
Contextual Equivalences in Call-by-Need and
Call-By-Name Polymorphically Typed Calculi
(Preliminary Report)
Manfred Schmidt-Schauß and David Sabel

Goethe-University, Frankfurt am Main
{schauss,sabel}@ki.cs.uni-frankfurt.de

Abstract
This paper presents a call-by-need polymorphically typed lambda-calculus with letrec, case, con-
structors and seq. The typing of the calculus is modelled in a system-F style. Contextual
equivalence is used as semantics of expressions. We also define a call-by-name variant without
letrec. We adapt several tools and criteria for recognizing correct program transformations to
polymorphic typing, in particular an inductive applicative simulation.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, F.3.2 Se-
mantics of Programming Languages, D.3.1 Formal Definitions and Theory

Keywords and phrases functional programming, polymorphic typing, contextual equivalence,
semantics

Digital Object Identifier 10.4230/OASIcs.WPTE.2014.63

1 Introduction

The goal of this paper is to present theoretical tools for recognizing correct program trans-
formation in polymorphically typed, lazy functional programming languages like Haskell [4].
The intention is to take care of all program constructs of Haskell with operational significance.
Thus the set of constructs like abstractions, applications, constructors, and case-expressions
has to be extended by seq, the sequential-evaluation operator available in Haskell.

Our notion of correctness is based on the contextual equivalence, which equates programs
if their termination behavior is identical if they are plugged in any surrounding larger program
(i.e. any program context). Early work on the semantics of call-by-need evaluation can
be found e.g. in [7]. Deep analyses of the contextual semantics of Haskell’s core-language
by investigating extended lambda-calculi were done e.g. in [8, 21, 20], but all these works
consider the untyped variant of the core language.

In untyped calculi all program contexts have to be considered for the contextual equivalence
while in typed calculi only typed programs are compared and only correctly typed contexts
have to be considered. Hence in the typed setting the set of testing contexts is a subset of the
used contexts in the untyped setting. Consequences are that correct program transformation
in the untyped calculi are also correct in the typed calculi (provided that the transformation
is type-preserving) and more importantly that typed calculi allow more correct program
transformations than untyped calculi since the set of contexts is smaller and thus the
contextual equivalence is less discriminating than in the untyped calculi.

Thus it is reasonable to also explore the semantics and the correctness of program
transformations of typed program calculi. There are also some investigations in calculi with
polymorphic types, letrec and seq [22] adapting parametricity to polymorphic calculi with

© Manfred Schmidt-Schauß and David Sabel;
licensed under Creative Commons License CC-BY

1st International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’14).
Editors: Manfred Schmidt-Schauß, Masahiko Sakai, David Sabel, and Yuki Chiba; pp. 63–74

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WPTE.2014.63
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

64 Contextual Equivalences in Polymorphically Typed Calculi

Type variables: a ∈ A where A is the set of type variables
Term variables: x, xi ∈ X where X is the set of term variables
Types: τ ∈ Typ := a | (τ1 → τ2) | (K τ1 . . . τar(K))
Polymorphic types: ρ ∈ PTyp := τ | λa.ρ

Expressions: e ∈ ExprF := x : ρ | u | (e τ) | (e1 e2) | (c : τ e1 . . . ear(c))
| (seq e1 e2) | letrec x1 : ρ1 = e1, . . . , xn : ρn = en in e
| caseK e of (p1 -> e1) . . . (pn -> en)
where there is a pattern p for every constructor in DK

Polymorphic expressions: u ∈ PExprF := x : λa.ρ | λx : τ.e | (u τ) | Λa.u
Case-patterns: p := (c : τ x1 : τ1 . . . xar(c) : τar(c))

where xi are different term variables

Figure 1 Types and expressions of the language LF .

seq, but not analyzing program transformations in depth. System F polymorphic calculi
were first described in [3], are used in programming languages [10], and a variant of it is used
in a Haskell compiler [4, 23].

In this paper we focus our investigations on a polymorphically typed calculus and thus
we introduce a polymorphically typed lambda-calculus LF with letrec, case, constructors
and seq that models sharing on the expression level. The (predicative) polymorphism in the
calculus is modelled in a system-F style by type abstractions. Predicative typing shows up in
the formation rule for application, where the argument is not permitted to be polymorphic.
As a second calculus, we present a call-by-name calculus LP without letrec, together with a
fully abstract translation T : LF → LP . There are type-erasing translations into untyped
variants of the calculi (see [20]).

typed: LF
T //

ε
��

LP

εP
��

untyped: LLR in [20] Llcc in [20]

The results in this paper are: The correctness of a large set of program transformations in
LF and LP (see Corollary 4.5 and Proposition 5.3). By stand-alone proofs in the respective
calculi we obtain a context lemma in LF (Proposition 4.7); and a sound and complete
applicative simulation 4P in LP (Theorem 5.6), which implies a ciu-Theorem 5.9 as a
replacement for the context-lemma in LP . By analogy, and since the calculi are deterministic,
we obtain that the fixpoint operators for 4P are continuous, and so 4P = 4P,ω where the
latter is defined inductively (see Theorem 4.10). Using the fully abstract typed translation
T , the results in LP can be transferred to LF , using the methods on Q-similarity in [20].

2 Syntax of the Polymorphic Typed Call-By-Need Lambda Calculus

We define the polymorphically typed language LF which employs cyclic sharing using a letrec
[2] and is like a core-language of Haskell [4], and uses ideas of system-F polymorphism. The
syntax of types and expressions is shown in Fig. 1. There are two classes of types. Types
τ ∈ Typ are like extended monomorphic types, where type variables are allowed, but are
treated more or less as constants. Polymorphic types ρ ∈ PTyp allow to explicitly quantify
type variables by λ. Expressions are built from variables (which always occur with their
type), abstractions, applications, type abstractions and applications, seq-expressions to

M. Schmidt-Schauß and D. Sabel 65

e : τ ′

(λx : τ.e) : τ → τ ′
e : ρ

Λa.e : λa.ρ

e : λa.ρ

(e τ) : ρ[τ/a]
e : τ1 → τ2 e′ : τ1

(e e′) : τ2

e1 : ρ1 . . . en : ρn e : ρ
(letrec x1 : ρ1 = e1, . . . , xn : ρn = en in e) : ρ

e1 : ρ e2 : ρ′

(seq e1 e2) : ρ′

e1 : τ1, . . . , en : τn τ = τ1 → . . .→ τn → τn+1
c : λa1, . . . , am.τ

′′ is the general type of c
there are τ ′1, . . . , τ ′m : τ ′′[τ ′1/a1, . . . , τ

′
m/am] = τ

(c : τ e1, . . . en) : τn+1

e : τ pi : τ ei : ρ
(caseK e of (p1 -> e1) . . . (pn -> en)) : ρ

Figure 2 Typing Rules for LF .

model strict evaluation, recursive letrec, constructor applications and case-expressions.
We assume that there are type-constructors K given with their respective arity, denoted
ar(K), similar as Haskell-style data- and type constructors (see [9]). We assume that the
constant type constructors Bool, Nat and the unary List are already defined. For every
type-constructor K of arity ar(K), there is a set DK 6= ∅ of data constructors, such that
K1 6= K2 =⇒ DK1 ∩ DK2 = ∅. Every (data) constructor c of K comes with a type
λa1, . . . , aar(K).τ1 → . . . → τar(c) → K a1 . . . aar(K). We assume that the following is
available: DBool = {True, False}, with True : Bool, False : Bool, DList = {Nil, Cons},
with Nil : λa.List a, Cons : λa.a→ List a→ List a, and DNat = {0, Succ}, where 0 : Nat
and Succ : Nat→ Nat.

The scoping is as expected: For expressions, λx, Λa, (p → . . .) open a scope, and
letrec opens a recursive scope. For types, λa opens a scope. Types of the expressions are
(generalized) monomorphic and the polymorphic aspect is the type computation via type
abstractions and beta-reduction for type applications. For the reduction, the idea is that
types could be omitted from reduction without any change in the operational reduction
sequence (see Sect. 4.1). The body u of a type abstractions Λa.u are syntactically restricted
(see Fig. 1), which implies that reduction cannot generate a letrec-expression as its body.
We will explain the reason for this restriction in Remark 3.5 below. Note that the syntax
permits a polymorphic non-termination expression (i.e. a “bot”).

I Example 2.1. An example is the polymorphic combinator K := Λa.Λb.λx : a.λy : b.x. It
is polymorphic in the type variables a, b.

I Remark 2.2. It is known that there is a practically problematic danger of growth of type
expressions during reduction, as reported in [23], but this could be defeated by using dags
for types. We could model this by a let for types, which, however, would lead to notational
overhead. So, for simplicity, we treat the types in a non-sharing way.

A generalized monomorphic type-system is used to to form correctly typed expressions
where λ is also permitted in the syntax of types. The typing rules are in Fig. 2. Typing the
polymorphic combinator K := Λa.Λb.λx : a.λy : b.x. results in λa.λb.a→ (b→ a).

I Definition 2.3 (Contexts). An LF -context C ∈ CtxtF is an LF -expression that has a single
occurrence of the hole [· : ρ] of (polymorphic) type ρ and is itself well-typed.

This represents contexts, where the hole maybe at polymorphic expressions.

WPTE’14

66 Contextual Equivalences in Polymorphically Typed Calculi

(e1 e2)sub∨top → (esub
1 e2)sub e1 6= Λa.e′

(letrec Env in e)top → (letrec Env in esub)sub

(letrec x = e,Env in C[xsub]) → (letrec x = esub,Env in C[xsub])
(letrec x = e1, y = C[xsub],Env in e2) → (letrec x = esub

1 , y = C[xsub],Env in e2)
(seq e1 e2)sub∨top → (seq esub

1 e2)sub

(case e of alts)sub∨top → (case esub of alts)sub

((Λa.u) τ)sub∨top → ((Λa.esub) τ)sub; then stop with success
(Λa.u)sub∨top → (Λa.usub)sub

sub ∨ top means label sub or top.

Figure 3 Searching the normal-order redex using labels.

3 Small-Step Operational Semantics of LF

A reduction step consists of: (1) finding a normal-order redex, then (2) applying a reduction
rule. Instead of defining step (1) by a syntactic definition reduction contexts – which is
notationally complex in LF (see e.g. [21] for a similar language), we define the search by a
labeling algorithm which uses two atomic labels sub, top, where top means the top-expression,
and sub means “subterm” (in a letrec-expression). For an expression e the labeling algorithm
starts with etop, where e has no further inner labels top or sub. Then the rules of Fig. 3 are
applied exhaustively. The role of top and sub is to prevent to label positions inside deep
letrec-expressions. The labeling algorithm fails, if a loop is detected, which happens if a
to-be-labeled position is already labeled sub, and otherwise, if no more rules are applicable
or if the labeling algorithm has to stop, it succeeds. If we apply the labeling algorithm to
contexts, then the contexts where the hole will be labeled with sub, or top are called the
reduction contexts. We denote reduction contexts with R. Note that for the ease of reading,
we omit the types of variables and constructors in the notation.

I Definition 3.1. Normal-order reduction rules are defined in Fig. 4, where we assume that
the labeling algorithm was used successfully before. Otherwise no normal-order reduction is
applicable. In the presentation of the rules we only present the to-be-reduced subexpression.
We also assume that the topmost redex according to the rule is the normal-order redex.

Note that the guiding principle in the cp-rules is to copy only values, i.e. polymorphic
abstractions or cv-expressions. It is easy to verify that normal-order reduction is unique.

I Definition 3.2. A cv-expression is an expression of the form (c x1 . . . xn) where c is a
constructor and xi are variables. A polymorphic abstraction is an expression of the form
Λa1, . . . ,Λan.u, where n ≥ 0 and u is an abstraction. Let W ∈ WCtxt denote contexts
according to the grammar W ∈ WCtxt ::= [·] | (letrec Env in [·]). A weak head normal
form (WHNF) is a polymorphic abstraction, or of the form W [w], where w is a constructor
application or an abstraction.

I Lemma 3.3. Reduction does not change the type of expressions.

I Example 3.4. As an example we reduce an expression including the polymorphic combin-
ator K := Λa.Λb.λx : a.λy : b.x. Applying it to the type Bool, the constant True of type
Bool and a type variable a′ is as follows: (Λa.Λb.λx : a, λy : b.x) Bool a′ True results after
three normal-order reductions in (letrec x : Bool = True in λy : a′.x).

M. Schmidt-Schauß and D. Sabel 67

(lbeta) ((λx : τ.e1)sub e2)→ letrec x : τ = e1 in e2
(Lbeta) ((Λa.u)sub τ)→ u[τ/a]
(cp-in) letrec x = vsub,Env in C[xsub]→ letrec x = v,Env in C[v]

where v is a polymorphic abstraction, or a cv-expression
(cp-e) letrec x = vsub, y = C[xsub],Env in e

→ letrec x = v, y = C[v],Env in e
where v is a polymorphic abstraction, or a cv-expression

(cpcx-in) letrec x = (c : τ e1 . . . en)sub,Env in C[xsub]
→ letrec x = (c : τ x1 . . . xn), x1 : τ1 = e1, . . . , xn : τn = en,Env

in C[(c x1 . . . xn)] where the types τi are computed as the type of ei
(cpcx-e) letrec x = (c : τ e1 . . . en)sub, y = C[xsub],Env in e

→ letrec x = (c : τ e1 . . . en), x1 : τ1 = e1, . . . , xn : τn = en, y = C[(c x1 . . . xn)],
Env in e where the types τi are computed as the type of ei

(case) (case (c e1 . . . en)sub of . . . ((c y1 : τ1 . . . yn : τn) -> e) . . .)
→ letrec y1 : τ1 = e1, . . . , yn : τn = en in e

(case) (case csub of . . . (c -> e) . . .)→ e

(seq) (seq vsub e)→ e if v is a constructor application or a polymorphic abstraction
(llet-e) letrec Env1, x = (letrec Env2 in e1)sub in e2

→ letrec Env1,Env2, x = e1 in e2
(llet-in) letrec Env1 in (letrec Env2 in e)sub → letrec Env1,Env2 in e
(lapp) ((letrec Env in e1)sub e2)→ letrec Env in (e1 e2)
(lseq) (seq (letrec Env in e1)sub e2)→ letrec Env in (seq e1 e2)
(lcase) (case (letrec Env in e)sub of alts)→ letrec Env in (case e of alts)

Figure 4 Normal-order rules.

I Remark 3.5. On typed and untyped sharing: There is a constellation that has to be
excluded (by syntax): expressions of the form e = Λa1. . . . an.(letrec Env in t). The
technical problem is that the (cp)-rules want to copy these expressions. However, in the
untyped case, this is not possible, but instead a let-shifting can be done. In the typed case
the scoping of the types prevents this let-shifting, and so the expression is stuck: it cannot be
further reduced. Analyzing the usage at runtime of the expressions in the environment Env,
it turns out that it does not make sense to share them among differently typed copies, since
it is not type-safe. So the intention can only be to copy Env together with the abstraction.
But then the elements in Env are not really useful, since they must have all types. Due to
this conflict with the untyped reduction, the body e in Λa.e is syntactically restricted to
expressions u ∈ PExprF . I.e., letrec-expressions and also expressions which may reduce to
a letrec-expression (e.g. an application) are forbidden for e. If e is a variable, then it must
have a type of the form λ.ρ which again ensures that the variable cannot be replaced by
arbitrary expressions. For the same reasons, we also forbid constructors at the position for e
in Λa.e. Thus allowed expressions for e are type applications, abstractions and polymorphic
variables in Λ-bodies, which also enforces potential reductions in the body. We permit only
Λa1. . . . an.λ.x.e as proper polymorphic WHNFs.

3.1 Contextual Equivalence
In this section we define contextual equivalence for typed expressions. We introduce conver-
gence as the observable behavior of expressions. Expressions are contextually equivalent if
their convergence behavior is indistinguishable in all program contexts.

WPTE’14

68 Contextual Equivalences in Polymorphically Typed Calculi

I Definition 3.6. Let e ∈ LF . A normal order reduction sequence of e is called a (normal-
order) evaluation if the last term is a WHNF. We write e↓e′ (e converges) iff there is an
evaluation starting from e ending in WHNF e′ (we omit e′, if it is of no interest). Otherwise,
if there is no evaluation of e, we write e⇑.

I Definition 3.7 (Contextual Preorder and Equivalence). Contextual preorder ≤F and contex-
tual equivalence ∼F are defined for equally typed expressions. For e1, e2 of type ρ:

e1 ≤F e2 iff ∀C[· : ρ] : τ : If C[e1] and C[e2] are closed, then (C[e1]↓ =⇒ C[e2]↓)
e1 ∼F e2 iff e1 ≤F e2 ∧ e2 ≤F e1

Note that we are only interested in top-expressions of closed type. It is standard to show
that ≤F is a precongruence, i.e. a compatible partial order, and that ∼F is a congruence,
i.e. a compatible equivalence relation. Also, a progress lemma holds for closed expressions e:
If no reduction is possible, then e is a WHNF, or the search for a redex fails.

4 Correctness of Program Transformations and Translations

A typed program transformation P is a binary relation on LF -expressions, such that (e1, e2) ∈
P is only valid for well-formed e1, e2 of equal type. The restriction of P to a type ρ is denoted
with Pρ. A program transformation P is called correct iff for all ρ and all (e1, e2) ∈ Pρ,
the contextual equivalence relation e1 ∼F e2 holds. Analogously, for untyped programs, a
program transformation P is a binary relation on untyped expressions and it is correct if
P ⊆ ∼. Disproving the correctness of a (typed or untyped) program transformation is often
easy, since a counter example consisting of a program context which distinguishes two related
expressions by their convergence behavior is sufficient.

I Definition 4.1. Let L1, L2 be two (typed or untyped) calculi with a notion of expressions,
contexts, may-convergence ↓i, and contextual preorder ≤i. A translation ψ from calculus L1
in L2 (with equal set of types) mapping expressions to expressions and contexts into contexts
where types are retained and ψ([·]) = [·] is 1. convergence equivalent if e↓1 ⇐⇒ ψ(e)↓2;
2. compositional if ψ(C[e]) = ψ(C)[ψ(e)]; 3. adequate if ψ(e1) ≤2 ψ(e2) =⇒ e1 ≤1 e2;
and 4. fully abstract if ψ(e1) ≤2 ψ(e2) ⇐⇒ e1 ≤1 e2.

4.1 Importing Results from Untyped Calculi
The untyped language LLR has the same syntax as LF except that variables have no type,
and that type abstractions Λa.e and type applications (e τ) are not permitted. The normal
order reduction for LLR is defined as for LF where the rule (Lbeta) is not used. The semantics
of LLR was investigated e.g. in [20, 21].

I Definition 4.2. The translation ε translates LF -expressions into untyped expressions LLR
where we assume that the data types and the constructors are the same. It is defined as
ε(Λa.e) := ε(e), ε(e τ) := ε(e), and on the other constructs ε acts homomorphically, removing
type labels and types.

Since the untyped reduction is the same as the typed reduction if the types and (Lbeta)-
reductions are ignored, and since the untyped WHNFs are exactly the typed WHNFs with the
types removed, ε is convergence equivalent. Since it is also independent of the surrounding
context, it is also compositional:

I Lemma 4.3. The translation ε is convergence equivalent and compositional.

M. Schmidt-Schauß and D. Sabel 69

(gc) (letrec x1 = e1, . . . , xn = en in e)→ e if no xi occurs free in e
(gc) (letrec x1 = e1, . . . , xn = en, y1 = e′1, . . . , ym = e′m in e)

→ (letrec y1 = e′1, . . . , ym = e′m in e) if no xi occurs free in e nor in any e′j
(gcp) (letrec x = e,Env in C[x])→ (letrec x = e,Env in C[e])
(gcp) (letrec x = e1, y = C[x],Env in e2)→ (letrec x = e1, y = C[e1],Env in e2)
(gcp) (letrec x = C[x],Env in e)→ (letrec x = C[C[x]],Env in e)

Figure 5 Further program transformations.

This implies that it is also adequate (see for example [17]).

I Corollary 4.4. The translation ε is adequate, which means that equivalences from LLR
also hold in LF .

Proving correctness of program transformations is in general a hard task, since all contexts
need to be taken into account. In e.g. [8, 21, 12] methods to prove correctness of program
transformations for untyped letrec calculi were developed. As a first step we will use the
result of [21] to lift untyped program equivalences into the typed calculus. In the calculus
introduced in [21] the normal order reduction is slightly different, but it is easy to show that
these differences do not change the convergence behavior of untyped expressions (a proof of
this coincidence for an extended calculus can be in [15], see also [20]). This implies that all
reduction rules of Fig. 4 and the optimizations garbage collection (gc) and general copying
(gcp) (see Fig.5) are correct program transformations for LF (for (gcp) see [16]).

I Corollary 4.5. The reductions rules from Figs. 4 and 5 are correct program transformations
in LF , and can be used in any context.

4.2 Context Lemma
For the context lemma we first define the ≤-relation for reduction contexts. A context lemma
for a similar polymorphic calculus with a (more complex) type labeling but without explicit
type abstractions and applications is in [15].

I Definition 4.6. For a polymorphic type ρ and e1, e2 of type ρ, let e1 ≤F,R e2 hold if for
all reduction contexts R[· : ρ] such that R[e1],R[e2] are closed: R[e1]↓ =⇒ R[e2]↓.

I Proposition 4.7 (Context Lemma for LF). Let ρ be a polymorphic type and e1, e2 be of
type ρ. Then e1 ≤F,R e2 ⇐⇒ e1 ≤F e2.

The proof is standard, e.g. it follows the technique explained in [18]. However, the proof
technique relies on the proper use of sharing. For instance, the proof technique breaks down
in a call-by-name calculus (like LP in Sect. 5).

The context lemma 4.7 immediately implies:

I Corollary 4.8. If e1, e2 are closed expressions of equal type with e1⇑, e2⇑, then e1 ∼F e2.

4.3 Inductive Similarity For LF

As a further proof tool for showing contextual equivalences, we define an improved similarity
definition in LF , which is often superior to the context lemma.

WPTE’14

70 Contextual Equivalences in Polymorphically Typed Calculi

I Definition 4.9. We define 4ω :=
⋂
n≥0 4n where for n ≥ 0, 4n is defined on closed

LF -expressions e1, e2 of the same type as follows:

1. e1 40 e2 is always true.
2. e1 4n e2 for n > 0 holds if the following conditions hold:

a. if e1↓Λa.e′1, then e2↓Λa.e′2, and for all τ : e′1[τ/a] 4n−1 e
′
2[τ/a].

b. if e1↓W[λx : τ.e′1], then
e2↓W′[λx : τ.e′2] and for all closed e : τ : W[λx.e′1] e 4n−1 W′[λx.e′2] e.

c. if e1↓W[c e′1 . . . e′m], then e2↓W′[c e′′1 . . . e′′m] and for all i: W[e′i] 4n−1 W′[e′′i].

The proof of soundness (and completeness) of inductive similarity w.r.t. contextual
preorder can be constructed similar to an analogous proof in the untyped case (see [20]). We
sketch the proof: The language LP is a polymorphically typed call-by-name lambda-calculus
with fixpoint combinators, but no letrec (see Sect. 5). In LP conincidence of contextual
preorder and inductive similarity can be shown by proving soundness and completeness of an
applicative similarity using Howe’s method (Theorem 5.6). Using some further arguments
which rely on the continuity of the fixpoint combinators show the coincidence of applicative
and inductive similarity (Theorem 5.8). Then a translation T : LF → LP is defined (below in
Sect. 5.2) which replaces letrec-expressions by fixpoint combinators. Since the translation
T is fully abstract and surjective on the equivalence classes of contextual equivalence,
Theorem 5.8 can be lifted into LF which shows the following theorem:

I Theorem 4.10. 4oω = ≤F
As a corollary we show that ε is not fully abstract.

I Proposition 4.11. The translation ε is not fully abstract.

Proof. In LF the expressions e1 = λx : Bool.caseBool x of (True ->x) (False ->x) and
e2 = λx : Bool.x are contextually equivalent. This follows by Theorem 4.10 and since the
possible arguments can be classified as equivalent to ⊥ (a nonterminating expression of type
Bool), True or False, and the result is equivalent or equal in all cases. However, ε(e1) and
ε(e2) are different in L, which can be seen by applying them to λx.x. J

As an example, we show the equivalence of other polymorphic expressions.

I Proposition 4.12. In the language LF the two expressions e1 = Λa.λx : (List a).x and
e2 = Λa.λx : (List a).case x of (Nil -> Nil) (Cons y1 y2 -> Cons y1 y2) of polymorphic
type λa.List a→ List a are contextually equivalent.

Proof. We use inductive similarity. Application to τ yields two monomorphic abstractions.
Further application can only be to arguments without WNHF, or with WHNF W[Nil]
or W[Cons e′1 e

′
2]. In all cases, the results are obviously contextually equivalent and thus

applicative similar. J

5 A Call-by-Name Polymorphic Lambda Calculus

We present a call-by-name polymorphic lambda calculus LP as a second calculus, with
built-in multi-fixpoint constructions Ψ for representing mutual recursive functions.

We argue that there is a fully abstract translation T from LF into the calculus LP . To
demonstrate the power, we show that there is a polymorphic applicative simulation in LP
that is useful for recognizing equivalences. The calculus LP is related to the lazy lambda
calculus [1], however LP is more expressive and typed.

M. Schmidt-Schauß and D. Sabel 71

Polymorphic expressions: u ∈ PExprP ::= x : λa.ρ | λx : τ.e | (u τ) | Λa.u
Expressions: e, ei ∈ ExprP ::= x : ρ | u | (e τ) | (e1 e2) | (c : τ e1 . . . ear(c))

| (caseK e of alts) | (seq e1 e2) | Ψi,nx : ρ.e
Reduction contexts: RP ∈ RP ::= [·] | (RP e) | caseK RP of alts | seq RP e

Normal order reduction:
(rnbeta) RP [((λx.e1) e2)] P−→ RP [e1[e2/x]]
(rncase) RP [caseK (c e1 . . . ear(c)) of . . . ((c x1 . . . xar(c)) -> e) . . .)]

P−→ e[e1/x1, . . . , ear(c)/xar(c)]
(rnseq) RP [seq v e] P−→ RP [e], if v is an LP - WHNF.
(rntype) RP [(Λa.e) τ] P−→ RP [e[τ/a]]
(rnfix) RP [Ψi,nx.e]

P−→ RP [(ei[Ψ1,nx.e/x1, . . . ,Ψn,nx.e/xn])]

Figure 6 Syntax and normal order reduction P−→ of LP .

5.1 The Calculus LP

I Definition 5.1. The calculus LP is defined as follows. The set ExprP of LP -expressions is
that of LF , where letrec is removed, see Fig.6. (Ψi,nx : ρ.e) is a family of multi-fixpoint-
operators, where 1 ≤ i ≤ n and where x means x1, . . . , xn, similarly for e.

The typing rules are according to Fig. 2 with the additional rule for the Ψ-operator:

for i = 1, . . . , n: ei : ρi, xi : ρi
(Ψi,nx : ρ.e) : ρi

WHNFs in LP are (polymorphic) abstractions Λa1.Λan.λx : ρ.e and constructor applica-
tions. In Fig. 6 the reduction rules and the normal order reduction P−→ for LP using reduction
contexts RP are given. The contextual preorder ≤P and contextual equality ∼P are defined
as above for the calculus LF , where convergence to LP -WHNFs and where holes in contexts
are permitted to have polymorphic type ρ, but the context itself must have plain type.

Note that our syntax permits a “polymorphic bot”: Ψ1,1 x:(λa.a).x. An example is poly-
morphic length of lists (type-labels in the notation are partially omitted):

length := (Ψ1,1len:List a→ Nat.Λa.λxs:List a.
case xs of (Nil -> 0) (Cons y ys -> Succ (len a ys)))

Our formulation is a bit more general than that in [10] for system F and ML, which
corresponds to Milner type checking, whereas our formulation permits differently typed
occurrences of a recursive polymorphic functions in its defining body, and so corresponds to
iterative (polymorphic) type checking.

5.2 On the Translation T : LF → LP

In order to define the typed translation T : LF → LP , we adapt the combined translation
from the untyped variant in [20].

I Definition 5.2. The translation T : LF → LP is defined as:
T (letrec x1 = e1; . . . , xn = en in e′) := T (e′)[(Ψ1,nx.f)/x1, . . . , (Ψn,nx.f)/xn] and where
fi = λx1, . . . xn.T (ei) for i = 1, . . . , n, and it is homomorphically on other constructs.

WPTE’14

72 Contextual Equivalences in Polymorphically Typed Calculi

I Proposition 5.3. The translation T : LF → LP is fully abstract and surjective on
contextual-equivalence classes.

Proof. This can be derived from the untyped version in [20]. J

For inheriting correct translations we again use a translation εP into an untyped call-by-
name calculus Llcc in [20] by forgetting the types (and allowing also untyped expressions),
and with εP (Ψ1,1x.s) = Y (εP (λx.s)), where Y is the untyped fixpoint combinator in Llcc.
Similarly, we can translate Ψi,n(. . .) using the multi fixpoint combinators in [20].

I Proposition 5.4. The translation εP : LP → Llcc is convergence equivalent and composi-
tional, hence adequate, but it is not fully abstract. The reduction rules of LP are correct.

Proof. Only the case of a type abstraction requires an extra argument. It is sufficient
that the contexts used for testing have the same type of the hole as the expressions. Then
adequacy of the translation εP can be used. J

5.3 Applicative Simulation in LP

In the following we use binary relations η on closed expressions (of the same type). We
need closing substitutions σ which are defined as mapping free variables (of plain type) to
closed expressions of the same type, and all type variables to plain types. This extension to
type variables is the key to apply applicative simulation also to polymorphic functions. The
open extension ηo of η is the relation on open expressions, where e1 η

o e2 is valid iff for all
substitutions σ where σ(e1), σ(e2) are closed, the relation σ(e1) η σ(e2) holds. We will also
use the restriction of a binary relation η to closed expressions which is denoted as ηc.

I Definition 5.5 (Applicative Similarity in LP). Let η be a binary relation on closed LP -
expressions, where only expression of equal syntactic type can be related. Let FP be the
operator on relations on closed LP -expressions s.t. e1 FP(η) e2 holds iff

e1↓Pλx.e
′
1 =⇒

(
e2↓Pλx.e

′
2 and e′1 ηo e′2

)
e1↓P(c e′1 . . . e′n) =⇒

(
e2↓P(c e′′1 . . . e′′n) and the relation e′i η e′′i holds for all i

)
e1↓PΛa.e′1 =⇒

(
e2↓PΛa.e′2 and e′1 ηo e′2

)
Applicative similarity 4P is defined as the greatest fixpoint of the operator FP . Mutual

similarity 'P is defined as e1 'P e2 iff e1 4P e2 ∧ e2 4P e1.

Note that the operator FP is monotone, hence the greatest fixpoint 4P exists.
Howe’s method [5, 6] to show that 4P is a pre-congruence and equal to ≤cP can be applied

without unexpected changes, see also [11] and [20, Sect. 4.2] where the only extra feature is
the typing. For completeness, we show ≤cP ⊆ 4P by proving that contextual equivalence in
LP satisfies the fixpoint conditions of FP and then we use coinduction. By the properties of
4P this implies that ≤P ⊆ 4P also holds for open expressions.

I Theorem 5.6. ≤cP = 4P, and ≤P = 4oP.

Proof. Only the completeness part is missing. We have to analyze the three conditions of
Definition 5.5, where we use Proposition 5.4 several times.

1. If e1 ≤P e2, and e1↓Pλx : τ.e′1, then clearly e2↓Pλx : τ.e′2. Since beta-reduction is correct,
also for all closed expressions e : τ e1 e ≤P e2 e, since ≤P is a precongruence, and since
reduction sequences are correct w.r.t. ∼P ; thus e′1[e/x] ≤P e′2[e/x].

M. Schmidt-Schauß and D. Sabel 73

2. If e1 ≤P e2 and e1↓P(c e′1 . . . e′n), then e2↓Pv2. Since ≤P is a precongruence, reduction
is correct, and using simple contexts like case [·] of ((c x1 . . . xn) -> True) . . . (p′ ->⊥)
and case [·] of ((c x1 . . . xn) ->xi) . . . (p′ ->⊥), we see that v2 is of the form (c e′′1 . . . e′′n),
where e′i ≤P e′′i for all i.

3. The last case is the type abstraction and type substitution. The same arguments as above
can be used, by plugging the expressions e1, e2 into a context ([·.] τ). J

5.4 Inductive Similarity For LP

We define the inductive version of applicative similarity in LP :

I Definition 5.7. We define 4P,ω :=
⋂
n≥0 4P,n where for n ≥ 0, 4P,n is defined on closed

LP -expressions e1, e2 of the same type as follows:

1. e1 4P,0 e2 is always true.
2. e1 4P,n e2 for n > 0 holds if the following conditions hold:

a. If e1↓Λa.e′1, then e2↓Λa.e′2, and for all τ : e′1[τ/a] 4P,n−1 e
′
2[τ/a].

b. if e1↓λx : τ.e′1 then e2↓λx : τ.e′2 and for all closed e : τ : e′1[e/x] 4P,n−1 e
′
2[e/x].

c. if e1↓(c e′1 . . . e′m) then e2↓(c e′′1 . . . e′′m) and for all i: e′i 4P,n−1 e
′′
i .

Proving continuity of the fixpoint operator of 4P as in (see [20]), we obtain:

I Theorem 5.8. 4oP,ω = ≤P

A corollary is a ciu-Theorem: Let e1 ≤ciu e2 for two LP -expressions e1, e2 of equal type
iff for all closed LP -reduction contexts RP , and all (well-typed) substitutions σ where σ(e1)
and σ(e2) are closed: RP [σ(e1)]↓ =⇒ RP [σ(e2)]↓.

I Theorem 5.9. ≤ciu = ≤P

Proof. We apply the knowledge about applicative simulation 4: If e1 4o e2, then for
all σ where σ(e1), σ(e2) are closed: σ(e1) 4 σ(e2). Since we already know that 4 is a
pre-congruence, we also obtain RP [σ(e1)] 4 RP [σ(e2)], and so RP [σ(e1)]↓ =⇒ RP [σ(e2)]↓.

We show that the ciu-relation implies 4o: For closed e1, e2 it holds: Since the calculus LP
is deterministic, it is sufficient to restrict the test to the contexts [·] e′1 . . . e′m for all m ≥ 0
and all closed e′i (see Theorem 5.8). So, if the ciu-condition for closed expressions holds, we
obtain e1 ≤P e2 and so e1 4 e2. The ciu-relation for non-closed e1, e2 is equivalent to the
open extension of 4, i.e., it implies e1 4o e2, and thus we have the equality: 4o = ≤ciu. J

6 Conclusion

Using a system-F-like extension of untyped extended lambda-calculi with case, constructors,
and seq, and call-by-need and call-byname variants, we present several tools for recognizing
correct transformations This could potentially be used in lazy functional programming
languages like Haskell.

Further research may be to investigate a polymorphic variant of (the non-deterministic
language) Concurrent Haskell with futures (CHF) [14, 13]. A non-deterministic extension of
LF and LP with amb appears unrealistic, since there are counterexamples for combinations
of letrec [19] and since call-by-name and call-need nondeterminism are very different.

Acknowledgment. We thank the anonymous reviewers for their valuable comments.

WPTE’14

74 Contextual Equivalences in Polymorphically Typed Calculi

References
1 S. Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research Topics in

Functional Programming, pages 65–116. Addison-Wesley, 1990.
2 Z.M. Ariola and J.W. Klop. Lambda calculus with explicit recursion. Inform. and Comput.,

139(2):154–233, 1997.
3 J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. CUP, 1994.
4 Haskell-community. The Haskell Programming Language, 2014. http://www.haskell.org.
5 D. Howe. Equality in lazy computation systems. In LICS’89, pages 198–203, 1989.
6 D. Howe. Proving congruence of bisimulation in functional programming languages. Inform.

and Comput., 124(2):103–112, 1996.
7 J. Launchbury. A natural semantics for lazy evaluation. In POPL’93, pages 144–154. ACM,

1993.
8 A.K.D. Moran, D. Sands, and M. Carlsson. Erratic fudgets: A semantic theory for an

embedded coordination language. Sci. Comput. Program., 46(1-2):99–135, 2003.
9 S. Peyton Jones. Haskell 98 language and libraries: the Revised Report. CUP, 2003.
10 B.C. Pierce. Types and Programming Languages. The MIT Press, 2002.
11 A.M. Pitts. Howe’s method for higher-order languages. In Advanced Topics in Bisimu-

lation and Coinduction, volume 52 of Cambridge Tracts in Theoretical Computer Science,
chapter 5, pages 197–232. CUP, November 2011. (chapter 5).

12 D. Sabel and M. Schmidt-Schauß. A call-by-need lambda-calculus with locally bottom-
avoiding choice: Context lemma and correctness of transformations. Math. Structures
Comput. Sci., 18(03):501–553, 2008.

13 D. Sabel and M. Schmidt-Schauß. A contextual semantics for Concurrent Haskell with
futures. In PPDP’11, pages 101–112, New York, NY, USA, July 2011. ACM.

14 D. Sabel and M. Schmidt-Schauß. Conservative concurrency in Haskell. In LICS’12, pages
561–570. IEEE, 2012.

15 D. Sabel, M. Schmidt-Schauß, and F. Harwath. Reasoning about contextual equival-
ence: From untyped to polymorphically typed calculi. In INFORMATIK 2009 (ATPS’09),
volume 154 of LNI, pages 369; 2931–45, 2009.

16 M. Schmidt-Schauß. Correctness of copy in calculi with letrec. In RTA’08, volume 4533 of
LNCS, pages 329–343. Springer, 2007.

17 M. Schmidt-Schauß, E. Machkasova, and D. Sabel. Extending Abramsky’s lazy lambda
calculus: (non)-conservativity of embeddings. In RTA’13, volume 21 of LIPIcs, pages
239–254, Dagstuhl, Germany, 2013. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

18 M. Schmidt-Schauß and D. Sabel. On generic context lemmas for higher-order calculi with
sharing. Theoret. Comput. Sci., 411(11-13):1521 – 1541, 2010.

19 M. Schmidt-Schauß, D. Sabel, and E. Machkasova. Counterexamples to applicative simu-
lation and extensionality in non-deterministic call-by-need lambda-calculi with letrec. Inf.
Process. Lett., 111(14):711–716, 2011.

20 M. Schmidt-Schauß, D. Sabel, and E. Machkasova. Simulation in the call-by-need lambda-
calculus with letrec, case, constructors, and seq. Frank report 49, Goethe-Universität
Frankfurt, 2012.

21 M. Schmidt-Schauß, M. Schütz, and D. Sabel. Safety of Nöcker’s strictness analysis. J.
Funct. Programming, 18(04):503–551, 2008.

22 J. Voigtländer and P. Johann. Selective strictness and parametricity in structural opera-
tional semantics, inequationally. Theor. Comput. Sci, 388(1–3):290–318, 2007.

23 D. Vytiniotis and S. Peyton Jones. Evidence Normalization in System FC (Invited Talk).
In RTA’13, volume 21 of LIPIcs, pages 20–38, Dagstuhl, Germany, 2013. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

	Introduction
	Syntax of the Polymorphic Typed Call-By-Need Lambda Calculus
	Small-Step Operational Semantics of LF
	Contextual Equivalence

	Correctness of Program Transformations and Translations
	Importing Results from Untyped Calculi
	Context Lemma
	Inductive Similarity For LF

	A Call-by-Name Polymorphic Lambda Calculus
	The Calculus LP
	On the Translation T: LFLP
	Applicative Simulation in LP
	Inductive Similarity For LP

	Conclusion

