
Scalable and Fault-tolerant Stateful Stream
Processing∗

Raul Castro Fernandez1, Matteo Migliavacca2,
Evangelia Kalyvianaki3, and Peter Pietzuch1

1 Dept. of Computing, Imperial College London
rc3011@doc.ic.ac.uk, prp@doc.ic.ac.uk

2 Dept. of Computing, University of Kent
mm53@kent.ac.uk

3 School of Informatics, City University London
evangelia.kalyvianaki@city.ac.uk

Abstract
As users of “big data” applications expect fresh results, we witness a new breed of stream pro-
cessing systems (SPS) that are designed to scale to large numbers of cloud-hosted machines. Such
systems face new challenges: (i) to benefit from the “pay-as-you-go” model of cloud computing,
they must scale out on demand, acquiring additional virtual machines (VMs) and parallelising
operators when the workload increases; (ii) failures are common with deployments on hundreds
of VMs—systems must be fault-tolerant with fast recovery times, yet low per-machine overheads.
An open question is how to achieve these two goals when stream queries include stateful operators,
which must be scaled out and recovered without affecting query results.

Our key idea is to expose internal operator state explicitly to the SPS through a set of state
management primitives. Based on them, we describe an integrated approach for dynamic scale
out and recovery of stateful operators. Externalised operator state is checkpointed periodically
by the SPS and backed up to upstream VMs. The SPS identifies individual operator bottlenecks
and automatically scales them out by allocating new VMs and partitioning the checkpointed
state. At any point, failed operators are recovered by restoring checkpointed state on a new VM
and replaying unprocessed tuples. We evaluate this approach with the Linear Road Benchmark
on the Amazon EC2 cloud platform and show that it can scale automatically to a load factor of
L=350 with 50 VMs, while recovering quickly from failures.

1998 ACM Subject Classification H2.4 Database Systems. Systems

Keywords and phrases Stateful stream processing, scalability, fault tolerance

Digital Object Identifier 10.4230/OASIcs.ICCSW.2013.11

1 Introduction

In many domains, “big data” applications [2], which process large volumes of data, must
provide users with fresh, low latency results. For example, web companies such as Facebook
and LinkedIn execute daily data mining queries to analyse their latest web logs [8]; online
marketplace providers such as eBay and BetFair run sophisticated fraud detection algorithms
on real-time trading activity [7]; and scientific experiments require on-the-fly processing of
data.

∗ A longer version of this paper appeared in the proceedings of ACM International Conference on
Management of Data (SIGMOD) [4].

© Raul Castro Fernandez, Matteo Migliavacca, Eva Kalyvianaki, Peter Pietzuch;
licensed under Creative Commons License CC-BY

2013 Imperial College Computing Student Workshop (ICCSW’13).
Editors: Andrew V. Jones, Nicholas Ng; pp. 11–18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2013.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

12 Scalable and Fault-tolerant Stateful Stream Processing

Therefore stream processing systems (SPSs) have evolved from cluster-based systems, de-
ployed on a few dozen machines [1], to extremely scalable architectures for big data processing,
spanning hundreds of servers. Scalable SPSs such as Apache S4 [6] and Twitter Storm [12]
parallelise the execution of stream queries to exploit intra-query parallelism. By scaling
out partitioned query operators horizontally, they can support high input stream rates and
queries with computationally demanding operators.

While mechanisms for scale out [10, 9] and fault tolerance [13, 11, 15] in stream processing
have received considerable attention in the past, it remains an open question how SPSs can
scale out while remaining fault tolerant when queries contain stateful operators. Especially
with recently popular stream processing models [6, 12] that treat operators as black boxes in
a data flow graph, users rely on operators that have large amounts of state, which potentially
depends on the complete history of previously processed tuples [3]. This is in contrast to, for
example, window-based relational stream operators [1], in which state typically only depends
on a recent finite set of tuples.

We make the observation that both scale out and failure recovery affect operator state,
and therefore can be solved more efficiently using a single integrated approach. Our key idea
is to externalise internal operator state so that the SPS can perform explicit operator state
management. We then define a set of primitives for state management that allow the SPS
to checkpoint, backup, restore and partition operator state. Based on these primitives, we
describe an integrated approach for scale out and recovery of stateful operators in an
SPS.

We evaluate how our approach scales out queries as part of a prototype SPS using closed
and open loop workloads. We report the performance of the Linear Road Benchmark [3] on
the Amazon EC2 cloud platform.

In summary, the paper makes the following contributions:

1. a description of operator state and management primitives to be used by an SPS;
2. an integrated approach for automatically scaling out bottleneck operators and recovery

of failed operators based on managed operator state;
3. an experimental evaluation on a public cloud, showing that this approach can parallelise

complex queries to a large number of VMs, while being resilient to failures.

Next we analyse the problem; §3 presents our state management technique; based on
this, we introduce the integrated approach for scale out and recovery (§4); §5 provides
experimental results; and we finish with conclusions (§6). For related work and further
details on this paper we refer the reader to [4].

2 Problem Statement

We want to enable the deployment of SPSs on infrastructure-as-a-service (IaaS) clouds,
such as Amazon EC2 and Rackspace, across hundreds of VMs. An SPS in a cloud setting
must support the automated deployment and management of stateful streaming queries. In
particular, this requires (i) the exploitation of intra-query parallelism to scale processing
across VMs; (ii) the masking of failures for continuous processing; and (iii) adaptation to a
VM model.

Stateful operators. Existing systems typically assume that operators are either state-
less [6] or that state can be ignored when e.g. recovering operators [12]. While this simplifies
the architecture of the SPS, it puts a considerable burden on developers when they need
scalable and fault-tolerant stateful operators.

R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch 13

query graph

execution graph

o1

o1
1

o2
1

o2

o1
2

o2
2

o3

o1
3

o4

o1
4

o2
4

src

src

snk

snk

Figure 1 Example of query and exe-
cution graphs.

word splitter
(o)

∅

routing state

processing state

buffer state

word counter
(c1)

word counter
(c2)

{τ=1, ('f': "first:1")}

{τ=4, ('s': "second:1, set:2")}

{τ=2, k='s', p="set"}
{τ=3, k='s', p="second"}

{τ=4, k='s', p="set"}
{τ=5, k='t', p="third"}

{τ=1, k='f', p="first"}

{ (c1, ['a', 'l']), (c2, ['l', 'z']) }

{τ=1, …, p=" first set "}
{τ=2, …, p=" second set "}

{τ=3, ..., p=" third set "}

s1

s2

Figure 2 Different types of state in
a stateful query for counting word fre-
quencies.

Intra-query parallelism. Decisions about parallelising operators can occur statically—
at query deployment time—or dynamically—at runtime. Static scale out requires knowledge
of resource requirements of operators, which depend on stream rates and data distributions,
and are typically estimated by cost models [14]. Therefore dynamic scale out is preferable in
a cloud setting because the SPS can adapt to changes in the workload, observing resource
consumption and VM performance.

Fault tolerance. Previous studies have shown that a substantial fraction of machines in
large data centres develop faults during operation [5]. We assume a typical failure model, in
which machine and network failures are modeled as independent, random crash-stop failures.
Similar to other cloud-deployed applications, an SPS must be fault tolerant and cope with
regular failures.

3 State Management

System Model

Data Model. A stream s is an infinite series of tuples t ∈ s. A tuple t = (τ, k, p) has a
logical timestamp τ , a key field k and a payload p. The timestamp τ ∈ N+ is assigned by a
monotonically increasing logical clock of an operator when a tuple is created in a stream.
Tuples in a stream are ordered according to their timestamps. Keys are not unique and used
to partition tuples. They can be computed as a hash based on the payload.

Operator model. Tuples are processed by operators. An operator o takes n input
streams, Io, processes their tuples and produces one or more output streams, Oo.

An operator function fo defines the processing of operator o on input tuples: fo :
(Io, τo, θo, σo)→ (Oo, τo, θo, σo). A stateful operator has access to state θo, which is updated
after processing. We assume that operators are deterministic and do not have other, externally
visible side-effects. The timestamp σo specifies the oldest tuples that affected the state θo,
i.e. the state depends only on tuples with timestamps σoi ≤ τ i ≤ τoi for each input stream si.

Query model. As shown at the top of F. 1, a query is specified as a directed acyclic
query graph q = (O,S) where O is the set of operators and S is the set of streams.

Query execution. A query is deployed on a set of nodes. A node can host multiple
operators but, without loss of generality, we assume one operator per node. We distinguish
between the logical representation of a query, in terms of its query graph, and its physical
realisation, as shown at the bottom of F. 1. In the physical execution graph q̄, an operator o
may be parallelised into a set of partitioned operators o1 . . . oπ.

ICCSW’13

14 Scalable and Fault-tolerant Stateful Stream Processing

State Definition

The state of a query consists of the operator state of each query operator. We divide the
operator state into processing state, buffer state and routing state, as illustrated in F. 2,
which we use as a running example below.

Processing state. Output tuples from stateful operators depend on input tuples and
the history of past tuples. Operators typically maintain an internal summary of this history
of input tuples, which we term the operator’s processing state. The current processing state θo
of an operator o was computed from all past tuples with σoi ≤ τ i ≤ τoi : si ∈ Io.

Exposing the processing state to the SPS has several reasons: (i) it enables the SPS to
recover stateful operators more efficiently after failure. Instead of re-processing all tuples
in the range σoi ≤ τ i ≤ τoi, recreating the processing state, the SPS can restore the state
directly from a state checkpoint, and (ii) it allows the SPS to redistribute processing state
across a set of new partitioned operators to support scale out.

In F. 2, we give an example of processing state for the word frequency operators.The
upstream word split operator sends the word “first” to the word count operator c1 at τ = 1,
resulting in the processing state θc1 = {(’f’, “first:1”)} and timestamp τc1 = (1). The words
“set”, “second” and “set” are processed by c2, instead, which at τc2 = (4) holds processing
state θc2 = {(’s’, “second:1, set:2”)}.

Buffer state. An SPS typically interposes output buffers between operators, which
buffer tuples before sending them to downstream operators (see F. 2). Buffers compensate
for transient fluctuations of stream rates and network capacity.

Tuples in output buffers contribute to the query state managed by the SPS: (i) output
buffers store tuples that have not yet been processed by downstream operators and therefore
must be re-processed after failure; (ii) after dynamic operator scale out, tuples in output
buffers must be dispatched to the correct partitioned downstream operator.

Routing state. An operator o in the query graph may correspond to multiple partitioned
operators o1, . . . , oπ in the execution graph. An upstream operator u has to decide to which
partitioned operator oi to route a tuple. Since the partitioning can change dynamically, an
operator has explicit routing state, which must be restored after failure.

Operations

The above operator state can be manipulated by the SPS through a set of state management
primitives.

Checkpoint state. The SPS can obtain a representation of the processing state θo
and the buffer state βo of an operator o in the form of a checkpoint. This is taken by the
function checkpoint-state(o)→ (θo, τo, βo). It obtains the processing state θo safely by calling
the user-implemented function get-processing-state(), which also returns the timestamp τo
of the most recent tuples in the streams from the upstream operators that affected the
state checkpoint. This permits the SPS to discard tuples with older timestamps, which are
duplicates, during replay (see below).

The function checkpoint-state is executed asynchronously and triggered every checkpointing
interval c, or after a user-defined event, e.g. when the state has changed significantly.

Backup state. The operator state, as returned by checkpoint-state, can be backed up to
an upstream operator in anticipation of a restore or partition operation. After the operator
state was backed up, already processed tuples from output buffers in upstream operators can
be discarded because they are no longer required for failure recovery.

Restore state. Backed up operator state is restored to another operator to recover a

R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch 15

u o
u

o2

o1

u

u2

o6

o1

o5

u1

o6

o1

o5

(a) (b)

(c) (d)

s

s2

s1

...

bottleneck new operator

...

Figure 3 Example of scale out of stateful operators.

failed operator or to redistribute state across partitioned operators. A function takes the
state to restore to operator o. It then initialises the processing state using a user-defined
function and also assigns the buffer and routing states.

After the state was restored from a checkpoint, unprocessed tuples in the output buffer
from an upstream operator are replayed to bring the operator o’s processing state up-to-date.
Before operator o emits new tuples, it resets its logical clock to the timestamp τ from the
restored checkpoint so that downstream operators can detect and discard duplicate tuples.

Partition state. When a stateful operator scales out, its processing state must be split
across the new partitioned operators. This is done by repartitioning the key space of the
tuples processed by the operator (i.e. by doing consistent hashing). In addition, the routing
state of its upstream operators must be updated to account for the new partitioned operators.
Finally, the buffer state of the upstream operators is partitioned to ensure that unprocessed
tuples are dispatched to the correct partition.

4 Scale Out and Fault Tolerance

Using the above state management primitives, we present our integrated approach for stateful
operator scale out and recovery. We discuss our scaling strategy and fault tolerance, before
describing our fault-tolerant scale out algorithm.

To scale out queries at runtime, the SPS partitions operators on-demand in response to
bottleneck operators. Bottleneck operators prevent the system from increasing processing
throughput. After scaling out a bottleneck operator, its processing load is shared among a
set of new partitioned operators, thus increasing available resources to the SPS. Our scale
out mechanism partitions operator state and streams without violating query semantics.

We give an example of operator scale out in F. 3, which shows four versions of an execution
graph during scale out. When first deployed (F. 3a), the execution graph has one operator
for each (logical) operator in the query graph. An operator o is connected through stream s

to an upstream operator u. We assume that operator o is the bottleneck operator. F. 3b
shows how the upstream operator u can partition its output streams into two streams. The
two partitioned operators, o1 and o2, share the processing load and alleviate the bottleneck
condition. In the same way, additional operators can be added to the execution graph for
further scale out (F. 3c). When the upstream operator u becomes the new bottleneck (F. 3d),
it is also partitioned and its output streams are replicated.

Even in the absence of bottlenecks, if a VM hosting a stateful operator fails, the SPS
must replace it with an operator on a new VM. In our approach, overload and failure are

ICCSW’13

16 Scalable and Fault-tolerant Stateful Stream Processing

Data
Feeder

Balance
Account*

Forwarder

Toll
Calculator*

Toll
Assessment*

Toll
Collector

Sink

[24 instances]

[12 instances]

[5 instances]

[6 instances]

Figure 4 Query for the Linear Road
Benchmark.

0

1

2

3

4

5

6

7

 0 500 1000 1500 2000
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

Tu
p
le

s/
s

(x
1

0
0

K
)

N
u
m

b
e
r

o
f

V
M

s

Time (seconds)

Throughput (tuples/s)
Input rate (tuples/s)

Num. of VMs

Figure 5 Dynamic scale out for the
LRB workload with L=350 (closed loop
workload).

handled in the same fashion. Operator recovery becomes a special case of scale out, in which
a failed operator is scaled out to a parallelisation level of 1. This means that the SPS does
not require a sophisticated failure detector to distinguish between the two cases but instead
scales out an operator when it has become unresponsive.

5 Evaluation

The goals of our experimental evaluation are to investigate:
(i) the effectiveness of our stateful operator scale out approach for a closed loop
workload.
(ii) the recovery time of the stateful recovery mechanism for a windowed word frequency
query.
(iii) the impact of our state management approach on tuple processing latency.

The experiments are conducted using an experimental stream processing system imple-
mented in Java. We deploy it on Amazon EC2 across 60 VMs.

Dynamic Scale Out

We first evaluate the effectiveness of our scale out approach when adapting to an increasing
workload, i.e. when the SPS has to scale out to match an increasing input stream rate
without tuple loss. The workload is the Linear Road Benchmark (LRB) (see [3] for details).

Our LRB query implementation consists of 7 operators, as shown in F. 4. We deploy the
LRB query on Amazon EC2. Our deployment achieves a maximum L-rating of L=350 with
50 VMs. After that, the source and sink become the bottleneck, handling a maximum of
600,000 tuples/s due to serialisation overheads. The partitioned execution graph of the LRB
is as shown in F. 4. We observe that the SPS maintains the required result throughput for
the input rate, requesting additional VMs as needed. At times t=475 and t=1016, multiple
operators are scaled out in close succession because bottlenecks appear in two operators
simultaneously.

F. 6 shows processing latencies of output tuples, as a metric for the performance experi-
enced by the query. The 99th and 95th percentiles of the latency are 1459 ms and 700 ms,
respectively; the median is 153 ms, which are all below the LRB target of 5 s. This confirms
that our maximum L-rating is indeed due to the limited source and sink capacities.

Failure Recovery

To evaluate failure recovery, we first compare recovery time against other fault tolerance
approaches, upstream backup (UB) and source replay (SR). UB buffers tuples in each operator

R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch 17

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

N
u
m

b
e
r

o
f

V
M

s

Time (seconds)

Latency
Num. of VMs

Figure 6 Processing latency for LRB
workload.

0

2

4

6

8

10

12

14

100 500 1000

R
ec

ov
er

y
Ti

m
e

(s
ec

on
ds

)

Input Rate (tuples/s)

Recovery using State Management (R+SM)
Source replay (SR)
Upstream backup (UB)

Figure 7 Recovery time for different
fault tolerance mechanisms.

and re-processes them to recover operator state. SR is a variant of UB, in which tuples are
only buffered and replayed by the source [12]. We use a query that counts word frequencies
over a 30 s window.

We observe the recovery times for the three approaches. For R+SM, we set the check-
pointing interval c to 5 s. During the experiment, we fail the VM and measure the time to
recover (i.e. until the complete operator state was restored).

F. 7 shows results averaged over 10 runs for different input rates. SR achieves slightly
faster recovery than UB because of the short length of the operator pipeline and the fact
that it stops the generation of new tuples during the recovery phase. R+SM achieves lower
recovery times than both UB and SR. Due to the state checkpoints, it re-processes fewer
tuples to recover the stateful operator.

In F. 8, we show the change in recovery time as a function of the checkpointing interval
for different input rates. Recovery time increases with longer checkpointing intervals because
more tuples are replayed. Tuple buffering is the main factor determining recovery time, which
is why recovery time increases considerably with higher rates. While frequent checkpointing
incurs overhead, it reduces recovery time, even for high rates.

State Management Overhead

The overhead on processing throughput could not be observed, so we measure its effect on
tuple processing latency.

We synthetically vary the state size (in this case a dictionary) between small (102 entries;
≈2 Kb), medium (104 entries; ≈200 Kb) and large (105 entries; ≈2 Mb).

F. 9 shows that the 95th percentile of tuple processing latencies increases with state size.
For large state sizes, checkpointing takes longer and occupies more CPU time, which is
unavailable for tuple processing. Higher input rates increase the load on the operator, resulting
in less headroom for the checkpointing process. For input rates of 100 and 500 tuples/s, the
latency remains small but grows for 1000 tuples/s.

6 Conclusions

We presented an integrated approach for scale out and failure recovery through explicit state
management of stateful operators. Our approach treats operator state as an independent
entity, which can be checkpointed, backed up, restored and partitioned by the SPS. Based
on these operations, the SPS can support dynamic scale out of operators while being fault
tolerant.

Our results show that our approach can be used effectively to provision Amazon EC2
resources against increasing input rates in the Linear Road Benchmark and also support

ICCSW’13

18 Scalable and Fault-tolerant Stateful Stream Processing

0

1

2

3

4

5

6

7

8

 1 5 10 15 20 25 30

R
e
co

v
e
ry

 T
im

e
 (

se
co

n
d
s)

Checkpointing Interval (seconds)

Input rate (100 tuples/s)
Input rate (500 tuples/s)
Input rate (1K tuples/s)

Figure 8 Recovery time for different
R+SM checkpointing intervals.

 0

 100

 200

 300

 400

 500

Small Medium Large No
Checkpointing

La
te

n
cy

 (
m

ill
is

e
co

n
d

s)

State Size

Input rate (100 tuples/s)
Input rate (500 tuples/s)
Input rate (1000 tuples/s)

Figure 9 Overhead of state check-
pointing for different input rates and
state sizes

open loop workloads. Despite the state checkpointing, processing latency remains within
desired levels.

As future work, we plan to extend our scale out policy with support for scale in to enable
truly elastic deployments of cloud-based SPSs.

Acknowledgements This work was supported by a PhD CASE Award funded by the
Engineering and Physical Sciences Research Council (EPSRC) and BAE Systems.

References
1 Daniel J Abadi, Y Ahmand, et al. The Design of the Borealis Stream Processing Engine.

In CIDR, 2005.
2 D Agrawal, S Das, et al. Big Data and Cloud Computing: Current State and Future

Opportunities. In EDBT, 2011.
3 Arvind Arasu, Mitch Cherniack, et al. Linear Road: A Stream Data Management Bench-

mark. In VLDB, 2004.
4 Raul Castro Fernandez, Matteo Migliavacca, et al. Integrating Scale Out and Fault Toler-

ance in Stream Processing using Operator State Management. In SIGMOD, 2013.
5 Phillipa Gill, Navendu Jain, et al. Understanding Network Failures in Data Centers: Meas-

urement, Analysis, and Implications. In SIGCOMM, 2011.
6 L Neumeyer, B Robbing, et al. S4: Distributed Stream Computing Platform. In ICDMW,

2010.
7 Nish Parikh and Neel Sundaresan. Scalable and Near Real-Time Burst Detection from

eCommerce Queries. In SIGKDD, 2008.
8 M Russell. Mining the Social Web. O’Reilly, 2011.
9 Benjamin Satzger, Waldemar Hummer, et al. Esc: Towards an Elastic Stream Computing

Platform for the Cloud. In IEEE CLOUD, 2011.
10 Scott Schneider, Henrique Andrade, et al. Elastic Scaling of Data Parallel Operators in

Stream Processing. In IPDPS, 2009.
11 Zoe Sebepou and Kostas Magoutis. CEC: Continuous Eventual Checkpointing for Data

Stream Processing Operators. In DNS, 2011.
12 Twitter Storm. github.com/nathanmarz/storm/wiki.
13 Rohit Wagle, Henrique Andrade, et al. Distributed Middleware Reliability and Fault Tol-

erance Support in System S. In DEBS, 2011.
14 Erik Zeitler and Tore Risch. Massive Scale-out of Expensive Continuous Queries. VLDB

Endowment, 4(11), 2011.
15 Zhe Zhang, Yu Gu, et al. A Hybrid Approach to HA in Stream Processing Systems. In

ICDCS, 2010.

github.com/nathanmarz/storm/wiki

	Introduction
	Problem Statement
	State Management
	Scale Out and Fault Tolerance
	Evaluation
	Conclusions

