
Report from Dagstuhl Seminar 14211

The Future of Refactoring
Edited by
Danny Dig1, William G. Griswold2, Emerson Murphy-Hill3, and
Max Schäfer4

1 Oregon State University – Corvallis, US, digd@eecs.oregonstate.edu
2 University of California – San Diego, US, wgg@cs.ucsd.edu
3 North Carolina State University, US, emerson@csc.ncsu.edu
4 Semmle Ltd., Oxford, UK, max@semmle.com

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 14211 on “The Future
of Refactoring.” Over the past decade, refactoring has become firmly established as an essential
part of industrial software development. At the same time, academic interest in refactoring has
grown at a fast pace, resulting in a large body of literature on many different aspects of refactoring.
The aim of this seminar was to provide a forum for refactoring researchers and practitioners to
discuss what has been achieved, get to know each others’ work, and plan future collaboration.
This report presents abstracts of the participants’ talks and summaries of breakout sessions, and
introduces some joint projects that were started as a result of the seminar.

Seminar May 18–23, 2014 – http://www.dagstuhl.de/14211
1998 ACM Subject Classification D.2.7 Restructuring, reverse engineering, and reengineering
Keywords and phrases Refactoring
Digital Object Identifier 10.4230/DagRep.4.5.40

1 Executive Summary

Danny Dig
William G. Griswold
Emerson Murphy-Hill
and Max Schäfer

License Creative Commons BY 3.0 Unported license
© Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer

The Dagstuhl seminar on “The Future of Refactoring” brought together 41 researchers
and practitioners from academia and industry working on different aspects of refactoring.
Participants had the opportunity to introduce their own work both in short plenary talks and
more detailed presentations during breakout sessions, with daily keynote talks by eminent
refactoring researchers providing historical background. Given the rapid growth of the field
over the past decade, special emphasis was put on providing opportunities for researchers
with similar interests to meet and survey the state of the art, identify open problems and
research opportunities, and jointly chart the future of refactoring research.

We believe the seminar achieved its goal of providing a forum for in-depth discussion
of recent research in the area, and of fostering collaboration. In particular, it kickstarted
several collaborative projects, among them a book on refactoring tools, a special journal
issue on refactoring and a survey article on refactoring research over the last decade.

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

The Future of Refactoring, Dagstuhl Reports, Vol. 4, Issue 5, pp. 40–67
Editors: Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/14211
http://dx.doi.org/10.4230/DagRep.4.5.40
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 41

Research Context
Modern software is rarely written from scratch. Instead, it usually incorporates code from
previous systems, and is itself reincarnated in other programs. Modern software is also not
static. Instead, it constantly changes as bugs are fixed and features added, and usually these
changes are performed by more than one programmer, and not necessarily by the original
authors of the code.

Refactoring is a technique for supporting this highly dynamic software life cycle. At its
most basic, refactoring is the process of improving the internal structure of an existing piece
of code without altering its external behavior. It can be used for cleaning up legacy code,
for program understanding, and as a preparation for bug fixes or for adding new features.
While any behavior-preserving change to a program can be considered a refactoring, many
particularly useful and frequently recurring refactoring operations have been identified and
catalogued. Over the past decade, popular development environments have started providing
automated support for performing common refactorings, making the process of refactoring
less tedious and error-prone.

Based on the accumulated experience with refactorings both in practical applications
and in research, this seminar aimed to identify open problems and challenges and to foster
collaboration between researchers and between academia and industry to address these issues
and actively shape the future of refactoring.

Seminar Format
Given the large number of participants, the standard conference format with one in-depth talk
per participant would have been impractical. Instead, we decided to split up the schedule:
during the first three days, the mornings were allocated to plenary sessions. Each day
began with a keynote by a distinguished speaker with decades of experience with refactoring,
in which they presented their perspective on refactoring. The rest of the morning was
allocated to “lightning talks” where each participant was given a 7-minute presentation slot
for providing a quick, high-level overview of their work without getting bogged down in detail,
followed by a few minutes for questions. While this format was not easy for the speakers,
everyone rose to the challenge, and reactions from both presenters and audience were broadly
positive.

Monday afternoon was given over to four parallel breakout sessions organized along
thematic lines: novel domains for refactoring, user experience in refactoring, refactoring
tools and meta-tools, and refactoring in education. While participants appreciated the
opportunity for more in-depth presentations and discussion, this format had the unfortunate
but inevitable drawback that several talks were held in parallel, and not everyone was able
to attend all the talks they were interested in.

Tuesday afternoon had an industry panel, followed by another round of breakout sessions.
Discussion and exchange continued in an informal setting during Wednesday afternoon’s
excursion to Mettlach.

On Thursday morning, we had another keynote followed by a final round of breakout
sessions. While the focus of the breakout sessions on Monday and Tuesday had been on
surveying recent work and getting an overview of the state of the art, Thursday’s sessions
were aimed at gathering together the threads, and identifying common themes, open problems
and research opportunities.

The outcome of these group discussions were then briefly presented in a plenary on
Thursday afternoon, and opportunities for collaborative projects were identified. Specifically,

14211

42 14211 – The Future of Refactoring

the following projects were discussed and planned in group discussions on Thursday afternoon:
a book on refactoring tools;
a special issue of IEEE Software on refactoring;
a survey paper on refactoring research in the last decade;
an informal working group on the place of refactoring in the Computer Science curriculum.

Friday morning saw a final plenary discussion, summarizing the project discussions of
Thursday afternoon and ending with a retrospective session on which aspects of the seminar
are worth keeping for the future, what needs to change, and what still puzzles us.

We hired George Platts, a professional artist, to facilitate games he designed and tangential
thinking activities to help the participants develop a sense of scientific community. During
each of the five days of the Seminar, George ran 30-minute games sessions at the beginning
of the day which doubled as times for announcements to be given and daily reports to be
delivered. In the early afternoon, we had a 30-minute game session to energize participants
for the afternoon’s workshops. For the rest of the time in his ’studio’, he has been playing
music, showing short films, facilitating drawing and painting activities, composing sound
composition for all participants to perform.

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 43

2 Table of Contents

Executive Summary
Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 40

Perspective Talks
The Birth of Refactoring – A Personal Perspective
William G. Griswold . 46

Concerns in Refactoring
Bill Opdyke . 46

Two Decades of Refactoring Tools
Don Roberts . 46

Refactoring using Type Constraints
Frank Tip . 47

Lightning Talks
Teaching Refactoring
Andrew P. Black . 47

Retrofitting Parallelism through Refactoring
Danny Dig . 47

Refactoring for Usability of Web Applications
Alejandra Garrido . 48

Automated Behavioral Testing of Refactoring Engines
Rohit Gheyi . 49

Refactoring Refactoring History
Shinpei Hayashi . 49

Refactoring Spreadsheets
Felienne Hermans . 50

Awareness of Refactoring Tools
Emerson Murphy-Hill . 50

Agile Software Assessment
Oscar M. Nierstrasz . 50

Wrangler – Writing Refactorings Made Easy
Huiqing Li . 51

Proof Improving Refactoring
Francesco Logozzo . 51

Usage Contracts
Kim Mens . 52

Domain-Specific Model Refactoring
Tom Mens . 52

Detection and Correction of Anti-Patterns
Naouel Moha . 53

14211

44 14211 – The Future of Refactoring

Can we Mine and Reapply Refactoring Strategies?
Francisco Javier Perez Garcia . 53

Refactoring with Synthesis
Veselin Raychev . 53

Identifying Overly Strong Conditions in Refactoring Implementations
Gustavo Soares . 54

The History of C++ Refactoring (for Eclipse CDT)
Peter Sommerlad . 54

A Brief History of Eclipse-based Refactorings by HSR
Peter Sommerlad . 55

Extract+Move=Bug
Volker Stolz . 55

Why Should I Trust Your Refactoring Tool?
Simon J. Thompson . 56

To the Cloud and Back: Automated Inter-Address Space Component Migration to
Support Software Evolution
Eli Tilevich . 56

Automated Decomposition of Software Modules
Mohsen Vakilian . 57

Complexity of Maintenance – Refactoring for the Reproducible Evaluation of Design
Choices
Jurgen Vinju . 57

Demonstrations
IDEs are Ecosystems
Andrew P. Black . 58

Tools for Retrofitting Parallelism
Danny Dig . 58

Tools for Refactoring of Web Applications
Alejandra Garrido . 59

WitchDoctor: IDE Support for Real-Time Auto-Completion of Refactorings
William G. Griswold . 59

REdiffs: Refactoring-aware Difference Viewer for Java
Shinpei Hayashi . 60

Refactoring via Pretty-Printing
Jongwook Kim . 60

Interactive Quick Fix
Emerson Murphy-Hill . 61

Cloud Refactoring
Eli Tilevich . 61

A Universal Type Qualifier Inference System
Mohsen Vakilian . 61

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 45

Rascal for Experimenting with New Intermediate Formats for Source Code Analysis
Jurgen Vinju . 62

How Can We Do Better than Search and Replace?
Jan Wloka . 62

Working Groups
User Experience Breakout: Dimensions of Refactoring
Emerson Murphy-Hill . 63

User Experience Breakout: The Future of Refactoring
Emerson Murphy-Hill . 63

Plenary Discussion on Refactoring in Education, Corpora and Benchmarks
Simon J. Thompson . 63

Novel Applications of Refactoring Breakout
Bill Opdyke . 63

Refactoring Tools and Meta-Tools
Max Schaefer . 65

Industry Roundtable . 66

Participants . 67

14211

46 14211 – The Future of Refactoring

3 Perspective Talks

3.1 The Birth of Refactoring – A Personal Perspective
William G. Griswold (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© William G. Griswold

Joint work of Griswold, William G.; Notkin, David; Bowdidge, Robert W.

Software Refactoring was invented in the late 1980’s at two institutions – the University of
Illinois by Bill Opdyke and Ralph Johnson, and the University of Washington by myself and
David Notkin. In this talk I revisit the surprising events at the birth of refactoring – what
we called meaning-preserving restructuring – at the University of Washington. I’ll talk about
how the ideas came about, and the research agenda and results that emerged. In the course
of the presentation, I’ll highlight several lessons for researchers seeking high impact in their
work.

3.2 Concerns in Refactoring
Bill Opdyke (JP Morgan Chase – Chicago, US)

License Creative Commons BY 3.0 Unported license
© Bill Opdyke

What are the four key reasons why software developers might be reluctant to refactor their
code even if they think refactoring is, at least in the abstract, a good idea? How might one
effectively address those concerns? These four concerns, and the means for addressing them,
have applicability far beyond refactoring. In this talk, I discussed these lessons learned in a
refactoring context and how they subsequently helped me as an architect and in other roles.

3.3 Two Decades of Refactoring Tools
Don Roberts (University of Evansville, US)

License Creative Commons BY 3.0 Unported license
© Don Roberts

Joint work of Brant, John; Roberts, Don

We released the first industrial refactoring tool for Smalltalk 20 years ago this month. In
this talk, we will present the history of the Refactoring Browser along with the other tools
that we have developed to solve rewriting problems. The tools have been used to replace a
database layer in a commercial application. We have also developed a process that, along
with our rewriting tool, allows us to migrate existing systems between languages while not
sacrificing development time. We will also present what we’ve learned about how end-users
interact with refactoring tools.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 47

3.4 Refactoring using Type Constraints
Frank Tip (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Frank Tip

Joint work of Tip, Frank; Fuhrer, Robert; Kieżun, Adam; Ernst, Michael; Balaban, Ittai; De Sutter, Bjorn

Type constraints express subtype relationships between the types of program expressions,
for example, those relationships that are required for type correctness. Type constraints
were originally proposed as a convenient framework for solving type checking and type
inference problems. This work shows how type constraints can be used as the basis for
practical refactoring tools. In our approach, a set of type constraints is derived from a type-
correct program P. The main insight behind our work is the fact that P constitutes just one
solution to this constraint system, and that alternative solutions may exist that correspond
to refactored versions of P. We show how a number of refactorings for manipulating types
and class hierarchies can be expressed naturally using type constraints. Several refactorings
in the standard distribution of Eclipse are based on our work.

4 Lightning Talks

4.1 Teaching Refactoring
Andrew P. Black (Portland State University, US)

License Creative Commons BY 3.0 Unported license
© Andrew P. Black

Joint work of Black, Andrew P.; Noble, James; Bruce, Kim B.
Main reference A.P. Black, K.B. Bruce, Michael Homer, J. Noble, “Grace: the absence of (inessential) difficulty,”

in Proc. of the 2012 ACM Int’l Symp. on New Ideas, New Paradigms, and Reflections on
Programming and Software (Onward!’12), pp. 85–98, ACM, 2012.

URL http://dx.doi.org/10.1145/2384592.2384601

I’m engaged in designing Grace, a new programming language for teaching object-oriented
programming. We hope that Grace will be used for teaching object-oriented concepts, testing,
debugging, design, and refactoring. Our motivation is to have a language with low ‘accidental’
complexity, so that students can focus on the essential complexity of the task.

I have questions, not answers. How should one introduce refactoring to novices? If
we teach ‘red—green—refactor’, what are the important refactorings? What about the
refactorings that are no-ops in our language, such as abstract instance variable? Should
refactoring be taught early, or late? I would like to discuss these questions with the group.

4.2 Retrofitting Parallelism through Refactoring
Danny Dig (Oregon State University, US)

License Creative Commons BY 3.0 Unported license
© Danny Dig

Main reference D. Dig, “A Refactoring Approach to Parallelism,” IEEE Software 28(1):12–22, 2011.
URL http://dx.doi.org/10.1109/MS.2011.1

In the multicore era, programmers have to work harder to introduce parallelism for perform-
ance or to enable new applications and services not possible before. In this talk I present

14211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2384592.2384601
http://dx.doi.org/10.1145/2384592.2384601
http://dx.doi.org/10.1145/2384592.2384601
http://dx.doi.org/10.1145/2384592.2384601
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/MS.2011.1
http://dx.doi.org/10.1109/MS.2011.1

48 14211 – The Future of Refactoring

our ever-growing toolset of interactive refactorings for adding parallelism into sequential
programs. This toolset is grounded on empirical studies that shed light into the practice of
using, misusing, underusing, or abusing parallel libraries. Our refactoring toolset supports
refactorings from three domains: adding thread-safety, improving throughput, and scalability.
Empirical evaluation shows that our toolset is useful: (i) it dramatically reduces the burden
of analyzing and changing code, (ii) it is fast so it can be used interactively, (iii) it correctly
applies transformations that open-source developers applied incompletely, and (iv) users
prefer the improved quality of the changed code. I muse on lessons that can be learned as
we move onto automated refactoring for mobile apps.

4.3 Refactoring for Usability of Web Applications
Alejandra Garrido (University of La Plata, AR)

License Creative Commons BY 3.0 Unported license
© Alejandra Garrido

Joint work of Garrido, Alejandra; Rossi, Gustavo

Refactoring represents an essential activity in today’s software lifecycle and a powerful
technique against software decay. Software decay, however, is not only about code becoming
legacy, but it is also about systems becoming less usable compared to competitor solutions.
We propose refactoring to progressively and systematically improve the external quality of an
existing web application, like usability and accessibility. The transformations can be applied
at the model level (the navigation, presentation or process model) or at the implementation
level. We created a framework where refactorings can also be applied at the client-side, as
DOM changes, which allows for personalization. We are now working on the automatic
detection of bad usability smells from user interaction logs.

References
1 Alejandra Garrido, Gustavo Rossi, Damiano Distante. Refactoring For Usability In Web

Applications. IEEE Software 28(3):60–67. 2011.
2 Alejandra Garrido; Sergio Firmenich; Gustavo Rossi; Julian Grigera; Nuria Medina Medina;

Ivana Harari. Personalized Web Accessibility using Client-Side Refactoring. IEEE Internet
Computing 17(4):58–66. 2013.

3 Alejandra Garrido; Gustavo Rossi; Nuria Medina Medina; Julian Grigera; Sergio Firmenich.
Improving Accessibility of Web Interfaces: Refactoring to the Rescue. Universal Access in
the Information Society 13(4). Springer. 2014.

4 Julian Grigera, Alejandra Garrido and Jose Matias Rivero. A Tool for Detecting Bad Us-
ability Smells in an Automatic Way. Int. Conf. On Web Engineering (ICWE 2014). Demo
and poster track. Toulouse, France. July, 2014.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 49

4.4 Automated Behavioral Testing of Refactoring Engines
Rohit Gheyi (Universidade Federal – Campina Grande, BR)

License Creative Commons BY 3.0 Unported license
© Rohit Gheyi

Joint work of Soares, Gustavo; Gheyi, Rohit; Massoni, Tiago
Main reference G. Soares, R. Gheyi, T. Massoni, “Automated behavioral testing of refactoring engines,” IEEE

Transactions on Software Engineering, 39(2):147–162, 2013.
URL http://dx.doi.org/10.1109/TSE.2012.19

Proving refactoring sound with respect to a formal semantics is considered a challenge. In
practice, developers write test cases to check their refactoring implementations. However, it
is difficult and time consuming to have a good test suite since it requires complex inputs
(programs) and an oracle to check whether it is possible to apply the transformation. In
this talk, I discuss the challenges of automated testing of refactoring engines. Moreover, I
present our current technique that detected more than 200 bugs related to compilation errors,
behavioral changes and overly strong conditions in the best refactoring engines (Eclipse,
NetBeans and JRRT) [1].

References
1 G. Soares, R. Gheyi, T. Massoni, Automated behavioral testing of refactoring engines,

IEEE Transactions on Software Engineering 39 (2) (2013) 147–162.
2 G. Soares, R. Gheyi, D. Serey, T. Massoni, Making program refactoring safer, IEEE Soft-

ware 27 (2010) 52–57.
3 G. Soares, M. Mongiovi, R. Gheyi, Identifying overly strong conditions in refactoring im-

plementations, in: Proceedings of the 27th IEEE International Conference on Software
Maintenance, ICSM ’11, Washington, USA, 2011, pp. 173–182.

4 G. Soares, R. Gheyi, E. Murphy-Hill, B. Johnson, Comparing approaches to analyze re-
factoring activity on software repositories, Journal of Systems and Software 86 (4) (2013)
1006–1022.

5 M. Mongiovi, R. Gheyi, G. Soares, L. Teixeira, and P. Borba, Making refactoring safer
through impact analysis ,Science of Computer Programming, 2014, to appear.

4.5 Refactoring Refactoring History
Shinpei Hayashi (Tokyo Institute of Technology, JP)

License Creative Commons BY 3.0 Unported license
© Shinpei Hayashi

Joint work of Hayashi, Shinpei; Omori, Takayuki; Zenmyo, Teruyoshi; Maruyama, Katsuhisa; Saeki, Motoshi
Main reference S. Hayashi, T. Omori, T. Zenmyo, K. Maruyama, M. Saeki, “Refactoring Edit History of Source

Code,” in Proc. of the 28th IEEE Int’l Conf. on Software Maintenance (ICSM’12), pp. 617–620,
IEEE, 2012.

URL http://dx.doi.org/10.1109/ICSM.2012.6405336

In this talk, we present a concept for refactoring an edit history of source code in a refactoring
process and a technique for its automation. The aim of our history refactoring is to improve
the clarity and usefulness of the history without changing its overall effect. We have
defined primitive history refactorings including their preconditions and procedures, and large
refactorings composed of these primitives. Our tool enables developers to pursue some useful
applications using history refactorings such as task level commit from an entangled edit
history in an floss refactoring process, and support for reviewing the difference obtained from
tangled edits.

14211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/TSE.2012.19
http://dx.doi.org/10.1109/TSE.2012.19
http://dx.doi.org/10.1109/TSE.2012.19
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICSM.2012.6405336
http://dx.doi.org/10.1109/ICSM.2012.6405336
http://dx.doi.org/10.1109/ICSM.2012.6405336
http://dx.doi.org/10.1109/ICSM.2012.6405336

50 14211 – The Future of Refactoring

4.6 Refactoring Spreadsheets
Felienne Hermans (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
© Felienne Hermans

Joint work of Hermans, Felienne; Dig, Danny
URL http://www.felienne.com/BumbleBee

Spreadsheets are code! They are just as complex, used for similar purposes and suffer from
similar problems like a long life span and lack of documentation. Therefore, we can apply
methods from software engineering to spreadsheets to address those problems.

For refactoring, we propose a tool called BumbleBee that can refactor spreadsheet formulas,
which the user can define themselves in a little language.

4.7 Awareness of Refactoring Tools
Emerson Murphy-Hill (North Carolina State University, US)

License Creative Commons BY 3.0 Unported license
© Emerson Murphy-Hill

Main reference E.R. Murphy-Hill, “Continuous Social Screencasting to Facilitate Software Tool Discovery,” in
Proc. of the 34th Int’l Conf. on Software Engineering (ICSE’12), pp. 1317–1320, IEEE, 2012;
pre-print available from author’s webpage.

URL http://dx.doi.org/10.1109/ICSE.2012.6227090
URL http://people.engr.ncsu.edu/ermurph3/papers/icseNIER12.pdf

One of the main challenges developers face when using refactoring tools is not even knowing
that the refactoring tools are there. This lack of awareness is a problem because programmers,
without tools, are otherwise refactoring manually, which is both slow and error-prone. In
this talk, I discuss the causes of lack of awareness among programmers, existing solutions,
and some open questions.

4.8 Agile Software Assessment
Oscar M. Nierstrasz (Universität Bern, CH)

License Creative Commons BY 3.0 Unported license
© Oscar M. Nierstrasz

Modern IDEs are largely code-centric, and do not support developers well in understanding
the software systems they need to develop, maintain and refactor. We believe that developers
need a flexible environment of “meta-tools” that can be easily adapted to the project at hand,
to query, browse, debug and monitor software systems and the ecosystems they belong to.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.felienne.com/BumbleBee
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICSE.2012.6227090
http://dx.doi.org/10.1109/ICSE.2012.6227090
http://dx.doi.org/10.1109/ICSE.2012.6227090
http://dx.doi.org/10.1109/ICSE.2012.6227090
http://people.engr.ncsu.edu/ermurph3/papers/icseNIER12.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 51

4.9 Wrangler – Writing Refactorings Made Easy
Huiqing Li (University of Kent, GB)

License Creative Commons BY 3.0 Unported license
© Huiqing Li

Joint work of Li, Huiqing; Thompson, Simon
Main reference S. J. Thompson, “Refactoring tools for functional languages,” Journal of Functional Programming,

23(3):293–350, 2013.
URL http://dx.doi.org/10.1017/S0956796813000117
URL https://github.com/RefactoringTools/wrangler

This talk and demo shows a framework built into Wrangler – a refactoring and code inspection
tool for Erlang programs – that allows users to define for themselves refactorings that suit
their needs. With this framework, elementary refactorings are defined using a template- and
rule-based program transformation and analysis API; composite refactorings are scripted using
a high-level domain-specific language(DSL). User-defined refactorings, both elementary and
composite, are fully integrated into Wrangler and so can be previewed, applied interactively
and ‘undone’.

4.10 Proof Improving Refactoring
Francesco Logozzo (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Francesco Logozzo

Main reference P. Cousot, R. Cousot, F. Logozzo, M. Barnett, “An abstract interpretation framework for
refactoring with application to extract methods with contracts,” in Proc. of the 27th Annual ACM
SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’12), pp. 213-232, ACM, 2012.

URL http://dx.doi.org/10.1145/2384616.2384633
URL http://research.microsoft.com/apps/pubs/default.aspx?id=170382

Traditional refactoring modifies the program source while preserving the concrete semantics
of the program. Proof-improving refactoring, on the other hand, aims at preserving or
improving the proof of correctness of a program, i.e., its abstract semantics. In the talk I
presented three examples of proof-improving refactoring. The first one is useful to make
code-bases ready for automatic program verification. Starting from an un-annotated code
base, we automatically insert CodeContracts (preconditions, postconditions, and object
invariants). The inferred contracts are sound, in that no good execution is removed, only bad
ones. The injected contracts enable a modular correctness proof of the program The second
example are automated code repairs. Starting from the alarms of a sound static analyzer,
we propose a set of program transformations to fix bug in the programs and/or to let its
correctness proof succeed. Finally, the last example is an abstract interpretation framework
for refactoring. We instantiate it to a new refactoring: extract method with contracts. In
addition to extracting the method, we endow it con preconditions and postconditions which
satisfy some constraints, namely to be a valid, general, and complete. The extract method
with contracts guarantee that the proof of correctness of the program proceeds even when
the refactoring is applied.

14211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1017/S0956796813000117
http://dx.doi.org/10.1017/S0956796813000117
http://dx.doi.org/10.1017/S0956796813000117
https://github.com/RefactoringTools/wrangler
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2384616.2384633
http://dx.doi.org/10.1145/2384616.2384633
http://dx.doi.org/10.1145/2384616.2384633
http://dx.doi.org/10.1145/2384616.2384633
http://dx.doi.org/10.1145/2384616.2384633
http://research.microsoft.com/apps/pubs/default.aspx?id=170382

52 14211 – The Future of Refactoring

4.11 Usage Contracts
Kim Mens (UCL, Belgium)

License Creative Commons BY 3.0 Unported license
© Kim Mens

Joint work of K. Mens, A. Lozano and A. Kellens

Developers often encode design knowledge through structural regularities such as API usage
protocols, coding idioms and naming conventions. As these regularities express how the source
code should be structured, they provide vital information for developers (re)using that code.
Adherence to such regularities tends to deteriorate over time when they are not documented
and checked explicitly. Our uContracts tool and approach allows to codify and verify such
regularities as ‘usage contracts’. The contracts are expressed in an internal domain-specific
language that is close to the host programming language, the tool is tightly integrated with
the development environment and provides immediate feedback during development when
contracts get breached, but the tool is not coercive and allows the developer to decide if, when
and how to correct the broken contracts (the tool just highlights the errors and warnings
in the integrated development environment). In spirit, the approach is very akin to unit
testing, except that we do not test behaviour, but rather verify program structure. The tool,
of which some screenshots can be found below, was prototyped in the Pharo dialect of the
Smalltalk programming language.

4.12 Domain-Specific Model Refactoring
Tom Mens (University of Mons, Belgium)

License Creative Commons BY 3.0 Unported license
© Tom Mens

Model-driven software engineering is becoming an established discipline. In this presentation
we present the challenge of providing generic support for domain-specific model refactoring.
While refactoring tools and technology are well established for programming languages,
it is much less the case for (software) modeling languages. For domain-specific modeling
languages (DSMLs), there is even no or very little refactoring support. In this presentation,
we provide a case study in which we are developing a domain-specific modelling language
(DSML) for developing executable models of applications that use gestural interactions (hand
movements) to control virtual objects in a 3D environment. We explain the need for refactoring
such models, and the need for dealing with different notions of “behaviour preservation”.
We illustrate how one can provide generic support for domain-specific models, using the
AtomPM transformation tool (https://www.youtube.com/watch?v=iBbdpmpwn6M, http:
//syriani.cs.ua.edu/atompm/atompm.htm), that combines graph transformation technology
with the use of a concrete visual model syntax. Preservation of desirable model properties
can be verified using the most appropriate formalism (e.g. model checkers for verifying
temporal properties; OCL checkers for verifying structural properties; or any other tool that
may be more appropriate for expressing and verifying the property of interest).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www.youtube.com/watch?v=iBbdpmpwn6M
http://syriani.cs.ua.edu/atompm/atompm.htm
http://syriani.cs.ua.edu/atompm/atompm.htm

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 53

4.13 Detection and Correction of Anti-Patterns
Naouel Moha

License Creative Commons BY 3.0 Unported license
© Naouel Moha

Anti-patterns are design problems that come from “poor” recurring design choices. They may
hinder development and maintenance of systems by making them hard for software engineers
to change and evolve. A semi-automatic detection and correction are thus key factors to
ease the maintenance and evolution stages. Several techniques and tools have been proposed
in the literature both for the detection and correction of anti-patterns in object-oriented
systems. However, works in service-based systems are still in their infancy despite their
importance. In this seminar, I presented a novel and innovative approach supported by a
framework for detecting antipatterns in service-based systems. For the correction, we are
still investigating some techniques for correcting service-based antipatterns.

4.14 Can we Mine and Reapply Refactoring Strategies?
Francisco Javier Perez Garcia

License Creative Commons BY 3.0 Unported license
© Francisco Javier Perez Garcia

I believe reuse is the single most beneficial strategy in software engineering and it can
be fostered by harnessing today’s wide available data and extensive collaborative software
development environment. In this context, I want to propose a challenge. Can we mine and
reuse successful complex refactoring strategies? In the past I have developed a technique to
compute refactoring plans – complex refactoring sequences – from refactoring strategies for
correcting bad smells, using automated planning. The future challenge I present involves
studying: how to analyse software projects’ history to identify refactoring patterns that
were successful in the past for removing bad smells; and how to collect and represent these
strategies so they can be automatically re-applied in other projects.

4.15 Refactoring with Synthesis
Veselin Raychev (ETH Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Veselin Raychev

Joint work of Raychev, Veselin; Schäfer, Max; Sridharan, Manu; Vechev, Martin
Main reference V. Raychev, M. Schäfer, M. Sridharan, M. Vechev, “Refactoring with synthesis,” in Proc. of the

28th Annual ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’13), pp. 339–354, ACM, 2013.

URL http://dx.doi.org/10.1145/2509136.2509544

Modern IDEs provide a fixed set of supported refactorings listed in a menu, which limits the
possible use cases and additionally leads to poor discoverability of the available refactoring
tools. In this talk, I show a new approach “Refactoring with Synthesis”, where the user
demonstrates an edit on a piece of code and then a refactoring engine synthesizes a sequence
of existing refactorings that perform the task demonstrated by the user task on the entire
project.

14211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2509136.2509544
http://dx.doi.org/10.1145/2509136.2509544
http://dx.doi.org/10.1145/2509136.2509544
http://dx.doi.org/10.1145/2509136.2509544

54 14211 – The Future of Refactoring

I present an Eclipse plug-in that operates as “Refactoring without Names”: the pro-
grammer first indicates the start of a code refactoring phase; then she performs some of the
desired code changes manually; and finally, she asks the tool to complete the refactoring.
Our system completes the refactoring by first extracting the difference between the starting
program and the modified version, and then synthesizing a sequence of refactorings that
achieves (at least) the desired changes.

I show how our approach extends the capabilities of current refactorings: with only minimal
user input, the synthesizer was able to quickly discover complex refactoring sequences for
several challenging realistic examples. Then, I discuss the concept of local refactorings that
we introduce, and how it helps synthesize sequences in an extensible and scalable way.

4.16 Identifying Overly Strong Conditions in Refactoring
Implementations

Gustavo Soares (Universidade Federal – Campina Grande, BR)

License Creative Commons BY 3.0 Unported license
© Gustavo Soares

Joint work of Soares, Gustavo; Mongiovi, Melina; Gheyi, Rohit
Main reference G. Soares, M. Mongiovi, R. Gheyi, “Identifying overly strong conditions in refactoring

implementations,”’ in Proc. of the 27th Int’l Conf. on Software Maintenance (ICSM’11),
pp. 173–182, IEEE, 2011.

URL http://dx.doi.org/10.1109/ICSM.2011.6080784

Each refactoring implementation must check a number of conditions to guarantee behavior
preservation. However, specifying and checking them are difficult. Sometimes refactoring
tool developers may define overly strong conditions that prevent useful behavior-preserving
transformations to be performed. We propose an approach for identifying overly strong
conditions in refactoring implementations. We automatically generate a number of programs
as test inputs for refactoring implementations. Then, we apply the same refactoring to each
test input using two different implementations, and compare both results. We use Safe
Refactor to evaluate whether a transformation preserves behavior. We evaluated our approach
in 10 kinds of refactorings for Java implemented by three tools: Eclipse and Netbeans, and
the JastAdd Refactoring Tool (JRRT). In a sample of 42,774 transformations, we identified
17 and 7 kinds of overly strong conditions in Eclipse and JRRT, respectively.

4.17 The History of C++ Refactoring (for Eclipse CDT)
Peter Sommerlad (Hochschule fur Technik – Rapperswil, Switzerland)

In this talk I present the history of refactoring support within Eclipse-based IDEs. While
C++ was the first language addressed by Bill Opdyke that coined the term Refactoring, it
was a long way to get working Refactoring support within an IDE. IFS Instiute for Software
contributed over almost a decade now to Eclipse and provided infrastructure and plug-ins
for better refactoring and code transformation support of C++ code.

The presentation gives a historical overview and shows some of the challenges that need
to be addressed when building a refactoring plug-in for C++ in Eclipse CDT. For example,
testing refactorings can be tough when formatting details make test cases indadvertedly
fail, or when interaction with a wizard makes using a refactoring unbearable. For the

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICSM.2011.6080784
http://dx.doi.org/10.1109/ICSM.2011.6080784
http://dx.doi.org/10.1109/ICSM.2011.6080784
http://dx.doi.org/10.1109/ICSM.2011.6080784

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 55

latter, instead of a “Change Function Signature” refactoring with usability problems, the
author invented “Toggle Function Definition” quick-refactoring that eases the manual burden
of changing a function signature in C++. Another example is interactive guidance for
modernizing C++ code to conform to new standard versions or ridding it from bad practices
like macros implemented through the refactoring engine.

The talk concludes with an overview of the lessons learned over the many years, such as
“automate refactoring tests”.

4.18 A Brief History of Eclipse-based Refactorings by HSR
Peter Sommerlad (Hochschule fur Technik – Rapperswil, Switzerland)

This Lightning Talk gives an overview of the many attempts to create Refactoring plug-ins
for Eclipse-based IDEs by IFS Institute for Software students for many different languages,
some succeeded and some failed.

The failures happened because of technology, student quality but also for political reasons.
The only languages for which we can sustain supporting the refactoring tooling today are
C++ and Scala. Our first attempt at Ruby refactoring succeeded technology wise, but failed
in the end for political reasons, as well as PHP refactoring which was overtaken by Zend
Studio. Parts of our Python refactorings still seem to live within PyDev. With our Groovy
Refactoring we were among the first to provide cross-language rename refactoring, but due
to lack of financing and personnel we abandoned supporting it. Javascript Refactoring failed
for all of the above reasons and because to make it useful it must support the conventions of
the JS framework du jour.

One of the lessons learned that even with very good student project results, it still requires
work to productize a new refactoring plug-in. When that happens and it gets integrated into
“the official IDE” like it happened with the Scala-IDE, then results will be used.

4.19 Extract+Move=Bug
Volker Stolz (University of Oslo, NO)

License Creative Commons BY 3.0 Unported license
© Volker Stolz

Extracting a chunk of code and moving it to a more suitable class to reduce coupling may
change the behaviour of the code. A possible solution (apart from reasoning on the code)
is to add assertions specific to the extract&move refactoring which track the information
necessary to decide (at runtime) whether the behaviour has changed with respect to the old
code. We use a search-based, heuristic approach to identify candidates for the refactoring,
and evaluate it on the Eclipse JDT UI-project. Existing unit tests provide the necessary
coverage.

14211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

56 14211 – The Future of Refactoring

4.20 Why Should I Trust Your Refactoring Tool?
Simon J. Thompson (University of Kent, GB)

License Creative Commons BY 3.0 Unported license
© Simon J. Thompson

Joint work of Thompson, Simon J.; Li, Huiqing; Sultana, Nikolai.

A common question for refactoring tool builders is one of trust. While there are many social,
organisational and psychological aspects to this, there are two technical aspects too.

The first is of strength of the assurance: do we test, or do we try to prove correctness in
some sense? Secondly, do we aim to verify the results if a single refactoring, or the refactoring
itself: that is, verifying it for all possible invocations.

Work has been done by us and others on this, and I survey that and conclude with two
suggestions: full verifying a refactoring tool for a formally-verified language, CakeML; and
using SMT solving automatically to verify the results of refactorings – initially for Haskell.

4.21 To the Cloud and Back: Automated Inter-Address Space
Component Migration to Support Software Evolution

Eli Tilevich (Virginia Polytechnic Institute – Blacksburg, US)

License Creative Commons BY 3.0 Unported license
© Eli Tilevich

Joint work of Kwon, Young-Woo; Tilevich, Eli
Main reference Y.-W. Kwon, E. Tilevich, “Cloud refactoring: automated transitioning to cloud-based services,”

Automated Software Engineering, 21(3):345–372, 2014.
URL http://dx.doi.org/10.1007/s10515-013-0136-9

The modern computing landscape is increasingly mobile and distributed, characterized by
rapidly evolving hardware platforms and network technologies. As a particular example,
mobile software designed yesterday will have to run on mobile hardware to be designed
tomorrow. Adapting modern software applications for changing execution environments,
hardware setups, and user requirements often requires moving software components across
address spaces. To facilitate these non-trivial program transformations, this lightning talk
introduces two refactoring techniques: Cloud Refactoring and Component Insourcing. Cloud
Refactoring renders a portion of an application’s functionality remotely accessible as a Web
service, including migrating to the cloud the functionality to be accessed as remote cloud-
based services, re-targeting the client code accordingly, and handling the faults raised while
invoking the services. Component Insourcing moves a remotely accessed component into its
client’s address space, replacing accesses through a middleware interface with those through
local method calls. This talk highlights how these refactoring techniques can facilitate the
process of evolving modern software and outlines some of their implementation challenges.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10515-013-0136-9
http://dx.doi.org/10.1007/s10515-013-0136-9
http://dx.doi.org/10.1007/s10515-013-0136-9

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 57

4.22 Automated Decomposition of Software Modules
Mohsen Vakilian (University of Illinois – Urbana, US)

License Creative Commons BY 3.0 Unported license
© Mohsen Vakilian

Joint work of Vakilian, Mohsen; Sauciuc, Raluca; Morgenthaler, J. David; Mirrokni, Vahab
Main reference M. Vakilian, R. Sauciuc, J.D. Morgenthaler, V. Mirrokni, “Automated Decomposition of Build

Targets,” Technical Report, 2014.
URL http://hdl.handle.net/2142/47551

Large software is often organized as a set of interdependent modules. As the software
evolves, the cost of managing the dependencies between the modules tends to grow. A
common dependency problem is underutilized modules. An underutilized module is one
whose dependents need only a small part of it. Underutilized modules increase the cost of
building, testing, and deploying software. Thus, programmers often manually decompose
modules. However, decomposing underutilized targets manually is tedious. We propose a
greedy algorithm that proposes effective module decompositions by analyzing both intra-
module and inter-module dependencies. We implemented the algorithm and evaluated it
at Google. The results show that the algorithm is efficient and the decompositions that it
proposes significantly reduce the cost of testing.

4.23 Complexity of Maintenance – Refactoring for the Reproducible
Evaluation of Design Choices

Jurgen Vinju (CWI – Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Jurgen Vinju

Joint work of Hills, Mark; Klint, Paul; Vinju, Jurgen
Main reference M. Hills, P. Klint, J. J. Vinju, “A case of visitor versus interpreter pattern,” in Proc. of the 49th

Int’l Conf. on Objects, Models, Components and Patterns (TOOLS’11), LNCS, Vol. 6705,
pp. 228–243, Springer, 2011; pre-print available from author’s webpage.

URL http://dx.doi.org/10.1007/978-3-642-21952-8_17
URL http://homepages.cwi.nl/~jurgenv/papers/TOOLS2011.pdf

This lightning talk had two messages. The first is the existence of Rascal, a meta programming
language designed to cover the requirements for both source code analysis and transformation.
Refactoring requires them both. Rascal emphasizes programming over specification, is based
on powerful pattern matching and substitution primitives and relational calculus.

The second message was that refactoring tools can also be used to research trade- offs in
design choices. We report on the creation of an ad-hoc refactoring from the Visitor design
pattern to the Interpreter design pattern [1]. Using this refactoring we could create two
versions of a complex system which differ only in this single design choice: isolating it from
all other factors on code quality. We then experimented by executing maintenance scenarios
on both systems and measuring the complexity of analyzing and transforming the source
code manually. The manual tasks were recorded as “meta-programs” as well. We found out
that Visitor is better, surprisingly, even in cases where in theory Interpreter should be better.

References
1 Mark Hills, Paul Klint, and Jurgen J. Vinju. A case of visitor versus interpreter pattern.

Proceedings of the 49th International Conference on Objects, Models, Components and
Patterns, TOOLS, 2011.

14211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://hdl.handle.net/2142/47551
http://hdl.handle.net/2142/47551
http://hdl.handle.net/2142/47551
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-21952-8_17
http://dx.doi.org/10.1007/978-3-642-21952-8_17
http://dx.doi.org/10.1007/978-3-642-21952-8_17
http://dx.doi.org/10.1007/978-3-642-21952-8_17
http://homepages.cwi.nl/~jurgenv/papers/TOOLS2011.pdf

58 14211 – The Future of Refactoring

5 Demonstrations

5.1 IDEs are Ecosystems
Andrew P. Black (Portland State University, US)

License Creative Commons BY 3.0 Unported license
© Andrew P. Black

Joint work of Vainsencher, Daniel; Black, Andrew P.
Main reference D. Vainsencher, A. P. Black, “A pattern language for extensible program representation,”

Transactions on Pattern Languages of Programming 1, LNCS, Vol. 5770, pp. 1–47, Springer, 2009.
URL http://dx.doi.org/10.1007/978-3-642-10832-7_1

For many years, implementors of multiple view programming environments have sought
a single code model that would form a suitable basis for all of the program analyses and
tools that might be applied to the code. They have been unsuccessful. The consequences
are a tendency to build monolithic, single- purpose tools, each of which implements its
own specialized analyses and optimized representation. This restricts the availability of the
analyses, and also limits the reusability of the representation by other tools. Unintegrated
tools also produce inconsistent views, which reduce the value of multiple views.

This talk is an advertisement for a paper that describes a set of architectural patterns that
allow a single, minimal representation of program code to be extended as required to support
new tools and program analyses, while still maintaining a simple and uniform interface
to program properties. The patterns address efficiency, correctness and the integration of
multiple analyses and tools in a modular fashion.

5.2 Tools for Retrofitting Parallelism
Danny Dig (Oregon State University, US)

License Creative Commons BY 3.0 Unported license
© Danny Dig

Main reference D. Dig, “A Refactoring Approach to Parallelism,” IEEE Software 28(1):12–22, 2011.
URL http://dx.doi.org/10.1109/MS.2011.1

In the multicore era, programmers have to work harder to introduce parallelism for perform-
ance or to enable new applications and services not possible before. In this talk I present
our ever-growing toolset of interactive refactorings for adding parallelism into sequential
programs. This toolset is grounded on empirical studies that shed light into the practice of
using, misusing, underusing, or abusing parallel libraries. Our refactoring toolset supports
refactorings from three domains: adding thread-safety, improving throughput, and scalability.
Empirical evaluation shows that our toolset is useful: (i) it dramatically reduces the burden
of analyzing and changing code, (ii) it is fast so it can be used interactively, (iii) it correctly
applies transformations that open-source developers applied incompletely, and (iv) users
prefer the improved quality of the changed code. I muse on lessons that can be learned as
we move onto automated refactoring for mobile apps.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-642-10832-7_1
http://dx.doi.org/10.1007/978-3-642-10832-7_1
http://dx.doi.org/10.1007/978-3-642-10832-7_1
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/MS.2011.1
http://dx.doi.org/10.1109/MS.2011.1

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 59

5.3 Tools for Refactoring of Web Applications
Alejandra Garrido (University of La Plata, AR)

License Creative Commons BY 3.0 Unported license
© Alejandra Garrido

Joint work of Garrido, Alejandra; Firmenich, Sergio; Grigera, Julián; Rossi, Gustavo

Refactoring can be applied to improve external quality attributes of web applications, and
thus provides the ideal context to incite developers to experiment new interface metaphors,
and keep them or discard them after usage testing or client feedback. We have extended
a tool for web application modeling to support refactoring in a model-driven approach.
We have also developed a framework that allows for refactoring on the client-side. This
makes it possible to have different views of the same application, customized for and by
users, depending on their experience, preferences, or accessibility issues. We are currently
developing a tool to automatically detect bad usability smells from user interaction logs.

References
1 Alejandra Garrido, Gustavo Rossi, Damiano Distante. Refactoring For Usability In Web

Applications. IEEE Software 28 (3): 60–67. 2011.
2 Alejandra Garrido; Sergio Firmenich; Gustavo Rossi; Julian Grigera; Nuria Medina Medina;

Ivana Harari. Personalized Web Accessibility using Client-Side Refactoring. IEEE Internet
Computing 17 (4): 58–66. 2013.

3 Julian Grigera, A. Garrido and J.M. Rivero. A Tool for Detecting Bad Usability Smells in
an Automatic Way. Int. Conf. On Web Engineering (ICWE 2014). Demo and poster track.
Toulouse, France. July, 2014.

5.4 WitchDoctor: IDE Support for Real-Time Auto-Completion of
Refactorings

William G. Griswold (University of California – San Diego, US)

License Creative Commons BY 3.0 Unported license
© William G. Griswold

Joint work of Foster, Stephen R; Lerner, Sorin; Griswold, William G.;
Main reference S.R. Foster, W.G. Griswold, S. Lerner, “WitchDoctor: IDE support for real-time auto-completion

of refactorings,” in Proc. of the 34th Int’l Conf. on Software Engineering (ICSE’12), pp. 222–232,
IEEE, 2012.

URL http://dx.doi.org/10.1109/ICSE.2012.6227191

Integrated Development Environments (IDEs) have come to perform a wide variety of tasks
on behalf of the programmer, refactoring being a classic example. These operations have
undeniable benefits, yet their large (and growing) number poses a cognitive scalability
problem. Our main contribution is WitchDoctor – a system that can detect, on the fly, when
a programmer is hand-coding a refactoring. The system can then complete the refactoring
in the background and propose it to the user long before the user can complete it. This
implies a number of technical challenges. The algorithm must be 1) highly efficient, 2)
handle unparseable programs, 3) tolerate the variety of ways programmers may perform
a given refactoring, 4) use the IDE’s proven and familiar refactoring engine to perform
the refactoring, even though the the refactoring has already begun, and 5) support the
wide range of refactorings present in modern IDEs. Our techniques for overcoming these
challenges are the technical contributions of this paper. We evaluate WitchDoctor’s design
and implementation by simulating over 5,000 refactoring operations across three open-source

14211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ICSE.2012.6227191
http://dx.doi.org/10.1109/ICSE.2012.6227191
http://dx.doi.org/10.1109/ICSE.2012.6227191
http://dx.doi.org/10.1109/ICSE.2012.6227191

60 14211 – The Future of Refactoring

projects. The simulated user is faster and more efficient than an average human user,
yet WitchDoctor can detect more than 90% of refactoring operations as they are being
performed – and can complete over a third of refactorings before the simulated user does.
All the while, WitchDoctor remains robust in the face of non-parseable programs and
unpredictable refactoring scenarios. We also show that WitchDoctor is efficient enough to
perform computation on a keystroke-by-keystroke basis, adding an average overhead of only
15 milliseconds per keystroke.

5.5 REdiffs: Refactoring-aware Difference Viewer for Java
Shinpei Hayashi (Tokyo Institute of Technology, JP)

License Creative Commons BY 3.0 Unported license
© Shinpei Hayashi

Joint work of Hayashi, Shinpei; Thangthumachit, Sirinut; Saeki, Motoshi
Main reference S. Hayashi, S. Thangthumachit, M. Saeki, “REdiffs: Refactoring-Aware Difference Viewer for Java,”

in Proc. of the 20th Working Conf. on Reverse Engineering (WCRE’13), pp. 487–488, IEEE, 2013.
URL http://dx.doi.org/10.1109/WCRE.2013.6671331

Comparing and understanding differences between old and new versions of source code
are necessary in various software development situations. However, if changes are tangled
with refactorings in a single revision, then the resulting source code differences are more
complicated. We propose an interactive difference viewer which enables us to separate
refactoring effects from source code differences for improving the understandability of the
differences.

5.6 Refactoring via Pretty-Printing
Jongwook Kim (University of Texas – Austin, US)

License Creative Commons BY 3.0 Unported license
© Jongwook Kim

We demonstrate a new refactoring engine called Relativistic Reflective Refactoring that uses
a projection or pretty-printer technology based on Simonyi’s Intentional Programming. Using
main-memory databases to encode containment and inheritance relationships among program
elements (like classes, methods, fields, and interfaces), we can encode the changes made by
refactorings within the database itself, and not modifying existing program ASTs. By display-
ing the contents of the database through ASTs, we can emulate many different and classical
refactorings and design patterns without using “program transformation” technologies.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/WCRE.2013.6671331
http://dx.doi.org/10.1109/WCRE.2013.6671331
http://dx.doi.org/10.1109/WCRE.2013.6671331
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 61

5.7 Interactive Quick Fix
Emerson Murphy-Hill (North Carolina State University, US)

License Creative Commons BY 3.0 Unported license
© Emerson Murphy-Hill

Joint work of Song, Yoonki; Barik, Titus; Johnson, Brittany; Murphy-Hill, Emerson
URL https://www.youtube.com/watch?v=y4BhIF0mMZg

Quick fixes are a great way to fix problems when the number of possible solutions are
easily enumerable. However, when this is not the case, they fail to adequately support the
programmer. In this demo, I talk about our approach called Interactive Quick Fix, which
allows a developer to benefit from the structured help of tools yet still explore the full design
space of the solution.

5.8 Cloud Refactoring
Eli Tilevich (Virginia Polytechnic Institute – Blacksburg, US)

License Creative Commons BY 3.0 Unported license
© Eli Tilevich

Joint work of Kwon, Young-Woo; Tilevich, Eli
Main reference Y.-W. Kwon, E. Tilevich, “Cloud refactoring: automated transitioning to cloud-based services,”

Automated Software Engineering, 21(3):345–372, 2013.
URL http://dx.doi.org/10.1007/s10515-013-0136-9

We demonstrate a set of Cloud Refactoring techniques, which we have implemented as
automated, IDE- assisted program transformations that render a portion of an application’s
functionality accessible remotely as a Web service. In particular, we show how a programmer
can extract services, add fault tolerance functionality, and adapt client code to invoke cloud
services via refactoring transformations integrated with a modern IDE. The running example
refactors a bioinformatics application to use a remote sequence alignment service.

5.9 A Universal Type Qualifier Inference System
Mohsen Vakilian (University of Illinois – Urbana, US)

License Creative Commons BY 3.0 Unported license
© Mohsen Vakilian

Joint work of Vakilian, Mohsen; Phaosawasdi, Amarin; Johnson, Ralph E.

Type qualifiers augment an existing type system to check more properties, such as safety
against null dereferences and SQL injections. To get the benefits of type qualifiers, program-
mers have to add type qualifiers to the source code. Realizing the burden of manually adding
type qualifiers to existing code, researchers have proposed inference systems for each type
qualifier system. Each of these inference systems operates in the batch mode, gives little
control to the programmer, and is limited to a single type qualifier system. A combination
of two concepts, compositional refactoring and speculative analysis, enabled us to develop
the first universal type qualifier inference system called Cascade. Cascade is an interactive
system that achieves universality by repeatedly invoking the checker for a given type qualifier
system and proposing a composition of changes to fix the errors reported by the checker.

14211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www.youtube.com/watch?v=y4BhIF0mMZg
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s10515-013-0136-9
http://dx.doi.org/10.1007/s10515-013-0136-9
http://dx.doi.org/10.1007/s10515-013-0136-9
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

62 14211 – The Future of Refactoring

5.10 Rascal for Experimenting with New Intermediate Formats for
Source Code Analysis

Jurgen Vinju (CWI – Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Jurgen Vinju

Joint work of Klint, Paul; Van der Storm, Tijs; Vinju, Jurgen
Main reference P. Klint, T. van der Storm, J. J. Vinju, “Rascal: A Domain Specific Language for Source Code

Analysis and Manipulation,” in Proc. of the 9th IEEE Int’l Working Conf. on Source Code
Analysis and Manipulation (SCAM’09), pp. 168–177, IEEE, 2009; pre-print available from author’s
webpage.

URL http://dx.doi.org/10.1109/SCAM.2009.28
URL http://homepages.cwi.nl/~jurgenv/papers/SCAM-2009.pdf

In this live coding demonstration we demonstrate the power of Rascal as a language to
introduce new intermediate representations, extracting these from source code, then analyzing
them. Models of source code in Rascal are all represented as immutable data: terms in
many-sorted algebras, parse trees over context-free grammars, sets, relations, maps, etc.

As an example we translated Java to the Object Flow Language [Tonella] and then
extracted an over-approximated object flow graph from this as a binary relation. Then we
visualize this graph by exporting a graphviz dot graph.

We claim that experimenting with new representations and new source code extractors
and new analysis requires hardly any boilerplate using the Rascal language, which makes it
more fun and more effective to explore new ideas in refactoring.

5.11 How Can We Do Better than Search and Replace?
Jan Wloka (IBM Research GmbH – Zürich, CH)

License Creative Commons BY 3.0 Unported license
© Jan Wloka

When using a refactoring tool to automate incremental design improvements in mixed-
language programs you can get the impression that current tools are very limited in how
refactoring targets can be selected and when a refactoring can be applied. The tool expects a
single program element as target, e.g. a method declaration, before it tries to find and change
all referencing elements in the program. The resolution of declaration-reference bindings is
difficult and it is often impossible for a program analysis to determine whether a certain
change preserves program behavior.

Future refactoring tools can overcome these limitations by enabling their users to provide
(non- determinable) declaration-reference bindings. Developers would use the tool to change
declaring program elements and their bindings separately. The developer would specify
a search term and a substitution template in a unified pattern language, and the tool
would search, preview and then consistently refactor all matching bindings in the different
programming language files. The refactoring tool would know how to match and refactor the
individual elements of each programming language with the unified search and substitution
template provided by the developer.

The use of syntax trees for each supported language would allow for context-dependent
matches and substitutions and introduce fewer programming errors than textual search-
and-replace. Even if possibly not behavior preserving, refactorings automated by such a
tool would enable developers to perform vast and complex changes in a consistent way, and
automated tests would catch unintended behavioral changes.

Until such a refactoring tool is available, developers will continue to change mixed-language
programs with search-and-replace in their favorite editor.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/SCAM.2009.28
http://dx.doi.org/10.1109/SCAM.2009.28
http://dx.doi.org/10.1109/SCAM.2009.28
http://dx.doi.org/10.1109/SCAM.2009.28
http://dx.doi.org/10.1109/SCAM.2009.28
http://homepages.cwi.nl/~jurgenv/papers/SCAM-2009.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 63

6 Working Groups

6.1 User Experience Breakout: Dimensions of Refactoring
Emerson Murphy-Hill (North Carolina State University, US)

License Creative Commons BY 3.0 Unported license
© Emerson Murphy-Hill

URL https://docs.google.com/document/d/1GmEtQWz4xUnBdpDucfJV0fnUMaIVmWxIzPEWfnNJuIw/edit

The user experience breakout group (about 10 people, including Emerson) brainstormed
“dimensions of refactoring”. Later, Oscar and Jurgen pulled Emerson aside to augment those
dimensions with some Oscar came up with based on the industry panel. The results are in
the linked Google Doc. Figure 1 shows the dimensions visualized by Emerson, Friedrich,
Jurgen, and Oscar.

6.2 User Experience Breakout: The Future of Refactoring
Emerson Murphy-Hill (North Carolina State University, US)

License Creative Commons BY 3.0 Unported license
© Emerson Murphy-Hill

URL https://docs.google.com/document/d/1xHqizIEjVZaYxsTfTFVv1IEjyPkt9slcds-KYVkZPH8/edit

The user experience refactoring group met to discuss the future of refactoring. We discussed
current problems, solutions, and future opportunities. The results are in the linked Google
Doc.

6.3 Plenary Discussion on Refactoring in Education, Corpora and
Benchmarks

Thompson, Simon J.

License Creative Commons BY 3.0 Unported license
© Simon J. Thompson

URL https://docs.google.com/document/d/1q3E1n6tJbX7W-
V0jjtgObpoR8P37JL2ja8rj4yC2cFQ/edit?usp=sharing

In a plenary discussion, the seminar talked about the various roles of refactoring in higher
education, and the roles of corpora and benchmarks in refactoring research.

6.4 Novel Applications of Refactoring Breakout
Bill Opdyke (JP Morgan Chase – Chicago, US)

License Creative Commons BY 3.0 Unported license
© Bill Opdyke

URL https://drive.google.com/folderview?id=0B7DV-T4_2mpKcXNYb0VJR3NqN28&usp=sharing

During the discussion breakout session, the “Novel Applications of Refactoring” participants
listed several opportunity areas (problems/ challenges and open issues):

How to introduce refactoring to children.
Teaching that you don’t need to have it right the first time.

14211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://docs.google.com/document/d/1GmEtQWz4xUnBdpDucfJV0fnUMaIVmWxIzPEWfnNJuIw/edit
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://docs.google.com/document/d/1xHqizIEjVZaYxsTfTFVv1IEjyPkt9slcds-KYVkZPH8/edit
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://docs.google.com/document/d/1q3E1n6tJbX7W-V0jjtgObpoR8P37JL2ja8rj4yC2cFQ/edit?usp=sharing
https://docs.google.com/document/d/1q3E1n6tJbX7W-V0jjtgObpoR8P37JL2ja8rj4yC2cFQ/edit?usp=sharing
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://drive.google.com/folderview?id=0B7DV-T4_2mpKcXNYb0VJR3NqN28&usp=sharing

64 14211 – The Future of Refactoring

Dimensions of
refactoring

User

Experience of Person Refactoring: Novices vs
Experts Amount of Education

User risk tolerance

User expectation of behavior preservation
(strong vs weak)

Overly strong conditions

Too weak conditions

Cognitive load of refactoring (impact/scope)

Technical

Different Languages

Paradigms

Different Users

Application Domains

Interpreters vs. Compilers

Models

Single language (homogeneous) vs. Cross
language + Artifacts (heterogeneous)

Impact/Scope (Level 1 [rename local], Level 2
[extract method], Level 3 [pull up], Level N

[whole program], Level N+1 [whole ecosystem])

Transformations

Behavior Preserved
by Transformation

Given a set of transformations to code,
what is behavior preserved?

Semantics of change: structural, change idiom
(introduce parallelism), semantics, domains

(web refactoring).

Behavioural equivalence
Preserving

Well-formed

Observable behavior Scope?

Classes

Methods

System

Full semantics

Sliding scale Cf Friedrich

Non behaviour-preserving

Locality

Analysis

Global

Local

Techniques

Does it compile?

Open world vs.
closed world?

Tests?

Proofs

Asserts (test or proof)

I trust another person who did this refactoring/
used this tool (Peer, Verified, Popular,

Transparent)

Change
Global

Local

Manual to Fully Automated Interface
Offline Batch

Online Interactive

Impact

Costs

Time to make change

Time to verify change is what I want

bugs

losing design familiarity

breaking integration

Benefits

How much immediate maintenance is eased

How much later maintenance will be eased

Amount of Improvement

Workflow

Stages of refactoring (analogous to
Pan&DeMillo&Spafford:97’s debugging cycle)

Finding thing to refactor

Determining whether refactoring is possible

Performing program modification

Evaluating whether it worked the way user
expected (e.g., testing)

Phases of refactoring

During Design/Prototyping

During Maintenance

During Testing

During Code Review

During Migration/Integration

Motivation

Preventive
To improve code quality

To reduce technical debt

Reactive

To understand

To enable change (immediate, Floss
Refactoring + refactoring campaign, Root

Canal)

And Maybe:

Probability

Risks

Consequences

Perceived Risks

Figure 1 Dimensions of Refactoring.

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 65

Refactoring (in the mobile area), tailored to environments with special constraints (e.g.,
security, screen space, battery power, efficiency, latency, data usage, network connectivity,
preferences, heterogeneity).
Use of resources more efficiently (green computing).
Refactoring to distribute resources on the cloud.
Refactoring of big data.
Expressing refactorings as goals to non-expert developers or users.
Globalization, internationalization (cultural awareness, use of color and fonts, other
factors).
How to transfer insights of basic refactoring research to new domains.

The breakout group noted several existing solutions:
Self-adaptation and self-healing to handle dynamic user of resources.
Software product lines for internationalization.
Refactoring for accessibility.

The breakout group also noted several works in progress:
Refactoring for improving user responsiveness on mobile devices (extracting long running
– blocking u/p computation from the UI event to asynchronous task).
Annotation refactoring (before and after examples).
Record and replay of web macros.
Finding bad usability smells (as part of solving limitations of systems with respect to
internationalization).

6.5 Refactoring Tools and Meta-Tools
Max Schäfer (Semmle Ltd., Oxford, UK)

License Creative Commons BY 3.0 Unported license
© Max Schaefer

The group discussed open problems in refactoring tools, existing solutions and work in
progress, and ideas for approaching the open problems. It was agreed that the main problem
facing authors of refactoring tools is the great complexity of real-world languages and code
bases. Moreover, languages continue to evolve and thus become more complex. At the same
time, commercial tool vendors seem to have little interest in improving existing refactoring
tools. On the research side, many participants found that there was too little exchange and
collaboration between, thus leading people to solve the same problems over and over again.
This shows the importance of broad-based seminars such as this one.

14211

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

66 14211 – The Future of Refactoring

7 Industry Roundtable

We held one industry panel, moderated by Bill Griswold, and attended by Robert Bowdidge,
Loius Wasserman, Don Roberts, John Brant, Ira Baxter, and Bill Opdyke. Panelists were
asked: “Tell us one surprising fact about industry refactoring that you’d like academics to
know.”

Here are some issues that came out during the session:

Refactoring Process
Why? (what’s the trigger?)
When? (on-the fly Agile, post facto re-architecting, etc.)
Scope? (small scale, system-wide, etc.)
How? (tools and techniques, meaning-preserving or not)
Who? (everybody, specialists, etc.)

Critical Analysis
Surprising fact(s)
Barriers to adoption
Skill set required to perform refactoring (and how common that skill set is)
How important to the on-going success of the software
How related or compared to re-development and other maintenance

Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer 67

Participants

Don Batory
University of Texas – Austin, US

Ira D. Baxter
Semantic Designs – Austin, US

Andrew P. Black
Portland State University, US

Robert Bowdidge
Google Inc. –
Mountain View, US

John Brant
The Refactory Inc. – Urbana, US

Caius Brindescu
Oregon State University, US

Marcio Cornelio
Federal University of
Pernambuco – Recife, BR

Stephan Diehl
Universität Trier, DE

Danny Dig
Oregon State University, US

Ran Ettinger
Ben Gurion University –
Beer Sheva, IL

Alejandra Garrido
University of La Plata, AR

Rohit Gheyi
Universidade Federal – Campina
Grande, BR

William G. Griswold
University of California –
San Diego, US

Shinpei Hayashi
Tokyo Institute of Technology, JP

Felienne Hermans
TU Delft, NL

Jongwook Kim
University of Texas – Austin, US

Huiqing Li
University of Kent, GB

Francesco Logozzo
Microsoft Res. – Redmond, US

Kim Mens
University of Louvain, BE

Tom Mens
University of Mons, BE

Naouel Moha
Univ. of Quebec – Montreal, CA

Emerson Murphy-Hill
North Carolina State Univ., US

Oscar M. Nierstrasz
Universität Bern, CH

Bill Opdyke
JP Morgan Chase – Chicago, US

Chris Parnin
Georgia Inst. of Technology, US

Javier Perez
University of Antwerp, BE

Veselin Raychev
ETH Zürich, CH

Don Roberts
University of Evansville, US

Max Schaefer
Semmle Ltd. – Oxford, GB

Gustavo Soares
Universidade Federal – Campina
Grande, BR

Peter Sommerlad
Hochschule für Technik –
Rapperswil, CH

Friedrich Steimann
Fernuniversität in Hagen, DE

Kathryn T. Stolee
Iowa State Univ. – Ames, US

Volker Stolz
University of Oslo, NO

Simon J. Thompson
University of Kent, GB

Eli Tilevich
Virginia Polytechnic Institute –
Blacksburg, US

Frank Tip
University of Waterloo, CA

Mohsen Vakilian
Univ. of Illinois – Urbana, US

Jurgen Vinju
CWI – Amsterdam, NL

Louis Wasserman
Google Inc. –
Mountain View, US

Jan Wloka
IBM Res. GmbH – Zürich, CH

14211

	Executive Summary Danny Dig, William G. Griswold, Emerson Murphy-Hill, and Max Schäfer
	Table of Contents
	Perspective Talks
	The Birth of Refactoring – A Personal Perspective William G. Griswold
	Concerns in Refactoring Bill Opdyke
	Two Decades of Refactoring Tools Don Roberts
	Refactoring using Type Constraints Frank Tip

	Lightning Talks
	Teaching Refactoring Andrew P. Black
	Retrofitting Parallelism through Refactoring Danny Dig
	Refactoring for Usability of Web Applications Alejandra Garrido
	Automated Behavioral Testing of Refactoring Engines Rohit Gheyi
	Refactoring Refactoring History Shinpei Hayashi
	Refactoring Spreadsheets Felienne Hermans
	Awareness of Refactoring Tools Emerson Murphy-Hill
	Agile Software Assessment Oscar M. Nierstrasz
	Wrangler – Writing Refactorings Made Easy Huiqing Li
	Proof Improving Refactoring Francesco Logozzo
	Usage Contracts Kim Mens
	Domain-Specific Model Refactoring Tom Mens
	Detection and Correction of Anti-Patterns Naouel Moha
	Can we Mine and Reapply Refactoring Strategies? Francisco Javier Perez Garcia
	Refactoring with Synthesis Veselin Raychev
	Identifying Overly Strong Conditions in Refactoring Implementations Gustavo Soares
	The History of C++ Refactoring (for Eclipse CDT) Peter Sommerlad
	A Brief History of Eclipse-based Refactorings by HSR Peter Sommerlad
	Extract+Move=Bug Volker Stolz
	Why Should I Trust Your Refactoring Tool? Simon J. Thompson
	To the Cloud and Back: Automated Inter-Address Space Component Migration to Support Software Evolution Eli Tilevich
	Automated Decomposition of Software Modules Mohsen Vakilian
	Complexity of Maintenance – Refactoring for the Reproducible Evaluation of Design Choices Jurgen Vinju

	Demonstrations
	IDEs are Ecosystems Andrew P. Black
	Tools for Retrofitting Parallelism Danny Dig
	Tools for Refactoring of Web Applications Alejandra Garrido
	WitchDoctor: IDE Support for Real-Time Auto-Completion of Refactorings William G. Griswold
	REdiffs: Refactoring-aware Difference Viewer for Java Shinpei Hayashi
	Refactoring via Pretty-Printing Jongwook Kim
	Interactive Quick Fix Emerson Murphy-Hill
	Cloud Refactoring Eli Tilevich
	A Universal Type Qualifier Inference System Mohsen Vakilian
	Rascal for Experimenting with New Intermediate Formats for Source Code Analysis Jurgen Vinju
	How Can We Do Better than Search and Replace? Jan Wloka

	Working Groups
	User Experience Breakout: Dimensions of Refactoring Emerson Murphy-Hill
	User Experience Breakout: The Future of Refactoring Emerson Murphy-Hill
	Plenary Discussion on Refactoring in Education, Corpora and Benchmarks Simon J. Thompson
	Novel Applications of Refactoring Breakout Bill Opdyke
	Refactoring Tools and Meta-Tools Max Schaefer

	Industry Roundtable
	Participants

