly
smaller than in t. In the first case f(t) is certainly in Hi. Further, we observe that t has at
most (i+ 1) pairwise different entries. Hence in the second case, the tuple f(t) has at most i
pairwise different entries. Thus in this case, we are done by the observation from the first
sentence of the proof. J

Let NAE = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. To prove that ABD(Γ),
where Γ = (N;Hi), is ΣP2 -hard we reduce from the problem PQ-ABDUCTION(∆) such that
∆ = ({0, 1}; NAE). By Theorem 3, this problem is ΣP

2 -hard. Indeed, it is straightforward
to verify that ∆ is preserved by none of the following operations: majority, minority, min,
max, opzero, opone. Let i be a natural number greater than or equal to 2. Observe that a
tuple (b0, . . . , bi, xp, xr, xs) of Hi with b0, . . . , bi pairwise different may be easily translated
into a tuple (p, r, s) of NAE such that the value of t ∈ {p, r, s} is k ∈ {0, 1} if and only if xt
is assigned to the same value as bk. Analogously, one can find a tuple in Hi with b0, . . . , bi
pairwise different corresponding to a tuple (p, r, s) of NAE. We produce an instance TΓ of
ABD(Γ) from an instance T∆ of PQ-ABDUCTION(∆) by replacing in the knowledge base
every constraint NAE(p, r, s) with Hi(b0, . . . , bi, xp, xr, xs) and setting the manifestation to
(xq 6= b0), where q is the manifestation in T∆. Translating an explanation for T∆ into an
explanation for TΓ, we ensure that all b0, . . . , bi are forced to be pairwise different. Converting
the other way, it turns out that in general every explanation for TΓ enforces b0, . . . , bi to take
pairwise distinct values. We now give more details on that.
I Proposition 24. Let i ∈ N \ {0, 1}. Then the problem ABD(Hi) is ΣP2 -hard.

Proof. Let T∆ = (φ∆, V∆, q) be an instance of PQ-ABDUCTION(∆). We will now construct
an instance TΓ = (φΓ, VΓ, L(x, y)) of ABD(Γ) from it. First, for every propositional variable
p occurring in φ∆, we introduce a variable xp ranging over N. Besides, we have (i+ 1) extra
variables b0, . . . , bi in Var(φΓ). The formula φΓ is a conjunction of constraints of the form
Hi(b0, . . . , bi, xp, xr, xs) such that NAE(p, r, s) occurs in φ∆. The set VΓ we define to be equal

J. Schmidt and M. Wrona 625

to {xp | p ∈ V∆} ∪ {b0, . . . , bi}, and L(x, y) equal to (xq 6= b0). This construction may be
certainly performed in polynomial time. We will now prove that T∆ ∈ PQ-ABDUCTION(∆)
if and only if TΓ ∈ ABD(Γ). We start from the following facts.
I Observation 25. Let a∆ : Var(φ∆) → {0, 1}, and let F∆,Γ(a∆) : Var(φΓ) → N be

such that F∆,Γ(a∆)(bk) = k for all k ∈ {0, . . . , i} and F∆,Γ(a∆)(xp) = k if and only if
a∆(p) = k for all p ∈ Var(φ∆) and k ∈ {0, 1}. Then, if a∆ satisfies φ∆, then F∆,Γ(a∆)
satisfies φΓ.
Let aΓ : Var(φΓ) → N be such that aΓ(bk) = k for k ∈ {0, . . . , i} and aΓ(xp) ∈ {0, 1}
for all xp /∈ {b0, . . . , bk}. Let FΓ,∆(aΓ) : Var(φ∆)→ {0, 1} such that FΓ,∆(aΓ)(p) = k if
and only if aΓ(xp) = k for all p ∈ Var(φ∆) and k ∈ {0, 1}. Then, if aΓ satisfies φΓ, then
FΓ,∆(aΓ) satisfies φ∆. J

Suppose that T∆ has an explanation Lit∆ ⊆ Lit(V∆) so that (φ∆ ∧
∧
Lit∆) is satisfiable

by some assignment a∆ : Var(φ∆) → {0, 1} and (φ∆ ∧
∧
Lit∆ ∧ ¬q) is not satisfiable. We

set LΓ ⊆ L(VΓ) to be the union of {(xp = b1) | p ∈ Lit∆}, and {(xp = b0) | (¬p) ∈ Lit∆},
and

⋃
k 6=l;k,l∈{0,...,i}{(bk 6= bl)}. We will now prove that LΓ is an explanation for TΓ. By

Observation 25, the assignment F∆,Γ(a∆) satisfies (φΓ∧
∧
LΓ). Assume towards contradiction

that (φΓ ∧
∧
LΓ ∧ (xq = b0)) is also satisfiable by some aΓ. By the construction of LΓ, the

image of aΓ has at least (i+ 1) elements. Indeed, every bk for k ∈ {0, . . . , i} has to be set to a
different element. We assume without loss of generality that aΓ(bk) = k for all k ∈ {0, . . . , i}.
By the construction of φΓ, for every p ∈ Var(φ∆) we have that aΓ(xp) ∈ {0, 1}. Hence, by
Observation 25, the assignment FΓ,∆(aΓ) satisfies (φ∆ ∧

∧
Lit∆ ∧ ¬q). It contradicts the

assumption and thus we are done with the left-to-right implication.
Suppose now that there is some explanation LΓ ⊆ L(VΓ) for TΓ, that is, (i) the formula

(φΓ ∧
∧
LΓ) is satisfiable, and (ii) (φΓ ∧

∧
LΓ ∧ (xq = b0)) is not satisfiable. Observe first

that every assignment a satisfying LΓ has at least (i + 1) elements in the image. Indeed,
suppose that there is some a : Var(φΓ) → N with less than (i + 1) elements in the image.
Then a can be extended to a′ without increasing the size of the range of the assignment so
that every variable not occurring in LΓ is set to the same value as b0. By the definition
of the PQ-ABDUCTION problem and the construction of φΓ, the variable xq is not in VΓ,
and hence a′ satisfies (xq = b0). By the definition of Hi, the assignment a′ also satisfies
all constraints in φΓ. But this contradicts (ii). Now, by item (2) of the definition of Hi,
every assignment satisfying (φΓ ∧

∧
LΓ) has exactly (i+ 1) elements in the image. Indeed,

for every p ∈ Var(φ∆), such an assignment assigns to xp the same value as to b0 or b1.
We can therefore assume that there is an assignment aΓ satisfying (φΓ ∧

∧
LΓ) such that

aΓ(bk) = k for all k ∈ {0, . . . , i}. We now set the explanation Lit∆ for T∆ to be the union
of {(p) | p ∈ V∆ ∧ aΓ(xp) = 1} and {(¬p) | p ∈ V∆ ∧ aΓ(xp) = 0}. To complete the proof
we have to show that (a) (φ∆ ∧

∧
Lit∆) is satisfiable, and (b) (φ∆ ∧

∧
Lit∆ ∧ ¬q) is not

satisfiable. Point (a) follows by (i) and Observation 25. To prove that (b) holds, we suppose
that (φ∆ ∧

∧
Lit∆ ∧ ¬q) is satisfiable by some a∆. From Observation 25, it follows that

F∆,Γ(a∆) satisfies (φΓ ∧ (xq = b0)). It is also easy to see that F∆,Γ(a∆)(x) = aΓ(x) for
every x occurring in LΓ, hence (φΓ ∧

∧
LΓ ∧ (xq = b0)) is satisfiable by F∆,Γ(a∆). But it

contradicts (ii) and thus completes the proof. J

This section will be concluded by proving Proposition 13.

Proof of Proposition 13. Let Γ be not Horn. By Theorem 20 and Proposition 21 we
know that there is an i ∈ N such that Pol(Γ) ⊆ Ki. From Lemma 23 it follows that
Pol(Γ) ⊆ Ki ⊆ Pol(N;Hi) for some i ∈ N. By Proposition 22 and Proposition 24 we conclude
that ABD(Γ) is ΣP2 -hard. J

CSL’13

626 The Complexity of Abduction for Equality Constraint Languages

7 Equality Horn Languages that are NP-hard

In this section we prove Proposition 14. It turns out that already a very simple Horn relation

I = {(x, y, z) ∈ N3 | (x = y → y = z)}

gives rise to an abduction problem which is NP-hard. In fact we provide a hardness proof for
a structure Γ = (N; I4), where I4 = {(a, b, c, d) ∈ N4 | ((a = b ∧ b = c)→ (a = d))}. Observe
that ∃z (I(x, y, z) ∧ I(v, z, w)) pp-defines I4(x, y, v, w).

We reduce from the propositional abduction problem PQ-ABDUCTION(∆), where
∆ = ({0, 1};RA3) and RA3 = {(x, y, z) | ¬x ∧ ¬y → ¬z}. By Theorem 3, this problem is
NP-hard. Indeed, it is straightforward to verify that ∆ is preserved by none of the following
operations: majority, minority, min, opzero, opone.

The idea of the proof is similar to what we had in the preceding section. Observe that
every tuple (b0, xp, xr, xs) of I4 may be translated into a tuple (p, r, s) of RA3 such that
t ∈ {p, r, s} is 0 if xt and b0 are assigned to the same value and t is 1 otherwise. In the
analogical way, one can find a tuple (b0, xp, xr, xs) of I4 for every (p, r, s) in RA3 by setting
b0 to 0, and xt to the same value which is assigned to t ∈ {p, r, s}. We construct an instance
of TΓ from T∆ by replacing in the knowledge base every constraint of the form RA3(p, r, s)
with I4(b0, xp, xr, xs), and setting the manifestation to (xq 6= b0) where q is the manifestation
in T∆. Now an explanation for TΓ may be obtained from an explanation for T∆ when t and
(¬t) are replaced with (xt 6= b0) and (xt = b0), respectively. Converting the explanation back
is analogous.
I Proposition 26. The problem ABD(N; I) is NP-hard.

We will conclude this section by proving Proposition 14.

Proof of Proposition 14. Let Γ be not negative. It suffices to concentrate on the case where
Γ is Horn (if Γ is not Horn, we conclude with Proposition 13). We obtain then by Theorem 20
and Proposition 21 that Pol(Γ) ⊆ S+.

By Proposition 62 in [4], we have that if R has a pp-definition by ODD3 = {(a, b, c) ∈ N3 |
a = b = c ∨ |{a, b, c}| = 3}, then S ⊆ Pol(N;R). The relation I has a pp-definition by ODD3,
this follows by Lemma 8.6 in [3]. Further, since I is preserved by all constant operations, we
have that Pol(Γ) ⊆ S+ ⊆ Pol(N; I). Hence, by Proposition 22, there is a polynomial-time
reduction from ABD(N; I) to ABD(Γ). Thus, by Proposition 26, the problem ABD(Γ) is
NP-hard. J

8 Abduction for Negative Languages is in P

Recall negative equality languages provided in Definition 9. In this section we prove
Proposition 15, that is, we show that if Γ is a negative equality language, then ABD(Γ)
is in P. The algorithm is presented in Fig. 1. We will first discuss the first line of the
procedure. There an instance T = (φ, V, L(x, y)) of ABD(Γ) is transformed into an instance
TA = (φA, VA, LA) of the problem ABDno eq defined below. The instance TA is equivalent to
T w.r.t. existence of explanations but is such that φA contains no equalities.

I Definition 27. An instance of the computational problem ABDno eq consists of:

a conjunction of disjunctions of disequalities φ,
a subset V of Var(φ), and
an equality literal L(x, y), with {x, y} ⊆ Var(φ), of the form (x = y), or (x 6= y).

J. Schmidt and M. Wrona 627

The question is whether there is an explanation L ⊆ L(V) such that:

1. (φ ∧
∧
L) is satisfiable, and

2. (φ ∧
∧
L ∧ ¬L(x, y)) is not satisfiable.

Let ∼ be an equivalence relation on Var(φ) such that for all x1, x2 ∈ Var(φ) we have
x1 ∼ x2 if and only if φ entails (x1 = x2). We construct φA, VA, LA(xA, yA) by first replacing
in φ, V, L(x, y), respectively, every variable from Var(φ) by its equivalence class in Var(φ)/ ∼.
Then, we remove all equalities and disequalities of the form (v 6= v) in φA.

I Lemma 28. Let Γ be a negative language and T = (φ, V, L(x, y)) be an instance of
ABD(Γ). Then there exists an instance TA of ABDno eq such that T ∈ ABD(Γ) if and only
if TA ∈ ABDno eq. Moreover, TA can be obtained from T in polynomial time.

Algorithm for ABD(Γ), where Γ is a negative structure.

INPUT: An instance T = (φ, V, L(x, y)) of ABD(Γ), where
• φ is a Γ-formula
• V, {x, y} ⊆ Var(φ), and
• L(x, y) is (x = y), or (x 6= y).

1: Let TA = (φA, VA, LA(xA, yA)) be an instance of ABDno eq from Lemma 28.
2: if φA is unsatisfiable then return FALSE
3: if LA(xA, yA) is (xA = yA) then
4: if xA and yA is the same variable then return TRUE
5: else if xA, yA ∈ VA and (φA ∧ xA = yA) is satisfiable then return TRUE
6: else return FALSE
7: end if
8: // from now on we can assume that LA(xA, yA) is (xA 6= yA).
9: if xA and yA is the same variable then return FALSE

10: if xA, yA ∈ VA then return TRUE
11: if z ∈ {xA, yA} is in VA, and

v ∈ {xA, yA}\{z} is not in VA, and
φA contains a clause equivalent to (x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ w 6= v) such that
• {x1, y1, . . . , xk, yk, w} ⊆ VA, and
• (φ ∧

∧
i∈[k] xi = yi ∧ z = w) is satisfiable

then return TRUE
12: if xA, yA /∈ VA and

φA contains a clause equivalent to (x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ xA 6= yA) such that
• {x1, y1, . . . , xk, yk} ⊆ VA, and
• (φ ∧

∧
i∈[k] xi = yi) is satisfiable

then return TRUE
13: return FALSE

Figure 1 Algorithm for Abduction for Negative Languages.

The following proposition states that the algorithm presented in Fig. 1 is correct and
complete.
I Proposition 29. Let Γ be a negative equality language, and (φ, V, L(x, y)) be an instance
of ABD(Γ). Then (φ, V, L(x, y)) ∈ ABD(Γ) if and only if the algorithm in Fig. 1 returns
TRUE.

CSL’13

628 The Complexity of Abduction for Equality Constraint Languages

By Lemma 28, the first line of the algorithm in Fig. 1 can be performed in polynomial
time. Apart from that, the procedure amounts to checking the satisfiability of a number of
formulas which are obtained from negative formulas by adding conjuncts, which are equalities.
Formulas of this form are always Horn formulas, and hence by the result in [5], each such
check may be performed in polynomial time. Since the number of the satisfiability checks is
readily polynomial with respect to the size of the input, we have the following.
I Proposition 30. Let Γ be a negative equality language. Then, for a given instance
(φ, V, L(x, y)) of ABD(Γ), the algorithm in Fig. 1 works in polynomial time in the size of
(φ, V, L(x, y)).

We are now ready to conclude this section.
Proof of Proposition 15. The statement follows by Propositions 29 and 30. J

9 Conclusion and Future Work

In this paper, we have initiated the study of the abduction problem parameterized by an ω-
categorical relational structure Γ. We proved that as in the case of CSPs for these structures,
the complexity of the abduction problem is fully captured by the set of operations preserving
Γ. We have classified the complexity of the abduction problem parameterized by Γ with
a first-order definition in (N; =) under the assumption that a manifestation is a literal of
the form (x = y) or (x 6= y) and an explanation is a set of such literals over a given set of
variables.

Our future work will concern similar classifications for first-order reducts of other ω-
categorical structures. A natural choice for the next structure to study is (Q;<). Let Γ be a
first-order reduct of (Q;<). In this case an instance of an abduction problem consists of a
temporal knowledge base φ — a set of Γ-constraints — that describes point-based temporal
dependencies between a finite number of events. A manifestation might be, for instance, of
the form (x < y), where x, y are events from φ. We can ask for an explanation that is a
partial order on events in φ described by a conjunction of literals ψ of the form (x ≤ y) and
(x 6= y) such that ψ is consistent with φ ((φ∧ψ) is satisfiable) and ordering events from φ as
described in ψ entails that x has to take place before y ((φ ∧ ψ) entails (x < y)).

Abduction problems for first-order reducts of (Q;<) do not only form a class of natural
computational problems but also are plausible to be classified. The complexity of CSPs for
these structures was classified in [6].

References
1 James F. Allen. Maintaining knowledge about temporal intervals. Communications of the

ACM, 26(11):832–843, 1983.
2 Manuel Bodirsky. Complexity classification in infinite-domain constraint satisfaction. Mem-

oire d’habilitation à diriger des recherches, Université Diderot – Paris 7. Available at
arXiv:1201.0856, 2012.

3 Manuel Bodirsky and Hubie Chen. Quantified equality constraints. SIAM Journal on
Computing, 39(8):3682–3699, 2010. A preliminary version of the paper appeared in the
proceedings of LICS’07.

4 Manuel Bodirsky, Hubie Chen, and Michael Pinsker. The reducts of equality up to primitive
positive interdefinability. Journal of Symbolic Logic, 75(4):1249–1292, 2010.

5 Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. Theory of
Computing Systems, 3(2):136–158, 2008. A conference version appeared in the proceedings
of Computer Science Russia (CSR’06).

J. Schmidt and M. Wrona 629

6 Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction prob-
lems. Journal of the ACM, 57(2):1–41, 2009. An extended abstract appeared in the Pro-
ceedings of the Symposium on Theory of Computing (STOC’08).

7 Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with countable homogen-
eous templates. Journal of Logic and Computation, 16(3):359–373, 2006.

8 Vittorio Brusoni, Luca Console, Paolo Terenziani, and Daniele Theseider Dupré. A spec-
trum of definitions for temporal model-based diagnosis. Artif. Intell., 102(1):39–79, 1998.

9 Vittorio Brusoni, Luca Console, Paolo Terenziani, and Barbara Pernici. Later: Managing
temporal information efficiently. IEEE Expert, 12(4):56–64, 1997.

10 Tom Bylander, Dean Allemang, Michael C. Tanner, and John R. Josephson. The compu-
tational complexity of abduction. Artif. Intell., 49(1-3):25–60, 1991.

11 Peter J. Cameron. Oligomorphic Permutation Groups. Cambridge University Press, Cam-
bridge, 1990.

12 Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Comput. Surv., 42(1),
2009.

13 Luca Console, Paolo Terenziani, and Daniele Theseider Dupré. Local reasoning and
knowledge compilation for efficient temporal abduction. IEEE Trans. Knowl. Data Eng.,
14(6):1230–1248, 2002.

14 Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors. Complexity of Con-
straints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar], volume
5250 of Lecture Notes in Computer Science. Springer, 2008.

15 Nadia Creignou and Bruno Zanuttini. A complete classification of the complexity of pro-
positional abduction. SIAM J. Comput., 36(1):207–229, 2006.

16 Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction. J. ACM,
42(1):3–42, 1995.

17 A. Herzig, J. Lang, and Pierre Marquis. Planning as abduction. In IJCAI-01 Workshop on
Planning under Uncertainty and Incomplete Information, Seattle, Washington, USA, aug
2001.

18 Jerry R. Hobbs, Mark E. Stickel, Douglas E. Appelt, and Paul A. Martin. Interpretation
as abduction. Artif. Intell., 63(1-2):69–142, 1993.

19 Wilfrid Hodges. Model theory. Cambridge University Press, 1993.
20 Gustav Nordh and Bruno Zanuttini. What makes propositional abduction tractable. Artif.

Intell., 172(10):1245–1284, 2008.
21 Harry E. Pople. On the mechanization of abductive logic. In IJCAI, pages 147–152, 1973.
22 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the

Symposium on Theory of Computing (STOC), pages 216–226, 1978.
23 Marc Vilain, Henry Kautz, and Peter van Beek. Constraint propagation algorithms for

temporal reasoning: A revised report. Reading in Qualitative Reasoning about Physical
Systems, pages 373–381, 1989.

A Proof of Theorem 5

Proof of Theorem 5. By assumption, it follows that every n-ary relation R in the structure
Γ1 has a pp-definition (∃y1 · · · ∃ym.φR(y1, . . . , ym, x1, . . . , xn)) in Γ2.

Let T1 = (φ1, V1,M1) be an instance of ABD(Γ1,HYP,M). We will now construct an
instance T2 = (φ2, V2,M2) of ABD(Γ2,HYP,M). To obtain φ2 from φ1, we first transform
φ1 to a (Γ2 ∪ {=})-formula φ=. To that end, we replace every Γ1-constraint in φ1 of the
form R(x1, . . . , xn) with φR(x1, . . . , xn, y1, . . . , ym) so that every time y1, . . . , ym are fresh
variables. Observe that by the construction of φ=, we have Var(φ1) ⊆ Var(φ=).

CSL’13

630 The Complexity of Abduction for Equality Constraint Languages

Consider now a partition Ξ = {X1, . . . , Xn} of Var(φ=) such that x, y ∈ Var(φ=) are in
the same block Xi if and only if (x = y) is entailed by the conjunction of equalities occurring
in φ=. Let V = {v1, . . . , vn} be fresh variables. If x ∈ Var(φ=) is in Xi, then we say that
vi is the representative of x. We obtain a Γ2-formula φ2 from φ= by first removing all
{=}-constraints and then replacing every occurrence of every variable by its representative
in V. Similarly, to obtain V2 and M2, we replace all variables in V1 and M1, respectively,
with their representatives in V. It is easy to see that this procedure can be performed in
polynomial time. We will now prove that T1 is a positive instance of ABD(Γ1,HYP,M) if
and only if T2 is a positive instance of ABD(Γ2,HYP,M).

As a first step towards this goal, we will show that T1 = (φ1, V1,M1) is a positive
instance of ABD(Γ1,HYP,M) if and only if T= = (φ=, V1,M1) is a positive instance
of ABD(Γ2 ∪ {=},HYP,M). Observe that the claim is a consequence of the following
two facts. First, every assignment a1 : Var(φ1) → N satisfying φ1 may be extended to
a= : Var(φ=)→ N satisfying φ=. Second, every assignment a= : Var(φ=)→ N satisfying a=
restricted to variables in Var(φ1) satisfies φ1.

Now, it remains to prove that T= = (φ=, V1,M1) is a positive instance of ABD(Γ2 ∪ {=
},HYP,M), if and only if T2 = (φ2, V2,M2) is a positive instance of ABD(Γ2,HYP,M).
We start from an easy observation.

I Observation 31. Let a= : Var(φ=) → N. If a= satisfies φ=, then for all Xi ∈ Ξ and all
x, y ∈ Xi we have that a=(x) = a=(y). J

Suppose first that ψ= is an explanation for T=. Construct ψ2 from ψ= by replacing every
variable by its representative in V. Since (φ= ∧ ψ=) is satisfiable, by Observation 31, it
follows that (φ2 ∧ ψ2) is also satisfiable. Furthermore, if (φ2 ∧ ψ2 ∧ ¬M2) was satisfiable, we
would have that (φ= ∧ψ= ∧¬M1) is satisfiable. It contradicts the assumption and completes
the proof of this implication.

Suppose now that ψ2 is an explanation for T2. Construct ψ= from ψ2 by replacing each
variable vi by some, always the same, variable x ∈ Xi ∩V1. Observe that by the construction
of V2, the set Xi∩V1 is not empty. Since (φ2∧ψ2) is satisfiable, it easily follows that (φ=∧ψ=)
is also satisfiable. To conclude the proof, observe that (φ= ∧ ψ= ∧ ¬M1) is not satisfiable.
Indeed, if it was satisfiable, then by Observation 31, we would have that (φ2 ∧ ψ2 ∧ ¬M2) is
satisfiable. It contradicts the assumption and completes the proof of the theorem. J

B Proof of Proposition 26

Proof of Proposition 26. Consider the relation I4 = {(a, b, c, d) ∈ N4 | ((a = b ∧ b = c) →
(a = d))}. Observe that ∃z (I(x, y, z) ∧ I(v, z, w)) pp-defines I4(x, y, v, w). By Theorem 5, it
is therefore enough to show that ABD(Γ), where Γ = (N; I4), is NP-hard.

We reduce from the propositional abduction problem PQ-ABDUCTION(∆), where
∆ = ({0, 1};RA3) and RA3 = {(x, y, z) | ¬x ∧ ¬y → ¬z}. By Theorem 3, this problem is
NP-hard. Indeed, it is straightforward to verify that ∆ is preserved by none of the following
operations: majority, minority, min, opzero, opone.

Let T∆ = (φ∆, V∆, q) be an instance of PQ-ABDUCTION(∆). We will now construct an
instance TΓ = (φΓ, VΓ, L(x, y)) of ABD(Γ). First, for every Boolean variable p ∈ Var(φ∆), we
introduce a variable xp ranging over N. Besides, we have also one extra variable b0 in Var(φΓ).
Then, we set φΓ to be a conjunction of atomic formulas of the form I4(b0, xp, xr, xs) such
that RA3(p, r, s) occurs in φ∆; and VΓ to {xp | p ∈ V∆} ∪ {b0}. To complete the reduction
we set L(x, y) to be equal to (xq 6= b0).

J. Schmidt and M. Wrona 631

The reduction may certainly be performed in polynomial time. To complete the proof,
we will now show that T∆ ∈ PQ-ABDUCTION(∆) if and only if TΓ ∈ ABD(Γ).

We start from the following facts.

I Observation 32. Let aΓ : Var(φΓ)→ N be any assignment satisfying φΓ. Then a′
Γ, obtained

from aΓ so that for every x ∈ Var(φΓ) we have that a′
Γ(x) = 0 iff aΓ(x) = aΓ(b0) and

a′
Γ(x) = 1 otherwise, also satisfies φΓ. J

I Observation 33. Let a∆ : Var(φ∆)→ {0, 1}, and let F∆,Γ(a∆) : Var(φΓ)→ N be such
that F∆,Γ(a∆)(b0) = 0 and F∆,Γ(a∆)(xp) = k if and only if a∆(p) = k for k ∈ {0, 1}.
Then, if a∆ satisfies φ∆, then F∆,Γ(a∆) satisfies φΓ.
Let aΓ : Var(φΓ) → N such that aΓ(b0) = 0 and for every p ∈ Var(φ∆), we have
aΓ(xp) ∈ {0, 1}. Define FΓ,∆(aΓ) : Var(φ∆)→ {0, 1} so that for every p ∈ Var(φ∆) and
k ∈ {0, 1}, we have that FΓ,∆(aΓ)(xp) = k iff aΓ(p) = k. Then, if aΓ satisfies φΓ, then
FΓ,∆(aΓ) satisfies φ∆. J

Suppose first that there exists a set of propositional literals Lit∆ ⊆ Lit(V∆) such that
(φ∆ ∧

∧
Lit∆) is satisfiable by some assignment a∆ : Var(φ∆)→ {0, 1} and (φ∆ ∧

∧
Lit∆ ∧

¬q) is not satisfiable. We set the explanation LΓ ⊆ L(VΓ) for TΓ to be the union of⋃
p∈Lit∆{xp 6= b0} and

⋃
(¬p)∈Lit∆{xp = b0}. We will now show that (φΓ∧

∧
LΓ) is satisfiable

and (φΓ∧
∧
LΓ∧(b0 6= xq)) is not satisfiable. The former follows from Observation 33. Indeed,

the formula (φΓ∧
∧
LΓ) is satisfiable by F∆,Γ(a∆). To prove the latter, assume on the contrary

that (φΓ∧
∧
LΓ∧ (xq = b0)) is satisfied by some aΓ : Var(φΓ)→ N. By Observation 32, there

exists a′
Γ : Var(φΓ)→ N satisfying φΓ that assigns 0 to b0 as well as sends every variable to

0, or 1. Thus, by Observation 33, we have that FΓ,∆(a′
Γ) satisfies (φ∆ ∧

∧
Lit∆ ∧ ¬q). This

contradicts the assumption and completes the proof of the left-to-right implication.
Suppose now that there is an explanation LΓ ⊆ L(VΓ) of TΓ, that is, the formula

(φΓ ∧
∧
LΓ) is satisfiable by some aΓ : Var(φΓ) → N and (φΓ ∧

∧
LΓ ∧ (xq = b0)) is

not satisfiable. By Observation 32, we can assume that aΓ sends every variable to 0
or 1 and b0 to 0. We set the explanation Lit∆ ⊆ Lit(V∆) for T∆ to be the union of
{(p) | p ∈ Lit(V∆) ∧ aΓ(xp) = 1} and {(¬p) | p ∈ Lit(V∆) ∧ aΓ(xp) = 0}. We will now
show that (φ∆ ∧

∧
Lit∆) is satisfiable and (φ∆ ∧

∧
Lit∆ ∧ ¬q) is not satisfiable. The former

holds by Observation 33. Indeed, we have that FΓ,∆(aΓ) satisfies (φ∆ ∧
∧

Lit∆). Finally,
assume on the contrary that (φ∆ ∧

∧
Lit∆ ∧ ¬q) is satisfied by a∆ : Var(φ∆)→ {0, 1}. By

Observation 33, the assignment F∆,Γ(a∆) satisfies (φΓ ∧ (xq = b0)). It is also easy to see that
for every p ∈ Var(φ∆) it holds F∆,Γ(a∆)(xp) = aΓ(xp). Thus F∆,Γ(a∆) satisfies

∧
LΓ and in

consequence, by Observation 33, (φΓ ∧ LΓ ∧ (xq = b0)). But this contradicts the assumption
and hence completes the proof. J

C Proof of Lemma 28

Proof of Lemma 28. Let TA = (φA, VA, LA(xA, yA)) be an instance of ABDno eq obtained
from T = (φ, V, L(x, y)) as it was described before the formulation of the lemma. It is easily
observed that TA can be obtained from T in polynomial time.

We will now show that T ∈ ABD(Γ) if and only if TA ∈ ABDno eq. As we will argue, it is
basically a consequence of the following two facts. Let X1, . . . , Xk be equivalence classes of
Var(φ)/ ∼.

I Observation 34. Let aφ : Var(φ)→ N be an assignment satisfying φ. Then for every i ∈ [k]
and all v, z ∈ Xi we have that aφ(v) = aφ(z). J

CSL’13

632 The Complexity of Abduction for Equality Constraint Languages

I Observation 35. Let aφ : Var(φ) → N be such that for every i ∈ [k] and all v, z ∈ Xi

we have that aφ(v) = aφ(z), and let Fφ,φA
(aφ) : Var(φ)/ ∼→ N be such that for all

i ∈ [k] and all z ∈ Xi we have that Fφ,φA
(aφ)(Xi) = aφ(z). Then if aφ satisfies φ, then

Fφ,φA
(aφ) satisfies φA.

Let aφA
: Var(φ)/ ∼→ N, and FφA,φ(aφA

) : Var(φ)→ N be such that for all i ∈ [k] and
z ∈ Xi we have FφA,φ(aφA

)(z) = aφA
(Xi). Then, if aφA

satisfies φA, then FφA,φ satisfies
φ. J

Suppose first that T ∈ ABD(Γ). Then there exists L ⊆ L(V) such that (φ ∧
∧
L) is

satisfiable by some aφ : Var(φ)→ N and (φ∧
∧
L∧¬L(x, y)) is not satisfiable. We define LA

to be the set that contains all literals of the form (Xi ◦Xj), where i, j ∈ [k] and ◦ ∈ {=, 6=},
such that L contains (x′ ◦ y′) for some x′ ∈ Xi, y

′ ∈ Xj . From Observations 34 and 35, we
easily obtain that (φA∧

∧
LA) is satisfiable by Fφ,φA

(aφ). Also, if (φA∧
∧
LA∧¬LA(xA, yA))

was satisfiable, then by Observation 35 we would have that (φ∧
∧
L∧¬L(x, y)) is satisfiable.

It contradicts the assumption and completes the proof of the left-to-right implication.
Suppose now that there is LA such that both (φA ∧

∧
LA) is satisfiable by some aφA

:
Var(φ)/ ∼→ N and (φA ∧

∧
LA ∧ ¬L(xA, yA)) is not satisfiable. We set L to contain all

literals of the form (v ◦ z), where ◦ ∈ {=, 6=}, such that v ∈ Xi ∩ V and z ∈ Xj ∩ V and
Xi ◦Xj is in LA. By Observation 35, we have that (φ ∧ L) is satisfiable by FφA,φ(aφA

). On
the other hand, if (φ ∧

∧
L ∧ ¬L(x, y)) was satisfiable by some aφ, then by Observations 34

and 35, we would have that (φA ∧
∧
LA ∧ ¬LA(xA, yA)) is satisfiable, which contradicts the

assumption and completes the proof of the lemma. J

D Proof of Proposition 29

Proof of Proposition 29. By Lemma 28, it is enough to show that the algorithm returns
TRUE if and only if (φA, VA, LA(xA, yA)) ∈ ABDno eq.

We will first show the proof of the right-to-left implication. If LA(xA, yA) is (xA = yA),
then the algorithm returns TRUE if φA is satisfiable and either xA and yA are the same
variable, or {xA, yA} ⊆ VA. In the first case an empty set of literals works as an explanation,
while in the other, we can take L equal to (xA = yA). If LA(xA, yA) is (xA 6= yA), then the
algorithm may return TRUE in lines 10, 11 and 12. In line 10, we set L to {xA 6= yA}. In
line 11 to

⋃
i∈[k]{xi = yi} ∪ {z = w}, while in line 12 to

⋃
i∈[k]{xi = yi}.

We now turn to the left-to-right implication. Suppose that there is a set of literals L such
that both Points 1 and 2 in Definition 27 hold. Consider a formula ψ equal to (φA ∧

∧
L).

Let X = {X1, . . . , Xk} be a partition of Var(ψ) such that ψ entails (s = t) if and only if
there exists i ∈ [k] such that both s and t are in Xi. Then, for i ∈ [k], we choose one element
si from every Xi to be a representative of all elements in Xi. Then, in all disjunctions of
disequalities, we first replace all variables with their representatives, and then remove all
disequalities of the form (si 6= si). Since all these transformations preserve the satisfiability
of the formula, in the end we get no empty clauses. Denote the formula obtained in this way
by ψ′.

Consider first the case where LA(xA, yA) is (xA = yA). The case where xA and yA are
the same variable is handled by the procedure in line 4. Thus we can assume that they
are different. Since (φA ∧

∧
L) entails (xA = yA), and φA does not contain equalities, the

formula (xA = yA) must be entailed by
∧
L. Indeed, suppose this is not the case, then there

is an assignment a : V ar(φA)→ N satisfying (
∧
L ∧ xA 6= yA). Let a′ : V ar(φA)→ N be a

satisfying assignment to (φA ∧
∧
L). We claim that b(a, a′) where b : N2 → N is a binary

injective operation satisfies (φA ∧
∧
L ∧ xA 6= yA). It clearly satisfies (xA 6= yA), it satisfies

J. Schmidt and M. Wrona 633

∧
L since it is Horn. To see that b(a, a′) satisfies φA we use the following property of a

negative equality formula φ: let a, a′ : Var(φ)→ N such that a′ satisfies φ and b be a binary
injection, then b(a, a′) satisfies φ. Thus, we proved that (xA = yA) must be entailed by

∧
L.

Hence xA and yA are in VA. Since also φA ∧ (xA = yA) is satisfiable, the procedure returns
TRUE in line 5.

Assume now that LA(xA, yA) is (xA 6= yA). Since (φA ∧ LA(xA, yA)) is satisfiable, we
have that xA and yA are in different blocks Xa, and Xb, respectively, of X. Assume without
loss of generality that they are the representatives of their own blocks. Observe that ψ′

contains a clause of the form (xA 6= yA): otherwise (ψ ∧ xA = yA) would be satisfiable by
the assignment aX : Var(ψ) → N sending all variables from Xi where i 6= b to i, and all
variables from Xb to a, i.e., no explanation would exist. So, we can assume that ψ′ contains
(xA 6= yA). In this case either (i) xA and yA are both in V , or (ii) there is z ∈ {xA, yA}
which is in V , and v ∈ {xA, yA} \ {z} which is not, and φ contains a clause equivalent to
(x1 6= y1 ∨ · · · ∨ xk 6= yk ∨w 6= v) such that for every i both xi and yi as well as z and w are
in the same block of X, or (iii) both xA, yA are not in V and φ contains a clause equivalent
to (x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ xA 6= yA) such that for every i both xi and yi are in the same
block of X. Observe that cases (i), (ii), and (iii) are handled by the procedure in lines 10, 11,
and 12, respectively. J

CSL’13

	Introduction
	Outline of the paper

	Preliminaries
	Structures and Formulas
	Polymorphisms and Clones
	Complexity Classes
	Propositional Abduction

	The Abduction Problem and Algebra
	Equality Abduction
	Related Classifications on Equality Languages

	Equality Clones
	2P-hard Equality Abduction Problems
	Equality Horn Languages that are NP-hard
	Abduction for Negative Languages is in P
	Conclusion and Future Work
	Proof of Theorem 5
	Proof of Proposition 26
	Proof of Lemma 28
	Proof of Proposition 29

