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—— Abstract

Computing meaningful alternative routes in a road network is a complex problem — already
giving a clear definition of a best alternative seems to be impossible. Still, multiple methods
[1,2,4,17,18] describe how to compute reasonable alternative routes, each according to their
own quality criteria. Among these methods, the penalty method has received much less attention

than the via-node or plateaux based approaches. A mayor cause for the lack of interest might
be the unavailability of an efficient implementation. In this paper, we take a closer look at the
penalty method and extend upon its ideas. We provide the first viable implementation —suitable
for interactive use— using dynamic runtime adjustments to perform up to multiple orders of
magnitude faster queries than previous implementations. Using our new implementation, we
thoroughly evaluate the penalty method for its flaws and benefits.
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1 Introduction

Finding shortest paths in a road network is a well studied problem. Modern speed-up
techniques can compute routes in a split second. These algorithms are usually based on
an asymmetric approach: Exploiting the uniqueness of the shortest path distance, the
road network is processed and augmented in advance. This —potentially— time-consuming
preprocessing step then allows for fast subsequent queries. The approach inherently assumes
a static nature of the input, though.

In contrast to the shortest path, alternative routes do not need to be optimal. Existing
techniques to compute alternative routes either avoid speed-up techniques completely [2,4],
or try to relax the computational methods used during preprocessing or at query time [1,18].
Methods that bypass speed-up techniques are only suitable for quality evaluations or offline
usage. Thus, algorithms like the penalty method [2] are not explored to their full potential,
lacking an efficient implementation.

While the authors of [2] hope for an efficient implementation to be feasible, they fail to
provide any details on how to achieve this. In fact, until recently it simply was not possible
to deal with the amount dynamic changes to the graph required by the penalty method —
even though some techniques already existed that could handle small search spaces quite
efficiently [5,21]. By now, techniques such as Customizeable Route Planning [6] are available
that can be extended to allow for preprocessing of entire continental networks within less
than a second. This (near) real-time processing is achieved by extensive use of parallelism
and vectorization and brings an efficient implementation of the penalty method within reach.

In this paper we show how to achieve an efficient implementation of the penalty method,
providing speed-ups up to multiple orders of magnitude above previous implementations [2].
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Based on this implementation, we thoroughly evaluate the potential of the penalty method.
The paper is structured as follows: Our terminology is introduced in Section 2, followed by
related work in Section 3. Our contribution to the penalty method is discussed in Section 4.
Supporting experiments are presented in Section 5, before a conclusion is drawn in Section 6.

2 Preliminaries

Every road network can be viewed as a directed and weighted graph:

» Definition 1 (Graph,Restricted Graph). A weighted graph G = (V, A, ¢) is described as a
set of vertices V,[V| = n, a set of arcs A C V x V,|A] =m and a cost function ¢ : A — Ns,.
We might choose to restrict G to a subset V' C V. This restricted graph G‘~/ is defined as

Gy = (V,A,¢), with A= {a = (u,v) € A|u,v €V}
We define paths and the associated distances as follows:

» Definition 2 (Paths,Length,Distance). Given a graph G = (V, 4, ¢): We call a sequence
Pst = (8 =g, ..., =t) with v; € V, (v;,v,41) € A a path from s to ¢. Its length L(ps)
is given as the combined weights of the represented arcs: £(ps,) = Ei:ol c(vi, vi11). If the
length of a path p, . is minimal over all possible paths between s and ¢ with respect to c, we
call the path a shortest path and denote p;; = Ps . The length of such a shortest path is
called the distance between s and ¢: D(s,t) = L(Ps,). Furthermore, we define P; ,; as the
concatenated path P, = Py - Py

In the context of multiple graphs or paths, we denote the desired restriction via subscript.
For example Dg(s,t) denotes the distance between s and ¢ in G, with D,_, (a,b) we denote
the distance between a and b when following p; ;.

Our metric of choice is the average travel time. Therefore, we might choose to omit the
cost function ¢ when naming a graph and simply write G = (V, A).

3 Related Work

Both shortest paths and alternative routes computation are important for our work. Following,
we give a short overview of the techniques most relevant to our contribution.

Shortest Paths

Algorithms for computing exact shortest paths have come a long way. Starting back in
the late 1950s with Dijkstra’s algorithm [12], incredible progress was made in this area —
especially during the last decade. By now, we can answer distance queries on a road network
over a million times faster than Dijkstra’s algorithm.

All relevant speed-up techniques to Dijkstra’s algorithm share an asymmetric approach: In
a preprocessing step, auxiliary information is generated once and then used in all subsequent
queries. This approach is effective if arc costs do not change, but it becomes a major
bottleneck if not prohibitive, if preprocessing has to be repeated multiple times. [3,9,23] give
a general overview on speed-up techniques as we focus on the following two techniques:

Contraction Hierarchies [14] (CH) is probably the most studied speed-up technique.
During preprocessing, the graph representing the road network is augmented by carefully
chosen (shortcut) arcs while arcs not required for correctness are removed. This results
in a sparse directed acyclic graph (DAG). A query corresponds to a bidirectional variant
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of Dijkstra’s algorithm on this modified graph. Road networks of continental size can
be preprocessed within minutes and distance queries run in the order of one hundred
microseconds. Reconstructing the complete shortest path requires roughly the same time.
This technique is most suited for static settings in which graphs do not change.
Customizeable Route Planning [6] (CRP, also known as Multi Level Dijkstra) is the
current pinnacle in a long list of multi-level separator based techniques, [8,16,22] to name a
few. In a first preprocessing step, a multi-level partition is generated. The boundary vertices
of this partition induce an overlay graph at each level. To maintain shortest paths, each cell
is connected in a clique. Computing this representation relies only on the structure of the
graph. A metric is incorporated in a second step, when correct costs are computed for all
arcs within the cliques. The (bidirectional) query traverses arcs like Dijkstra’s algorithm.
When a boundary vertex is reached, the query switches to the next higher level and continues
to traverse only arcs in the respective overlay graph!. CRP profits from using PUNCH [7] to
find tiny separators. The best variant uses a combination of up to 5 levels and an additional
set of guidance levels (or shadow levels) for preprocessing. This setup allows for distance
queries in about one millisecond and updates of the entire metric in less than a second.

Alternative Routes

Abraham et al. [1] were the first to formally introduce alternative routes in road networks,
even though related methods like the k-shortest path problem [13,24] have been introduced
before. We do not cover these methods as no suitable implementation exists for continental
sized road networks and because some of the earlier methods do not produce good alternative
routes due to a plethora of short detours available in road networks. By now, two most
common approaches found in the literature are via-node alternative routes or the related
plateaux method [1,2,4,17,18], and penalty-based approaches [2] (among others). Their
following description is taken partly from [17]:

Via-Node Alternative Routes

Within a graph G = (V, A), a via-node alternative to a shortest path Ps; can be described
by a single vertex v € V' \ Ps ;. The alternative route is described as Ps ;. As this simple
description can result in arbitrarily bad paths, for example paths containing loops, Abraham
et al. [1] define a set of criteria to be fulfilled for an alternative route to be wviable. A viable
alternative route provides the user with a real alternative, not just minimal variations (limited
sharing), is not too much longer (uniformly bounded stretch) and does not contain obvious
flaws, i.e. sufficiently small sub-paths have to be optimal (local optimality). Formally, these
criteria are defined as follows:

» Definition 3 (Viable Alternative Route). Given a graph G = (V, A), a source s, a target t,
and a via-node v as well as three tuning parameters 7, €, a; v is a viable via-node and defines
a viable via-node alternative route P, ; = Py, - Py, if following criteria are fulfilled:

1. L(PsiNPspi) <v-D(s,t) (limited sharing)
2. Va,be€ Psuy, Dp,, ,(s,a) <Dp,, (5,0):

Dp, , (a,b) < (1 + €) - D(a,b) (uniformly bounded stretch)
3. Va,b€ Psuys, Dp,,,(5,a) <Dp,, (5,0),

Dp, , (a,b) < a- D(s,t) : Dp,,.(a,b) =D(a,b) (local optimality)

! For efficiency, the query may descend to lower levels when close to target /source. See [6] for details.
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The usual choice for the tuning parameters is to allow for at most v = 80 % overlap
between Ps ,, ¢ and Ps ;. Furthermore the user should never travel more than € = 25 % longer
than necessary between any two points on the track, and every subpath that is at most
a =25 % as long as the original shortest path should be an optimal path.

These criteria require a quadratic number of shortest path queries to be fully evaluated.

Therefore, Abraham et al. propose an approximation [1]. For example, their T-test for local
optimality is achieved by a single query between two vertices close to the via-node. Due to
properties of this T-test, the criteria (and thus also the numbers in Section 5) are usually
evaluated only for the part of the via-route that is distinct from the shortest path.

Definition 3 can be directly extended to allow for a second or third alternative (alternative
routes of degree 2, 3 or even n), as only the limited sharing parameter has to be tested
against the full set of alternatives already known.

Abraham et al. [1] give multiple algorithms to compute alternative routes. The reference
algorithm (X-BDV) is based on a bidirectional implementation of Dijkstra’s algorithm and
is used as the gold standard. To avoid the long query time of Dijkstra’s algorithm on
continental-sized networks, they also give techniques based on Reach [15] and Contraction
Hierarchies [14]. Due to the strong restrictions of the search spaces caused by the speed-up
techniques, they present weakened query criteria which they call relaxation. For example,
in the Contraction Hierarchy they allow to look downwards in the hierarchy under certain
conditions. The relaxation can be applied in multiple intensities. Commonly used is the
3-relaxation which we refer to by X-CHV.

Luxen and Schieferdecker [18] improve the algorithm of Abraham et al. [1] in terms of
query times by storing a precomputed small set of via-nodes for pairs of regions within the
graph. This is the fastest method to compute via-node alternative routes as of now.

The Penalty Method

Bader et al. [2] describe an entirely different approach. Their main focus is on computing a

full alternative graph to present as a whole, or possibly to extract alternative routes from.

The construction of the graph, however, relies on the iterative computation of multiple
shortest paths. After a single path is computed, they apply a penalty to the path and
to every arc directly connected to it, thus potentially finding a different path in the next
iteration. By lowering successive increases in penalty, they propose to stop iterating when no
penalty is applied to the extracted path anymore. The publication itself does not give exact

numbers, but according to one of the authors 20 iterations are performed to generate paths.

From this set of computed paths, the best ones are selected and combined into an alternative
graph. To make the graph more readable, the authors present two filters that can be applied
to the graph. Again, they do not specify any details on how to select the paths for the final
graph. The quality of the graph is evaluated using two measures (total and average distance)
while at the same time limiting the complexity by putting a hard bound on vertices of degree
higher than two (decision vertices). It is defined as follows:

» Definition 4 (Alternative Graph Quality). The quality of an alternative graph H =
(Vi, Ag), also called target function, is given by total Distance — (averageDistance — 1)

with averageDistance € [1.0,1.1]. The upper limit is enforced during graph construction.

Given start s and target ¢, the contributing values are defined as:

1. totalDistance := > e UHZ((Z)HDH(U ) (indicates sharing)
a=(u,v)EAH ’ ’
ZaeAH c(a)

D(s,t)-total Distance

2. averageDistance := (indicates stretch)
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Intuitively speaking, the total distance describes how many distinct paths can be found
in the graph, while the average distance describes how much longer such a path is on average.
The authors themselves do not provide an efficient implementation of the penalty method
but claim the implementation to be possible with [21]. With single arc updates taking several
milliseconds this claim seems excessive.

Recently, Paraskevopoulos and Zaroliagis published a new paper [19] on the penalty
method. They suggest modifications to the penalization scheme to obtain higher quality
alternative graphs. Additionally, they introduce pruning techniques that allow for faster
query times than the original work by Bader et al. [2].

4 Alternative Graph Computation

The basic setup of our algorithm follows the ideas from [2], as described in Section 3. We
compute a shortest path, potentially add the obtained path to our output, penalize the arcs
on the path as well as the adjoined arcs and repeat. The general process is illustrated below
as Algorithm 1:

Algorithm 1 CRP-7
1 original_path = path = computeShortestPath();
2 H = original_path;
while L(path) < (14 ¢€)- L(original_path) do
begin
5 applyPenalties (path) ;
6 path = computeShortestPath () ;
7 if isFeasable(path) do
8 begin
9 H = H U path;
10 end;
11 end;
12 return H;

Following, we explain the meaning of isFeasable(path) and the stopping criterion of our
algorithm. We describe the modifications we make to the algorithm proposed by Bader
et al., which we also refer to as classcial method. We show how to achieve an efficient
implementation and how to extract single alternative routes.

4.1 Path Selection

Algorithm 1 utilizes the procedure isFeasible(path) to decide whether to keep an alterna-
tive route or not. The original paper [2] does not specify how to exactly choose the paths
that form the alternative graph. According to personal conversation with one of the authors,
their algorithm computes up to 20 paths and performs a selection based on some priority
terms afterwards.

While their implementation does not focus on query times but on evaluating multiple
different approaches, we have to consider the cost of performing too many iterations. Thus,
we take a different approach. Instead of applying penalties as many as 20 times, we consider
the true length —without penalties— of the computed path. Whenever this length exceeds
(1+¢€)-D(s,t), we stop our algorithm (see Definition 3, uniformly bounded stretch).

Every path we find during the execution is evaluated by the aforenamed procedure for its
potential value to the alternative graph. We postulate that a path must offer at least one
deviation to the current alternative graph of length § - D(s, t) or more, with ¢ usually chosen
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as 0 = 0.1 (compare Definition 3, limited sharing). The detours satisfying this requirement
are checked against the current alternative graph H for stretch. If one of these detours
between vertices a, b is not longer than (1 + ¢€) - Dy (a, b), its containing path is added to the
alternative graph. All other paths are rejected.

4.2 Changes to Penalization

As described above, the classical penalty method penalizes the arcs along the shortest path
by adding a fraction of the arcs’ original length. This fraction is called the penalty factor my
and is usually chosen as my = 0.04. Additionally, the adjoined arcs of the path are penalized
by adding m, = 7y - 0.002 - D(s, t), the so called rejoin penalty. These changes to the metric
are persistent during the computation of an alternative graph.

The penalty method, as suggested by Bader et al. [2], requires a significant amount of
iterations. Even when using our stopping criterion from the previous section, we experience
a similar behavior, requiring about 20 iterations and more on average. Therefore, we take a
slightly different approach to penalization and modify the way penalties are introduced to
the graph.

In contrast to the choice of Bader et al., we multiply the current lengths of the arcs on
the shortest path by 1+ m¢. Thus, we penalize arcs which are used often more strongly than

others, and significantly increase the rate at which penalties grow (geometrically growing).
This is in contradiction to Bader et al’s preference to lower successive increases in penalty.

Our choice is not only motivated by its beneficial impact on the number of iterations, but also

favors detours to segments of the alternative graph that are already covered by multiple paths.

But of course, this may result in our algorithm missing some promising path candidates due
to the higher increase in penalties.

The higher penalization has influence on the choice of the rejoin penalty as well. While
Bader et al. propose a relatively small penalty m,., this choice proved to be not high enough
for our faster growing multiplicative penalties to prevent short detours. We therefore change
the additive penalty to 7. = a - y/D(s,t), with a = 0.5 as a typical value. This change
is motivated by the following observation: Consider P and a new path p,; found on
the penalized graph which deviates from Ps: between vertices a,b. Due to penalization,
Dy, ,(a,b) +2 -7, < (1+7) - D(a,b), with 7 the average penalization along P, . In other
words, for a new detour to be found between vertices a, b, it has to be shorter, including
rejoin penalties, than the current (penalized) shortest path between a,b. This condition gets
easier to fulfill, the further s,¢ are apart as the rejoin penalty grows much slower than the
path length. Therefore, we allow for larger detours to be found on longer paths. But locally,
we only want short detours (compare Definition 3, local optimality).

4.3 Fast Computation

Our most significant change to the classical method is the introduction of CRP as speed-up
technique. While there are other methods for dynamic shortest path computation [5,21],

none of them is sufficient for the high amount of dynamic behavior required for our cause.

As recent developments have shown, close to real-time processing of entire graphs is possible
with the CRP technique [10].

While we initially took a different approach, the general methods —making extensive
use of vector instructions and parallelism— remain the same. Even though it does not seem
intuitive to perform more work than necessary for a pure update of a shortest path, the
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locality properties, vectorization and suitability for parallel processing allow a CRP based
implementation to outperform other approaches that consider only the changed arcs.

As our set of updating techniques —while much simpler to implement— is outperformed
by the methods recently described by Delling and Werneck [10], we do not focus on our
exact implementation of CRP. Instead, we concentrate on an essential modification to CRP,
required to achieve maximal performance of the penalty method:

Dynamic Level Selection

Applying a multi-level technique is always a balancing act between fast queries of long routes
and overhead for short routes. In our case, namely the reiterated computation of a shortest
path and the update of affected arcs between the same source and target, we also have to
weigh update costs against query times. While beneficial for long range queries, large cells in
the upper levels have a high update cost in comparison to the smaller cells further down the
hierarchy. These updates soon dominate the runtime of our algorithm as even rather short
paths can touch many high level cells. As we perform multiple computations between the
same source and target pair, we can alleviate this problem. After an initial computation of
the shortest path, we can analyze the path regarding its length and the cells the path touches
on different hierarchy levels. For the cost of storing some additional mapping information,
we use the obtained information to dynamically adjust our implementation of CRP to work
only on a fixed number of levels. Restricting to a subset of levels allows for faster updates of
CRP as not all levels have to be updated, at the cost of higher query times.

4.4 Alternative Route Extraction

When presented with an alternative graph, multiple ways exist to extract alternative routes.
To compare ourselves to other methods in terms of success rate, we apply a two-step approach.
In a first step, we perform X-BDV on our alternative graph without checking for local
optimality. This test is omitted as the alternative graph does not provide enough information
to compute shortest paths between arbitrary vertices with respect to the underlying graph.
We call the result of this first step CRP-m-via. After having searched exhaustively for
via-node alternatives, we run a simplified penalty method to extract further routes. We do
not apply rejoin penalties as the alternative graph is sparse and only contains meaningful
junctions. The X-BDV alternatives are used to initialize penalization, and the extracted
paths have to adhere to the same stretch and overlap criteria as imposed by X-BDV. The full
algorithm is named CRP-w. When omitting the first step, we call the results CRP-m-penalty.

5 Experiments

We first provide a detailed overview of our experimental setup and a short outline of the
quality measurements used during the evaluation of the penalty method. This is followed by
an extensive experimental evaluation of our techniques as introduced in Section 4.

Setup

We run our algorithm on four Intel Xeon E5-4640, clocked at 2.4 GHz with 32 cores in
total and 512 GB of RAM — the actual space consumption of CRP-7 is much less though.
The machine is running Ubuntu 12.04. We apply the C++ compiler of the GNU Compiler
Collection (GCC), version 4.6.1, with parameters -std=c++0x -fopenmp -03 -msse4.1
-mtune=native. For parallelization we use OpenMP. Our implementation is based on a
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partition generated by PUNCH, comparable to the one used in [6] with 5 levels, including a
shadow level. The road network of Western Europe supplied by PTV AG for the 9th Dimacs
Implementation Challenge [11] is used in our experiments. It contains 18 million nodes and
24 million edges and uses the travel time metric as arc costs. The graph consists of a single
strongly connecteed component. We present numbers based on random queries and on rank
queries. The Dijkstra rank of a vertex is defined as the step in which it is settled during the
execution of Dijkstra’s algorithm. For both variants we choose 1000 queries uniformly at
random, unless said otherwise.

For comparison, we apply our own implementations of the competing via-node and penalty
approaches, with results similar to the original papers. Tuning parameters are chosen at their
usual values as introduced before. Note that our implementation of the classical penalty
method corresponds to CRP-7 while using Dijkstra’s algorithm and the classical penalization
scheme. In particular, we apply our stopping criterion instead of running 20 iterations
straight and add each viable path to the alternative graph as soon as it is discovered. This is
due to Bader et al. not providing details on the path selection process in their paper.

5 1 Runtime Q 1l I @ CRP-m O Classical[’
. . . 1% 1 T
One of the most important characteristics g o IE| (38|
=< I, g e T T 1 S
in routing applications is the query time. § 1| ! I : l e P P b S R AL k=
= 10 o 1 ! 1 1 1 ! 1 ! 1 [N R A ! r
Therefore, we first evaluate the runtime of . _llilll,l!l!l!i!l!l!l!l!l!l!l!l_
our algorithm before turning to the quality rTT T T T
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of the computed routes. Dijkstra Rank

The number of iterations performed is

likely the most influential factor to our query Figure 1 Number of iterations required by the
time. Figure 1 shows that the number of penalty method until the stopping criterion holds.
iterations is much higher for queries of lower rank. Therefore, it is important to perform
updates very fast for short queries. We also see that without our modifications to the
penalization, we experience an average of 12 iterations and higher across the full range
of queries. Remember, the original implementation by Bader et al. always computed
20 iterations. Considering the cost to perform a single iteration (Figure 2), the classical
penalization would not be suitable for an efficient implementation, even when using CRP.
We also see that update costs remain small as only affected cells are recomputed.

These findings are further confirmed by
Figure 3, which gives sequential runtimes ]
for using Dijkstra’s algorithm with classical
penalization. Note the logarithmic scale of
the y-axis. We see that query times already
become impractical for very short ranged 3l
queries. This is expected behavior and com- 8 8' : ! [@ cren O classica
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Dijkstra’s algorithm could reduce runtimes
Figure 2 Sequential runtime of a single itera-

of the classical approach by a small constant
tion of the penalty method.

factor, but they would remain prohibitively
high. This becomes evident in particular when looking at long range queries, the classical
approach requires up to 5 seconds per iteration while CRP-7 only takes between 100 and
200 milliseconds. Not even goal directed methods as in the new method of Paraskevopoulos
and Zaroliagis [19] seem to suffice for reaching the query performance of CRP-.
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many levels of the partition become obvious.

This is as the cells in the higher levels are

Figure 3 Runtime of the penalty method with
dynamic level selection and rank based optima.
CRP-7 uses 16 cores, the classical method 1 core.

off for long range queries, with 12/16 cores performing up to 4 times faster than sequential
execution. For short to medium range routes, it can be deemed a waste of resources.

Following the results of Figure 4, we propose to use only two levels for short routes, switch
to three levels for the medium range, and finally apply four levels on long range queries. We
base the decision on how many levels to use on the hop count of the shortest path (which
is always computed using all 5 levels of the partition). To tune this selection process, we
generate a different set of routes for every Dijkstra rank and compute the average number of
hops on the shortest path.

The performance of the resulting dynamic algorithm is shown in Figure 3. We see
that our dynamic algorithm is sometimes even slightly faster than the best values of the
respective Dijkstra rank queries. This is, as the dynamic choice allows us to better adjust the
performance of our algorithm to the actually required workload whereas a forced number of
levels does not represent the required work as accurately. For comparison, Figure 3 shows the
respective best values from Figure 4. The values were extracted on Dijkstra-rank basis. Due
to very long arcs, i.e. ferry connections, we experience some erratic parallelization behavior
when dynamically selecting the levels based on the hop-count alone. A selection based on
affected cells in each level might provide better results in the future.

Avoiding dynamic level selection, the best choice is obviously using three levels of hierarchy.
Only for very short and very long range queries we see detrimental effects. But in the worst
case, there is a slowdown by a factor of up to 4.

Although, at the current state, the required number of cores for a viable execution of our
algorithm might be considered high for long range queries, the algorithm performs queries
efficiently and with a low number of cores for all reasonable distances. To improve workload,
dynamic selection of cores can be introduced similar to dynamic selection of levels.

Figure 3 compares only our best results, obtained by parallel processing, to the classical
approach, running sequentially. Though, we clearly outperform this approach even when
using a single core. Figure 4 demonstrates the performance benefits of our general approach
over the classicial method. As seen in the plot depicting dynamic level selection, CRP-7 takes
at most 600 milliseconds on one core for the longest queries whereas the classical approach
requires beyond 100 seconds, which is off the scale in Figure 3.

For completeness, we state the runtimes of the via-node approaches introduced during
the following quality analysis. X-BDV requires 14.1 seconds on average to compute three
alternatives, where possible. X-CHYV takes 4.95 milliseconds for the same task.
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Figure 4 Runtime of the penalty method. Each illustration shows the runtime for a range of

cores. The number of levels of the underlying CRP implementation is either fixed to a given set of
levels, or dynamically adapted after the initial shortest path query.

5.2 Quality

First, we evaluate the results of our algorithm with regards to the quality as defined in the
original paper of Bader et al. [2]. We note that without access to their path selection criteria,
we were unable to reproduce the numbers listed in their work. In addition, their numbers
stem from a very sparse test set of 100 queries. Another implementation [20] faced similar
difficulties, but at least conducted more extensive measurements. They report an average

value of 2.89 for the alternative graph quality of Definition 4, compared to the 3.21 in [2].

Without filtering, our algorithm yields alternative graphs with an average quality rating of
3.32 with 17.4 decision vertices on average. As this is above the proposed hard limit in the
original paper, we can filter the graph by removing all arcs that are only contained in paths
longer than the allowed maximum stretch. The additional overhead is negligible, well below
100us on average, as the alternative graphs are tiny. Filtering reduces the quality to 2.89
and the decision vertices to 9.53. While limiting the number of decision vertices is beneficial
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Table 1 Success rates and average path quality numbers for the first through third alternatives in
terms of Definition 3. Compared to the results found in [1], local optimality is not strictly enforced.
See text for a discussion on maximum/minimum path quality values.

# algorithm success (%] stretch (%) sharing (%) optimality (%)
first X-BDV 96.0 10.0 41.8 75.4
X-CHV 89.6 80.4 40.6 68.1
CRP-7-via 95.2 42.8 31.6 27.1
CRP-m-penalty 96.3 40.6 40.8 24.4
CRP-m 96.3 42.9 31.9 26.9
second X-BDV 87.6 13.8 59.5 65.1
X-CHV 72.5 269.0 57.6 57.2
CRP-m-via 79.8 47.1 44.7 22.9
CRP-m-penalty 83.1 60.5 36.8 10.8
CRP-7 84.0 47.6 45.9 22.1
third X-BDV 75.5 17.2 65.6 54.6
X-CHV 51.4 214.0 63.6 46.8
CRP-7-via 52.7 66.5 49.3 18.0
CRP-m-penalty 53.0 65.9 32.0 5.6
CRP-m 62.9 67.4 51.8 15.9

for the readability of an alternative graph, it reduces the potential for extracting multiple
viable alternatives. Thus, we opt to not apply the filter for the following analyses.

Now, we take a look at the well established via-node approach. For comparison, we
choose the Dijkstra based (X-BDV), and the Contraction Hierarchy based (X-CHV) variants
introduced in [1]. Table 1 summarizes the results, giving numbers for success rates, i.e.
how often we can extract one to three viable alternatives from our alternative graph, and
for the quality measures introduced in Definition 3. As we do not strictly enforce local
optimality, we disabled this criterion for X-BDV and X-CHYV to allow for a fair comparison.
We see that success rates of CRP-7 are well above X-CHYV for all alternatives and even
on par with X-BDV for the first route. For second and third routes our algorithm fares
slighty worse compared to X-BDV. Note though that X-BDV obtains its high success rates
at the cost of prohibitively slow query times of about 14 seconds. Average path quality
measures seem reasonable with our uniformly bounded stretch and local optimality values
being worse but our sharing values being better than those of the via-node approaches. This
is an expected compromise as lower stretch comes with higher overlap and vice versa. The
overall high stretch values are due to none of the algorithms enforcing uniformly bounded
stretch explicitly, only total stretch of each path is enforced.

We further find that not enforcing local optimality has little impact on the average path
quality values. Only the uniformly bounded stretch of X-CHV increases significantly. Due
to the structure of CH search spaces, computed alternatives often exhibit an overlapping
subpath at the via-node. This would imply infinite stretch values, filtering these overlaps
we obtain the listed values of above 200. Maximum stretch and minimum optimality values
degrade dramatically without enforcing local optimality, though. This leads us to look more
closely into how poor bounded stretch and local optimality values arise. As they represent
averages of the worst values on each path, it is easy to see that even tiny suboptimalities
compared to the full path length lead to poor quality values. We find stretch values over
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100% for about 10% of all alternatives and local optimality values below 1% for about 20%
of all alternatives of CRP-w. This is about twice as often as for X-CHV, with X-BDV only
showing single poor values. We further checked that this is always caused by a single subpath
of small length (about 1% - 3% of the full path length). Thus, we conjecture that these
problems are repairable with very local searches at low costs.

Finally, we compare the results of running only one step of our alternative route extraction
to the full process. We see that the different extraction methods compliment each other. On
their own, they offer comparable success rates on par or even better than X-CHV. When
combined, the success rates increase — especially for higher degree alternatives. This leads us
to the conjecture that both approaches provide structural different routes.

Encouraged by this observation on the small scale, we study the structural differences
offered by our penalty approach compared to via-node based approaches on the whole. We
evaluate the extracted alternative routes with regards to the additional information they
provide that cannot be obtained by via-node based approaches. For this analysis we consider
all extracted routes p,:, compute a via-node alternative P; , ; for each vertex v on that
route, and compute the overlap between these two paths. For a fair comparison, we only
consider vertices that yield a viable via-node alternative with respect to the stretch and
overlap criteria. Furthermore, we do not consider overlapping subpaths that are also part of
the shortest path P, ;. We find that that maximum overlap is well below 80% and getting
smaller for higher degree alternatives — 77.9%, 72.7%, 65.5% for the first through third
alternative, respectively. This implies that our approach offers a meaningful addition to the
established via-node approaches.

6 Conclusion

The extensive use of vectorization and modern multi-core machines has enabled us to provide
the first implementation of the penalty method that is suitable for interactive applications.
We have shown the results to provide meaningful additions to the world of alternative routes.
Some open problems remain though. Most interesting would be to find an (approximable) set
of criteria to classify good alternatives, not tailored to one specific approach. Furthermore,
the runtime of our implementation remains high, especially when compared to shortest path
queries. We want to find ways to improve upon this implementation and compute alternative
graphs even quicker. The recent work by Paraskevopoulos and Zaroliagis [19] seems to be
promising in this respect. Their approach is orthogonal to ours and should integrate well.
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