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Abstract
We investigate the problem of constructing unextendible product bases in the qubit case – that
is, when each local dimension equals 2. The cardinality of the smallest unextendible product
basis is known in all qubit cases except when the number of parties is a multiple of 4 greater
than 4 itself. We construct small unextendible product bases in all of the remaining open cases,
and we use graph theory techniques to produce a computer-assisted proof that our constructions
are indeed the smallest possible.
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1 Introduction

Unextendible product bases play a rather diverse and important role in quantum information
theory [7]. While their original motivation was for the construction of bound entangled
states [5, 12, 13], they have also been used to build indecomposible positive maps [14], to
demonstrate Bell inequalities without a quantum violation [3], and demonstrate the existence
of nonlocality without entanglement [4].

Furthermore, in the qubit case (i.e., the case where each local space has dimension 2),
it has been shown that unextendible product bases can be used to construct tight Bell
inequalities with no quantum violation [2] and subspaces of small dimension that are locally
indistinguishable [8]. It is the qubit case that we focus on in the present paper. In particular,
we consider the question of how small a qubit unextendible product basis can be.

The minimum cardinality of a qubit unextendible product basis on p qubits is well-known
to equal p + 1 when p is odd [1]. When p is even, however, the problem is more difficult. It
was shown in [9] that the minimum cardinality equals p + 2 when p = 4 or p ≡ 2 (mod 4).
Our contribution is to solve the remaining cases (i.e., when p ≥ 8 and p ≡ 0 (mod 4) – more
specifically, we show that the minimum cardinality is p + 3 when p = 8 and p + 4 in all other
cases.

Our approach is as follows: we formally introduce the mathematical preliminaries and
graph theory techniques that we make use of in Section 2. We construct unextendible product
bases of the claimed cardinality in Section 3. Finally, Section 4 is devoted to the proof that
there does not exist a smaller unextendible product basis in these cases.

2 Unextendible Product Bases and Orthogonality Graphs

A pure quantum state is represented by a unit vector |v〉 ∈ Cd1 ⊗ · · · ⊗ Cdp (and in our
setting, d1 = · · · = dp = 2 always). We say that |v〉 is a product state if we can write it in

T Q C

© Nathaniel Johnston;
licensed under Creative Commons License CC-BY

8th Conference on Theory of Quantum Computation, Communication and Cryptography.
Editors: Simone Severini and Fernando Brandao; pp. 93–105

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TQC.2013.93
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


94 The Minimum Size of Qubit Unextendible Product Bases

the form

|v〉 = |v1〉 ⊗ · · · ⊗ |vp〉 with |vj〉 ∈ C2 ∀ j.

An unextendible product basis (UPB) is an orthonormal set S ⊆ (C2)⊗p of product
states such that there is no product state orthogonal to every member of S. It is clear that
every UPB in (C2)⊗p contains at least p + 1 states – if it contained only p product states
|v0〉, . . . , |vp−1〉 then we could construct another product state that is, for each 0 ≤ j < p,
orthogonal to |vj〉 on the (j + 1)-th party and thus violate unextendibility.

It turns out that the trivial lower bound of p + 1 states can be attained when p is odd,
and can almost be attained when p is even, as indicated by our main result:

I Theorem 1. Let f(p) be the smallest possible number of states in a UPB in (C2)⊗p.
Then:
(a) if p is odd then f(p) = p + 1;
(b) if p = 4 or p ≡ 2 (mod 4) then f(p) = p + 2;
(c) if p = 8 then f(p) = p + 3;
(d) otherwise, f(p) = p + 4.

Case (a) of Theorem 1 is demonstrated by the “GenShifts” UPB constructed in [7].
Case (b) of Theorem 1 was proved in [9], and in general our techniques and presentation
are similar to those of that paper. Our contribution is to prove cases (c) and (d) and hence
complete the characterization. It is worth pointing out that cases (c) and (d) of Theorem 1
are the first known cases (qubit or otherwise) where the minimum cardinality of a UPB
exceeds the trivial lower bound 1 +

∑
j(dj − 1) by more than 1 (see [6, 9] for several examples

where the trivial lower bound is exceeded by exactly 1).
Orthogonality graphs provide a very useful tool when dealing with unextendible product

bases, particularly in the qubit case. Given a set of product states S = {|v0〉, . . . , |vs−1〉} ⊆
(C2)⊗p with |S| = s, we say that the orthogonality graph of S is the graph on s vertices
V := {v0, . . . , vs−1} such that there is an edge (vi, vj) of color ` if and only if |vi〉 and |vj〉
are orthogonal to each other on party `. Rather than actually using p colors to color the
edges of the orthogonality graph, for ease of visualization we instead draw p different graphs
on the same set of vertices – one for each party (see Figure 1).

The requirement that S is an orthonormal set is equivalent to requiring that every
edge is present on at least one party in its orthogonality graph. In order to help us
visualize the unextendibility requirement, we make a few more observations. In particular,
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Figure 1 The orthogonality graph of a set of 7 product states in (C2)⊗3. This set of states is a
product basis, since every edge is present in at least one of the three graphs, but it is extendible,
since we can find a product state that is orthogonal to the states associated with v3, v4, v5, v6 on the
first subsystem, v0, v2 on the second subsystem, and v1 on the third subsystem.



N. Johnston 95

if |w0〉, |w1〉, |w2〉 ∈ C2 are such that 〈w0|w1〉 = 〈w0|w2〉 = 0, then it is necessarily the case
that |w1〉 = |w2〉 (up to irrelevant complex phase). It follows that the orthogonality graph
associated with any qubit in a product basis is the disjoint union of complete bipartite graphs.
For example, in Figure 1 the left graph is K3,4, the center graph is the disjoint union of K1,2
and K2,2, and the right graph is the disjoint union of K1,2 and two copies of K1,1.

Furthermore, not only does every set of product states have an orthogonality graph that
can be decomposed into the disjoint union of complete bipartite graphs, but the converse
is also true: every graph that is built from complete bipartite graphs in this way is the
orthogonality graph of some set of product states. To see this, on each party assign to each
complete bipartite graph a distinct basis of C2 in the obvious way. For example, one set of
product states giving rise to the orthogonality graph depicted in Figure 1 is as follows:

|v0〉 := |0〉 ⊗ |0〉 ⊗ |0〉, |v1〉 := |0〉 ⊗ |1〉 ⊗ |+〉, |v2〉 := |0〉 ⊗ |0〉 ⊗ |1〉,
|v3〉 := |1〉 ⊗ |+〉 ⊗ |−〉, |v4〉 := |1〉 ⊗ |+〉 ⊗ |+〉, |v5〉 := |1〉 ⊗ |−〉 ⊗ |b〉,
|v6〉 := |1〉 ⊗ |−〉 ⊗ |b⊥〉,

where |+〉 := 1√
2 (|0〉+ |1〉), |−〉 := 1√

2 (|0〉 − |1〉), and {|b〉, |b⊥〉} is any orthonormal basis of
C2 not equal to {|0〉, |1〉} or {|+〉, |−〉}.

It is often useful to draw orthogonality graphs of sets of qubit product states in a form
that makes their decomposition in terms of complete bipartite graphs more transparent – we
draw shaded regions indicating which vertices are equal to each other (up to complex phase)
on the given party, and lines between shaded regions indicate that all states in one of the
regions are orthogonal to all states in the other region on that party (see Figure 2).

It now becomes straightforward to see whether or not a product basis is unextendible
just by looking at its orthogonality graph. A set of product states is unextendible if and
only if there is no way to choose one shaded region on each party such that every vertex
v0, v1, . . . , vs−1 is contained within at least one of the shaded regions. For example, the set of
product states described by Figure 2 is extendible because we can choose the shaded region
containing v3, v4, v5, v6 on the first subsystem, v0, v2 on the second subsystem, and v1, v4 on
the third subsystem.

The following simple lemma shows that, in an orthogonality graph of a UPB, every shaded
region must be connected to exactly one other shaded region via an edge.
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Figure 2 A representation of the same orthogonality graph as that of Figure 1. Vertices within
the same shaded region represent states that are equal to each other on that party. Lines between
shaded regions indicate that every state within one of the regions is orthogonal to every state within
the other region.
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I Lemma 2. If S ⊆ (C2)⊗p is a UPB, then for all |v〉 ∈ S and all integers 1 ≤ j ≤ p there
is another product state |w〉 ∈ S such that |v〉 and |w〉 are orthogonal on the j-th subsystem.

Proof. Suppose that there exists 1 ≤ j ≤ p and |v〉 := |v(1)〉 ⊗ · · · ⊗ |v(p)〉 ∈ S such
that |v〉 is not orthogonal to any other member of S on the j-th subsystem. Because
S is a product basis, |v〉 must be orthogonal to every member of S on the remaining
p − 1 subsystems. It follows that if |v⊥(j)〉 is orthogonal to |v(j)〉 then the product state
|v(1)〉 ⊗ · · · |v(j−1)〉 ⊗ |v⊥(j)〉 ⊗ |v(j+1)〉 ⊗ · · · ⊗ |v(p)〉 is orthogonal to every element of S, which
shows that S is extendible. J

An obvious corollary of Lemma 2 is that, in the orthogonality graph of a UPB, every
party must have an even number of distinct shaded regions – a fact that will be very useful
in Section 4.

3 Construction of Small UPBs

Recall that our goal is to show that the smallest UPB in (C2)⊗8 consists of 11 states and
the smallest UPB in (C2)⊗4k consists of 4k + 4 states when k ≥ 3. Our first step toward this
goal is to construct a UPB of the desired size in these cases.

I Lemma 3. There exists a UPB in (C2)⊗8 consisting of 11 states.

Proof. The result follows simply from demonstrating an orthogonality graph on 11 vertices
that satisfies the product basis and unextendibility requirements described in Section 2. Such
an orthogonality graph is provided in Figure 3.

Indeed, it is straightforward (albeit tedious) to check that the 8 graphs depicted in
Figure 3 contain all 55 possible edges between 11 vertices, so the corresponding product
states are mutually orthogonal. Unextendibility follows from the (also straightforward but
tedious) fact that there is no way to choose a shaded region containing 2 vertices on 3
different parties without at least 2 of them containing the same vertex. J

We note that the UPB of Lemma 3 was found by a combination of computer search and
tweaking by hand, and it does not seem to generalize to other values of p in any natural way.
On the other hand, the UPBs that we now construct of cardinality 4k + 4 are much “tidier”.

Figure 3 Orthogonality graphs demonstrating that there exists an 11-state UPB in (C2)⊗8.
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Figure 4 The graphs B0,2 (left), B1,2 (center), and B2,2 (right), used in the construction of a
UPB of size 12 in (C2)⊗8.

I Lemma 4. If k ≥ 2 then there exists a UPB in (C2)⊗4k consisting of 4k + 4 states.

Proof. We begin by defining a family of k + 1 graphs Bj,k := (V, Ej) for 0 ≤ j ≤ k, each on
the same set of 4k + 4 vertices V := {vi, wi, xi, yi, : 0 ≤ i ≤ k}. The set of edges Ej in the
graph Bj,k is defined as follows:

Ej :=
{

(vi, x(i+j)(mod (k+1))), (vi, y(i+j)(mod (k+1))),
(wi, x(i+j)(mod (k+1))), (wi, y(i+j)(mod (k+1))) : 0 ≤ i ≤ k

}
.

The three graphs B0,2, B1,2, and B2,2 in the k = 2 case are depicted in Figure 4. It is
clear that the graph obtained by taking the union of all edges in all sets Bj,k for 0 ≤ j ≤ k

is K2k+2,2k+2, the complete bipartite graph on two sets of 2k + 2 vertices.
We now define three sets of states S(j) = {|v(j)

i 〉, |w
(j)
i 〉, |x

(j)
i 〉, |y

(j)
i 〉 : 0 ≤ i ≤ k} ⊆ C2 that

have orthogonality graphs Bj,k for 0 ≤ j ≤ 2 respectively. To this end, let {|bi〉, |b⊥i 〉}
2k+1
i=0 be

distinct orthonormal bases of C2 (i.e., 〈bi|b⊥i 〉 = 0 for all i, but |〈bi|bj〉|, |〈bi|b⊥j 〉|, |〈b⊥i |b⊥j 〉| /∈
{0, 1} whenever i 6= j). Then let

|v(j)
i 〉 := |w(j)

i 〉 := |bi〉 and |x(j)
i 〉 := |y(j)

i 〉 := |b⊥(i−j)(mod (k+1))〉,

for 0 ≤ j ≤ 2, which clearly results in the desired orthogonality graphs. Furthermore, each
set S(j) has the property that any state |z〉 ∈ C2 can be orthogonal to at most two elements
of S(j) – a fact that we will use later when discussing unextendibility.

For each of the remaining k − 2 graphs Bj,k (3 ≤ j ≤ k), we construct sets of product
states S(2j−3,2j−2) = {|v(2j−3,2j−2)

i 〉, |w(2j−3,2j−2)
i 〉, |x(2j−3,2j−2)

i 〉, |y(2j−3,2j−2)
i 〉 : 0 ≤ i ≤

k} ⊆ C2 ⊗ C2 that have orthogonality graphs Bj,k for 3 ≤ j ≤ k. To this end, define

|v(2j−3,2j−2)
i 〉 := |bi〉 ⊗ |bi〉

|w(2j−3,2j−2)
i 〉 := |bi+(k+1)〉 ⊗ |bi+(k+1)〉

|x(2j−3,2j−2)
i 〉 := |b⊥(i−j)(mod (k+1))〉 ⊗ |b

⊥
(i−j)(mod (k+1))+(k+1)〉

|y(2j−3,2j−2)
i 〉 := |b⊥(i−j)(mod (k+1))+(k+1)〉 ⊗ |b

⊥
(i−j)(mod (k+1))〉,

which results in the desired orthogonality graphs.
We now turn our attention to the complement graph of K2k+2,2k+2, which is simply the

disjoint union of two disjoint copies of K2k+2, the complete graph on 2k + 2 vertices. We
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Figure 5 The graph K2
6 that is the disjoint union of two copies of K6.

denote this graph by K2
2k+2, and it is depicted in the k = 2 case in Figure 5. The graph

K2
2k+2 will be the orthogonality graph of the remaining 4k− (3 + 2(k− 2)) = 2k + 1 parties.
Our goal now is to define sets of states S(j) = {|v(j)

i 〉, |w
(j)
i 〉, |x

(j)
i 〉, |y

(j)
i 〉 : 0 ≤ i ≤ k} ⊆ C2

for 2k − 1 ≤ j ≤ 4k − 1 such that their orthogonality graphs, when taken together, contain
all edges of K2

2k+2. To this end, we recall that it is well-known that K2k+2 always has
a 1-factorization [10, Theorem 9.1], so K2

2k+2 clearly has a 1-factorization as well (see
Figure 6). This 1-factorization decomposes K2

2k+2 into 2k + 1 distinct 1-regular spanning
subgraphs, and any such graph is clearly the orthogonality graph of the set of states
{|b0〉, |b⊥0 〉, . . . , |b2k+1〉, |b⊥2k+1〉} ⊂ C2 (under an appropriate labelling of the vertices).
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Figure 6 A 1-factorization of K2
6 , which is useful for constructing a UPB of size 12 in (C2)⊗8.
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Since the union of the sets of edges present in all of the graphs considered so far is the
complete graph K4k+4, we know that the states in the set

S :=


4k⊗

j=1
|v(j)

i 〉,
4k⊗

j=1
|w(j)

i 〉,
4k⊗

j=1
|x(j)

i 〉,
4k⊗

j=1
|y(j)

i 〉 : 0 ≤ i ≤ k


are mutually orthogonal. To see why this set is unextendible, recall that any non-zero product
state can be orthogonal to at most 2 states on each of the first 3 subsystems, and at most
1 state on each of the remaining 4k − 3 subsystems. It follows that any nonzero product
state can be orthogonal to at most 2 · 3 + 1 · (4k − 3) = 4k + 3 of these product states. Since
no nonzero product state can be orthogonal to all 4k + 4 members of S, it is unextendible,
which completes the proof. J

4 Proof of Minimality

We now turn our attention to the problem of proving that the UPBs constructed in Section 3
are the smallest possible. Because the main result of [1] tells us that the minimum cardinality
of a UPB in (C2)⊗4k is at least 4k + 2, we only have to prove that there is no UPB of
cardinality 4k + 2 when k ≥ 2 and no UPB of cardinality 4k + 3 when k ≥ 3. While the proof
that there is no UPB of cardinality 4k + 2 is relatively straightforward, the proof that there
is no UPB of cardinality 4k + 3 is more involved and consists of many cases and sub-cases.
We make use of a C script to solve some of the messier cases, while we solve the simpler
cases by hand.

For the entirety of this section, we make use of partial orthogonality graphs, which are
the same as orthogonality graphs, except perhaps with some conditions unspecified. For
example, in Figure 7 the lack of lines indicating orthogonality between shaded regions does
not signify that there are no regions orthogonal to each other, but rather that we just don’t
care which regions are orthogonal to each other. Similarly, in Figure 8 there are vertices that
are drawn outside of any shaded region. This is intended to mean that we don’t care what
the shaded region involving that vertex looks like. In general, we only specify the pieces of
the orthogonality graphs that are relevant for our proofs.

It will be convenient for us to let P1, . . . , P4k denote the 4k different parties. We also let
Mj denote the maximum number of vertices contained within a single shaded region on party
Pj (which is equal to the maximum number of states in the UPB that are equal to each other
on party Pj), and let Cn,j denote the number of distinct shaded regions containing exactly n

vertices on party j (i.e., Cn,j is the number of distinct group of exactly n states in the UPB
that are equal to each other on party Pj). For example, in Figure 2, if the graphs correspond
to parties P1, P2 and P3, then M1 = 4, M2 = M3 = 2, C3,1 = 1, C4,1 = 1, C1,2 = 1, C2,2 = 3,
C1,3 = 5, and C2,3 = 1.

I Lemma 5. There is no UPB in (C2)⊗4k of cardinality 4k + 2 when k ≥ 2.

Proof. Suppose for a contradiction that there exists a UPB of cardinality 4k + 2 in (C2)⊗4k.
If it were the case that Mj ≥ 3 for some j, then we could find a product state that is
orthogonal to the 3 corresponding states on that party and to any 1 of the product states on
each of the remaining 4k − 1 parties, for a total of all 4k + 2 elements of the UPB, which
violates unextendibility. Hence Mj ≤ 2 for all 1 ≤ j ≤ 4k. We now split into two cases.
Case 1: There is at most one party Pj with Mj = 2.

Between the 4k parties, there must be a total of (4k + 2)(4k + 1)/2 = 8k2 + 6k + 1 edges
in the union of their orthogonality graphs. The 4k − 1 parties other than Pj must be the

TQC’13
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Figure 7 Partial orthogonality graphs of three parties that each have two sets of two equal states,
used in the proof of case 2 of Lemma 5. There is no way to add another pair of equal states on any
party without violating unextendibility.

disjoint union of 2k + 1 copies of K1,1, for a total of at most (4k − 1)(2k + 1) = 8k2 + 2k − 1
edges. The remaining party Pj then needs at least (8k2 + 6k + 1)− (8k2 + 2k − 1) = 4k + 2
edges. It is easily seen, however, that the largest number of edges that the orthogonality
graph of party Pj can have is obtained when it is the disjoint union of k copies of K2,2 and
one copy of K1,1, which results in only 4k + 1 edges, which gives the desired contradiction.
Case 2: There are two (or more) parties Pi 6= Pj with Mi = Mj = 2.

It is not difficult to see that C2,` ∈ {0, 2} for all ` or else either Lemma 2 or unextendibility
is violated. Furthermore, it is not difficult to see that the unique (up to repositioning vertices
and parties) way to have C2,` = 2 for 3 distinct values of ` is given in Figure 7, and there is no
way to have C2,` for a fourth value of ` without violating unextendibility. A simple calculation
reveals that the maximum number of edges that can be obtained from the orthogonality
graphs of these 3 parties is (2k + 3) + 2(2k + 2) = 6k + 7. The orthogonality graphs of the
remaining 4k − 3 parties are the disjoint union of 2k + 1 copies of K1,1, so they each have
2k + 1 edges. Thus the total number of edges among the orthogonality graphs of all 4k

parties is at most (6k + 7) + (4k − 3)(2k + 1) = 8k2 + 4k + 4. This quantity is smaller than
the 8k2 + 6k + 1 required edges when k ≥ 2, which gives the desired contradiction.

J

Note that the hypothesis of Lemma 5 that k ≥ 2 really is required, since we have
8k2 + 4k + 4 ≥ 8k2 + 6k + 1 in case 2 of the proof of the lemma when k = 1, so it may be
possible to fit all of the required edges into the orthogonality graphs. Indeed, it was shown
in [9] that a UPB consisting of 4k + 2 states in (C2)⊗4k exists in the k = 1 case.

We now turn our attention to proving that there is no UPB of cardinality 4k + 3 when
k ≥ 3. The idea and techniques used in the proof of this statement are quite similar to the
4k + 2 case, but there are more cases to consider.

I Lemma 6. There is no UPB in (C2)⊗4k of cardinality 4k + 3 when k ≥ 3.

Proof. Suppose for a contradiction that there exists a UPB of cardinality 4k + 3 in (C2)⊗4k.
If there exists 1 ≤ j ≤ p such that Mj ≥ 4, then we can find a product state that is orthogonal
to at least 4 corresponding states on party Pj and to 1 of the product states on each of
the remaining 4k − 1 parties, for a total of 4k + 3 elements of the UPB, which violates
unextendibility. Hence Mj ≤ 3 for all j. Furthermore, this same argument shows that if
there exists i ≥ 1 such that we can choose a single shaded region on each of i parties so that
together they contain at least i + 3 vertices, then unextendibility will be violated. Finally,
note that since 4k + 3 is odd, Lemma 2 implies that Mj ≥ 2 for all j.

We now split into 4 cases, depending on the value of maxj{C3,j} (i.e., the maximum
number of sets of 3 equal states on any party).
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Case 1: maxj{C3,j} ≥ 3.
Because Mj ≥ 2 for all j, it easily follows that we can find shaded regions on two parties

that contain 3 + 2 = 5 distinct vertices, which contradicts unextendibility.
Case 2: maxj{C3,j} = 2.

Suppose without loss of generality that party P1 is such that C3,1 = 2. Unextendibility
immediately implies that C3,j = 0 for j ≥ 2. Since there are 4k − 3 left over vertices on
party P1, which is odd, there must be a copy of K2,1 on this party, as in Figure 8. Since v1
is connected to only one other state on party P1, it must be connected to 2 states on each
of 2 other parties. These sets of 2 vertices must be disjoint and must each contain one of
v2, v3, v4 and one of v5, v6, v7. Thus parties P2 and P3, without loss of generality, are as in
Figure 8, which clearly implies extendibility and rules out this case.
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Figure 8 The (essentially unique) partial orthogonality graphs of parties P1 (left), P2 (center)
and P3 (right) in case 2 of Lemma 6. Such a product basis is necessarily extendible, as we can find
a product state that is orthogonal to the states corresponding to v1 and v8 on party P1, v4 and v5

on party P2, v2 and v7 on party P3, and one of the 4k − 3 remaining states on each of the remaining
4k − 3 parties.

Case 3: maxj{C3,j} = 0.
Since Mj = 2 for all j, simple parity arguments show that C2,j ∈ {1, 3, 5, . . .} for every j.

We now split into two sub-cases, depending on the value of maxj{C2,j} (i.e., the maximum
number of sets of 2 equal states on any party).
Case 3(a): maxj{C2,j} ≥ 5.

Suppose that party P1 has C2,1 ≥ 5. We first argue that there must be at least one other
party P2 with C2,2 ≥ 3. To see this, suppose the contrary – suppose that C2,j = 1 for all
j ≥ 2. Then each of these 4k−1 parties contributes at most 2k + 2 edges to the orthogonality
graph, for a total of (4k − 1)(2k + 2) = 8k2 + 6k − 2 edges. The party P1 contributes no
more than 4k + 2 edges, for a total of 8k2 + 10k edges among all 4k parties. However, the
complete graph on 4k + 3 vertices has (4k + 3)(4k + 2)/2 = 8k2 + 10k + 3 edges, so there are
at least 3 pairs of non-orthogonal product states in our set, which contradicts the assumption
that we are working with a UPB.

We now pick an arbitrary party P3 6= P1, P2. Because C2,3 ≥ 1, we are now able to
choose one shaded region on each of parties P1, P2, P3 such that 6 vertices are contained
within these regions, which shows that unextendibility is violated. To this end, we choose
any shaded region on party P3 that contains two vertices, then we pick any shaded region on
party P2 that is disjoint from the two vertices we chose on party P3, and finally we choose
any shaded region on party P1 that is disjoint from all four of the previously-chosen vertices
(see Figure 9).
Case 3(b): maxj{C2,j} ≤ 3.

We begin by noting that the brute-force computer search shows that there can be no more
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Figure 9 An example of a partial orthogonality graph in case 3(a) of Lemma 6. Such a product
basis is necessarily extendible, as we can choose the shaded region containing v0 and v9 on party P3,
the disjoint shaded region (i.e., the one containing v5 and v6) on party P2, and the disjoint shaded
region (i.e., the one containing v2 and v3) on party P1, for a total of 6 vertices on 3 parties.

than 4 distinct parties Pj for which C2,j ≥ 3 [11]. Each of these four parties has at most 2k+4
edges in its orthogonality graph, and each of the remaining 4k− 4 parties has at most 2k + 2
edges on its orthogonality graph, for a total of at most 4(2k+4)+(4k−4)(2k+2) = 8k2+8k+8
edges. The complete graph on 4k + 3 vertices has (4k + 3)(4k + 2)/2 = 8k2 + 10k + 3 edges,
so when k ≥ 3 there are not enough edges in the orthogonality graph, so the set of states
does not form a product basis, which contradicts our assumption that we are working with a
UPB. Note that this is the case in which the UPB of Lemma 3 arises if k = 2, so the fact
that we require k ≥ 3 here is not surprising.
Case 4: maxj{C3,j} = 1.

By parity arguments, we see that every party Pj with C3,j = 1 must also have C2,j ∈
{1, 3, 5, . . . }. Furthermore, if there exist two (or more) parties P1, P2 such that M1 = M2 = 3,
then unextendibility is violated unless C2,j = 1 whenever Mj = 3.
Case 4(a): There exist three (or more) parties P1, P2, P3 such that M1 = M2 = M3 = 3.

Because there must exist a shaded region containing exactly 2 vertices on each party P1,
P2, P3, it is easily verified that the only possible configuration of shaded regions on those
parties (up to repositioning vertices and parties) that doesn’t break unextendibility is the
one depicted in Figure 10.

The parties P1, P2, P3 can have no more than (2k + 5) + 2(2k + 3) = 6k + 11 distinct edges
among them (since there will be a lot of overlap at the left edge of the graphs if we make each
group of 3 equal states orthogonal to the group of 2 equal states). It is straightforward to see
that none of the remaining 4k − 3 parties Pj can have Mj ≥ 3 or C2,j ≥ 2 without breaking
unextendiblity. Thus those 4k − 3 parties can produce no more than 2k + 2 edges each, for a
total of 6k+11+(4k−3)(2k+2) = 8k2 +8k+5 edges. Since 8k2 +8k+5 < 8k2 +10k+3 when

Figure 10 The (essentially unique) partial orthogonality graph that does not violate unextendib-
ility in case 4(a).
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Figure 11 An example of a partial orthogonality graph in case 4(b).

k ≥ 2, there are some edges missing from the orthogonality graphs, which is a contradiction.
Case 4(b): There exists a party P1 such that M1 = 3, but Mj ≤ 2 for j ≥ 2.

Party P1 contributes at most 2k + 5 edges to the orthogonality graph, and the unex-
tendibility requirement implies that C2,j ≤ 3 for j ≥ 2. Suppose that there are m indices
2 ≤ j1, j2, . . . , jm ≤ 4k such that C2,ji

= 3 for 1 ≤ i ≤ m and C2,j = 1 for all other values of
j. Then there are at most (2k + 5) + m(2k + 4) + (4k −m− 1)(2k + 2) = 8k2 + 8k + 2m + 3
total edges between all 4k parties. As in the previous cases, we need a total of 8k2 + 10k + 3
edges, which implies that m ≥ k. We already saw via brute-force search in case 3(b) that we
can’t have m ≥ 5, so we only need to rule out the 3 ≤ k ≤ 4 cases.

If the group of 3 identical states on party P1 is represented by vertices v3, v4, and v5 (see
Figure 11), then each one of the 3 groups of 2 identical states on the other parties must
contain exactly one of v3, v4, or v5. By refining our brute-force computer search to take this
restriction into account, we find that there is no configuration of shaded regions that does
not violate unextendibility when m ≥ 3 [11], so no such UPB exists when k ≥ 3.
Case 4(c): There exist two parties P1, P2 such that M1 = M2 = 3, but Mj ≤ 2 for j ≥ 3.

In this case, there are (up to relabelling vertices and parties) only two possible configura-
tions of parties P1 and P2, which are depicted in Figures 12 and 13. Notice that in Figure 12,
the shaded region on party P1 that contains exactly two vertices does not share any common
vertices with the shaded region on party P2 that contains exactly two vertices, while in
Figure 13 those two regions contain the common vertex v1.

Suppose for now that parties P1 and P2 have a total of at most 4k + 8 distinct edges on
their orthogonality graphs. If there are m parties Pj (j ≥ 3) for which C2,j = 3, then we
have a total of at most (4k + 8) + m(2k + 4) + (4k −m− 2)(2k + 2) = 8k2 + 8k + 2m + 4
edges. In all of these m parties, we require that one of the shaded regions contains v2 and v3
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v4
v5

v0
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v2

v3

v4
v5

Figure 12 One of two possible partial orthogonality graphs of parties P1, P2, and P3 that does
not violate unextendibility in case 4(c).
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Figure 13 The other possible partial orthogonality graph of parties P1, P2 that does not violate
unextendibility in case 4(c).

and the other shaded regions containing two vertices each contain one of v4 or v5. Thus, the
brute-force search described in case 4(b) applies here as well and shows that m ≤ 2. However,
when m = 2 we have 8k2 + 8k + 2m + 4 = 8k2 + 8k + 8 < 8k2 + 10k + 3 when k ≥ 3, which
shows that there can not possibly be enough edges on the orthogonality graphs in this case.

The only remaining possibility is that the parties P1 and P2 have a total of at least 4k + 9
distinct edges (and hence exactly 4k + 9 distinct edges). In this case, parties P1 and P2 must
be as in Figure 12, and on both of the parties P1 and P2 the set of 3 equal states must be
orthogonal to the set of 2 equal states. Furthermore, it is not difficult to show that in this
case, any party Pj with C2,j = 3 can have at most 2k + 4 edges, but if it has 2k + 4 edges
then at least one of those edges must already be present on either party P1 or P2. It follows
that each party Pj (j ≥ 3) can introduce at most 2k + 3 new edges that have not already
been counted. Thus, if there are m parties Pj (j ≥ 3) for which C2,j = 3, we have a total of
at most (4k + 9) + m(2k + 3) + (4k−m− 2)(2k + 2) = 8k2 + 8k + m + 5 edges. Since m ≤ 2
(as before) and k ≥ 3, it follows that 8k2 + 8k + m + 5 < 8k2 + 10k + 3, which again shows
that there can not possibly be enough edges on the orthogonality graphs in this case. J
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