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—— Abstract

We characterize the infinite words determined by one-way stack automata. An infinite language
L determines an infinite word « if every string in L is a prefix of . If L is regular or context-free,
it is known that o must be ultimately periodic. We extend this result to the class of languages
recognized by one-way nondeterministic checking stack automata (1-NCSA). We then consider
stronger classes of stack automata and show that they determine a class of infinite words which we
call multilinear. We show that every multilinear word can be written in a form which is amenable
to parsing. Finally, we consider the class of one-way multihead deterministic finite automata
(1:multi-DFA). We show that every multilinear word can be determined by some 1:multi-DFA,
but that there exist infinite words determined by 1:multi-DFA which are not multilinear.
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1 Introduction

In this paper we study the complexity of infinite words in terms of what automata can
determine them, focusing on the infinite words determined by one-way stack automata.
Stack automata are a generalization of pushdown automata whose stack head, in addition
to pushing and popping when at the top of the stack, can move up and down the stack in
read-only mode. Stack automata were first considered by Ginsburg, Greibach, and Harrison
[8, 7]; see [12] and [17] for more references and results. These automata can be restricted
and generalized in a number of ways, yielding various language classes.

To associate these and other automata with infinite words, we follow Book [3] in using the
concept of prefix languages. A prefix language is a language L such that for all z,y € L, x is
a prefix of y or y is a prefix of z. Every infinite prefix language determines an infinite word.
Where C' is a class of languages, we denote by w(C') the class of infinite words determined by
the prefix languages in C. Then for any class of automata, we can investigate the infinite
words determined by the languages recognized by those automata. We give several results
aimed at building up a classification of infinite words with respect to which classes of languges
and automata can determine them.

We begin with the ultimately periodic words, those of the form xyyy - - -, where z and
y are strings and y is not empty. As observed in [3], every infinite regular prefix language
determines an ultimately periodic word. Since the converse is also true, an infinite word is in
w(REGQG) iff it is ultimately periodic. It is further known that w(CFL), the class of infinite
words determined by context-free languages, equals w(REG). This follows from a result
of Book [3], who used the pumping lemma for context-free languages to show that every
context-free prefix language is regular. Book showed the same for one-way deterministic
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checking stack automata (1-DCSA). We extend this result to the nondeterministic case
(1-NCSA) using a weak pumping lemma for this class. That is, we show that every infinite
word determined by a 1-NCSA is ultimately periodic.

Next, we consider a type of infinite word we call multilinear. A multilinear word consists
of an initial segment ¢, followed by segments rq, ..., 7, which repeat in a way governed by
linear polynomials. We show that these infinite words are determined by several classes of
one-way stack automata. The most general of these is the class of one-way nondeterministic
stack automata (1-NSA); various restrictions yield 1-DSA (deterministic stack automata),
1-NNESA (nondeterministic nonerasing stack automata), and 1-DNESA (deterministic
nonerasing stack automata). We find with the help of a pumping lemma due to Ogden
[15] that each of these classes determines exactly the multilinear infinite words. That is,
w(1-NSA) = w(1-DSA) = w(1-NNESA) = w(1-DNESA).

Finally, we consider the class of one-way multihead deterministic finite automata (1:multi-
DFA). We show that every multilinear word can be expressed in a form which is amenable to
recognition by these automata. Then we show, using this form, that every such word can be
determined by a 1:multi-DFA. We then give an example of an infinite word in w(1:multi-DFA)
which is not multilinear. The problem of further characterizing the class of infinite words
determined by 1:multi-DFA remains open.

1.1 Related work

The model used in this paper, in which infinite words are determined by languages of their
prefixes, builds on Book’s 1977 paper [3]. Book formulated the “prefix property” in order to
allow languages to “approximate” infinite sequences, and showed that for certain classes of
languages, if a language in the class has the prefix property, then it is regular. A follow-up
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by Latteux [14] gives a necessary and sufficient condition for a prefix language to be regular.

Languages whose complement is a prefix language, called “coprefix languages”, have also
been studied; see Berstel [2] for a survey of results on infinite words whose coprefix language
is context-free. In Smith [16], prefix languages are used to categorize the infinite words
determined by L systems, a type of parallel rewriting system.

Another approach is to consider sequence generators, devices which run indefinitely and
output an infinite word piece by piece. This was the model of the seminal paper of Hartmanis
and Stearns [10], as well as a 1970 follow-up by Fischer, Meyer, and Rosenberg [6], and several
later papers beginning with Hromkovi¢, Karhuméki, and Lepisto [13], who investigated the

computational complexity of infinite words generated by several kinds of iterated device.

The question of what mechanisms and iterative devices suffice to generate particular infinite
words has also been studied [5].

In another model, an automaton is associated with an infinite word « if when given a
number n as input, it outputs the nth symbol of o. In 1972 Alan Cobham used this approach
to associate finite automata with uniform tag sequences [4], leading to a literature on these
“automatic sequences” [1].

1.2 Outline of paper

The paper is organized as follows. Section 2 gives preliminary definitions concerning prefix
languages and automata. Section 3 gives results on ultimately periodic words and the
languages and automata which determine them. Section 4 introduces multilinear infinite
words and relates them to stack automata. Section 5 relates multilinear words to multihead
finite automata. Section 6 gives our conclusions.

2 Preliminaries

An alphabet A is a finite set of symbols. A word is a concatenation of symbols from A.

We denote the set of finite words by A* and the set of infinite words by A“. A string x is
an element of A*. The length of z is denoted by |z|. We denote the empty string by A. A
language is a subset of A*. A (symbolic) sequence S is an element of A* U A¥. A prefix
of S is a string x such that S = 25’ for some sequence S’. A subword (or factor) of S is a
string « such that S = wxS’ for some string w and sequence S’. For i > 1, S[i] denotes the
ith symbol of S. For a string x # A, z* denotes the infinite word zzz ---. Such a word is
called purely periodic. An infinite word of the form xy“, where z and y are strings and
y # A, is called ultimately periodic.

2.1 Prefix languages

A prefix language is a language L such that for all x,y € L, x is a prefix of y or y is a
prefix of z. A language L determines an infinite word « iff L is infinite and every = € L is a
prefix of a. For example, the infinite prefix language {), ab, abab, ababab, ...} determines

the infinite word (ab)®. The following propositions are basic consequences of the definitions.

» Remark. A language determines at most one infinite word.
» Remark. A language L determines an infinite word iff L is an infinite prefix language.

Notice that while a language determines at most one infinite word, an infinite word «
may be determined by more than one language. Let Prefix(a) = {x | x is a prefix of a}. We
call Prefix(«) the full prefix language of a.

For a language class C, let w(C) = {« | « is an infinite word determined by some L € C}.
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2.2 Automata

A stack automaton is a pushdown automaton with the extra ability to traverse its stack in
read-only mode. In addition to moving its input head on the input tape, a stack automaton
can move its stack head up and down to read symbols on the stack. Only when its stack
head is at the top of the stack can it push or pop. A stack automaton is nonerasing if
it never pops a symbol. A stack automaton is checking if it is nonerasing and if once it
moves its stack head down from the top of the stack, it never again pushes a symbol. A
stack automaton may be deterministic or nondeterministic and its input head may be
one-way or two-way. See [12] and [17] for formal definitions and results.

Language Class | Stack Automata

1-NSA one-way nondeterministic stack automata

1-DSA one-way deterministic stack automata

1-NNESA one-way nondeterministic nonerasing stack automata
1-DNESA one-way deterministic nonerasing stack automata
1-NCSA one-way nondeterministic checking stack automata
1-DCSA one-way deterministic checking stack automata

From the definitions, we have

1-DCSA C 1-NCSA, 1-DNESA C 1-NNESA, 1-DSA C 1-NSA,
1-DCSA C 1-DNESA C 1-DSA, and
1-NCSA C 1-NNESA C 1-NSA.

A multihead finite automaton is a finite automaton with one or more input heads.
Here we are concerned only with 1:multi-DFA, the class of one-way multihead deterministic
finite automata. This class is the union over all 7 > 1 of 1:5-DFA, the class of one-way i-head
deterministic finite automata. Fach such automaton begins with its input heads on the first
symbol of the input. At each step, the automaton reads the input symbols under all of its
heads and then changes state and moves any subset of its heads to the right. See [17] and
[11] for formal definitions and results.

3 Ultimately periodic words

Recall that an infinite word is ultimately periodic if it has the form zy*“, where x and y are
strings and y # A. Clearly every ultimately periodic word is determined by some regular
language.

» Theorem 1. Every ultimately periodic word « is in w(REG).

Proof. The infinite word « has the form zy“ for some strings = and y where y # A. Then
the regular language zy* determines . So « is in w(REG). <

As observed by Book [3], the converse, that every infinite regular prefix language determ-
ines an ultimately periodic word, is also true. In fact, as Book showed, the same holds for
context-free languages.

» Theorem 2 (Book). Suppose « is in w(CFL). Then « is ultimately periodic.
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Proof. Since « is in w(CFL), some L € CFL determines . Take any such L. Then L is
infinite and every s € L is a prefix of a. By the pumping lemma for context-free languages,

there is a string uvayz such that |vy| > 1 and for all n > 0, uv™xy"z is in L. Suppose |v| > 1.

Then because every string in L is a prefix of «, and every prefix of such a string is also a
prefix of «, uv is a prefix of a, as are wvv, wvvv, and so on. Consequently a = uv*, so « is
ultimately periodic. So say |v| = 0. Then |y| > 1 and a = uzy®, again making « ultimately
periodic. <

Checking stack automata

The class of languages recognized by one-way checking stack automata is incomparable with
the context-free languages. Nonetheless, this class too determines just the infinite words
determined by regular languages. Book [3] proved the deterministic case (1-DCSA); our
result holds in the nondeterministic case (1-NCSA) also. (Book showed that 1-NCSA contains
non-regular prefix languages, but this does not imply that w(1-NCSA) # w(REG).) We

employ a weak pumping lemma for 1-NCSA which we obtain using results from Greibach [9].

For k > 1, a language L is k-iterative if there is an n > 0 such that for all s € L where
|s| > n, there are strings x1, Y1, T2, Y2, - - ., Tk, Yk, Tr+1 such that

§ = XT1Y122Y2 " TkYkTk+1,
ly1 - yk| > 1, and
for all ¢ > 0, z1y{T2y5 - - - TrY;Tr41 is in L.

L is weakly k-iterative if it is either finite or contains an infinite k-iterative subset.

Notice that every regular language is 1-iterative and every context-free language is 2-iterative,
due to the pumping lemmas for these classes.

In proving the following lemma we use results from Greibach [9] formulated for a type of
device called a one-way preset Turing machine. Greibach observes that a certain subclass of

these devices, called nonwriting regular-based, can be regarded as checking stack automata.

In particular, a one-way checking stack automaton can be simulated by a one-way nonwriting
regular-based preset Turing machine, and vice versa, without changing the number of stack
visits, crosses, or reversals by more than 1. Hence results for this subclass translate into facts
about checking stack automata.

» Lemma 3. Suppose L is in I-NCSA. Then L is weakly k-iterative for some k > 1.

Proof. A checking stack automaton M is finite visit if there is a k£ > 1 such that for every
string s accepted by M, there is an accepting computation of M for s in which no stack

position is visited more than k times. Suppose L is accepted by a finite visit 1-NCSA M.

Then there is a k > 1 such that L is in the class k-VISIT(REGL) of [9]. Then by Lemma
4.22 of [9], L is weakly k-iterative. So say there is no such M. Then L is not in the class
FINITEVISIT(REGL) of [9]. Then by Lemma 4.25 of [9], L is weakly 1-iterative. <

» Theorem 4. Suppose « is in w(1-NCSA). Then « is ultimately periodic.

Proof. Since « is in w(1-NCSA), some L € 1-NCSA determines «. Take any such L. Then
L is infinite and every s € L is a prefix of a. By Lemma 3, L is weakly k-iterative for some
k > 1. Then there is a string 1y122y2 - - - Tk YrZr4+1 such that |y; - - - yx| > 1 and for all ¢ > 0,
1Y@yl - TRYLwpsq is in L. Let j be the lowest number such that y; is non-empty. Then
T1T2 - - x;Y; is a prefix of o, as are 122 - - - T;Y;Y;, T1T2 - - - T;Y;Y;Y;, and so on. Therefore
o =T1T9 - xjy;-“, so « is ultimately periodic. <
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Summarizing, we have the following.

» Theorem 5. w(REG) = w(CFL) = w(1-DCSA) = w(1-NCSA), and « is in this class of
infinite words iff « is ultimately periodic.

Proof. Immediate from Theorems 1, 2, and 4 and the inclusions REG C CFL and REG C
1-DCSA C 1-NCSA. <

4 Multilinear words

We now introduce the multilinear infinite words, a class which properly includes the ultimately
periodic words. To our knowledge this type of infinite word has not previously been discussed.
An infinite word is multilinear if it has the form

q H r1111n+b1 T;2n+b2 . "I“;l,{”n-‘rbm,
n>0

where ] denotes concatenation, ¢ is a string, each r; is a non-empty string, and m and each
a; and b; are nonnegative integers such that a; + b; > 0. Examples:

ab [] cd = abcdcdced: - -

n>0
[T 2a"*'b = abaabaaab-: - -
n>0
[T 10" = 11001000010000001- - - (characteristic sequence of the perfect squares)
n>0

With the next few theorems we relate multilinear words to one-way stack automata.
» Theorem 6. Suppose « is in w(1-NSA). Then « is multilinear.

Proof. Since « is in w(1-NSA), some L € 1-NSA determines a. Take any such L. Then L
is infinite and every s € L is a prefix of a. By Ogden’s pumping lemma for one-way stack
automata [15], there are

strings p and v,
strings p;, 04, and 7; for each i > 0,
strings o, B4, ¢;, x; and ¥; for bounds on j implicit below, and

positive integers m and p

such that, among other conditions,

(i) for each j >0, ppop1---pjo;7Tj—1---Tov isin L,
(ii) for each i > 1, p; = apfi ‘P18 a1 B Lot tan -+ b1 Bt otm—1,
(iii) |po| = 0 iff for all ¢ > 0, |p;| = 0,
(iv) for each i >0, o; = xo¥ix1¥ixa - 1/11’;71)(,,_1, and
(v) there is a j such that |¢;| > 0.

Suppose |pg| = 0. Then by (iii), every p; is empty, so by (i), we have that for each j > 0,
poT;Tj—1 - - Tov isin L. Then for each j > 0, uo; is a prefix of c. Then by (iv), for each i > 0,
wxoVi X1 xa - - ¢;—1Xp—1 is a prefix of o. Let j be the lowest number such that |¢;] > 0; by
(v), there is such a j. Then for each i > 0, uxox1 -~ Xj—195X; - - Vh_1Xp—1 is a prefix of a.
Then pixox1 - -+ x;j—1%; is a prefix of a, as are pxoX1 - - X;j—1¥;¥;, #XoX1 *** Xj—1¥;9;1;, and
so on. Therefore v = pxox1 -+ x;j—1%;, which is ultimately periodic and hence multilinear.
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So say |po| > 0. By (iii), some p; other than pg is non-empty. By (ii), if p; is non-
empty, then so are all subsequent p;s, and if p; is empty, then some §8; must be non-
empty, and all subsequent p;s are again non-empty. So for all i > 2, |p;| > 0. By (i),

for each j > 0, ppop1---p; is a prefix of a. Therefore a = p [ pn = ppo [ pny1 =
n>0 n>0

wpo [ coBid1ByarBYgaBias - Gum—18%,_o0m—1, which is multilinear.
n>0

» Theorem 7. Suppose « is multilinear. Then « is in w(1-DNESA).

Proof. The infinite word o has the form ¢ [] 7" 01rg2m 02 .. pamntbm  Tet A be a one-
n>0
way deterministic nonerasing stack automaton, operating as follows. First, A checks that

the input begins with ¢. In what follows, A will push counter symbols onto its stack; so
far, the stack is empty. Next, for each ¢ between 1 and m, A first checks the input for b;
occurrences of ;. It then reads its stack, for each counter symbol checking the input for a;
occurrences of r;. After checking r,,, A pushes a counter symbol onto its stack and proceeds
as before. If any input symbol causes a check to fail, A rejects; otherwise, when A reaches
end of input, it accepts. Now A recognizes Prefix(«), the full prefix language of a. Since
Prefix(a) determines «, « is in w(1-DNESA). <

» Theorem 8. w(1-NSA) = w(1-DSA) = w(1-NNESA) = w(1-DNESA), and o is in this
class of infinite words iff o is multilinear.

Proof. Immediate from Theorems 6 and 7 and the inclusions 1-NSA D 1-DSA D 1-DNESA
and 1-NSA D 1-NNESA D 1-DNESA. <

5 Multihead finite automata

In this section we relate multilinear infinite words to multihead finite automata. First, we
show that every multilinear infinite word can be expressed in a certain form which is amenable
to recognition by these automata. Then we show, using this form, that every multilinear
infinite word can be determined by a one-way multihead deterministic finite automaton
(I:multi-DFA).

Following the definition in the previous section, a multilinear infinite word can be viewed
as a pair [g,t], where ¢ is a term list of m triples [r;,a;,b;]. We say that two such pairs
(or two term lists) are equivalent if they express the same multilinear word. Notice that if
two term lists t1, ¢ are equivalent, then the first term of ¢; begins with the same symbol as
the first term of t5. We say that ¢; and to are strongly equivalent if they are equivalent
and if the last term of ¢; begins with the same symbol as the last term of ¢5. Any term 1
with a; > 0 we call a growth term. Any pair [¢, ] can be rotated, yielding the equivalent
pair [q 7%, [¢[2],...,t[m],[r1,a1,b1 + a1]]]. In the proofs below, we allow a growth term
to temporarily have a negative b; if it can later be “rotated away” (made nonnegative by
repeated rotations). To this end, when b; < 0, we define rotation of the pair [q rl_bl ,t] to
yield the equivalent pair [g, [t[2],...,t[m], [r1,a1,b1 + a1]]]. For use below, we give several
conditions which a pair or term list may or may not satisfy.

Condition 1. For every i from 1 to m, b; > 1.
Condition 2a. For every i from 1 to m — 1, r[1] # 711[1].
Condition 2b. If m > 2, r1[1] # rpn[1].

For example, take the multilinear infinite word
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a = [] (abc)™aba™ = ababcabaabcabcabaa- - -
n>0

The multilinear pair [A, [[abc, 1, 0], [ab, 0, 1], [a, 1, 0]]] expresses a but does not meet
any of the three conditions. However, the equivalent pair [ab, [[a, 1, 1], [b, 0, 1], [cab, 1, 1]]]
meets all three conditions, giving

a = ab [] a"*!b(cab)"t!
n>0

We will show that every multilinear infinite word can be expressed as a pair satisfying
conditions 1, 2a, and 2b. The proof outline is first to show that every multilinear term list
has an equivalent term list satisfying condition 2a (Lemma 12), and next to show that every
multilinear pair satisfying condition 2a is equivalent to a pair satisfying conditions 1, 2a,
and 2b (Theorem 15). The notion of strong equivalence is used in the proof of Theorem 15,
where we take a term list satisfying condition 2a, rotate it so that it satisfies 2b but now has
a portion which does not satisfy 2a, and then replace that portion with a strongly equivalent
one satisfying 2a, so that the whole then satisfies 2a and 2b.

» Lemma 9. Given a multilinear term list [[r1,a1,b1],[r2,a2,bs]] such that a; = 0 and
as > 0, there is a strongly equivalent term list meeting condition 2a.

Proof. Let s = . Suppose there is an i such that s[i] # r5[1]. Take the first such 4. If i = 1,
we can just return [[s, 0, 1], [ro, as, ba]]. Otherwise, we split s at ¢ and return [[s[1]--- s[i —
1]},0,1], [s[¢] - - - s[|sl]], 0, 1], [r2, a2, ba]]. So say there is no such i. Suppose there is an i such
that ra[i] # r2[1]. Take the first such . Since [[s 72,0, 1], [r2, az, by — 1]] is equivalent to the
original term list, we can return [[s 7o[1] - - - ro[i — 1], 0, 1], [r2[i] - - - r2[|72]], 0, 1], [r2, a2, ba — 1]].
So say there is no such i. Then every symbol in s and ry equals r3[1]. So return [[r2[1], |r2] -
az, |s| + |ra| - ba]]. <

» Lemma 10. Given a multilinear term list [[r1,a1,b1],[r2, az,bs]] such that a1 > 0 and
as > 0, there is a strongly equivalent term list meeting condition 2a.

Proof. Suppose ¢ = r§. Then rllm‘ = r‘;ll, so by Theorem 1.5.3 of [1], there are k,I > 0
such that r; = 2* and ry = 2! for some string z. Then [[z, % ~aq + ||7j72‘ -ag, % by + % -b3]
meets the condition. So say ry # r§. Let p be the longest common prefix of r{ and
ry. If p = A, then [[r1,a1,b1],[r2,a2,b2]] already meets the condition. Otherwise, let

¢ = (Jp| mod |r]) + 1, let d = % (rounded down), let e = (|p| mod |r2|) + 1, and let

f= ‘%I (rounded down). Then ri[c] # rale]. Suppose ¢ = 1. Let u be the term list
[[r1,al,bl +d], [r2l€] - - - r2[|r2]], 0, 1], [r2, a2, b2 — f — 1]]. Then w is equivalent to the original
term list. Its first term already starts with a different symbol than its second term, while by
Lemma 9, its last two terms can be replaced with an equivalent term list meeting condition
2a. Sosay ¢ # 0. Let u be the term list [[ri[1]---r1[c—1]],0,1], [r1[c] - - - ra[|ra|]ra[1]) - - - e —
1]],al,b1 +d], [r2[e] - - - r2[|72]], 0, 1], [r2, ag, b2 — f — 1]]. Then w is equivalent to the original
term list. Its second term already starts with a different symbol than its third term, while
by Lemma 9, its first two terms and last two terms can be replaced with equivalent term
lists meeting condition 2a. |

» Lemma 11. Given a multilinear term list [[r1, a1, b1], [r2, az, ba]] such that ag = 0, there is
an equivalent term list meeting condition 2a.
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Proof. If a; = 0, then we can just join the terms, returning [[r?*732,0,1]]. So say a; > 0.

Let s = 7“32. Then s = ri x for some i > 0 and string = such that r; is not a prefix of
x. If x = X, return [[r1,a1,b; + i]]. Let p be the longest common prefix of r; and z. If
p = A\, return [[r1, a1,b1 + 1], [2,0,1]]. Otherwise, r; = py and & = pz for some strings y, z.
Let u be the term list [[p, 0,1], [yp, a1,b1]]. By Lemma 9, there is an equivalent term list u’
meeting condition 2a whose last term begins with the same symbol as y. If z = A, then v/ is
equivalent to the original term list, and we are finished. Otherwise, append to u’ the term
[2,0,1]. Now u' is equivalent to the original term list. Further, since z begins with a different
symbol than does y, v’ meets condition 2a, and we are finished. |

» Lemma 12. Given a multilinear term list t, there is an equivalent term list meeting
condition 2a.

Proof. We proceed by induction on |¢|. If |¢| < 1, then condition 2a is already met, so just
return ¢. If |t| = 2, then by Lemmas 9, 10, and 11, the result holds. So say |t| > 2. Suppose
for induction that the result holds for any term list of size less than |¢|. Then by the induction
hypothesis, there is a term list u equivalent to [¢[1],...,¢[m — 1]] and meeting condition 2a.
Let © = [u[l],...,u[lu|—1]] and let y = u[|u|]. Then again by the induction hypothesis, there
is a term list v equivalent to [y, {[m]] and meeting condition 2a. So x 4 v is equivalent to
t. Now, z and v each meet condition 2a. Further, since v is equivalent to [y, t[m]], the first
term of v begins with the same symbol as y. Since u met condition 2a, the last term of z
begins with a different symbol than does y. Hence = 4+ v meets condition 2a. |

» Lemma 13. Given a multilinear term list t whose last term is a growth term, there is a
strongly equivalent term list meeting condition 2a.

Proof. If |t| = 1, then the condition is already met, so just return ¢. Otherwise, by Lemma
12, there is a term list u equivalent to [t[1],...,¢[m — 1]] and meeting condition 2a. Let
x = [u[l],...,u[Jul — 1]] and let y = w[|u|]. By Lemmas 9 and 10, there is a term list v
equivalent to [y, t[m]], meeting condition 2a, and whose last term starts with the same symbol
as does t[m]. So z + v is strongly equivalent to t. Now, 2 and v each meet condition 2a.
Further, since v is equivalent to [y, t[m]], the first term of v begins with the same symbol as
y. Since u met condition 2a, the last term of x begins with a different symbol than does y.
Hence x 4+ v meets condition 2a. |

» Lemma 14. Given a multilinear pair [q,t] such that t contains exactly one growth term,
there is an equivalent pair meeting conditions 2a and 2b.

Proof. If |t| = 1, then [g, t] already meets the conditions. So say |t| > 1. Rotate [g,¢] until
t[1] is the growth term. Let s = 7‘32 ---rbm_ Suppose ¢ = s r¥. Then r¥ = s, so by
Theorem 1.5.3 of [1], there are k,l > 0 such that r; = z¥ and s = 2! for some string z. Then
[g,t] is ultimately periodic, so [g, [z, 0, 1]] is an equivalent pair which meets the conditions.
So say r{ # s r{. Let p be the longest common prefix of r{ and s r{. Then p is a prefix
of s 1. If p = A, then [g,t] already meets the conditions. Otherwise, let u be the term
list [[r1,0,1],[r1,a1,b1 — 1],[s,0,1]]. The pair [¢,u] is equivalent to [g,t]. Now rotate [q, u]
and combine terms to give [[r1,a1,b1 — 1], [s r1,0,1]]. The string s r; has the form pz for
some = # A and p has the form 7{ y for some i > 0 and string y such that r; = yz for some
z # A. Notice that x[1] # z[1]. If y = X then we have [[r1,a1,b; — 1+ 4], [z,0,1]] and we
are finished. Otherwise, we have [[r1,a1,b1 — 1+ 4], [y, 0,1], [z, 0, 1]], which is equivalent to
[[y,0,1], [zy,a1,b1 — 1 +i], [, 0,1]]. Rotating twice, we get [[z,0,1],[y,0,1], [zy,a1,b1 — 1 +
i+ a1]]. By Lemma 13, there is an equivalent term list whose last term starts with the same
symbol as does z. Then ¢ paired with this term list meets the conditions. <
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» Theorem 15. Let o be a multilinear infinite word. Then a has the form

q H Ta1n+b1 a2n+b2 . r;znmn+bm
n>0

for some m > 0, string q, non-empty strings r;, and nonnegative integers a;, b; where
a; +b; > 0, such that

for every i from 1 tom, b; > 1,
for every i from 1 to m — 1, r;[1] # rip1[1], and
if m>2, m[1] # rm[1].

Proof. « can be viewed as a pair [g,t], where ¢ is a term list of m triples [r;, a;, b;]. We will
give an equivalent pair meeting conditions 1, 2a, and 2b. First, by Lemma 12, there is a
term list v which is equivalent to ¢ and which meets condition 2a. We will give a pair [¢/, v/]
which is equivalent to [¢,u] and meets conditions 2a and 2b. If w is empty, just set ¢’ = ¢
and v’ = u. Otherwise, suppose u contains no growth terms. Then u can be contracted into
a single term, so set ¢’ = ¢ and v’ = [1"11’1 ---rbm 0,1]. So suppose u contains exactly one
growth term. Then by Lemma 14, there is a multilinear pair [¢’, u/] which is equivalent to
[¢,u] and meets conditions 2a and 2b. Finally, suppose u contains more than one growth
term. Let u[i] be the first growth term in u. Let [¢/,u'] be the result of rotating [q, u] by @
terms. Now v’ ends with the growth term wu[i]. The first symbol of u/[1 ] (u[i + 1)) differs
from the first symbol of u/[m] (u[i]), so ' meets condition 2b. Further, v’ meets condition
2a, except that the first symbol of w'[m — 4] may equal the first symbol of u/[m —i+1]. Using
Lemma 13, replace the terms from m — i to m with a strongly equivalent term list meeting
condition 2a. Now u’ meets conditions 2a and 2b. Finally, now that we have an equivalent
pair which meets conditions 2a and 2b, we can rotate it until condition 1 is met. For each
term i, if a; = 0, then already b; > 0, whereas if a; > 0, then each rotation increases b; to
b; + a;. So repeatedly rotating [¢’, v'] will eventually cause it to meet condition 1. <

» Theorem 16. Every multilinear infinite word is in w(1:multi-DFA).

Proof. Take any multilinear infinite word a. By Theorem 15, a can be expressed in a form

q [ r§rrtbrpgentbz o pamntbn eeting the conditions of that theorem. If m = 1, then a
n>0

is ultimately periodic, so « is in w(REG) C w(l:multi-DFA). So say m > 2. Let A be a
one-way 2-head deterministic finite automaton, operating as follows. First, A checks that the
input begins with ¢, moving both heads to the right after each symbol. Next, A keeps one
head stationary while using the other head to check the n = 0 subword, verifying that each
r; occurs b; times. Now one head is at the beginning of the n = 0 subword and the other
head is at the beginning of the n = 1 subword. For each j > 1, A checks the n = j subword

T

as follows. For each ¢ from 1 to m, A first uses its right head to checks for a; occurrences
of r;, keeping its left head stationary. Then A moves both heads to the right, checking for
occurrences of r; under the left head until no more are found, and rejecting if the symbol
under the right head ever differs from the symbol under the left head. After a;(j — 1) 4+ b;
occurrences of r;, the left head will encounter the first symbol of ;41 (or rq if ¢ = m). Since,
by the conditions of Theorem 15, this symbol is different from the first symbol of r;, A is
now at the start of term 7 + 1, and can proceed to check this term, and so on until it has
checked all m terms, at which point it moves on to subword n = j + 1. If any input symbol
causes a check to fail, A rejects; otherwise, when A reaches end of input, it accepts. Now
A recognizes Prefix(«), the full prefix language of . Since Prefix(«) determines «, « is in
w(1:multi-DFA). <
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Finally, we give a simple example of an infinite word in w(1:multi-DFA) which is not
multilinear.

» Theorem 17. Not every infinite word in w(1:multi-DFA) is multilinear.

Proof. Let a be the infinite word [] a®"b = a'ba®ba’ba®b---. Clearly « is not multilinear.
n>0
Let A be a one-way 2-head deterministic finite automaton, operating as follows. Initially, A
keeps one head stationary while using the other head to check that the input begins with ab.
Subsequently, A moves both heads to the right. For each a under the left head, A checks for
two occurrences of a under the right head, while for each b under the left head, A checks
for one occurrence of b under the right head. If any input symbol causes a check to fail, A
rejects; otherwise, when A reaches end of input, it accepts. Now A recognizes Prefix(«), the
full prefix language of . Since Prefix(a:) determines «a, « is in w(l:multi-DFA). <

6 Conclusion

In this paper we have given several results aimed at building up a classification of infinite
words with respect to which classes of automata can determine them. To associate automata
with infinite words, we used the concept of prefix languages. This concept can be applied not
just to automata, but to arbitrary language classes, offering many opportunities for further
research. For a given language class, we can ask what class of infinite words it determines.
From the other direction, for a given infinite word, we can ask in what language classes
it can be determined. It is hoped that work in this area will help to establish a theory
of the complexity of infinite words as determined by their prefix languages. One specific
task would be to further characterize the infinite words determined by one-way multihead
deterministic finite automata (1:multi-DFA), beyond the result established in this paper,
that the multilinear infinite words are properly contained by this class.
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