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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 13502 “Approaches
and Applications of Inductive Programming”. After a short introduction to inductive program-
ming research, an overview of the talks and the outcomes of discussion groups is given.
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Inductive programming (IP) research addresses the problem of learning programs from
incomplete specifications, such as input/output examples, traces, or constraints. In general,
program synthesis is a topic of interest to researchers in artificial intelligence as well as in
programming research since the 1960s [2]. On the one hand, this research aims at relieving
programmers from the tedious task of explicit coding on the other hand it helps to uncover
the complex cognitive processes involved in programming as a special domain of complex
problem solving. From the beginning, there were two main directions of research – deductive
knowledge based approaches and inductive machine learning based approaches. Due to the
progress in machine learning, over the last decades the inductive approach currently seems
to be the more promising.

Researchers working on the topic of IP are distributed over different communities, espe-
cially inductive logic programming (ILP) [12, 6], evolutionary programming [13], functional
programming [15, 5, 10], grammar inference [1], and programming languages and verification
[7]. Furthermore, domain specific IP techniques are developed for end-user programming
[4, 9] and in the context of intelligent tutoring in the domain of programming [8]. In cognitive
science, researchers concerned with general principles of human inductive reasoning have
constructed computer models for inductive generalization which also have some relation to
IP [3, 16].
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In general, approaches can be classified by (1) the strategy of program construction which
can be example-driven or generate-and-test driven; (2) the implicit or explicit restriction
bias which can be Horn clauses, functional programs, or domain specific languages possibly
with further constraints given as meta-interpreters, templates or program schemes; (3) the
possibility to consider background knowledge.

IP research had its first boost in the 1970s in the context of learning Lisp programs from
examples. Due to only limited progress, this direction of research decayed and in the 1990s
was newly addressed in the context of ILP and evolutionary programming. Again, after first
promising results, disappointment set in [14, 11]. However, over the last years, a new revival
in IP research can be observed in different communities and promising results, for example
in the domain of enduser programming, give rise to new expectations.

Therefore, in the Dagstuhl Seminar AAIP we brought together researchers from these
different communities as well as researchers of related fields. The possibility to discuss and
evaluate approaches from different perspectives helped to (a) gaining better insights in general
mechanisms underlying inductive programming algorithms, (b) identifying commonalities
between induction algorithms and empirical knowledge about cognitive characteristics of
the induction of complex rules, and (c) open up new areas for applications for inductive
programming in enduser programming, support tools for example driven programming, and
architectures for cognitive systems.

The presentations covered several aspects of inductive programming and were grouped in
the topic sessions

Inductive Programming Systems and Algorithms (with an introductory talk by Stephen
Muggleton),
Enduser Programming (with an introductory talk by Sumit Gulwani),
Intelligent Tutoring and Grading,
Cognitive Aspects of Induction (with an introductory talk by José Hernández-Orallo),
Combining Inductive Programming with Declarative Programming and with Other
Approaches to Program Synthesis (with an introductory talk by Luc de Raedt).

In an initial discussion round three focus topics were identified and further discussed in
working groups

Comparing Inductive Logic and Inductive Functional Programming as well as other
Approaches to Program Synthesis,
Potential New Areas of Applications and Challenges for Inductive Programming,
Benchmarks and Metrics.

Concluding Remarks and Future Plans
In the final panel discussion the results of the seminar as well as future plans were identified.
Participants stated that they learned a lot about different inductive programming techniques
and tools to try. The general opinion was that it was very inspiring to have researchers
from different backgrounds. To facilitate mutual understanding it was proposed to give
introductory lectures, define the vocabulary of the different groups, collect a reading list,
and identify common benchmark problems.

To progress in establishing inductive programming as a specific area of research it was
proposed to write a Wikipedia page, and to collect introductory literature from the different
areas covered in the seminar. Furthermore, plans for joint publications and joint grant
proposals were made.

This seminar was highly productive and everybody hoped that there will be a follow-up
in the near future.
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3 Overview of Talks on: Inductive Programming Systems and
Algorithms

3.1 Predicate invention and learning of recursive logic programs
Stephen Muggleton (Imperial College London, UK)

License Creative Commons BY 3.0 Unported license
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Joint work of Lin, Dianhuan; Pahlavi, Niels; Tamaddoni-Nezhad, Alireza
URL http://ilp.doc.ic.ac.uk/metagolD/

Inductive Logic Programming (ILP) is the sub-area of Machine Learning concerned with
inductive inference of logic programs. Since logic programs can be used to encode arbitrary
computer programs, ILP is a highly flexible form of Machine Learning, which has allowed
it to be successfully applied in a number of complex areas. However, despite this fact,
state-of-the-art ILP systems such as FOIL, Golem and Progol are unable to effectively learn
representations such as regular and context-free grammars from example sequences. Such
tasks require the automated introduction of new recursively defined non-terminals into the
description language. Within ILP this is referred to as predicate invention. Early ILP systems
achieved limited forms of predicate invention. However, this approach was abandoned since
it was unclear how to bound the complexity of the search involved. A recent review of
ILP emphasised an urgent need for renewed attention to Predicate Invention in order to
broaden the applications of ILP. Recent work has substantially generalised this idea to
support learning of regular and context-free grammars as well as higher-order dyadic datalog
programs. The key innovation was the introduction of a Prolog meta-interpreter driven by a
set of higher-order Datalog definite clauses. Instantiation of the predicate symbols of these
higher-order clauses is achieved using a form of ground abduction. The Meta-interpreter is
used to prove the set of examples. If any sub-proof fails then a rule is formed by abduction,
allowing the proof to be completed. A set of abduced rules which allows all the positive
examples and none of the negative examples to be proved comprises a valid hypothesis.
Completeness of the inductive process is ensured by the use of a complete form of ground
abduction. The proof space of the meta-interpreter is several orders of magnitude more
efficient than the refinement-graph search of the state-of-the-art ILP systems.

3.2 Cumulative Learning by Refinement and Automated Abstraction
Robert J. Henderson (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Robert J. Henderson

Main reference R. J. Henderson, “Cumulative Learning in the Lambda Calculus,” PhD thesis, Imperial College
London, 2014.

I describe a new approach to ’cumulative learning’, in which an inductive inference system
automatically acquires knowledge necessary for solving harder problems through experience of
solving easier ones. I have implemented this approach in an inductive functional programming
system called RUFINSKY, which employs an alternating two-phase policy in order to solve
a sequence of related but successively more difficult learning problems. In the first phase, a
hypothesis is learned to fit training data using a guided search technique called refinement
which has been adapted from inductive logic programming. In the second phase, new
elements of background knowledge are abstracted from syntactic patterns in hypotheses

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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http://creativecommons.org/licenses/by/3.0/
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R.\protect \kern +.1667em\relax J. Henderson, ``Cumulative Learning in the Lambda Calculus,'' PhD thesis, Imperial College London, 2014.
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by anti-unification of subterms and a form of inverse beta-reduction. The new background
knowledge has the effect of shifting RUFINSKY’s inductive bias, allowing it to automatically
adapt to a problem domain. Cumulative learning techniques are promising as a route towards
practical AIXI-style Artificial General Intelligence (AGI). Taking into account new literature
on the potential existential risks to humanity posed by AGI, I discuss whether research into
cumulative learning should or should not be considered ethical.

3.3 Example-driven Inductive Functional Programming with IGOR2
Emanuel Kitzelmann (Universität Duisburg – Essen, DE)

License Creative Commons BY 3.0 Unported license
© Emanuel Kitzelmann

Main reference E. Kitzelmann, “A Combined Analytical and Search-based Approach for the Inductive Synthesis of
Functional Programs,” KI – Künstliche Intelligenz, 25(2):179–182, 2011; see also corresponding
PhD Thesis, Faculty of Information Systems and Applied Computer Sciences, University of
Bamberg, 2010.

URL http://dx.doi.org/10.1007/s13218-010-0071-x
URL http://opus4.kobv.de/opus4-bamberg/frontdoor/index/index/docId/250

IGOR2, the inductive functional programming (IFP) system presented in this talk, learns
recursive functional programs from incomplete specifications such as input-output examples
or computation traces. The main contribution of IGOR2 is a combination of techniques
from generate-and-test systems with techniques from analytical approaches. The goal is to
gain a better trade-off between expressivity of the hypothesis language and efficiency of the
synthesis procedure. Therefore, IGOR2 searches in program spaces but computes candidate
programs directly from the specification. IGOR2 has been successfully applied in different
domains such as list processing and strategy learning.

3.4 gErl: an Inductive Programming System with user-defined
operators

Fernando Martínez-Plumed (Polytechnic University of Valencia, ES)

License Creative Commons BY 3.0 Unported license
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a general learning system with user-defined operators,” arXiv:1311.4235v1 [cs.LG] , 2013
URL http://arxiv.org/abs/1311.4235v1

GErl was born as an advocacy of a more general framework for machine learning: a general
rule-based learning system where operators can be defined and customised according to
the problem, data representation and the way the information should be navigated. Since
changing operators affect how the search space needs to be explored, heuristics are learnt as a
result of a decision process based on reinforcement learning where each action is defined as a
choice of operator and rule guided by an optimality criteria (based on coverage and simplicity)
which feed a rewarding module. States and actions are abstracted as tuples of features in
a Q matrix from which a supervised model is learnt. Erlang is used to represent theories
and examples in an understandable way: examples as equations, patterns as rules, models
as sets of rules, and, to defining operators: gErl provides some meta-level facilities called
meta-operators which allow the user to define well-known generalisation and specialisation
operators in Machine Learning.
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3.5 MagicHaskeller on the Web: Inductive Functional Programming
System for Casual Programming

Susumu Katayama (University of Miyazaki, JP)

License Creative Commons BY 3.0 Unported license
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MagicHaskeller on the Web is a web-based tool for inductive functional programming in
Haskell. Its main focus is on offhandedness, and its users can use it in a similar way to
using a web search engine. In this talk, I first demonstrated its usage. Then, I explained its
implementation by shared memoization table. I concluded my presentation by discussing
possible future work, including application of the algorithm to other languages.

3.6 Project of IDRE I&D oriented to implement arbitrary DSLs by
learning and develop applications by demonstrating examples of
their execution represented on implemented DSL

Alexey Grigoryev (National Nuclear Research University MEPhI, RU)

License Creative Commons BY 3.0 Unported license
© Alexey Grigoryev
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Technology,” Journal of Computer and Systems Sciences International, 50(1):38–50, 2011.
URL http://dx.doi.org/10.1134/S1064230711010163

Inductive synthesis usually consists of two stages: 1) front-end transformation which builds
a non-recursive program using the implementation language. This programs executes
calculations specified by examples (usually is done by a program chosen by ad hoc developer).
2) Back-end transformation which properly implements inductive synthesis and has is
a recursive program as the result of it. The main property of this program is that its
unfolding-transformations allow to get a representation containing a non-recursive program
(as stated above). In IDRE I&D a front-end transformation is implemented by a program
which is synthesized by learning. It brings a possibility to represent instances on arbitrary
DSLs specified by user in learning mode. Back-end transformation supports in increment
mode, controlling structure predicate synthesis and implementation language based on non-
deterministic model of calculations. This brings possibility to develop arbitrary applications
by demonstrating examples of their execution represented on implemented DSLs.

http://creativecommons.org/licenses/by/3.0/
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4 Overview of Talks on: Enduser Programming

4.1 Flash Fill: An Excel 2013 feature
Sumit Gulwani (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
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Main reference S. Gulwani, W. Harris, R. Singh, “Spreadsheet data manipulation using examples,” Comm. of the

ACM, 55(8):97–105, 2012.
URL http://dx.doi.org/10.1145/2240236.2240260
URL http://research.microsoft.com/en-us/um/people/sumitg/flashfill.html

Flash Fill is a new feature in Excel 2013 for automating string transformations by examples.
In this talk, I will demo Flash Fill and talk about the underlying algorithms. I will also
describe some extensions to Flash Fill that enable semantic string transformations, number
transformations, and table layout transformations.

References
1 Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.

In POPL, 2011.
2 Sumit Gulwani, William Harris, and Rishabh Singh. Spreadsheet data manipulation using

examples. Communications of the ACM, Aug 2012.

4.2 Empowering Users with Data
Benjamin Zorn (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
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Spreadsheets are valuable because they allow the free-form aggregation of data from arbitrary
sources. Users can then manipulate that data using built-in tools, including filtering,
aggregation, and visualization. Unfortunately the free- form nature of spreadsheets often
prevents relational queries from being applied to the data, limiting its value. We propose
a new language, Flare, and a new synthesis algorithm, FlashRelate, that allow users to
extract relational data from semi-structured data using examples. Flare programs combine
constraints on the contents of cells expressed as traditional regular expressions with spatial
constraints that express how cells are related on the grid. Just as regular expressions result
in a sequence of matching strings, Flare programs produce a set of tuples containing the
contents of cells matching the specified constraints. Our FlashRelate synthesis algorithm can
automatically generate Flare programs from a few positive and negative examples of tuples
in the desired output table. FlashRelate searches over a space of possible Flare programs
and iteratively builds up a solution tree, selecting the next highest ranked constraint (similar
to Kruskal’s spanning tree algorithm). If the resulting tree does not satisfy the negative
examples, the algorithm backtracks. We describe the algorithm and evaluate its effectiveness
in extracting structured data from real semi-structured spreadsheets.
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4.3 Test-Driven Synthesis
Daniel Perelman (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Perelman, Daniel; Gulwani, Sumit; Grossman, Dan; Provost, Peter

Programming-by-example technologies allow an end-user to create simple programs to
automate their workflows merely by providing input/output examples, but existing systems
are specific to the domain-specific language (DSL) they were designed for. We present a new
programming-by-example language LaSy which is parameterized by an arbitrary DSL that
may contain conditionals and loops and therefore able to synthesize programs in any domain.
In LaSy, the user provides a sequence of increasingly sophisticated input/output examples
along with an expert-written DSL definition. LaSy is powered by our novel test-driven
synthesis methodology which performs program synthesis iteratively, consuming a sequence
of input/output examples one at a time, and DSL-based synthesis which efficiently synthesizes
programs within a given DSL. We present applications of our synthesis methodology to
end-user programming with LaSy programs for transformations over strings, XML, and table
layouts. We compare our synthesizer on these applications to state-of-the-art DSL-specific
synthesizers as well to the general purpose synthesizer Sketch.

5 Overview of Talks on: Intelligent Tutoring and Grading

5.1 Autograder: Automated Feedback Generation for Programming
Problems

Rishabh Singh (MIT – Cambridge, US)

License Creative Commons BY 3.0 Unported license
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Main reference R. Singh, S. Gulwani, A. Solar-Lezama, “Automated Feedback Generation for Introductory

Programming Assignments,” in SIGPLAN Notices, 48(6):15–26, 2013.
URL http://dx.doi.org/10.1145/2491956.2462195

In this talk, I will present the Autograder tool for providing automated feedback for intro-
ductory programming problems. Using a reference implementation and an error model, the
tool automatically derives minimal corrections to student’s incorrect solutions, providing
them with a measure of exactly how incorrect a given solution was, as well as feedback about
what they did wrong. Our results on thousands of student attempts from edX 6.00x course
show that relatively simple error models can correct a significant fraction of all incorrect
submissions. Towards the end of the talk, I will also present some of the recent work and
many interesting open research challenges.
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5.2 Automated Grading for DFA Constructions
Dileep Kini (University of Illinois – Urbana Champaign, US)
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Constructions,” in Proc. of the 23rd Int’l Joint Conf. on Artificial Intelligence (IJCAI’13),
pp. 1976–1982, AAAI, 2013; available as pre-print from the author’s webpage.
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One challenge in making online education more effective is to develop automatic grading
software that can provide meaningful feedback. This paper provides a solution to automatic
grading of the standard computation-theory problem that asks a student to construct a
deterministic finite automaton (DFA) from the given description of its language. We focus on
how to assign partial grades for incorrect answers. Each student’s answer is compared to the
correct DFA using a hybrid of three techniques devised to capture different classes of errors.
First, in an attempt to catch syntactic mistakes, we compute the edit distance between the
two DFA descriptions. Second, we consider the entropy of the symmetric difference of the
languages of the two DFAs, and compute a score that estimates the fraction of the number
of strings on which the student answer is wrong. Our third technique is aimed at capturing
mistakes in reading of the problem description. For this purpose, we consider a description
language MOSEL, which adds syntactic sugar to the classical Monadic Second Order Logic,
and allows defining regular languages in a concise and natural way. We provide algorithms,
along with optimizations, for transforming MOSEL descriptions into DFAs and vice- versa.
These allow us to compute the syntactic edit distance of the incorrect answer from the
correct one in terms of their logical representations. We report an experimental study that
evaluates hundreds of answers submitted by (real) students by comparing grades/feedback
computed by our tool with human graders. Our conclusion is that the tool is able to assign
partial grades in a meaningful way, and should be preferred over the human graders for both
scalability and consistency.

5.3 Automatically Generating Problems and Solutions for Natural
Deduction

Umair Zafrulla Ahmed (Indian Institute of Technology – Kanpur, IN)
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In this talk, I will present our recent work on automatically generating problems and solu-
tions for Natural Deduction proofs. Natural deduction, which is a method for establishing
validity of propositional type arguments, helps develop important reasoning skills and is
thus a key ingredient in a course on introductory logic. We present two core components,
namely solution generation and practice problem generation, for enabling computer-aided
education for this important subject domain. The key enabling technology is use of an
offline-computed data-structure called Universal Proof Graph (UPG) that encodes all possible
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applications of inference rules over all small propositions abstracted using their bitvector-
based truth-table representation. This allows an efficient forward search for solution gen-
eration. More interestingly, this allows generating fresh practice problems that have given
solution characteristics by performing a backward search in UPG. We obtained around 300
natural deduction problems from various textbooks. Our solution generation procedure
can solve many more problems than the traditional forward- chaining based procedure,
while our problem generation procedure can efficiently generate several variants with desired
characteristics.

5.4 Personalized Mathematical Word Problem Generation
Oleksandr Polozov (University of Washington – Seattle, US)

License Creative Commons BY 3.0 Unported license
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Word problems are an established technique for teaching mathematical mathematical modeling
skills in elementary and middle school education. However, the effectiveness of word problems
widely varies among students. A large fraction of students finds word problems unconnected
to real life, artificial, and uninteresting. Most students find them much more difficult than
the corresponding symbolic representations. To account for these opinions, an ideal textbook
should consist of a individually crafted progression of unique word problems, that form a
personalized plot.

We propose a novel technique for automatic generation of personalized word problems. In
our system, word problems are generated procedurally using answer-set programming from
general specification. The specification includes tutor requirements (mathematical features,
problem class) and student requirements (personalization, plot characters, setting). Our
system generates a narrative plot, a mathematical representation, and a natural language
description according to the provided specification. It makes use of a rich language of plot
elements that can be parametrized by a narrative setting (fantasy world, science fiction,
etc.). We are currently investigating the connection of our plot language with FrameNet, the
database of semantic knowledge elements.

6 Overview of Talks on: Cognitive Aspects of Induction

6.1 Small but deep. What can we learn from inductive programming?
José Hernández-Orallo (Polytechnic University of Valencia, ES)
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Main reference J. Hernández-Orallo, “Deep Knowledge: Inductive Programming as an Answer,” Manuscript, 2013.
URL http://users.dsic.upv.es/~flip/papers/deepknowledge2013.pdf

Inductive programming has focussed on problems where data are not necessarily big, but
representation and patterns may be deep (including recursion and complex structures). In
this context, we will discuss what really makes some problems hard and whether this difficulty
is related to what humans consider hard. We will highlight the relevance of background
knowledge in this difficulty and how this has influence on a preference of inferring small
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hypotheses that are added incrementally. When dealing with the techniques to acquire,
maintain, revise and use this knowledge, we argue that symbolic approaches (featuring
powerful construction, abstraction and/or higher-order features) have several advantages
over non-symbolic approaches, especially when knowledge becomes complex. Also, inductive
programming hypotheses (in contrast to many other machine learning paradigms) are usually
related to the solutions that humans would find for the same problem, as the constructs
that are given as background knowledge are explicit and shared by users and the inductive
programming system. This makes inductive programming a very appropriate paradigm
for addressing and better understanding many challenging problems humans can solve but
machines are still struggling with. Some important issues for the discussion will be the
relevance of pattern intelligibility, and the concept of scalability in terms of incrementality,
learning to learn, constructive induction, bias, etc.

6.2 A Cognitive Model Approach to Solve IQ-Test Problems
Marco Ragni (Universität Freiburg))
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Current computational approaches outperform humans for most reasoning problem classes.
Nevertheless, humans do perform better for some specific problem classes, for instance when
only imprecise information is available or “insight” is a necessary precondition. Typically, in
such domains not all information is given, therefore, functions and operators must often first
be identified. By imitating human approaches it is possible to develop artificial intelligence
(AI) systems that can deal with problems in such domains (e.g., IQ-test problems). In my talk
I will elaborate on two specific domains: number series and IQ-tests. Results and limitations
of the approaches are discussed.

6.3 Applying IGOR to Cognitive Problems
Ute Schmid (Universität Bamberg, DE)
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Research, 12(3–4):237–248, 2011.
URL http://dx.doi.org/10.1016/j.cogsys.2010.12.002

IGOR is an inductive programming system based on an analytical, example-driven technique
for generalization. IGOR learns recursive functional programs (in Maude or Haskell) from a
small set of positive examples. Main features of IGOR are the possibility to rely on back-
ground knowledge, automated invention of sub-functions, guaranteed extensional corrections
wrt. the input/output examples and guaranteed termination of the induced programs. Main
restrictions of IGOR are that the given input/output examples need to be correct and to
cover the first k instances over the input data type. While induction typically is very fast
(due to the analytical approach), IGOR can run into memory problems when background
knowledge is provided due to its generalization strategy.
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Aside from typical applications in the context of automated program construction, we
investigated how IGOR can learn generalized rules in cognitive domains. Taking the cognitive
perspective, IGOR addresses the acquisition of constructive rules. For example, it can
generalize a solution strategy for the Tower of Hanoi from an example solution trace for
an Hanoi problem with three discs. Further applications we investigated are from typical
planning domains such as blocksworld, learning relations such as the transitivity of “isa”,
simple natural language grammars, and – most recently – rules to continue number series.
While application of IGOR to examples from such cognitive domains is straight-forward, there
is no general mechanism to provide the necessary examples in the necessary representation.
That is, we need to explore how IGOR can be embedded in a system which generates suitable
example experience.

6.4 Learning Analogies
Tarek R. Besold (Universität Osnabrück, DE)
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Analogical reasoning is a core capacity of human cognition. In an analogy superficially
dissimilar domains of knowledge are regarded as similar with respect to their relational
structure. Discovering this structure allows us to transfer knowledge from one domain to
another.

Over the last decades, a significant body of research in cognitive AI and cognitive science
studied how this capacity can be modeled in computational terms. Most systems are focusing
on the process of analogical mapping between given domain theories, i.e., on establishing
correspondences between elements of the source and the target domain of the analogy, and
on the following transfer of knowledge from source to target.

We want to combine the abstract mechanism of analogy-making with learning capacities
from IP/ILP. Our aim is to develop a two-level model for cross-domain analogies. Starting
out from independent sets of observations from several domains, we want to learn the most
likely governing base theory within each domain by means of IP/ILP. In parallel, we are
also trying to establish an overall cross-domain general theory encompassing the abstract
structure underlying the learned base theories. If a general theory, i.e, an analogy between
domains can be established, this theory, in turn, can inform the base theories in each domain.

6.5 Towards Quantifying Program Complexity and Comprehension
Mike Hansen (Indiana University – Bloomington, US)
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Psychologists have studied the behavioral aspects of programming for at least 40 years. In the
last few decades, multiple qualitative cognitive models of program comprehension have been
proposed. These models describe important aspects of a programmer’s knowledge, and provide
a framework for discussing the dimensions along which a program’s cognitive complexity
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may vary. In this talk, we outline work being done on a quantitative cognitive model that
seeks to operationalize the shared aspects of existing qualitative models. Taking inspiration
from the ACT-R cognitive architecture, our model will include active vision, behavioral,
and declarative/spatial memory components. In the context of inductive programming, we
propose using this model for the automated culling of generated programs. Less complex
programs – i.e., those that minimize some measure of resource expenditure in the model –
may be preferred by human operators.

7 Overview of Talks on: Combining Inductive Programming with
Declarative Programming and with Other Approaches to Program
Synthesis

7.1 Towards declarative languages for learning
Luc De Raedt (KU Leuven, BE)

License Creative Commons BY 3.0 Unported license
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One of the long standing goals of artificial intelligence and machine learning is to develop
machines that can be programmed automatically. To realize this dream, researchers have
investigated programming and modeling languages that support machine learning. These
languages provide primitives for specifying the machine learning task of interest, that is,
the training instances and constraints on the programs to be learned, and the system
should automatically solve the learning task. This is an effective way to realize inductive
programming.

In this context, I shall report on three different languages for learning: 1) the probabilistic
(logic) programming language ProbLog [1, 2], which extends Prolog with probabilistic facts
and which supports parameter estimation, 2) the modeling language MiningZinc [3], which
extends the constraint programming language MiniZinc with primitives for data mining, and
which allows to declaratively model (and solve) a wide variety of pattern mining problems,
and 3) kLog [4], the logical and relational language for kernel-based learning, which allows
users to specify logical and relational learning problems at a high level in a declarative way.
I shall also discuss how these languages can be used for automatic and inductive programming.

References
1 http://dtai.cs.kuleuven.be/problog/index.html
2 D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon, G. Jans-

sens, and L. De Raedt. Inference and learning in probabilistic logic programs using weighted
Boolean formulas. arXiv preprint arXiv:1304.6810 (to appear in Theory and Practice of Lo-
gic Programming), 2013. http://arxiv.org/abs/1304.6810

3 T. Guns, A. Dries, G. Tack, S. Nijssen, and L. De Raedt. MiningZinc: A Modeling Language
for Constraint-based Mining, In Proceedings of IJCAI, 2013.
https://lirias.kuleuven.be/bitstream/123456789/399282/1/miningzinc_ijcai_final.pdf

4 P. Frasconi, F. Costa, L. De Raedt, K. De Grave. kLog: A Language for Logical and
Relational Learning with Kernels. arXiv:1205.3981, 2012. http://arxiv.org/abs/1205.3981
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7.2 Probabilistic programming and automatic programming
Iurii Perov (University of Oxford, GB)
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Probabilistic programming has recently attracted much attention in Machine Learning and
Computer Science communities. Probabilistic programming (PP) took from “traditional”
programming its convenient way to define generative models as “algorithms”, which in the
case of PP generally contain much uncertainty. In addition to evaluation (program execution)
component, probabilistic programming involves inference, so that models can converge from
its prior to its posterior (given observations).

That is, in traditional programming you usually define inputs, define a precise algorithm,
and computer gives you outputs. In probabilistic programming you define inputs, specify
outputs (i.e. observations) or at least part of them (i.e. a train set), provide a prior model
with uncertainty, and computer is supposed to get you into posterior via general- and special-
purpose inference techniques (e.g. by providing you with approximate posterior distribution
on latent variables). One can imagine on some models that converging from prior to posterior
is a reduction of uncertainty given observations. Many Machine Learning problems could be
written compactly and easily in probabilistic programming languages.

The idea of combining probabilistic programming and automatic programming (i.e.
inference happens on a generative metamodel, which is written as a probabilistic program
and which produces a stochastic model – a desired synthesized program) and the draft of
road map for this direction will be introduced for discussion.

There is much connection with related fields, including Inductive Programming (especially
with Probabilistic Inductive Logic Programming and Inductive Functional Programming),
and these relations should be further explored.

7.3 Programming with Millions of Examples
Eran Yahav (Technion – Haifa, IL)
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We present a framework for data-driven synthesis, aiming to leverage the collective pro-
gramming knowledge captured in millions of open-source projects. Our framework analyzes
code snippets and extracts partial temporal specifications. Technically, partial temporal
specifications are represented as symbolic automata where transitions may be labeled by
variables, and a variable can be substituted by a letter, a word, or a regular language. Using
symbolic automata, we consolidate separate examples to create a database of snippets that
can be used for semantic code-search and component synthesis. We have implemented our
approach in a tool called PRIME and applied it to analyze and consolidate thousands of
snippets per tested API.
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7.4 Type Inhabitation Problem for Code Completion and Repair
Ruzica Piskac (Yale University, US)
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Developing modern software typically involves composing functionality from existing libraries.
This task is difficult because libraries may expose many methods to the developer. In this talk
I will describe a project called InSynth. InSynth synthesizes and suggests valid expressions of
a given type at a given program point, to help developers overcome the problems described
in the above scenarios. As the basis of InSynth we use type inhabitation for lambda calculus
terms in long normal form. For ranking solutions we introduce a system of weights derived
from a corpus of code. I will conclude with an idea how to extend this approach so that it
also automatically repairs ill-typed code expressions.

7.5 Learning a Program’s usage of Dynamic Data Structures from
Sample Executions

David White (Universität Bamberg, DE)
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Programs making heavy use of pointers are notoriously difficult to understand and analyze,
especially when the programmer is given the freedom allowed by languages such as C.
We aim to simplify such analyses by employing machine learning and pattern matching to
automatically identify the pointer-based dynamic data structures used by a program. Through
observing a sample execution of a program, we are able to discover and label operations
responsible for manipulating dynamic data structures. The output of the approach is used
for program comprehension and to partially automate contract-based verification.

7.6 SMT-based Videogame Synthesis
Sam Bayless (University of British Columbia – Vancouver, CA)
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In recent years there has been interest in using formal methods to do constraint-based content
generation for videogames, for example using Answer-Set Programming to generate mazes.
We introduce an SMT solver for directed graph reachability, and show how it can be used to
efficiently generate mazes, puzzles, and dungeons in the style of traditional 2D videogames.
We demonstrate an actual working videogame using this technique to generate levels online,
and in real-time.
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8 System Demonstrations

8.1 Storyboard Programming of Data Structure Manipulations
Rishabh Singh (MIT – Cambridge, US)
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We present the Storyboard Programming framework, a new synthesis system designed to
help programmers write imperative low-level data-structure manipulations. The goal of this
system is to bridge the gap between the “boxes-and-arrows” diagrams that programmers often
use to think about data-structure manipulation algorithms and the low-level imperative code
that implements them. The system takes as input a set of partial input-output examples, as
well as a description of the high-level structure of the desired solution. From this information,
it is able to synthesize low-level imperative implementations in a matter of minutes.

The framework is based on a new approach for combining constraint-based synthesis
and abstract-interpretation-based shape analysis. The approach works by encoding both
the synthesis and the abstract interpretation problem as a constraint satisfaction problem
whose solution defines the desired low-level implementation. We have used the framework to
synthesize several data-structure manipulations involving linked lists and binary search trees,
as well as an insertion operation into an And Inverter Graph.

9 Working Groups

9.1 Comparing Inductive Logic and Inductive Functional Programming
as well as other Approaches to Program Synthesis

Stephen Muggleton (Imperial College London, UK)
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Refinement graphs in ILP and IFP

Muggleton and De Raedt explained how refinement graphs are central to the theory of
Inductive Logic Programming (ILP). Logic programs consist of a set of definite clauses.
When formulating a hypothetical logic program, clauses can be constructed by successive
refinement operations. For instance the empty clause can be refined to a clause with a head
by adding an atom with all variables distinct. Body atoms and variable bindings can be
added by applying further refinements. Robert Henderson discussed how in his thesis he had
adapted refinement theory from ILP to Inductive Functional Programming (IFP). A key
idea was successive refinement operations which added functions, function application and
lambda variables to the initially unspecified functional program ⊥.
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Predicate invention

Muggleton described how predicate invention was a key idea in early work on Inverse
Resolution in ILP as well as more recent work on Meta-Interpretive Learning. Predicate
invention involves the introduction of auxilliary definitions to support the induction of the
target predicate. For instance, when learning a definition for reversing a list it may be
necessary to invent a predicate which appends two lists. The analogous IFP notion of function
invention was also shown to be valuable and applicable in both Kitzelman’s talk on IGOR2
and Henderson’s talk on his recently completed thesis. However, according to Kitzelman it
is not possible for IGOR2 to invent partition and append when learning quicksort because
of incompleteness in the search. Hernandez-Orallo pointed out the problems that can be
produced by generating too many auxilliary predicates, which overwhelm the search.

Abstraction methods in Formal Methods

Gulwani explained how formal methods use logic-based techniques for the specification,
development and verification of software. Within Formal Methods abstraction techniques
are used to constructed simplified models of a program, such as a finite state machine, in
order to allow model checking to be used in verification. There was a discussion about the
applicability of such abstraction methods within Inductive Programming. Henderson point
out that Abstraction made learning more effective within IFP. It was agreed that the use of
MetaRules in Meta-interpretive Learning is related to abstraction, though this needs further
investigation to understand the relationship in more detail. Michael Hansen pointed out that
multiple levels of abstraction are used by humans when carrying out programming tasks.

Search and Constraint Solving – Sat Solvers

Search is a key element of Inductive Programming which is used to uncover hypotheses
which are consistent with the given examples. De Raedt explained declarative languages
and modelling can be used to specify an Inductive Learning problem. This approach can be
used with constraint programming and Sat solvers to provide an efficient way of carrying out
machine learning tasks. In this way the constraints are presented to a solver along with the
input data, which generates candidate hypotheses.

Multi-task learning

It was discussed whether it is more effective to solve several inductive programming tasks
together. For example, Gulwani’s FlashFill system is aimed at inducing a broad class of
Inductive transformations, which include reformatting social security numbers, extracting
names from email addresses and formulating acronyms such as “IBM” from a company name
such as “International Business Machines”. Eyal Dechter suggested that it should be possible
to build common re-usable libraries which can be used multiply across such tasks.

Probabilistic reasoning versus ranking

Most Inductive Functional Programming approaches, such as Gulwani’s FlashFill, rank
hypotheses according to a score. Within other areas of Machine Learning, including ILP, it
has become common to rank hypotheses according to use Baysian ranking based on posterior
probability of the hypotheses given the examples. The relationship between informal ranking
schemes and Bayesian ones was discussed. One key difference identified was the ability to
use well-founded methods of Bayes’ prediction with the probabilistic approaches.
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Probabilistic Programs as density estimators

Yura Perov discussed the relationship between Inductive Programming and Probabilistic
Programming. In place of a deterministic algorithm, probabilistic programming involves the
use of a probabilistic generative model to transform the input to the output. Probabilistic
Programs are useful for machine learning since they can be used to directly represent a prior
of a structural space. For instance, a prior might be a latent Dirichlet allocation model, and
the program can be used to implement a Gibbs sampler for density estimation over a space
of solutions. Inductive Programming and Probabilistic Programming have been combined
over the last decade within the areas of Statistical Relational Learning and Probabilistic
inductive Logic Programming.

Development of benchmarks and data and system repositories

The group discussed the importance of developing benchmarks and repositories for comparing
approaches. It was agreed that it would be difficult to find a common data format which
would be applicable to all Inductive Programming systems. However, it was pointed out that
in practice such datasets are transformed by experimenters into the appropriate form before
application of their particular system.

Teaching materials – Joint meetings IP and ILP – Summer school

There was a discussion about the value of arranging joint meetings between the IP and ILP
communities. This could be done by way of workshop co-location and/or joint Summer
Schools. The advantage of the latter is that it could be used to develop teaching materials
for use in undergraduate and graduate courses.

9.2 Potential New Areas of Applications and Challenges for Inductive
Programming

Benjamin Zorn (Microsoft Research – Redmond, US)
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The focus of the working group was to think about the classes of applications for which
inductive programming would provide significant advantages over other machine learning
approaches. Identifying these applications would both drive the research agenda of the
community in applying the technology to important problems and also serve the basis for
commercial applications of the technology. Part of our discussion was to consider why existing
machine learning approaches, which have been very successful for certain classes of problems,
would not also be sufficient for these inductive programming applications. In our discussion,
we found that the following qualities might distinguish inductive programming solutions
from other ML approaches: abstraction level of the solution (captured by the operators and
data types available in a domain-specific language), performance of the learning process
and solution (fewer training examples needed and the ability to apply conventional code
generation techniques to the result), and readability.

In thinking generally, we made some specific observations about the class of interesting
applications. We felt that many classification tasks alone were not complex enough to allow
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inductive programming solutions to outperform existing ML techniques. Furthermore, we felt
that IP solutions to common tasks for which many traditional human-written implementations
exist, such as scheduling an airline flight, were not good candidates for applications because
synthesized solutions are likely to be significantly weaker than existing human-written ones.
A better category of task would be one-off solutions to relatively simple problems for which
an existing solution already written by a human is unlikely to exist. Examples of such tasks
include extracting data, converting data formats, transforming text (as is currently done
in Excel Flash Fill). These simple one-off applications have the negative aspect that it is
unclear whether IP addresses the problem better than other ML techniques or not.

In thinking about IP and other ML techniques, we discussed the validity of the assumption
that there are applications for which IP is a better solution. For example, could the things
that are encoded in an IP solution (such as the set of operators and types in a domain-specific
language) also be encoded as features in a neural net, etc. Is it possible that neural nets are
equally effective as IP when the output of the neural net is a program? We discussed whether
research addressing this distinction could be useful and help guide which IP applications
provide the best opportunity. For example, does the existence of loops in IP solutions
distinguish the class of applications for which IP is a better solution? Is there a middle-
ground where some of the programming language artifacts present in IP solutions, such as
types, recursion, and functional composition, are encoded into a neural net or other ML
classification structure, getting the best of both approaches simultaneously.

In considering possible applications, we discussed several fruitful areas. Applications
that require constraint solving, such as decision support, could be a productive area of
investigation. Solutions expressed as programs have the property that they are human
readable and hence can be checked for correctness and debugged as needed. Problems in this
area often have a legitimate need for auditing. Hence applications related to manipulating
data in spreadsheets or databases would be amenable to IP-based task synthesis solutions.

Reverse engineering of code from obfuscated sources is another possible area of application.
Examples of possible areas where such an approach is needed include reverse engineering
device drivers and code de-obfuscation. We all agreed that there are many common simple
tasks on mobile devices or in specific applications that could be solved using IP. For example,
simplifying the user interface to common mobile phone tasks (like sending a text message
or checking the weather) or document handling (such as printing all files linked from a web
page) would be valuable and result in relatively simple programs. Manipulating email was a
particular area we agreed was both a real problem and a significant opportunity for applying
IP.

We also discussed the problem of editing collections of pictures. The model where IP
could be applied would be to edit one picture and then apply “similar” edits to the remaining
collection of pictures, which might be quite large, saving time. A similar approach to editing
presentations could be taken. Robots are another interesting source of opportunity. An
approach where a robot is first trained to do a task by example and then uses IP to generalize
that experience is compelling and appears to be an excellent fit for IP compared to other
ML approaches. The same approach could be applied in a virtual space where an avatar is
trained to do a task and then set free to repeat it indefinitely. Gold “farming” is a common
task currently carried out in many virtual worlds by humans where automation could be
commercially lucrative (although illegal by game rules). We also considered business process
mining where many examples of traces of a process exist and a IP solution could extract
structure from the trace data.

Another part of our discussion focused on challenges. One goal for identifying applications
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is to push the state of the art on specific important problems that need to be solved with
research. We discussed several related challenges. One issue that arose was how to reliably
determine in many scenarios where one training example starts and ends. Partitioning a
stream of observations effectively into training instances is a difficult problem in itself. In
thinking about the duality of IP versus other forms of ML, we wondered if there was a
class of DSLs where there could be an automatic translation from an IP-based solution to a
neural net, etc. Other challenges we discussed include the common concerns around scale:
in the size of the hypothesis and the amount of background knowledge required. We also
consider the problem of applying datacenter computers at scale to important tasks to be
a challenge and not well investigated. This would be motivated more by having a “grand
challenge” application or benchmark to drive the research like the recent efforts to push deep
learning techniques using large scale application of unsupervised learning. Another important
challenge is understanding the user experience aspects of such systems, specifically related to
expectations about what user behavior is relevant to learning and how the resulting program
artifact relates to it, especially for when the user is a non-programmer.

9.3 Benchmarks and Metrics
José Hernández-Orallo (Polytechnic University of Valencia, ES), Marco Ragni (Universität
Freiburg)
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Many different inductive programming systems (including those in inductive logic program-
ming) have been developed in the past 40 years. One of the key features of inductive
programming is the use of very general and expressive languages for examples, hypotheses
and background knowledge: logic programming, functional programming, higher-order, con-
straints, etc. Another feature is the wide range of applications: program synthesis, data
manipulation, artificial intelligence, robotics, programming by demonstration, etc. As a
result, it has been very difficult to compare different inductive programming systems, as they
can use different languages and are used in diverse applications. This lack of comparison
makes it difficult to properly evaluate the improvement and real breakthrough of new systems,
and also makes it difficult to tell when a new system is performing worse (or no better) than
other previous systems.

The existence of benchmarks would make it easy to test and develop new systems in
inductive programming, as well as also recognising inductive programming as a distinctive
discipline, in terms of the kind of problems it can solve, rather than the language representation
or its applications. Consequently, the motivation of this working group is to see the possibility
of elaborating benchmarks and metrics for inductive programming, arranged in a form of a
repository, in order to assess the capabilities and limitations of existing and future inductive
programming systems.

Regarding the language, we seemed to agree that a common representation syntax should
be used for the benchmark problems in the repository. We would need to define a standard,
as the ARFF file format for attribute-value data. In order to use the problems for different
representations and systems, we would develop converters for some common languages, such
as Haskell and Prolog, to ensure that we cover the inductive functional programming and
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inductive logic programming communities.
We were more precise about problem representation, and we identified that we needed

to define the name of the function/predicate to be inferred, the datatypes involved and the
examples. In the discussion, we clarified that a dataset does not configure a problem. Rather,
from a dataset, we can do different sampling of examples and generate problems with more
or less examples.

Moving from a repository to a benchmark requires further things. The first question
is whether we are going to check solutions extensionally (over a test set) or intensionally
(inspecting the code). In order to automate the process, it seems more reasonable to do this
by separating between train and test cases and do it extensionally, as in machine learning.

In order to cover several domains, the working group suggested the following areas as a
start:

Traditional IP and ILP problems.
AI problems, planning, robotics, etc.
Program synthesis problems.
Programming-By-Example problems.
Trigonometry and other educational sources.
IQ-like problems: number series, geometrical analogy problems (Raven’s progressive
matrices), Bongard Problems, etc.
Grammatical inference problems.
Structured prediction problems.
Data manipulation and editing problems.

We identified several sources for these problems (such as IP and ILP repositories, but
other sources, such as the program synthesis competition).

At the end of the meeting, we proposed a roadmap, starting with the problem represent-
ation, then going through a problem repository, before reaching the state of a benchmark
repository or even a competition.

13502



66 13502 – Approaches and Applications of Inductive Programming

Participants

Umair Zafrulla Ahmed
Indian Institute of Technology –
Kanpur, IN

Sam Bayless
University of British Columbia –
Vancouver, CA

Tarek R. Besold
Universität Osnabrück, DE

Luc De Raedt
KU Leuven, BE

Eyal Dechter
MIT – Cambridge, US

Alexey Grigoryev
National Nuclear Research
University MEPhI, RU

Sumit Gulwani
Microsoft Res. – Redmond, US

Mike Hansen
Indiana University –
Bloomington, US

Robert J. Henderson
Imperial College London, GB

José Hernández-Orallo
Polytechnic University of
Valencia, ES

Petra Hofstedt
TU Cottbus, DE

Frank Jäkel
Universität Osnabrück, DE

Susumu Katayama
University of Miyazaki, JP

Dileep Kini
University of Illinois – Urbana
Champaign, US

Emanuel Kitzelmann
Univ. Duisburg – Essen, DE

Mark Marron
Microsoft Res. – Redmond, US

Fernando Martínez-Plumed
Polytechnic University of
Valencia, ES

Martin Möhrmann
Universität Osnabrück, DE

Stephen H. Muggleton
Imperial College London, GB

Daniel Perelman
University of Washington –
Seattle, US

Iurii Perov
University of Oxford, GB

Ruzica Piskac
Yale University, US

Oleksandr Polozov
University of Washington –
Seattle, US

Marco Ragni
Universität Freiburg, DE

Ute Schmid
Universität Bamberg, DE

George M. Sergievsky
National Nuclear Research
University MEPhI, RU

Michael Siebers
Universität Bamberg, DE

Rishabh Singh
MIT – Cambridge, US

Armando Solar-Lezama
MIT – Cambridge, US

Janis Voigtländer
Universität Bonn, DE

David White
Universität Bamberg, DE

Eran Yahav
Technion – Haifa, IL

Benjamin Zorn
Microsoft Res. – Redmond, US


	Executive Summary Sumit Gulwani, Emanuel Kitzelmann, and Ute Schmid
	Table of Contents
	Overview of Talks on: Inductive Programming Systems and Algorithms
	Predicate invention and learning of recursive logic programs Stephen Muggleton
	Cumulative Learning by Refinement and Automated Abstraction Robert J. Henderson
	Example-driven Inductive Functional Programming with IGOR2 Emanuel Kitzelmann
	gErl: an Inductive Programming System with user-defined operators Fernando Martínez-Plumed
	MagicHaskeller on the Web: Inductive Functional Programming System for Casual Programming Susumu Katayama
	Project of IDRE I&D oriented to implement arbitrary DSLs by learning and develop applications by demonstrating examples of their execution represented on implemented DSL Alexey Grigoryev

	Overview of Talks on: Enduser Programming
	Flash Fill: An Excel 2013 feature Sumit Gulwani
	Empowering Users with Data Benjamin Zorn
	Test-Driven Synthesis Daniel Perelman

	Overview of Talks on: Intelligent Tutoring and Grading
	Autograder: Automated Feedback Generation for Programming Problems Rishabh Singh
	Automated Grading for DFA Constructions Dileep Kini
	Automatically Generating Problems and Solutions for Natural Deduction Umair Zafrulla Ahmed
	Personalized Mathematical Word Problem Generation Oleksandr Polozov

	Overview of Talks on: Cognitive Aspects of Induction
	Small but deep. What can we learn from inductive programming? José Hernández-Orallo
	A Cognitive Model Approach to Solve IQ-Test Problems Marco Ragni
	Applying IGOR to Cognitive Problems Ute Schmid
	Learning Analogies Tarek R. Besold
	Towards Quantifying Program Complexity and Comprehension Mike Hansen

	Overview of Talks on: Combining Inductive Programming with Declarative Programming and with Other Approaches to Program Synthesis
	Towards declarative languages for learning Luc De Raedt
	Probabilistic programming and automatic programming Iurii Perov
	Programming with Millions of Examples Eran Yahav
	Type Inhabitation Problem for Code Completion and Repair Ruzica Piskac
	Learning a Program's usage of Dynamic Data Structures from Sample Executions David White
	SMT-based Videogame Synthesis Sam Bayless

	System Demonstrations
	Storyboard Programming of Data Structure Manipulations Rishabh Singh

	Working Groups
	Comparing Inductive Logic and Inductive Functional Programming as well as other Approaches to Program Synthesis Stephen Muggleton
	Potential New Areas of Applications and Challenges for Inductive Programming Ben Zorn
	Benchmarks and Metrics José Hernández-Orallo and Marco Ragni

	Participants

