
A Formally Verified WCET Estimation Tool
André Maroneze1, Sandrine Blazy1, David Pichardie2, and
Isabelle Puaut1

1 IRISA – Université Rennes 1
Campus Universitaire de Beaulieu, Rennes, France
andre.maroneze@irisa.fr, sandrine.blazy@irisa.fr, isabelle.puaut@irisa.fr

2 IRISA – ENS Rennes
Campus Universitaire de Ker Lann, Bruz, France
david.pichardie@irisa.fr

Abstract
The application of formal methods in the development of safety-critical embedded software is
recommended in order to provide strong guarantees about the absence of software errors. In this
context, WCET estimation tools constitute an important element to be formally verified. We
present a formally verified WCET estimation tool, integrated to the formally verified CompCert
C compiler. Our tool comes with a machine-checked proof which ensures that its WCET esti-
mates are safe. Our tool operates over C programs and is composed of two main parts, a loop
bound estimation and an Implicit Path Enumeration Technique (IPET)-based WCET calcula-
tion method. We evaluated the precision of the WCET estimates on a reference benchmark and
obtained results which are competitive with state-of-the-art WCET estimation techniques.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Formal Verification, CompCert C Compiler, WCET Estimation

Digital Object Identifier 10.4230/OASIcs.WCET.2014.11

1 Introduction

In the context of safety-critical embedded software, international regulations such as the
DO-178C standard promote the use of formal methods for software development. Among
them, formal verification provides guarantees about the specification and the implementation
of a program through the use of machine-checked proofs. Instead of relying on a manual
verification effort, the use of tools provides stronger guarantees about the absence of errors
in the proof. This is especially important for reasoning on real languages such as C.

Safety-critical systems are an instance of real-time systems, where programs must respect
given timing constraints. An important measure in real-time systems is the worst-case
execution time of a program. Obtaining a safe WCET estimate (that is, a value at least as
large as the actual WCET) is part of the necessary guarantees for such systems.

Current WCET estimation tools, even when based on sound static analysis techniques, are
not verified. This may lead to bugs being accidentally introduced in the implementation. The
main contribution of this paper is a formally verified WCET estimation tool operating over C
code. It extends previous work on formally verified static analyses ([5] and [4]) by adding our
WCET estimation, based on the classic IPET technique. In our approach, the code of our
tool is automatically generated from its formal specification. Furthermore, machine-checked
proofs ensure the estimated WCET is at least as large as the actual WCET.

Our formally verified WCET estimation tool has been integrated into CompCert [10],
a moderately optimizing, formally verified C compiler usable for critical software. This

© André Maroneze, Sandrine Blazy, David Pichardie, and Isabelle Puaut;
licensed under Creative Commons License CC-BY

14th International Workshop on Worst-Case Execution Time Analysis (WCET 2014).
Editor: Heiko Falk; pp. 11–20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2014.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


12 A Formally Verified WCET Estimation Tool

integration provides two major benefits for our tool: first, it allows us to reuse CompCert’s
formal specifications, including formal semantics for C and assembly (CompCert targets
PowerPC, ARM and x86 assembly). Second, it enables the integration of analyses at different
intermediate languages (e.g. high-level loop transformations and low-level WCET estimation).
It also allows us to benefit from CompCert’s optimizations (such as constant propagation) to
improve the precision of our WCET estimates.

In our formal development, we verified two major components of our WCET estimation
tool: a loop bound estimation technique (inspired by one of SWEET’s [7] techniques for
loop bound estimation), based on program slicing and a value analysis, and the generation
of an integer linear programming (ILP) system for WCET estimation via IPET. Combining
these techniques results in a WCET estimation tool together with a machine-checked proof
that the produced WCET estimate is safe. We evaluated the precision and efficiency of our
implementation on the Mälardalen WCET benchmarks [8]. Our results are competitive with
state-of-the-art WCET estimation techniques.

This paper is structured as follows: in Section 2 we present the architecture of our WCET
estimation tool, focusing on the techniques and implementation. In Section 3, we detail
the proof architecture, presenting a high-level view of the final correctness theorem in our
formalization and its main components. In Section 4, we describe the experimental evaluation
and its results. We present some related work in Section 5 and then conclude in Section 6.

2 Architecture of our WCET estimation tool

We developed our WCET estimation tool within CompCert, which is equipped with a
correctness theorem, that is, a proof relating the behaviors of source and compiled code,
which ensures that no bugs are introduced during compilation. CompCert has several
intermediate languages, among them RTL (for Register Transfer Language), where a program
is represented by its control-flow graph (CFG). Our loop bound estimation is performed at
this level. The WCET calculation phase is defined at the lowest level (assembly), closer to the
executable for more precision. The result of our analyses performed in RTL is transported to
assembly thanks to the correctness theorem.

Figure 1 illustrates the architecture of our WCET estimation tool (bottom row) within the
CompCert compilation chain (top row). We start by presenting the loop bound estimation
(Section 2.1). Due to space considerations, we only present an overview of this technique,
referring the reader to [5] for more details.

The other main component in our tool is the WCET calculation step, which generates
an ILP system to produce the WCET estimate (Section 2.2). It uses the result of the loop
bound estimation. Finally, we present some (optional) loop transformations (Section 2.3),
used to improve the precision of our WCET estimate. They are performed on structured
loops, during front-end compilation.

Figure 1 CompCert’s compilation chain (top) and our WCET estimation tool (bottom).



A. Maroneze, S. Blazy, D. Pichardie, and I. Puaut 13

2.1 Loop bound estimation
Our loop bound estimation technique, inspired by one of those used in SWEET [7], is
composed of three parts: program slicing, value analysis, and loop bound calculation. In
a deterministic and terminating program execution, the same program state cannot occur
twice, i.e. the values of the program variables are unique at each iteration. Thus, we count
the number of different states and use it as an upper bound for the number of loop iterations.

For each loop in the program, the first step consists in performing program slicing by
removing statements not related to the loop header, which is our slicing criterion. This
improves the precision and speed of the following passes. For instance, in the program below,
where the loop header is the loop exit condition (i < 5), program slicing removes statements
which do not affect the value of variable i (considering f free of side-effects).

i = 1;
a[0] = 0;
while (i < 5) {

a[i] = a[i-1] + f(i);
i++;

}

i = 1;

while (i < 5) {

i++;
}

Then, our value analysis computes, for each program variable at each program point,
an interval containing all possible values of that variable, as indicated in the code fragment
below. This interval is a safe over-approximation, and therefore when counting the number
of different possibilities, we will obtain a safe estimate of all possible values. This analysis is
based on abstract interpretation, and it is detailed in [4]. An example program is presented
below, with the result of our value analysis in the right column.

i = 0; j = 0;
while (i < 5)
{

i++;
if (i == 5 && j < 2) {

i = 0;
j++;

}
}

i ∈ [0, 0], j ∈ [0, 0]
i ∈ [0, 5], j ∈ [0, 2]
i ∈ [0, 4], j ∈ [0, 2]
i ∈ [1, 5], j ∈ [0, 2]
i ∈ [5, 5], j ∈ [0, 1]
i ∈ [0, 0], j ∈ [0, 1]
i ∈ [0, 0], j ∈ [1, 2]
i ∈ [0, 5], j ∈ [0, 2]
i ∈ [5, 5], j ∈ [2, 2]

The final stage consists in computing the product of the size of the domains of the relevant
variables for each loop – variables which are live, used and modified inside the loop. Only
these variables may influence the number of loop iterations.

The computed product is a safe loop bound estimation. For instance, in the previous
example there are two relevant variables, i and j. The number of iterations is safely bounded
by the product of the sizes of their intervals at the loop exit condition ([0, 5] and [0, 2]), that
is, 6× 3 = 18 iterations (the exact bound here is 15 iterations). This method also works for
nested loops, by computing the product of outer and inner loop bounds.

2.2 IPET-based WCET estimation
We apply a classic technique, namely IPET [11], to produce an ILP system representing the
program’s execution flow. The objective function to maximize, representing the program
execution time, is T =

∑
i∈code tixi. For each program point i in the program, xi is a static

over-approximation of the number of times i is executed, and ti is the cost coefficient (in
cycles) associated to this program point. In our tool, we currently use a simple cost model

WCET 2014



14 A Formally Verified WCET Estimation Tool

where ti = 1 for every instruction. Our ILP constraints are obtained from the reconstructed
CFG at the assembly level. The ILP also incorporates the loop bounds previously computed,
as constraints of the form xh ≤ N , where h is a loop header and N is the inferred loop
bound. RTL bounds are correctly transported to assembly thanks to CompCert’s semantic
preservation theorem.

2.3 Loop transformations
To improve the precision of our loop bound estimations, we apply two kinds of loop trans-
formations: loop inversion and loop unrolling. Loop inversion consists in converting while
and for loops into do-while loops. The motivation behind this transformation is the fact
that each kind of loop behaves differently with respect to loop iterations (while and for
loops execute the loop exit condition more often than the loop body). A cost-effective way
to deal with the variety of C constructs is to reduce them to a few general cases and treat
them uniformly, which is done by loop inversion. The code fragment below illustrates the
application of loop inversion to a simple while loop.

while (i < 5) {
f(i);
i++;

}

if (i < 5) {
do {

f(i);
i++;

} while (i < 5);
}

Loop unrolling is used to improve the precision of the WCET estimate for loops containing
conditional branches with different execution costs, for instance in a loop where the first
iteration performs differently from the others. Without loop unrolling, the cost of the longest
branch is considered in each iteration and results in a WCET overestimation. The code
below illustrates an example where loop unrolling helps to improve precision. The values
inside the /*...*/ comments indicate statically known values which will be optimized by
a constant propagation pass. For instance, the second call to the init() function in the
unrolled loop below is unreachable, and therefore eliminated after code simplification, as
indicated in the last column.

i = 0;
do {

if (i == 0) init();
i++;

} while (i < 2);

i = 0;
do {

if (i /*0*/ == 0) init();
i++;
if (i /*1*/ >= 2) break;
if (i /*1*/ == 0) init();
i++;

} while (i /*2*/ < 2);

i = 0;
do {

init();
i++;
//if (1 >= 2) break;
//if (1 == 0) init();
i++;

} while (i < 2);

To avoid excessive unrolling, we only unroll loops with conditional branches (which can
help improve the WCET), and limit the unrolling factor according to the size of the code.

3 Proof of our WCET estimation tool

Our tool has been specified and formally proved correct using the Coq [6] proof assistant.
With Coq’s functional specification and programming language, we proceeded as follows:
first, we specified our functions; then, we defined logical properties about these specifications;
afterwards, we proved these properties using Coq’s interactive proof mechanism, where we



A. Maroneze, S. Blazy, D. Pichardie, and I. Puaut 15

write the proof step-by-step while Coq checks its correctness; finally, we used the automatic
code generation mechanism available in Coq to obtain our verified tool directly from its
specification. In the end, we obtained an executable software (our WCET estimation tool)
plus its proof of correctness.

The proof of correctness is a proof of semantic preservation. In this section, we define
more precisely our notion of semantic preservation and then we detail the proof architecture
of the main components of the tool. We present what has been proved correct, with an
intuitive notion of the main correctness lemmas, and briefly mention the proof techniques,
i.e. how it has been proved.

3.1 Correctness theorem of the WCET estimation
To define the correctness of a WCET estimation algorithm, we need to define the WCET
itself and then what is a WCET estimate and how to compute it. We do so from a formal
semantics of the CompCert assembly language. We present here some notions necessary for
understanding our proof sketches.

In our semantics, a program state contains the value of each memory variable and machine
register at a given point in the program execution. The semantics defines the evolution of
program states. A well-formed sequence of program states forms an execution trace. We
denote Terminates(P, tr) as the complete execution of program P , producing the execution
trace tr.

We extended the CompCert assembly semantics to take into account the quantitative
aspect of the WCET, adding execution counters for every program point and program
transition (CFG vertex and edge, respectively). These counters correspond to the number of
occurrences of the program point (or program transition) in a given execution trace. They
represent the exact values obtained during execution along that trace.

The execution time T of an execution trace tr is defined as the sum of the execution
counters of every program point (since local costs are considered as 1). The worst-case
execution time of a program P is thus defined as the maximum execution time among all
possible program executions. More formally, we can define the WCET as follows. Let TR(P )
be the set of all possible traces of program P , that is, TR(P ) = {tr | Terminates(P, tr)}.
Then:

WCET (P ) = max
tr∈TR(P )

T (tr)

Note that this is only a mathematical definition: neither our algorithm nor our proof actually
enumerates all program paths.

To perform the WCET estimation, we over-approximate the execution counters using
the xi variables of the ILP system. Our WCET estimate, WCETE , is the sum of all xi

variables. For a WCET estimation tool to be considered sound, all estimates it produces
must be larger than or equal to the actual WCET. This can be stated as follows: for any
terminating program, every estimate tE produced by the tool must be an over-approximation
of the actual WCET.

I Theorem 1 (Correctness of the WCET Estimation).

∀P,∀tr , Terminates(P, tr) ∧WCETE(P ) = btEc =⇒WCET (P ) ≤ tE

WCETE is the actual WCET estimation (partial) function, defined as the composition
of all stages of our WCET estimation tool. A successful estimation is denoted by btEc. The
executable code for WCETE is automatically obtained from its formal specification.

WCET 2014



16 A Formally Verified WCET Estimation Tool

3.2 Proof techniques
In formal verification, the standard approach consists in formally specifying and proving
every concept and algorithm, once and for all. For instance, this means formally verifying
an ILP solver to prove the correctness of the WCET calculation phase, for every program.
However, the formal verification of an ILP solver is an endeavor which is out of our approach.
In such situations, there is an alternative proof technique which provides strong guarantees
about correctness, called a posteriori validation [14]. It consists in checking the result of a
computation (using a validator) without proving each step of its construction.

More specifically, we used verified validation, which includes a proof of correctness of the
validator itself. This proof ensures that any result accepted by the validator is indeed correct.
This technique is already used in CompCert, for instance during register allocation.

The major advantages of a posteriori validation are (1) manageable proof effort (especially
for algorithms relying on sophisticated heuristics, whose proof might be otherwise too costly)
and (2) the possibility to integrate untrusted code (such as an off-the-shelf ILP solver, instead
of having to prove the solver itself). The trade-off is that validation may incur some extra
computation time during program execution. However, in our case validators were used
in situations where their cost was negligible with respect to the computation time of the
solution itself (such as during ILP computation).

3.3 Correctness proof of the loop bound estimation
To deal with all kinds of loops (such as unstructured loops created by goto statements), the
correctness theorem of our loop bound estimation is defined in terms of arbitrary program
points. In other words, we prove that the execution counters of a given set of program
points are bounded by our estimation technique. In practical terms, these program points
correspond to loop headers, which entails that their loops are effectively bounded.

Since the loop bound estimation is composed of three parts, we defined a correctness
theorem for each of them and combined the proofs using theorems that already exist in
CompCert. The idea behind the correctness of each of these intermediate theorems is
presented in the following.

Program slicing

Informally, the correctness of program slicing is stated as: the bounds computed in the sliced
program are a safe overestimation of the bounds computed in the original program. In other
words, we can transform a program P , obtaining a program slice P ′, compute bounds on the
latter, and safely transpose these bounds to the original program.

More formally, and as an example of a Coq theorem, we present below a simplified version
of the correctness theorem of program slicing. Let P be an RTL program and slice(P,i)
its sliced version with respect to program point i. Let tr and tr’ be valid execution traces
of P and slice(P,i), respectively. Then, any bound B which is correct for the counter of i
in P’ (that is, counter(tr’, i) ≤ B) is also a correct bound in the original program.

Theorem slicing_correctness :
forall (P : program ) (i : program_point ) (tr tr ’ : exec_trace ),

Terminates (P, tr) ∧ Terminates (slice(P,i), tr ’) =⇒
forall (B : int),

counter (tr ’, i) ≤ B
=⇒ counter (tr , i) ≤ B.



A. Maroneze, S. Blazy, D. Pichardie, and I. Puaut 17

Program slicing is a transformation that preserves the semantics with respect to some
slicing criterion. This property is classically proved by induction on the execution relation
between the original and transformed programs. It amounts to showing that a step-by-step
parallel execution of both programs results in the same execution counters for the slicing
criterion (i.e. the loop header) in both programs.

To compute a slice efficiently, sophisticated data structures (such as postdominator
trees and program dependence graphs) are necessary. To avoid formalizing all of them, we
developed an untrusted program slicer and validated its result, obtaining the same guarantees
while enabling the adoption of more efficient slicers without having to change the proof.
Detailed information about the program slicer and its validation are described in [5].

Value analysis

An intuitive notion of the formal correctness of the value analysis can be stated as follows:
for any interval given by the value analysis, all possible variable values are taken into account.
This is true for each program point and each program variable. To prove it correct, we first
show that each individual execution step (given by the assembly formal semantics) is correct
in itself. For instance, after a CFG branch merge, an interval union of the values of each
branch is a correct over-approximation of the values after the merge.

The major difficulties in proving the value analysis come from issues related to the
complexity of the C language (such as having a large number of operators) and the efficiency
of the analysis. In the presence of loops, the analysis needs to perform several iterations
before it reaches a final (stable) solution. We show that each operator is correctly abstracted
into an interval, and then we show that the final solution is stable with respect to loops.
Both facts entail that the solution is a correct over-approximation.

Loop bound calculation

The proof of the loop bound calculation relates the sizes of the intervals of variable values to
the execution counters in the extended semantics. It is proved by induction on the execution
trace: every time an execution step would allow a program point to exceed its bounds, this
would lead to an infinite loop. The bounds, defined with respect to the result of the value
analysis, contain every possible value for all variables which influence the loop condition. For
instance, if variables i and j have bounds [0, 1], and they are the only variables influencing the
loop exit condition, then these pairs can appear at most once in the execution trace: (0, 0),
(0, 1), (1, 0) and (1, 1). Reaching the loop exit condition a fifth time (e.g. with (i, j) = (1, 1))
would imply an infinite repetition of the same sub trace, leading to an unbounded execution
time. The same reasoning is extended to handle nested loops.

3.4 Correctness proof of the ILP
As mentioned in Section 3.2, we use a posteriori validation to guarantee a correct ILP result.
Our verification is decomposed in three parts, as indicated in Figure 2. The first part consists
in proving that the ILP generation is correct. The second part is the ILP solving, performed
by an external component. The final part is the validation of the solution.

Proving the ILP correct means showing that each ILP variable is an over-approximation
of its corresponding execution counter. Using the flow constraints (including loop bounds),
the proof of correctness is based on reasoning by induction on the execution trace.

The generated ILP is sent to an external ILP solver (such as lpsolve [2]), which returns
an assignment of variable values and the corresponding WCET estimate. We prove two

WCET 2014



18 A Formally Verified WCET Estimation Tool

Figure 2 Diagram of the components used for the IPET verification.

properties about the result: that (1) it is a solution of the system (a valid assignment), and
that (2) it is the largest solution (i.e. the worst-case).

Verifying property (1) only requires substituting variables with their assigned values and
checking that all constraints are respected. To verify property (2), we show that any larger
solution is infeasible. To do so, we augment the system with the negation of the solution
(i.e. we add

∑
xi > tE , where tE is the solution given by the solver) and then we compute a

Farkas certificate [3], a set of linear coefficients which can be used to prove the infeasibility
of a linear system. This computation amounts to the solution of a system of the same size.

To integrate this technique within the proved framework, we define and prove a verified
validator in Coq, whose inputs are the ILP system, its (untrusted) solution and a certificate,
and whose output is true if the certificate confirms that the solution is valid. The correctness
theorem of the validator ensures that, if the inputs pass validation, then the solution is a
correct WCET estimate. With this final step, we prove the theorem stated in Section 3.1.

3.5 Feedback on the proof effort
Our proof effort resulted in over 15,000 lines of Coq code (half of them being Coq definitions,
and the other half being Coq proofs). The development also contains about 2,000 lines of
manually written OCaml code (which includes code such as the program slicer), and about
the same size of code automatically generated from the Coq development.

Concerning the development methodology, we followed the standard practice in formal
verification, which consists in performing the specification and the proof in parallel. While
performing the proof, several details about the specification need to be reformulated, either
to improve their clarity, or to enable the proof to go through (e.g. there are several ways to
specify a program slicer, but only a few of them lead to efficient proof strategies).

4 Experimental evaluation

We evaluated our WCET estimation tool on the Mälardalen WCET benchmarks. We
considered 15 of the 20 programs evaluated in [5]. The other 5 programs (adpcm, fft1, fir,
insertsort and ludcmp) contain loops which were not bounded due to imprecisions in the
value analysis, such as loops depending on floating-point variables or on memory contents.

We compiled the code to PowerPC assembly to estimate its WCET. To evaluate the
precision of our WCET estimation, we modified the programs having several possible execution
paths (e.g. by setting specific values to input variables) to ensure execution of a worst-case
path. We executed them using the formal semantics to obtain the exact WCET, and then
we compared this value to the estimate obtained on the original program.

Figure 3 presents our evaluation. For each program, we indicate the size of its source code
(LoC ) and we present the relative WCET overestimation, using 3 different configurations:
no loop transformations, loop inversion only, and loop inversion together with loop unrolling.
We also present the analysis times of our tool.



A. Maroneze, S. Blazy, D. Pichardie, and I. Puaut 19

No Loop Transformations Loop Inversion Inversion+Unrolling
Program LoC Overestimation Time (s) Overestimation Time (s) Overestimation Time (s) Class

cnt 267 18.3% 0.1 2.8% 0.2 3.3% 7.0 OK
cover 640 10.9% 1.0 11.5% 1.0 0.0% 21.8 OK
crc 128 100.2% 0.2 99.5% 0.2 99.2% 1.7 Imprecise
edn 285 141.5% 12.5 110.4% 13.1 110.4% 23.4 Imprecise
expint 157 2601.6% 0.0 2419.7% 0.0 0.0% 8.2 OK
fdct 239 0.0% 0.4 0.0% 0.5 0.0% 0.6 OK
fibcall 72 0.9% 0.0 1.1% 0.0 1.1% 0.0 OK
jfdctint 375 0.0% 0.3 0.0% 0.3 0.0% 0.5 OK
lcdnum 64 50.9% 0.0 55.2% 0.0 11.9% 0.1 OK
matmult 163 11.5% 0.3 0.0% 0.3 0.0% 0.5 OK
ndes 231 12.2% 4.0 3.6% 4.2 3.6% 225.4 OK
ns 535 88.3% 0.1 0.2% 0.1 0.2% 0.2 OK
nsichneu 4,253 106.1% 60.5 106.1% 60.2 106.3% 89.7 Imprecise
qurt 166 168.2% 0.7 165.7% 0.7 215.2% 3.0 Imprecise
ud 161 225.1% 0.6 217.3% 0.6 265.2% 11.3 Imprecise

Figure 3 Experimental results of our WCET tool, given as a relative overestimation w.r.t. the
exact WCET, without and then with loop transformations.

We classify the programs in two groups: OK (WCET estimate with no or small overesti-
mation) and Imprecise (significant overestimation). Comparing the different configurations
confirms that the loop transformations improved the precision of the WCET estimate, some-
times drastically (e.g. ns goes from 88% overestimation down to 0%, thanks to loop inversion,
and expint goes from 2420% to 0% due to loop unrolling). In a few programs, we see a
relative increase, which is due to the decrease in the absolute WCET of the transformed
loops. Overall, the loop optimizations provide a significant benefit in terms of precision.

5 Related work

There are several WCET estimation tools in the literature which perform loop bound
estimation, such as aiT [9], Bound-T [16], oRange [13], SWEET [7] and TuBound [15]. Our
objective is not to develop a novel technique to estimate the WCET, but to formally specify
an existing method and to prove it correct.

Due to its extensive flow analysis, SWEET was the inspiration for our loop bound
estimation. SWEET has two loop bound estimation techniques: one similar to the one we
formally verified, and another one having a context-sensitive mechanism capable of inferring
more precise flow constraints. The trade-off is that, in some cases, it may perform excessive
unrolling and not terminate. Unlike our tool, SWEET is not formally verified.

WCC [12] is a C compiler integrating an external WCET estimation tool. WCC performs
automatic loop bound estimation based on polyhedral evaluation, but it focuses on hardware-
level optimizations, while we focus on the control-flow analysis. WCC is not formally verified
and it relies on other tools (such as aiT) to obtain WCET estimates. Our tool, on the other
hand, only relies on external tools if they can provide certificates. This ensures that bugs in
their implementation do not affect the correctness of our tool.

The CerCo [1] project shares our views about the necessity of formal guarantees in WCET
estimation, but it has a different approach and objective. In CerCo, an original technique
transports annotations from the assembly to the C source program, and then it relies on a
non-verified tool, based on program proof (Frama-C), to produce proof certificates about the
correctness of the WCET estimates. Unlike ours, this approach is not entirely automatic:
after analyzing a program, some verification conditions may need manual proof. Concerning
the hardware model, cost information is based on a simple timing model, like our tool.

WCET 2014



20 A Formally Verified WCET Estimation Tool

6 Conclusion

We presented a formally verified WCET estimation tool whose correctness theorem ensures
its WCET estimates are safe. Our tool is built within the CompCert C compiler, providing
extra guarantees about the execution time of the code produced by the compiler. There
are now two complementary tools which operate over C code for safety-critical embedded
systems, and these tools are formally verified, which provides unprecedented guarantees.

Our tool relies on the formal verification of different techniques commonly used by
industrial-strength WCET estimation tools: loop bound estimation and IPET. Experimental
evaluation of the precision of our tool indicates satisfactory results. Future work includes
improving the precision of current analyses and adding a more realistic hardware model.

References
1 R. Amadio, A. Asperti, N. Ayache, B. Campbell, D. P. Mulligan, R. Pollack, Y. Régis-

Gianas, C. S. Coen, and I. Stark. Certified complexity. Procedia CS, 7:175–177, 2011.
2 M. Berkelaar, K. Eikland, and P. Notebaert. lpsolve : Open source (Mixed-Integer) Linear

Programming system. http://lpsolve.sourceforge.net.
3 F. Besson, T. Jensen, D. Pichardie, and T. Turpin. Certified result checking for polyhedral

analysis of bytecode programs. In TGC, pages 253–267. Springer, 2010.
4 S. Blazy, V. Laporte, A. Maroneze, and D. Pichardie. Formal verification of a C value

analysis based on abstract interpretation. In SAS, LNCS, pages 324–344. Springer, 2013.
5 S. Blazy, A. Maroneze, and D. Pichardie. Formal verification of loop bound estimation for

WCET analysis. In VSTTE 2013, LNCS. Springer, 2013.
6 Coq development team. The Coq proof assistant. http://coq.inria.fr, 1989–2014.
7 A. Ermedahl, C. Sandberg, J. Gustafsson, S. Bygde, and B. Lisper. Loop bound analysis

based on a combination of program slicing, abstract interpretation, and invariant analysis.
In WCET, 2007.

8 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET benchmarks:
Past, present and future. In WCET, pages 137–147, 2010.

9 R. Heckmann and C. Ferdinand. aiT: worst case execution time prediction by static program
analysis. In IFIP Congress Topical Sessions, pages 377–384, 2004.

10 X. Leroy. Formal verification of a realistic compiler. CACM, 52(7):107–115, 2009.
11 Y.T. S. Li and S. Malik. Performance analysis of embedded software using implicit path

enumeration. IEEE Trans. on CADICS, 16(12):1477–1487, 1997.
12 P. Lokuciejewski and P. Marwedel. Worst-Case Execution Time Aware Compilation Tech-

niques for Real-Time Systems. Springer, 2011.
13 M. de Michiel, A. Bonenfant, H. Cassé, and P. Sainrat. Static loop bound analysis of C

programs based on flow analysis and abstract interpretation. In Proc. of ERTSS, pages
161–166. IEEE Computer Society, 2008.

14 G. Necula. Translation validation for an optimizing compiler. In PLDI, pages 83–94. ACM,
2000.

15 A. Prantl, M. Schordan, and J. Knoop. TuBound – A Conceptually New Tool for Worst-
Case Execution Time Analysis. In WCET, 2008.

16 Tidorum. Bound-T tool homepage. http://www.bound-t.com, 2010.

http://lpsolve.sourceforge.net
http://coq.inria.fr
http://www.bound-t.com

	Introduction
	Architecture of our WCET estimation tool
	Loop bound estimation
	IPET-based WCET estimation
	Loop transformations

	Proof of our WCET estimation tool
	Correctness theorem of the WCET estimation
	Proof techniques
	Correctness proof of the loop bound estimation
	Correctness proof of the ILP
	Feedback on the proof effort

	Experimental evaluation
	Related work
	Conclusion

