
Towards Automated Generation of
Time-Predictable Code∗

Daniel Prokesch, Benedikt Huber, and Peter Puschner

Institute of Computer Engineering
Vienna University of Technology, Austria
{daniel,benedikt,peter}@vmars.tuwien.ac.at

Abstract
Knowledge of the worst-case execution time of software components is essential in safety-critical
hard real-time systems. The analysis thereof is not trivial as the execution time depends on
many factors, including the underlying hardware platform, the program structure, and the code
produced by the compiler. Often, the execution time is variable and highly sensitive to the
input data the program has to process. This paper presents a code transformation applicable in
a compiler backend that produces time-predictable code. The resulting code contains a single
input-data independent execution path, in order to obtain programs of stable timing behaviour.
The transformation technique has been validated by applying it on a number of benchmarks.
Experiments show a reduction of execution time variability, at acceptable costs for the single
execution path.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems

Keywords and phrases Single-Path, Graph Transformation, Predictable Code, Compiler

Digital Object Identifier 10.4230/OASIcs.WCET.2014.103

1 Introduction

Hard real-time systems are characterised by the fact that their correctness does not only
depend on the computational results but also on the timely delivery thereof – failing to
provide a result in time will potentially have catastrophic consequences. For this reason,
knowledge of the worst-case execution time (WCET) of a software component in the context of
a hard real-time system is essential. Determining the WCET of a program is hard in general,
and implies solving two sub-problems: modelling the timing behaviour of the hardware
components and determining the possible program execution paths. On the software side,
components tend to be highly complex with regard to their behaviour in the presence of
different input data and their context. This makes precise automatic analysis of the possible
program execution paths intractable in general, as the number of paths grows exponentially
in the number of control flow alternatives. These practices are contradictory to at least two
key principles of hard real-time systems design: simple structures and composability.

One proposed solution to get around the complexity of WCET analysis is the single-path
approach [4]. A single-path program is characterised by the fact that it has a singleton
program execution path, which makes path analysis superfluous and reduces the need for
complex timing models. The execution time of the program is stable with respect to varying

∗ This work was partially funded by the European Union’s 7th Framework Programme under grant
agreement no. 288008: Time-predictable Multi-Core Architecture for Embedded Systems (T-CREST)
and the EU COST Action IC1202: Timing Analysis on Code Level (TACLe).

© Daniel Prokesch, Benedikt Huber, and Peter Puschner;
licensed under Creative Commons License CC-BY

14th International Workshop on Worst-Case Execution Time Analysis (WCET 2014).
Editor: Heiko Falk; pp. 103–112

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2014.103
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

104 Towards Automated Generation of Time-Predictable Code

cond := . . .
i f (! cond) goto Le l s e

Lthen :
x := a + 1
goto Lend

Le l s e :
x := b − 2

Lend :
. . .

(a) Update of x by branching code.

cond := . . .
(cond) x := a + 1
(! cond) x := b − 2

. . .

(b) Update of x by predicated assignments.

Figure 1 Whereas 1a has two alternative execution paths, each containing a different assignment
of x, 1b consist of a single linear sequence of instructions containing both assignments of x with
disjoint predicates, such that only one of the two assignments has an effect.

input data, making its temporal behaviour predictable. Ideally, the WCET of a single-path
program should be obtainable by simple measurement of one execution.

A set of rules required to transform a piece of code given in a high-level representation
to a single-path version was presented in [5]. These rules express the translation from a
high-level, well structured source language to predicated statements. While they provide
a clear conceptual understanding, they are not sufficient to implement the single-path
conversion in a compiler backend. In modern state-of-the-art compilers, source languages
are translated to a common intermediate representation (IR), on which optimisations are
performed in a language-independent way. A code generator (compiler backend) then
translates the optimised IR to target-specific machine language. Control flow is explicit
in this representation and typically more general than what can be expressed by a well-
structured programming language. This work describes the single-path transformation from
a low-level perspective, as graph transformation technique on program control flow graphs,
amenable for implementation in a compiler backend. This facilitates automated generation
of predictable machine code from any piece of WCET-analysable code.

The rest of this paper is organised as follows: Section 2 provides the theoretical foundations
of the single-path approach and basic definitions required for the transformation technique.
Section 3 describes the transformation technique with the corresponding execution semantics,
to transform almost arbitrary control flow graphs to graphs yielding a single execution path.
Section 4 documents the validation of the approach by experiments and the effect on the
execution behaviour obtained from these experiments. A short overview of related work is
given in Section 5, before we conclude with Section 6.

2 Background and Preliminaries

2.1 Predicated Execution

The single-path transformation is based on predicated execution. A predicated instruction is
executed conditionally depending on the value of a Boolean predicate, referred to as guard:
if the predicate value is true, the instruction is enabled and executes as expected, otherwise
it is disabled and exposes the behaviour of a no-op, that is, the hardware state (register
file, memory contents) is not altered as a result of the instruction. By means of predicated
instructions it is possible to replace changes in control flow by conditional execution of an
instruction sequence, like the code snippets in Figure 1 suggest. In both variants the contents
of variable x are updated depending on the evaluation of cond, but by different means.

D. Prokesch, B. Huber, and P. Puschner 105

Predicated execution, as we intend to exploit it, requires certain assumptions about the
target hardware. We assume that all instructions of our target instruction set are predicatable
and that the instruction latencies are independent of the operand values, in particular for
the predicate operand.

2.2 Basic Definitions
Before we detail on the transformation procedure, we briefly give some basic definitions.

A basic block (BB) is a straight-line sequence of instructions with one entry point and
one exit point. A control flow graph (CFG) is a directed graph with basic blocks as nodes
and models possible execution paths through a function. We require that a CFG has a
distinguished entry node and a distinguished exit node. A node v with more than one
successor is associated with a branch condition, condv, a Boolean condition that determines
which successor to take on a path.

A node x dominates a node y (denoted as xdom y) if every path from the start node to
y must go through x. A node x postdominates a node y (denoted as xpdom y) if every path
from y to the exit node must go through x. x strictly (post-)dominates y if xdom y (resp.
xpdom y) and x 6= y. The immediate (post-)dominator x of a node y is the unique node
that strictly (post-)dominates y but does not strictly (post-)dominate any other node that
strictly (post-)dominates y. (Post-)dominator information commonly is presented in form
of a (post-)dominator tree in which the entry (resp. exit) node is the root and each node
(post-)dominates only its descendants in the tree, i.e., the parent node of each node is its
immediate (post-)dominator.

A loop L is a strongly connected set of nodes in the flow graph. A natural loop has a
distinguished entry node, the loop header, which dominates all nodes in the loop, and a back
edge that enters the loop header. Given a back edge (n, d), the natural loop of the edge is
defined as d plus the set of nodes that can reach n without going through d. n is also called
latch. An edge (u, v) is an exit edge of loop L if u ∈ L and v 6∈ L. In a reducible CFG, every
cycle contains a back edge that can be associated with a natural loop. Unless two natural
loops have the same header, they are either disjoint or one is nested within the other. If two
natural loops share the same header, we treat them as a single loop identified by the header.1
Furthermore, every node v has a unique header, denoted as header(v), which is the header
of the innermost loop it is contained in. We consider an entire procedure as pseudo-loop
with the entry node as pseudo-header, such that every node of the CFG except the entry
node has a header. Removing all back edges from a reducible CFG results in an acyclic flow
graph, the forward control flow graph (FCFG).

Given a CFG G = (V,E), nodes u, v, x ∈ V and an edge (u, x) ∈ E, v is control
dependent on u (or on edge (u, x)) if v postdominates x but not u [1]. For any node v ∈ V
the set of its control dependence edges is denoted by CD(v):

CD(v) ≡ {(u, x) | v is control dependent on (u, x)}

The control dependence function induces a partitioning on the nodes of the CFG into
equivalence classes: If two nodes v, w ∈ V are control dependent on the same set of edges,
then on every path π in G from the entry to the exit node, v is on path π if and only if w is
on π.

1 This differs from the common practice that if a loop is a proper subset of another loop, the former is
treated as inner loop and the latter as outer loop.

WCET 2014

106 Towards Automated Generation of Time-Predictable Code

We require two properties of the CFG, which can be provided by suitable preprocessing:
We assume that the CFG is reducible, and that every node in the CFG must have an
outdegree of at most two.2 The second requirement implies that we can name the dual edge
of an edge if its source node has more than one successor: Let u ∈ V be a node with two
successors v, w ∈ V . Then, the dual edge of edge (u, v) is (u,w), and the dual edge of (u,w)
is (u, v).

3 The Single-Path Graph Transformation

We describe our technique as a graph transformation from a source CFG to a target CFG
that is extended by predicated execution semantics. In the beginning, we define admissible
executions in the source CFG in the presence of loop bounds and present our model of
predicated execution in a graph.

An execution of a control flow graph G is a path from the entry to the exit node. We
require that every loop header in the CFG is associated with a number, the (local) loop bound,
that limits the number of times the header is (re-)entered on a path before the corresponding
loop is left via an exit edge.

I Definition 1 (Admissible execution of a graph). An admissible execution of a control flow
graph G is a path π in G on which each loop bound for any header h ∈ π is respected.

For predicated execution, every node is associated with a guarding predicate that determ-
ines whether the node is enabled or disabled. Predicates can be seen as part of state which
is altered as nodes are visited along a path. Following semantic actions can be performed by
nodes and edges:

A node may set a predicate to the branch condition or its negation. This action is
predicated itself by the node’s guard.
An edge may set or clear a set of predicates (set them to true/false), unconditionally.
An edge may copy the value of one predicate to another predicate, unconditionally.

I Definition 2 (Single-Path Graph Transformation). Let G = 〈V,E〉 be a graph with local
loop bounds. The Single-Path Graph Transformation obtains a graph GSP extended by
predicated execution, and a path πSP in GSP , such that for any admissible path π in G, the
sequence of nodes along π equals the sequence of enabled nodes along πSP in GSP .

The single-path graph transformation computes a singleton path πSP through GSP

that includes every admissible execution path in the source graph. In the following, we
describe how we compute GSP and πSP . Section 3.1 reviews the computation of predicates
and the conversion of acyclic graphs. In Section 3.2, these ideas are extended to obtain
single-path loops, that is, loops that may contain nested loops and have a fixed iteration
count. Section 3.3 summarises the construction of the single-path graph GSP by composition
of single-path loops.

3.1 From Control-Flow to Predicates
Our transformation technique is based on the RK algorithm of Park and Schlansker [3]. Their
motivation is the ability to speed up the execution of innermost loops by means of a software

2 In practice, this implies that jump tables (e.g. resulting from switch statements) must be replaced by
cascades of two-way alternatives.

D. Prokesch, B. Huber, and P. Puschner 107

pipelining technique, which requires a linear sequence of instructions without control-flow
changes. As the algorithm is applied to innermost loops only, the CFGs under consideration
are acyclic in nature. We show how to apply the algorithm to transform an acyclic CFG to a
linear sequence of predicated basic blocks.

Given an acyclic graph G = (V,E), the algorithm assigns a unique predicate to each of
the equivalence classes induced by the control dependence relation. The set CD(v) for all
v ∈ V is computed by means of the postdominator tree (PDT) of G [1]: Each node v ∈ V
with two successors is identified. Then, for each successor w of v, the PDT is walked upward,
starting at w, until (excluding) the immediate postdominator of v is reached. As each node
u is visited during the walk, the edge (v, w) ∈ E is added to the set CD(u).

The set of predicates is denoted as P . Each predicate pi ∈ P, i ≥ 0 corresponds to a
set of (control dependence) edges, which is expressed as function K(pi). The function R(v)
associates each v ∈ V with a predicate pi ∈ P such that, for v, w ∈ V ,

CD(v) = CD(w) ⇔ R(v) = R(w) = pi ∧ K(pi) = CD(v) = CD(w)

Control flow is mapped to predicate values in the resulting sequence of guarded blocks
with the following goal: In any execution, for any pi ∈ P , if a control dependence edge
e ∈ K(pi) would have been taken in the original acyclic graph, pi should be true, such
that every node v ∈ V with R(v) = pi is enabled, otherwise pi should be false (and the
corresponding nodes disabled). To this end, following steps need to be performed:

1. For each predicate pi ∈ P and each edge (u, v) ∈ K(pi), add a predicate assignment of
the form pi ← condu as semantic action to node u, if v follows u when condu is true, else
add assignment pi ← ¬condu to u.

2. Guard nodes v ∈ V by predicate R(v).
3. As predicate assignments are potentially disabled in an execution, it is necessary to care

for a correct initialisation of predicates. Therefore, predicates are initialised to false at
an artificial entry edge as necessary.

4. The nodes are reconnected in the order of a topological sort, such that a linear sequence
of predicated nodes is obtained.

3.2 Single-Path Loops
At the beginning of the transformation, we identify loops in the CFG and compute header(v)
for each v ∈ V , e.g, by following the procedure in [8].3 For each loop, we identify back edges
and exit edges.

We now consider a loop of the CFG in isolation. Let Lh be a loop of the CFG with header
h.4 We construct the acyclic FCFG induced by Lh, and augment it by two distinguished
nodes sh and th, and edges (sh, h), (sh, th), and (`, th) for all latches ` of Lh, and (e, th)
for all sources e of exit edges of Lh. Every node in the resulting graph, denoted as Fh, is
dominated by sh and postdominated by th.

A key insight for the extension of the procedure in Section 3.1 is that loops of a reducible
flow graph can be represented compacted into a single node. Consequently, each contained
inner loop is compacted into a single node in Fh, namely its header. As a result, the outgoing
edges of an inner loop header correspond to the exit edges of the inner loop.

3 header(v) is the node into which v is eventually contracted during reduction of the CFG (procedure
REDUCE in [8]).

4 In the following, we use the header h in superscript to denote information specific to a single loop
identified by h, to avoid ambiguities.

WCET 2014

108 Towards Automated Generation of Time-Predictable Code

a

b

c d

e f

g

h

(a) An example CFG.

s

a

t

b

f

(d,f)

g

 (e,g)

(f,g)

h

(b) FCFG F a.

s

t

b

c

d

[be] [ee] e

[be] [ee]

(c) FCFG F b.

a

b f g h

c d e

(d) The header tree.

t

h s

g

b f

a

(e) PDT of F a.

t

c b e d s

(f) PDT of F b.

Figure 2 An example to illustrate the single-path graph transformation steps.

I Example 3. The transformation is best illustrated by an example (Figure 2). Figure 2a
shows the CFG, with entry node a and exit node h. Figure 2d depicts the header information
for each v ∈ V as tree: the parent of node v is header(v), and each header is drawn shaded.
Apart from the outermost pseudo-loop La with header a, the CFG contains two loops, loop
Lb with header b and the self-loop Lf consisting of node f . Figure 2b depicts the FCFG for
La, where b and f represent inner loops Lb and Lf compacted into a single node, and the
outgoing edges are labelled with the corresponding exit edges. Figure 2c depicts the FCFGs
for Lb, where the back edges and exit edges are represented by the edges labelled with [be]
and [ee], respectively. The FCFG F f for the self-loop Lf is not shown.

Next, CDh(v) is computed for all v ∈ Fh, with the aid of the postdominator tree of Fh,
as described in Section 3.1. The main difference lies in the inclusion of control dependence
edges: Edges originating from inner loop headers in Fh correspond to exit edges of the inner
loops, and these exit edges have to be added to the respective control dependence sets.

Following the description in Section 3.1, Rh and Kh are computed from CDh, nodes
are guarded according to Rh and predicate assignments are added according to Kh. Rh

maps predicates ph
i ∈ P to each node v ∈ Fh \

{
sh, th

}
. By convention, let Rh(h) = ph

0 .
If v represents an inner loop, Rh(v) is not the final guard of the inner loop header, but a
predicate whose value decides whether the inner loop is enabled at least once. Note that an
edge (u, v) ∈ Kh(ph

i) may be an exit edge originating from an inner loop, and hence node
u is not necessarily a node in Fh. For edge (sh, h), we add the semantic action to clear all
predicates ph

i ∈ P for i > 0, to provide a correct initialisation of predicates.

D. Prokesch, B. Huber, and P. Puschner 109

In the acyclic graph Fh, the header h and every node that postdominates h are only
control dependent on the edge (sh, h), which corresponds to the loop entry. If the header
predicate Rh(h) = ph

0 is true, all associated guards of the nodes on any path in Fh from sh

to th are set to true as a result of the semantic actions, while the guards of the nodes that
are not on that path remain false. In the transformed single-path graph, in any execution,
all nodes of Fh \

{
sh, th

}
are visited in the order of a topological sort.

So far, we have dealt with a path through a single iteration of the loop. In the source
CFG, except for the top-level pseudo loop, a loop Lh is entered via its header h up to N times
on an admissible path, where N denotes the local loop bound of Lh. As we want to obtain a
single execution path that contains all admissible paths through the source CFG, this path
must contain the sequence of nodes in Lh at least N times. Therefore, the single-path graph
GSP will contain a back edge from the last node in the sequence of nodes of Lh to the header
h, which is taken exactly N − 1 times in the single execution path πSP . The semantic action
of this edge is, like on (sh, h), to clear all predicates ph

i ∈ P for i > 0.
The semantic actions on predicates need to be extended, otherwise the header predicate

ph
0 is never set to false. If ph

0 is false at the beginning of an iteration, no guard from a loop
member ever becomes true, and all nodes of Lh remain disabled in that iteration. Hence,
on the single execution path, ph

0 must be false starting with the (i+ 1)-th up to the N -th
iteration, if on an admissible path in the source graph the loop iterates i times. Recall that a
loop is left via one of its exit edges. As each exit edge necessarily has a dual edge (otherwise,
the loop header would not be reachable from the edge source, disqualifying the latter as loop
member), we add the dual edge of each exit edge of Lh to Kh(ph

0).

I Example 4. Figure 2e depicts the PDT for the computation of CDa in FCFG F a. CDa(x) =
{(s, a)}, ∀x ∈ {a, b, g, h}, and CDa(f) = {(d, f)}. Note that (d, f) is the exit edge of Lb

that corresponds to (b, f) in F a. Consequently, we assign Ra(x) = pa
0 , ∀x ∈ {a, b, g, h} with

Ka(pa
0) = {(s, a)}, and Ra(f) = pa

1 with Ka(pa
1) = {(d, f)}. A topological order of the nodes

is 〈a, b, f, g, h〉.
Figure 2f shows the PDT for F b. CDb(b) = {(s, b)}, CDb(c) = {(b, c)}, CDb(d) = {(b, d)},

and CDb(e) = {(d, e)}. We assign Rb(b) = pb
0, Rb(d) = pb

1, Rb(e) = pb
2, Rb(c) = pb

3. Obtaining
the respective Kb(pb

i) is straightforward, but we have to extend Kb(pb
0) by the dual edges

{(e, b), (d, e)} of the exit edges of Lb. A topological order of the nodes is 〈b, c, d, e〉.
For the single node self loop f , Rf (f) = pf

0 with Kf (pf
0) = {(s, f), (f, f)}.

3.3 Composition of the Single-Path Graph

We construct the single-path graph GSP = (V,ESP) by a preorder traversal of the loop
header tree, visiting the nodes on each level in a topological sort order, and adding edges for
GSP as required. The recursive construction algorithm is sketched in Figure 3. It is invoked
with the entry node of the source CFG.

When a loop header h is visited, we construct Fh, compute Rh, Kh, guard nodes and
add semantic actions, as described in Section 3.2. On the entry edge to an inner loop Lh′ , we
add the semantic actions of (sh′

, h′) (clearing the predicates). Additionally, we add another
semantic action to copy the predicate of h′ in the outer loop to the predicate of h′ in the
inner loop. For the CFG, an artificial entry edge is introduced to initialise all predicates of
the top-level pseudo loop to false and the predicate of the entry node to true.

For our example, the resulting single-path graph is depicted in Figure 4, together with
the guards and semantic actions.

WCET 2014

110 Towards Automated Generation of Time-Predictable Code

Function composeSP(h: header node)
1 Compute Rh, Kh

2 Add predicate assignments according to Kh

3 Guard header node h by Rh(h) (= ph
0)

4 last = h // keep a reference to the last node visited
5 for each n ∈ F h \ {h, sh, th} in topological sort order :
6 ESP = ESP ∪ {(last, n)}
7 if n is a loop header :
8 Add semantic actions to entry edge (last, n): pn

0 ← Rh(n); ∀i > 0 : pn
i ← 0

9 last = composeSP(n) // process inner loop
10 ESP = ESP ∪ {(last, n)} // add back edge to inner loop
11 Add semantic actions to back edge (last, n) of inner loop: ∀i > 0 : pn

i ← 0
12 else :
13 Guard node n by Rh(n)
14 last = n

15 return last

Figure 3 Algorithm for the composition of the single-path graph.

s

a

b

c

d

e

f

g

h

Node/Edge Guard Semantic action

a pa
0 –

b pb
0 pb

1 ← condb; pb
3 ← ¬condb

c pb
3 –

d pb
1 pb

0, pb
2 ← ¬condd; pa

1 ← condd

e pb
2 pb

0 ← conde

f pf
0 pf

0 ← condf

g pa
0 –

h pa
0 –

(s, a) – pa
0 ← 1; pa

1 ← 0
(a, b) – pb

0 ← pa
0 ; pb

1, pb
2, pb

3 ← 0
(e, f) – pf

0 ← pa
1

Figure 4 The complete single-path graph resulting from the transformation. For semantic actions,
0 is false, 1 is true, and condv is the branch condition in node v.

4 Experiments

To validate the single-path graph transformation, we have created a simulation framework,
which serves two purposes. First, it allows for an experimental validation of the transformation
procedure, with arbitrary CFGs as input. Second, it provides means to evaluate the estimated
execution cost of the single-path-transformed graph relative to the original CFG.

In the framework, after a given CFG G is transformed to GSP and extended by semantic
actions on predicates, admissible paths π through G are chosen by random. For one admissible
path, the branch conditions are recorded. Then, the single execution path πSP through GSP

is walked, and predicates are updated according to the recorded branch conditions in π. The

D. Prokesch, B. Huber, and P. Puschner 111

Table 1 Experiments on the Mälardalen benchmarks. Functions adpcm/decode, fdct/f-
dct, jfdctint/jpeg_fdct_islow, loop3/main, and matmult/Test are omitted because their gener-
ated CFGs already have a single execution path. Functions adpcm/encode, bs/binary_search,
bsort100/BubbleSort, cnt/Test, crc/icrc, duff/duffcopy, and edn/main have almost a single execution
path with a ratio below 1.10.

Benchmark/Function Mean Std.Dev. Min Max SP |P | Ratio
adpcm/upzero 73.21 21.57 53 96 125 3 1.30
compress/compress 1178.13 840.65 451 3589 4200 28 1.17
cover/swi120 1512.05 18.08 1475 1570 2655 7 1.69
expint/expint 1940.28 18.45 1892 1984 2736 4 1.38
fir/fir_filter_int 1704.76 451.32 595 2618 3236 6 1.24
insertsort/main 496.24 109.97 246 750 832 6 1.11
janne_complex/complex 695.98 181.55 215 1135 1381 6 1.22
lcdnum/num_to_lcd 33.94 0.98 30 36 190 45 5.28
lms/main 94794.29 4106.37 86184 103839 150209 32 1.45
ludcmp/ludcmp 301329.73 16345.35 275478 328187 415544 16 1.27
minmax/main 55.21 7.18 48 70 83 7 1.19
minver/minver 135115.74 55424.42 70709 197066 371563 20 1.89
qsort-exam/sort 4609.72 1128.15 908 7253 12004 22 1.66
qurt/qurt 590.77 686.31 44 1838 2208 15 1.20
select/select 4345.63 896.34 2043 7196 11219 16 1.56
statemate/FH_DU 232.39 39.56 157 305 360 25 1.18

sequence of enabled nodes in πSP is compared against the sequence of nodes of π and must
be identical.

Furthermore, we generated the CFGs from functions from the well-established WCET
benchmarks of the Mälardalen WCET research group5, providing a simple cost model and
local loop bounds.6 We recorded the execution cost for 100 randomly generated paths
through each CFG, and obtained the mean cost, the standard deviation, and the minimum
and maximum observed cost. We computed the ratio of the cost of the single-path execution
(SP) to the maximum observed cost (Max). As we are interested in the worst case, we forced
the paths chosen in G to always execute the maximum number of loop iterations. In addition,
we listed the required number of predicates (|P |). The results of this comparison are shown
in Table 1. The ratio SP/Max was mostly below 1.9. In one case (lcdnum/num_to_lcd), the
ratio is about 5.4, which stems from the fact that the function contains a switch statement
that is serialised in the single-path graph.

5 Related Work

Techniques other than the single-path approach have been proposed to make code more
predictable for WCET-analysis. Apart from avoiding problematic code constructs in the
first place (e.g. indirect calls, irreducible and input-data dependent loops, recursion), code
transformations have been suggested to reduce the number of paths required to be analysed
by making infeasible paths explicit or factor out code blocks with constant execution time [2].
Both transformations seem hard to be performed automatically in a compiler and no general

5 Accessible online: http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
6 The cost of executing a block is the number of instructions in the block. We used local loop bounds

bounds recorded by simulation, and for the loops not executed in the simulation, we added a bound of
20.

WCET 2014

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

112 Towards Automated Generation of Time-Predictable Code

solution has been supplied so far. Compiler support to aid WCET analysis by providing
information available during compilation to the timing analysis is an orthogonal approach to
obtain more predictable code [6].

6 Discussion and Outlook

We have presented the single-path graph transformation, a technique to transform any
reducible control-flow graph into a graph with a single execution path of predicated nodes.
The goals of the single-path approach are to minimise control flow complexity and to obtain
code with stable, input-data independent timing behaviour. The here-presented technique
can be implemented as part of a compiler backend to generate time predictable code in an
automated way.

Because the single-path approach serialises control flow, it has been criticised to be
too costly to be applied in practice. In our experiments, the costs stay within reasonable
limits (the ratio is below 1.9 in all but one cases) when the worst case is considered, for a
simple model. Furthermore, the cost could be compensated partially by means of hardware
support particularly suitable for single-path code, e.g., by providing a multiple-issue pipeline,
instruction prefetching, or hardware loops.

We are implementing the single-path transformation as part of a compiler backend for
the Patmos processor, a multi-core processor designed for high performance at high time-
predictability [7], in the T-CREST project (http://www.t-crest.org/). A next logical
step to improve the transformation would be to omit input-data independent regions during
if-conversion, as they do not contribute to input-data induced variability.

References
1 Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph

and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, July 1987.
2 Hemendra Singh Negi, Abhik Roychoudhury, and Tulika Mitra. Simplifying wcet analysis

by code transformations. In Workshop on Worst-Case Execution-Time Analysis (WCET),
September 2004.

3 Joseph C.H. Park and Mike Schlansker. On predicated execution. Technical report, Hewlett
Peckard Software and Systems Laboratory, May 1991.

4 Peter Puschner. The single-path approach towards wcet-analysable software. In 2003 IEEE
International Conference on Industrial Technology, volume 2, pages 699–704 Vol.2, 2003.

5 Peter Puschner, Raimund Kirner, Benedikt Huber, and Daniel Prokesch. Compiling for
time predictability. In Proc. SAFECOMP 2012 Workshops (LNCS 7613), pages 382–391.
Springer, 2012.

6 Peter Puschner, Daniel Prokesch, Benedikt Huber, Jens Knoop, Stefan Hepp, and Gernot
Gebhard. The T-CREST approach of compiler and WCET-analysis integration. In Proceed-
ings of the 9th Workshop on Software Technologies for Future Embedded and Ubiquitious
Systems (SEUS 2013), 2013.

7 Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian Brandner, Christian W.
Probst, Sven Karlsson, and Tommy Thorn. Towards a time-predictable dual-issue micro-
processor: The Patmos approach. In First Workshop on Bringing Theory to Practice:
Predictability and Performance in Embedded Systems (PPES 2011), pages 11–20, March
2011.

8 Robert Endre Tarjan. Testing flow graph reducibility. J. Comput. Syst. Sci., 9(3):355–365,
December 1974.

http://www.t-crest.org/

	Introduction
	Background and Preliminaries
	Predicated Execution
	Basic Definitions

	The Single-Path Graph Transformation
	From Control-Flow to Predicates
	Single-Path Loops
	Composition of the Single-Path Graph

	Experiments
	Related Work
	Discussion and Outlook

