
A Graph based approach for Co-scheduling jobs
on Multi-core computers
Huanzhou Zhu and Ligang He

University of Warwick
Coventry, UK
{zhz44, liganghe}@dcs.warwick.ac.uk

Abstract
In a multicore processor system, running multiple applications on different cores in the same
chip could cause resource contention, which leads to performance degradation. Recent studies
have shown that job co-scheduling can effectively reduce the contention. However, most existing
co-schedulers do not aim to find the optimal co-scheduling solution. It is very useful to know
the optimal co-scheduling performance so that the system and scheduler designers can know
how much room there is for further performance improvement. Moreover, most co-schedulers
only consider serial jobs, and do not take parallel jobs into account. This paper aims to tackle
the above issues. In this paper, we first present a new approach to modelling the problem of
co-scheduling both parallel and serial jobs. Further, a method is developed to find the optimal co-
scheduling solutions. The simulation results show that compare to the method that only considers
serial jobs, our developed method to co-schedule parallel jobs can improve the performance by
31% on average.
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1 Introduction

Multicore processors have now become a mainstream product in CPU industry. In a
multicore processor, multiple cores reside on the same chip and share the resources in the
chip. However, running multiple applications on different cores in the same chip could cause
resource contention, which leads to performance degradation. Many research studies have
shown that it is possible to isolate some resources, such as disk bandwidth [15], network
bandwidth [8] for the co-running jobs. However, it is very difficult to isolate the on-chip last
level cache (LLC). This problem is known as the shared cache contention and has been studied
in literature [9,11,18]. The existing approaches to addressing on-chip shared cache contention
fall into the following three categories: 1) Architecture-level solutions that focus on improving
the hardware to provide isolation among threads [13] [14], 2) System-level solutions that
focus on partitioning the cache for each application [16] [12], and 3) Software-level solutions
that tend to develop the contention-aware scheduler to reduce the contention [5] [7]. In the
above three categories, the architecture-level solution is still under active development by
the processor vendors. The cache partitioning solution requires many changes in the existing
system-level software (such as operating system), and therefore incurs high implementation
cost. The third approach, the contention-aware schedulers, is a fairly lightweight approach,
and therefore attracts many researchers’ attention, which is also the focus of this work.
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A number of contention-aware co-schedulers have been developed in the literature [1,4,7].
These studies demonstrated that contention-aware schedulers can deliver better performance
than the conventional schedulers. However, they do not aim to find the optimal co-scheduling
performance. It is very useful to know the optimal co-scheduling performance. With the
optimal performance, the system and co-scheduler designers can know how much room there
is for further performance improvement. In addition, knowing the distance between current
performance and optimal performance can help the scheduler designers to make the tradeoff
between scheduling efficiency and scheduling quality.

The co-schedulers discussed in literature only consider serial jobs (each of which runs on
a single core), and do not take parallel jobs into account. However, both parallel jobs and
serial jobs often exist in a multicore computer system. For example, both parallel and serial
jobs are submitted to a cluster consisting of multi-core computers.

The work in [9] modelled the optimal co-scheduling problem for serial jobs as an integer
programming problem. However, we will show in this paper (Section 2) that this modelling
approach cannot be extended to parallel jobs. This motivates us to develop a new method
that is flexible to model the problem of co-scheduling both serial and parallel jobs.

In this paper, we first present a new approach to modelling the problem of co-scheduling
both parallel and serial jobs. Further, a method is developed to find the optimal co-scheduling
solutions.

We have conducted the simulation experiments to evaluate the co-scheduling algorithms
we developed. The results show that taking parallelism into account can significantly improve
performance. More specifically, if the method developed for serial jobs is used to co-schedule
a mix of parallel and serial jobs, the performance achieved by the new method that takes
parallel jobs into account is 31% better on average than only considering serial jobs.

The rest of the paper is organized as follows. Section 2 formalizes the problem of co-
scheduling a mix of parallel and serial jobs. Section 3 presents a method to find the optimal
co-scheduling solutions. The experimental results are presented in Section 4. Finally, the
paper is concluded in Section 6.

2 Formalizing the problem of co-scheduling parallel jobs

The work in [9] i) formalized the problem of co-scheduling serial jobs, and ii) proposed an
approach to modelling and finding the optimal co-scheduling solution. In this section, we
first briefly summarize their formalization method in Subsection 2.1, then in Subsection 2.2
extend the method to incorporate parallel jobs, and present our own approach to modelling
the problem of co-scheduling a mix of parallel and serial jobs, and developing the methods
to solve the model for optimal co-scheduling solutions.

2.1 Formalizing the problem of co-scheduling serial jobs [9]

The work in [9] shows that on a multicore processor, the co-running jobs are generally slower
than when they run alone due to resource contention. This performance degradation is called
co-run degradation. The co-run degradation of a job is defined as the difference between the
execution time of the job when it co-runs with a set of other jobs and its execution time
when it runs alone. Formally, the performance degradation of a job i is expressed in Eq.
1, where fti is the execution time when job i runs alone, S is a set of jobs and fti,S is the
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146 A Graph based approach for Co-scheduling jobs on Multi-core computers

execution time when job i co-runs with the set of jobs in S.

Di = fti,S − fti

fti
(1)

In the co-scheduling problem, n jobs need to be allocated to a cluster of u-core mul-
tiprocessors so that each core is allocated with one job. m denotes the number of u-core
multiprocessors needed, which can be calculated as dn

ue. The objective of the co-scheduling
problem is to find the optimal way to partition n jobs into m u-cardinality sets, so that the
sum of Di in Eq. 1 over all n jobs is minimized, which is shown in Eq. 2. Note that if n is
not the multiple of u, i.e., n%u 6= 0, we can simply generate u− n%u imaginary jobs whose
performance degradation with any job is 0.

min

|n|∑
i=1

Di (2)

2.2 Formalizing the problem of co-scheduling parallel jobs
As defined in Eq. 2, in order to find the optimal co-scheduling solution, the objective is to
minimize the sum of the performance degradation experienced by each job. This objective
function is designed for co-scheduling serial jobs. A parallel job consists of multiple processes
(or threads). Applying Eq.2 directly to the case involving parallel jobs, the total degradation
of a mix of parallel and serial jobs is the sum of the degradation experienced by each process
in all parallel jobs plus the sum of the degradation by each serial job. However, the finishing
time of a parallel job is determined by its slowest process. A larger degradation for a process
indicates a longer execution time for that process. Therefore, no matter how small the
degradation is for other processes, they have to wait until the process with the largest
degradation finishes, which essentially means that all processes suffer the same degradation
as the largest degradation. Thus, the total degradation for a parallel job is the largest
degradation among all degradations experienced by its processes multiplied by the number of
the processes in the parallel job, which can be formally defined as Mi×max(Dij), where Mi

is the number of processes in parallel job i and Dij is the degradation of process j in parallel
job i. Based on this analysis, we re-formulate the objective function of finding the optimal
co-scheduling solution for a set of jobs containing parallel jobs. The objective function is
expressed in Eq. 3, where J is a set of all jobs, PJ is the set of parallel jobs in J, |J | and
|PJ | represent the number of the jobs in the set J and PJ , respectively.

min(
|P J|∑
i=1

(Mi ×max{Dij}) +
|J|−|P J|∑

i=1
Di) (3)

In order to solve this problem, we propose a new method to model the problem of
co-scheduling serial jobs. The new modelling approach is flexible and can be extended to
incorporate parallel jobs.

3 Modelling the co-scheduling problem

3.1 Graph Model of the problem
As formalized in Section 2, the objective of solving the co-scheduling problem is to find a way
to partition n jobs, j1, j2, ..., jn, into m u-cardinality sets, so that the total performance



H. Zhu and L. He 147

degradation of all jobs is minimized. The number of all possible u-cardinality sets is
(

n
u

)
. In

this paper, a graph called the co-scheduling graph is constructed, to model the co-scheduling
problem. There are

(
n
u

)
nodes in the graph and a node corresponds to a u-cardinality set.

The ID of a node is coded a u-digit number, using the IDs of the jobs in the corresponding
u-cardinality set. In the encoding, the job IDs are always placed in an ascending order
from the most to the least significant digit. The weight of a node is defined as the total
performance degradation of the u jobs in the node. The nodes are organized into different
levels in the graph. The i-th level contains all nodes whose first digit of the ID is i. In each
level, the nodes are placed in the ascending order of their ID’s. A start node and an end
node are added as the first level (level 0) and the last level of the graph, respectively. The
weights of the start and the end nodes are both 0. Figure 1 illustrates when co-scheduling 6
jobs to 2-core processors, how to code the nodes in the graph, and how to organize the nodes
into different levels. Note that for the clarity of the figure we did not draw all edges.
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Figure 1 Degradation graph for 6 jobs on dual core system, the number in each node represents
a Job ID, and edges with same color forms a group of possible schedule.

3.2 Optimal Parallel aware Shortest Path algorithm
A path from the start to the end node in the graph forms a co-scheduling solution if the
path does not contain duplicated jobs, which is called a valid path. The distance of a path is
defined as the sum of the weights of all nodes on the path. Finding the optimal co-scheduling
solution is equivalent to finding the shortest valid path from the start node to the end node.
In this paper, a algorithm, called OP-SCG (Optimal Parallel aware Shortest path algorithm
for the Co-scheduling Graph) is developed to find the shortest valid path in the constructed
graph. OP-SCG is adapted from Dijkstra’s shortest path algorithm [3]. The main differences
between OP-SCG and Dijkstra’s algorithm lie in three aspects: 1) there are no edges between
nodes in the graph in OP-SCG, and the edges are established as the algorithm progresses,
2) the invalid paths, which contain the duplicated jobs, have to be disregarded, and 3) the
ability to compute degradation of parallel jobs.

In this algorithm, every node v of the graph contains some attributes, in which the
v.distance attribute records the length of the shortest path from the start node to node v,
the v.path attribute is a list and records the sequence of nodes in the shortest path up to v.
The purpose of this design is to avoid spending time checking whether adding a new node
will invalidate the resulting path.

In Algorithm 1, object Q is a list that holds jobs in ascending order of all paths that have
been visited by the algorithm. For example, if the algorithm visited the paths [(1,3),(2,4)] and
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148 A Graph based approach for Co-scheduling jobs on Multi-core computers

Algorithm 1 The OP-SCG Algorithm
1 for every node v in the graph do
2 v.distance = 0;
3 v.previous = NULL;
4 Q = start.ID;
5 v = start;
6 while v != end
7 for every level l from v.level + 1 to end.level do
8 if l is not a digit of the ID of the nodes in v.path
9 valid_l = l;

10 for every node k in the valid_l level do
11 if the jobs in node k are not in v.path:
12 if k contains parallel job:
13 label = compute_label(k, v + v.previous);
14 else:
15 label = v.distance + k.weight;
16 if k + v.path is not in Q or label < Q[k + v.path]:
17 Q[k + v.path] = label;
18 k.path = v.path + k;
19 remove node v from Q;
20 obtain such a node v from Q that has the smallest v.distance;

[(1,3),(2,5)], the data stored in Q is [(1234),(1235)]. For every node it visits, the algorithm
searches for a valid level (Line 7-9), which is a level that contains at least one node that can
form a valid path with the nodes in the current partial path. After a valid level is found,
Algorithm 1 continues to search this level for the valid nodes that can form a valid path (Line
10-11). If a valid node, k, is found, the algorithm further checks if there are any parallel jobs
in this node, and calculates the distance with function compute_label if the node k contains
parallel jobs. Otherwise, the distance is computed by adding the previous distance with
weight of k (Line 12). If node k has not been visited yet or the new path will form a shorter
path (Line 16), the algorithm either adds node k to Q or updates the distance stored in Q[k]
(Line 16-18).

Also, by removing Line 12-14 from Algorithm 1, we obtain another algorithm, called
B-SCG (Basic Shortest path algorithm for the Co-scheduling Graph) which is used to find
the shortest path in the graph when there are only serial jobs.

4 Evaluation

In this section, we present the scheduling results produced by our optimal algorithm through
a set of simulation tests. The configuration of simulation environment is based on Intel Core
2 series processor with 2 cores, 4 cores, 6 cores respectively, all running 2.66GHz, and having
one shared 6MB, 4096 sets*24 way set associative last level cache.

4.1 Co-scheduling Result
In order to examine the capability of OP-SCG algorithm, we compare the results produced
by B-SCG algorithm with it. The simulation is conducted by scheduling a set of artificially
generated jobs. The degradation value of every node in the co-scheduling graph is computed
by prediction model developed by Dhruba et.al [2]. As required by Dhruba’s method, a stack
distance profile with randomly generated cache hits and misses is assigned to each job, since
we are interested in difference between results produced by two algorithms, the randomness
has negligible influence on this experiment since both algorithms will operate on same job
set.
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Figure 2 Changing core number and node number.

The first simulation tested the correctness of mathematical model and OP-SCG algorithm.
This simulation was conducted by scheduling 8, 16, 24 jobs to 4 nodes cluster with 2, 4, and
6 cores respectively, half of which were parallel processes. The result is shown in Figure 2a.
The metric used in this experiment is the total cache misses of each job. It is worthwhile to
note that lower cache misses suggests lower performance degradation.

As shown in the Figure 2a, the parallel aware optimal scheduler produces lower cache
misses in all cases due to consideration of parallelism. The average distance between the
two algorithms is 31%. This result not only demonstrates the correctness of the algorithm
presented in this paper but also proves that considering parallelism can significantly improve
performance. In addition, the result also shows that the cache misses increase as the core
number increases. Because the cache size does not increase as core number increases, the
degradation increases since there are more jobs competing for the limited number of cache
lines.

Since the basic principle of co-scheduling algorithm is to balance the on-chip shared
resource usage, the second experiment was conducted to examine this ability of algorithm
presented in this paper. In this experiment, 8, 16, 32 jobs with 50% parallel processes were
scheduled to clusters with 2, 4, and 8 nodes respectively, each node has a quad-core processor.
The results are shown in Figure 2b.

The metric used in this experiment is average cache misses of all jobs, the parallel aware
optimal scheduler produced the lowest average cache misses among three cases again. The
average cache misses between three cases are very similar, the difference between the highest
and lowest result being 3%. This result suggests that the algorithm balanced the resource
usage among every node within the cluster well, which also means that the fairness of this
algorithm is good.

5 Discussion

The primary goal of this paper is to provide the theoretical insight for finding optimal
co-scheduling with parallel job considered. Apart from that, practical co-scheduler designs
can benefit from this work in two ways: Firstly, the optimal model presented in this paper
provided a sufficient way of evaluating the co-scheduling results when parallel jobs are
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considered. Knowing the optimal solution is important for practical co-schedule system
design, because the tradeoff between efficiency and quality can be made based on knowledge
about the distance between current results and the optimal solution. Secondly, the algorithm
proposed in this work can be directly used in a proactive co-scheduling system. Predicting
the co-run performance has been widely studied by many researchers (e.g., [2] [6] [10] [17]).
Those studies make it possible to predict co-run performance accurate and efficiently. With
accurate prediction, the proactive schedulers may use the algorithm proposed in this work to
determine the optimal or near-optimal schedules.

In this work, we assumed that each core will execute only single job, however, the
effectiveness of our approach is not strictly limited by this assumption. If there are multiple
jobs running on same core, they are more likely to be executed in a time-sharing basis,
therefore, our algorithm will still be an essential component for finding the optimal schedule
in each time slice. The scheduler can re-schedule jobs at time slice boundaries.

6 Conclusion

This paper explored the problem of parallel aware optimal job co-scheduling on multiprocessor
system. The paper built a mathematical model that can be used to find the optimal
scheduling with consideration of parallel jobs. Based on this model the paper described an
optimal parallel aware co-scheduling algorithm (OP-SCG) for multicore processor systems
by formulating the problem as a shortest path problem. The experiment results show
that by considering parallelism, the parallel aware optimal algorithm decreases the average
performance degradation by 31%.

The mathematical model and algorithm in this paper offer the theoretical and practical
support for the evaluation of co-scheduling systems.
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