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Abstract
We give the first examples of non-trivially positively-useless predicates subject only to P 6= NP. In
particular, for every constraint function Q : {−1, 1}4 → R, we construct Contraint-Satisfaction-
Problem (CSP) instances without negations which have value at least 1 − ε when evaluted for
the arity-four odd-parity predicate, yet it is NP-hard to find a solution with value significantly
better than a random biased assignment when evaluated for Q. More generally, we show that all
parities except one are positively useless.

Although we are not able to exhibit a single protocol producing hard instances when evaluated
for every Q, we show that two protocols do the trick. The first protocol is the classical one used
by Håstad with a twist. We extend the protocol to multilayered Label Cover and employ a
particular distribution over layers in order to limit moments of table biases. The second protocol
is a modification of Chan’s multi-question protocol where queried tuples of Label Cover vertices
are randomized in such a way that the tables can be seen as being independently sampled
from a common distribution and in effect having identical expected biases. We believe that our
techniques may prove useful in further analyzing the approximability of CSPs without negations.
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1 Introduction

We study the usefulness of boolean maximum Constraint Satisfaction Problems (CSPs). The
Width-3 Parity Problem (Max E3-Even) and the Width-3 Satisfiability Problem
(Max E3-SAT) are two canonical CSPs. In Max E3-Even resp. Max E3-SAT, an instance
consists of a collection of constraints of the form x′i1 ⊕ x

′
i2
⊕ x′i3 resp. x′i1 ∨ x

′
i2
∨ x′i3 where ⊕

denotes exclusive or and x′i is either a variable or its negation. A solution to an instance
consists of an assignment to the variables and its value is the fraction of satisfied constraints.
For the sake of analysis, varible domains is taken to be {−1, 1} where ‘1’ is interpreted as
false and ‘−1’ as true. Similarly, constraints can be seen as a function from {−1, 1}3 to
the real numbers applied to triples of variables, or their negations, and where a satisfying
assignment of the variables is awarded the value 1. More generally, we define a CSP, denoted
Max CSP(P ), by specifying the constraint function P : {−1, 1}k → R to be used instead of
the 3-Even or 3-SAT constraints. The number of variables k which P acts on is called its
width and if the range of P is contained in {0, 1}, then P is called a predicate.

It turns out that for almost all predicates, it is NP-hard to find an assignment satisfying
every constraint [19] and we turn our attention to approximations. We say that an algorithm
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A is a (factor) c-approximation (algorithm) if, given any instance, the value of the solution
produced by A is within a factor c of the optimal value. One of the simplest approximation
algorithms one could think of is to choose a uniform at random (u.a.r) assignment. This
algorithm can be derandomized and, via linearity of expectation, constitutes an E [P ]
approximation. It turns out that for Max 3-Even and Max 3-SAT, this naive algorithm
achieves the optimal constant-factor approximation assuming P 6= NP. More specifically, for
every ε > 0, it is NP-hard to distinguish whether a Max 3-Even instance has value at least
1− ε or at most 1/2 + ε. Predicates, and CSPs, with the property that it is NP-hard to beat
a random assignment are said to be approximation resistant. In a recent result by Chan [3],
combined with a result by Håstad [11], it turns out that asymptotically a fraction one of
predicates as k grows are in fact approximation resistant.

Inspired by stronger properties than approximability, Austrin and Håstad [1] introduced
the concepts of usefulness and uselessness. A predicate P is said to be (computationally)
useful for a constraint function Q if there exists a δ > 0 and a polynomial-time algorithm
which given instances of value at least 1−δ evaluated for P , produces solutions of value at least
E [Q]+δ evaluated for Q. In other words, high-valued instances for P permit polynomial-time
non-trivial solutions for Q. If there is no such algorithm, then P is said to be useless for Q.
If P is useful for some (resp. no) constraint functions Q : {−1, 1}k → R, then P is simply
said to be useful (resp. useless). Note that assuming P 6= NP, uselessness can be established
by showing NP-hardness. When P = NP, uselessness is instead essentially captured by the
related definition called information-theoretic uselessness. However, information-theoretical
usefulness is only of interest with respect to specific constraint functions as every constraint
function is trivially information-theoretically useful for itself and hence useful given P = NP.

Assuming the Unique Games Conjecture (UGC) [14], Austrin and Håstad [1] gave a
complete characterization of useless predicates: a predicate is useless if and only if there
exists a pairwise-uniform distribution supported on P−1(1). This can be compared to the
UGC-based result of Austrin and Mossel [2] which showed the same condition to be sufficient
– but not necessary – for approximation resistance. This connection is not a coincidence;
the general hardness of Austrin and Mossel inspired the study of Austrin and Håstad, and
additionally, a predicate P is approximation resistant if and only if P is useless for itself.
Consequently, every useless predicate is approximation resistant.

Similarly inspired to give a characterization of approximation resistance, Khot et al. [16]
introduced the concept of strong approximation resistance where, for a predicate P , it is hard
to not only find a solution with constant value greater than E [P ] but it is hard to find any
solutions with value significantly different than E [P ], i.e., outside the range EP ±o(1). Khot
et al. gave sufficient and necessary condition of so called strong approximation resistance
assuming the UGC. Curiously, if a predicate P is strongly approximation resistant, then
P is useless for P as well as its complement 1− P . To the best of our understanding, the
converse is however not known; uselessness of P for P resp. 1− P can be establishing using
distinct instances while strong approximation resistance demands that there are instances
which are simultaneously useless for P and 1− P . Generalizing slightly, Austrin and Håstad
named this stronger property adaptive uselessness for which we indeed have an equivalence.

Although we have a good understanding of the approximability of predicates assuming
the UGC, until recently, little was known about approximation resistance conditioned only on
P 6= NP. Using new instance constructions, Chan [3] showed the approximation resistance of
all predicates P such that P−1(1) contains a group supporting a pairwise-uniform distribution.
Again, by Håstad [11], the fraction of such predicates approaches one with the width. A
caveat to this and other notable results is that the study is limited to CSP instances where
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constraints act on both variables and their negations. This is the natural formulation for
Max E3-SAT while it may be less reasonable for other problems. One well-known example
of the distinction between allowing or not negations in a problem is the width-two not-equal
predicate. If we permit negations, the predicate can encode both equality and inequality,
and the resulting CSP is the Max 2-Lin-2 problem which is presently known to have a
constant-approximation hardness of 11

12 + ε. When negations are not permitted, the problem
corresponds to Max Cut which has a present constant-approximation hardness of 16

17 + ε

[10, 20]. Assuming the UGC, these two problems are in fact known to have the same
approximability [15] but there are many other problems for which the hardness differs, such
as Max E3-SAT where all constraints can be satisfied with an all-true assignment.

We denote by Max CSP+(P) the restriction of Max CSP(P) where negations of variables
are not automatically allowed and we call such instances monotone or “without negations”. It
turns out that a naive approximation algorithm for these problems can benefit from assigning
variables the value 1 or −1 with different probabilities. The maximum expected value
of such an algorithm is given by E+P

def= maxb∗ Ex1,...,xk∼b∗{−1,1} [P (x1, . . . ,xk)] , where
x ∼b {−1, 1} denotes drawing x with expectation b. When it is NP-hard to distinguish Max
CSP+(P) instances which have value at least 1− ε from instances of value at most E+P + ε,
we say that P is positively approximation resistant. Similarly, we say that P is positively
useful for a constraint-function Q if there exist an ε > 0, there exists a polynomial-time
algorithm which given monotone instances with value at least 1− ε for P , produces solutions
with value at least E+Q+ ε for Q. If P is not positively useful for Q, then it is positively
useless for Q, and P is simply positively useless if it is so for every Q.

Assuming the UGC, Austrin and Håstad [1] gave a complete characterization also of
positively-useless predicates under the UGC: P is positively useless if and only if P−1(1)
supports a distribution where all biases are identical and (pairwise) correlations are non-
negative and identical. For a more in-depth discussion and motivation of usefulness, we refer
the reader to Austrin and Håstad [1].

Although UGC-based results are conditional, the conjecture has arguably contributed
greatly in and outside the field of Approximability in the form of insights and techniques
which have found applications also without the conjecture [17, 5], as well as promoting results
which have subsequently been proven subject only to P 6= NP [3, 9].

General conditional results have yet to be discovered for monotone CSPs. Despite the UGC
implying that a fraction one of predicates for increasing width are positively approximation
resistant, [1, 11], we are only aware of a handful of non-trivial natural predicates for which
hardness is known subject only to P 6= NP. In particular, such results have been restricted
to predicates where the optimal bias corresponds to balanced bits, i.e., E+Q = EQ. One
notable example is Max E4-Set Splitting, shown approximation resistant by Håstad [10],
and generalized to greater widths by Guruswami [7]. Note that Max Ek-Set Splitting is
the same problem as Max CSP+(k-NAE) where k-NAE is the width-k predicate accepting
heterogenous assignments. While there are a few results on the approximation resistance
of monotone CSPs subject to P 6= NP, to the best of our knowledge, there were no known
non-trivial positively-useless predicates prior to this work.

Organization. Our contributions are formally stated in Section 2, while Section 3 covers
the analytical preliminaries, and Section 4 gives an overview to the two protocols and their
analyses. Despite a generous page limit, we unfortunately only include the multilayered
protocol, in Section 5 and its analysis, in Section 6. For the multiple-questions protocol,
the generalization to other parities, and a proof of the hardness of the reduced-from Label
Cover variant, we refer the reader to the full version.

APPROX/RANDOM’14
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2 Our Contributions

k-Even k-Odd
width k = 2 triv. useless pos. useful
k 6= 2 even triv. useless pos. useless
k odd triv. useless triv. useless

The positive usefulness of parities if P 6= NP.

For every k ∈ N≥1, let k-Even (resp. k-Odd)
be the width-k predicate satisfied by k-tuples
containing an even (resp. odd) number of −1’s.
Certain predicates, such as k-Even, are known
to be trivially positively useless because their
monotone instances are satisfied by an all-1 or
an all-(−1) assignment. In this work, we give the
first examples of non-trivially positively-useless
predicates subject only to P 6= NP.

I Theorem 1. The predicate 4-Odd is positively useless iff P 6= NP.

For presentational clarity, our analysis is chiefly concerned with k = 4 but the result
generalizes to k-Odd for every even k ≥ 4. We refer the reader to the full version for this
generalization.

We note that also k-Odd is trivially satisfiable for odd k, and that for k = 2, Max
CSP+(k-Odd) is the Max Cut problem which is not positively useless since it has a non-
trivial approximation by, e.g., Williamson and Goemans [6]. Consequently, the smallest
parity candidate for positive uselessness is 4-Odd and more generally we show the following
complete characterization of the positive usefulness of parities.

I Theorem 2. Let P be even or odd parity of width k ≥ 1. Then, P is positively useful if
and only if P is 2-Odd or P = NP.

A notable feature of our proof of Theorem 1 is that we exhibit two distinct protocols
such that for every constraint function Q, one of the two protocols produce positively-useless
instances for Q. While uselessness is implicit in many approximation-resistance proofs, to
our knowledge, none of these results involve the combination of multiple protocols. This
construction is somewhat non-intuitive, especially considering that a result by Austrin and
Håstad [1] shows that a single protocol suffices for every positively-useless predicate assuming
the UGC.

In the following sections we present a multilayered protocol and a multiple-questions
protocol. The former establishes the uselessness of 4-Odd for every Q with positive highest
Fourier coefficient while the second establishes uselessness for Q’s with negative coefficient.
Together they imply Theorem 1.

I Lemma 3. The multilayered reduction RML,γ,s from LC implies that 4-Odd is positively
useless for Q whenever Q̂[4] ≥ 0, subject to P 6= NP.

I Lemma 4. The multiple-questions reduction RMQ,γ,p,M from LC implies that 4-Odd is
positively useless for Q whenever Q̂[4] ≤ 0, subject to P 6= NP.

3 Preliminaries

Random variables are for clarity denoted with bold font, as in x, while vectors are denoted
with overset arrows, as in ~x. Vector multiplication is taken point wise. We let indexing of n
elements range from 0 through n−1 and denote by [n] the integer interval {0, . . . , n−1}. For
a statement S, the indicator 1 {S} is 1 if S is true and otherwise 0. For a function π : R→ L,
we let π(T ) denote the image of π for the set T ⊆ R, and we use the notation π2(T ) for the
set of elements which T maps to an odd number of times.
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For sets S and T we may denote their union S ] T with the added condition that S and
T are disjoint. We denote x being drawn uniformly at random (u.a.r.) from S with x ∼ S.
When S consists of two real numbers a < b, typically −1 and 1, and µ ∈ [a, b], we let x ∼µ S
indicate the distribution where x is chosen from S with expectation µ.

With respect to an implicit graph G, N(v) signifies the neighborhood of a vertex v, the
notation u ∼ v that the vertices u and v are neighbors, and for a sequence of vertex sets
U1, . . . , Uk ⊆ V [G], the set of paths in G contained in U1×· · ·×Uk is denoted E(U1, . . . , Uk).
In particular, E(U,W ) is the set of edges between U and W .

Orthogonal Decompositions

For a function f : {−1, 1}n → R, we define f(~x) =
∑
S⊆[n] f̂S

∏
i∈S xi as the Fourier

expansion of f where the quantity f̂S is E~x
[
f(~x)

∏
i∈S xi

]
. We denote xS =

∏
i∈S xi.

For every S ⊆ [n], min f ≤ f̂S ≤ max f and Parseval’s Identity is of notable interest:∑
f̂2
S = E

[
f2]. For a set Ω and function f : Ωn → R, we shall also use the Efron-

Stein decomposition {fS}S⊆[n] where fS(~x) def=
∑
T⊆S(−1)|S\T |E [f(~y) |~yT = ~xT ] , satisfying

f =
∑
fS ; fS(~x) only depends on {xi}i∈S ; and whenever T \ S 6= ∅, E [f(~x) | ~xT ] = 0. For a

motivation of this decomposition, we refer the reader to Mossel [18].

I Definition 5. For any 0 ≤ γ ≤ 1 and f : {−1, 1}n → R, the noise operator applied to f ,
T1−γf , is defined as T1−γf(~x) def= E~y [f ] where independently for each i ∈ [n], yi is set to xi
with probability 1− γ and otherwise sampled uniformly at random from {−1, 1}.

For a function f : {−1, 1}n → R, the Fourier expansion of T1−γf is particularly simple:∑
S(1− γ)|S|f̂SxS . Additionally, mean values are invariant of noise: E [T1−γf ] = E [f ].

3.1 Label Cover and Inapproximability
The Label Cover (LC) problem is a common starting point of strong inapproximability
results. In particular, we will concern ourselves with a smooth multilayered variant which has
an additional property which we call path samplability. Multilayered LC, or PCPs, were first
introduced by Dinur et al. [4] for studying the approximability of Hypergraph Vertex
Cover.

I Definition 6. An instance (G, {Li}[mLC], {πe}E(G)) of the mLC-multilayered maximization
problem Label Cover consists of mLC label sets L0, . . . , LmLC−1, and an mLC-partite graph
G = (V0 ] · · · ] VmLC−1, E) associating for every pair of vertex sets Va, Vb, a < b; and edge
(u,v) ∈ E(Va, Vb), a projection πv,u : Lb → La. A solution to the instance consists of a
labeling λ :

⊎
Va →

⊎
La and its value is the maximum fraction of edges between two distinct

vertex sets for which the labeling satisfies the associated projection:

max
a<b

P
(u,v)∼E(Va,Vb)

{πv,u(λ(v)) = λ(u)} .

For a vertex v ∈
⊎
Vi, we will also denote by L(v) the label set Li where Vi is the unique

layer containing v. When restricting ourselves to the more common bipartite case, we denote
U = V0;L = L0;V = V1, and R = L1. Since the label set L is typically smaller than R, we
shall also refer to the vertices U resp. V as small- resp. large-side vertices. Smoothness of
projections is a condition akin to but weaker than unique projections introduced by Khot [13]
for analyzing approximate coloring of 3-colorable hypergraphs. We use the following definition
of smoothness which is equivalent up to constants.

APPROX/RANDOM’14



438 Parity is Positively Useless

I Definition 7. An mLC-multilayered LC instance is (J, ξ)-smooth when for every 0 ≤ a <
b < mLC, vertex v ∈ Vb, and set of at most J labels S ⊆ Lb, over a u.a.r. neighbor u ∈ Va of
v,

P
u∼Va∩N(v)

{|πv,u(S)| 6= |S|} ≤ ξ. (1)

The most well-used bipartite LC constructions are known to be biregular and has the
following sampling property: choosing a vertex v u.a.r. from either layer and a u.a.r. neighbor
of v yields a u.a.r. edge in the graph. Our analysis requires a slightly stronger property:
for every two LC layers a < b, choosing a u.a.r. path ~p from the first to the last layer and
considering the vertices chosen in Va and Vb yields a u.a.r. edge between Va and Vb. We call
this property path samplability and note that it is relatively easy to verify that, e.g., Khot’s
multilayered construction [13] satisfies this property. For a proof, we refer the reader to the
full version.

I Theorem 8. For every J, ξ, εLC > 0 and mLC ≥ 2, there exist path-samplable (J, ξ)-smooth
mLC-multilayered LC instances for which it is NP-hard to distinguish instances of value 1
from instances of value at most εLC.

4 Protocols for Useless Instances

We have not been able to find a single protocol producing instances useless for every Q.
However, by combining a new protocol with a multilayered-variant of a classical protocol,
we argue that for every Q, at least one of these two protocols produces instances which are
positively useless for Q.

Håstad’s classical protocol [10] establishing the approximation resistance of 4-Odd with
negations, samples u.a.r. an edge (u,v) from a bipartite LC instance, issues one query to an
associated table fu – a collection of variables seen as a function – and three to an associated
table fv. With negations, each table can be assumed to have a balanced assignment of 1’s
and −1’s via a folding trick. From this, one can argue that instances in the no case have
value at most E [4-Odd] + ε, implying approximation resistance, i.e., the uselessness of 4-Odd
for 4-Odd. Without negations, the analysis does not carry through for the 4-Odd predicate
for a simple reason. Since the protocol always issues one query to the first layer and three to
the second, we could simply let the first layer consist entirely of −1’s and the second entirely
of 1’s. Every constraint would then include one variable assigned −1 and three assigned 1,
satisfying the 4-Odd predicate.1

Notably, Håstad’s protocol does show the positive uselessness of 4-Odd for some constraint
functions such as 4-Even. In turns out that a slight modification of the protocol suffices to
extend this to every Q such that Q̂[4] ≥ 0. The modification is to reduce from multilayered
LC instances and sample tables from pairs of layers according to a particular distribution.
The distribution ensures that the value analytically approximately corresponds to issuing
randomly the three queries to either the lower or higher of the two layers, rather than always
querying the higher layer thrice. This property ensures that whenever Q̂[4] ≥ 0, the optimal
table choices are essentially equally unbalanced. We note that a positive coefficient of Q̂[4]

1 Note that one can show the positive approximation resistance of 4-Odd using a protocol which chooses
a random u ∈ U , two neighbors v1, v2 ∼ u and issues two queries each to v1 and v2. A third possibility
is the protocol which on a multilayered instance issues one query each to two distinct layers and two
queries to a third. However, it turns out that there are still contraint functions Q for which one can
deduce non-trivial solutions to all three of these protocols.
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essentially means that even-parity assignments, such as zero, two, or four 1’s; have a positive
effect on the value while odd-parity assignments have a negative effect. This explanation
agrees with the intuition of the protocol – if we can use the hardness of Label Cover to
decouple the table queries, then we randomly query some table once and another thrice. We
should then expect biased tables to only be able to achieve greater probabilities of odd-parity
outcomes which is not beneficial.

Our second protocol is similar to Chan’s protocol [3] for groups supporting pairwise
independence. However, asking each table about several LC vertices serves a slightly different
purpose in our construction than for Chan’s hardness amplification. We construct constraints
by sampling some large number of edges from a bipartite LC instance and independently for
each edge and table, we ask the table about one of the two edge endpoints. This ensures
that for any fixed set of edges, the four tables are independently drawn with replacement
from a common distribution, implying that the four tables have the same expected bias. For
technical reasons, asking each table about a single random endpoint is not sufficient. We
pick many edges to ensure that each table is asked about both small-side and large-side
endpoints, and almost always choose the large-side endpoint to avoid certain deleterious
cases. Typically in the analysis of protocols showing approximation resistance, one argues
that when reducing

from low-valued LC instances, the value of the protocol roughly corresponds to issuing
independent queries to the respective chosen tables. Our construction does not have this
property and the arguments can be highly correlated even for low-valued LC instances.
However, we show that a certain kind of previously-known folding trick between arguments
to a table still works and is enough to argue that the tables cannot coordinate better than
independent biased assignments whenever Q̂[4] ≤ 0.

5 The Multilayered Classical Protocol

We introduce the distribution over LC layers alluded to in Section 4. The distribution and
lemmas are in particular taken from Guruswami et al., where the same was used to generate
arguments for ordering problems [8]. In particular, we are using slight reformulations of their
general distributions restricted to a domain of size k = 2.

For an integer s > 0, the distribution Ds could be seen as generating bit vectors by
choosing a random suffix-length 0 ≤ r < s, a prefix ~p of length s − r − 1, and producing
two random length-s strings (a,b), one with prefix p · (0) and one with prefix p · (1). This
ensures that we always produce pairs for which a < b.

I Definition 9. For two integers r, p ≥ 0, define Dr,p as the uniform distribution over
{2r · p, . . . , 2r · p+ 2r − 1}.

I Definition 10 (Special case k = 2 of Definition 11.2, [8]). The distribution Ds is a
distribution over pairs from [2s] defined as follows.
1. Pick a random r uniformly in [s].
2. Pick a random p uniformly in

[
2s−r−1].

3. Output (a,b) where a is sampled from Dr−1,2p and b from Dr−1,2p+1.

The crucial property that we use this distribution for is that in spite of the distribution
always generating pairs (a,b) for which a < b, when evaluated for discretized functions f and
g, their expected product w.r.t. the distribution is close to an expectation over distributions
where a and b are sampled independently.

APPROX/RANDOM’14
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In our analysis, we in particular use the following lemma which follows from discretizing
the domain [−1, 1] and applying properties of Ds separately to f and g.

I Lemma 11. Let s ≥ 0 and consider f, g : [2s] → [−1, 1]. Then for any integers q >
0; k1, k2 ≥ 0,∣∣∣∣ E

(a,b)∼Ds

[
f(a)k1g(b)k2

]
− E

r,p

[
E
Dr,p

[
f(a)k1

]
E
Dr,p

[
g(a)k2

]]∣∣∣∣ ≤ 2k1 + k2

q
+ 8
√
q

s
.

Proof. Deferred to Section 6. J

5.1 The Reduction
As is typical for LC reductions, we define a reduction to Max CSP+ instances by specifying a
probabilistic protocol where the weight of variable tuple in the produced instance corresponds
to the probability that it is generated by the protocol.
I Procedure 12 (The Multi-Layered Protocol reduction RML,γ,s). Let γ > 0; s ≥ 2 be ar-
bitrary. The reduction RML,γ,s from path-samplable M = 2s-multilayered LC instances
(G, {Li}[mLC], {πe}E(G)) is defined with the following protocol.
1. Sample a pair of layer indices (a,b) from Ds and an edge e = (wa,wb) from E(Va, Vb).
2. Draw ~x u.a.r. from {−1, 1}La ; ~y(1) and ~y(2) from {−1, 1}Lb ; and for each j ∈ Lb, set

y(3)
j = −xπe(j)y

(1)
j y(2)

j .
3. For each i ∈ La, resp. j ∈ Lb, sample ζ(0)

i , ζ
(1)
j , ζ

(2)
j , and ζ(3)

j ∼1−γ {−1, 1}.
4. Output a random permutation of the tuple(

f (wa)(~ζ(0)~x), f (wb)(~ζ(1)~y(1)), f (wb)(~ζ(2)~y(2)), f (wb)(~ζ(3)~y(3))
)
.

The distribution over pairs of vertices draws the pair (a,b) ∈ [2s]2 from Ds and out-
puts a random edge (wa,wb) ∈ E(Va, Vb). Note that path samplability of LC instances
implies that this distribution is equivalent to choosing a u.a.r. path ~W = (w0, . . . ,w2s−1) ∼
E(V0, . . . , V2s−1) and a pair (a,b) ∼ Ds, generating the tuple (wa,wb).

I Lemma 13 (Completeness). Reducing from a satisfiable LC instance I, the instance
RML,γ,s(I) produced by the Multilayered Protocol has value at least 1− 4γ when evaluated
for 4-Odd.

This proof is standard. Consider a dictatorship assignment of an arbitrary satisfying labeling.
If none of the coordinates used by the four dictators are noised, which happens with probability
at least 1− 4γ, then the tuple of values of the queried tables equals (x1, x2, x3,−x1x2x3) for
some x1, x2, x3 ∈ {−1, 1}. For the 4-Odd predicate, such tuples are awarded value 1 and in
effect, the expected value of the protocol is at least 1− 4γ.

I Lemma 14 (Soundness). Let ξ, J, εLC > 0; s ≥ 2. Whenever Q satisfies Q̂[4] ≥ 0 and the
reduced-from 2s-layered LC instance is path-samplable, (J, ξ)-smooth, and of value at most
εLC, then the instance produced by RML,γ,s has value at most

E+Q+ 2ξ + 2(1− γ)3J + 29

3
√
s

+
√
εLC

γ
.

Proof. Deferred to Section 6. J

For appropriate choices of constants, the completeness and soundness of the reduction
implies Theorem 3 – the uselessness for every Q such that Q̂[4] ≥ 0.
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6 Analysis of the Multilayered Protocol

In this section we complete the analysis of the multilayered protocol RML,γ,s. The analysis is
split into five parts. First, we argue that the claimed completeness and soundness of RML,γ,s
indeed implies Theorem 3 – the positive uselessness of constraint-functions Q satisfying
Q̂[4] ≥ 0. Second, we give an outline of the soundness analysis of Q, split its proof into
three lemmas, and argue that they imply the desired soundness. These three lemmas are
subsequently proved, and respectively analyze the decoupling of table arguments, properties
of the layer-distribution Ds, and the bounding the value of decoupled evaluations of Q with
averaged evaluations of Q.

6.1 Uselessness from the Protocol RML,γ,s

We argue that Theorem 3 in Section 2 follows from the supposed completeness and soundness
of the multilayered protocol.

Proof of Theorem 3. The lemma follows if we can argue that, assuming P 6= NP, for
arbitrary ε′ > 0 and Q′ : {−1, 1}4 → R such that Q̂′[4] ≥ 0, given a Max CSP+ instance
with value at least 1− ε when evaluated for 4-Odd, there is no polynomial-time algorithm to
determine if the value is at least E+Q′ + ε′ evaluated for Q′. If minQ′ = maxQ′, the claim
is trivial. Otherwise, we introduce the constraint function Q = Q′−minQ′

maxQ′−minQ′ and show the
statement for ε = ε′(maxQ′ −minQ′). Note in particular that the codomain of Q′ is [0, 1].

For the sake of contradiction, suppose that we had a polynomial-time algorithm A as
above for some ε > 0. Let γ = ε/4; ξ = ε/8; J ≥ ln1−γ(ε/8); q ≥ 210ε−1; s ≥ 26qε−2; and
εLC = γ2ε2/16. From Theorem 8, it is NP-hard to distinguish 2s-multilayered LC instances
of value 1 from path-samplable (J, ξ)-smooth instances of value at most εLC. Given such an
instance I, consider running the supposed algorithm A on the RML,γ,s(I). From Theorem 13,
RML,γ,s(I) has value at least 1 − ε evaluated for 4-Odd. Consequently, A produces in
polynomial time an instance of value at least E+Q+ ε for Q by the choice of parameters,
contradicting the assumption that P 6= NP. J

6.2 Properties of the Layer Distribution Ds
We prove the property Theorem 11 of the layer-distribution Ds.

I Lemma 15 (Special case k = 2 of Lemma 11.3, [8]). Let f be an arbitrary function from
[2s] to a set S. When r,p,a,b are chosen as in Theorem 10, for a random j ∈ {0, 1},

∑
σ∈S

E
r,p,j

[∣∣∣∣ P
a∼Dr,p

{f(a) = σ} − P
a∼Dr−1,2p+j

{f(a) = σ}
∣∣∣∣] ≤

√
|S|
s
.

Given two functions f, g : [2s]→ S, Theorem 15 implies that (f(a), g(b)) where (a,b) ∼ Ds
is close in distribution to (f(a), g(b)) where a,b are independently drawn from Dr,p where
r ∼ [s] ,p ∼

[
2s−r−1]. In particular, although a < b when drawn from Ds, the same event

only occurs with probability roughly 1/2 in the latter case.
The decoupling Theorem 11 stated in Section 5 is a corollary of Theorem 15. We refer

the interested reader to the full version for the proof.

6.3 Soundness of RML,γ,s

In this section, we prove the claimed soundness Theorem 14 of the RML,γ,s.

APPROX/RANDOM’14
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6.3.1 Notation
Let ρ def= 1 − γ and for natural numbers x, y, let x - y denote that x does not divide
y. Parametrized by an edge e ∈ E, we define the test distribution T e = T (u,v) which
independently samples {ζ(t)}3t=0 as random ρ-biased strings; draws ~x, ~y(1), ~y(2) uniformly at
random; and for every j ∈ Lb, sets y(3)

j = −xπ(e)(j)y
(1)
j y(2)

j . For notational clarity, we shall
let the vertices wa, and wb be implicit and denote N = N(wb)∩ Va, π = π(wb,wa), f = fwa ,
g = f (wb), and T = T (wa,wb). For a sequence of vertices ~w ∈ V (0)× · · · ×V (2s−1), introduce
the function δ ~w : [2s] → [−1, 1] as a shorthand for the bias of the table in Layer a, i.e.,
δ ~w(a) def= E~x

[
f (wa)(~x)

]
. Finally, introduce the value of the protocol as

Val def= E
Ds,e=(wa,wb),T

[
Q
(

f(ζ(0)~x),g(ζ(1)~y(1)),g(ζ(2)~y(2)),g(ζ(3)~y(3))
)]
,

and the argument-decoupled value,

Val⊥
def= E
Ds,e=(wa,wb),T

[
Q
(

E [f ] ,E [g] ,E [g] ,E [g]
)]
.

6.3.2 Outline
The proof outline is as follows. We argue that for low-valued LC instances, the value of
the protocol is not significantly altered by drawing the arguments to the queried tables
independently and uniformly at random. That is, the value of the protocol is approximately
that of Q

(
δ~w(a), δ~w(b), δ~w(b), δ~w(b)

)
over random choices of the path ~w and layer indices

a < b. Exploiting the the distribution Ds of (a,b), the value is roughly equal when
choosing a and b independently from a random distribution Dr,p. When a and b are drawn
independently, we are able to compare the value to Q

(
δ~w(a)+δ~w(b)

2 , . . . , δ
~w(a)+δ~w(b)

2

)
; which

can be seen as drawing two tables and for each query picking a random point from one of the
two tables with equal probability. In fact, this value and Q

(
δ~w(a), δ~w(b), δ~w(b), δ~w(b)

)
agree

up to and including third moments. More carefully, the difference between the value of the
protocol and the value of the random queries is given by −Q̂[4] ·

(
δ~w(a)−δ~w(b)

2

)4
which is non-

positive for Q̂[4] ≥ 0, in favor of the random queries. Consequently, the value of the protocol
is approximately bounded from above by Q

(
δ~w(a)+δ~w(b)

2 , . . . , δ
~w(a)+δ~w(b)

2

)
, which in turn is

bounded by the maximum over independent biased bits: E+Q = maxb∗ Q(b∗, b∗, b∗, b∗).

6.3.3 Steps of the Soundness Analysis
The formal proof is divided into three steps with their respective lemmas. The first lemma
argues that we can decouple table arguments when reducing from low-valued LC instances.
The methods used to prove this lemma are standard and should come as no surprise to those
familiar with the analysis of LC reductions.

I Lemma 16. When the reduced-from LC instance is (J, ξ)-smooth and of value at most
εLC, the value produced by the reduction RML,γ,s satisfies

|Val−Val⊥| ≤ 2ρ3J + 2ξ +
√
εLC

γ
.

In the second step, we prove properties of the layer-distribution Ds, Theorem 11, and
that decoupled arguments drawn according to the Ds distribution has a simple expression in
terms of the constraint-function Q.
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I Lemma 17. Using properties of the layer distribution Ds, over some distribution of pairs
(x,y) ∈ [−1, 1], for every s ≥ 2,∣∣∣∣Val⊥ −E

[
Q(x,y,y,y) +Q(x,x,x,y)

2

]∣∣∣∣ ≤ 29

3
√
s
.

Finally, we argue that regardless of the queried pair, when Q̂[4] ≥ 0, evaluating Q using
one random element of the pair once and the other thrice, is never beneficial in comparison
to evaluating Q only with their average.

I Lemma 18. For any x, y ∈ R and symmetric constraint-function Q s.t. Q̂[4] ≥ 0,

Q(x, y, y, y) +Q(x, x, x, y)
2 ≤ Q

(
x+ y

2 ,
x+ y

2 ,
x+ y

2 ,
x+ y

2

)
.

More generally, and recalling that p - q denotes that p does not divide q, Theorem 18 is a
corollary of the following lemma.

I Lemma 19. For any x, y ∈ R, even k, and (multilinear extension of a) symmetric constraint
function Q : {−1, 1}k → R s.t. Q̂[k] ≥ 0,

E
k0∼Bin(k, 1

2 ) : 2-k0

[
Q(x, . . . , x︸ ︷︷ ︸

k0

, y, . . . , y︸ ︷︷ ︸
k−k0

)
]
≤ Q

(x+ y

2 , . . . ,
x+ y

2︸ ︷︷ ︸
k

)
.

6.3.4 Soundness from Step Lemmas
Theorems 16 to 18 indeed implies the soundness of the reduction.

Proof of Theorem 14. Applying the three lemmas, over some distribution of pairs (x,y) ∈
[−1, 1],

Val ≤ E
[
Q

(
x + y

2 ,
x + y

2 ,
x + y

2 ,
x + y

2

)]
+ 2ξ + 2ρ3J +

√
εLC
γ

+ 29

3
√
s
.

Since the expectation of random variable is always bounded by its maximum, the first term
is at most maxb∗ Q(b∗, b∗, b∗, b∗) = E+Q and hence corresponds to the stated bound. J

6.3.5 Decoupling Table Arguments
Proof of Theorem 16. The value of the protocol is given by

Val def= E
Ds,e=(wa,wb),T

[
Q
(

f(ζ(0)~x),g(ζ(1)~y(1)),g(ζ(2)~y(2)),g(ζ(3)~y(3))
)]
. (2)

Using the Fourier decomposition of Q and the definition of the noise operator,

(2) =
∑

Γ⊆[4]

Q̂Γ E
Ds,T

Tρf(~x)1{0∈Γ}
∏

t∈Γ\{0}

Tρg(~y(t))

 . (3)

We would like to compare this value to that of decoupled table arguments,

Val⊥
def= E

~w,Ds

[
Q
(
δ~w(a), δ~w(b), δ~w(b), δ~w(b)

)]
= E
Ds,e

[Q(E f ,E g,E g,E g)]

=
∑

Γ⊆[4]

Q̂Γ E
Ds,e

(E f)1{0∈Γ} ∏
t∈Γ\{0}

E g

 . (4)
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Due to independence in the test distribution T , all terms in the expansion of Q agree
in Eq. (3) and Eq. (4), with exception of Γ = {1, 2, 3} and Γ = {0, 1, 2, 3}. Since we do not
necessarily have balanced tables, our analysis cannot entirely follow Håstad’s analysis [10]
and instead we additionally employ smoothness similar to, e.g., Holmerin and Khot [12].

Note that if we can provide an absolute bound on the case Γ = [4] for every pair of layers
a < b and every assignment to tables {f (w)}w∈Va∪Vb

, then we also have a bound on the case
Γ = {1, 2, 3} by setting f (w) ≡ 1 for all w ∈ Va.

Hence for arbitrary fixed a < b we proceed to bound the error for Γ = [4]:

E
Ds,e=(wa,wb),T

[
f(ζ(0)~x)

3∏
t=1

g(ζ(t)~y(t))
]
. (5)

The following section shows that for LC instances of small value, the expectation Eq. (5)
does not change much when the arguments are drawn independently. In particular, we bound∣∣∣∣∣ E

Ds,e

[
E
T

[
f(ζ(0)~x)

3∏
t=1

g(ζ(t)~y(t))
]
−E f

3∏
t=1

E g
]∣∣∣∣∣. (6)

Taking the Fourier expansions of the functions, Eq. (6) equals∣∣∣∣∣ E
Ds,e,T

[
Tρf(~x)

3∏
t=1

Tρg(~y(t))−E f
3∏
t=1

E g
]∣∣∣∣∣ (7)

=

∣∣∣∣∣∣∣∣∣∣
E
Ds,e


∑
S⊆La

T1,T2,T3⊆Lb

S∪T1∪T2∪T3 6=∅

ρ|S|f̂S ·
( 3∏
t=1

ρ|T |ĝTt

)
E
T

(∏
i∈S

xi

) 3∏
t=1

∏
j∈Tt

y(t)
j



∣∣∣∣∣∣∣∣∣∣
, (8)

where we recall that E f
∏3
t=1 E g expands to f̂∅

∏3
t=1 ĝ∅, explaining the condition in the

summation.
Using the definition of the test distribution T , the inner expectation evaluates to 1

precisely when S = π2(T3);T1 = T2 = T3 and otherwise to 0:

(8) =

∣∣∣∣∣∣ E
Ds,e

 ∑
∅6=T⊆Lb

ρ|π2(T )|+3|T |f̂π2(T )ĝ3
T

∣∣∣∣∣∣ (9)

≤

∣∣∣∣∣∣∣∣ E
Ds,e

 ∑
T 6=∅

π2(T )=∅

ρ3|T |f̂∅ĝ3
T


∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ E
Ds,e

 ∑
T 6=∅

π2(T )6=∅

ρ|π2(T )|+3|T |f̂π2(T )ĝ3
T


∣∣∣∣∣∣∣∣. (10)

We bound separately the terms with π2(T ) empty resp. non-empty.

Case π2(T ) empty

Consider first the sum of terms with π2(T ) = ∅ and rewrite the expression as∣∣∣∣∣∣ E
Ds,wa,wb

∑
T 6=∅

(ĝ2
T )f̂∅ĝT ρ3|T |1

{
π

(wb,wa)
2 (T ) = ∅

}∣∣∣∣∣∣. (11)
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Using
∣∣∣f̂∅ĝT ∣∣∣ ≤ 1,

(11) ≤

∣∣∣∣∣∣ E
Ds,wb

∑
T 6=∅

ĝ2
T ρ

3|T | P
wa∼N

{
π

(wb,wa)
2 (T ) = ∅

}∣∣∣∣∣∣. (12)

Since
∑

ĝ2
T ≤ 1 via Parseval’s identity, Eq. (12) is bounded by

E
Ds,wb

[
max
T 6=∅

ρ3|T | P
wa∼N

{πwb,wa
2 (T ) = ∅}

]
. (13)

When the reduced-from LC instance is (J, ξ)-smooth, the probability in the expression is
by definition at most ξ whenever |T | ≤ J . For larger sets, the factor ρ3|T | is at most ρ3J .
Consequently, we have a bound on the terms with π2(T ) = ∅,

(11) ≤ (13) ≤ ρ3J + ξ. (14)

Case π2(T ) non-empty

We proceed to bound terms satisfying π2(T ) 6= ∅. Using the Cauchy-Schwarz Inequality and
that

∑
g4
T ≤ 1 via Parseval’s identity, the second term in Eq. (9) is bounded by

E
Ds,e


 ∑
T :π2(T )6=∅

ρ2|π2(T )|+6|T |f̂2
π2(T )ĝ2

T

 1
2 (∑

T

g4
T

) 1
2

 , (15)

≤max
k>0
{kρk} E

Ds,e


 ∑
T :π2(T )6=∅

1
|π2(T )||T | f̂

2
π2(T )ĝ2

T

 1
2
 , (16)

where the factor maxk>0{kρk} is an upper bound on the ratio between
(
ρ|π2(T )|+|T |) 1

2 and(
1

|π2(T )||T |

) 1
2 . Note that an upper bound on kρk is in turn ρ1 + · · ·+ ρk ≤ (1− ρ)−1 = γ−1.

When Eq. (16) is significant, one expects to be able to derive a good labeling of the
reduced-from LC instance. The labeling strategy we consider in showing this is the natural
generalization of Håstad classical decoding. Given an assignment of the tables {f (w)}w∈⊎Vr

,

for every vertex w ∈
⊎
Vr, choose the label i with probability

∑
S3i

1
|S| f̂

(w)
2
S , and with the

remaining probability choose an arbitrary label. This indeed defines probability distributions
since, via Parseval’s Identity,

∑
i

∑
S3i

1
|S| f̂

(w)
2
S ≤

∑
S f̂

(w)
2
S = 1.

Between any two layers a < b, the labeling satisfies at least a fraction of constraints,

E
e=(wa,wb)∼E(Va,Vb)

 ∑
(i,j)∈π(e)

(∑
S3i

1
|S|

f̂2
S

)∑
T3j

1
|T |

ĝ2
T


= E

e

∑
S,T

#{(i, j) ∈ π : i ∈ S, j ∈ T} f̂2
S ĝ2

T

|S||T |

 ≥ E
e

 ∑
T :π2(T ) 6=∅

1
|π2(T )||T | f̂

2
π2(T )ĝ2

T

 .
(17)

Since the value of a multilayered LC instance was defined as the maximum fraction of
satisfied edges between two distinct layers, Eq. (17) is bounded from above by the value of
the reduced-from LC instance, which in turn by assumption is at most εLC.
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Returning to the value of considered term,

(16) ≤ γ−1 E
Ds,e


 ∑
T :π2(T )6=∅

1
|π2(T )||T | f̂

2
π2(T )ĝ2

T

 1
2
 ≤ √εLC

γ
. (18)

Completing the Argument Decoupling

Combining the bounds Eqs. (14) and (18), the error introduced by sampling the arguments
independently for the term Γ = [4] is (5) ≤ ρ3J + ξ +

√
εLC
γ . From this, Eq. (14), and that

Q→ [0, 1], we conclude

|Val−Val⊥| ≤ 2ρ3J + 2ξ +
√
εLC
γ

. (19)

J

6.3.6 Decoupled Value to Symmetric Evaluation
We proceed to prove Theorem 17 – relating the decoupled value to an expectation of Q
evaluated symmetrically for a random pair.

Proof of Theorem 17. Taking the Fourier expansion of the constraint function Q and
recalling the definition of δ ~w,

Val⊥ =
∑

Q̂Γ E
Ds,e

[
E [f ]1{0∈Γ}E [g]|Γ\{0}|

]
=
∑

Q̂Γ E
~w,Ds

[
δ~w(a)1{0∈Γ}δ~w(b)|Γ\{0}|

]
.

It is an issue for our analysis that the pair (a,b) ∼ Ds is always chosen so that a < b.
However, due to the choice of the distribution Ds, the value of two functions evaluated
for (a,b) is roughly unchanged when a and b are drawn independently from a random
distribution. More specifically, using Theorem 11, for every choice of ~w,∣∣∣∣EDs

[
δ ~w(a)k1δ ~w(b)k2

]
− E

r,p

[
E
Dr,p

[
δ ~w(a)k1

]
E
Dr,p

[
δ ~w(b)k2

]]∣∣∣∣ ≤ 2k1 + k2

q
+ 8
√
q

s
.

Applying the bound once for every Γ ⊆ [4],∣∣∣∣Val⊥ −
∑

Q̂Γ E
~w,r,p

[
E
Dr,p

[
δ~w(a)1{0∈Γ}

]
E
Dr,p

[
δ~w(b)|Γ\{0}|

]]∣∣∣∣ ≤ min
q

(
27

q
+ 27

√
q

s

)
.

Undoing the expansion of Q,∣∣∣∣Val⊥ − E
~w,r,p

[
E

a,b∼Dr,p
[Q(x,y,y,y)]

]∣∣∣∣ ≤ min
q

(
27

q
+ 27

√
q

s

)
,

x = δw(a) and y = δw(b). Since a and b are drawn independently from the same distribution,
this indeed yields the desired bound for s ≥ 2:∣∣∣∣Val⊥ − E

~w,a,b

[
Q(x,x,x,y) +Q(x,y,y,y)

2

]∣∣∣∣ ≤ min
q∈Z≥1

(
27

q
+ 27

√
q

s

)
≤ 29

3
√
s
.

J
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6.3.7 Symmetric Evaluation to the Value of Querying Random Tables
We prove Theorem 18 with the more general Theorem 19.

Proof of Theorem 19. Fix arbitrary x, y ≥ R, k even, and symmetric Q : {−1, 1}k → R
such that Q̂[k] ≥ 0. Since Q is symmetric, for every m ∈ [k], we can introduce constants
{Q̂m}m∈[k] such that for all Γ ⊆ [k], Q̂Γ = Q̂|Γ|. We wish to upper-bound the expression

E
k0∼Bin(k, 1

2 ) | 2-k0

[
Q(x, . . . , x︸ ︷︷ ︸

k0

, y, . . . , y︸ ︷︷ ︸
k−k0

)
]

(20)

=
k∑

m=0
Q̂m

∑
Γ : |Γ|=m

E
k0∼Bin(k, 1

2 ) | 2-k0

[
x|Γ∩[k0]|y|Γ∩{k0,...,k−1}|

]
with

Q
(x+ y

2 , . . . ,
x+ y

2︸ ︷︷ ︸
k

)
=

k∑
m=0

Q̂m

(
k

m

)(
x+ y

2

)m
. (21)

By symmetry,

(20) =
k∑

m=0
Q̂m

(
k

m

)
E

S⊆[k] : 2-|S|

[
x|S∩[m]|y|S̄∩[m]|

]
. (22)

Since the elements in S are drawn (k−1)-wise independently, for m < k, the respective terms
simply evaluate to Q̂m

(
k
m

) (
x+y

2
)m which agree with the corresponding terms in Eq. (21).

We consider the term m = k and use that k is even,

Q̂k
∑

Γ : |Γ|=k

E
k0∼Bin(k, 1

2 ) | 2-k0

[
x|Γ∩[k0]|y|Γ∩{k0,...,k−1}|

]
= Q̂k P

S⊆[k]
{2 - |S|}−1 E

S⊆[k]

[
x|S|y|S̄|1 {2 - |S|}

]
= Q̂k E

S⊆[k]

[
x|S|yk−|S|

(
1− (−1)k−|S|

)]
= Q̂k

((
x+ y

2

)m
−
(
x− y

2

)m)
≤ Q̂k

(
x+ y

2

)m
,

where the final step uses that Q̂k ≥ 0. The upper bound agrees with the term m = k in
Eq. (21), establishing the lemma. J
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