
Lowest Degree k-Spanner: Approximation and
Hardness
Eden Chlamtáč1 and Michael Dinitz2

1 Ben Gurion University, IL
chlamtac@cs.bgu.ac.il

2 Johns Hopkins University, U.S.
mdinitz@cs.jhu.edu

Abstract
A k-spanner is a subgraph in which distances are approximately preserved, up to some given
stretch factor k. We focus on the following problem: Given a graph and a value k, can we find a
k-spanner that minimizes the maximum degree? While reasonably strong bounds are known for
some spanner problems, they almost all involve minimizing the total number of edges. Switching
the objective to the degree introduces significant new challenges, and currently the only known
approximation bound is an Õ(∆3−2

√
2)-approximation for the special case when k = 2 [Chlamtáč,

Dinitz, Krauthgamer FOCS 2012] (where ∆ is the maximum degree in the input graph). In this
paper we give the first non-trivial algorithm and polynomial-factor hardness of approximation for
the case of general k. Specifically, we give an LP-based Õ(∆(1−1/k)2)-approximation and prove
that it is hard to approximate the optimum to within ∆Ω(1/k) when the graph is undirected, and
to within ∆Ω(1) when it is directed.

1998 ACM Subject Classification G.2.2 Graph Theory: Graph algorithms

Keywords and phrases Graph spanners, approximation algorithms, hardness of approximation

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2014.80

1 Introduction

A spanner of a graph is a sparse subgraph that approximately preserves distances. Formally,
a k-spanner of a graph G = (V,E) is a subgraph H of G in which dH(u, v) ≤ k · dG(u, v) for
all u, v ∈ V , where dH and dG denote shortest path distances in H and G, respectively1.
Graph spanners were originally introduced in the context of distributed computing [22, 23],
and since then have been extensively studied from both a distributed and a centralized
perspective. Much of this work has focused on the fundamental tradeoffs between stretch,
size, and total weight, such as the seminal result of Althöfer et al. that every graph admits
a (2k − 1)-spanner with at most n1+1/k edges [1] and its many extensions (e.g. to dealing
with total weight [7]). Spanners have also appeared as fundamental building blocks in a
wide range of applications, from routing in computer networks [25] to property testing of
functions [4].

In parallel with this work on the fundamental tradeoffs there has been a line of work
on approximating spanners. In this setting we are usually given an input graph G and
a stretch value k, and our goal is to construct the best possible k-spanner. If “best" is
measured in terms of the total number of edges, then clearly the construction of [1] gives

1 Equivalently, a subgraph H is a k-spanner if dH(u, v) ≤ k for every edge (u, v) in G.

© Eden Chlamtáč and Michael Dinitz;
licensed under Creative Commons License CC-BY

17th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’14) /
18th Int’l Workshop on Randomization and Computation (RANDOM’14).
Editors: Klaus Jansen, José Rolim, Nikhil Devanur, and Cristopher Moore; pp. 80–95

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.80
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

E. Chlamtáč and M. Dinitz 81

an O(n2/(k+1))-approximation (for odd k), simply because Ω(n) is a trivial lower bound on
the size of any spanner of a connected graph. However, when the objective function is to
minimize the maximum degree, there are no non-trivial fundamental bounds like there are for
the number of edges, so it is natural to consider the optimization problem. Moreover, degree
objectives are notoriously difficult (consider degree-bounded minimum spanning trees [24]
as opposed to general minimum spanning trees), and so almost all work on approximation
algorithms for spanners has focused on minimizing the number of edges, as opposed to
maximum degree.

We call the problem of minimizing the degree of a k-spanner the Lowest Degree
k-Spanner problem (which we will abbreviate LDkS). For directed graphs, the degree
is the sum of the in- and out-degrees.2 Kortsarz and Peleg initiated the study of the
maximum degree of a spanner, giving an O(∆1/4)-approximation for LD2S [21] (where ∆ is
the maximum degree of the input graph). This was only recently improved to Õ(∆3−2

√
2+ε)

for arbitrarily small ε > 0 by Chlamtáč, Dinitz, and Krauthgamer [10]. The only known
hardness for LD2S was Ω(logn) [21]. Despite the length of time since minimizing the degree
was first considered (over 15 years) and the significant amount of work on other spanner
problems, no nontrivial upper or lower bounds were known previous to this work for LDkS
when k ≥ 3.

1.1 Our results and techniques
We give the first nontrivial upper and lower bounds for the approximability of Lowest
Degree k-Spanner for k ≥ 3. We assume throughout that all edges have length 1; while
much previous work has dealt with spanners with arbitrary edge lengths, our results (and all
previous results on optimizing the degree) are specific to uniform edge lengths. Handling
general edge lengths is an intriguing open problem.

As we also note later, it is easy to see that any k-spanner must have maximum degree at
least ∆1/k (simply to span the edges incident to the node of maximum degree). Thus, simply
outputting the original graph is a ∆1−1/k approximation. We beat the trivial algorithm, and
give the following algorithmic result3:

I Theorem 1. For any integer k ≥ 1, there is an Õ(∆(1− 1
k)2)-approximation for Lowest

Degree k-Spanner.

While this may seem like a rather small improvement over the trivial ∆1−1/k-approximation,
it still requires significant technical work (possibly explaining why no nontrivial bounds were
known previously). Note that in the special case of k = 2 our bound recovers the bound
of [21], although not the improved one of [10]. This is not a coincidence: our algorithm is
a modification of [21], albeit with a very different and significantly more involved analysis.
We use a natural flow-based linear program in which the decision variable for each edge is
interpreted as a capacity, while the spanning requirement is interpreted as requiring that
for every original edge {u, v} there is enough capacity to send 1 unit of flow along paths of
length at most k (this is essentially the same LP used for directed spanners by [12, 4] but
with a degree objective, and reduces to the LP used by [21] when k = 2).

2 With appropriate changes to the LP, our algorithm also works for the variant in which we measure the
out-degree.

3 Our algorithm and analysis work for both the undirected and directed case with no change. The
parameter k is taken to be a constant, and the Õ notation hides polylogarithmic factors of the form
O(log n(log ∆)c) for some c = c(k).

APPROX/RANDOM’14

82 Lowest Degree k-Spanner: Approximation and Hardness

The LP rounding in [21] was a simple independent randomized rounding which ensured
that every path of length 2 is contained in the spanner with probability that is at least the
LP flow along that path. Since paths of length 2 with common endpoints are naturally
edge-disjoint, these events are independent (for a fixed edge (u, v)), and a simple calculation
shows that at least one u− v path survives the rounding with probability at least 1− 1/e.

When k ≥ 3 the structure of these paths becomes significantly more complicated. While
we still guarantee that each flow path will be contained in the spanner with probability
proportional to the amount of flow in the path, we can no longer guarantee independence, as
the flow paths are not disjoint, and may intersect and overlap in highly non-trivial ways. Our
main technical contribution (in the upper bound) shows that the rounding exhibits a certain
dichotomy: either we can carefully prune the paths (while retaining 1/polylog(∆) flow) until
they are disjoint, or the number of flow-paths that survive the rounding is concentrated
around an expectation which is ω(1). This ensures that (after boosting by repeating the
rounding a polylogarithmic number of rounds), every edge is spanned with high probability.

On the lower bound side, our main result is the following:

I Theorem 2. For any integer k ≥ 3, there is no polynomial time algorithm that can approx-
imate Lowest Degree k-Spanner better than ∆Ω(1/k) unless NP ⊆ BPTIME(2polylog(n)).

We can actually get a stronger hardness result if we assume that the input graph is
directed:

I Theorem 3. There is some constant γ > 0 such that for any integer k ≥ 3 there is no
polynomial time algorithm that can approximate Lowest Degree k-Spanner on directed
graphs better than ∆γ , unless NP ⊆ BPTIME(2polylog(n)).

It is important to note that these hardness results do not hold if we replace ∆ by n,
as the algorithmic results do. The instances generated by the hardness reduction have a
maximum degree that is subpolynomial in n, so the best hardness that we would be able to
prove (in terms of n) would be subpolynomial (although still superpolylogarithmic). On the
other hand, by phrasing the hardness in terms of ∆ we not only allow direct comparisons to
the upper bounds, but also allow us to use techniques (namely reductions from Label Cover
and Min-Rep) that typically give only subpolynomial hardness results. Our hardness results
require a mix of previous techniques and ideas, but with some interesting twists.

There is a well-developed framework (mostly put forward by Kortsarz [19] and Elkin
and Peleg [15]) for proving hardness for spanner problems by reducing from Min-Rep, a
minimization problem related to Label Cover that has proven useful for proving hardness
(see Section 3 for the formal definition). Our reductions have two key modifications. First,
we boost the degree by including many copies of both the starting Min-Rep instance and the
added gadget nodes. This was unnecessary for previous spanner problems because boosting
the degree was not necessary – it was sufficient to boost the number of edges by including
many copies of just the gadget nodes.

The second modification is particular to the undirected case. Undirected spanner problems
are difficult to prove hard because if we try to simply apply the generic framework for reducing
from Min-Rep, there can be extra “fake" paths that allow the spanner to bypass the Min-Rep
instance altogether. Elkin and Peleg [16] showed that for basic (min-cardinality rather than
min-degree) undirected k-spanner it was sufficient to use Min-Rep instances with large girth:
applying the framework to those instances would yield hardness for basic k-spanner. But
they left open the problem of actually proving that Min-Rep with large girth was hard. This
was proved recently [11] by subsampling the Min-Rep instance to get rid of short cycles while
still preserving hardness., finally proving hardness for basic k-spanner.

E. Chlamtáč and M. Dinitz 83

We might hope LDkS is similar enough to basic k-spanner that we could just apply the
generic reduction to Min-Rep with large girth. Unfortunately this does not work, since
the steps we take to boost the degree end up introducing short cycles even if the starting
Min-Rep instance has large girth (unlike the reduction used for basic k-spanner [16]). So we
might instead hope that we could simply use the ideas of [11], and subsample after doing the
reduction rather than before. Unfortunately this does not work either. Instead, we must do
both: apply the normal reduction to the special (already subsampled) Min-Rep instances
from [11], and then do an extra, separate round of subsampling on the reduction. In other
words, we must sample both the Min-Rep instance itself and the graph obtained by applying
the generic reduction to these already sampled instances.

1.2 Related Work
There has been a huge amount of work on graph spanners, from their original introduction
in the late 80’s [22, 23] to today. The best bounds on the tradeoff between stretch and space
were reached by Althöfer et al. [1].

Most of the work since then has been on extending these tradeoffs (e.g. including additive
stretch [2, 9], fault-tolerance [8, 13], or average stretch [6]) or considering algorithmic aspects
such as allowing fast distance queries [26] or extremely fast constructions [18].

In parallel with this, there has been a line of work on approximating graph spanners. This
was initiated by Kortsarz and Peleg, who gave an O(log(|E|/|V |))-approximation for the
sparsest 2-spanner problem [20] and then an O(∆1/4)-approximation for Lowest Degree
2-Spanner [21]. This was followed by upper bounds by Elkin and Peleg [17] for a variety of
related spanner problems including LD2S (although not LDkS).

With the exception of [21], one feature that the approximation algorithms for spanners
have shared with the global bounds on spanners has been the use of purely combinatorial
techniques. Kortsarz and Peleg introduced the use of linear programming for spanners [21],
but this was a somewhat isolated example. More recently, linear programming relaxations
have become a dominant technique, and have been used for transitive closure spanners [5],
directed spanners [12, 4], fault-tolerant spanners [12, 13], and LD2S [10]. In this paper we
use a rounding scheme similar to [21] (with a much more complicated analysis) and an LP
that is a degree-based variant of the flow-based LP introduced by [12] (an earlier use of
flow-based LPs for approximating spanners is [14]).

On the hardness side, the first results were due to Kortsarz [19] who proved Ω(logn)-
hardness for the basic k-spanner problem (for constant k) and 2log1−ε n-hardness for a
weighted version. These results were pushed further by Elkin and Peleg [15], who proved the
same 2log1−ε n-hardness for a collection of spanner problems including directed k-spanner.
Separately, Kortsarz and Peleg proved logarithmic hardness for LD2S [21]. Proving strong
hardness for basic k-spanner remained open until recently, when Dinitz, Kortsarz, and Raz
proved it by showing that Min-Rep is hard even when the instances have large girth [11].
They accomplished this through careful subsampling, which we push further by subsampling
both before and after the reduction.

1.3 Preliminaries
We now give some basic formal definitions which will be useful throughout this paper. Given
an unweighted graph G = (V,E), we let dG(u, v) denote the shortest-path distance from u to
v in G, i.e. the minimum number of edges in any path from u to v (note that if G is directed
this may be asymmetric). The girth of a graph is the minimum number of edges in any cycle

APPROX/RANDOM’14

84 Lowest Degree k-Spanner: Approximation and Hardness

in the graph. We use the notation e ∼ v to indicate that e is incident on v, and the notation
p : u v to indicate that p is a path from u to v. We think of paths as tuples of edges,
and denote by (p)i the ith edge in a path p. For integer k, we will use [k] to denote the set
{1, 2, . . . , k}.

A k-spanner of G is a subgraph H of G in which dH(u, v) ≤ k · dG(u, v) for all u, v ∈ V .
The value k is referred to as the stretch of the spanner. The fundamental problem that we
are concerned with is the following:

I Definition 4. Suppose we are given an unweighted graph G and a stretch parameter k.
The problem of computing the k-spanner that minimizes the maximum degree is Lowest
Degree k-Spanner.

2 The algorithm

We now present our approximation algorithm for LDkS, proving Theorem 1. It is not hard
to see that a subgraph with maximum degree D can only be a k-spanner if the original graph
has degree at most

∑k
i=1D

i = (1 + o(1))Dk (the maximum number of possible paths of
length ≤ k starting from a given node in the spanner). Therefore, we have

I Observation 5. In a graph with maximum degree ∆, any k-spanner must have maximum
degree at least Ω(∆1/k).

2.1 LP relaxation, rounding, and approximation guarantee
Our algorithm uses the following natural LP relaxation:

min d

s.t.
∑
e∼v xe ≤ d ∀v ∈ V (1)∑
p:u v,|p|≤k yp = 1 ∀(u, v) ∈ E (2)

xe ≥
∑

p:u v,|p|≤k
p3e

yp ∀(u, v), e ∈ E (3)

xe, yp ≥ 0 ∀e, p (4)

Note that this LP has polynomial size when k is constant, and can even be solved in
polynomial time when k is superconstant [12].

Recall that in a k-spanner, it is sufficient to span every edge by a path of length k. Note
that for any edge (u, v) ∈ E there may be multiple paths in the spanner spanning this edge.
However, we can always pick one such path per edge. In the intended (integral) solution to
the above formulation, xe is an indicator for whether e appears in the spanner, and yp is
an indicator for the unique spanner path we assign to (u, v) (it could even be just the edge
itself, if p = (u, v)). Thus, combined with the above observation, we have

I Observation 6. In a graph with maximum degree ∆, in which the optimal solution to
the above LP is dLP, any k-spanner (including the optimum spanner) must have maximum
degree at least Ω(max{dLP,∆1/k}).

We apply a rather naïve rounding algorithm to the LP solution, which can be thought of
as a natural extension of the rounding in [21] for LD2S:

Independently add each edge e ∈ E to the spanner with probability x1/k
e .

E. Chlamtáč and M. Dinitz 85

The heart of our analysis is showing that in the subgraph this produces, every original edge
is spanned with probability at least Ω̃(1). It is then only a matter of repeating the above
algorithm a polylogarithmic number of times to ensure that every edge is spanned w.h.p.
This will only incur a polylogarithmic factor in the degree guarantee. The following lemma
gives an easy bound on the expected degree of any vertex in the above rounding:

I Lemma 7. Let H be the subgraph obtained from the above rounding, and let dOPT be the
smallest possible degree of a k-spanner of G = (V,E). Then every vertex in H has expected
degree at most O(dOPT∆(1−1/k)2).

Proof. By linearity of expectation, the expected degree of any v ∈ V is∑
e∼vx

1/k
e ≤ (degG(v))1−1/k (

∑
e∼vxe)

1/k by Jensen’s inequality4

≤ ∆1−1/kd
1/k
LP

= O

(
dOPT∆1−1/k ·

d
1/k
LP

max{dLP,∆1/k}

)
by Observation 6

Noting that the last expression is maximized when dLP = ∆1/k, we get∑
e∼vx

1/k
e = O(dOPT∆1−1/k · (∆1/k)1/k−1) = O(dOPT∆(1−1/k)2

).

J

I Remark. Note that a simple Chernoff bound says that all degrees will be concentrated
around their respective expectations, as long as the expectations are sufficiently large (say
≥ 3 lnn). Since we repeat the basic algorithm at least 3 lnn times, the concentration
argument can be applied to the total number of incident edges added, with multiplicities.

Thus, the crux of the analysis is to show that, indeed, every edge will be spanned with
some reasonable probability.

2.2 Sketch of proof of correctness
Suppose, for simplicity, that for an edge (u, v) ∈ E, all the contribution in (2) (the spanning
constraint) comes from paths of length exactly k. First, suppose all the paths with non-zero
weight yp in (2) are disjoint. For every edge e in such a path p we have, from (3), that
xe ≥ yp. Therefore, the probability that such a path survives (i.e. all the edges in it are
retained in the rounding) is

∏
e∈p x

1/k
e ≥ yp. Denoting by P (= P (u, v)) the set of such paths,

by disjointness these events are independent, and therefore we have

Prob[(u, v) is spanned] ≥ 1−
∏
p∈P

(1− yp) ≥ 1−
∏
p∈P

e−yp = 1− e
∑

p∈P
yp = 1− 1/e.

Thus, repeating this process O(logn) times, all such edges will be spanned w.h.p.
However, u v paths of length ≥ 3 need not be disjoint in general. We may assume

that all paths p ∈ P have some fixed length k′ ∈ [k] and are tuples of the form (ei)i∈I ∈∏
i∈I Ei for some disjoint edge sets E1, . . . , Ek ⊂ E (see Lemma 8). Consider the extreme

example where k′ = k and the flow is distributed evenly over all possible paths of the form
u− v1 − v2 − . . .− vk−1 − v for vi ∈ Vi, where {Vi | i ∈ [k]} is an equipartition of V \ {u, v}.

4 or Hölder’s inequality

APPROX/RANDOM’14

86 Lowest Degree k-Spanner: Approximation and Hardness

Here, the amount of flow through each edge in the first and last layers is roughly (k − 1)/n,
and the amount of flow through any edge in the other layers is roughly ((k − 1)/n)2. Thus,
in the worst case, edges in the first and last layers will have values xe = (k− 1)/n and in the
other layers xe = ((k − 1)/n)2. It is easy to see that the number of edges from u to V1 that
are still present (after the rounding) is concentrated around (n/(k − 1))1−1/k (since each
outgoing edge from u is retained independently with probability ((k − 1)/n)1/k). Similarly,
every vertex in layers i = 2, . . . , k − 2 will retain ∼ (n/(k − 1))1−2/k edges to the next layer,
creating a total of (n/(k − 1))1−1/k+(1−2/k)(k−2) paths from u to Vk−1, an (n/(k − 1))−1/k

fraction of which will continue to v. Thus, not only is (u, v) spanned after the rounding, it is
spanned by ∼ (n/(k − 1))(k2−3k+2)/k different paths (unlike the disjoint case, where only a
constant number of paths survive).

Thus intuitively we have two scenarios: either the paths are disjoint, or they overlap,
and a large number of them survive (both in expectation and w.h.p. due to concentration).
However, this is not easy to formalize (moreover, we note that on an edge-by-edge basis,
gradually merging two paths does not monotonically increase the probability that at least
one path survives). To greatly simplify the formalization of this dichotomy, we prune the
paths to achieve near-regularity in the LP values and combinatorial structure of the flow. To
describe the outcome of the pruning, we need to introduce one more notation: Given a set of
paths P ′ and (small) set of edges S, we denote by mP ′(S) the number of paths p ∈ P ′ such
that p contains S. For example, m′P (∅) = |P ′| and for any path p ∈ P ′ (considering p as a
set of edges), mP ′(p) = 1.

The pruning procedure, which is only needed for the analysis, is an extension of standard
pruning techniques (e.g. pruning to make a bipartite graph nearly regular), and is summarized
in the following lemma, whose proof will appear in the full version of this paper.

I Lemma 8. There exists a function f such that for any vertices u, v ∈ V and set P of paths
from u to v of length at most k such that

∑
p∈P yp ≥ 1/polylog(∆), there exists a subset of

paths P ′ ⊆ P satisfying:
For some k′ ∈ [k], all paths in P ′ have length k′.
All the paths in P ′ are tuples in

∏k′

i=1Ei for some pairwise disjoint collection of sets
E1, . . . , Ek′ ⊂ E.
There exists some y0 > 0 such that every path has weight yp ∈ [y0, 2y0]. Furthermore,
y0|P ′| ≥ 1/(log ∆)f(k).
There exists a positive integer vector (mI)I⊆k′ such thatmP ′((ei)i∈I) ∈ [mI ,mI(log ∆)f(k)]
for every index set ∅ 6= I ⊆ [k′] and every I-tuple (ei)i∈I ∈

∏
i∈I Ei which is con-

tained in some path in P ′. (Note that if e ∈ (ei) then m((ei)) ≤ m(e) and therefore
mI ≤ mi(log ∆)f(k) for i ∈ I).

We note that if
∏k′

i=1m{i} ≤ polylog(∆), this is quite close to the disjoint paths case
(where m{i} = 1), and can be analyzed accordingly. The following Lemma gives the relevant
result for this case.

I Lemma 9. Let P ′ be the set of paths given by Lemma 8, and suppose
∏k′

i=1m{i} <

(log ∆)g(k). Then with probability at least 1/(log ∆)h(k) (for some function h), at least one
path in P ′ survives the rounding.

Proof. For the sake of the analysis, let us prune the paths even further. Go through
every level Ei for i = 1, . . . , k′ sequentially, and for every e ∈ Ei, choose exactly one
(undeleted) path that contains e and delete all other paths containing e. Since for all e ∈ Ei

E. Chlamtáč and M. Dinitz 87

we have mP ′(e) ≤ m{i}(log ∆)f(k), in each level we retain at least a 1/(m{i}(log ∆)f(k))-
fraction of paths. Therefore, we end up with a new collection of paths P ∗ ⊆ P ′ such that
|P ∗| ≥ |P ′|/(log ∆)g(k)+k′f(k), and the paths in P ∗ are edge-disjoint.

The analysis is now straightforward. Every path p ∈ P ∗ is retained with probability∏
e∈p

x1/k
e ≥

∏
e∈p

y1/k
p ≥ yk

′/k
0 ≥ (|P ′|(log ∆)f(k))−k

′/k

There are |P ∗| such paths, and each survives independently of the rest, therefore, at least
one path in P ∗ survives with probability

1− (1−
k′∏
i=1

x
1/k
i)|P

∗| ≥ 1− exp(−|P ∗|
k′∏
i=1

x
1/k
i)

≥ 1− exp(−|P ′|(k−k
′)/k(log ∆)−(f(k)k′/k+g(k)+k′f(k)))

≥ 1− exp(−(log ∆)−(1+1/k)(f(k)+g(k)))

= (1− o(1))(log ∆)−(1+1/k)(f(k)+g(k)).

J

We can also easily deal with the case m{i} ≥ |P ′|/polylog(∆), which indicates that in
some layer i, the paths are concentrated in a small number of edges, by choosing just one
edge e ∈ Ei, contracting this edge, and deleting all paths that do not use e (see the proof of
Theorem 11). Thus, the main case we have to deal with is the intermediate case, where there
is non-negligible overlap (

∏
m{i} is not too small), but also no edges have too large a load

(no m{i} is too close to |P ′|). It is not hard to show that in this case the expected number of
paths will be large, but showing concentration is more challenging. This constitutes the bulk
of the technical analysis.

To briefly describe this part of the analysis, consider a single edge e ∈ Ei. We know this
edge is contained in m({e}) paths in P ′, and each of these paths has weight yp ∈ [y0, 2y0].
Therefore, by constraint (3) and Lemma 8, we have

xe ≥ m({e})y0 ≥ m{i}y0 ≥ m{i}/(|P ′|(log ∆)f(k)). (5)

Suppose instead of sampling each edge independently with probability x1/k
e , we retained

any edge e ∈ Ei with probability x1/k
i for

xi := m{i}/(|P ′|(log ∆)f(k)),

and let Y be the number of paths in P ′ that survive this rounding. This is clearly a lower
bound for the number of paths retained in our original rounding algorithm (we can think
of the modified rounding as first applying the original rounding, and then subsampling the
edges even further). Note that E[Y] = |P ′|1−k′/k(

∏
im{i})1/k′/(log ∆)f(k)k′/k, so, as we’ve

mentioned, if
∏
im{i} is large, then E[Y] will also be large. By Chebyshev’s inequality, we

can bound the probability that Y = 0 by

Prob[Y = 0] ≤ Prob[Y < E[Y]/2] ≤ Prob
[
(Y − E[Y])2 > 1

4 (E[Y])2] < 4Var[Y]
(E[Y])2

Thus, to prove, say, that Prob[Y = 0] < 1
2 , it suffices to show that

(Var[Y] =) E[Y 2]− (E[Y])2 <
1
8(E[Y])2. (6)

APPROX/RANDOM’14

88 Lowest Degree k-Spanner: Approximation and Hardness

While the proof of this bound is somewhat technical, it is greatly simplified by the pruning
phase, which allows us to bound the variance directly as a function of the mI values without
having to analyze the combinatorial structure of the flow. The result for the main case
is given by the following lemma, whose proof is deferred to the full version due to space
constraints:

I Lemma 10. Let P ′ be the set of paths given by Lemma 8. Then if
∏k′

i=1m{i} ≥ (log ∆)g(k),
and for every i ∈ [k′] we have m{i} ≤ |P ′|(log ∆)−g(k), where g(k) ≥ (4k + 2)f(k) then (6)
holds.

Finally, we combine these three components to give our correctness guarantee:

I Theorem 11. Let P ′ be a collection of u v paths as in Lemma 8, then with probability
at least 1/(log ∆)l(k) (for some function l), at least one path in P ′ survives the rounding.

Proof. First, consider the case where m{i} ≤ |P ′|(log ∆)−(4k+2)f(k) for every i ∈ [k′]. In this
case, if

∏k′

i=1m{i} ≥ (log ∆)(4k+2)f(k), then the theorem follows directly from our second
moment argument and Lemma 10. If

∏k′

i=1m{i} < (log ∆)(4k+2)f(k), on the other hand, then
the theorem follows from Lemma 9.

On the other hand, if there does exist some i ∈ [k′] such thatm{i} ≥ |P ′|(log ∆)−(4k+2)f(k),
then the above analysis breaks down. In this case, choose any edge e ∈ Ei, and note that
(by (5))

xe ≥ m{i}/(|P ′|(log ∆)f(k)) ≥ (log ∆)−(4k+3)f(k).

Suppose e = (s, t). In the undirected case, we have a minor technical detail: we choose the
direction (s, t) or (t, s) which contains at least x′e/2 flow in P , say (s, t). Let P ′e be the set of
paths in P ′ that use (s, t) (in this direction) (in the directed case, P ′e is just the set of paths
in P ′ that use e). Then every path in P ′e consists of three parts: a u s prefix of length
i−1, the edge (s, t), and a t v suffix of length k′− i. Let P ′′e be the set of contracted paths
{p/{e} | p ∈ P ′e} in the contracted graph G/{e}. The paths in P ′′e are clearly in a one-to-one
correspondence with the paths in P ′e. Note that the paths P ′′e satisfy all the properties given
by Lemma 8 with (4k + 4)f(k) in place of f(k) (where we define mP ′′e

(S) := mP ′(S ∪ {e})).
The original rounding will retain edge e with probability at least (log ∆)−(4+3/k)f(k).

However, by induction on k, there is also a (log ∆)−l(k−1) probability that some (contracted)
u v path in P ′′e will survive. Since this event is independent of the event where e
is retained, we have that at least one path in P ′e will survive with probability at least
(log ∆)−(4+3/k)f(k)−l(k−1). J

Applying the above theorem to the set P ′ of paths given by Lemma 8 applied to the
set P of all u v paths of length at most k, it follows that (one iteration of) our rounding
algorithm spans every edge with reasonably large probability:

I Corollary 12. Given a solution to the LP relaxation, our rounding algorithm spans every
edge (by a path of length at most k) with probability at least 1/polylog(∆).

3 Hardness of Approximation

Our reductions are based on the framework developed by [19, 15]. Our hardness bounds rely
on the Min-Rep problem. In Min-Rep we are given a bipartite graph G = (A,B,E) where
A is partitioned into groups A1, A2, . . . , Ar and B is partitioned into groups B1, B2, . . . , Br,
with the additional property that every set Ai and every set Bj has the same size (which we

E. Chlamtáč and M. Dinitz 89

will call |Σ| due to its connection to the alphabet of a 1-round 2-prover proof system). This
graph and partition induces a new bipartite graph G′ called the supergraph in which there is
a vertex ai for each group Ai and similarly a vertex bj for each group Bj . There is an edge
between ai and bj in G′ if there is an edge in G between some node in Ai and some node in
Bj . A node in G′ is called a supernode, and similarly an edge in G′ is called a superedge.

A REP-cover is a set C ⊆ A ∪B with the property that for all superedges {ai, bj} there
are nodes a ∈ Ai ∩ C and b ∈ Bj ∩ C where {a, b} ∈ E. We say that {a, b} covers the
superedge {ai, bj}. The goal is to construct a REP-cover of minimum size.

We say that an instance of Min-Rep is a YES instance if OPT = 2r (i.e. a single node
is chosen from each group) and is a NO instance if OPT ≥ 2log1−ε nr. We will sometimes
refer to the hardness gap (in this case 2log1−ε n) as the soundness s, due to the connection
between Min-Rep and proof systems.

I Theorem 13 ([19]). Unless NP ⊆ DTIME(2polylog(n)), for any constant ε > 0 there is no
polynomial-time algorithm that can distinguish between YES and NO instances of Min-Rep.
This is true even when the graph and the supergraph are regular, and both the supergraph
degree and |Σ| are polynomial in the soundness.

In the basic reduction framework we start with a Min-Rep instance, and then for every
group we add a vertex (corresponding to the supernode) which is connected to vertices in
the group using paths of length approximately k/2. We then add an edge between any
two supernodes that have a superedge in the supergraph. So there is an “outer" graph
corresponding to the supergraph, as well as an “inner" graph which is just the Min-Rep graph
itself. The basic idea is that the only way to span a superedge is to use a path of length k
that goes through the Min-Rep instance, in which case the Min-Rep edge that is in this path
corresponds to nodes in a valid REP-cover. So if we are in a YES instance there is a small
REP-cover and thus a small spanner, while if we are in a NO instance every REP-cover is
large and thus the spanner must have many edges in order to span the superedges.

In [15] and [19] this framework is used to prove hardness of approximation when the
objective is the number of edges by creating many copies of the outside nodes (i.e. the
supergraph), all of which are connected to the same inner nodes (Min-Rep graph). This
forces the number of edges used in the spanner to essentially equal the size of a valid
REP-cover, as all other edges used by the spanner become lower order terms. We reverse
this, by creating many copies of the inner Min-Rep graph. If we simply connect a single
copy of the outer graph we run into a problem, though: each superedge can be spanned by
paths through any of the copies. There is nothing that forces it to be spanned through all of
them, and thus nothing that forces degrees to be large. We show how to get around this by
creating many copies of both the inner and the outer graph, but using asymptotically more
copies of the inner graph than the outer.

3.1 Directed LDkS
We now consider the directed setting, but due to space constraints only give an outline.

Suppose we are given a bipartite Min-Rep instance G̃ = (A,B, Ẽ) with associated
supergraph G′ = (U, V,E′). For any vertex w ∈ U ∪ V we let Γ(w) denote its group. So
Γ(u) ⊆ A for u ∈ U , and Γ(v) ⊆ B for v ∈ V . We will assume without loss of generality that
G′ is regular with degree dG′ and G̃ is regular with degree d

G̃
. Our reduction will also use a

special bipartite regular graph H = (X,Y,EH), which will simply be the directed complete
bipartite graph with |X| = |Y |. Let dH denote the degree of a node in H, so dH = |X| = |Y |.
We will set all of these values to dG′ + 2|Σ|+ 1.

APPROX/RANDOM’14

90 Lowest Degree k-Spanner: Approximation and Hardness

Our LDkS instance G = (VG, EG) will be a combination of these three graphs. Let
kL = bk−1

2 c, and let kR = dk−1
2 e. The four sets of vertices are

V Lout = U ×X × [kL] V Rout = V × Y × [kR]
V Lin = A× EH V Rin = B × EH .

The actual vertex set VG of our LDkS instance G will be V Lout ∪ V Rout ∪ V Lin ∪ V Rin . We say
that an outer node is maximal if its final coordinate is maximal (kL for nodes in V Lout or kR
for nodes in V Rout), and we say that an outer node is minimal if its final coordinate is 1.

Defining the edge set is a little more complex, as there are a few different types of edges.
We first create outer edges, which are incident on maximal outer nodes:

Eout = {((u, x, kL), (v, y, kR)) : u ∈ U ∧v ∈ V ∧x ∈ X∧y ∈ Y ∧{u, v} ∈ E′∧(x, y) ∈ EH}.

Note that if we fix x and y the corresponding outer edges form a copy of the supergraph G′.
Thus these edges essentially form |EH | copies of the supergraph.

We also have inner edges, which correspond to |EH | copies of the Min-Rep instance (note
that unlike the supergraph copies, these copies are vertex disjoint):

Ein = {((a, e), (b, e)) : a ∈ A ∧ b ∈ B ∧ e ∈ EH ∧ {a, b} ∈ Ẽ}.

We will now add edges that connect some of the outer nodes to some of the inner nodes:
let

ELcon = {((u, x, 1), (a, (x, y))) : u ∈ U ∧ a ∈ Γ(u) ∧ x ∈ X ∧ (x, y) ∈ EH}, and
ERcon = {((b, (x, y)), (v, y, 1)) : v ∈ V ∧ b ∈ Γ(v) ∧ y ∈ Y ∧ (x, y) ∈ EH}.

In other words, the minimal outer node for each (u, x) (resp. (v, y)) is connected to the inner
nodes in its group in each copy of G̃ that corresponds to an EH edge that involves x (resp. y).

We now need to connect the minimal outer nodes and the maximal outer nodes. We do
this by creating paths: let

ELpath = {((u, x, i), (u, x, i− 1)) : u ∈ U, x ∈ X, i ∈ {2, . . . kL}}, and
ERpath = {((v, y, i), (v, y, i+ 1)) : v ∈ V, y ∈ Y, i ∈ [kR − 1]}.

Finally, for technical reasons we need to add edges internally in each group in each
copy of G̃: let ELgroup = {((a, e), (a′, e)) : e ∈ EH ∧ a, a′ ∈ Γ(u) for some u ∈ U}, and let
ERgroup = {((b, e), (b′, e)) : e ∈ EH ∧ b, b′ ∈ Γ(v) for some v ∈ V }.

Our final edge set is the union of all of these, namely Eout ∪Ein ∪ELcon ∪ERcon ∪ELpath ∪
ERpath ∪ ELgroup ∪ ERgroup.

3.1.1 Analysis
The first step is to show that if there is a small REP-cover for the original Min-Rep instance,
then there is a k-spanner with low maximum degree. To do this we will use the notion of a
canonical path for an outer edge. Consider an outer edge ((u, x, kL), (v, y, kR)). A path from
(u, x, kL) to (v, y, kR) is canonical it if includes kL − 1 path edges, followed by a connection
edge, an inner edge, another connection edge, and then kR − 1 path edges. Note that any
such path has length kL + kR + 1 = k, so can be used to span the outer edge. Furthermore,
note that any such path corresponds to selecting two nodes (the inner nodes hit by the path)
that cover the {u, v} superedge in the original Min-Rep instance.

E. Chlamtáč and M. Dinitz 91

It is not hard to see that the only way to span an outer edge is either through a canonical
path (which corresponds to a way of covering the associated superedge in the Min-Rep
instance) or including the edge itself. This means that we can span all outer edges by using
canonical paths corresponding to a REP-cover, and that this is the only way spanning outer
edges. Since in a YES instance there is a REP-cover in which only a single node is selected
per group, we can use those canonical paths to construct a k-spanner with maximum degree
at most dH .

I Lemma 14. If we start with a YES instance of Min-Rep, then there is a k-spanner of G
which has maximum degree at most dH + 1.

Proof. Since we are in a YES instance, for each u ∈ U there is some f(u) ∈ Γ(u) and for
each v ∈ V there is some f(v) ∈ Γ(v) so that {f(u), f(v)} ∈ Ẽ for all {u, v} ∈ E′. Our
spanner contains all edges in ELgroup and ERgroup as well as all edges in ELpath and ERpath. It
also contains the connection edges suggested by the REP-cover: for every u ∈ U and x ∈ X
and (x, y) ∈ EH , it contains the connection edge ((u, x, 1), (f(u), (x, y))). Similarly, for every
v ∈ V and y ∈ Y and (x, y) ∈ EH , it contains the connection edge ((f(v), (x, y)), (v, y, 1)).
Finally, it contains the appropriate inner edges: for every {u, v} ∈ E′ with u ∈ U and v ∈ V
and every e ∈ EH , we add the inner edge ((f(u), e), (f(v), e)).

In this spanner, the degree of outer nodes which are not minimal is at most 2 (the 2
incident path edges), and the degree of inner nodes is at most dG′ + 2|Σ| + 1 (since they
are incident on one connection edge, 2|Σ| group edges, and dG′ inner edges). The degree
of a minimal outer node is at most dH + 1, since it is incident on 1 path edge and for each
edge incident on the second coordinate in EH it is incident to a single inner node. Thus the
maximum degree of the spanner is at most max{dG′ + 2|Σ|+ 1, dH + 1} = dH + 1 as claimed.

It remains to show that this is indeed a valid spanner. The only edges not included are
the outer edges and some of the connection edges and inner edges, so we simply need to
prove that they are spanned by paths of length at most k. For connection edges this is trivial.
Consider some edge ((u, x, 1), (a, (x, y))) ∈ ELcon. Clearly there is a path of length two that
spans it: an included connection edge from (u, x, 1) to (f(u), (x, y)), followed by a group
edge from (f(u), (x, y)) to (a, (x, y)). A similar path exists (in the opposite direction) for
connection edges in ERcon.

Similarly, consider an inner edge ((a, e), (b, e)) which is not in the spanner. Let u ∈ U
and v ∈ V so that a ∈ Γ(u) and b ∈ Γ(v). Then {u, v} ∈ E′, so our spanner contains an
inner edge ((f(u), e), (f(v), e)). So there is a path of length three in our spanner from (a, e)
to (b, e), namely (a, e) → (f(u), e) → (f(v), e) → (b, e), where the first and last edges are
group edges and the middle edge is an inner edge.

Now consider an outer edge ((u, x, kL), (v, y, kR)). We can span it by using a canonical
path, where the first connection edge will be from (u, x, 1) to (f(u), (x, y)), the inner edge
will be from (f(u), (x, y)) to (f(v), (x, y)), and the second connection edge will be from
(f(v), (x, y)) to (v, y, 1) (this fixes the path edges used as well). Note that all of these
edges exist in the spanner, since the connection edges are included by construction and the
inner edge must exist because this is a YES instance, i.e. because {f(u), f(v)} ∈ Ẽ for all
{u, v} ∈ E′. Thus this is indeed a path in the spanner, and it clearly has length k. J

On the other hand, since in a NO-instance there are no small REP-covers, any spanner
must include either many canonical paths or many outer edges. This lets us prove that in
this case every k-spanner has some node with large degree.

I Lemma 15. If we start with a NO instance on Min-Rep, then every k-spanner of G has
maximum degree at least (s/3)dH

APPROX/RANDOM’14

92 Lowest Degree k-Spanner: Approximation and Hardness

Proof. We will prove the contrapositive, that if there is a k-spanner of G with maximum
degree less than (s/3)dH then there is a REP-cover of size less than s(|U |+ |V |) (and thus
we did not start with a NO instance). Let Ĝ be such a spanner. We create a bucket B(x,y)
for each edge (x, y) ∈ EH , which will contain a collection of outer edges and connection edges
that are in Ĝ. For each outer edge ((u, x, kL), (v, y, kR)) that is in E(Ĝ), we add it to the
bucket B(x,y). Similarly, for each connection edge ((u, x, 1), (a, (x, y))) that is in ELcon ∩E(Ĝ)
we add it to B(x,y), as well as each connection edge ((b, (x, y)), (v, y, 1)) ∈ ERcon∩E(Ĝ). Since
Ĝ has maximum degree less than (s/3)dH , the total number of edges in buckets (i.e. the
total number of outer and connection edges in Ĝ) is less than |U ||X|(s/3)dH (the number of
outer edges) plus |U ||X|(s/3)dH + |V ||Y |(s/3)dH (the number of connection edges), for a
total of |U ||X|sdH edges (since both G′ and H are balanced and regular).

Since H is regular we know that |X|dH = |EH |. Thus there must exist some bucket
with less than s|U | = s|V | edges. Let B(x,y) be this bucket. We will create a REP-cover as
follows. For each edge ((u, x, 1), (a, (x, y))) ∈ ELcon∩B(x,y) we will include a and for each edge
((b, (x, y)), (v, y, 1)) ∈ ERcon∩B(x,y) we will include b. For each outer edge ((u, x, kL), (v, y, kR))
we will include an arbitrary vertex in Γ(u) and an arbitrary vertex in Γ(v) that are adjacent
in G̃ (such vertices must exist in order for the Min-Rep instance to be satisfiable at all).
Clearly this cover has size less than 2|B(x,y)| ≤ 2s|U | = s(|U |+ |V |).

It only remains to show that this is a valid cover. To see this, consider an arbitrary
superedge, say {u, v}, and the associated outer edge from (u, x, kL) to (v, y, kR) (where here
x and y are the same as in our special bucket). It is clear that by construction the only
paths of length at most k which can span an outer edge are either the outer edge itself or the
canonical paths. In the former case we explicitly added an arbitrary pair of nodes that cover
{u, v}. In the second case, the existence of a canonical path in the spanner means that the
connection edges it uses are in the bucket. This in turn means that the inner nodes they are
incident on were added to the REP-cover, and since the canonical path uses the inner edge
between them they must in fact cover the {u, v} superedge. Thus we have a valid REP-cover
of size less than s(|U |+ |V |). J

We can now use Lemmas 14 and 15 to prove the desired hardness for Directed LDkS.

I Theorem 16. Unless NP ⊆ DTIME(2polylog(n)), there is a constant γ > 0 so that no
polynomial time algorithm can approximate Directed LDkS to a factor better than ∆γ (for
any integer k ≥ 3).

Proof. Lemmas 14 and 15, when combined with Theorem 13, imply hardness of Ω(s). With
the chosen value of dH , it is easy to verify that ∆ is achieved at either maximal or minimal
outer nodes. The degree in G of the former is at most dG′dH + 1 = O(d2

G′ + dG′ |Σ|), while
the latter have degree at most |Σ|dH + 1 = O(dG′ |Σ| + |Σ|2). If k = 3 or 4 then the the
maximal nodes might also be minimal, and so have degree equal to the sum of those bounds.
But for any k ≥ 3 we have that ∆ ≤ O(d2

G′ + |Σ|2). Since we specifically chose to use hard
Min-Rep instances where dG′ and |Σ| are polynomial in s, this proves the theorem. J

3.2 Undirected LDkS
We now want to handle the undirected case (again, we only give an outline). This is
complicated primarily because switching edges to being undirected creates new paths that
the spanner might use. In the directed setting, if an outer edge was not in the spanner then
the only way for it to be spanned was to use a canonical path, which essentially determined
the “suggested" REP-cover for the Min-Rep instance. Once we move to the undirected setting

E. Chlamtáč and M. Dinitz 93

there is another possibility: an outer edge could be spanned by a path consisting entirely of
outer edges. This was not possible with directed edges because all outer edges were directed
into V Rout. These new paths are problematic, since if an outer edge is spanned in this way
there is no suggested REP-cover. Thus we will try to make sure that no such paths actually
exist.

We will need to start with hard Min-Rep instances with some extra properties: namely,
we want large supergirth and dG′ ≥ |Σ|. This can be achieved using a simple modification
of [11], giving the following lemma.

I Lemma 17. Unless NP ⊆ BPTIME(npolylog(n)), there is no polynomial time algorithm
that can distinguish between instances of Min-Rep in which there is a REP-cover of size
|U | + |V | (i.e. a YES instance) and instances in which every REP-cover has size at least
s(|U |+ |V |), even when all instances are guaranteed to have the following properties:
1. The girth of the supergraph is larger than k + 1,
2. There is some value dG′ so that all degrees in the supergraph are within a factor of 2 of

dG′ ,
3. s, dG′ , and |Σ| are all polynomials of each other, and
4. dG′ ≥ |Σ|.

We will also use a balanced regular bipartite graph H as before, but instead of being the
(directed) complete bipartite graph, H will be a balanced regular bipartite graph of girth
at least k + 2 and degree dH (note that such graphs exist as long as the number of nodes
nH = |X| + |Y | = 2|X| is sufficiently large, e.g. as long as nHdH ≤ n

1+ 1
3k2

H [3]). We will
set dH = dG′ , so the number of outer edges incident on each maximal outer node of G is
d = dHdG′ = d2

G′ .
We start with the same graph G as in the directed setting (although with undirected

edges, and using Min-Rep instances from Lemma 17).
We will then subsample in essentially the same way as [11]: for every outer edge

{(u, x, kL), (v, y, kR)} we will flip an independent coin, keeping the edge with probabil-
ity p = α log |Σ|

d and removing it with probability 1− p (we will set α = d
k+2

2(k+1) /(4 log |Σ|)).
If we remove it we will also remove the associated inner edges, i.e. we will remove all inner
edges of the form {(a, {x, y}), (b, {x, y})} where a ∈ Γ(u) and b ∈ Γ(v). This gives us a new
graph Gα.

Call an outer edge of Gα bad if it is part of a cycle in Gα consisting only of outer edges of
length at most k + 1. We will see that there are not too many bad edges, so we then create
our final instance of LDkS by removing all bad edges (and associated inner edges) from Gα,
giving us a new graph Ĝα. Intuitively Ĝα is essentially the same as Gα, since there are so
few bad edges in Gα.

3.2.1 Analysis
We can still build a spanner using canonical paths corresponding to a REP-cover of each
subsampled instance, so if we start with a YES instance we can still build a spanner of Ĝα
with small maximum degree. This is essentially the same as Lemma 14.

I Lemma 18. If we started out with a YES instance of Min-Rep, there is a k-spanner of
Ĝα with maximum degree at most max{dH + 1, d

1
k+1
G′ + 2|Σ|+ 1}.

For each outer edge ((u, x, kL), (v, y, kR)) in G, call a path from (u, x, kL) to (v, y, kR)
bad if it contains only outer edges and has length at most k (and larger than 1). So an outer

APPROX/RANDOM’14

94 Lowest Degree k-Spanner: Approximation and Hardness

edge is bad if and only if there is a bad path between its endpoints. We begin by analyzing
the number of bad paths for any fixed outer edge in the original construction G (before
subsampling). The trivial bound would be dk−1, but because G′ and H both have large
girth we can do better. This is the reason we needed to start out with already subsampled
instances of Min-Rep (i.e. why we had to start with instances based on [11] rather than
generic hard Min-Rep instances, like those from Theorem 13).

I Lemma 19. For any outer edge, the number of bad paths is at most O(4kd k−1
2).

Lemma 19 now allows us to upper bound the number of bad edges in Gα, since we set α
to be low enough that we expect all of the bad paths in G to be missing at least one edge in
Gα.

I Lemma 20. With probability at least 3/4 the number of outer edges in Gα that are bad is
at most |U | · |X| · dH

Recall that our construction started with |EH | = |X|dH copies of the original Min-Rep
instance, and each outer edge is associated with a single such instance. So in Gα the average
instance has at most |U | bad edges, and thus by Markov at least |EH |/2 of the instances have
at most 2|U | bad edges. It is well-known that removing only |U | superedges of a Min-Rep
instance affects the size of the optimal REP-cover in a NO instance by at most a constant
factor (see e.g. [11] for a proof of this). So Ĝα is essentially Gα. So now that there are no
bad edges, the only ways to span an outer edge in Ĝα are the edge itself or a canonical
path, so we are essentially back to the directed case (except that we can only use 1/2 of
the |EH | Min-Rep instances to prove our bound, but that is plenty). This implies that in a
NO instance all spanners must have large maximum degree, through an analysis similar to
Lemma 15.

I Lemma 21. It we started out with a NO instance of Min-Rep, any k-spanner of Ĝα must
have a node of degree at least Ω̃(dh · d

1
2(k+1)
G′).

The main hardness theorem is now implied by the chosen parameters.

I Theorem 22. Unless NP ⊆ BPTIME(npolylog(n)), there is no algorithm that can approx-
imate Lowest Degree k-Spanner on undirected graphs to a factor better than ∆Ω(1/k)

(for any integer k ≥ 3).

References
1 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse

spanners of weighted graphs. Discrete Comput. Geom., 9(1):81–100, 1993.
2 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners

and (α, β)-spanners. ACM Trans. Algorithms, 7(1):5:1–5:26, December 2010.
3 Mohsen Bayati, Andrea Montanari, and Amin Saberi. Generating random graphs with

large girth. In SODA’09, pages 566–575, 2009.
4 Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and

Grigory Yaroslavtsev. Improved approximation for the directed spanner problem. In ICALP
(1), pages 1–12, 2011.

5 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. In SODA’09, pages 932–941, 2009.

6 T.-H. Hubert Chan, Michael Dinitz, and Anupam Gupta. Spanners with slack. In Proceed-
ings of the 14th Annual European Symposium on Algorithms, ESA, pages 196–207, 2006.

E. Chlamtáč and M. Dinitz 95

7 Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. New sparseness results
on graph spanners. International Journal of Computational Geometry and Applications,
5(1):125–144, 1995.

8 S. Chechik, M. Langberg, David Peleg, and L. Roditty. Fault-tolerant spanners for general
graphs. In STOC’09, pages 435–444, New York, NY, USA, 2009. ACM.

9 Shiri Chechik. New additive spanners. In SODA’13, pages 498–512, 2013.
10 Eden Chlamtáč, Michael Dinitz, and Robert Krauthgamer. Everywhere-sparse spanners

via dense subgraphs. FOCS’12, 0:758–767, 2012.
11 Michael Dinitz, Guy Kortsarz, and Ran Raz. Label cover instances with large girth and the

hardness of approximating basic k-spanner. In ICALP’12, pages 290–301, Berlin, Heidel-
berg, 2012. Springer-Verlag.

12 Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-based linear programs.
In STOC’11, pages 323–332, New York, NY, USA, 2011. ACM.

13 Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: Better and simpler. In
PODC’11, pages 169–178, 2011.

14 Yevgeniy Dodis and Sanjeev Khanna. Designing networks with bounded pairwise dis-
tance. In Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing,
STOC’99, pages 750–759, New York, NY, USA, 1999. ACM.

15 Michael Elkin and David Peleg. The hardness of approximating spanner problems. In
STACS, pages 370–381, 2000.

16 Michael Elkin and David Peleg. Strong inapproximability of the basic k-spanner problem.
In ICALP, pages 636–647, 2000.

17 Michael Elkin and David Peleg. Approximating k-spanner problems for k > 2. Theor.
Comput. Sci., 337(1-3):249–277, 2005.

18 Michael Elkin and Shay Solomon. Fast constructions of light-weight spanners for general
graphs. In In Proc. of 24th SODA, pages 513–525, 2013.

19 Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30(3):432–450,
2001.

20 Guy Kortsarz and David Peleg. Generating sparse 2-spanners. J. Algorithms, 17(2):222–236,
1994.

21 Guy Kortsarz and David Peleg. Generating low-degree 2-spanners. SIAM J. Comput.,
27(5):1438–1456, 1998.

22 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–
116, 1989.

23 David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. SIAM J.
Comput., 18(4):740–747, 1989.

24 Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees
to within one of optimal. In STOC’07, pages 661–670, 2007.

25 Mikkel Thorup and Uri Zwick. Compact routing schemes. In SPAA’01, pages 1–10, New
York, NY, USA, 2001. ACM.

26 Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, January
2005.

APPROX/RANDOM’14

	Introduction
	Our results and techniques
	Related Work
	Preliminaries

	The algorithm
	LP relaxation, rounding, and approximation guarantee
	Sketch of proof of correctness

	Hardness of Approximation
	Directed LDkS
	Analysis

	Undirected LDkS
	Analysis

