Automatic Resource Scaling for Medical
Cyber-Physical Systems Running in Private Cloud
Computing Architecture*’

Yong woon Ahn and Albert Mo Kim Cheng

Department of Computer Science, University of Houston
4800 Calhoun Road, Houston, Texas, U.S.A.
{yahn,cheng}@cs.uh.edu

—— Abstract

Cloud computing and its related virtualization technologies have become one of dominant trends
to deploy software, compute difficult problems, store different types of data, and stream real-
time video and audio. Due to its benefits from cost-efficiency and scalability to maintain server
solutions, many organizations are migrating their server applications running on physical servers
to virtual servers in cloud computing infrastructures. Moreover, cloud computing has enabled
mobile and battery-powered devices to operate without strong processing power and large storage
capacity. However, it is not trivial to use this trendy technology for medical Cyber Physical Sys-
tems (CPSs) which require processing tasks’ requests to send instructions to the local actuator
within specified deadlines. Since a medical CPS device monitoring a patient’s vital signs may not
have a second chance to recover from an erroneous state, achieving cost-efficiency with higher re-
source utilization in cloud computing may not be the ultimate goal to configure the healthcare I'T
infrastructure with medical CPS devices. In this paper, we focus on private cloud infrastructures
with the fair resource sharing mechanism in order to run medical CPS applications. First, we
introduce our medical CPS device model used for designing our cloud infrastructure following the
Integrated Clinical Environment (ICE) standard developed by the Medical Device Plug-and-Play
(MDPuP) project. Second, we investigate limitations to deploy CPS applications using existing
auto-scaling mechanisms. Finally, we propose our novel middleware with a virtual resource shar-
ing mechanism inspired by autonomic computing, and present its performance evaluation results
simulated in the OpenStack private cloud.

1998 ACM Subject Classification C.2.4 Distributed Systems, C.3 Special-Purpose and Applica-
tion-Based Systems, J.3 Life and Medical Sciences

Keywords and phrases Auto-Scaling, Cloud Computing, Medical Cyber-Physical System Device,
Virtualization, Autonomic-Computing

Digital Object Identifier 10.4230/0ASIcs.MCPS.2014.58

1 Introduction

Cloud computing has become one of common technologies to provide unlimited computing
experiences with small and battery powered mobile devices. Moreover, it provides other great
advantages for deploying and maintaining server-side applications because of its flexibility to
scale up and down computing and storage resources elastically. This flexibility is implemented
by various hardware virtualization techniques which enable virtual machines (VMs) to be

* Supported in part by the National Science Foundation under Awards No. 0720856 and No. 1219082.
T This research is a part of the yPlatform project for medicine by Amerra Inc.

© Yong woon Ahn and Albert Mo Kim Cheng;

Bv licensed under Creative Commons License CC-BY
Medical Cyber Physical Systems — Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 5865

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.58
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Y. Ahn and A. Cheng

) i Private Network ‘ EHR w

‘h L — ICE
Imaging Medical Images ICE Applications | | Manager
Device e < R

‘ -!. % /\ <> ICE Supervisor
e Vital Signals Router F|rewa|| (ICE
CPSDevice | | patient | / i] R t _____ >| ICE Network Controller | Logger

_____________ Private Cloud

i

. " | Record % ; ! ICE External !
g Encrypted Text anate\ ' % | Interface H

i 1 1

EHR Smalllmages \/\/kjﬂi/

— > Massive Best-Effot <> Real-Time <~ > BestEffort
<—» Uploading/Downloading Data over the Internet

Patient

Medical Device

Figure 1 A hybrid cloud for medical devices Figure 2 A hybrid cloud for medical CPS
and applications. devices.

easily launched or terminated on demand to maintain the desirable Quality of Service (QoS)
level for different types of common application. Like other IT areas, cloud computing is
getting more attention from healthcare IT industries not only to reduce costs but also to
improve patient care. By taking advantages from cloud computing, the healthcare cloud
helps clinical environments remove their in-facility server rooms entirely by subscribing a
public cloud Infrastructure as a Service (IaaS) or partially by deploying a private or hybrid
IaaS [14]. Since medical records are generally very sensitive, and must be protected by highly
secure physical facilities, multi-layered software or hardware network security systems, data
encryption, and redundancy, operation of the in-facility server rooms can be more expensive
and less secure to process and store medical data. More seriously, some medical imaging
devices generate extremely massive data requiring huge data storages. To satisfy these
requirements, a public TaaS could be a common solution because of its highly secure physical
and virtual resources which also can be scaled up and down easily.

For non-real-time medical devices, public cloud computing solutions could be more
suitable to provide healthcare I'T systems by taking advantage of existing cloud computing
solutions. However, these public and remote cloud solutions are too unpredictable to maintain
the desirable QoS of medical CPSs because VM monitors used by their services basically
do not know what type of medical application server is being loaded in a VM. Also, many
uncertainties from transferring data over various networks would be serious issues in using
public cloud solutions for medical CPSs. Although cloud computing service vendors provide
Service Level Agreements (SLAs) covering cases where the user cannot access their subscribed
computing and storage resources, they cannot guarantee that an application server responds
to a source application within a specific task deadline. To overcome this limitation, a hybrid
cloud architecture can be a solution. For non-real-time medical devices, we use VMs in a
public cloud, and for medical CPS device, we use VMs in a private cloud locally located as
shown in Figure 1. In this paper, we restrict a private cloud to operate as the in-facility
server solution built with a stable network environment. No private cloud offered by public
TaaS providers is considered as a private cloud in this paper. Each medical CPS device can
transmit real-time tasks to this private cloud which can be specially configured to process
real-time tasks with the highest priority. In this paper, we assume that each medical device
can be interconnected via the ICE standard [4] which is one of the MDPnP projects [10] to
support a cross-manufacturer medical device interoperability. Figure 2 shows data flows of
CPS medical devices connected via ICE interfaces to deliver their real-time and life-critical
tasks to ICE application servers running as a part of the ICE manager. The ICE supervisor

59

MCPS’14

60

Automatic Resource Scaling for Medical Cyber-Physical Systems

is responsible for generating alarms to indicate that the required tasks cannot be processed
with the current configurations of the ICE application servers. All ICE manager software and
hardware components can be run in a private cloud, if these components can be emulated
by virtualization technologies. If the medical device is a closed-loop CPS system, one or
more ICE application servers are run as computing resources to process requests, and to
respond action instructions to the source device. These ICE application servers also can
provide user interfaces help clinicians check patient’s states, and upload medical records to

EHR systems as shown in Figure 2. Despite using a hybrid cloud solution, there are still

possible issues to maintain the desirable QoS of medical CPS devices because most open

sourced and commercialized private cloud solutions such as OpenStack [13], Eucalypus [12],

and VMWare vCloud [16] have very similar auto-scaling mechanisms to adjust virtualized

computing resources dynamically. Although these existing auto-scaling mechanisms are
primary technologies to achieve the main goal to operate VMs on demand, these mechanisms
are commonly performed by checking system performance metrics which human system
administrators select. These system metrics can include the monitoring values of Virtual

CPU (VCPU), memory, storage I/0O, and network bandwidth. Although these metrics can

represent a health status of each VM, they cannot represent whether all tasks are processed

within their deadlines specified by medical CPS devices [9].

There are three major requirements to design and implement a private cloud for medical
CPS devices using the ICE standard.

(a) A group of ICE application servers should always be ready to process all incoming
real-time tasks from multiple CPS devices, and respond action instructions to the source
CPS devices within specified deadlines.

(b) The private cloud must be designed to achieve a goal of higher physical and virtual
resource utilization except any emergency case.

(c) Computing resources must be automatically adjusted by an implemented mechanism
when a new CPS device is discovered, or one of connected devices increases bigger tasks.

These three requirements are essential, if we assume that the clinical environment adopts
an ICE standard. Since computing powers of ICE application servers are generally configured
before initializing the entire system, it requires that all ICE application servers always run to
satisfy the worst-case scenarios even for not discovered medical CPS devices. In other word,
there would be no advantage of the higher resource utilization by using cloud technologies.
Also, even if the clinical environment adopts a private cloud, supporting the MDPnP standard
would be another consideration. In this paper, we design middleware running in a private
cloud infrastructure to provide a novel auto-scaling mechanism to preserve the cost-efficiency.
Our middleware is performed independently in each VM with an ICE application server
without modifying the ICE standard. Moreover, in order to implement an automatic service
which can be self-optimized, we adopt the autonomic computing concepts to design our
middleware [5].

The remainder of this paper is organized as follows. In Section 2, we introduce other
researches working towards similar goals. Design and implementation of our solution are
presented in Section 3 and 4. In Section 5, we evaluate our proposed middleware running in
an OpenStack private cloud.

2 Related Work

For common real-time applications, S. Liu et al. proposed an on-line scheduling algorithm
of real-time services for cloud computing in [7]. Their algorithm modifies the traditional

Y. Ahn and A. Cheng

utility accrual approach [3, 8] to have two different time utility functions (TUFS) of profits
and penalties on executing tasks. One important assumption the authors made is that the
timeliness with relative task deadlines would be a more realistic principle for most real-time
applications than the absolute deadline guarantee for hard-real-time systems due to the
nature of diverse network communication methods causing many uncertainties. Although
their assumption about the timeliness is reasonable, this research does not consider cases of
medical CPS devices which might be discovered at any time.

As we stated in the previous section, the most feasible solution to operate medical CPS
devices in the cloud can be the auto-scaling mechanism to scale up the number of VMs to
process real-time tasks without missing their deadlines, and to scale down to provide the cost-
efficient and energy-saving physical data center alternative. In [9], M. Mao et al. proposed
an auto-scaling mechanism considering task deadlines and budget constraints. Although
their approach is based on deadline constraints to overcome downsides of the threshold-based
stock auto-scaling mechanisms monitoring system metrics, a system administrator still has
to adjust the configuration file manually whenever a new application needs to be connected.
Also the authors did not consider cases with real-time medical applications which are possibly
required to compress and transmit massive data to remote locations. To the best of our
knowledge, our approach is the first attempt to adopt the autonomic computing concepts to
operate the MDPnP environment.

3 System Design

In order to deploy medical CPS devices connected to a private cloud infrastructure, we first
show common procedures to process CPS tasks. We assume that all CPS medical devices
follow ICE standards to send and receive messages to and from an ICE supervisor, and we
also assume that healthcare environments use a private cloud to configure the ICE manager.

3.1 Medical CPS Device

Figure 3 shows procedures to sample data from patient’s body. In this paper, we focus
on medical CPS devices which sample patient health condition data via various sensors,
and compress them before transmitting to an ICE application server periodically. To
interact between two different types of medical device, we use the device profile protocol
introduced in [6]. This profile protocol is based on the ISO/IEEE 11073 Domain Information
Model. In order to discover a new medical device, each device must send its profile protocol
message to an ICE supervisor. This message includes device type, device health status,
manufacture information, clock, device model, medical nomenclature, sampling period, event-
trigger function, network interface, network protocol version, and so on. As Figure 3 shows,
compressed data, A, would have a deadline, §, which must be processed by the server before
arriving the next period job to operate actuators. We call this data to the destined ICE
application server real-time tasks. Also, if the medical CPS device did not receive this action
command before sending the next period of sampled data, its device health status would
become the “fail” state.

3.2 Proposed Middleware between an ICE Supervisor and ICE
applications

In order to provide standard-compatible solutions for other existing ICE compliant systems,
we do not change an ICE supervisor and any of its internal procedures. Our system must be

61

MCPS’14

62

Automatic Resource Scaling for Medical Cyber-Physical Systems

Digitized
Period 2

Digitized
Period 3

Digitized
Period 4

Digitized
Period 1
\‘l,

Co

Figure 3 An example of real-time tasks collected by one sensor: P; is the value of time starting
itp, period, A; is the number of time slots of the iz, compressed period, and D; is the delay to digitize
sampled or input original data for ith period.

Incoming Outgoing AA 4
Queue Queue
‘& > Managed

~—— 4 4
ICE Application Server g(e:ources A B ‘<r>

Managed 2 N 4

R q 4
esources N {

of B p _/

Figure 4 A parent VM with an ICE application server which has two VMs installing child ICE
application servers which are dealt as managed resources in the autonomic computing concept.

run independently from the existing ICE manager. The ICE supervisor is responsible only to
check whether the application servers and network interfaces can handle requests from newly
discovered medical devices. If it detects any resource shortage or inappropriate profiles from
the device, the supervisor indicates an alarm [4]. Our goal is to protect a medical device
from being rejected due to shortage of computing resources when using a private cloud. To
design our middleware to manage VMs running ICE application servers, we use autonomic
computing concepts to implement the self-management with four essential attributes such as
self-configuration, self-healing, self-optimization, and self-protection [5]. After initializing
the ICE manager, our middleware must accumulate knowledge from the previous history of
processing data and responding action instructions to decide whether the ICE supervisor
needs more resources or not.

In our middleware design, each VM is a node in a tree data structure shown in Figure 4.
Each node also can become an autonomic manager as shown in Figure 5. Our autonomic
manager has managed resources which can be other ICE application servers running in
different VMs. Our middleware is running in each VM and checking the health state of its
ICE application server usages by counting how many tasks missed their deadlines for the
predefined duration. There are four steps to accumulate knowledge and adjust managed
resources in our autonomic manager. In the monitoring step, our autonomic manager collects
managed resource states from its child VMs by checking the number of missed deadlines.
In the analyzing step, the autonomic manager calculates the number of VMs for the next
iteration, and sends a request to the next step to make a new plan such as task assignments
for ICE application servers in child VMs, if it would improve system’s overall utilization. In
the planning step, the new plan is setup to launch or terminate one or more VMs, if it is
requested by the previous step. Finally, in the executing step, the autonomic manager would
execute this plan by calling private cloud management functions such as jClouds [2]. From
these four steps, the managed resource can be adjusted by our autonomic manager running as
middleware without human interventions. Also, since each middleware runs in different VM

Y. Ahn and A. Cheng

Output Sensor Interface ’m Input Effector Interface

Analyze Reauest

—

Plan
/hange

Symptom \
Monitor ~__ 7 3 9
\\—\ Knowledge ///ﬁte/l

1abeuep olwouony

Managed Resources

Figure 5 A generic architecture for autonomic manager.

g g
@ £
4 5
I &
Z s
s 2
o)
L <
£
1 51 101 151 201 251 1 51 101 151 201 251
Time (Sec) Time (Sec)
Figure 6 Real-time tasks used for the simula- Figure 7 The number of VMs processing data.

tion.

independently, we can avoid any possible bottleneck when having one centralized coordinator
to manage all VMs. To avoid any issue from having less knowledge at the beginning, the
managed resources must be started with a sufficient number of VMs to process the worst
case scenario, and gradually this number of VMs would decrease if no new medical device is

discovered, or existing medical CPS devices stably transmit their real-time tasks periodically.

4 Implementation

We are implementing our system design on the OpenStack cloud which is one of the most
well-known open source cloud infrastructure. Currently, this OpenStack environment only is
used for medical CPS devices, and other medical applications use Amazon EC2 [1] public
cloud. To implement our middleware approach, we wrote a medical CPS device simulator in
Java. This simulator uses sampled ECG data from the MIT-BIH database [11] as its input,
and sends compressed data to the ICE application servers periodically, and must receive
action commands before sending other data to control its virtual actuator. In order to launch
and terminate VMs, we use jClouds to control VMs.

5 Performance Evaluation

To evaluate our approach, we use the OpenStack Grizzly version running with Intel Xeon E3
Quad-Core CPU, 16 GB RAM, 500GB SAS HDD, two network interface cards, and Ubuntu
server operating system. We use the Ubuntu 12.04 VM image [15] to run ICE application
server simulators, and each VM is launched with 512Mbyte RAM, one VCPU, and no local
storage. We assume that the ICE supervisor knows all current states of ICE application
servers, and works well to coordinate tasks for every connected medical CPS device. We
setup each ICE application server processes 100Kbyte ECG data per one second in the
incoming task queue. Figure 6 shows our total workload receiving from medical CPS device
simulators. At the beginning, we only have one medical device, but it increases its data size
slightly between 40 and 80 seconds. This scenario can represent unknown network errors or

63

MCPS’'14

64

Automatic Resource Scaling for Medical Cyber-Physical Systems

With the VCPU usage
based auto-scaling

With our middleware

With eight VMs

0 10 20 30 40 50 60 70 80 90 100
% of Tasks Missing Deadlines

Figure 8 The percentage of subtasks missing deadlines.

possible cases intentionally increasing sensor’s resolution. New medical devices are started to
be discovered from 150 seconds, and at 210 seconds, all eight medical devices start sending
tasks to request instructions. Tiny spikes shown on the slope mimic minor network errors
such as congestions. Figure 7 shows the number of VMs running ICE application servers.
When initializing our system, the ICE manager starts with eight VMs to prepare the worst
case scenario receiving tasks from all eight devices. In our simulation, all eight VMs are
initially structured as a balanced tree, and four autonomic managers in VMs have child
VMs as managed resources. Until ten seconds, each autonomic manager checks its manager
resources whether they process data or not. If they are not used to process tasks for this
amount of time, the autonomic manager plans to terminate its managed resources. After ten
seconds, it terminates its managed resources to achieve the higher server utilization. After
150 seconds, new medical devices are getting discovered and send tasks. Since our autonomic
managers work independently from the ICE supervisor, the total number of VMs could be
more than eight from our simulation for a moment. However, we believe that this issue
can be fixed by enabling communications between our autonomic managers to balance the
tree quickly. We compared our autonomic manager with the threshold-based auto-scaling
mechanism which monitors VCPU usages. If it detects over 80% of VCPU usages, it launches
a new VM in our simulation. Figure 8 shows the percentage of tasks missing their deadlines.
As we can see, if we run eight VMs all the time without considering resource utilization and
cost-efficiency, no deadline would be missed. However we lose the higher resource utilization
of using cloud technologies. As using the VCPU usage based auto-scaling mechanism, ICE
application servers missed deadlines of 240 tasks of total 735 subtasks as average values. But,
after applying our mechanism, it only missed 45 subtasks even without a separated physical
server only to run VMs. Our middleware improves 81.25% of the system reliability. We can
see some tasks missed deadlines during the second catastrophic overflow after 150 seconds
because of delays to launch new VMs. To overcome this drawback, we are adding workload
prediction algorithms to our system to launch new VMs less frequently.

6 Conclusion and Future Work

Recently, cloud computing with virtualization technologies has become a big trend providing
a new way to release software as a service and processing calculation-intensive tasks on
remote VMs because it is very scalable, reliable, and cost-efficient with the on-demand
computing model. Although most types of computing system and application can be migrated
to cloud computing services, there are several serious issues when running medical CPS
device applications. First, currently exiting cloud computing solutions with virtualization
technologies do not have any special mechanism to support real-time and sensor-based

Y. Ahn and A. Cheng

applications. Second, to achieve the higher resource utilization when using the cloud, an
auto-scaling mechanism is essential. However, existing performance metric based auto-scaling
mechanism is not suitable to support medical CPS devices because of its inability to meet task
deadlines. In order to support deadline-critical medical CPS devices following the MDPnP
standard, we propose novel middleware running in a private cloud infrastructure with the
ICE manager. This middleware with the autonomic manager uses self-management concepts
from an autonomic computing architecture to develop our proposed auto-scaling mechanism
for reserving virtual resources to meet timing constraints without human intervention. From
our simulation, we have demonstrated that our approach can scale up when new devices are
discovered. This research is still in progress as we develop more reliable workload prediction
algorithms for already connected medical devices dynamically changing their task sizes.
These prediction algorithms would enable our autonomic manager to launch new VMs even
before the ICE supervisor requires more resources.

—— References

1 Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.

2 Apache jCloud. http://jclouds.apache.org/.

3 R.K. Clark. Scheduling dependent real-time activities. PhD thesis, Carnegie Mellon Uni-
versity, 1990.

4 ASTM F2761-2009. Devices in the Integrated Clinical Environment.

5 Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. IEEFE
Computer, 36(1):41-50, 2003.

6 Tao Li and Jiannong Cao. Safety-ensured coordination of networked medical devices in
mdpnp. Technical report, Hong Kong Polytechnic University, 2012.

7 S. Liu, G. Quan, and S. Ren. On-line scheduling of real-time services for cloud computing.
In Services (SERVICES’10), 2010 6th World Congress on, pages 459-464, 2010. http:
//dx.doi.org/10.1109/SERVICES.2010.109.

8 C.D. Locke. Best-effort decision making for real-time scheduling. PhD thesis, Carnegie
Mellon University, 1986.

9 M. Mao, J. Li, and M. Humphrey. Cloud auto-scaling with deadline and budget constraints.
In Proc. 11th IEEE/ACM Int’l Conf. Grid Computing (Grid’10), pages 41-48, 2010.

10 Medical Device Plug and Play Program. http://www.mdpnp.org/.

11 MIT-BIH Database Distribution. http://ecg.mit.edu/.

12 D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorod-
nov. Eucalyptus opensource cloud-computing system. In CCA’08: Cloud Computing and
Its Applications, IEEE, 2008.

13 OpenStack. http://www.openstack.org/.

14 B. Sotomayor, Ruben S. Montero, I.M. Llorente, and I. Foster. Virtual infrastructure
management in private and hybrid clouds. IEEE Internet Computing, Vol. 13, 2009.

15 Ubuntu Cloud Image. http://cloud-images.ubuntu.com/precise/current/.

16 VMWare vCloud. http://www.vmware.com/products/vcloud-hybrid-service.

65

MCPS’14

http://aws.amazon.com/ec2/
http://jclouds.apache.org/
http://dx.doi.org/10.1109/SERVICES.2010.109
http://dx.doi.org/10.1109/SERVICES.2010.109
http://www.mdpnp.org/
http://ecg.mit.edu/
http://www.openstack.org/
http://cloud-images.ubuntu.com/precise/current/
http://www.vmware.com/products/vcloud-hybrid-service

	Introduction
	Related Work
	System Design
	Medical CPS Device
	Proposed Middleware between an ICE Supervisor and ICE applications

	Implementation
	Performance Evaluation
	Conclusion and Future Work

