Applying Qualitative Research Methods to
Narrative Knowledge Engineering*

Brian O’Neill! and Mark Riedl?

1 Department of Computer Science and Information Technology, Western New
England University
1215 Wilbraham Rd., Springfield, MA, USA
brian.oneill@wne.edu
2  School of Interactive Computing, Georgia Institute of Technology
85 Fifth St., Atlanta, GA, USA
riedl@cc.gatech.edu

—— Abstract

We propose a methodology for knowledge engineering for narrative intelligence systems, based
on techniques used to elicit themes in qualitative methods research. Our methodology uses
coding techniques to identify actions in natural language corpora, and uses these actions to
create planning operators and procedural knowledge, such as scripts. In an iterative process,
coders create a taxonomy of codes relevant to the corpus, and apply those codes to each element
of that corpus. These codes can then be combined into operators or other narrative knowledge
structures. We also describe the use of this methodology in the context of Dramatis, a narrative
intelligence system that required STRIPS operators and scripts in order to calculate human
suspense responses to stories.
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1 Introduction

Narrative intelligence includes the ability to generate narratives, explain experiences in
narrative terms, and understand and make inferences about narratives. Computational
narrative intelligence tasks, such as story generation and story understanding are knowledge-
intensive processes. A system would have to know everything that a human would be
expected to know about the story domain, and that knowledge could be extensive. For simple
domains, such as going to a fast-food restaurant, a narrative intelligence system would need
scripts describing the relationship between the customer and the staff, how that interaction
changes when using a drive-thru, as well as an understanding of the actions available in
such a scenario. As the domain becomes more complicated, the space of required knowledge
grows. Compare the fast-food restaurant domain to the knowledge necessary for James Bond
movies. For the latter domain, it would be necessary to encode the types of problems that
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spies tend to face, the actions that a spy might take to overcome those problems, as well as
knowing how to incorporate the gadgets that Bond uses.

Creative narrative intelligence systems, such as story generation and story understanding
systems, are knowledge-intensive. Story generation systems typically use a planning approach
or a case-based reasoning approach. Planning approaches require knowledge in the form of
domain specification (e.g. STRIPS or PDDL), while case-based reasoning approaches require
a library of cases. Story understanding systems also frequently use case-based reasoning.
When a knowledge-intensive narrative intelligence system demonstrates creativity, it is not
clear where credit for that creativity should properly be assigned. Is the creativity, such
as the generated story, the result of a good algorithm? Or is it the result of a well-crafted
domain? If it is the latter, then the creativity should be ascribed not to the system, but to
the designer of the domain.

We propose a methodology for converting a natural language corpus into a domain
specification for narrative intelligence systems. Current approaches to converting corpora into
domain specifications rely too heavily on the knowledge engineer. By leveraging approaches
from qualitative methods research such as ethnography—methods specifically intended to
elicit information from texts without being affected by researcher bias—we can construct a
domain while limiting the influence of the designer. When domains are constructed using this
methodology, it is possible to make stronger claims about the origins of the resulting system’s
creativity. Because the domain is not the result of too careful crafting by the designers of
the system, we can conclude that system creativity is the result of the algorithm rather than
knowledge engineering.

In this paper, we present a methodology for extracting narrative knowledge from natural
language data and its conversion to a domain usable by a narrative intelligence system.
This methodology uses formalized coding procedures from qualitative methods research to
identify actions and other narrative knowledge in the corpus. Over multiple iterations, coders
identify common actions and themes in the corpus. These common themes are used to form
a taxonomy of codes which can then be applied by multiple coders to the entire corpus.
These codes can then be used to generate narrative knowledge structures, such as scripts and
operators. We also describe the application of this methodology to create STRIPS operators
and scripts for Dramatis [18], a narrative intelligence system that models human suspense
responses to stories.

2 Related Work

2.1 Knowledge Acquisition

A large number of narrative intelligence systems require background knowledge, such as
scripts, plans, or other formalisms [5, 26, 15, 9]. In many cases, this knowledge is formed
manually. Manual generation leaves the knowledge base prone to the biases of the domain
engineers. As a result, artificial intelligence researchers have attempted to automate the
acquisition of procedural knowledge (e.g. scripts) from natural language corpora. The Say
Anything interactive storytelling system uses sentences collected from a corpus of blog posts
[25]. However the resulting stories still needed assistance from human users to ensure that
the stories were coherent. Chambers and Jurafsky [2] learn “narrative event chains,” which
are single-character script-like sequences of events. They analyzed the Gigaword corpus to
learn the significant events of a sequence and used machine learning approaches to generate
a partial-ordering of these events. Fujiki et al. [8] analyzed Japanese newspaper articles in
order to acquire scripts about murder cases. Kasch and Oates [10] collected a corpus of web
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documents pertaining to a target subject. Once the field of relevant documents has been
narrowed, their procedure locates pairs of events based on argument co-reference in order to
create script-like knowledge structures. In each of these examples, researchers had access to
a sizable corpus of relevant texts, such as newspaper articles about murders.

Depending on the domain in question, the existence of a large useful corpus is not
guaranteed. When such corpora are not available, it is possible to use humans to generate
specialized corpora. Human computation refers to systems that organize people to carry out
computational processes, such as tasks that machines cannot typically carry out effectively
[13]. A growing form of human computation is crowdsourcing. This approach attempts to
use “the wisdom of the crowd,” where it is believed that the knowledge of a large number of
people is superior to that of a single person [13]. In crowdsourcing, the human computation
task is distributed to a large pool of people. Frameworks such as Amazon Mechanical Turk
(AMT) have been developed as a means of distributing human computation tasks to large
numbers of workers, evaluating the quality of the work, and paying them for their brief
participation. As human computation and crowdsourcing have grown, researchers have
attempted to delegate the acquisition and aggregation of procedural knowledge to large
collections of people rather than to automated processes. Boujarwah et al. [1] implemented
a process for acquiring scripts from AMT workers. They later used other AMT workers to

classify and evaluate the quality of the responses received in the initial script collection phase.

Li et al. [14] asked AMT workers to provide the typical events of particular stories, such as
dates and bank robberies. In this data collection, workers were given specific instructions
about the nature of their responses, such as using simple sentences and only one verb per
sentence. Using the crowd-acquired corpora, they automated the learning of script-like
structures called plot graphs. However, this approach does not create new stories from the
actions in the domain. Instead, it repeats sequences of events that have been provided by
the AMT workers. ScenarioGen generated scenarios for serious games using a procedure that
combines crowdsourcing with automation [23]. This approach collects scenarios from the

crowd, as well as soliciting possible replacements for events in order to create new scenarios.

ScenarioGen used satisfiability solvers and K-nearest neighbor techniques to identify when
scenarios may require substitute events. Finally, the crowd is utilized again to evaluate
the resulting scenarios. While each of these strategies are effective for acquiring narrative
knowledge, each comes with a cost. Using AMT workers in three phases—initial collection,
classification, and quality control—is a costly proposition when paying workers in multiple
domains. While automation reduces the cost of crowd workers, there remains a time cost in
ensuring that the learning algorithms are structuring the data appropriately.

2.2 Qualitative Methods

Coding is a qualitative research method used to elicit concepts, theories, or key phrases from
natural language data, such as interview transcripts, journals, videos, and other subjective
data [20]. Tt is a common process in fields that heavily utilize qualitative data, such as
learning sciences and human-computer interaction. In some cases, coding is one step of a
larger approach to qualitative research, such as grounded theory or thematic analysis. A
code is a word or phrase that summarizes the key details of some aspect of the media being
coded. When considering interview data, a code may be applied to a paragraph, or multiple
codes may be applied to a single sentence, depending on the particular coding technique
being used and the contents of the data. The coding process allows for the identification of
similarly themed data when codes are analyzed. Coding is often an iterative process wherein
codes are refined as researchers become more familiar with the data and the common themes,
or as they attempt to form distinct categories from the data.
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Coding is designed for use on the same types of natural language corpora from which
artificial intelligence researchers have been attempting to extract procedural knowledge for
years. When applied to this context, coding serves as a formalized process for identifying
various types of narrative background knowledge, such as actions or event chains, that are
implicit within a variety of natural language texts.

3 Methodology

We introduce the following methodology for using coding to convert natural language
corpora into knowledge structures for narrative intelligence systems. The description of
the methodology is intended to be agnostic as to the source of the corpus as well as the
particular representations of the desired knowledge structures. In order to allow for a wide
variety of source materials and intended knowledge structures, some decisions in this process
are left to the researchers. Some may find it useful to adapt or alter this methodology to
better meet the goals of their particular narrative intelligence system. The remainder of this
section describes the methodology broadly, while the following section describes the use of
this methodology with a particular system.

3.1 Creating a Corpus

This methodology requires a natural language corpus as a source of knowledge for the system
under development. The origin of this corpus is not relevant to the procedure and is ultimately
dependent on the system in question. Many of the procedures described in related work begin
with identifying corpora, each of which would be suitable for this methodology. Surveys,
crowdsourced materials, blog posts, game traces, or any other natural language source are
applicable to this approach, where the best choice depends on the type of knowledge the
researchers wish to encode.

3.2 Coding the Corpus

The corpus is coded in a four-stage process adapted from qualitative methods processes used
to parse interview transcripts and ethnographic data, among other tasks. Each individual
item (e.g., web page, text sample, or survey response) in the corpus is treated as though it
were an interview transcript. For the purposes of this methodology, we will refer to individual
sentences or survey answers as entries. An entry should be the smallest unit of the corpus
from which actions will be extracted.

The four stages can be briefly described as follows:

1. Code the corpus by identifying actions, as well as potentially problematic entries within
the corpus.

2. Combine actions and problems into broader categories, defining guidelines for what
attributes indicate that an entry belongs in a particular category.

3. Multiple coders independently code a subset of the corpus, using the coding guidelines
established in the previous phase. Repeat this step until a sufficiently high level of
inter-coder agreement is achieved.

4. A single coder from the previous stage codes the remainder of the corpus according to
the same guidelines.

The first phase is based on a coding technique known as Initial Coding [20, 3]. Initial
Coding is a “first cycle” coding method, where researchers produce tentative codes that will
later be refined before overall analysis. This process also uses aspects of In Vivo Coding
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[3, 24], which guides coders to create codes based on the actual words of the corpus. During
this phase, a single person codes each entry of the corpus. Entries containing actions should
be coded with the verb in the sentence. For example, the entry “The spy orders a drink.”
should be coded as the action order. If there is reason to believe that an entry is not
appropriate for conversion to a target knowledge structure, then the entry should be coded
with a brief explanation of the problem. Reasons for exclusion depend on the coding task
and the system in question and may not apply to all domain engineering tasks. Potential
reasons for exclusion could be that the response ignored the survey prompt or presented
irrelevant setting details rather than actions (e.g., the entry “It was a beautiful day.” could
be coded as setting).

The second stage uses a process known as Focused Coding [3]. This technique is a
common “second cycle” coding method that is frequently applied after Initial Coding. The
goal of Focused Coding is to identify patterns and categorize the codes created during the
first cycle. During this phase, a domain engineer combines the non-action codes from the
first stage into a taxonomy of codes that represents the space of possible rejection reasons.
Researchers should also create a general code for acceptable entries. Depending on the corpus
or the desired knowledge structures, it may be useful to create several codes for entries that
represent acceptable actions. For example, it may be useful to have a code indicating that
the entry describes multiple actions. The codes created in this phase will be used in later
phases. For each code in the new taxonomy, the domain engineer should create guidelines
indicating when an entry should be coded as part of this set rather than a different set. The
exact number of codes created in this phase, and the breadth of those codes, is ultimately
dependent on the corpus and the knowledge domain.

While we describe these first two phases in terms of Initial and Focused Coding, one
could also view these phases as a form of Provisional Coding [20, 16]. In this technique,
researchers establish codes prior to data analysis based on prior experience, related work,
and their own expectations and hypotheses. The resulting set of codes can later be modified
if observations reveal the need for new codes or a finer level of granularity.

In the third stage of this process, multiple coders (possibly including the original coder
from the previous phases) independently code a subset of the corpus using the codes and
guidelines created in the previous phase. A sufficiently high level of agreement and inter-rater
reliability would indicate that one of the coders could continue to code the remainder of
the corpus alone in the final stage with a relatively low risk of error. Using multiple coders
in this phase reduces the risk of error, while increasing the confidence in the codes applied
to each entry. The corpus subset should represent approximately 20 percent of the full
corpus. If multiple prompts were used to develop the corpus, or if there are clear categories
of samples within the corpus, each prompt or category should be proportionally represented
in the corpus subset. In this phase, when coders apply the code (or one of the codes) for
acceptable actions to a particular entry, the code should also specify the action represented
in the entry. Taking this step mimics the In Vivo coding technique used in the first phase, as
coders should attempt to use the words that were present in the entry. Thus, the entry “The
spy orders a drink.” would be coded as Action/order. Entries that receive rejection codes
do not need to incorporate additional information.

After this subset has been coded, calculate the inter-rater reliability amongst the coders.
For the purposes of this paper, we use Cohen’s k, though this metric is one of several
useful inter-rater reliability metrics and using this one is not essential to the process. Using
Cohen’s k, scores greater than 0.6 are typically considered “good” inter-rater reliability, while
values greater than 0.8 represent “excellent” agreement [12, 4, 7, 16]. Before starting this
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phase, researchers should determine what level of inter-rater reliability is sufficient for their
knowledge engineering problem and corpus. Statisticians recognize that this threshold is
arbitrary, ultimately depending on the task and importance of agreement [11, 20]. Referring
to his own alpha measure of inter-rater reliability, Krippendorff stated that a threshold of
0.667 could be applicable under certain circumstances [11].

Defining agreement for non-action codes is simple. However, it may be challenging to
determine what constitutes agreement in the case of action codes. At a high level, coders
may agree that an entry is an action. At a more fine-grained level, agreement may depend
on the coders applying similar or identical words to the entry. Using In Vivo coding helps
ensure that coders agree on the described action by using the exact words in the corpus.

After any iteration of this phase where inter-rater reliability did not meet the target
threshold, the coders should gather and discuss the codes and guidelines. The coders may
revise codes or guidelines, or add new codes, in order to improve the level of agreement in
the subsequent iteration. Once these revisions are made, the coders should independently
return to the corpus subset, coding according to the revised guidelines. These iterations
continue until the intended level of inter-rater reliability is achieved. Iterative processes such
as this phase are common in qualitative methods such as grounded theory [3].

Once the coders have reached a sufficient level of agreement, a single coder from that
group may begin the fourth phase. In this phase, the individual coder applies the most
recent revision of the coding guidelines to the remainder of the corpus. Additionally, the
coder should resolve any remaining disagreements in codes from the previous phase. This
resolution may come from unilateral decision making or through consensus agreement of the
several coders. At the end of this phase, each entry in the corpus has a single tag as one of
the following:

An action, and the action that is indicated by the entry. This may be further extended if

the coding taxonomy used sub-categories for actions.

A candidate for rejection, based on the particular code from the taxonomy generated

during Focused Coding and revised in the iterative process during the third phase.

3.3 Generating Knowledge Structures

Having fully coded the corpus, it is now possible to convert these codes into the desired
knowledge structures. The specific conversion processes depend on the representations used
by the narrative intelligence system. For example, converting to Schankian scripts [21] will
require a different process than converting to the event chains used by Chambers and Jurafsky
[2], or the plot graphs used by Li et al. [14]

In general, each entry in the corpus has now been coded, either as an action or with
a reason to exclude the entry. These actions indicate a set of operators in the corpus.
Depending on the system or representation, domain engineers may wish to further narrow
this set of actions by combining like actions. For example, entries coded as Action/walk
or Action/drive could be combined into the more generic go operator, so long as it is not
necessary to distinguish between the two original actions in this particular domain. If the
engineering task requires some piece of data that was not part of the coding process (e.g.,
perhaps the process excluded causal information, but the operators being engineered need
preconditions), then the domain engineers may have to create this information themselves or
infer the information from the original corpus materials.

Given that each entry in the corpus is now coded as an action, the larger items of the
corpus (survey responses, web pages, articles, etc.) now contain sequences of actions, which
could be converted to narrative structures akin to scripts. As with operator generation, the



B. O’Neill and M. Riedl

precise details depend on the nature of the representation. Similarly, domain engineers will
need to determine for themselves how to handle rejection codes that appear mid-sequence.
Leaving these items out could damage the coherence of a script, but including bad information
could be detrimental to the domain.

In any case, the formalisms of the desired knowledge structures will define much of the
conversion process. These formalisms should be kept in mind throughout the coding process,
particularly during Initial Coding and Focused Coding.

4 Method in Practice

In this section, we describe an implementation of the process described above, as well as
some of the decisions that were made as a result of this context. We describe the qualitative
knowledge engineering methodology in the context of a narrative intelligence system that
uses scripts and plans to calculate the suspense level of stories.

4.1 Dramatis

Our knowledge engineering problem was related to Dramatis, a computational model of sus-
pense based on psychological and narratological understandings of the suspense phenomenon
[18]. In order to recognize suspense in the stories it read, Dramatis required a library of
actions that could occur in the domains of those stories. These actions are represented as
STRIPS operators [6], which are used to plan solutions to possible negative consequences
faced by the protagonist. The operator library should include actions that are not present in
the story, so that the model could produce alternate solutions to the protagonist’s problems.
Additionally, Dramatis required script-like structures that indicate typical sequences of events
in the story domains. Dramatis uses these scripts to predict possible future events which
may affect the level of suspense in the story. In order to evaluate the Dramatis model, we
needed to collect these planning operators and scripts.

The planning operators used by Dramatis are typical STRIPS operators, made up of
the action name, a set of parameters, and two sets of propositions representing the action’s
preconditions and effects. With this methodology, our goal was to collect the actions
represented by these operators. This acquisition process was not expected to give the
parameters, preconditions, or effects for the operators. Parameters would be determined after
the fact, based on the context of the actions in the original corpus. The causal propositions
were engineered afterwards, so that it would be clear which elements of the domain were
necessary to represent and which were irrelevant. However, by collecting operators from
an outside corpus, we were able to ensure that a wide variety of relevant operators were
included, rather than focusing only on those that occurred to the knowledge engineers.

The scripts used by Dramatis are graphs where nodes represent events and edges represent
either a temporal ordering relationship or a causal relationship between those events. Events
are represented in the script nodes by the corresponding STRIPS operator. Thus, by
collecting actions and converting them to STRIPS operators, we are able to collect the nodes
of the script graphs. Because the corpus we used contained sequential event information, we
also collected the temporal links for the scripts. The causal links were directly related to
the STRIPS operators. Because operator preconditions and effects were authored after the
fact, causal links for the script graphs could not be added until the STRIPS operators were
complete. Figure 1 shows a fragment of a script for a spy story domain created using this
methodology, where solid lines indicate temporal links and dashed lines indicate causal links.
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Figure 1 A fragment of a script in the Spy domain.

4.2 Corpus Creation

In order to generate the operators and scripts, we first needed a natural language corpus
for the domains which would be used to test Dramatis. These domains were adapted from
suspenseful scenes in popular films. The scenes selected were:
From the film, Casino Royale, the scene where James Bond is poisoned at the poker table
and attempts to cure himself.
From Alfred Hitchcock’s film, Rear Window, the scene where Lisa breaks into Thorwald’s
apartment to find evidence that Thorwald murdered his wife.

Though we identified these two scenes, it was insufficient to simply use the actions within
the scenes as the operators and scripts. While those actions should be included in the
operator library, it was necessary for Dramatis to be able to consider the same space of
actions that were likely to be considered by human viewers. Using only the actions from the
source material would provide the solution, but it would not accurately describe the space of
actions available to the characters and the viewers planning on the characters’ behalf.

Based on these scenes, we developed three survey prompts based on the crowdsourcing
tasks used by Boujarwah et al. and Li et al. [1, 14]. Each prompt described the beginning
and end of one of the scenes. Respondents were instructed to list the steps that occurred
in the story between these two points. Two prompts were created for the Casino Royale
example. The Spy I prompt asked participants to describe how a spy could go from being in
a bar to being poisoned. The Spy 2 prompt asked how a spy could go from being poisoned
to no longer being poisoned. The Rear Window prompt described a scene where two people
suspected their neighbor of murder. One of these people was on their way to the neighbor’s
apartment in search of evidence. Participants were asked to describe the events from entering
the neighbor’s apartment to being caught intruding by the suspected murderer. Each prompt
was written to avoid reference to its source material. The James Bond prompts refer to a
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Table 1 Knowledge Acquisition Study prompts.

Spy 1 Start: A spy is at a bar or restaurant.
Finish: The spy drinks from a drink poisoned by the villain.

Spy 2 Start: A spy is at a bar or restaurant. The spy just drank from a
drink that was poisoned by the villain.

Finish: The spy is no longer poisoned.

Rear Window | Start: A man (Tom) and a woman (Erin) suspect their neighbor
of committing murder. Tom cannot leave the apartment, but
Erin has just left the apartment to sneak into their neighbor’s
apartment to find proof. Tom and Erin have an agreed upon
signal for if the neighbor is on his way home.

Finish: The neighbor catches Erin in his apartment.

Table 2 Statistics of Knowledge Acquisition Study responses.

Total No. | Median Mean
Prompt No. Responses | of Entries | Entries | Entries (SD)
Spy 1 18 131 7 7.28 (3.78)
Spy 2 24 168 5 7.00 (4.79)
Rear Window 18 198 9.5 11.00 (5.11)

generic spy, while character names were changed in the Rear Window prompt. Table 1 shows
the specific prompts given to participants.

Each prompt was placed in a Google web survey, with 20 numbered blank text fields. The
instructions asked participants to describe the events between the prescribed start and end
points in the fields provided in order. Additionally, the instructions specified that responses
should focus on events or actions rather than setting. Finally, the instructions noted that
participants were not required to use all 20 text fields. Prospective respondents were directed
to a webpage where all three surveys had been embedded in a random order. Respondents
were recruited using institution mailing lists and social media. Table 2 shows the response
rates, as well as the average number of text fields used in each response.

4.3 Coding Process

One of the authors of this paper coded the survey responses according to the Initial Coding
procedure described in Section 3.2. In the Focused Coding phase, the non-actions codes
were reduced to a taxonomy of eleven codes that represented the space of possible reasons
for exclusion. Additionally, action codes were divided into two codes: a code for entries
representing single actions, and a code for entries representing multiple actions. These
thirteen codes were used in the third phase of the coding procedure.

Table 3 shows the thirteen codes and the guidelines used for applying these codes. The
reasons for exclusion varied. The most pressing reason was signified by the Prompt Failure
code, which indicated that the end state of the respondent’s story did not match the end
state requested by the prompt. Similarly, we coded entries for exclusion when they described
the setting rather than actions (State code), or provided multiple possibilities for actions
without committing to a single action (Vague code). We also excluded entries that took an
audience point-of-view by referring to discourse-level details, such as events being presented
in flashbacks (Presentation code). Other exclusion reasons included characters taking
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Table 3 Coding Guide for Knowledge Acquisition Responses.

Code Type

Shorthand

Description

Single action

[Specify action]

Applies when the entry describes a single action/oper-
ator. Provide the operator in the response.

Multiple
actions

[Specify actions]

Applies when the entry describes multiple actions/op-
erators.

Prompt Fail- | PROMPT Applies when the end state of the response does not

ure match the state instructed by the prompt.

Attention ATTN Applies when an entry deals with what a character is
paying attention to or noticing.

Dialogue DLG Applies when an entry deals with what a character said.

Action Does not apply when the entry just says two characters
talked.

State STATE Applies when an entry provides state information but
no action.

Thoughts THGT Applies when an entry deals with what a character is
thinking or thinking about.

Inaction INACT Applies when an entry describes a character explicitly

not taking an action.

Presentation PRES Applies when an entry describes audience point-of-view

or sjuzet details.

Incomplete Ac- | INC Applies when a character begins performing an action
tions or task but does not complete it.

CONT

Continuation Applies when an entry is a continuation of the previous

entry, or of the action described in the previous entry.

Continuing CF Applies when an entry represents multiple attempts to

Failure do something with repeated failure and/or no expecta-
tion of immediate success and/or waiting for something
to happen.

Vague VAGUE Applies when an entry says something happens, but

not how; or when an entry provides multiple options
for what might have happened.

actions that required modeling their inner state (Attention and Thought codes) or actions
that failed or were repeated over the course of several entries.

The third phase of coding was conducted by the same author as the Initial Coding and
a partner. For this phase, we randomly selected five responses from each prompt for the
subset, amounting to 23% of the survey responses. During this phase, the two coders agreed
on 76.3% of codes (Cohen’s k = 0.64). Additionally, every time that both coders marked
entries as actions, there was semantic agreement about what action was represented by that
entry. When codes were reduced to a simple Accept/Reject question (where Accept is a
single action or multiple actions, and Reject is any of the eleven non-action codes), the coders
agreed on 83.9% of codes (k = 0.67). Prior to this phase, we agreed that “good” inter-rater
reliability was sufficient. Therefore, only one iteration was necessary during this stage.

In the final phase, the same author coded the remainder of the survey responses according
to the same guidelines shown in Table 3. Any coding disagreements from the previous phase
were resolved through consensus, though the only remaining disagreements came from entries
being coded as actions by one person and given non-action codes by the other coder. At
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Table 4 Sample Survey Response with Initial and Final Codes.

the apartment, but Erin has just left the apartment
to sneak into their neighbor’s apartment to find
proof. Tom and Erin have an agreed upon signal
for if the neighbor is on his way home.

Response Initial Code Final Code
A man (Tom) and a woman (Erin) suspect their | Restatement of | STATE - State in-
neighbor of committing murder. Tom cannot leave | prompt formation

Erin discovers a red herring.

Action - discover

Single action - dis-
cover

Erin becomes afraid of a noise. Emotion THGT - Thoughts

Erin realizes the noise was something innocent. Realization TGHT - Thoughts

Erin finds a clue. Action - find Single action - find

Erin goes where she cannot see Tom’s signal. Action - go Single action - go

Erin finds gruesome evidence. Action - find Single action - go

Erin hears the neighbor arrive home. Passive, hearing | ATTN - Attention
things

Erin hides.

Action - hide

Single action - hide

Erin continues to hide as the neighbor moves.

Continuing action,
action - move

CONT -
ation

Continu-

Restatement of | Single action - catch

prompt

The neighbor catches Erin in his apartment.

the end of the process, each entry from each survey response had been tagged as one of the
following:

A single action, and what action is indicated.

Multiple actions, and what actions are indicated.

A candidate for rejection, along with the specific rejection code from Table 3.

Table 4 shows one complete response to the Rear Window prompt. The middle column
shows the results of the Initial Coding process, while the last column shows the codes after

all phases of coding had been completed. This particular entry was coded by both coders.

The only disagreement between the coders came on the third entry. One coder listed the
entry with the rejection code for character thoughts, while the other coded the entry as a
single action become-afraid. During the final phase, this disagreement was resolved through
consensus, and the rejection code was ultimately selected.

4.4 Generating STRIPS Operators

Prior to converting the coded survey responses to the knowledge representations used by
Dramatis, we removed any response with an entry coded as Prompt Failure. This code
indicated that the respondent did not adhere to the prompt, typically by failing to meet the
specified conditions at either the beginning or the end of the story. As a result, the entire
response was not useful. Other rejection codes only affected the single entry rather than an
entire survey response.

After the coding process was completed, each identified action was converted into a
STRIPS operator [6]. Similar actions (e.g. “sneak” is a special case of “go”) were combined

into single operators. The coding process provided the action, or the verb, for the operator.

However, STRIPS operators require parameters, preconditions, and effects, none of which
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operator: deliver-food (7waiter 7food 7customer)
constraints: person(?waiter) person(?customer) edible(7food) (neq
?waiter 7customer)
preconditions: has(?waiter 7food) ordered(?customer 7food)
waiter(?waiter)
adds: has(7customer 7food)
deletes: has(?waiter 7food) ordered(?customer ?7food)

Figure 2 Example Planning Operator.

were immediately derivable from the survey responses during the coding process. In some
cases, parameters could be inferred from the original text entry, such as parameters which
pertained to the subject or direct object of an action. STRIPS operators often require
additional parameters that describe details that are implied by natural language. For
example, the give operator would require a location parameter to make sure that both
characters involved are co-located. However, the single sentence describing the act of giving
usually would not contain location information. Operator preconditions and effects were
inferred from how the actions were used in the survey responses, rather than from the coding
process. Preconditions and effects were also modified later as the operators were tested and
interactions between them were observed.

Figure 2 shows an operator created from the Spy prompts. The operator row shows the
operator name and parameters. The constraints and preconditions lines show operator
constraints and preconditions, where constraints are a special subset of preconditions that
establish immutable facts about the parameters in question, such as a parameter variable
referring to a person. The adds and deletes lines refer to propositions that are added and
deleted, respectively, from the world state as effects of the operator being completed. The
full set of operators created for both the Spy and Rear Window domains can be seen in [17].

4.5 Generating Scripts

After the operators were finalized, we combined the survey responses into a script for each
prompt. Each survey response represented a portion of the script, making up a path through
the script graph. When entries were coded as actions, the corresponding operator was added
to the scripts. Entries coded as non-actions were skipped, unless doing so affected the
coherence of the story in the survey response. Typically, an existing operator was relevant
to the entry despite the code. Additionally, in some cases, events were included in the
script trace that had been left implicit in the original survey response (e.g., the operator
make-drink was specified between order and deliver-drink by some participants, but not
all). Figure 1 shows a portion of the script created from the Spy 1 prompt. The complete
scripts for the Spy and Rear Window domains can be seen in [17].

Additional information was added to the script representation once the sequences of
actions had been collected from the coded survey responses. Dramatis scripts required
causality information about the events of the script. These causal links were added based on
the preconditions and effects that were created for the operators. We also annotated the
script so that it was clear when the same character was expected to perform several actions.
These annotations were derived from the survey responses directly.
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4.6 Discussion

The resulting operators and scripts were successfully used to evaluate the Dramatis model
[18]. The knowledge acquisition and coding procedures led to 62 operators for the Casino
Royale scene based on the two spy domain prompts, and 38 operators for the Rear Window
domain. The Casino Royale and Rear Window scripts had 51 event nodes and 44 event
nodes, respectively. Dramatis used these operators and scripts to find possible solutions for
characters facing negative consequences, which was part of the process of calculating suspense
responses. In system evaluations, we demonstrated that Dramatis produced suspense ratings
that corresponded to ratings produced by human readers, in part because of how the model
used this narrative knowledge [18].

It is possible that a second iteration of the third phase, using multiple coders to code
a subset of the survey responses, could be beneficial to the knowledge structures used for
Dramatis. While we were satisfied with the “good” Cohen’s x of 0.64, we were still distant
from “excellent” agreement (x > 0.8). Further iterations would provide greater confidence in
the individual coding completed in the fourth phase of the process. However, it is notable
that this inter-rater reliability calculation does not take into account the semantic agreement
on the actions between the two coders. Rather, it only notes when both coders marked
an entry as Single action or Multiple actions. Accounting for the agreement in action
descriptions might increase the inter-rater reliability calculation.

It is important to recognize that the codes used for Dramatis (Table 3), while appropriate
for our prompts, are not necessarily applicable to all knowledge engineering tasks. Other
researchers will need to go through the same initial processes, using Focused Coding to
develop their own taxonomy of codes, allowing the codes to emerge from the corpus. It is not
difficult to imagine other systems that have other criteria or would want to include entries
that we excluded. For example, where we excluded dialogue actions, others may want to
encode such entries in their knowledge base. These decisions must be made prior to Initial
Coding and depend entirely on the goals of the researchers.

5 Future Work

While we were able to successfully generate operators and procedural knowledge using this
methodology, we needed to author causal knowledge by hand after the fact. Future work
should focus on how to extract causal information from natural language corpora using
qualitative methods. It may be possible to build on the work of Sil and Yates [22] in order
to collect some of this causal information automatically. Further effort is also necessary to
determine the best way to collect causal information from the crowd. While crowdsourcing
has proven effective for providing sequences of events, it is not yet clear whether it is
reasonable to expect untrained AMT workers or survey respondents to provide the level
of causal information needed to produce STRIPS operators or other structures including
causality. A number of narrative systems also consider the intentionality of its characters
[19], which this methodology has not addressed. Further research will help determine how
corpora can be coded in order to extract the goals and intentions of the actors described in
the texts. Finally, it may be valuable to extend this process beyond natural language texts
to media such as films and games. Including these other media will likely require alterations
to the methodology. However, the gains for narrative researchers will be significant if they
are not limited to text-only formats when using this approach.

It may be useful to evaluate this methodology by comparing it to one of the other
knowledge acquisition and engineering processes discussed previously. For example, if we
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could evaluate the quality of the knowledge structures generated using this approach, we could
compare the resulting structures to those created using the automated processes described
by Li et al. [14] or other hand-tailored approaches to knowledge engineering. Evaluating
the quality of a knowledge structure remains an open questions, but could perhaps be
accomplished by considering how well the narrative intelligence system performs with that
particular set of knowledge.

6 Conclusions

We have introduced a methodology for creating a narrative intelligence domain from natural
language corpora using techniques from qualitative methods research. This technique
mitigates the influence of system designers in crafting the knowledge needed by the system
in question. Additionally, we demonstrated the use of this methodology in the context
of Dramatis, a system that demonstrates narrative intelligence by calculating a reader’s
suspense response. Our methodology was used to generate STRIPS operators and scripts
which Dramatis used as part of it calculations.

By limiting the role of the designer in the knowledge engineering process, designers
can make stronger claims about the creativity of their systems. Using this methodology,
we can assign credit for creative results to the algorithms used by narrative intelligence
systems, rather than to the domain designer. Knowledge-intensive systems, such as story
generators and story understanding systems, will always need knowledge that is comparable
to what humans would be expected to know in the same domains. Codifying the process
for converting from corpora to domain, while simultaneously mitigating the influence of the
designer, will allow researchers to have greater confidence in the source of the creativity of
their systems.
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