
JSON on Mobile: is there an Efficient Parser?
Ricardo Queirós

CRACS & INESC-Porto LA & DI-ESEIG/IPP, Porto, Portugal
ricardo.queiros@eu.ipp.pt

Abstract
The two largest causes for battery consumption on mobile devices are related with the display
and network operations. Since most application need to share data and communicate with
remote servers, communications should be as lightweight and efficient as possible. In network
communication, serialization plays a central role as the process of converting an object into a
stream of bytes. One of the most popular data-interchange format is JSON (JavaScript Object
Notation). This paper presents a survey on JSON parsers in mobile scenarios. The aim of
the survey is to find the most efficient JSON parser in mobile communications characterised by
high transfer rate of small amounts of data. In the performance benchmark we compare the time
required to read and write data with several popular JSON parser implementations such as Gson,
Jackson, org.json and others. The results of this survey are important for others that need to
select an efficient parser for mobile communication.

1998 ACM Subject Classification D.2.2 Design Tools and Techniques, D.4.4 Communications
Management

Keywords and phrases serialization formats, mobile communication

Digital Object Identifier 10.4230/OASIcs.SLATE.2014.93

1 Introduction

Mobile devices have become a necessity for many people around the world. The ability to
keep in touch with family and business partners or to share data in real time are only a few
of the reasons for the increasing importance of mobile devices. The flip side of this global
trend is related with battery consumption. Smartphones are evolving from the past ten
years with faster CPUs, cheaper and bigger storage, and higher-quality displays. However,
battery technology did not improve at the same pace. The two biggest causes for battery
consumption on mobile devices are related with the display and network traffic. The display
is a major mobile phone energy hog, that can be softened by reducing its brightness and
timeout.

Network operations are unavoidable in today’s clouds world where everything is a service.
Mobile devices need to communicate to achieve usefulness whether to transmit data over the
Internet or to share data with another device. Therefore, developers followed best practices
to reduce the amount of network operations in order to increase the battery’s life. Basically
they all resume to the following four best practices [3]:

Consider first the need to perform a network call right now. Alternatives are pulling the
service at regular intervals or allowing the server to push the data down to the client.
Consider how much data you need to retrieve. It is possible to use different types of
caches (e.g., response cache introduced for HttpUrlConnection in Android 4/ICS) and
retrieving smaller pages of data from the service will greatly reduce your application’s
network traffic.
Use transparent compressions (supported by HttpUrlConnection class) verifying that the
data retrieved from the server is gzip-compressed.

© Ricardo Queirós;
licensed under Creative Commons License CC-BY

3rd Symposium on Languages, Applications and Technologies (SLATE’14).
Editors: Maria João Varanda Pereira, José Paulo Leal, and Alberto Simões; pp. 93–100

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2014.93
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

94 JSON on Mobile: is there an Efficient Parser?

Choose a better data format, which usually involves a balance between size optimization
and how dynamic the format is. If you can, choose a format that allows you to extend
your data definition without losing backward-compatibility. There are several solutions
such as XML, YAML, JSON, Protobuf, and others.

The last recommendation touches in a very important factor data transmission over the
Internet. In a communication process it is necessary to transform data into a format that
is suitable for transmission over the network and that allows the recipient to consume it
without any problems. This technique is called serialization. In the context of data storage
and transmission, serialization is the process of writing an object to a stream of bytes.
That stream can then be sent through a socket, stored to a file and/or database or simply
manipulated so that this exact same memory representation can be read later. This last
process is called deserialization.

In the serialization realm, XML was used as the standard language for data representation.
The most notable advantage regarding the use of XML is its heterogeneous facet. However,
when encoding data in XML, the result is typically larger in size than other formats due to
XML’s well-known verbosity which also negatively affects the reading process. To overcome
this disadvantage, JSON [1] is currently becoming a popular data representation. When data
is encoded in JSON, the result is typically much smaller in size than an equivalent encoding
in XML.

This paper presents a survey on JSON parsers in mobile scenarios. The aim of the survey
is to find the most efficient JSON parser implementation in mobile communications. The
types of communication are characterized by a high transfer rate of small amounts of data.
Based on a performance benchmark we compare the time required to read and write data
with several popular JSON parser implementations such as Gson, Jackson, org.json and
others. The criteria used for the selection of the parser implementations were based on their
popularity.

With this paper we do not intend to present an in depth description of the serialization
mechanism. The results of this survey are important for others that need to select an efficient
parser for mobile communication.

The remainder of this paper is organized as follows: Section 2 introduces several serializa-
tion formats. Then, we focus on the comparison of several JSON parser implementations to
evaluate efficiency. Finally, we conclude with a summary of the main contributions of this
work.

2 Serialization Formats

Serialization consists in the conversion of an object into a representation that can be
transmitted. An application that is aware of the serialization format used can then recreate
a serialized object by deserialization. The object is then restored to its original state.

In this process the serialization format plays a central role. There are two types of
serialization: textual and binary. The following subsections enumerate various serialization
format for both types.

2.1 Textual Serialization

One of the first standard data serialization formats was the External Data Representation
(XDR) developed and published in 1987 at Sun Microsystems. XDR became an IETF
standard in 1995.

R. Queirós 95

Table 1 Textual serialization formats.

Name Date Creator Based on Schema/IDL Human-Readable

CSV 1967 Yakov Shafranovich n/a partial yes
XML 1998 W3C SGML yes yes
XML-RPC 1998 Dave Winer XML/SOAP no yes
JSON 2001 Douglas Crockford JavaScript partial yes
YAML 2001 Clark Evans C/Perl/XML partial yes
Candle 2005 Henry Luo XML/JSON yes yes
OpenDDL 2013 Eric Lengyel C/PHP no yes

In 1998, XML was introduced for asynchronous transfer of structured data between client
and server in Ajax Web applications. In this context XML was defined as a human readable
text-based encoding that can be used to persist objects and transmit them to other systems
regardless of the platform or programming language used. Despite the format verbosity, the
human readability and language independent features were very appreciated. In order to
overcome the compactness issue, Binary XML has been proposed as an alternative to the
regular XML.

To overcome XML’s disadvantages, JavaScript Object Notation (JSON) is currently
becoming a popular data representation. When data is encoded in JSON, the result is
typically smaller in size than an equivalent encoding in XML. JSON is defined as a low-
overhead alternative to XML and is commonly used for client-server communication in Web
applications. JSON is based on JavaScript syntax, but is supported in other programming
languages as well. There also exists binary encoding for JSON (e.g. BSON, Smile, UBJSON).

Another human-readable serialization format is YAML (a super-set of JSON). The
main features of this format includes tagging data types, support for non-hierarchical data
structures, data structures with indentation, and multiple forms of scalar data quoting.

Table 1 presents a comparison of textual data serialization formats [6].

2.2 Binary Serialization
In addition to textual formats, several binary data interchange formats have been proposed
over the last decade in order to address the verbosity and the efficiency limitations of
widely-accepted text-based formats such as XML and JSON [5, 4]. Among these formats we
highlight the Apache Thrift, Apache Avro and the Google Protocol Buffers. Each of these
protocols uses a custom Interface Description Language (IDL) to specify the structure of the
exchanged data.

Google Protocol Buffer, or protobuf, is an extensible way (regardless of platform/language)
for serializing structured data for use in communication protocols, data storage, among others.
Protobuf is used at Google to encode structured data in binary format for implementing
smaller and faster serialization. The implementation of a strategy using the protobuf format
follows the sequence:

1. Definition of the schema file for the structured data;
2. Compilation of the file for generation of access classes;
3. Use of the programming language API for reading and writing messages.

After the schema definition is stored in a file (.proto), we use the protobuf compiler to
generate the data access classes. These classes provide accessors for each field, methods to

SLATE 2014

96 JSON on Mobile: is there an Efficient Parser?

serialize and deserialize data and special builder classes to encapsulate internal data structure.
Listing 1 presents an example of a protobuf schema that defines the shopping item entity.

Listing 1 The protobuf schema.
package com. example . protobuf .model;
option optimize_for = LITE_RUNTIME ;
option java_package = "com. example . protobuf .model ";
option java_outer_classname = " Shopping ";
message Item {

required string name = 1;
required string category = 2;
optional int32 quantity = 3 [default = 1];
enum status {

BOUGHT = 1;
CANCEL = 2;

}
message Provider {

required string name = 1;
required float price = 2;

}
repeated Provider providers = 4;

}

Listing 2 shows how to build a new protobuf object to an item. You start by creating a
new Builder for the specific object you want to build and then sets up the desired values, and
finally, we use the Builder.build() method to create an immutable protobuf object (object
item). The Item object is then serialized to an OutputStream.

Listing 2 The protobuf serialization.
public void writeToStream (
String name , String cat , int qt , Shopping .Item. Status status ,
List < Shopping .Item.Provider > providers ,
OutputStream os) throws IOException {

Shopping .Item. Builder builder = Shopping .Item. newBuilder ();
builder . setName (name);
builder . setCategory (cat);
builder . setQuantity (qt);
builder . setStatus (status);
if (providers != null)

builder . addAllProviders (providers);
Shopping .Item item = builder .build ();
item. writeTo (os);

}

Listing 3 shows how to deserialize a protobuf object from an InputStream.
Protobuf has a lite version for Java suitable for Android. Protobuf has more limited

language reach compared to JSON or XML. Officially, Google only provides compilers for
C++, Java and Python.

Thrift is a binary communication protocol. Although developed at Facebook, it is
now an open source project of the Apache Software Foundation. The currently supported
programming languages are C++, Java, Python, PHP, Ruby, Erlang, Perl, Go, Haskell, C#,

R. Queirós 97

Listing 3 The protobuf deserialization.
public Shopping .Item readFromStream (InputStream is) {

Shopping .Item item;
item = Shopping .Item. newBuilder (). mergeFrom (is). build ();
Log.d(" ProtobufDemo ", "Read item name: " + item. getName ());
return item;

}

Table 2 Binary serialization formats.

Name Date Creator Based on Schema/IDL Human-Readable

Avro 2009 ASF n/a yes no
BSON 2003 MongoDB JSON no no
Cap’n Proto 2013 Kenton Varda protobuf yes no
Protocol Buffers 2008 Google n/a yes no
Thrift 2007 Facebook/Apache yes yes no

Cocoa, JavaScript, Node.js, Smalltalk, and OCaml. Similarly to the protobuf format, we
need to prepare a schema definition as input for the code generation tool generates source
code for a specified programming language. A typical thrift schema representing a phone
object is presented in Listing 4.

Listing 4 The thrift schema.
enum PhoneType {

HOME ,
OTHER

}
struct Phone {

1: i32 id ,
2: string number ,
3: PhoneType type

}

Apache Avro is a serialization framework. It uses JSON for defining data types and
protocols, and serializes data in a compact binary format. Its primary use is in Apache
Hadoop, where it can provide both a serialization format for persistent data, and a wire
format for communication between Hadoop nodes, and from client programs to the Hadoop
services. It is similar to Thrift, but does not require running a code-generation program
when a schema changes. The currently supported programming languages are Java, Scala, C,
C++, C#, Python and Ruby.

Table 2 presents a comparison of binary serialization formats [6].
Choosing textual or binary data formats often depends on the context in which thay are

used. Text-based formats (XML, JSON) are parsed character by character, thus imposing a
limit on deserialization speed. On the other hand, binary formats make use of positional
binding which allows storing the"name part of the name-value pairs in a separate file (e.g.,
‘.proto’ for ProtoBuf). These files do not need to be sent over the Web, which decrease the
size of the data to be communicated. However, since these files have to be compiled before
being included in a program, there are restrictions based on what languages each protocol
supports.

SLATE 2014

98 JSON on Mobile: is there an Efficient Parser?

Figure 1 Research articles about serialization on Google Scholar.

2.3 Selection of a Serialization Format
In this subsection, we present the criteria used for the selection of the serialization format
that will be used in the benchmark. Several criteria could be used to select a serialization
format: the most popular, the most used among existent Web services, the one used in most
popular applications, and others. In this case we decide that the selection will be based on
the research papers found in the freely accessible Web search engine Google Scholar. This
search engine indexes the full text of scholarly literature.

Figure 1 shows a comparison of the three most cited serialization formats on the Google
Scholar website.

Based on the values presented in Figure 1 and, despite the XML format being the most
cited in research articles, is the JSON format that has the highest growth in recent years.
For this reason we decided to use JSON for the benchmark tests in the next section.

3 Comparison and Benchmark of JSON Libraries

In this section we compare the performance of several JSON parser implementations. The
purpose of this benchmark is only to ensure a reasonable reading and writing performance
compared to other parsers. It is obvious that the performance depends on several factors
such as the used operating system, the programming language and network signal. All this
just to say that the benchmark results may be misleading – if you want to infer results for a
concrete case it is better to produce your own tests, with your custom data on your own
hardware.

3.1 Setup and Methodology
To examine the performance of serializing and deserializing structured data, an experiment
was designed using the following hardware and software:

Hardware: ASUS Padfone with 1.5 GHz dual-core Qualcomm Krait and 1 GB memory
Operating System: Android version 4.1.1
Java: version 1.6.0

R. Queirós 99

The test object used for this experiment is a JSON object obtained from a weather
service called OpenWeatherMap. This service is often used in order to present a description
of the weather of a given city. A request to the REST service returns OpenWeatherMap
meteorological data of a certain city (set in the request) in JSON format. For instance, this
is a typical URL request: http://api.openweathermap.org/data/2.5/weather?q=porto.
The service returns the output in JSON format presented in listing 5.

Listing 5 OpenWeatherMap meteorological data.
{"id ":88319 ," dt ":1345284000 ," name ":" Porto",

"coord ":{" lat ":41.15 ," lon ": -8.61} ,
"main ":{" temp ":306.15 ," pressure ":1013 ," humidity ":44 ,
" temp_min ":306 ," temp_max ":306} ,
"wind ":{" speed ":1 ," deg ":-7},
" weather ":[

{"id ":520 ," main ":" Rain",
" description ":" light intensity shower rain",
"icon ":"09d"},

{"id ":500 ," main ":" Rain",
" description ":" light rain "," icon ":"10d"},

{"id ":701 ," main ":" Mist",
" description ":" mist "," icon ":"50d"}

],
" clouds ":{" all ":90} ,
"rain ":{"3h":3}}

The JSON libraries are selected based on their popularity. Tested libraries and their
versions are the following: Gson (2.2.4), Jackson (2.2.1), Minimal-json (0.9.1) and org.json
(n/a).

The experiment was designed as follows:
1. 100 iterations were executed for warming-up, and then 100 iterations were executed for

measuring.
2. The execution time was measured using System.currentTimeMillis().
3. Finally, the average execution time is taken for each operation and library.

3.2 Performance Benchmark
While mobile devices are becoming more powerful, they still lack the processing speed of
desktop PCs. Despite this fact, it is essential that the chosen data serialization format allows
fast serialization and deserialization of an object. For the performance comparison of the
JSON libraries previously enumerated, we compared the time required to read and write
a typical weather message with the parser implementations. The results are presented in
Figure 2.

Our conclusion is that when you need to serialize/deserialize Java POJOs without sacrifi-
cing performance you should choose Jackson [2]. Although minimal-json cannot outperform
Jackson’s writing performance, it offers a very good reading and writing performance.

4 Conclusions

This paper presented a comparison on the use of a set of JSON libraries within a mobile
application. When comparing serialization libraries on a mobile platform, it is necessary to

SLATE 2014

http://api.openweathermap.org/data/2.5/weather?q=porto

100 JSON on Mobile: is there an Efficient Parser?

Figure 2 Java JSON libraries benchmark.

consider the most important aspects for this environment, such as data size and serialization
speed. In this paper we focus on the performance facet.

The main contribution of this paper is two-fold: a survey on serialization formats organized
by types: textual and binary; a performance benchmark that could be important for others
that need to select an efficient parser for mobile communication.

Based on the benchmark results one can conclude that Jackson showed the best combined
results. However, if your mobile app will only deserialize data, minimal-json offers the best
performance in the experiment.

References
1 T. Bray. RFC 7159 – the javascript object notation (json) data interchange format. http:

//tools.ietf.org/html/rfc7159, 2014. [Online; accessed 06-May-2014].
2 Codehaus. High-performance json processor. http://jackson.codehaus.org/, 2013. [On-

line; accessed 06-May-2014].
3 Erik Hellman. Android Programming – Pushing the limits. Wiley, 2013.
4 K. Maeda. Performance evaluation of object serialization libraries in XML, JSON and

binary formats. In Digital Information and Communication Technology and its Applications
(DICTAP), 2012 Second International Conference on, pages 177–182, May 2012.

5 Audie Sumaray and S. Kami Makki. A comparison of data serialization formats for optimal
efficiency on a mobile platform. In Proceedings of the 6th International Conference on
Ubiquitous Information Management and Communication, ICUIMC’12, pages 48:1–48:6,
New York, NY, USA, 2012. ACM.

6 Wikipedia. Comparison of data serialization formats. http://en.wikipedia.org/wiki/
Comparison_of_data_serialization_formats, 2014. [Online; accessed 15-April-2014].

http://tools.ietf.org/html/rfc7159
http://tools.ietf.org/html/rfc7159
http://jackson.codehaus.org/
http://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats
http://en.wikipedia.org/wiki/Comparison_of_data_serialization_formats

	Introduction
	Serialization Formats
	Textual Serialization
	Binary Serialization
	Selection of a Serialization Format

	Comparison and Benchmark of JSON Libraries
	Setup and Methodology
	Performance Benchmark

	Conclusions

