Language-Driven Software Development

José-Luis Sierra

Fac. Informatica, Universidad Complutense de Madrid
C/ Prof. José Garcia Santesmases 9, 28040 Madrid, Spain
jlsierra@fdi.ucm.es

—— Abstract

Language-driven software development consists in applying computer language design and imple-
mentation techniques to build conventional software. The keynote reviews two different language-
driven development approaches: domain-specific languages (DLSs), and language-oriented archi-
tectures (LOAs). The DSL approach focuses on the provision of languages specialized in different
application aspects, which are used by developers, and even by domain experts, during applica-
tion construction and maintenance. The LOA strategy, in its turn, conceives applications them-
selves as coordinated collections of language processors, which can be developed using language
implementation tools (parser generators, attribute grammar-based systems, etc.). The presenta-
tion of the approaches is supported by case studies from the fields of knowledge-based systems,
e-Learning, semi-structured data processing, and digital humanities.

1998 ACM Subject Classification D.3.4 Translator writing systems and compiler generators,
D.3.2 Specialized Application Languages, D.2 Software Engineering, D.2.11 Software Architec-
tures

Keywords and phrases domain-specific languages; language-oriented architectures; parser gen-
erators; attribute grammars; application domains

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.3

Category Invited Talk

1 Introduction

Nowadays design and implementation of computer languages is a mature and well-understood
field, which comprises a wide spectrum of precise and well-founded methods, techniques
and tools grounded in strong theoretical and mathematical principles [2]. Regardless of
their initial limited applicability to the specialized compiler construction arena, recently
these approaches have been recognized as very valuable instruments in many mainstream
software development scenarios [43, 10, 19, 23, 24], which leads to a distinguished paradigm
of software construction: language-driven software development. In these scenarios it is
meaningful to recognize the linguistic nature of different aspects of software development, and
therefore to undertake these aspects as ones concerning the explicit conception, design and
implementation of special-purpose computer languages. The paradigm is particularly suited
to address complex development situations involving sophisticated and highly customizable
architectures, interdisciplinary teams of developers and domain experts, clearly defined stacks
of abstraction levels, etc., in which the language development effort can pay off. Quoting to
[1] “ ... seen from this perspective, the technology for coping with large-scale computer systems
merges with the technology for building new computer languages, and computer science itself
becomes no more (and no less) than the discipline of constructing appropriate descriptive
languages”.

© José-Luis Sierra;
37 licensed under Creative Commons License CC-BY

374 Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria Jodo Varanda Pereira, José Paulo Leal, and Alberto Simdes; pp. 3-12

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Language-Driven Software Development

This document summarizes the contents addressed in the keynote Language-Driven
Software Development given in SLATE’14. The keynote is focused on two different practices
concerning this development approach: domain-specific languages and language-oriented
architectures. While the first one is well-established in the research community, and in
recent years also among practitioners, the second one is more speculative and inspired by
the Speaker’s own research at Complutense University of Madrid, Spain (UCM).

2 Software Development based on Domain-Specific Languages

Quoting to [43] a domain-specific language (DSL) is “a programming language or executable
specification language that offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain”. In this way, the
concept of DSL is a well-established one in software development scenarios, where software
developers have used several sorts of DSLs for decades (e.g., SQL for updating and querying
relational databases, make or ant for tracking the dependencies among the files of a software
systems and for automating the production of these software systems, YACC-like tools for
generating parsers from grammar-based specifications, etc.) [31]. In addition, many DSLs
have been also provided to facilitate application development in concrete domains [43, 24].

DSLs tailored to concrete application domains are particularly attractive from a software
development perspective. Indeed, being more expressive and easy-to-use than a general-
purpose programming language, these DSLs make possible, to some extent, the active
participation of domain-experts in the development process. In this way, and in an idealized
world, the aim of DSLs is to upgrade software developers to DSL designers and implementers,
as well as to promote domain-experts to application developers [10, 12]. Of course, in the
real world this idealized scenario (sometimes referred as end-user programming [16]) is hardly
reachable due the fuzziness and dynamic nature of application domains, as well as to the
difficulty of capturing some aspects of a system in terms of suitable domain abstractions.
Regardless this difficulty, it is a matter of fact that this kind of DSLs can facilitate the active
participation of domain-experts during the development process (e.g., they can understand
specifications prepared in DSLs with suitable notations, suggest modifications, or even take
the responsibility of producing and maintaining specific parts of the applications using
suitable DSLs) [10, 12, 44].

Finally, before going into the details of DSL-based development, it is worthwhile to
highlight the relationships among this approach and model-driven engineering [40, 44].
Indeed, model-driven engineering can be understood as a particular incarnation of DSL-
based development, in which DSLs take the form of domain-specific meta-models, and DSL
sentences take the form of models resulting of instantiating these meta-models. Therefore,
many of the reflections made in the following presentation can be also applied to model-driven
engineering without substantial change.

2.1 DSL-oriented Process Models

From a process model perspective, DSL-oriented software development shares many features
with generative approaches to software development [21, 6]. Common activities undertook
during DSL-oriented software development are Domain Engineering Activities, Language
Design and Implementation Activities and Application Development Activities.

J.-L. Sierra

2.1.1 Domain Engineering Activities

These activities are oriented to determine the commonalities and the variability of applications
in the target application domain [6], and those can be carried out by adopting well-established
domain engineering approaches [17, 39, 41]. In DSL-oriented software development variability,
which is concerned with the differences among concrete applications, is usually captured in
terms of feature models [6] that set the conceptual basis for subsequent DSL design. On
the other hand, commonality (the core part shared by all the applications in a domain) is
essential for providing DSL runtime support (e.g., as a specific object-oriented framework).

2.1.2 Language Design and Implementation Activities

These activities deal with usual aspects concerning the design and implementation of computer
languages (lexical and syntactical specification, specification of the static and dynamic
semantics, etc.) [11]. For this purpose, a common practice in DSL design is to invert the
conventional workflow in computer language design (i.e., going from concrete to abstract
syntax [2]). Indeed, modern tendencies in DSL design promote to start by an abstract
syntax. Following the jargon used by the DSL community, abstract syntax is formalized in
object-oriented terms, as a set of interrelated classes that makes up the semantic model of
the DSL [10, 19, 44]. This model will be based on the variability analysis performed during
the domain engineering activities.

Once a suitable semantic model is available, it is possible to provide one or several
alternative concrete syntaxes. Depending of the intended use of the DSL, concrete syntaxes
can be embedded in general-purpose programming languages (internal syntaxes) or those
can be externally provided (external syntaxes). Still, each alternative can be accomplished
using a wide range of techniques:

Concerning internal syntaxes, their provision strongly depends on the features of the host

programming language. For instance, LISP-like homogeneous syntaxes have proven to be

specially amenable for supporting internal syntaxes for many embedded DSLs [1], while
extensible syntaxes enabled by user-defined operators like the supported by Prolog-like
languages or by modern functional languages can be particularly useful for better fitting
domain notations[15]. Recently, dynamic languages with very expressive grammars have
been also adopted as host languages for DSLs [7, 12, 29, 30]. In object-oriented languages,
two usual design patterns for internal syntax design are method nesting expressions and

fluent APIs [10, 12].

In its turn, external syntaxes can be accomplished by using a general-purpose semantic

agnostic notation (like XML), by defining a DSL-specific textual syntax (the classic

approach promoted by compiler construction textbooks), or even by defining a visual

syntax amenable for implementations based on DSL workbenches [4, 14].

Concerning semantics, it is worthwhile to notice that the term semantic model is somewhat
confusing, since the model has little to do with semantic processing, but it is an explicit
formalization of the language abstract syntax. Semantics themselves must be added as
processes that operate on the instances of the semantic model. For this purpose:

As a representation of the abstract syntax, the semantic model usually addresses the

structure of the sentences of the language. Static semantics deals with additional

constraints beyond these structural aspects. While in classic language design static
semantics lead to type systems [35], which are subsequently implemented as type checking
algorithms on the abstract syntax trees / graphs, in the DSL world it is usual to find

SLATE 2014

Language-Driven Software Development

more pragmatic approaches based on constraint languages for object-oriented models,
like OCL [19], or in ontology-aware semantic technologies [46].
Dynamic semantics, in their turn, take either the form of translations to target program-
ming languages, or operational semantics specifications. The first scenario leads to the
subsequent provision of code generators, while the second one leads to the provision of
interpreters operating on instances of the semantic model [10].

In this way, the final implementation of the DSL typically consists of:

A way of editing DSL programs. It can be as simple as using an existing text editor or
an existing IDE (e.g., in the case of internal syntaxes or XML-based syntaxes), or as
complex as using a dedicated IDE for the DSL. In order to cope with the later scenario it
is possible to base the implementation of the DSL in a language workbench [4, 10, 14].
A binding component, which maps concrete syntax sentences in semantic model instances.
This component is analogous to the parser of a classic language processing architecture
[2]. The exact nature of the component will depend of the nature of the concrete syntax
and the semantic model.

A static semantic analyzer. This component will be in charge of ensuring the additional
semantic constraints on the semantic model instances.

A dynamic semantic infrastructure. This infrastructure will vary on whether DSL
execution is supported by translation or by interpretation. However, in both cases it is
common to find a runtime support in terms of the domain-specific library or framework
that results of the commonality analysis performed during the domain engineering
activities. In this way, translators generate code that makes use of this domain-specific
framework, while interpreters directly perform the operations on this framework required
to carry out the execution (e.g., on-the-fly object instantiation and assembling, method
invocation on the instantiated objects. etc.)

2.1.3 Application Development Activities

Once a suitable DSL is available, it can be used by developers and by domain experts
to develop applications in the domain. As indicated earlier, in an idealized situation a
DSL could free developers of application construction and maintenance in favor of domain-
experts. However, a more realistic approach promotes the tight collaboration or both types
of stakeholders in interdisciplinary development teams.

2.2 Development Process Dynamics

In a realistic DSL-based development process, DSLs must evolve according the expressive
needs of domain experts. In this way, new expressive needs that are made apparent during
application development imply the extension of the DSL infrastructure to accommodate these
needs. As a consequence, DSL-based development processes are iterative and incremental in
nature, promoting the iterative enhancement and the incremental extension of the DSL as a
consequence of application construction.

The iterative and incremental nature of DSL construction shifts the recurrent software
maintenance and evolution concerns to the language design and implementation level. Indeed,
DSL maintenance and evolution is a keystone aspect of the DSL approach [42]. In particular,
maintenance and evolution of dynamic semantics related components (translators and
interpreters) are particularly critical due to the semantic modularity problem: local changes
in a language can imply global changes in the associated processors [25, 45]. In this way,
since DSLs are exposed to constant evolution and enhancement, the construction of their

J.-L. Sierra

processors (translators, interpreters) can take benefit of modularization techniques used in
semantic specification and language processor construction [8, 15, 18, 22].

2.3 Some DSL-based Experiences

The Speaker of this keynote has been involved in DSL-based development in several fields,

including knowledge-based systems and e-learning:
During the early nineties of the past century, the Speaker had the opportunity of
working at the Intelligent Systems Research Group, led by Prof. José Cuena, one of the
pioneers of knowledge-based systems and artificial intelligence in Spain. Instead of using
general-purpose knowledge representation formalisms (e.g., rule-based systems) to build
intelligent systems, Cuena promoted the provision of formalisms specially tailored to
each application domain, adopting in this way the concept of DSL several years before
to its popularization and applying it to the development of knowledge-based systems
for real-time decision-making support (in particular, Cuena developed several decision-
making intelligent systems in the fields of traffic management and watershed management)
[5]. Cuena’s systems usually included specialized knowledge editors, which supported
specialized knowledge-representation languages, and which were used directly by domain
experts to provide the knowledge required by the system, as well as inference engines
(interpreters of the aforementioned languages) able to execute the provided knowledge
models. As a consequence of these experiences, Cuena’s team developed an environment
called KSM (Knowledge Structured Management), which was used to build this kind
of knowledge-based systems [26]. In this sense, KSM could be understood as a sort of
language workbench specialized in the field of knowledge-based systems.
In 1998 the Speaker moved to UCM, where he was involved in several research projects
concerning information management in e-learning. Indeed, e-learning is a field rich in
examples concerning special-purpose languages (e.g., educational modeling languages
intended to be used by instructors to describe the design of their courses [20]). At UCM,
the Speaker took contact with the works done by the team of Prof. Fernandez-Valmayor
in the production and maintenance of complex educational hypermedia applications for
second language learning [9]. In order to facilitate application maintenance, contents and
other critical structures of the application were provided by domain experts (experts in
philology) as structured documents marked with a SGML-based notation specific for the
applications being constructed. These documents were subsequently processed in order to
automatically update the application. Building on this idea, during the first decade of the
present century, the Speaker worked on an approach for the development of educational
(and other content intensive) systems based on the explicit formulation of XML-based
DSLs, as well as in the construction of application generators for the resulting DSLs
[37, 38].

3 Language-Oriented Architectures

The DSL approach promotes the use of language-driven techniques in the provision of
domain-specific development tools. Indeed, a DSL is intended to describe different aspects
of an application, but the internals of this application do not necessarily include language
processing components. It can be even true when a DSL interpreter is used, since in this
case the interpreter can bind the DSL description into an instantiation of an underlying
runtime framework, and then to activate this instantiation by invoking suitable methods in
the resulting objects. On the contrary, Language-oriented Architectures (LOAs), an approach

SLATE 2014

Language-Driven Software Development

that the Speaker’s team is experiencing at UCM, promotes to upgrade language processing
techniques to the core of conventional applications.

3.1 Anatomy of a LOA

A LOA encourages the organization of an application as a coordinated set of language
processors. Each processor operates on an information domain (e.g., a type of XML documents,
an object-oriented class model, an even stream in an interactive application, etc.) and consists
of:
A reader that is able to read information instances in this information domain. As a
consequence, it transforms these instances into sequences of tokens. Therefore, the reader
plays the role of a scanner in a conventional language processor.
A syntax-directed processor, which processes the sequence of tokens directed by its
underlying syntactic structure. It is analogous to a parser extended with semantic actions.

3.2 Language Implementation Tools as General-Purpose Development
Tools

There are not significant differences among the syntax-directed processor of a LOA and
the corresponding component in a conventional language processor, since both components
act on sequences of tokens. Indeed, readers in a LOA adapt information domains to the
requirements of classic syntax-directed language processing models [2]. As a consequence,
language implementation tools (like parse generators or attribute grammar-based tools)
[2, 28], traditionally used in specialized fields like compiler construction, adopt a new and
unexpected role as general-purpose development tools for applications architected according
to the LOA principle. Indeed, a LOA-conforming application can be developed in terms of:
A set of readers, one for each language processor that integrate the application. Although
the provision of these readers can require conventional programming, in many information
domains it will be possible to take advantage of the information structure (e.g., the
markup in an XML document, the structure of an object model) to easily produce these
readers by customizing generic ones using high-level customization specifications.
A set of syntax-directed specifications (e.g., YACC, JavaCC or ANTLR translation
schemes, LISA attribute grammars, etc.). These specifications are keystone assets in the
development of the application, since they will serve to automatically generate the syntax-
directed processors by using suitable language implementation tools (YACC, ANTLR,
LISA ...)
Additional conventional software components used to support the semantic actions invoked
by the syntax-directed translators.

The resulting development approach to LOA applications has been called grammatical
approach by the Speaker’s team at UCM, since it strongly relies on the use of grammarware
as primary development support. In addition, contrarily to other approaches that promote
the application of grammatical formalisms specially tailored to each application domain (e.g.,
tree grammars in the XML field, graph grammars in model-driven engineering scenarios), the
grammatical approach promotes the use of classic string-oriented grammars. The adaptation
to each information domain is, in turn, delegated to suitable readers (in other words, to
apply the grammatical approach to a new information domain, the first thing to do is to
decide how to read information elements in this domain). Once it is done, it is possible to
facilitate the application of the grammatical approach by devising specific grammar-based

J.-L. Sierra

notations for each particular domain, as well as ways of transforming these notations into
the basic model.

3.3 Experiences with the LOA Approach

The Speaker’s team at UCM is currently working with the characterization and generation
of several kinds of processors to be integrated in applications organized according to LOAs:

XML syntaz-directed processors. The team has devised several models for processing XML
documents based on the combination of XML stream-oriented processing frameworks
(SAX and STaX) with parser generation tools (JavaCC and CUP) [34]. They also have
defined a specific grammar-based notation for describing XML processing tasks based
on attribute grammars (XLOP: XML Language Oriented Processing), together with its
transformation into the processing framework integrated by STaX + CUP [33].

JSON syntax-directed processors. The work concerning JSON processing is similar to the
work concerning XML. In this case the parser generator tool was ANTLR [32]. Currently
the team is working on JLOP (JSON Language Oriented Processing) a meta-tool similar
to XLOP.

Model transformation based on attribute grammars. Attribute grammars in this proposal
operate on spanning trees of object networks serialized by suitable readers (a prototype
implementation is described in [13]).

Syntax-directed processors of event streams in interactive applications. The idea is similar
to the described in [27], and oriented to generate controllers for interactive applications
from attribute grammar-based specifications (see [36] for an alternative approach based
on structural operational semantics specifications)

In addition, the team is also working on the definition of a LOA for @note, a RIA for the
collaborative annotation of digitized literary text [3]

4 Closing

This keynote has reviewed two different approaches for bringing computer language design
and implementation technologies to mainstream software development scenarios: DSLs,
which are oriented to provide domain-specific development tools, and LOAs, which promotes
to architect applications as coordinated sets of language processors. Both approaches are
oriented to enhance the production and maintenance of applications by providing specification
of components to higher levels than the enabled by general-purpose programming languages:
domain-specific notations in the case of DSLs, grammar-oriented specifications in the case of
LOAs.

Currently the Speaker’s team is working on refining the concept of LOA and in applying it
to real case-studies in the field of digital humanities. Concerning future work, the relationships
and synergies of DSL and LOA-based approaches arise as a very promising field. Also a
more in-depth insight concerning the relationships of these language-driven approaches with
model-driven ones appears to be a promising concern to explore.

Acknowledgements. Work partially supported by project grant TIN2010-21288-C02-01.

SLATE 2014

10

Language-Driven Software Development

—— References

1

10
11

12

13

14

15

16

17

18

19

20

21
22

Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer Pro-
grams. MIT Press, Cambridge, MA, USA, 2nd edition, 1996.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition,
2007.

Juan Cigarrdan-Recuero, Joaquin Gayoso-Cabada, Miguel Rodriguez-Artacho, Maria-
Dolores Romero-Lépez, Antonio Sarasa-Cabezuelo, and José-Luis Sierra. Assessing se-
mantic annotation activities with formal concept analysis. Ezpert Syst. Appl., 41(11):5495—
5508, 2014.

Steve Cook, Gareth Jones, Stuart Kent, and Alan Wills. Domain-specific Development with
Visual Studio Dsl Tools. Addison-Wesley Professional, 2007.

José Cuena. Architectures for second generation knowledge based systems. In Proceedings
of the International Summer School on Advanced Topics in Artificial Intelligence, pages
373-403, London, UK, UK, 1992. Springer-Verlag.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000.
Fergal Dearle. Groovy for Domain-Specific Languages. Packt Publishing, 1st edition, 2010.
Dominic Duggan. A mixin-based, semantics-based approach to reusing domain-specific
programming languages. In Elisa Bertino, editor, FCOOP, volume 1850 of Lecture Notes
in Computer Science, pages 179-200. Springer, 2000.

Baltasar Fernandez-Manjon and Alfredo Fernandez-Valmayor. Improving world wide web
educational uses promoting hypertext and standard general markup language content-based
features. Education and Information Technologies, 2(3):193-206, 1997.

Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition, 2010.
Daniel P. Friedman and Mitchell Wand. Essentials of Programming Languages, 3rd Edition.
The MIT Press, 3 edition, 2008.

Debasish Ghosh. DSLs in Action. Manning Publications Co., Greenwich, CT, USA, 1st
edition, 2010.

Juan-Pablo Gracia. Marco para la transformacion de modelos basado en gramaticas de
atributos. Master’s thesis, Facultad de Informatica, UCM, 2010.

Richard C. Gronback. Fclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Eclipse Series. Pearson Education, 2009.

Paul Hudak. Building domain-specific embedded languages. ACM Comput. Surv., 28(4es),
December 1996.

Capers Jones. End-user programming. IEEE Computer, 28(9):68-70, 1995.

Kio C. Kang, Sholom G. Cohen, Janes A. Hess, William E. Novak, and A. Spencer Peterson.
Feature-oriented domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon
University Software Engineering Institute, November 1990.

Uwe Kastens and William M. Waite. Modularity and reusability in attribute grammars.
Acta Inf., 31(7):601-627, October 1994.

Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Languages Us-
ing Metamodels. Addison-Wesley Professional, 2008.

Rob Koper and Bill Olivier. Representing the learning design of units of learning. FEduca-
tional Technology & Society,, 7(3):97-111, 2004.

Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131-183, June 1992.
Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpret-
ers. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 95, pages 333-343, New York, NY, USA, 1995. ACM.

J.-L. Sierra

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Sjouke Mauw, Wouter T. Wiersma, and Tim A. C. Willemse. Language-driven sys-
tem design. International Journal of Software Engineering and Knowledge Engineering,
14(6):625-663, 2004.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-
specific languages. ACM Comput. Surv., 37(4):316-344, December 2005.

Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55-92, July
1991.

Martin Molina, José-Luis Sierra, and José Cuena. Reusable knowledge-based components
for building software applications: A knowledge modelling approach. International Journal
of Software Engineering and Knowledge Engineering, 9(3):297-317, 1999.

Albert Nymeyer. A grammatical specification of human-computer dialogue. Comput. Lang.,
21(1):1-16, 1995.

Jukka Paakki. Attribute grammar paradigms—a high-level methodology in language
implementation. ACM Comput. Surv., 27(2):196-255, June 1995.

Paolo Perrotta. Metaprogramming Ruby: Program Like the Ruby Pros. Pragmatic Bookshelf
Series. Pragmatic Bookshelf, 2010.

Ayende Rahien. DSLs in Boo: Domain Specific Languages in .Net. Manning Pubs Co
Series. Manning Publications Company, 2010.

Peter H. Salus. Little Languages and Tools. Macmillan Technical Publishing, 1st edition,
1998.

Antonio Sarasa-Cabezuelo and José-Luis Sierra. Grammar-driven development of json
processing applications. In Maria Ganzha, Leszek A. Maciaszek, and Marcin Paprzycki,
editors, FedCSIS, pages 1545-1552, 2013.

Antonio Sarasa-Cabezuelo and José-Luis Sierra. The grammatical approach: A syntax-
directed declarative specification method for xml processing tasks. Comput. Stand. Inter-
faces, 35(1):114-131, January 2013.

Antonio Sarasa-Cabezuelo, Bryan Temprado-Battad, Daniel Rodriguez-Cerezo, and José-
Luis Sierra. Building xml-driven application generators with compiler construction tools.
Comput. Sci. Inf. Syst., 9(2):485-504, 2012.

Michael L. Scott. Programming Language Pragmatics, Third Edition. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 3rd edition, 2009.

José-Luis Sierra, Baltasar Ferndndez-Manjén, and Alfredo Fernindez-Valmayor. A
language-driven approach for the design of interactive applications. Interacting with Com-
puters, 20(1):112-127, 2008.

José-Luis Sierra, Alfredo Fernindez-Valmayor, and Baltasar Fernandez-Manjon. A
document-oriented paradigm for the construction of content-intensive applications. Com-
put. J., 49(5):562-584, 2006.

José-Luis Sierra, Alfredo Fernédndez-Valmayor, and Baltasar Fernandez-Manjén. From doc-
uments to applications using markup languages. IEEE Softw., 25(2):68-76, March 2008.
Mark A. Simos. Organization domain modeling (odm): Formalizing the core domain mod-
eling life cycle. In Proceedings of the 1995 Symposium on Software Reusability, SSR 95,
pages 196-205, New York, NY, USA, 1995. ACM.

Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software Develop-
ment: Technology, Engineering, Management. John Wiley & Sons, 2006.

Richard N. Taylor, Will Tracz, and Lou Coglianese. Software development using domain-
specific software architectures: Cdrl a0ll—a curriculum module in the sei style.
SIGSOFT Softw. Eng. Notes, 20(5):27-38, December 1995.

Arie van Deursen and Paul Klint. Little languages: Little maintenance. Journal of Software
Maintenance, 10(2):75-92, March 1998.

11

SLATE 2014

12

Language-Driven Software Development

43

44

45

46

Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An annotated
bibliography. SIGPLAN Not., 35(6):26-36, June 2000.

Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats Helander,
Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. DSL Engineering - Designing,
Implementing and Using Domain-Specific Languages. dslbook.org, 2013.

Philip Wadler. How to declare an imperative. ACM Comput. Surv., 29(3):240-263, Septem-
ber 1997.

Tobias Walter, Fernando Silva Parreiras, and Steffen Staab. Ontodsl: An ontology-based
framework for domain-specific languages. In Proceedings of the 12th International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS 09, pages 408-422,
Berlin, Heidelberg, 2009. Springer-Verlag.

	Introduction
	Software Development based on Domain-Specific Languages
	DSL-oriented Process Models
	Domain Engineering Activities
	Language Design and Implementation Activities
	Application Development Activities

	Development Process Dynamics
	Some DSL-based Experiences

	Language-Oriented Architectures
	Anatomy of a LOA
	Language Implementation Tools as General-Purpose Development Tools
	Experiences with the LOA Approach

	Closing

