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Abstract
We consider the post-disaster road clearing problem with the goal of restoring network connectiv-
ity in shortest time. Given a set of blocked edges in the road network, teams positioned at depot
nodes are dispatched to open a subset of them that reconnects the network. After a team finishes
working on an edge, others can traverse it. The problem is to find coordinated routes for the
teams. We generate a feasible solution using a constructive heuristic algorithm after solving a
relaxed mixed integer program. In almost 70 percent of the instances generated both randomly
and from Istanbul data, the relaxation solution turned out to be feasible, i.e. optimal for the
original problem.

1998 ACM Subject Classification G.1.6 Optimization, G.2.2 Graph Theory, G.2.3 Applications

Keywords and phrases Arc Routing Problem, Mixed Integer Programming, Heuristic, Network
Connectivity, Road Clearance

Digital Object Identifier 10.4230/OASIcs.SCOR.2014.76

1 Introduction

Arc routing problems have attracted the interest of researchers and have many application
areas such as snow plowing, street sweeping, garbage collection, mail delivery, school bus
routing and meter reading (see [8]). The problem addressed in this paper falls into the class
of arc routing problems, but also contains network design and scheduling aspects. The main
motivation of this section is to give an overview of arc routing problems and to introduce
some problems which are related to our study.

In the Chinese Postman Problem (CPP), given a graph G = (V,E), the problem is to
determine a minimum cost closed walk, traversing each edge of G at least once. CPP can
be solved in polynomial time if it is defined on an undirected or directed Network [7]. It can
also be solved in polynomial time if it is defined on an mixed and even network [7], or on
windy and Eulerian networks [11]. If there is a fleet of identical vehicles, say K vehicles,
then the problem of finding K tours such that all the edges are covered with minimum total
cost is called K-CPP (see [4] and [10]).

When only a subset of the edges are required to be traversed, the problem is called Rural
Postman Problem (RPP). Eiselt et al. [8] thoroughly review studies on RPP. This class of
problems are defined on a graph or on a multi-graph G = (V,A), where V is the vertex set,
A is the arc/edge set, and a non-negative cost matrix is associated with A. The graph may
be directed, undirected or both (mixed). If there is a fleet of K vehicles, then the problem of
covering the required edges with K tours that minimize the total cost is called K-RPP. In
particular, Min-Max K-vehicle Windy Rural Postman Problem [5] is closer to the problem
defined in our study as it minimizes the maximum tour cost.
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Given a connected graph G = (V,E) and required subsets ER ⊆ E and VR ⊆ V , General
Routing Problem (GRP) is to find a minimum cost closed walk traversing the edges in ER
and visiting the vertices in VR at least once [9]. A large number of well-known arc routing
and vehicle routing problems are special cases of the GRP . For instance, When VR = ∅ and
ER = R we obtain Rural Postman Problem. In addition, if ER = E, we have the Chinese
Postman Problem. On the other hand, if ER = ∅, the problem reduces to Travelling Salesman
Problem. Corberan et al. [6] provide a branch and cut algorithm for the Windy GRP that
solves optimally RPP instances with around 1000 nodes and 3000 edges.

The experience of past earthquakes reveals that the roadway elements are quite vulnerable,
while the damages can seriously affect the transportation of products and people. A notable
recent case of these earthquakes happened in Japan in 2011. The 2011 earthquake off the
Pacific coast of Tohoku was a magnitude 9.0 (Mw) undersea megathrust earthquake off the
coast of Japan that occurred at 14:46 JST (05:46 UTC) on Friday 11 March 2011. As a result
of this earthquake Japan’s transport network suffered severe disruptions. Almost 4000 road
segments, 78 bridges and 29 railway locations were reported to be damaged. Accumulated
debris in the downtown of Kamaishi City, Iwate Prefecture, and a damaged arterial (national
highway 45) virtually isolated the community from rescue efforts and about 76 percent of the
highways in the area were closed due to damage. These type of high-impact incidents cause
the network to be disconnected due to blocked roads, impeding accessibility to hospitals and
critical supply and shelter locations. In the immediate disaster response phase, to facilitate
emergency transportation, a critical subset of the blocked roads should be cleared or opened
to restore network connectivity in shortest time. Different from studies which are looking for
tours including required edges, our main concern is connectivity of the network. In addition,
the set of required arcs are not known in advance, and there is no requirement for the walks
to be closed.

Recently, several studies focused on upgrading a road network or improving accessibility
after a disastrous situation (e.g., [12] and [1]). To the best of our knowledge, the restoration
of the roads after a disaster by routing a fleet of K vehicles in order to ensure connectivity of
a network has not been addressed in the literature. In this paper, we define a new network
optimization problem to address this topic. Since the problem combines arc routing and
network design elements, it is called Arc Routing for Connectivity Problem (ARCP), and
since we are considering the case with K vehicles, we call it K-ARCP. The case with a single
vehicle was defined and studied by Asaly and Salman [3], where a mixed integer programming
(MIP) model was developed and applied to the case of Istanbul.

This paper is organized as follows: Next section gives a complete description of K-ARC.
In the third section, we present the relaxed MIP model developed to solve K-ARC. We refer
to this model as R-MIP. The fourth section gives an algorithm to extract the walk of every
vehicle from the solution of R-MIP. In Section 5, we discuss the feasibility algorithm and how
we make the solution of R-MIP feasible for K-ARC. Section 6 is devoted to data generation
and results. We close with some final remarks in Section 7.

2 Problem Definition

We model our road network as an undirected connected graph G = (V,A). There is a cost
(time) cij associated with traversing all edges (i, j) ∈ A : cij = cji and cij > 0. After the
disaster, a set of edges, B, will be blocked and removal of them from the graph G, will
make it disconnected. Traversing a blocked edge is not possible unless it is opened. The
opening operation may involve clearing of the debris or repairing damaged segments. We
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78 A Model-Based Heuristic to the Min Max K-Arc Routing for Connectivity Problem

represent the associated extra opening cost (time) of a blocked edge (i, j) ∈ B as bij , where
∀(i, j) ∈ B, bij = bji and bij > 0. This additional time or cost incurs when a blocked edge is
traversed for the first time. We assume that the edge opening times will be estimated by
collecting post-disaster information on road conditions.

According to (i, j) ∈ A : cij = cji and ∀(i, j) ∈ B, bij = bji, roads can be used in both
directions in the disaster response phase. Since our model does not rely on these assumptions
and it can handle the non-asymmetric case as well, these presumptions does not jeopardize
the generality of the model.

Teams consisting of required equipment, machinery and personnel should be mobilized to
clear the roads in shortest time. We refer to these teams as vehicles from now on. K vehicles
are initially positioned at specified vertices. After the catastrophe, they complete a walk by
working on the blocked edges assigned to them. We refer to the initial position of a vehicle
as its depot. Note that there might be more than one vehicle positioned in a particular depot
initially.

The edges that are not blocked form a graph GB = (V,A/B) with |Q| components, where
Q is the set of disconnected components. (Each Q is a connected sub-graph.) We are looking
for a subset of blocked edges, R, such that GR = (V,A/B ∩R) is connected. In fact every
subset R, is included of particular required edges which unblocking them, guarantee the
connectivity of GR. The solution identifies R and constructs a walk for each vehicle that
starts at its depot. The objective is to minimize the maximum cost (time) walk among the
vehicles.

Without loss of optimality, we can assume that if the walk of two vehicles includes the
same blocked edge, the one that arrives first to the edge will unblock it. If a vehicle arrives
at a node incident to a blocked edge while another vehicle is opening it, then it has to wait
until the edge is unblocked.

Let us represent the walk of vehicle k by Wk. The total time of Wk consists of: 1) time of
traversing the edges, C(Wk); 2) time of road clearance, B(Wk); and 3) waiting time, A(Wk).
The total walk time for vehicle k is calculated as:

T (Wk) = C(Wk) +B(Wk) +A(Wk) (1)

The objective is to minimize the maximum value of T (Wk) over ∀k ∈ {1, 2, ...,K}, where K
shows the number of vehicles.

A simple example with two vehicles is shown in Figure 1. The blocked edges are shown
with dashed lines. On the left, we see three components arising due to blocked edges. On the
right, we see a feasible solution. The vehicles leave their depots, open several blocked edges
and cross over some healthy edges in their walks. The walks end when the graph becomes
connected.

3 A Mathematical Model for K-ARCP

Calculating the arrival time of the vehicles to the nodes complicates the model, since edges
can be traversed multiple times. Therefore, we consider a relaxed problem (=R-MIP) such
that the timing of the vehicles is ignored. After solving the R-MIP, we may encounter two
situations: 1) We do not have timing problems in our relaxed mathematical model solution
and the optimal solution of R-MIP is in fact the optimal solution of the K-ARCP. 2) If the
relaxed model solution has timing conflicts, then we derive a feasible solution by modifying
the assignment of opening tasks to the vehicles and inserting waiting time as necessary. The
solution of the R-MIP gives a lower bound on the optimal solution to K-ARCP. An upper
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Figure 1 An illustrative example.

bound on the optimal solution of K-ARCP is obtained from the algorithm that constructs
a feasible solution. In this way, we can derive an optimality gap for the feasible solution
obtained.

Asaly [2] developed a model for the directed version of the same problem. All the time
related constraints are also included as part of her model. However, since the number of
variables and constraints are rapidly increasing with respect to the number of vehicles K
and the size of the network, she could solve the model only for the single vehicle case, which
does not require any waiting time. Asaly [2] proved that this problem is NP-hard even when
a single vehicle exists. The NP-hardness of the symmetric K-ARC follows from this result.

The mixed integer programming (MIP ) model for K-ARCP determines K open walks
such that the disconnected components in the network are connected after unblocking a
subset of the blocked edges. These walks start from depots and end in a dummy sink node,
indexed as n+ 1. The model is formulated for the multi-depot and K vehicle case, where
K > 1. The K walks altogether traverse a subset of the edges in B, denoted by R, so that
the graph GR = (V,A/B ∩R) is connected. We define the decision variables and present the
constraints next.

Decision Variables

xkij ∈ {0, 1} : indicates whether vehicle k traverses edge (i, j) ∈ A from node i to j
zkij ∈ {0, 1} : indicates whether edge (i, j) ∈ B is unblocked by vehicle k from
node i to j
fkij ∈ N0 : flow of vehicle k on edge (i, j) ∈ A from node i to j
vki ∈ N0 : number of times vehicle k visits node i ∈ V

Objective Function

Minimize y
subject to∑
(i,j)∈A

cijx
k
ij +

∑
(i,j)∈B

bijz
k
ij ≤ y, ∀k = 1, 2, . . . ,K (2)
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Constraints. Let D denotes the set of depots and Pd shows the set of vehicles which are
initially positioned in depot d ∈ D. Constraints (3),(4) and (5) are vehicle flow balance
equations. Constraint (3) ensures that every vehicle leaves its depot and (4) and (5) enforces
vehicles not to stop in any intermediate nodes. Constraint (6) forces every walk to end in the
sink node. Each vehicle visits the sink node exactly once and does not get out. The latter
case is satisfied by constraints (7).

∑
j∈V ∪{(n+1)}

(xkdj − xkjd) = 1, ∀d ∈ D, ∀k ∈ Pd (3)

∑
j∈V ∪{(n+1)}

(xkdj − xkjd) = 0, ∀d ∈ D, ∀k 6∈ Pd (4)

∑
j∈V ∪{(n+1)}

(xkij − xkji) = 0, ∀k = 1, 2, . . . ,K, ∀i ∈ V \D (5)

∑
j∈V

xkj(n+1) = 1, ∀k = 1, 2, . . . ,K (6)

xk(n+1)i = 0, ∀i ∈ V, ∀k = 1, 2, . . . ,K (7)

The following sets of constraints establish a relation between zkij and xkij variables. Constraint
(8) shows that if a blocked edge is opened it must be traversed at least once. Constraint (9)
prevents traversing a blocked edge if it is not unblocked by any of the vehicles. Let us show
the set of blocked edges in the cut-sets between components with C. When a vehicle leaves
its depot, it may open all the blocked edges that are in C. We show this property with (10).
Since our graph is undirected, it is enough to open a blocked edge in one direction, if it is
selected to be opened. This is shown by (11).

xkij ≥ zkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (8)

xkij ≤
K∑
κ=1

(zκij + zκji), ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ B (9)∑
(i,j)∈C

zkij ≤ |(i, j) ∈ C|
∑

j∈V :(d,j)∈A

xkdj , ∀d ∈ D, ∀k ∈ Pd (10)

K∑
κ=1

(zκij + zκji) ≤ 1, ∀(i, j) ∈ B (11)

In order to ensure connectivity of the walks, we define flow variables fkij for every vehicle
and for each edge that it passes through. For depot vertices, the net flow into a depot vertex
is the total number of visits to all vertices except the depot. For the other vertices, it is
equal to the number of visits to the corresponding node. In other words, a vehicle leaves one
unit of flow each time it visits a node. Constraints (15) ensure that walks end in sink node
by sending one unit of flow to the sink node. (16) prevent backward flow from the sink node
to any other node.
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∑
j:(i,j)∈A,{i,j}∈V ∪{(n+1)}

(fkij − fkji) = −vki ,

∀k = 1, 2, . . . ,K, ∀i ∈ V ∪ {(n+ 1)} \D (12)∑
j∈V ∪{(n+1)}

(fkdj − fkjd) =
∑

i∈V ∪{(n+1)}\{d}

vki , ∀k ∈ Pd, ∀d ∈ D (13)

∑
j:(d,j)∈A,{i,j}∈V ∪{(n+1)}

(fkdj − fkjd) = −vkd , ∀d ∈ D, ∀k 6∈ Pd (14)

fk(n+1)j = 0, ∀j ∈ V, ∀k = 1, 2, . . . ,K (15)∑
j∈V

fkj(n+1) = 1, ∀k = 1, 2, . . . ,K (16)

Here, n shows the total number of nodes in our network. Constraints (17) do not allow flow
on an edge unless it is traversed. Constraints (18) show that if an edge is traversed, then
there must be a positive amount of flow passing through it.

fkij ≤ (n− 1)xkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V ∪ {(n+ 1)} (17)
fkij ≥ xkij , ∀k = 1, 2, . . . ,K, ∀(i, j) ∈ A, {i, j} ∈ V ∪ {(n+ 1)} (18)

A vertex is visited if and only if an edge entering that vertex is traversed, by constraint (19).
If we cross a particular vertex more than one time, we should go to open another blocked
edge that is in C. Constraint (20) enforces this.∑

j:(i,j)∈A

xkji = vki , ∀k = 1, 2, . . . ,K, ∀i ∈ V ∪ {(n+ 1)} (19)

vki =
∑

(i,j)∈C

zkij , ∀k = 1, 2, . . . ,K, ∀i ∈ V ∪ {(n+ 1)} (20)

Constraints (21) enforce connectivity of the graph. It is a sub-tour elimination constraint.

K∑
κ=1

∑
(i,j)∈δ(s)

zκij ≥ 1, ∀S ⊂ V, S 6= ∅ (21)

4 Walk Extraction Algorithm

After solving R-MIP we obtain values of xkij and fkij and vki but we do not know about the
order of edges to be visited by each vehicle. What we know is that whether a vehicle crosses
an edge in a particular direction or not.

We define the Walk Extraction Algorithm for kth vehicle as follows.

Walk Extraction Algorithm

step 1: For the kth vehicle if ∃i ∈ V : vki ≥ 2 go to step 3 and otherwise go to step 2.
step 2: The decreasing order of fkij values gives us the walk.
step 3: In the graph Γ = (V, Â) such that V is the set of all vertices as before and
Â = {(i, j)|xkij = 1}; find the shortest path between Pd and the sink node.
step 4: Using a cycle detection method, find all the loops in Γ.
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Figure 2 Samples of paths with and without loops.

step 5: Go through nodes in the shortest path obtained in step 3 and if any of the nodes
are in one of the loops derived from step 4; add the loop to the shortest path and remove
the loop from the set of loops and then start step 5 again. If the size of loops set is 0, the
path is complete.

There is an important property with the walks; they either contain loops or not. In
the walk of the kth vehicle a loop occurs if ∃i ∈ V : vki ≥ 2. It means that starting
from node i, vehicle k visited a set of edges and came back to node i again. On the
other hand, if in the kth vehicle’s walk vki ≤ 1 for all i ∈ V there is no loop in it’s walk.
Step 1 determines whether the walk includes walks or not. Second step relation follows
by the structure of flow variables. A sample of walk without loops is shown in the left
side of Figure 2. Flow variable values on the edges are determining the path. In the
right side network of Figure 2, a cycle-included walk is shown. In this case, the result of
third step is: Start ⇒ 1 ⇒ 4 ⇒ 5 ⇒ 6 ⇒ 7 ⇒ 9 ⇒ 10 ⇒ End. For step 4, we used
simple− cycles(G) function from NetworkX library in Python. For the given sample the
loops are: 1⇒ 2⇒ 3⇒ 2⇒ 1 and 7⇒ 8⇒ 7. Due to step 5 the output of the algorithm is
as follows: Start⇒ 1⇒ 2⇒ 3⇒ 2⇒ 1⇒ 4⇒ 5⇒ 6⇒ 7⇒ 8⇒ 7⇒ 9⇒ 10⇒ End.

I Lemma 1 (Walk Extraction Algorithm). Given the values of xkij and fkij and vki ∀k =
1, . . . ,K, we can find the walk of each vehicle with the Walk Extraction Algorithm.

Proof. The proof follows by the structure of the variables in the mathematical model and
observations discussed in the algorithm about the properties of the walks. J

I Lemma 2 (R-MIP Solution). For Wk, k = 1, . . . , k showing the walk of the kth vehicle and
R = B ∩Wk, when R is added to GB, we get a connected graph. Moreover, TR ≤ Z∗K−ARCP
where TR shows the optimal objective value of R-MIP and Z∗K−ARCP denotes the optimal
objective value of K-ARCP.

Proof. The first part follows by the structure of the mathematical model and problem
definition. Constraint 21 enforces to open at least a blocked edge between two separated
components for every choice of subcomponents. This will result in finding GR = (V,A/B∩R)
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Table 1 Order of edges visited by vehicles (1 to k).

Walk Path of the walks Finishing Time of the walks
W1 w1,1 ⇒ w1,2 ⇒ w1,3 ⇒. . .⇒ w1,n(1) t1,1 ⇒ t1,2 ⇒ t1,3 ⇒ . . .⇒ t1,n(1)
W2 w2,1 ⇒ w2,2 ⇒ w2,3 ⇒. . .⇒ w2,n(2) t2,1 ⇒ t2,2 ⇒ t2,3 ⇒. . .⇒ t2,n(2)
. . .
. . .
. . .
Wk wk,1 ⇒ wk,2 ⇒ wk,3 ⇒. . .⇒ wk,n(k) tk,1 ⇒ tk,2 ⇒ tk,3 ⇒. . .⇒ tk,n(k)

Table 2 Order of edges from B visited by vehicles (1 to k).

Walk Order of blocked edges Finishing Time of the walks
W1 B1,1 ⇒ B1,2 ⇒ B1,3 ⇒. . .⇒ B1,m(1) τ1,1 ⇒ τ1,2 ⇒ τ1,3 ⇒. . .⇒ τ1,m(1)
W2 B2,1 ⇒ B2,2 ⇒ B2,3 ⇒. . .⇒ B2,m(2) τ2,1 ⇒ τ2,2 ⇒ τ2,3 ⇒. . .⇒ τ2,m(2)
. . .
. . .
. . .
Wk Bk,1 ⇒ Bk,2 ⇒ Bk,3 ⇒. . .⇒ Bk,m(k) τk,1 ⇒ τk,2 ⇒ τk,3 ⇒. . .⇒ τk,m(k)

such that GR is connected. The second part follows by the fact that we are ignoring timing
conflicts in R-MIP. In R-MIP we get a wider feasible region by ignoring timing variables and
constraints, which will result in better optimal values. Disregarding time related elements
will result in non feasible solutions in some cases. This infeasible cases occur when a vehicle
is crossing a blocked edge since it is going to be unblocked by another vehicle. Since we are
relaxing time constraints, the opener vehicle might unblock the blocked edge after the other
vehicle crosses it in sense of time, which is not acceptable in K-ARCP. J

5 Feasibility Algorithm

Since R-MIP does not have time-related elements, our solution might not be feasible for
K-ARCP. We can derive a feasible solution by modifying the solution obtained from R-MIP.
We determine those edges with timing conflict and then we shift the time of the second
vehicle that is crossing the blocked edge to derive a feasible solution.

As explained in the Walk Extraction Algorithm we can derive walks of each vehicle from
the output of R-MIP. With the result obtained from the Walk Extraction Algorithm we can
form Table 1. It includes the path of every vehicle and the corresponding time for crossing
every edge in every path. wi,j shows jth edge crossed by vehicle i and ti,j is the corresponding
time with it. With the information in Table 1, TR = max

k
(tk,n(k)).

In Table 2, we only consider the edges in B that are traversed with different vehicles
and the corresponding time of crossing them. Here Bi,j shows jth edge in B that has been
crossed by vehicle i and τi,j is the time when traversing the edges is completed.

Note that an edge of set B may be repeated in the walk of a vehicle, or it may appears in
the walks of more than one vehicles. During the algorithm, as we process the edges given in
Table 2, we shift the finishing time of those edges that are effected and remove the processed
edges from Table 2.

With Table 2 in hand we can write our feasibility algorithm as follows.
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Feasibility Algorithm

Step 1: Choose ψ = min{τi,j} over all i = 1, ..., k, j = 1, ..., n(k).
If ψ = min{τi,j} = max{τi,j} paths are synchronized. Otherwise go to step 2.
Step 2: Determine vehicle number (= κ) and blocked edge = (i, j) associated with
ψ. (Go to one of the following cases considering zκij and zκji values:)
Case 1: If zκij = 1: “No Change Case”
“Apply following change:”
Update Table 2 by removing all Bi,js and Bj,is and their corresponding time from it
and go back to step 1.
Case 2: If zκij = 0 but zκji = 1: “Backward Opener Case”
“Apply following changes:”

1. For ∀τκα,β : τκi,j ≤ τκα,β ≤ τκj,i, shift τκα,β values as follows: τκα,β(new) = τκα,β + bij

where bij is the extra cost associated with opening edges (i, j).
2. If (i, j) or (j, i) is in the walk of vehicle η such that η 6= κ and τηi,j ≤ τκi,j or

τηj,i ≤ τκi,j for ∀τηα,β : τκi,j ≤ τηα,β , shift τηα,β values as following: τηα,β(new)
=

τηα,β + τκi,j − τ
η
i,j + cij , where cij is the time or cost of crossing edge (i, j) after

fixing it.
3. Update Table 2 by removing all Bi,js and Bj,is and their corresponding time from

it and go back to Step 1.

Case 3: If zκij = 0 and zκji = 0: “Swap opener vehicle Case”
Determine vehicle ρ such that zρij + zρji = 1 meaning vehicle ρ is opening edge (i, j).
(For simplicity of notation let us assume vehicle ρ is opening edge (i, j) at time τρ.)
“Apply following changes:”

1. (Making changes in the walk of vehicle ρ) ∀τρα,β : τρ ≤ τρα,β , shift τ
ρ
α,β values as

following: τρα,β(new)
= τρα,β − τρ +max{τκi,j + cij , τρ − bij}.

2. (Making changes in the walk of vehicle κ) vehicle κ is now the opener of this blocked
edge. So ∀τκα,β : τκi,j ≤ τκα,β , shift τκα,β values as following : τκα,β(new) = τκα,β + bij .

3. If (i, j) or (j, i) is in the walk of vehicle η such that η 6= κ 6= ρ and τηi,j ≤ τκi,j
or τηj,i ≤ τκi,j for ∀τηα,β : τκi,j ≤ τηα,β , shift τ

η
α,β values as following: τηα,β(new)

=
τηα,β + τκi,j − τ

η
i,j + cij .

4. Update Table 2 by removing all Bi,js and Bj,is and their corresponding time from
it and go back to Step 1.

“No change” case: Since vehicle κ is opening edge (i, j) in its first visit there is no timing
conflict in this case.

“Backward opener” case: In this case, same vehicle opens edge (i, j) in the (j, i) direction
in its second pass over it. In the 2nd change of the “Backward opener” case we are considering
that vehicle η could finish his walk on edge (i, j) at any possible time and particularly τηi,j or
τηj,i, but now the earliest time it can finish its walk across edge (i, j) is τκi,j + cij .

“Swap opener vehicle” case: In this case, the vehicle κ is crossing edge (i, j) without
unblocking it, since in the solution of R-MIP, ρ is the opener vehicle of edge (i, j), i.e,
zρij + zρji = 1. Since ρ is opening this edge after vehicle κ crosses it, timing conflict happens.
For the shifting procedure we should consider vehicle κ, ρ and all other vehicles k, such that
xkij + xkji ≥ 1 separately.
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Table 3 Distance limit for graph generation.

Number of nodes 100 75 50 25
Distance 10 15 20 25

I Lemma 3 (Feasibility Algorithm). Given k walks through G = (V,A) ; wi,1 ⇒ wi,2 ⇒
wi,3 ⇒ . . . ⇒ wi,n(i) where i ∈ {1, 2, . . . , k}, and their corresponding time ; ti,1 ⇒ ti,2 ⇒
ti,3 ⇒ . . .⇒ ti,n(i), by applying feasibility algorithm, we can modify the non-feasible walks to
a feasible solution for K-ARCP.

Proof. The proof follows by the properties of the algorithm. We keep track of the walks like
a simulation system and assign required waiting times whenever it is necessary. With this
procedure we prevent timing conflicts among vehicles on blocked edges. J

6 Results

In order to test the performance of R-MIP and the feasibility algorithm, we generated two
types of data.

6.1 Randomly generated data set
We generated Euclidean random graphs with 25, 50, 75 and 100 nodes. First, we assigned
random coordinates in a 100 × 100 plane to every node. Costs (= cij) on edges are equal
to the Euclidean distances. The extra cost (= bij) on edge (i, j) is generated according to:
(bij = cij × U(10, 30)) where U(10, 30) is uniform distribution between 10 and 30. In each
case with different number of nodes, an edge (i, j) exists if distance between nodes i and
j is lower than the distance limits given in Table 3. But, as we know, one of our primary
assumptions is that our graph is connected in the beginning. In case the generated graph
is not connected, we add some random edges between disconnected components to make
it connected. Depots are also chosen randomly among all the nodes in the graph and we
assumed every node has the potential to be a depot. According to the problem definition
GB = (V,A/B) is a disconnected graph consisting of |Q| separated components. We also
impose |Q| ≥ K + 1 in our instances, to increase the possibility of assigning at least one
unblocking task to every vehicle. Edges are randomly added to the set B one by one. This
procedure stops when |Q| ≥ K + 1.

We had instances with 100, 75, 50 and 25 nodes. With 100 and 75 nodes, we tried 1,
2, 3 and 4 vehicles and for the cases with 50 and 25 nodes, we tried 1 and 2 vehicles. For
every case, we had 5 different instances. For example, we generated 5 instances with the 75
nodes and 2 vehicles, and so on. In order to check the capabilities of our model, we tested 5
instances with 4 vehicles and 1000 nodes positioned in an 10, 000× 10, 000 plane with edge
existence distance of 10 units.

As we see in Table 4, in almost 70% of the instances we derived the optimal solution of
K-ARCP by solving R-MIP. In the other cases we found good lower and upper bounds for
the optimal solution of K-ARCP. When the number of vehicles gets higher, the possibility
of occurrence of a timing conflict is higher and we get wider boundaries for our optimal
solution. In the case with one vehicle, we can always get the optimal solution of K-ARCP
with solving R-MIP, since timing conflict requires at least two vehicles.

In Table 4 and 5, the maximal optimality gap shows the maximum possible gap from
optimal solution to either of the lower bound or upper bound solutions.
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Table 4 Results with randomly generated data according to method 1.

Number of Number of Maximal Optimality Exact Optimal
Nodes Vehicles Gap Solution
1000 4 4.1% 4 out of 5

100

1 0% 5 out of 5
2 2.6% 4 out of 5
3 3.2% 3 out of 5
4 8.4% 2 out of 5

75
1 0% 5 out of 5
2 5.2% 2 out of 5
3 5.8% 2 out of 5
4 5.0% 2 out of 5

50 1 0% 4 out of 5
2 2.4% 5 out of 5

25 1 0% 5 out of 5
2 12.4% 5 out of 5

We should mention that all of these instances were tested on an Intel® Xeon® E5-
2643 0 CPU @ 3.3 GHz (two processors) with 32 GB of RAM device and except for the cases
with 1000 nodes, all instances were solved in less than 1 minute. However, for the cases with
1000 nodes, all the instances were solved in at most 13 minutes. More than 80% of these
run times were from solving R-MIP. Even with very large instances the feasibility algorithm
takes less than a minute.

6.2 Istanbul data set

We used the network of Istanbul city given in [3]. Istanbul’s network is modelled by 74 nodes
and 316 edges. The edges are categorized into 3 different groups due to their proximity to the
epicentre of the earthquake scenario: as high, medium and low risk edges. The probability
to lose an edge after an earthquake, from low risk class is 0.3, and this probability is equal
to 0.4 and 0.5 for medium and high risk edges, respectively. After each run we verified if
the number of disconnected components, |Q|, is higher than the number of vehicles, K, or
not. If |Q| ≥ K it means that our current number of vehicles is suitable for our problem,
otherwise, we are keeping too many vehicles for our network. In the latter case, we do not
solve the problem and we refer to them as NS in Table 5. In Table 5, exact optimal solution
for every instance shows if the optimal solution of R-MIP and K-ARC are equal to each
other or not. The fifth column in Table 5 gives the optimal objective value for every instance.
This optimal value is the length of the longest walk among all the vehicles in hours. For
Istanbul’s network, we tested cases with 1 up to 4 vehicles. In each case, we generated 5
random problems. The results showed that keeping more than 3 vehicles for the probabilities
assigned to different categories of edge risks is not logical, since all the 5 problems generated
for this case had less than 5 components. Meanwhile, the probabilities that we assigned to
losing edges after a disaster is quite pessimistic, which means 3 vehicles would be enough to
support Istanbul’s network in an expected earthquake.

For the case of 3 vehicles, in 2 out of 5 problems generated, we had 4 or more disconnected
components and with the case of 2 vehicles, in 4 out of 5, our network was separated to more
than 3 components. Table 5 shows all the results related to our instances. Table 5, shows
that we obtained the optimal solution to K-ARCP by solving R-MIP in almost 60% of the
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Figure 3 Categorization of Istanbul’s roads.

solved instances. As we see when the number of vehicles gets higher the timing conflict cases
gets more as we expected. All these instances were solved in less than 12 minutes. For the
cases with one vehicle these run times were less than a minute but as the number of vehicles
gets higher, it affects the run time accordingly.

7 Conclusion

We defined a new arc routing problem with the motivation of planning road clearance
operations after a disaster. In this problem, we optimize the routes of K vehicles that
traverse arcs and open a subset of blocked ones to reconnect the post disaster road network.
We find which edges to unblock and walks of k vehicles, such that the longest walk is
completed in minimum time. We call this problem min max K-arc routing for connectivity
problem(K-ARCP). We developed a heuristic approach that converts the solution of a relaxed
MIP model to a feasible solution.

In spite of the difficulty of K-ARCP, we could derive the optimal solution in more than
60% of the tested cases by our approach. In fact for the case of one vehicle, our mathematical
model solves K-ARCP exactly in all the instances. When the number of vehicles is small
(at most 4), and number of nodes is large (≥ 100), the possibility of timing conflicts gets
lower and results in better bounds for the optimal solution. On the other hand, when we
put too many vehicles in a network with modest number of nodes, we may not use all the
vehicles. In reality, there would be a very high cost associated with providing vehicles, since
these vehicles in our problem are teams of machinery with required personnel and equipment.
Therefore, fewer number of vehicles would be used for relatively smaller networks which will
lower the possibility of time conflicts in the relaxed model’s solution.

Exact methods to solve K-ARCP for small instances can be explored as future work.
Other objectives that aim to connect the network partially with a given time limit could also
be considered.
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Table 5 Results of Istanbul’s Network.

Number of Instance Maximal Optimality Exact Optimal Optimal Value of
Vehicles Number Gap Solution R-MIP (in hours)

1

1 0% Yes 11.72
2 0% Yes 6.99
3 0% Yes 10.26
4 0% Yes 12.15
5 0% Yes 5.47

2

1 0% Yes 5.83
2 NS – –
3 8% No 12.383
4 10% No 17.05
5 0% Yes 19.23

3

1 NS – –
2 22% No 5.39
3 NS – –
4 25% No 4.62
5 NS – -

4

1 NS – –
2 NS – –
3 NS – –
4 NS – –
5 NS – –
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