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Abstract
An n-ary integral quadratic form is a formal expression Q(x1, · · · , xn) =

∑
1≤i,j≤n aijxixj in n

variables x1, · · · , xn, where aij = aji ∈ Z. We present a randomized polynomial time algorithm
that given a quadratic form Q(x1, · · · , xn), a prime p, a positive integer k and an integer t,
samples a uniform solution of Q(x1, · · · , xn) ≡ t mod pk.
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1 Introduction

Let R be a commutative ring with unity and R× be the set of units (i.e., invertible elements)
of R. A quadratic form over the ring R in n-formal variables x1, · · · , xn in an expression∑

1≤i,j≤n aijxixj , where aij = aji ∈ R. A quadratic form can equivalently be represented by
a symmetric matrix Qn = (aij) such that Q(x1, · · · , xn) = (x1, · · · , xn)′Q(x1, · · · , xn). The
quadratic form is called integral if R = Z and the determinant of the quadratic form Q is
defined as det(Q).

Quadratic forms are central to various branches of Mathematics, including number theory,
linear algebra, group theory, and Lie theory. They also appear in several areas of Computer
Science like Cryptography and Lattices. Several modern factorization algorithms, including
Dixon’s algorithm [6], the continued fractions method, and the quadratic sieve; try to solve
x2 ≡ t mod n, where n is the number being factorized. They also arise naturally as the `2
norm of lattice vectors.

It is not surprising that the study of quadratic forms predates Gauss, who gave the law of
quadratic reciprocity and contributed a great deal in the study of quadratic forms, including
a complete classification of binary quadratic forms (i.e., n = 2). Another giant leap was
made by Minkowski in his “Geometry of Numbers” [11], which proposed a geometric method
to solve problems in number theory. Minkowski also gave explicit formulae to calculate the
number of solutions x = (x1, · · · , xn) ∈ (Z/pkZ)n to the equation x′Qx ≡ t mod pk. Several
alternatives are available for counting. We refer to [17, 12, 19, 10, 5, 7, 9], and note that
many of these papers (also) solve much more general problems. As an example, [17] gives an
ingenious Gaussian sum technique to count solutions in case p does not divide 2t det(Q).

The case of the prime p = 2 is tricky and needs careful analysis. Pall [13] pointed out that
the work of Minkowski omits many details, resulting in errors for the case of prime 2. Later,
Watson [18] found errors in the fixes suggested by Pall. It is believed by the community that
the work by Watson does not contain any errors.
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We remark that typically mathematicians are mainly interested in counting the number
of solutions if k is “large enough”.1 One reason for this is that once k is large enough,
increasing k by 1 simply multiplies the number of solutions by pn−1. Another reason is that
the corresponding normalized quantity (the local density, which is the number of solutions
divided by pk(n−1) for k large enough) seems to be the “mathematically natural quantity”. It
arises in many places, for example in (some forms of) the celebrated Siegel mass formula [17].

On the question of finding any solution (in contrast to sampling one uniformly at random),
we are aware of two relevant results. The first [1, 15] solves x2 − ky2 ≡ m (mod n) for
composite n, when the factorization of n is unknown. The second and more relevant is the
work done by Hartung [8]. For odd p, he gives a correct polynomial time algorithm to find
one solution of Q ≡ t mod pk (thought it seems to be safe to say that the possibility of this
was folklore before). Unfortunately, his construction seems to contain errors for the case
p = 2 (e. g., he divides by 2 in the proof of the relevant Lemma 3.3.1 pp. 47–48).

Our Contribution

Apart from the difficulty of giving correct formulae for p = 2, the method of Minkowski
(and others, including the Gaussian sum method) for counting the number of solutions of
x′Qx ≡ t mod pk has another drawback. It is not constructive in the sense that it does not
provide a way to sample uniform solutions to the equation. In this work, we give an alternate
way of counting solutions, and thus by the above remarks, and alternate way to compute
the local density. Our algorithm also yields a Las Vegas algorithm that, given an integral
quadratic form Q, a prime p, a positive integer k and an integer t ∈ Z/pkZ, runs in time
poly(n, k, log p) and samples a uniform random solution of x′Qx ≡ t mod pk.

2 Preliminaries

Integers and ring elements are denoted by lowercase letters, vectors by bold lowercase letters
and matrices by typewriter uppercase letters. The i’th component of a vector v is denoted
by vi. We use the notation (v1, · · · , vn) for a column vector and the transpose of matrix A is
denoted by A′. The matrix An will denote a n×n square matrix. If Qn1 , Q

m
2 are matrices, then

the direct product of Q1 and Q2 is denoted by Q1⊕Q2 and is defined as diag(Q1, Q2) =
(

Q1 0
0 Q2

)
.

Given two matrices Q1 and Q2 with the same number of rows, [Q1, Q2] is the matrix which is
obtained by concatenating the two matrices columnwise. A matrix is called unimodular if it
is an integer n× n matrix with determinant 1.

Let R be a commutative ring with unity and R× be the set of units (i.e., invertible
elements) of R. If Q ∈ Rn×n is a square matrix, the adjugate of Q is defined as the transpose
of the cofactor matrix and is denoted by adj(Q). The matrix Q is invertible if and only if det(Q)
is a unit of the R. In this case, adj(Q) = det(Q)Q−1. The set of invertible n × n matrices
over R is denoted by GLn(R). The subset of matrices with determinant 1 will be denoted by
SLn(R). For every prime p and positive integer k, we define the ring Z/pkZ = {0, · · · , pk−1},
where product and addition is defined modulo pk.

I Fact 1. A matrix U is in GLn(R) iff det(U) ∈ R×.

1 If k is 1 larger than the largest power of p in 8 · t · det(Q), the following holds.
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For quadratic forms, the prime 2 is special and all primes except 2 will be called odd primes.
Let p be a prime, and a be an integer. Then, ordp(a) is the highest power of p such that
pordp(a) divides a. We let ordp(0) =∞. The p-coprime part of a is then coprp(a) = a

pordp(a) .
Note that coprp(a) is by definition a unit of Z/pZ. For a positive integer q, one writes
a ≡ b mod q, if q divides a − b. By x := a mod q, we mean that x is assigned the unique
value b ∈ Z/qZ such that b ≡ a mod q. An integer t is called a quadratic residue modulo q if
gcd(t, q) = 1 and x2 ≡ t mod q has a solution.

IDefinition 2. Let p be an odd prime, and t be a positive integer. Then, the Legendre-symbol
of t with respect to p is defined as follows.(
t

p

)
:= t(p−1)/2 mod p =


1 if t is a quadratic residue modulo p, and t 6≡ 0 (mod p)
0 if t ≡ 0 (mod p),
−1 otherwise.

For the prime 2, there is an extension of Legendre symbol called the Kronecker symbol.
It is defined for odd integers t and

(
t
2
)
equals 1 iff t ≡ ±1 mod 8, −1 if t ≡ ±3 mod 8, and 0

otherwise. The p-sign of t, denoted sgnp(t), is defined as
(

coprp(t)
p

)
for odd primes p and

copr2(t) mod 8 otherwise.

I Fact 3. Let p be an odd prime. Then, there are p−1
2 quadratic residues and p−1

2 quadratic
non-residues modulo p.

An integer t is a square modulo q if there exists an integer x such that x2 ≡ t (mod q).
The integer x is called the square root of t modulo q. If no such x exists, then t is a non-square
modulo q.

I Definition 4. Let q be a prime power. A vector v ∈ (Z/qZ)n is called primitive if there
exists a component vi, i ∈ [n], of v such that gcd(vi, q) = 1. Otherwise, the vector v is
non-primitive.

I Definition 5. Let p be a prime, k be a positive integer and x be an element of Z/pkZ.
The p-expansion of x is x written in base p i.e., x = d0(x) + d1(x) · p+ · · ·+ dk−1(x) · pk−1,
where di(x) ∈ Z/pZ for i ∈ {0, · · · , k − 1}, is called the i’th digit of x.

For two sets A and B, the symbol A↔ B means that there is bijection between A and B.

Quadratic Form

An n-ary quadratic form over a ring R is a symmetric matrix Q ∈ Rn×n, interpreted as the
following polynomial in n formal variables x1, · · · , xn of uniform degree 2.∑

1≤i,j≤n
Qijxixj = Q11x

2
1 + Q12x1x2 + · · · = x′Qx

The quadratic form is called integral if it is defined over the ring Z and is also positive definite
if for all non-zero column vector x, x′Qx > 0. This work deals with integral quadratic forms,
henceforth called simply quadratic forms. The determinant of the quadratic form is defined
as det(Q). A quadratic form is called diagonal if Q is a diagonal matrix.

Given a set of formal variables x =
(
x1 · · · xn

)′ one can make a linear change of
variables to y =

(
y1 · · · yn

)′ using a matrix U ∈ Rn×n by setting y = Ux. If additionally,
U is invertible over R i.e., U ∈ GLn(R), then this change of variables is reversible over the ring.
We now define the equivalence of quadratic forms over the ring R (compare with Lattice
Isomorphism).

APPROX/RANDOM’14
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I Definition 6. Let Qn1 , Q
n
2 be quadratic forms over a ring R. They are called R-equivalent if

there exists a U ∈ GLn(R) such that Q2 = U′Q1U.

If R = Z/qZ, for some positive integer q, then two integral quadratic forms Qn1 and Qn2
will be called q-equivalent (denoted, Q1

q∼ Q2) if there exists a matrix U ∈ GLn(Z/qZ) such
that Q2 ≡ U′Q1U (mod q).

Let Qn be a n-ary integral quadratic form, and q, t be positive integers. If the equation
x′Qx ≡ t (mod q) has a solution then we say that t has a q-representation in Q (or t has
a representation in Q over Z/qZ). Solutions x ∈ (Z/qZ)n to the equation are called q-
representations of t in Q. We classify the representations into two categories: primitive and
non-primitive, see definition 4. The set of non-primitive, primitive and all pk-representations
of t in Q is denoted by Apk(Q, t),Bpk(Q, t) and Cpk(Q, t). Their respective sizes are denoted
by Apk(Q, t),Bpk(Q, t) and Cpk(Q, t) respectively.

Randomized Algorithms

Our randomized algorithms are Las Vegas algorithms. They either fail and output nothing,
or produce a correct answer. The probability of failure is bounded by a constant. Thus, for
any δ > 0, it is possible to repeat the algorithm O(log 1

δ ) times and succeed with probability
at least 1− δ. Henceforth, these algorithms will be called randomized algorithms.

Througout this paper, we will say that an algorithm runs in polynomial time if it runs in
time poly(n, k, log(p)).

3 Technical Overview

Given a quadratic form over a ring R, one can classify them according to the following
equivalence. Two quadratic forms are equivalent over R if one can be obtained from the other
by an invertible linear change of variables over R. For example, x2 and 2y2 are equivalent
over the field of reals R because the transformations x →

√
2y and y → 1√

2x are inverse
of each other in R, are linear and transform x2 to 2y2 and 2y2 to x2 respectively. Thus,
over R instead of trying to solve both x2 and 2y2 separately, one can instead solve x2 and
then use the invertible linear transformation to map the solutions of x2 to the solutions
of 2y2. It is well known that every quadratic form in n-variables over R is equivalent to∑a
i=1 x

2
i −

∑n
i=a+1 x

2
i , for some a ∈ [n]. This is known as the Sylvester’s Law of inertia. The

following lemma shows that for counting/finding solutions over a ring R, it suffices to do it
for an equivalent quadratic form.

I Lemma 7. Let p be a prime, k, t be positive integers, Q be an integral quadratic form, U ∈
GLn(Z/pkZ) and S = U′QU mod pk. Then, Apk(Q, t)↔ Apk(S, t), and Bpk(Q, t)↔ Bpk(S, t).

Proof. The map x → Ux preserves the primitiveness of the vector x ∈ (Z/pkZ)n and is
bijective because U is an invertible matrix over Z/pkZ. The lemma follows from the equality
(Ux)′Q(Ux) ≡ x′Sx mod pk. J

For the R = Z/pkZ such that p is odd, there always exists an equivalent quadratic form
which is also diagonal (see [5], Theorem 2, page 369). Additionally, one can explicitly find
the invertible change of variables that turns it into a diagonal quadratic form. The situation
is tricky over the ring Z/2kZ. Here, it might not be possible to eliminate all mixed terms,
i.e., terms of the form aijxixj with i 6= j. For example, consider the quadratic form xy over
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Z/2kZ, for some positive k. An invertible linear change of variables over Z/2kZ is of the
following form.

x→ a1x1 + a2x2
y → b1x1 + b2x2

(
a1 a2
b1 b2

)
invertible over Z/2kZ

The mixed term after this transformation is a1b2 +a2b1. As a1b2 +a2b1 mod 2 is the same as
the determinant of the change of variables above i.e., a1b2 − a2b1 modulo 2; it is not possible
for a transformation in GL2(Z/2kZ) to eliminate the mixed term. Instead, one can show
that over Z/2kZ it is possible to get an equivalent form where the mixed terms are disjoint
i.e., both xixj and xixk do not appear, where i 6= j 6= k. One captures this form by the
following definition.

I Definition 8. A matrix Dn over integers is in a block diagonal form if it is a direct sum of
type I and type II forms; where type I form is an integer while type II is a matrix of the

form
(

2`+1a 2`b
2`b 2`+1c

)
with b odd.

The following theorem is folklore and is also implicit in the proof of Theorem 2 on
page 369 in [5].

I Theorem 9. Let Qn be an integral quadratic form, p be a prime, and k be a positive
integer. Then, there is an algorithm that takes time O(n4k log p) and produces a matrix
U ∈ SLn(Z/pkZ) such that U′QU (mod pk), is a diagonal matrix for odd primes p and a block
diagonal matrix (in the sense of Definition 8) for p = 2.

The next simplification is achieved by the following Lemma.

I Lemma 10. Let Qn be a quadratic form, p be a prime, k be a positive integer and t, s be
integers such that ordp(t mod pk) = ordp(s mod pk) and sgnp(s mod pk) = sgnp(t mod pk).
Then, Apk(Q, t)↔ Apk(Q, s), and Bpk(Q, t)↔ Bpk(Q, s).

The pair (ordp(t mod pk), sgnp(t mod pk)) is called the pk-symbol of t and is denoted by
sympk (t). By Lemma 10, the count depends only on the pk-symbol of t. For notational
convenience, we define the following sets.

ord = {∞, 0, · · · , k − 1} sgn =
{
{1,−1} p is an odd prime
{1, 3, 5, 7} otherwise (1)

Note that, there are pk different possibilities for t over Z/pkZ but only (2k + 1) possibilities
for sympk (t) for odd primes and (4k + 1) for 2 (the extra 1 is for 0). The following definition
is useful in reducing the problem of counting representations in higher dimensions to the
problem of counting representations for individual blocks in a block diagonal form.

I Definition 11. Let p be a prime, k be a positive integer, t ∈ Z/pkZ be an integer, and
γ1, γ2 be symbols. Then, the (γ1, γ2)-split size of t over Z/pkZ, denoted St

pk(γ1, γ2), is the
size of the following set,

St
pk(γ1, γ2) =

{
(a, b) ∈ (Z/pkZ)2 | sympk (a) = γ1, sympk (b) = γ2, t ≡ a+ b mod pk

}
If Apk(Q, γ) is defined as Apk(Q, a) for any a ∈ {x ∈ Z/pkZ | sympk (x) = γ}, and

Bpk(Q, γ),Cpk(Q, γ) are defined similarly, then the following Lemma gives us a way to reduce
the problem of counting solutions from D = D1 ⊕ D2 to counting solutions for D1 and D2.

APPROX/RANDOM’14
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I Lemma 12. Let Q = diag(Q1, Q2) be an integral quadratic form, p be a prime, k be a
positive integer and t ∈ Z/pkZ. Then,

Cpk(Q, t) =
∑

γ1,γ2∈ord× sgn
St

pk(γ1, γ2) · Cpk(Q1, γ1) · Cpk(Q2, γ2)

Apk(Q, t) =
∑

γ1,γ2∈ord× sgn
St

pk(γ1, γ2) · Apk(Q1, γ1) · Apk(Q2, γ2)

Proof. The formula for the total number of representations of t by Q over Z/pkZ follows
from the calculations below. The same calculation works for the number of non-primitive
representations because an representation of t by Q is non-primitive iff every component of
the representation is non-primitive.

Cpk(Q, t) =
∑

a∈Z/pkZ

Cpk(Q1, a) · Cpk(Q2, t− a)

=
∑

a∈Z/pkZ

Cpk(Q1, sympk (a)) · Cpk(Q2, sympk (t− a))

=
∑

γ1,γ2∈ord× sgn
St

pk(γ1, γ2) · Cpk(Q1, γ1) · Cpk(Q2, γ2)

J

Overview of the Algorithm

Given (Qn, p, k, t) our counting algorithm for finding Cpk(Q, t) is as follows.
1. Block diagonalize Q over Z/pkZ using Theorem 9. Let Dn = D1 ⊕ · · · ⊕ Dm be the block

diagonal form returned by the algorithm. Recall, each Di is either Type I i.e., an integer,
or Type II (only when p = 2).

2. For each symbol γ ∈ ord× sgn and i ∈ [m], calculate Cpk(Di, γ). The case of prime 2 is
handled separately and needs careful analysis for Type II blocks.

3. For each triple γ, γ1, γ2 ∈ ord× sgn compute the size of split classes i.e., Sγ
pk (γ1, γ2)

4. Compute Cpk(D1 ⊕ · · · ⊕ Di, γ) for each γ ∈ ord× sgn and i ∈ [m], using Lemma 12.
5. Output Cpk(D, sympk (t)).

Because of the remarks in the introduction in the paper, this algorithm can also be used
to compute what mathematicians call the “local density”. We defer the details to the full
paper.

Furthermore, this algorithm can be generalized to sample uniform representations. How-
ever, also here we defer the description of the details of this to the full paper. Nevertheless,
the following two theorems are the main contribution of this paper.

I Theorem 13. Let Qn be an integral quadratic form, k be a positive integer, and t be an
element of Z/2kZ. Then, there exists a polynomial time algorithm that samples a uniform
(primitive/non-primitive) representation of t by Q over Z/2kZ.

In other words, the algorithm is able to output a uniform representation, a representation
which is uniform among the primitive ones, and a representation which is uniform among
the non-primitive ones.

I Theorem 14. Let Qn be an integral quadratic form, p be an odd prime, k be a positive
integer, t be an element of Z/pkZ. Then, there is a polynomial time algorithm that fails and
outputs a special symbol ⊥ with probability at most 1

3 . Otherwise, the algorithm outputs a
uniform (primitive/non-primitive) pk-representation of t by Q.
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Obviously the algorithm in this theorem can be repeated log(1/δ) times to make the error
probability at most δ.

4 Counting Representations: A Brief Overview

In order to explain the main ideas of the paper, we sketch in more detail how we count the
number of representations.

4.1 Counting for n = 1
Counting both the primitive and non-primitive solutions of Qx2 = t mod pk is rather simple,
and of course well known. Ignoring some corner cases (such as t = 0 mod pk), we can see
that writing x = x0p

α with gcd(x0, p) = 1 we need x2
0Qp

2α = t mod pk, so that we certainly
need that ordpQ ≥ ordp(t) and ordpQ− ordp t is even. Furthermore, in case p is odd the
Legendre-symbols of Q and t need to be the same, and it is not hard to show that these are
the exact conditions. In case p = 2, of course copr2(Q) = copr2(t) is required.

4.2 Counting for Type II matrics
Recall Definition 8 of a type II quadratic form. In this section, we solve the representation
problem for Type II matrices over Z/2kZ. But first we define a scaled version of a type II
matrix.

I Definition 15. A two-by-two matrix of the following form is called type II∗ matrix.(
a b/2
b/2 c

)
a, b, c ∈ Z, b odd

Additionally, in this section we will think of type II∗ as the following quadratic form in
formal variables x1, x2 which take values in the ring Z/2kZ.

ax2
1 + bx1x2 + cx2

2 a, b, c ∈ Z, b odd . (2)

In order to count the number of representations, the following lemma is key.

I Lemma 16. Let Q∗ = (a, b, c), b odd be a type II∗ integral quadratic form, and t, k be
positive integers. If a1, a2 ∈ Z/2Z be such that (a1, a2) represent t over Z/2Z and either a1
or a2 is odd then there are exactly 2k−1 distinct representations (x1, x2) of t over Z/2kZ
such that x1 ≡ a1 (mod 2), x2 ≡ a2 (mod 2).

Proof. We prove this by induction on k. We show that given an representation y1, y2 of
t over the ring Z/2iZ, for i ≥ 1, such that at least one of y1, y2 is odd there are exactly
two representations z1, z2 of t over the ring Z/2i+1Z such that z1 ≡ y1 (mod 2i), z2 ≡ y2
(mod 2i).

Let (y1, y2) be an representation of t by Q∗ over Z/2iZ. Then, the pair of integers (z1, z2)
such that (z1, z2) ≡ (y1, y2) (mod 2i) is an representation of t over Z/2i+1Z iff

z1 ≡ y1 + b1 · 2i (mod 2i+1) z2 ≡ y2 + b2 · 2i (mod 2i+1)
b1, b2 ∈ {0, 1} az2

1 + bz1z2 + cz2
2 ≡ t (mod 2i+1) (3)

Plugging in the values of z1 and z2 and re-arranging we get the following equation.

(bb2y1 + bb1y2)2i ≡ t− (ay2
1 + by1y2 + cy2

2) (mod 2i+1) (4)

APPROX/RANDOM’14
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As b is odd, b is invertible over Z/2i+1Z. By assumption, y1, y2 represent t over Z/2iZ and
hence 2i divides t− (ay2

1 + by1y2 + cy2
2). The equation 4 reduces to the following equation.

b2y1 + b1y2 ≡
t− (ay2

1 + by1y2 + cy2
2)

2ib (mod 2) (5)

We now split the proof in two cases: i) when y1 is odd, and ii) when y1 is even and y2 is
odd.

y1 odd. For each choice of b1 ∈ {0, 1} there is a unique choice for b2 because y1 ≡ 1 (mod 2).

b1 ∈ {0, 1} b2 = t− (ay2
1 + by1y2 + cy2

2)
2ib − b1y2 (mod 2)

y1 even. In this case, y2 ≡ 1 (mod 2) and so b2 can be chosen freely.

b2 ∈ {0, 1} b1 = t− (ay2
1 + by1y2 + cy2

2)
2ib (mod 2)

J

Using this lemma, in order to count the number of representations of t modulo 2k by a
type II∗ matrix, we simply first check how many of the three pairs (0, 1), (1, 0), and (1, 1)
represent t modulo 2. The remaining case (where both a1 and a2 are even) obviously requires
that t is divisible by 4, and can be settled by a simple recursion (where one represents t/4
modulo 2k−2). We defer a detailed description to the full version of the paper.

4.3 Calculating the Split Classes
Our next step is to calculate the split size i.e., St

pk(γ1, γ2).
Let p be a prime, k be a positive integer and t ∈ Z/pkZ. In this section, we calculate

the value St
pk(γ1, γ2) for all possible symbol pairs (γ1, γ2) over Z/pkZ. We also show that

St
pk(γ1, γ2) only depends on the pk-symbol of t and can also be written as Sγ

pk(γ1, γ2), where
γ = sympk (t).

For a pk-symbol γ, suppose Spk(γ) = {x ∈ Z/pkZ | sympk (x) = γ} and Spk(γ) be the
cardinality of Spk(γ). Then, the following lemma calculates, for each a ∈ Z/pkZ, the number
of elements in Z/pkZ with the same pk-symbol as a.

I Lemma 17. Let p be a prime, k be a positive integer and a ∈ Z/pkZ be a non-zero integer.
Then,

Spk(sympk (a)) =
{

max{2k−ord2(a)−3, 1} if p = 2
p−1

2 pk−ordp(a)−1 otherwise.

Proof. Let x ∈ Z/pkZ be an element with the same p-symbol as a. Then, ordp(x) = ordp(a)
and sgnp(x) = sgnp(t). Recall the p-expansion of x i.e., definition 5. There are k digits in
the p-expansion of x for x ∈ Z/pkZ; first ordp(a) of which must be identically 0.

For odd prime p, sgnp(x) = sgnp(a) iff
(

coprp(x) coprp(t)
p

)
= 1. Thus, the (ordp(a) + 1)’th

digit of x must be a non-zero element of Z/pZ with the same sign as
(

coprp(a)
p

)
. By Fact 3,

there are p−1
2 possibilities for the (ordp(a) + 1)’th digit of x. The rest can be chosen freely

from Z/pZ.
For the prime 2, sgn2(x) = sgn2(a) iff copr2(x) ≡ copr2(a) mod 8. Thus, the digits

(ordp(a) + 1), · · · , (ordp(a) + 2) of x must match those of a. The rest can be chosen freely
from Z/2Z. J
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The following two lemmas show that if ordp(t) 6= ordp(a) then the symbol of t−a mod pk
is the same for every element of Z/pkZ which has the same pk-symbol as a.

I Lemma 18. Let k be a positive integer and a, t be elements of the ring Z/2kZ. Then, the
2k-symbol of t− a can be computed from sym2k (t) and sym2k (a).

Proof. The 2k-symbol of s = (t− a) mod 2k can be calculated as follows.

ord2(s) = min{ord2(t), ord2(a)}

copr2(t− a) =
{

2ord2(t)−ord2(a) copr2(t)− copr2(a) if ord2(t) > ord2(a)
copr2(t)− 2ord2(a)−ord2(t) copr2(a) otherwise.

copr2(s) =
{

copr2(t− a) mod 2k−ord2(a) if ord2(t) > ord2(a)
copr2(t− a) mod 2k−ord2(t) otherwise.

The quantity copr2(s) mod 8 can be computed from copr2(t) mod 8,copr2(a) mod 8,
ord2(t) and ord2(a). J

I Lemma 19. Let p be an odd prime, k be a positive integer and a, t be elements of the
ring Z/pkZ such that ordp(t) 6= ordp(a). Then, the pk-symbol of t− a can be computed from
sympk (t) and sympk (a).

Proof. The pk-symbol of t− a can be calculated as follows.

ordp(t− a) = min{ordp(t), ordp(a)}

coprp(t− a) =
{
pordp(t)−ordp(a) coprp(t)− coprp(a) if ordp(t) > ordp(a)
coprp(t)− pordp(a)−ordp(t) coprp(a) otherwise.(

coprp(t− a)
p

)
=


(
− coprp(a)

p

)
if ordp(t) > ordp(a)(

coprp(t)
p

)
otherwise.

J

The next lemma is from [14].

I Lemma 20. For an odd prime p, and non-zero a ∈ Z/pZ the number of tuples (x, x+ a) ∈
(Z/pZ)2 such that

(
x
p

)
= s1,

(
x+a
p

)
= s2 and s1, s2 ∈ {−1, 1} is given by the following

formula.

1
4 ·
{
p− (p mod 4)−

(
−1
p

)
·
(

1 + s1

(
a

p

))
·
(

1 + s2

(
−a
p

))}
(6)

The following lemma gives the size of the St
pk(γ1, γ2) for all possible pk-symbol pairs over

the ring Z/pkZ.

I Lemma 21. Let t ∈ Z/pkZ, p be a prime, and k be a positive integer. Then, the size
of the St

pk(γ1, γ2) for all possible p-symbol pairs over the ring Z/pkZ can be computed as
follows.
1. if ordp(γ1), ordp(γ2) > ordp(t) then St

pk(γ1, γ2) = 0.
2. if ordp(γ1) 6= ordp(t) then St

pk(γ1, γ2) = Spk(γ1), for exactly one γ2 and is 0 otherwise.
3. if ordp(γ2) 6= ordp(t) then St

pk(γ1, γ2) = Spk(γ2), for exactly one γ1 and is 0 otherwise.
4. if ordp(γ2) = ordp(γ1) = ordp(t) then St

pk(γ1, γ2) is 0 for p = 2 and otherwise it is

calculated by substituting
(
a
p

)
= sgnp(γ1), s1 = sgnp(γ2) and s2 =

(
coprp(t)

p

)
in equation

6 and multiplying the result by pk−ordp(t)−1.
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Proof. The St
pk(γ1, γ2) is defined as follows.

St
pk(γ1, γ2) =

∣∣∣{(a, b) ∈ (Z/pkZ)2 | sympk (a) = γ1, sympk (b) = γ2, and, t ≡ a+ b mod pk}
∣∣∣

If both ordp(γ1) and ordp(γ2) are larger than ordp(t) then it is not possible for such a
pair to add up to t modulo pk. If ordp(γ1) or ordp(γ2) is different from ordp(t) then the
correctness follows from lemma 18, when p = 2 and lemma 19 otherwise. Otherwise,
ordp(t) = ordp(γ1) = ordp(γ2). This is not possible in case p = 2 because the sum of two
numbers of the same 2-order is always a number of higher 2-order. For odd prime p, we are
looking for number of solutions in Z/pkZ of the following equation.

pordp(t) coprp(a) + pordp(t) coprp(b) ≡ pordp(t) coprp(t) mod pk

⇐⇒ coprp(a) + coprp(b) ≡ coprp(t) mod pk−ordp(t) (7)

The number of solutions of equation 4.3 modulo p is given by Lemma 20. The other
(k−ordp(t)−1) digits in the p-expansion of coprp(a) can be chosen freely. Thus, the number
of possibilities multiply by pk−ordp(t)−1. J

I Lemma 22. Let p be a prime, k be a positive integer, t ∈ Z/pkZ and γ1, γ2 be two one
dimensional symbols. Then, St

pk(γ1, γ2) only depends on the p-symbol of t mod pk.

Proof. The calculation of St
pk(γ1, γ2) in Lemma 21 only depends on ordp(t mod pk) and

sgnp(t mod pk). J

Thus, we mean the same thing by St
pk(γ1, γ2) and Spk

sym
pk (t)(γ1, γ2).
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