Report from Dagstuhl Seminar 13362
Cloud-based Software Crowdsourcing

Edited by
Michael N. Huhns!, Wei Li?, and Wei-Tek Tsai®

1 University of South Carolina, US, huhns@sc.edu
2 Beihang University — Beijing, CN, liwei@nlsde.buaa.edu.cn
3 ASU — Tempe, US, wtsai@asu.edu

—— Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 13362 ”Cloud-based
Software Crowdsourcing”.

In addition to providing enormous resources and utility-based computing, clouds also enable
a new software development methodology by crowdsourcing, where participants either collabor-
ate or compete with each other to develop software. Seminar topics included crowd platforms,
modeling, social issues, development processes, and verification.

Seminar 01.-04. September, 2013 — www.dagstuhl.de/13362

1998 ACM Subject Classification K.6.3 Software Management

Keywords and phrases Crowdsourcing, Software Development, Cloud Computing
Digital Object Identifier 10.4230/DagRep.3.9.34

Edited in cooperation with Wenjun Wu

1 Executive Summary

Michael N. Huhns
Wei-Tek Tsai
Wenjun Wu

License) Creative Commons BY 3.0 Unported license
© Michael N. Huhns, Wei-Tek Tsai, and Wenjun Wu

Crowdsourcing software development or software crowdsourcing is an emerging software
engineering approach. Software development has been outsourced for a long time, but
the use of Internet with a cloud to outsource software development to the crowd is new.
Most if not all software development tasks can be crowdsourced including requirements,
design, coding, testing, evolution, and documentation. Software crowdsourcing practices
blur the distinction between end users and developers, and allow the co-creation principle,
i.e., a regular end-user becomes a co-designer, co-developer, and co-maintainer. This is a
paradigm shift from conventional industrial software development to a crowdsourcing-based
peer-production software development. This seminar focused on the notion of cloud-based
software crowdsourcing, with the following goals:

1. to establish a theoretical framework for applying software crowdsourcing, and identify the
important design patterns and highly interactive and iterative processes in a cloud-based
infrastructure.

2. to propose and design a reference architecture for software crowdsourcing

3. to develop and finalize the research roadmap for software crowdsourcing for the next five
years

Except where otherwise noted, content of this report is licensed

under a Creative Commons BY 3.0 Unported license
Cloud-based Software Crowdsourcing, Dagstuhl Reports, Vol. 3, Issue 9, pp. 34-58
Editors: Michael N. Huhns, Wei Li, and Wei-Tek Tsai

\\v pagstunL Dagstuhl Reports
RePORTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/13362
http://dx.doi.org/10.4230/DagRep.3.9.34
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Michael N. Huhns, Wei Li, and Wei-Tek Tsai

The grand research challenge in cloud-based software crowdsourcing is how to embrace
elements from the two aspects: cloud infrastructure and software crowsourcing. Metaphoric-
ally, it can be regarded as synergy between two clouds — machine cloud and human cloud,
towards the ultimate goal of developing high-quality and low cost software products. This
seminar intended to bring together scientists from both fields to tackle the major research
problems in this emerging research area.

More than twenty researchers, who work on different domains such as crowsourcing, human-
computer interaction, cloud computing, service oriented computing, software engineering
and business management attended the seminar. In addition to regular 5-minute talks
from every participant in the seminar, the organizer arranged a keynote speech delivered by
Prof Schahram Dustdar, which summarizes large-scale collective problems solving research
enabling software crowsourcing. The topics covered by their presentations can be roughly
categorized into three groups: software crowdsourcing process and models, crowdsourcing
cloud infrastructure and human crowd management. To promote in-depth discussion among
these topics, we also divided people into five discussion groups including:

Crowd Source Software Engineering Design-Group: This group identified the three main
areas in the design of software crowdsourcing: processes, models, and techniques. It high-
lighted the importance of standardized generic models of software crowdsourcing study, and
explored multiple crowdsurcing techniques, especially virtual team formation and quality
assessment.

Worker-centric design for software crowdsourcing: This group focused on the crowd
management in software crowdsourcing and aimed to answering the question about how to
make a sustainable software crowdsourcing industry. Discussion in the group covered the
major issues such as careers and reputation development of workers, trust among workers
and “employers” (task solicitors) on crowdsourcing markets, virtual team selection and team
building.

Cloud-based Software Crowdsourcig Architecture: This group discussed the possible com-
mon architectures of crowd-sourcing applications and explored two complementary architec-
tural approaches.

Experimentation Design for Software Crowdsourcing: The central topic of this group is
about how to design a valid and reproducible experiment for software crowdsourcing research.
The group had extensive discussion on software crowdsourcing experiment approaches and
the major crowdsourcing infrastructures.

Infrastructure and Platform: This group reviewed the motivations to construct the crowd-
sourcing platform, analyzed architecture design issues, and proposed a educational platform
for software crowdsourcing.

During the session of our seminar, Dagstuhl also set up a parallel seminar named
“Crowdsourcing: From Theory to Practice and Long-Term Perspectives”, which mostly
focused on general crowdsourcing research and service platforms. Software crowdsourcing
can be regarded as one of the most complex crowdsourcing activities that often need intense
dedication from workers with high-level skills of software engineering. Thus, there are some
interesting overlapping areas such as worker incentive and quality assurance, between our
seminar and the parallel seminar. To foster collaboration among the two groups, we hold a
joint discussion session for introducing and sharing findings from each group, followed by an
evening session with two presentations from the general crowdsourcing group.

35

13362

36

13362 — Cloud-based Software Crowdsourcing

We believe this seminar is a good start for software crowdsourcing research. Finding and
consensus generated from the seminar have been formalized in the wiki page of software
crowdsourcing (http://en.wikipedia.org/wiki/Crowdsourcing_ software_development) to give
a clear definition and initial reference architecture of cloud-based crowdsourcing software
development. More efforts will be put into the growth of the research community and
production of joint research publications.

http://en.wikipedia.org/wiki/Crowdsourcing_software_development

Michael N. Huhns, Wei Li, and Wei-Tek Tsai 37

2 Table of Contents

Executive Summary
Michael N. Huhns, Wei-Tek Tsai, and Wenjun Wu 34

Overview of Talks

Large-Scale Performance Testing by Cloud and Crowd

Xiaoying Bai 39
Finding Experts

Xavier Blanc e e e 39
Crowdsourcing Cloud Infrastructure using Social Networks

Kyle Chard e 40
Cloud based Crowdsourcing Software Development — Keynote

Schahram Dustdar 40
Hyperscale Development of Software

Michael N. Huhns 0 o e e e e e e e e e e 41
“Microtask” vs. freelancer platforms — how crowdsourcing can complement software
development

Robert Kern o e e 41
Software Development Crowdsourcing Issues: Organization Design and Incentive
Design

Donghui Lin e e e 42
Crowdsourcing with Expertise

Greg Little« . e 42
Multi-Agent System Models and Approach of Crowdsourcing Software Development
Xingun Maoo 43
Crowds, Clouds, Agents and Coordination

Dave Murray-Rust e e e 43
Collaborative Majority Vote: Improving Result Quality in Crowdsourcing Market-
places

Khrystyna Nordheimer 0 e e e e e e e 44

The Open Source Volunteering Process
Dirk Riehle e e 44

Artifact-centric Incentive Mechanisms for Socio-technical Systems
Ognjen Scekic e 44

Engineering Multi-Cloud Service-Oriented Applications
Lionel Seinturier e e 45

On Assuring Quality of Results in Hybrid Compute Units in the Cloud
Hong-Linh Truong o i 45

Software Crowdsourcing Maturity Models
Wei-Tek Tsai o v oo s e e e 46

13362

38 13362 — Cloud-based Software Crowdsourcing

Trustie: a Platform for Software Development Ecosystem incorporating Engineering
Methods and Crowd Wisdom

Huaimin Wang o o e e 47
Crowdsourcing for Software Ecosystem

Wenjun Wu o 0L o e e e e e 47
An Evolutionary and Automated Virtual Team Making Approach for Crowdsourcing
Platforms

Tao Yue o e e 48

Working Groups

Cloud Infrastructure for Software Crowdsourcing

Wei-Tek Tsai o o e 48

Crowd Source Software Engineering Design

Shaukat Ali e 50

Worker-centric design for software crowdsourcing

Dave Murray-Rust o e 51

Architecture for Cloud-based Software CrowdSourcing

Michael Maximilien e 53

Infrastructure and Platform

Xiaoying Baio e e 54

Experimentation Design for Software Crowdsourcing

Wenjun W o 0 55
Open Problems 57

Participants 58

Michael N. Huhns, Wei Li, and Wei-Tek Tsai

3 Overview of Talks

3.1 Large-Scale Performance Testing by Cloud and Crowd
Xiaoying Bai (Tsinghua University — Beijing, CN)

License) Creative Commons BY 3.0 Unported license
© Xiaoying Bai
Joint work of Bai, Xiaoying; Tsai, Wei-Tek; Wu, Wenjun

Software scale and complexity increase tremendously in recent years. Performance testing of
Internet scale software systems is usually expensive and difficult. The challenges include:
(1) to simulate diversified usage scenarios; (2) to generate various workload distributions;
and (3) to measure and evaluate performance from different aspects. Cloud computing and
Crowdsourcing are two emerging techniques in recent years. They promote new testing
architectures that are promising to address the challenges. Cloud-based testing, such as TaaS
(Testing-as-a- Service), aims to support on-demand testing resources and services in/on/over
clouds for testers at any time and all time. Testing by crowdsourcing, such as uTest and
Mob4hire, follows the Web 2.0 principle of harnessing collective intelligence and various
testing tasks can be crowdsourced including test case design, script development, script
debugging, test execution, and test result evaluation.

This paper first investigates the framework to facilitate large-scale performance testing
by integrating cloud infrastructure and crowd wisdom. A Cloud-based testing platform,
Vee@Cloud was built to provide a cross- cloud virtual test lab to support on-demand test
scripts provisioning and resource allocation, scalable workload simulation, and continuous
performance monitoring. Following the crowdsourcing approach, participants can join the
platform for different purposes, such as biding testing tasks, contributing test cases and
scripts, renting test resources, and carrying on test executions. The process of establishing
test collaboration can be formulated as a multi-criteria decision making problem, using
qualitative evaluation models for different factors like task allocation and scheduling, quality
control, and cost control.

3.2 Finding Experts
Xavier Blanc (Univ. Bordeauz, LaBRI — Talence, FR)

License) Creative Commons BY 3.0 Unported license
© Xavier Blanc

Heavy usage of third-party libraries is almost mandatory in modern software systems. The
knowledge of these libraries is generally scattered across the development team. When a
development or a maintenance task involving specific libraries arises, finding the relevant
experts would simplify its completion. However there is no automatic approach to identify
these experts. In this talk we propose LIBTIC, a search engine of library experts automatically
populated by mining software repositories. We show that LIBTIC finds relevant experts of
common Java libraries among the GitHub developers. We also illustrate its usefulness through
a case study on the Apache HBase project where several maintenance and development
use-cases are carried out.

39

13362

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

40

13362 — Cloud-based Software Crowdsourcing

3.3 Crowdsourcing Cloud Infrastructure using Social Networks
Kyle Chard (University of Chicago, US))

License) Creative Commons BY 3.0 Unported license
© Kyle Chard

The increasing pervasiveness of online social networks is not only changing the way that people
communicate and interact but it is also allowing us to represent, document and explore inter-
personal relationships digitally. Social networking platforms have gone beyond a platform
for communication and are now a viable platform in their own right on which to implement
unique socially oriented services with access to an increasingly complex social graph modeling
every aspect of an individual life. Building upon this social fabric services can leverage
real world relationships, inferring a level of trust between users, exploiting intrinsic social
motivations, and developing socially aware algorithms. This talk describes the experiences
and lessons learned developing a Social Cloud, a platform that enables the construction of
a crowdsourced cloud infrastructure to facilitate resource and capability sharing within a
social network. Social Clouds are motivated by the need of individuals or groups for specific
resources or capabilities that can be made available by connected peers. Such resources
are not necessarily only computational or software resources, but can be any electronically
consumable service, including human skills and capabilities. Social Clouds leverage lessons
learned through volunteer computing and crowdsourcing such as the willingness of individuals
to make their resources available and offer their expertise altruistically for good causes. This
talk explores aspects such as inter-personal trust, platform implementation, social incentives
and use cases, by leveraging methodologies from computer science, economics and sociology.
It looks specifically at these aspects in the context of social network based crowdsourcing
and attempts to generalize the approaches used in Social Clouds to other forms of software
crowdsourcing.

3.4 Cloud based Crowdsourcing Software Development — Keynote

Schahram Dustdar (TU Wien, AT)

License) Creative Commons BY 3.0 Unported license
© Schahram Dustdar

In this talk I begin with analyzing the historical roots of large-scale collective problems solving
research in Computer Science. this is followed by a detailed analysis of the mechanisms,
algorithms, models, and software architectures and deployment models of software solutions
helping to enable crowdsourcing software development on a large scale. This is discussed in
relationship with an analysis of currently missing aspects of solutions aiming at supporting
cloud based crowdsourcing for software development.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Michael N. Huhns, Wei Li, and Wei-Tek Tsai

3.5 Hyperscale Development of Software

Michael N. Huhns (University of South Carolina, USA)

License) Creative Commons BY 3.0 Unported license
© Michael N. Huhns

The benefits of the open-source (Bazaar? approach to software development have not been
fully realized, because the number of software developers is still relatively small and orders of
magnitude smaller than the number of users. Developers typically are experts in computing,
whereas users typically have domain expertise: this produces a disparity in viewpoints, causing
a mismatch between the developed software and its desired use. Moreover, the proposition,
given enough eyeballs, all bugs are shallow,would take on much greater significance, if a
larger fraction of the users could also be developers. A solution to this problem has so far
been impractical: end-users often do not have sufficient expertise to contribute software, nor
the time to learn how to do so, and there was no way to meld it with existing software until
it was proven correct or from a trusted developer.

In this paper I describe an approach for broadening dramatically the number of people
who contribute to the development of software. If successful, the approach will result in
a more effective software-development process, greatly improved software reliability, and
increased end-user satisfaction. The approach is ambitious — in that it affects all stages of
software development and several levels of the software execution process and transformative
— in that the software will be developed and executed in new ways.

The approach makes use of take advantage of-all contributed code, components, and
designs until they have proven to be of no value. The talk will describe how agent-based
wrappers can manage the necessary collaboration and competition, allowing the contributions
to be used alongside their existing counterparts until their behavior and features can be
assessed. The solution exploits concepts from N-version programming, multicore processors,
model- driven architectures, test-driven development, autonomic computing, negotiation in
multiagent systems, group decision-making, and consensus.

The two main threads of the proposed research are broader participation in developing
software and multiagent systems for the use and execution of the software. For each we
are developing prototypes and realistic evaluations demonstrating greater robustness and
usefulness. The research can help solve the problem of incorrect software by improving

robustness, while enabling a wider cross-section of society to develop and personalize software.

This can lead to greater understanding, satisfaction, and utility of software that behaves as
people generally want it to.

3.6 “Microtask” vs. freelancer platforms — how crowdsourcing can
complement software development

Robert Kern (IBM Deutschland — Béblingen, DE)

License) Creative Commons BY 3.0 Unported license
© Robert Kern

In the era of cloud computing, mobile computing, collaboration and big data, software
development requirements are significantly changing. Users and organizations are asking for
shorter development cycles, improved ease of use, better integration and lower administration
and operation overhead. This results in a need for flexible software development and operation

41

13362

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

42

13362 — Cloud-based Software Crowdsourcing

processes combined with a new assignment of roles in order to hide manual efforts from the
user.

Crowdsourcing has the potential to address these challenges in several ways. On the one
hand, platforms like TopCoder or oDesk enable for flexible outsourcing of design and imple-
mentation efforts to freelancers. On the other hand, “microtask” platforms like Crowdflower
or Amazon MTurk provide human workforce as a scalable service in order to fulfill formalized
tasks which are difficult to automate. Such services can either be integrated into SW services
to deliver complex services like search engine optimization, data cleansing and social media
analysis, or they can complement SW operation and development, e.g. by providing testing
services.

After contrasting the two types of platforms, this presentation focuses on the latter type.
By elaborating on the analogy of cloud computing and crowdsourcing, a “cloud labor” stack is
introduced that seamlessly integrates with the concepts of cloud computing. The capabilities
provided by the different layers of the stack are identified and implementation options are
outlined. The considerations are then validated by discussing a crowd-based medical coding
service offered by IBM. Finally, a bow is drawn back to the freelancer platforms and initial
ideas are provided on how the two complementary concepts could be merged in the future.

3.7 Software Development Crowdsourcing Issues: Organization Design
and Incentive Design

Donghui Lin (Kyoto University, JP)

License) Creative Commons BY 3.0 Unported license
© Donghui Lin

In the talk, we discuss two important issues in Software Development Crowdsourcing:
Organization Design and Incentive Design. We share the experience of problem-based
learning course of crowdsourcing in university.

3.8 Crowdsourcing with Expertise
Greg Little (ODesk Corp. — Redwood City, US)

License () Creative Commons BY 3.0 Unported license
© Greg Little

Crowdsourcing often focusses on small tasks that require no special skills other than being
human. I'm interested in tasks and workflows that do require special skills, like programming
or art skills. For instance, one could imagine a crowdsourced logo that involves several phases.
The first phase might pay 20 sketch artists to sketch logo ideas, and then pay a traditional
crowd to vote for the best 5. The next phase might then pay 5 designers to flesh out the
best 5 logos from the previous phase, followed by another round of voting. The final phase
might involve hiring an expert to finalize the top design.

Crowdsourcing with expertise is difficult today because it is difficult to programmatically
hire many experts — hiring experts typically involves looking at resumes and portfolios. My
research has focussed on finding scalable ways to reliably identify experts. Two promising
ideas include: (1) having people play simple subjective games based on their expertise, and
rating each others results; (2) having public work histories which include both the task and

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Michael N. Huhns, Wei Li, and Wei-Tek Tsai

the results, as opposed to portfolios today which typically only display the results, but it
is hard to know what this worker contributed, or whether their result met their client’s
requirements.

3.9 Multi-Agent System Models and Approach of Crowdsourcing
Software Development

Xinjun Mao (National University of Defense Technology — Changsha, China)

License @@ Creative Commons BY 3.0 Unported license
© Xinjun Mao

The advent and successful practices of software crowdsourcing needs to investigate its in-
depth essence and seek effective technologies to support its activities and satisfy increasing
requirements. We highlight crowdsourcing participants consist of a multi-agent system and
software crowdsourcing is a multi-agent problem-solving process. This paper discusses the
characteristics and potential challenges of software crowdsourcing in contrast to traditional
software development, and present a general analysis framework based on multi-agent system
to examine the organization and behaviors of software crowdsourcing. Several software
crowdsourcing models performed on typical platforms like Topcode, uTest are established and
their organization and coordination are discussed. We have developed a service-based multi-
agent system platform called AutoService that provides some fundamental capabilities like
autonomy, monitoring, flexible interaction and organization, and can serve as an infrastructure
to support software crowdsourcing models and tackle its challenges. A software crowdsourcing
prototype is developed and some scenarios are exemplified to illustrate our approach.

3.10 Crowds, Clouds, Agents and Coordination
Dave Murray-Rust (University of Edinburgh, GB)

License) Creative Commons BY 3.0 Unported license
© Dave Murray-Rust
Joint work of Murray-Rust, Dave; Robertson, Dave

The term “social machines” describes a class of systems where humans and machines
interact, and the mechanical infrastructure supports human creativity. As well as software
crowdsourcing projects such as TopCoder and oDesk, this includes distributed development
platforms such at GitHub and Bitbucket. In this paper, we describe a formalism for social
machines, consisting of i) a community of humans and their “social software” interacting
with ii) a collection of computational resources and their associated state, protocols and
ability to analyse data and make inferences. These social machines are increasingly the
target of software development, and as such, they represent an interesting problem, as the
community must be “programmed” as well as the machines. This leads to evolving and
unknown requirements, and having to deal with much softer concepts than formal systems
designers usually work with. Our model hence uses two coupled social machines. There
is the target machine, and the machine which is used to create it—much as GitHub and
associated resources might be used to form a social machine to create “the next Facebook”.
We draw on the ideas of 'desire lines’ and 'play-in’ to argue that top down design of social
machines is impossible, that we hence need to leverage computational support in creating
complex systems in an iterative, dynamic and emergent manner, and that our formalism
provides a possible blueprint for how to do this.

43

13362

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

44

13362 — Cloud-based Software Crowdsourcing

3.11 Collaborative Majority Vote: Improving Result Quality in
Crowdsourcing Marketplaces

Khrystyna Nordheimer (Universitit Mannheim, DE)

License @@ Creative Commons BY 3.0 Unported license
© Khrystyna Nordheimer
Joint work of Nordheimer, Dennis; Nordheimer, Khrystyna; Schader, Martin; Korthaus, Axel

Crowdsourcing markets, such as Amazon Mechanical Turk, are designed for easy distribution
of micro-tasks to an on-demand scalable workforce. Improving the quality of the submitted
results is still one of the main challenges for quality control management in these markets.
Although beneficial effects of synchronous collaboration on the quality of work are well-
established in other domains, interaction and collaboration mechanisms are not yet supported
by most crowdsourcing platforms, and thus, not considered as a means of ensuring high-quality
processing of tasks. In this paper, we address this challenge and present a new method that
extends majority vote, one of the most widely used quality assurance mechanisms, enabling
workers to interact and communicate during task execution. We illustrate how to apply this
method to the basic scenarios of task execution and present the enabling technology for the
proposed real-time collaborative extension. We summarize its positive impacts on the quality
of results and discuss its limitations.

3.12 The Open Source Volunteering Process
Dirk Riehle (Universitit Erlangen-Niirnberg, DE)

License) Creative Commons BY 3.0 Unported license
© Dirk Riehle

Today’s software systems build on open source software. Thus, we need to understand how
to successfully create, nurture, and mature the software development communities of these
open source projects. In this article, we review and discuss best practices of the open source
volunteering and recruitment process that successful project leaders are using to lead their
projects to success. We combine the perspective of the volunteer, looking at a project, with
the perspective of a project leader, looking to find additional volunteers for the project. We
identify a five-stage process consisting of a connecting, understanding, engaging, performing,
and leading stage. The underlying best practices, when applied, significantly increase the
chances for a successful open source project.

3.13 Artifact-centric Incentive Mechanisms for Socio-technical
Systems

Ognjen Scekic (TU Wien, AT)

License @@ Creative Commons BY 3.0 Unported license
© Ognjen Scekic
Joint work of Scekic, Ognjen; Truong, Hong-Linh; Dustdar, Schahram
Main reference O. Scekic, H.-L. Truong, S. Dustdar, “Incentives and rewarding in social computing,”
Communications of the ACM, 56(6):72-82, 2013.
URL http://dx.doi.org/10.1145/2461256.2461275

Crowdsourcing systems of the future (e.g., social compute Units — SCUs, collective adaptive
systems) promise to support processing of richer and more complex tasks, such as software
development. This presupposes deploying ad-hoc assembled teams of human and machine

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2461256.2461275
http://dx.doi.org/10.1145/2461256.2461275
http://dx.doi.org/10.1145/2461256.2461275

Michael N. Huhns, Wei Li, and Wei-Tek Tsai

services that actively collaborate and communicate among each other, exchanging different
artifacts and jointly processing them. Major challenges in such environments include team
formation and adaptation, task splitting and aggregation, and runtime management of
data flow and dependencies, collaboration patterns and coordination mechanisms. These
challenges can be somewhat alleviated by delegating the responsibility and the know-how
needed for these duties to the participating crowd members, while indirectly controlling and
stimulating them through appropriate incentive mechanisms.

In this paper we present a novel, artifact-centric approach for modeling and deploying
incentives in rich crowdsourcing environments. Artifact’s lifecycle model is augmented with
incentive mechanisms to create encapsulated units that can be offered to the crowd for
processing. The incentive mechanisms are adaptive and constantly advertised to the crowd
to drive the processing in the envisioned direction and tackle the aforementioned challenges.
They are designed to promote teamwork, and to support time and data dependencies.

3.14 Engineering Multi-Cloud Service-Oriented Applications
Lionel Seinturier (Lille I University, FR)

License) Creative Commons BY 3.0 Unported license
© Lionel Seinturier
Joint work of Paraiso, Fawaz; Merle, Philippe; Seinturier, Lionel

Cloud platforms are increasingly being used for hosting a broad diversity of services from
traditional e-commerce applications to interactive web-based IDEs and crowdsourcing systems.
However, the proliferation of offers by cloud providers raises several challenges. Developers
will not only have to deploy applications for a specific cloud, but will also have to consider
migrating services from one cloud to another, and to manage distributed applications spanning
multiple clouds. In order to address these challenges, we present a federated multi-cloud
Paa$ infrastructure that is based on three foundations: i) an open service model used to
design and implement both our multi-cloud PaaS and the SaaS applications running on
top of it, ii) a configurable architecture of the federated PaaS, and iii) some infrastructure
services for managing both our multi-cloud PaaS and the SaaS applications. We report on
the deployment of this cloud-based infrastructure on top of 10 existing IaaS/PaaS.

3.15 On Assuring Quality of Results in Hybrid Compute Units in the
Cloud

Hong-Linh Truong (TU Wien, AT)

License @) Creative Commons BY 3.0 Unported license
© Hong-Linh Truong
Joint work of Truong, Hong-Linh; Dustdar, Schahram

Recently there is an increasing trend of utilizing hybrid compute units consisting of software-
based and human-based services to solve complex problems. When both software-based
and human-based services are provisioned based on pay-per-use, it is a great challenge to
assure the quality of results, which center on the cost, response time and the quality of data.
We discuss a range of techniques, from composition to monitoring phases, to support the
assurance of quality of results in cloud-based crowdsourcing software development.

45

13362

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

46

13362 — Cloud-based Software Crowdsourcing

3.16 Software Crowdsourcing Maturity Models
Wei-Tek Tsai (ASU, Tempe, AZ , US)

License) Creative Commons BY 3.0 Unported license
© Wei-Tek Tsai

Some speculated that crowdsourcing can be used for ultra large systems. But examinations of

existing crowdsourcing websites such as TopCoders, uTest, and AppStori indicates that it may

take a long time to reach that levels of maturity. What will be the roadmap for crowdsourcing

growth? What will be the platform architecture to support future crowdsourcing?” How

about conventional issues such as testing (including regression), configuration, scalability,

software architecture, fault-tolerant issues, concurrent software development processes?
Here we define a Crowdsourcing Maturity Model:

Level 1: Single persons, well-defined modules, small size, limited time span (less than few
months), quality products, current development processes such as the one by AppStori,
TopCoder, and uTest. At this level, coders are ranked, websites contains online repository
crowdsourcing materials, software can be ranked by participants, crowdsourcing platforms
have communication tools such as wiki, blogs, comments as well as software development
tools such as IDE, testing, compilers, simulation, modeling, and program analysis.

Level 2: Teams of people (< 10), well-defined systems, medium size, medium time span (mul-
tiple months to less than one year), and adaptive development processes with intelligent
feedback in a common cloud platform where people can freely share thoughts. At this
level, a crowdsourcing platform supports adaptive development process that allow concur-
rent development processes with feedback from fellow participants; intelligent analysis of
coders, software products, and comments; multi-phase software testing and evaluation; Big
Data analytics, automated wrapping software services into SaaS (Software-as-a-Service),
annotate with ontology, cross reference to DBpedia, and Wikipedia; automated analysis
and classification of software services; ontology annotation and reasoning such as linking
those service with compatible input/output.

Level 3: Teams of people (< 100 and > 10), well-defined system, large systems, long time
span (< 2 years), automated cross verification and cross comparison among contributions.
A crowdsourcing platform at this level contains automated matching of requirements to
existing components including matching of specification, services, and tests; automated
regression testing.

Level 4: Multinational collaboration of large and adaptive systems. A crowdsourcing plat-
form at this level may contain domain-oriented crowdsourcing with ontology, reasoning,
and annotation; automated cross verification and test generation processes; automated
configuration of crowdsourcing platform; and may restructure the platform as SaaS with
tenant customization.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Michael N. Huhns, Wei Li, and Wei-Tek Tsai

3.17 Trustie: a Platform for Software Development Ecosystem
incorporating Engineering Methods and Crowd Wisdom

Huaimin Wang (NUDT — Hunan, CN)

License @ Creative Commons BY 3.0 Unported license
© Huaimin Wang

Software production activity includes the process of software creation, which relies on
developers’ inspiration and talent, and the process of software manufacture, which is executed
under strict engineering code. Traditional Software Engineering stresses software manufacture,
while the Open Source Software development focuses on software creation. These two software
production models each has its strengths and weaknesses, but are complementary to each
other. Literature research and engineering practices have shown that traditional software
engineering approaches have encountered obstacles in several creation activities such as
requirement elicitation. By exploiting the crowd wisdom, open source development provides
a better environment for software creation. However, it can neither make promise on specific
software requirements, nor guarantee the progress and quality of production. In this paper,
we suggest to introduce a software development ecosystem which combines the strengths of
these two models. First, we propose the general service model of a platform which can support
such a dual function development ecosystem. Architecturally, the core of this service model
contains a novel software process model and software evidence model. Besides, it integrates
collaborative development, resource sharing and analysis into a unified framework. Based on
this service model, we designed Trustie: a software development platform, under the support
of a Chinese national 863 grand project. Trustie is equipped with built-in collaboration tools
and an open and evolving software repository with deep analysis utilities. Trustie bridges
software manufacture activities and software creation activities in three featured aspects:
1. Tt enables crowd-oriented collaboration among developers and stakeholders.

2. It supports massive software resource and knowledge sharing.

3. It provides historical software data analysis and software quality evaluation.

Up till now, Trustie has already been successfully adopted by a series of on-line projects and
large-scale industry applications.

3.18 Crowdsourcing for Software Ecosystem
Wengjun Wu (Beihang University — Beijing, CN)

License) Creative Commons BY 3.0 Unported license
© Wenjun Wu

Software development is complex and creative as it involves requirement analysis, design,
architecture, coding, testing and evaluation. Recently, software crowdsourcing, or outsource
software development to the crowd, has been popular with numerous software coders particip-
ated in various software competitions. We first analyze the data collected on popular software
crowdsourcing and summarizes major lessons learned. We then examine two popular software
crowdsourcing processes including TopCoder and AppStori processes. Specifically, this paper
evaluates competition rules used in these processes, and compare with a traditional software
development process IBM Cleanroom methodology as it claims of delivering zero-defect
software. We identify an important design element in software crowdsourcing for software
quality and creativity is the min-max nature among participants. The min-max nature
comes from game theory where participants compete to win the game with one party tires to

47

13362

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

48

13362 — Cloud-based Software Crowdsourcing

minimize an objective or the other party tries to maximize the same object. However, in
software crowdsourcing, the min-max is done by one party tries to maximize the finding of
bugs in a set of artifacts, and the other parties try to minimize the potential bugs in the same
artifact. The min-max can be practiced without being a zero-sum competition where a gain
from one party will be matched by another party. In other words, software crowdsourcing
can be a win-win for all parties and they can collaborate while practicing a min-max game.
By using this approach, lots of aspects of software development can be crowdsourced from
initial project concepts, to specification, design, algorithms, coding, and testing, with the
crowd can contribute their creativity to each aspect.

3.19 An Evolutionary and Automated Virtual Team Making Approach
for Crowdsourcing Platforms

Tao Yue (Simula Research Laboratory — Lysaker, NO)

License) Creative Commons BY 3.0 Unported license
© Tao Yue

Crowdsourcing has demonstrated its capability of supporting various software development
activities including development and testing as it can be seen by several successful crowd-
sourcing platforms such as TopCoder and uTest. However, to crowd source large-scale and
complex software development and testing tasks, there are several optimization challenges to
be addressed such as division of tasks, searching a set of registrants, and assignment of tasks
to registrants. Since in crowdsourcing a task can be assigned to registrants geographically
distributed with various background, the quality of final task deliverables is a key issue.
As the first step to improve the quality, we propose a systematic and automated approach
to optimize the assignment of registrants in a crowdsourcing platform to a crowdsourcing
task. The objective is to find the best fit of a group of registrants to the defined task. A
few examples of factors forming the optimization problem include budget defined by the
task submitter and pay expectation from a registrant, skills required by a task, skills of a
registrant, task delivering deadline, and availability of a registrant.

4 Working Groups

4.1 Cloud Infrastructure for Software Crowdsourcing
Wei-Tek Tsai

License) Creative Commons BY 3.0 Unported license
© Wei-Tek Tsai

The group discussed about this topic from two point of views:

1. Understand the current cloud infrastructures such as IaaS (infrastructure-as-a-service),
PaaS (platform-as-a-service), and SaaS (software-as-a-service), and how these infrastruc-
tures can support software crowdsourcing.

2. Understanding the needs of software crowdsourcing including its processes, organization
structure, collaboration patterns, user support, user interface, and payment features.
Cloud Features to Support Software Crowdsourcing

In general, the group felt that most of cloud infrastructure including all the related
features such as metadata-based design, scalability architecture, multi-tenancy architec-

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Michael N. Huhns, Wei Li, and Wei-Tek Tsai

ture, automated migration, automated redundancy management, automated recovery, new
database design, runtime system composition, execution, and monitoring are useful to
support software crowdsourcing. These features may be made as menu selection for soft-
ware crowdsourcing organizers. For example, an organizer may like triple redundancy for
collaboration-based crowdsourcing, but additional redundancy for competition-based crowd-
sourcing. The additional redundancy is needed to ensure that competition data will not be
lost.

Software Crowdsourcing Process and Organization Needs

In general, the group felt that while different software crowdsourcing processes may have
different needs, but among the diversity of software crowdsourcing processes, they actually
share much commonality. Common themes for software crowdsourcing processes include:

1. Collaboration and communication tools such as a distributed blackboard system where
each party can participate in discussions,

2. Participant ranking and recommendation tools;

3. Software development tools such as modeling tools, simulation tools, programming
language tools such as compilers and intelligent editors, design notations, and testing
tools;

4. Cloud payment and credit management tools;

5. Cloud service management dashboard for system administrators and software crowd-
sourcing organizers;

6. Board where user can register and upload their profiles information; and

7. Repository of software development assets such as modules, specifications, architecture
and design patterns.

Major variations will come from different software crowdsourcing processes, for example,

competition-based processes such as those done by TopCoder will be different from collaboration-

based processes, such as by AppStori. Competitions require enforcement of game rules
including time management and rigorous evaluation, collaborations require communication,
publishing, sharing, alerts, automated text and index processing.

The group came out with a draft reference architecture as in Fig. 1.

T T - compekzhces
Payment) - expertise
& Service management dashboard I - matching
Credit - skills
Manag.

Paa$ recipe

- description
- redundancy
- instantiating
- monitoring
- bmckuP &

recovery

[

«——/ HITs

User Problem

Manag.

Problem

T Crowd sourcing software process steps
Chef Recipes T

) 7
1 I
(S(:Z:e)s)(Team) (Integrate >
Method "] Veriication
(Use cases)(Tests > (Code >
T T T
3 § 1
T

Figure 1 Reference architecture of cloud-based software crowdsourcing.

49

13362

50

13362 — Cloud-based Software Crowdsourcing

4.2 Crowd Source Software Engineering Design

Shaukat Ali

License) Creative Commons BY 3.0 Unported license
© Shaukat Ali
Joint work of Shaukat Ali, Michael Huhns, Khrystyna Nordheimer, Yue Tao, Hong-Linh Truong, Wenjun Wu

The discussion in this group was focused on Crowd Source Software Engineering design in
the three main areas, processes, models, and techniques.

4.2.1 Processes

Software engineering development projects based on crowd sourcing can be developed using
any software development process models such as Water Fall and Agile development. Such
information may be requested by a project submitted or alternatively can be suggested
by a cloud platform. Which approach is better is still an open issue and requires further
investigation.

4.2.2 Models

There is a need for standardized generic models (ontologies/domain specific language) for
capturing information about tasks (such as task description, micro-tasks and atomic tasks),
individual in crowds (such as expertise, payment history and successful project history) and
project information (such as cost, time, and required expertise). There are several benefits
to create such models:

1. A standardized way of capturing various concepts in crowd sourcing and their relationships
to promote a common and unified understanding in the community. These can further
be pushed for standardization in the future.

2. A systematic way of specializing the models for specific applications of software develop-
ment such as implementation and testing.

3. Promote automation of various activities in crowd sourcing such as team formation and
ranking.

An important issue is how to divide a project into a set of atomic tasks that can be
performed by different individuals in the crowd independently. The following potential
solutions were discussed:

1. A project submitted by a project owner may be divided into atomic tasks by the project
owner. However, this may not always be optimal if not impossible. Such process may
be improved by restricting the project owner to submit the project in a specific format
that can facilitate division of the project into atomic tasks. However, this raises several
potential open issues such as which kind of restricted format can be used and if there are
several alternatives, which one is the best one for what kind of tasks.

2. An semi/automated way of introducing a platform independent broker, which could
somehow divides the project into independent tasks, which can then be sent to crowd
sourcing platforms. Such broker may not be visible to the project submitted.

3. A common practice in the current crowd sourcing platforms is the use of man-in-the-loop
approach, where a project moderator coordinates with the bidders and help dividing the
project into different atomic tasks.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Michael N. Huhns, Wei Li, and Wei-Tek Tsai

4.2.3 Techniques

Crowd sourcing activities may be implemented by various different techniques. In the
discussion, first we talked about various techniques for ranking individuals in a crowd. Several
machine learning techniques have been applied by various researchers to rank individuals.
Secondly, we talked about team formation techniques. Similar to ranking techniques, different
approaches such as based on search algorithms and machine learning have been applied
for team formation. A fundamental question to answer for both of the above activities is
which approaches are cost/effective in which situations. Doing so requires thorough empirical
evaluations based on focused case studies to study strengths and weakness of the proposed
approaches.

4.2.4 Other Open Issues

In addition, we also discussed some of the open issues related to the quality of crowd sourcing
from various perspectives:

How to assess the quality of a crowd?

How to assess the quality of an individual in a crowd?

How to assess the quality of crowd software?

How to assess the quality of crowd sourcing infrastructure?

4.3 Worker-centric design for software crowdsourcing
Dave Murray-Rust (University of Edinburgh, GB)

License @@ Creative Commons BY 3.0 Unported license
© Dave Murray-Rust
Joint work of Murray-Rust, Dave; Yin, Gang; Scekic, Ognjen; Wang, Huaimin; Lin, Donghui; Mao, Xinjun; Kern,
Robert; Little, Greg; Riehle, Dirk

Crowdsourcing is emerging as a compelling technique for the cost-effective creation of software,
with tools such as ODesk and TopCoder supporting large scale distributed development.
From the point of view of the commissioners of software, there are many advantages to
crowdsourcing work — as well as cost, it can be a more scalable process, as there is the
possibility of selecting from a large pool of expertise. From the point of view of workers,
there is a different set of benefits, including choice of when and how to work, providing a
means to build a portfolio, and a lower level of commitment to any particular employer.

Most analyses of crowdsourcing take the point of view of the commissioners of work: how
is it possible to get work done better, more cheaply, more robustly etc. When considered as
an “outsider” technology, this need to prove value to commissioners of work is completely
understandable. Crowdsourcing is no longer a niche activity, however. From 2000-2009,
cloudworkers had been paid up to $2Bn; the number of participants has grown by over 100%
per year, and there are now over 6 million cloudworkers worldwide.

In this group, we engaged with the question of what it would take to make software
crowdsourcing a sustainable industry. This means being able to attract intelligent, motivated
individuals, who can make enough money to satisfy themselves. Essentially, we asked the
question “What would we want from a crowdsourcing marketplace if we were going to work
in it”.

Software crowdsourcing is markedly different to Turking and other crowdlabour projects,
for a number of reasons. If crowdlabour is divided into micro tasks, macro tasks, small
projects and complex projects, then while much of the crowdsourcing industry focusses on

51

13362

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

52

13362 — Cloud-based Software Crowdsourcing

Mechanical Turk style microtasks, software creation tends to fall into the small- or complex-
project brackets, requiring workers to bring in existing skills, and some degree of coordination
or direct worker contact. However, if crowdsourcing were to replace traditional employment
for a significant proportion of software developers, the reduced levels of commitment between
workers and commissioners could prove problematic for workers over time. In this paper, we
identify several areas of interest, and discuss what the issues are, and how current and future
solutions could address them: careers and reputation development; trust; team selection and
team building; and contextualisation of the work carried out.

4.3.1 Trust and Reputation

Arguably, co-workers are one of the most important factors contributing to a pleasant
and productive working environment . In traditional companies workers usually cannot
directly select their co-workers. However, since the nature of the employment relationship
is a long-lasting one, it gives them time to get to know their colleagues and forge working
relationships. The management will actively monitor these relationships in order to achieve
a more harmonic, and thus more productive or creative environment.

In crowdsourcing environments, the relationship of workers with the platform and co-
workers are irregular and short-lived. This leaves no time to get to know and other workers.
Crowdsourced teams are often unique, both time- and composition-wise. Co-workers are
often hidden behind digital profiles, creating an atmosphere of distrust and uncomfort.
Furthermore, such settings make for an attractive environment for attempting fraudulent
activities, such as multitasking, rent-seeking or tragedy of the commons

The proliferation of different metrics and trust models indicate that agreeing on a uniform,
context-independent trust and reputation model is practically unfeasible. A new approach
and some out-of-the-box thinking will be needed take to address this problem.

4.3.2 Team Selection

In the crowdsourcing environment, large complex projects always need to be conducted by
cooperation of a number of crowd workers. As well as the issues of trust and reputation
discussed previously, the composition of the team can have an effect on performance, and
also the satisfaction of the workers who constitute the teams.

Existing crowdsourcing platforms do not have much support for coordination and inter-
action among crowd workers. In some platforms like Amazon Mechanical Turk, tasks are
separated in an atomic manner so that crowd workers do not need to collaborate with each
other. Other platforms support offline collaboration among crowd workers with the guidance
of the work requester for complex projects. However, creative work like software development
requires a large degree of knowledge integration, coordinated effort and interaction among
workers.

The task allocation problem has been discussed for decades in artificial intelligence and
distributed computing circles. In crowdsoucing environments, recent researches focus on
task decomposition for modeling appropriate workflow with iterative tasks for the purpose of
quality assurance. However, task matching for crowd workers is also important for creative
complex task in crowdsourcing, where two main factors should be considered: the skills
posessed by crowd-workers, and the incentives needed to motivate them.

It will become increasingly necessary to provide mechanisms by which software crowd-
workers can collaborate with people they know and trust; where they can organise themselves

Michael N. Huhns, Wei Li, and Wei-Tek Tsai

effectively as situtations and contexts evolve; and where they are able to utilise—and
improve—their skils on a variety of non-monotonous tasks.

4.3.3 Contextualisation

The context and purpose of software development can be a large motivating factor for
workers; there is a need to reduce the anonymity on both working and comissioning sides, to
provide task context; decontextualized tasks remove the ability of workers to understand
the moral valence of their labour, and decide whether the task they are carrying out is
morally acceptable to them. Examples range from spammers attempting to break Captchas
to governments outsourcing recognition of persons of interest in photographs.

When discussing general collective intelligence situations, Malone describes the reward for
taking part as being based on “Money, Love or Glory”. The complement of this (leaving aside
the pecuniary aspects) is that one should be engaged in a task that one does not hate, and is
not ashamed of. Additionally, Malone suggests that commissioners of collective intelligence
should engage with the design questions: What is being done? Who is doing it? Why are
they doing it? How is it being done? These questions can be reversed to create a list of
questions which crowdworkers should be able to ask, both for their own peace of mind and
as a way for commissioning entities to engage with the Love and Glory motivations:

“What is the overall project?”

“Who is comissioning the work?”

“Why are they comissioning it?”

“How is it being carried out?”

We have discussed the need for trust and repuation between crowdworkers; there is
also the need for accountability for comissioners of work. Requesters on Mechanical Turk
currently are not bound by reputation systems, allowing them to act with impunity when
designing tasks.

Traditional workers have the benefit of many organisational structures that support them.

Labour laws ensure a safe and healthy environment; employers are tasked with managing
the physical space that they inhabit in working hours; they will meet other people in they
workplace; advocacy groups and unions may exist to represent the needs of workers. For a
crowd working career, something providing some of the properties of these structures would
need to be created.

4.4 Architecture for Cloud-based Software CrowdSourcing
Michael Mazimilien (IBM Almaden Center — San José, USA)

License @@ Creative Commons BY 3.0 Unported license
© Michael Maximilien
Joint work of Michael Maximilien, Xiaoying Bai, Kyle Chard, Schahram Dustar, Wei-Tei Tsai, Lionel Seinturier

Crowd-sourcing platforms have been mostly proprietary for the most parts. Unlike trendy

cloud platforms, there are no dominant platforms for building crowd-sourcing applications.

This could be due to the fact that crowd-sourcing applications are varied and have similar
needs as those for cloud applications. However, in our discussions and analysis, it seems that
common architectures may actually exist for crowd-sourcing applications, and creating a
reference OSS version of such platform might be of interest.

With this aim, we have explored two complementary approaches which we discuss here:

53

13362

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

54

13362 — Cloud-based Software Crowdsourcing

4.4.1 Cloud Applications — Specifically Crowd-Sourcing for PaaS

In this approach we are assuming that a Platform-as-a-Service (PaaS) exists, such as the
ones provided by Heroku, Microsoft Azure, or the OSS CloudFoundry as well as others.
The crowd-sourcing application is simply installed onto this PaaS and tuned to address its
needs. We are assuming that the PaaS platform provides primitives to support the needs of
the crowd-sourcing application, such as, a flexible database, e.g., MongoDB, an application
server, e.g., Ruby on Rails or Node.js, as well as various connections with services that
might also be needed, e.g., LDAP, OAuth, Payment, and others. Since the crowd-sourcing
application integrates into the PaaS it can be scaled up and down using the PaaS primitives.
This usually involves adding more containers for the crowd-sourcing application deployment,
e.g., replicating the application server layer and adding a high-availability (HA) proxy.

4.4.2 Distributed Loosely Coupled Crowd-Sourcing Platform

In this approach, the focus is on the components making up the crowd-sourcing platform and
pulling them apart and distributing them. That way each component exposes an API(s) and
can be combined to create the crowd-sourcing application. Where and how these components
are hosted is not taken into consideration. A PaaS could be used or the component could be
hosted directly onto an IaaS or bare metal environment. To illustrate the point, think of
a simplified crowd-sourcing application needing to host tasks and have a pool of workers.
One API would be to retrieve, update, and create tasks. One API would be to retrieve,
update, and create new workers. And one more API would be to match workers to tasks
and get the workers paid when tasks are completed. In such a distributed service-oriented
approach the crowd-sourcing application becomes essentially like a mashup of these primitive
crowd-sourcing APIs. Of course, a challenge there is security and scaling since you have no
control into the storage, security measures, and scaling capability of the APIs you are using.

4.5 Infrastructure and Platform
Xiaoying Bai (Tsinghua University, CN)

License) Creative Commons BY 3.0 Unported license
© Xiaoying Bai
Joint work of Michael N. Huhns, Michael Maximilien, Xavier Blanc, Greg Little, Huaimin Wang, Gang Yin, Kyle
Chard, Robert Kern, Lionel Seinturier

Crowdsourcing promotes software development by open collaborations. Cloud is expected to
provide necessary services to support development and collaboration activities. To address
the needs, the group discussion reviewed the motivations to construct the platform, identified
the key components of Cloud infrastructure and platform, analyzed architecture design
issues, and proposed an experiment to build a crowdsourcing platform for educating software
development.

4.5.1 Motivation Revisited

Crowdsourcing is a promising development method to reduce cost and enhance quality by
contracting experts in open communities. However, it is not easy to organize crowdsourced
software development. It requires a lot of effort and experiences to decompose software
into well-organized modules and development tasks, to find good candidates for each task,
to communicate requirements clearly and precisely, and to integrate submitted code into
project framework. Hence, crowdsourcing may be not suitable for software development in

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Michael N. Huhns, Wei Li, and Wei-Tek Tsai

general, but for specific modules, whose requirements and outcome can be explicitly defined,
even quantitatively measured. For example, companies may outsource algorithm design
by sponsoring a TopCoder algorithm completion. From another perspective, instead of an
engineering platform, crowdsourcing could be an incubator for innovations. It seeks ideas and
solution options from crowd wisdom. Problems like GUI design can be open to communities
to foster innovative ideas.

4.5.2 Architecture Design

The Cloud for crowdsourcing need to provide services for two categories of activities: software
development and open collaboration. To support software development, it needs software
lifecycle process tracking platform from requirements distribution to software testing and
integration, code repositories with version control system and online IDE environment,
document management system, and so on. To support community-based collaboration, it
needs to support user account management, expert recommendation, group coordination,
and so on. Following the open architecture principle, some of the services can be built by
reusing with existing open services, for examples, GitHub as implementation repository,
Amazon for computing and storage resources, Cloud9 as online IDE,; Google App Engine
for software hosting and Google Doc for group discussion. It can also integrate with other
system such as sharing use accounts from different social network systems. In addition, it
has unique requirements to support this new development method, especially for community
management and collaborations. For example, reputation and profile management, expert
searching, evaluation and recommendation, and so on.

4.5.3 Experiment: Educating Software Engineering by a Crowdsourcing Platform

A platform can be built for educating purpose so that SE courses from different Universities
can share their resources and collaborate in an experiment process. Students can join teams
and projects across the world to learn by experience global software development methods,
techniques, and challenges.

4.6 Experimentation Design for Software Crowdsourcing
Wengjun Wu (Beihang University, CN)

License) Creative Commons BY 3.0 Unported license
© Wenjun Wu
Joint work of Yue Tao, Shuat Ali, Wei-Tek Tsai; Hong-Linh Truong; Ognjen Scekic; Donghu Lin; Xinjun Mao

In this group, we discussed how to design and conduct software crowdsourcing experiments
to validate theoretical models and refine crowdsourcing algorithms. We also listed the major
crowdsourcing infrastructures that can be used to support experiments. Given the dynamic
nature of crowdsourcing activity, it is a challenge to develop a repeatable experimental plan.
Researchers must consider both social and technical factors in a software crowdsourcing
process. Social factors such as constitutes of the community, skill and knowledge levels of
participants, the incentive of participation often have significant impact on possibility of
replicating the same experiment. Technical factor such as software development process and
cloud software products are also vital to enable in-depth investigation among the synergy
between people and software system. A successful software experiment should carefully
integrate these major elements in the settings and describe them in a clearly defined model.

55

13362

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

56

13362 — Cloud-based Software Crowdsourcing

With such a model, the research community of crowdsourcing can share their datasets and
derive knowledge from them through cast studies and statistics-driven data analytics.

4.6.1 Experimental Approaches

There are three approaches to perform crowdsourcing experiments and analysis: data analysis
based on the process of real projects on crowdsourcing platforms, controlled experiments and
simulation.

First, one can always gather data from existing projects that are hosted on the major
crowdsourcing platforms such Topcoder [1], Amazon Mechnical Turk [2], Github [3] and
Sourceforge [4]. Such a community platform keeps track of software development activities of
tens of thousands completed projects. Via web crawlers or access APIs of the platforms, we can
download all the activity data and make further analysis to to verify software crowdsourcing
models. The advantage of this analytic approach is to access real crowdsourcing data with
a low monetary cost and time effort. It is especially useful for statistical analysis and case
studies.

Second, when a researcher needs to run controlled experiments to compare different
strategies and mechanisms with software crowdsourcing design, he can launch real projects
on the platforms mentioned above. The positive side of this approach is that researchers can
devise their own experimental scenarios and explore completely new schemes that may never
be tried by others. But since the experiment is run on commercial platforms, the researcher
has to pay for recruiting community workers as his study subjects.

Last, one can always rely on simulation tools to run software crowsourcing experiments.
Actually, one of the talks presented in this seminar discussed how to design simulation
experiments following the models of search-based software engineering to study software
crowdsourcing. Also, agent-based simulation can be adopted to study incentive models and
production quality assurance on large-scale crowds. The major benefit of simulation method
is flexibility and low-cost. And it empowers researchers to check their models in a much
larger setting than what is available in real environments.

Perhaps a hybrid method combining real projects, data analysis and simulations will be
the best way to practice software crowdsourcing studies. Imaging we can model a software
crowdsourcing process through data analysis of public crowdsourcing platforms. More case
studies based on real projects can be done to improve the model. And the model can be
further used on a simulation scenario to demonstrate emergent behaviors in a large-scale
crowdsourcing system.

4.6.2 Experiment Design

A researcher needs to define his experimental objective, primary factors and study objects
before starting his experiments on software crowdsourcing:

Whether does he plan to verify his model or algorithm? How can he model crowdsourcing
tasks, workers, and costs in term of time and budget? How to design the mechanism for
ranking and expertise matching to facilitate virtual team formation?

In the design of a controlled experiment, a researcher should isolate or control multiple
design factors in order to identify primary factors that are most influential. Typical factors
in a crowdsourcing experiment include participants, prize setting, and task design and so on.
If he wants to test a crowdsourcing task among the same group of people, he may have to
design a two-around crowdsourcing mechanism to retain the participants who have involved
in the previous around.

Michael N. Huhns, Wei Li, and Wei-Tek Tsai

Choice of study subjects in an experiment can also significantly affect the outcome. Since
the community is often the study subject in a crowdsourcing project, a researcher must decide
whether to run the project with IT professionals or college students. Our group believes
that experiments with student groups can produce valid results as ones with professional
developers. They are suitable in different kinds of experiments. IT professionals, especially
software engineers are always good candidates for software engineering experiments that
demands more advanced programming skills and expertise for system design. In other
kinds of experiments with less restricted requirements for software design and programming,
researcher can choose computer science students as his study subject.

The last but not the least concern for researchers is to design an appropriate ontology
model to describe software crowdsourcing processes. If everyone organizes his datasets in
a standard process model like SPEM [5] in UML specification, this data interoperability
enables very convenient data exchange within the community and facilitates peer researchers
to reuse the dataset in their experiments.

4.6.3 Experiment infrastructure

Our discussion group listed the major commercial platforms available for researchers. Well-
known examples of crowdsourcing platforms are Topcoder, Amazon Mechanical Turk and
Odesk [6]. The distinguishing features among these platforms include community and
crowdsourcing style. Most players in the Topcoder community are young people with strong
enthusiasm for programming. So when a researcher needs his coding project accomplished
within a week, Topcoder seems a good place to go. Because most crowdsourcing tasks in
Amazon Mechanical Turk are very cheap laboring jobs that often require only a few minutes
of effort. So its community is not very suitable for programming tasks demanding dedication
and high skills.

In addition to these above commercial platforms, group members highlighted open
source crowdsourcing platforms under development. Vienna’s team mentioned about a plan
to release a crowdsourcing service platform. Beihang team is developing an educational
platform to support Massive Open Ounline Courses (MOOCs), which could be extended
to support software crowdsourcing with MOOC learners. National University of Defense
Technology introduces two open source platforms namely Trustie (http://www.trustie.net/)
and OW2 Open Source community (http://ow2.org/), which combine the traditional software
engineering methods with the crowd wisdom, and provide a promising infrastructure to
enable software crowdsourcing projects. Further work is needed to explore all the platforms
and build up good cases so that we could summarize the best practices and define guidelines
to perform software crowdsourcing experiments.

References

Topcoder, http://www.topcoder.com

Amazon Mechnical Turk, http://www.mturk.com
Github, http://www.github.org

Sourceforge, http://www.sourceforge.net

SPEM, http://www.omg.org/spec/SPEM/2.0/7
Odesk, http://www.odesk.com

SO WN =

5 Open Problems

Open problems were described throughout the previous sections, in particular, in the working
group summaries.

57

13362

http://www.topcoder.com
http://www.mturk.com
http://www.github.org
http://www.sourceforge.net
http://www.omg.org/spec/SPEM/2.0/?
http://www.odesk.com

58

13362 — Cloud-based Software Crowdsourcing

Participants

= Shaukat Ali
Simula Research Laboratory —
Lysaker, NO

= Xiaoying Bai

Tsinghua Univ. — Beijing, CN
= Xavier Blanc

University of Bordeaux, FR

= Kyle Chard

University of Chicago, US

= Schahram Dustdar

TU Wien, AT

= Michael N. Huhns
University of South Carolina —
Columbia, US

= Robert Kern
IBM Deutschland —
Boblingen, DE

= Donghui Lin
Kyoto University, JP

= Greg Little
ODesk Corp. —
Redwood City, US

= Xinjun Mao
National University of Defense
Technology — Hunan, CN

= Michael Maximilien
IBM Almaden Center —
San José, US

= Dave Murray-Rust
University of Edinburgh, GB

= Khrystyna Nordheimer
Universitdt Mannheim, DE

- Dirk Riehle
Univ. Erlangen-Nirnberg, DE

= Ognjen Scekic
TU Wien, AT

= Lionel Seinturier
Lille T University, FR

= Hong-Linh Truong
TU Wien, AT

= Wei-Tek Tsai
ASU - Tempe, US

= Huaimin Wang
NUDT - Hunan, CN

= Wenjun Wu

Beihang University — Beijing, CN

= Gang Yin
NUDT - Hunan, CN
= Tao Yue

Simula Research Laboratory —
Lysaker, NO

	Executive Summary Michael N. Huhns, Wei-Tek Tsai, and Wenjun Wu
	Table of Contents
	Overview of Talks
	Large-Scale Performance Testing by Cloud and Crowd Xiaoying Bai
	Finding Experts Xavier Blanc
	Crowdsourcing Cloud Infrastructure using Social Networks Kyle Chard
	Cloud based Crowdsourcing Software Development – Keynote Schahram Dustdar
	Hyperscale Development of Software Michael N. Huhns
	``Microtask'' vs. freelancer platforms – how crowdsourcing can complement software development Robert Kern
	Software Development Crowdsourcing Issues: Organization Design and Incentive Design Donghui Lin
	Crowdsourcing with Expertise Greg Little
	Multi-Agent System Models and Approach of Crowdsourcing Software Development Xinjun Mao
	Crowds, Clouds, Agents and Coordination Dave Murray-Rust
	Collaborative Majority Vote: Improving Result Quality in Crowdsourcing Marketplaces Khrystyna Nordheimer
	The Open Source Volunteering Process Dirk Riehle
	Artifact-centric Incentive Mechanisms for Socio-technical Systems Ognjen Scekic
	Engineering Multi-Cloud Service-Oriented Applications Lionel Seinturier
	On Assuring Quality of Results in Hybrid Compute Units in the Cloud Hong-Linh Truong
	Software Crowdsourcing Maturity Models Wei-Tek Tsai
	Trustie: a Platform for Software Development Ecosystem incorporating Engineering Methods and Crowd Wisdom Huaimin Wang
	Crowdsourcing for Software Ecosystem Wenjun Wu
	An Evolutionary and Automated Virtual Team Making Approach for Crowdsourcing Platforms Tao Yue

	Working Groups
	Cloud Infrastructure for Software Crowdsourcing Wei-Tek Tsai
	Crowd Source Software Engineering Design Shaukat Ali
	Worker-centric design for software crowdsourcing Dave Murray-Rust
	Architecture for Cloud-based Software CrowdSourcing Michael Maximilien
	Infrastructure and Platform Xiaoying Bai
	Experimentation Design for Software Crowdsourcing Wenjun Wu

	Open Problems
	Participants

