
On Multiple Input Problems in Property Testing∗

Oded Goldreich

Department of Computer Science, Weizmann Institute of Science
Rehovot, Israel
oded.goldreich@weizmann.ac.il

Abstract
We consider three types of multiple input problems in the context of property testing. Specifically,
for a property Π ⊆ {0, 1}n, a proximity parameter ε, and an integer m, we consider the following
problems:
1. Direct m-Sum Problem for Π and ε: Given a sequence of m inputs, output a sequence of m

bits such that for each i ∈ [m] the ith bit satisfies the requirements from an ε-tester for Π
regarding the ith input; that is, for each i, the ith output bit should be 1 (w.p. ≥ 2/3) if the
ith input is in Π, and should be 0 (w.p. ≥ 2/3) if the ith input is ε-far from Π.

2. Direct m-Product Problem for Π and ε: Given a sequence of m inputs, output 1 (w.p. ≥ 2/3)
if all inputs are in Π, and output 0 (w.p. ≥ 2/3) if at least one of the inputs is ε-far from Π.

3. The m-Concatenation Problem for Π and ε: Here one is required to ε-test the m-product of Π;
that is, the property Πm = {(x1, . . . , xm) : ∀i ∈ [m] xi ∈ Π}.

We show that the query complexity of the first two problems is Θ(m) times the query com-
plexity of ε-testing Π, whereas (except in pathological cases) the query complexity of the third
problem is almost of the same order of magnitude as the query complexity of the problem of
ε-testing Π. All upper bounds are shown via efficient reductions.

We also consider the nonadaptive and one-sided error versions of these problems. The only
significant deviation from the picture in the general (adaptive and two-sided error) model is
that the one-sided error query complexity of the Direct Product Problem equals Θ(m) times
the (two-sided error) query complexity of ε-testing Π plus Θ(1) times the one-sided error query
complexity of ε-testing Π.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2.2 Complexity
Measures and Classes

Keywords and phrases Property Testing, Direct Sum Theorems, Direct Product Theorems,
Adaptive vs. Nonadaptive queries, One-Sided Error vs. Two-Sided Error

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2014.704

1 Introduction

In the last couple of decades, the area of property testing has attracted much attention
(see, e. g., a couple of recent surveys [11, 12] and a collection of texts [4]). Loosely speaking,
property testing typically refers to sub-linear time probabilistic algorithms for deciding
whether a given object has a predetermined property or is far from any object having this
property. Such algorithms, called testers, obtain local views of the object by performing
queries; that is, the object is seen as a function and the testers get oracle access to this
function (and thus may be expected to work in time that is sub-linear in the length of the
object).

∗ This work was partially supported by the Israel Science Foundation (grant No. 1041/08).

© Oded Goldreich;
licensed under Creative Commons License CC-BY

17th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’14) /
18th Int’l Workshop on Randomization and Computation (RANDOM’14).
Editors: Klaus Jansen, José Rolim, Nikhil Devanur, and Cristopher Moore; pp. 704–720

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.704
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

O. Goldreich 705

Indeed, it will be useful to bear in mind that property testing problems are promise
problems. The promise is that the object either has the property or is far from having the
property, and the task is to distinguish these two cases.

A basic question that was raised in several complexity theoretic contents is that of the
complexity of solving several instances of a problem as compared to the complexity of solving
a single instance of that problem. Typically, this question appears in two flavors: The first
type requires to provide answers to all instances (typically called a direct sum problem),
whereas a second type requires to provide a (possibly Boolean) function of these answers
(typically called a direct product problem). For example, in the context of Cryptography,
the amplification of one-way functions (cf. [2, Sec.2.3]) belongs to the first type, whereas
Yao’s XOR Lemma (cf. [7]) or the “Selective XOR Lemma” of [6] (cf. [2, Sec. 2.5.2] or [3,
Sec. 7.2.1.2]) belongs to the second type.

In this paper, we consider the aforementioned type of questions in the context of property
testing. As we shall see, in this context, two natural versions of the direct product problem
arise. Hence, we shall consider three types of multiple input problems in the context of
property testing, and cast each of them as a promise problem.

1.1 The Three problems
In all cases we refer to a basic property Π ⊆ {0, 1}n and to a proximity parameter, denoted
ε, which together determine the promise problem; that is, the basic problem, called ε-testing
Π, is distinguishing between inputs in Π and inputs in Γε(Π), where Γε(Π) denotes the set of
n-bit strings that are ε-far from Π (i. e., x ∈ Γε(Π) iff every y ∈ Π differs from x on at least
εn bits). (As usual, the ε-tester is required to be correct, on each input in Π ∪ Γε(Π), with
probability at least 2/3.) In all cases, we refer to a sequence of m inputs for the ε-testing
problem.

A Direct Sum Problem. Here the promise is that each of the m inputs is in Π ∪ Γε(Π),
and we are required to solve the basic problem for each of the m inputs. That is, on input
(x1, . . . , xm) ∈ {0, 1}mn, we are required to output (σ1, . . . , σm) ∈ {0, 1}m such that for every
i ∈ [m] the following holds:
1. If xi ∈ Π, then Pr[σi=1] ≥ 2/3.
2. If xi ∈ Γε(Π), then Pr[σi=0] ≥ 2/3.
In other words, we are required to solve m instances of the promise problem, and each
instance should be solved with (proximity and error) parameters as in the basic problem.

We show that the query complexity of the Direct Sum Problem is Θ(m) times the query
complexity of ε-testing Π. The upper bound is obvious, and our focus is on the lower bound.

A Direct Product Problem. Again, the promise is that each of the m inputs is in Π∪Γε(Π),
but here we are required to output the conjunction of the m answers referred to in the
Direct Sum Problem. That is, on input (x1, . . . , xm), we should output a bit σ such that the
following holds:
1. If xi ∈ Π holds for each i ∈ [m], then Pr[σ=1] ≥ 2/3.
2. If xi ∈ Γε(Π) holds for some i ∈ [m], then Pr[σ=0] ≥ 2/3.
In other words, we are required to distinguish Πm (i. e., the m-way Cartesian product of Π)
from (Π ∪ Γε(Π))m \Πm. Indeed, this version of a direct product problem is more natural
in the current contents than an alternative version that refers to the exclusive or of the
aforementioned m answers. In particular, the current direct product problem is related to
the concatenation problem that we consider next.

APPROX/RANDOM’14

706 On Multiple Input Problems in Property Testing

We show that the query complexity of the Direct Product Problem is Θ(m) times the query
complexity of ε-testing Π. Note that an upper bound with an O(m logm) factor is obvious
(using error reduction), and something more seems needed in order to to get an O(m) factor.

Indeed, neither the upper bound nor the lower bound is directly related to the corres-
ponding bound for the Direct Sum Problem. In the case of the upper bound, the point is
that in the Direct Sum Problem we are only guaranteed that each of the m answers is correct
with probability at least 2/3, whereas the straightforward solution to the Direct Product
Problem requires all answers to be correct, which yields an extra O(logm) factor (for error
reduction). The same issue arises when trying to derive the lower bound for the Direct Sum
Problem from the one for the Direct Product Problem: Starting from an Ω(m)-factor lower
bound for the Direct Product Problem, one only derives an Ω(m/ logm) factor for the Direct
Sum Problem. As hinted above, in both cases, the extra O(logm) factor can be eliminated
(see Lemma 1). We shall use this fact to upper bound the complexity of the Direct Product
Problem, but avoid using it for deriving a lower bound for the Direct Sum Problem (because
the proof of the lower bound for the Direct Product Problem extends the proof of the lower
bound for the Direct Sum Problem).

A Concatenation Problem. Here, the promise is that the sequence of m inputs (or the
concatenation of the m inputs) is in Πm ∪ Γε(Πm), where Γε(Πm) denotes the set of mn-bit
strings that are ε-far from Πm, and we are required to distinguish the two cases. That is, on
input (x1, . . . , xm), we should output a bit σ such that the following holds:
1. If xi ∈ Π holds for each i ∈ [m], then Pr[σ=1] ≥ 2/3.
2. If there exists ε1, . . . , εm that sum-up to mε such that xi ∈ Γεi(Π) holds for each i ∈ [m],

then Pr[σ=0] ≥ 2/3.
In other words, we are required to ε-test the property Πm (i. e., the m-way Cartesian product
of Π).

We show that the query complexity of the Concatenation Problem is almost the same as
the query complexity of ε-testing Π, provided that the latter increases at least linearly with
1/ε, where “almost the same” allows a polylogarithmic slackness factor. Furthermore, if for
some c > 1 the query complexity of ε-testing Π increases at least linearly with 1/εc, then
up to a constant factor the query complexity of the Concatenation Problem is the same as
the query complexity of ε-testing Π. We comment that in all reasonable cases the query
complexity of ε-testing increases at least linearly with 1/ε, and an increase rate of at least
1/ε2 is very common.

1.2 Nonadaptive Queries and One-sided Error Versions
We also consider the nonadaptive and one-sided error versions of the problems discussed in
Section 1.1. The results that we obtain differ from the those obtained in the general model
(of adaptive and two-sided error algorithms) in two cases.

Most importantly, it turns out that the one-sided error query complexity of the Direct
Product Problem equals Θ(m) times the two-sided error query complexity of ε-testing Π
plus Θ(1) times the one-sided error query complexity of ε-testing Π. The point is that the
two-sided error query complexity of ε-testing Π may be significantly lower than its one-sided
error query complexity.1

1 Consider, for example, the set Π of n-bit strings having at least n/2 one-entries. Other examples include
ρ-clique in the dense graphs model [5], and cycle-freeness in the bounded-degree graph model [8].

O. Goldreich 707

The second case refers to the nonadaptive query complexity of the Direct Product Problem,
where we leave a small gap: We show that the nonadaptive query complexity of the Direct
Product Problem is at least Ω(m) times the nonadaptive query complexity of ε-testing Π,
and at most O(m logm) the latter amount.

1.3 Two Comments
Computational Complexity. Our exposition focuses on the query complexity of problems,
which is natural since our main focus is on lower bounds. We stress that all our upper
bounds are obtained by computationally efficient reductions, yielding computationally efficient
algorithms for the multi-instance problems whenever such algorithms are given for the basic
testing problem.

A Somewhat Tedious Comment. The Direct Sum and Direct Product problems were stated
in Section 1.1 as promise problems regarding a sequence in (Π ∪ Γε(Π))m. An alternative
statement, used in the technical sections, refers to all m-ary sequences and adapts the output
requirements accordingly. Specifically, in Section 3 the Direct Sum Problem is defined for
all m-ary sequences but requirements are made with respect to the ith answer only when
the ith instance is in Π ∪ Γε(Π). In Section 4 the Direct Product Problem is defined for all
m-ary sequences but requirements are made only with respect to sequences that are either
in Πm or contain some instance in Γε(Π). In all cases, our lower bounds hold for the more
restricted versions (as stated in Section 1.1) whereas our upper bounds hold also for the
relaxed versions (as stated in the technical sections).

1.4 Techniques
Our lower bounds (for the query complexity of the Direct Sum and Product problems)
capitalize on the fact that in the context of (computationally unbounded) oracle machines it
is easy to decouple the computation on multiple inputs to a sequence of (possibly related)
computations on single inputs. In particular, the queries to the different inputs are easily (if
not trivially) distinguishable. So the only issue at hand is the allocation of resources (i. e.,
queries) among the multiple computations; that is, the algorithm solving the multiple-instance
problem may allocate its resources in an unequal manner.2

In the case that the algorithm solving the multiple-instance problem is nonadaptive (i. e.,
its queries are determined by its randomness, obliviously of the answers to “prior” queries),
we may proceed as follows: First, we identify an index i ∈ [m] such that the expected
number of queries made to the ith instance is at most a 1/m fraction of the total number
of queries made, denoted q. Next, we truncate executions that make more than 10 · q/m
queries, obtaining an ε-tester for Π that errs with probability at most (1/3) + 0.1 < 0.45.
Finally, we apply error reduction, and conclude that O(q/m) is lower-bounded by the query
complexity of ε-testing Π.

However, in general, the algorithm solving the multiple-instance problem may be adaptive
(see the proofs of Lemma 1 and Theorem 8 for demonstrations of the possible benefit of
adaptivity in the context of multiple-instance problems). In this case the distribution of the
algorithm’s queries among the m instances may depend on answers to prior queries. We
may want to resolve this problem by looking at a “typical” (or “random”) sequence of m

2 Indeed, if the algorithm solving the multiple-instance problem always allocates equal resources to the
different instances, then the lower bound follows easily.

APPROX/RANDOM’14

708 On Multiple Input Problems in Property Testing

instances, but the question is what distribution of instances should we consider. At this
point, the MiniMax Principle (cf. Yao [15] following von Neumann [14]) comes handy.

Specifically, our lower bounds for the Direct Sum and Product problems relies on the fact
that if the query complexity of ε-testing Π is (at least) q, then there exists a distribution of
n-bit strings, denoted D, such that every oracle machine M that makes less than q queries
errs with probability greater than 1/3 on the distribution D; that is,

Prx←D
[
(x∈Π ∧Mx=1) ∨ (x∈Γε(Π) ∧Mx=0)

]
< 2/3, (1)

where x← D means that x is selected at random according to D. Indeed, this is the actual
contents of Yao’s (or von Neumann’s) MiniMax Principle.3

The lower bound on the Direct Sum Problem is obtained by considering the m-way
product of the distribution D. The lower bound on the Direct Product Problem is obtained
by considering the m-way product of the distribution D conditioned on having at most one
instance in Γε(Π).

The upper bound on the Concatenation Problem uses the fact that the distance in this
problem is the average of the distances on the m basic problems. Thus, the tester consists
of sampling a few of these basic problems and testing them while using suitable values of
the proximity parameter. The economical way in which this is done is inspired by a private
communication with Leonid Levin (in mid-1980s).4

Regarding the connection between the Direct Sum and Direct Product problems, as noted
above, the m-way Direct Product Problem can be easily reduced to the m-way Direct Sum
Problem using O(logm) calls (which are employed for error reduction). Our improved upper
bound for the Direct Product Problem is obtained by the following general result, which is
implicit in the work of Feige et al. [1].5

I Lemma 1 (Reducing Direct Product to Direct Sum, Following Thm. 2.7 in [1]). The m-way
direct product problem is reducible to O(j) instances of the 2−(j−1) ·m-way direct sum problem,
for every j = 1, . . . , dlog2 me.

Hence, the m-way direct product problem can be solved at the cost of
∑log2 m
j=1 O(j · 2−jm) =

O(m) instances of the basic problem. We note that this reduction is quite generic: It holds
not only when the basic problem is ε-testing some property, but rather with respect to any
randomized procedures for solving decision problems with constant error probability.

Proof. The issue is that when we invoke the direct sum algorithm on a sequence of m
instances for the basic problem Π, we may get many 0-answers even if all instances are in
Π (and so we cannot distinguish this case from the case in which the sequence of instances
contains few instances in Γε(Π)). Our solution is to declare the instances for which a 0-answer

3 Let us mention, in passing, that we have always objected to the practice of attributing the converse of
the above to Yao [15] (or to von Neumann [14]). That is, the fact that the existence of D such that
Eq. (1) holds implies that the query complexity of ε-testing Π is at least q is a triviality. What is
non-trivial is the fact that this method of obtaining lower bounds is actually “complete” (i. e., it yields
the best possible lower bounds). This non-trivial direction is the one we use here. For further discussion,
see Appendix A.1.

4 The idea appeared in [9, Sec. 9], and we do not recall a prior use of it. Following [9], this idea was also
used in [6, Lem. 3] (see also [2, Clm. 2.5.4.1]). Within the context of property testing, this idea was
first used in [8] (see Lemma 3.3 in the proceeding version and Lemma 3.6 in the journal version). For
further discussion see Appendix A.2.

5 The result of Feige et al. [1] is stated in terms of computing an m-wise and by a noisy decision tree. A
simpler procedure is provided by Newman [10, Obs. 2.2]. Our procedure is different from both.

O. Goldreich 709

was obtained as candidates for being in Γε(Π), and apply the direct sum algorithm only to
the surviving candidates. This process is iterated, as long as the set of candidates is not too
big, which may happen only if this set contains many instances in Γε(Π). For this process to
work, we reduce the error probability in the various iterations such that in the jth iteration
we use O(j) repetitions and have error probability 2−j (or so) per each instance. This implies
that the set of false candidates (i. e., candidates that are actually in Π) does shrink in each
iteration, while each instance in Γε(Π) survives all iterations with high probability (e. g.,
with probability at least 0.9). Details follow.

Given an instance (x1, . . . , xm) for the direct product problem, we proceed in ` =
dlog2(3m)e iterations, while maintaining a set I ⊆ [m] of candidates (for being in Γε(Π)).
Initially, I = [m]. In the jth iteration, if |I| > 2−(j−1) ·m, then we output 0. Otherwise, we
invoke the |I|-way direct sum algorithm on (xi1 , . . . , xit), where I = {i1, . . . , it}, for O(j)
times, and rule by majority on each of the xi’s (with i ∈ I). We keep i in I if the majority
vote on xi is 0. If, at the end of any iteration, the set I becomes empty, then we output 1.

Specifically, in the jth iteration, the direct sum algorithm is invoked for O(j) times in
order to guarantee that the majority vote (on each xi) is correct with probability at least
1− 2−(j+3). Hence, each xi ∈ Γε(Π) has a fair chance to survive all iterations, in which case
I will become too big at some iteration (since 2−(`−1) < 1/m). On the other hand, with very
high probability, the vote on almost all inputs is correct. Hence, if all xi’s are in Π, then
we expect the set I to be cut by a factor of at least two in each iteration, and so eventually
I = ∅. Further details follow.

We first note that if any of the xi’s is in Γε(Π), then i remains in I throughout all
iterations, with probability at least 1 −

∑`
j=1 2−(j+3) > 7/8. In this case the algorithm

outputs 0, because, for some j ≥ 2 (possibly for j = `), at the beginning of the jth iteration
it holds that |I| > 2−(j−1) ·m.

On the other hand, if (x1, . . . , xm) ∈ Πm, then with probability at least 1−
∑`
j=1 2−(j+2) >

3/4 in each iteration j it holds that |I| ≤ 2−(j−1) ·m. (This is the case since the expected
size of I is cut by a factor of 2−(j+3), and so with probability at least 1− 2−(j+2) it is cut by
half.) In this case the algorithm outputs 1, because for some j ≥ 2 (possibly for j = `) at
the end of the jth iteration it holds that I is empty. J

1.5 Organization
Following a short preliminaries section, we proceed to the study of the three problems
described above: The Direct Sum Problem is studied in Section 3, the Direct Product
Problem is studied in Section 4, and the Concatenation Problem is studied in Section 5. In
Section 6 we consider nonadaptive and one-sided error versions of these problems.

In the appendix, we elaborate on two comments that were made in Section 1.4 (see
Footnotes 3 and 4): Section A.1 discusses Yao’s MiniMax Principle, whereas Section A.2
surveys a general method (which we call Levin’s Economical Work Investment Strategy) that
underlies some of the saving obtained in Section 5.

2 Preliminaries

For sake of simplicity, we present all results in terms of properties of fixed-length strings (i. e.,
n is fixed), and while referring to testing them with respect to a fixed value of the proximity
parameter, denoted ε. Nevertheless, both parameters should be viewed as generic (and thus
varying).

APPROX/RANDOM’14

710 On Multiple Input Problems in Property Testing

I Definition 2 (Property Testing). Let Π ⊆ {0, 1}n and ε > 0. An ε-tester for Π is a
randomized oracle machine T that satisfies the following two conditions.
1. If x ∈ Π, then Pr[T x=1] ≥ 2/3.
2. If x ∈ {0, 1}n is ε-far from Π, then Pr[T x=0] ≥ 2/3, where the distance between strings

is the fraction of bits on which they disagree and the distance to a set is the distance to
the closest element in the set. That is, x is ε-far from Π if and only if every y ∈ Π differs
from x on at least εn bits.

The query complexity of T is the maximum number of queries that T makes, when the
maximization is over all x ∈ {0, 1}n and over the coin tosses of T . The query complexity of
ε-testing Π, denoted Qε(Π), is the minimum query complexity of all ε-testers for Π.

Indeed, ε-testing is the promise problem that consists of distinguishing inputs in Π from
inputs that are ε-far from Π.

3 The Direct Sum Problem

Recall that in this problem, on input (x1, . . . , xm) ∈ {0, 1}mn, we should output (σ1, . . . , σm) ∈
{0, 1}m such that for every i ∈ [m] the following holds:
1. If xi ∈ Π, then Pr[σi=1] ≥ 2/3.
2. If xi ∈ Γε(Π), then Pr[σi=0] ≥ 2/3.
Let us denote this problem by DSmε (Π).

I Theorem 3 (The Direct Sum Theorem). For every property Π, proximity parameter ε, and
integer m, the query complexity of DSmε (Π) is Θ(m · Qε(Π)).

Here and in all our results the hidden constants in the Θ notation are universal (i. e., are
independent of Π, ε and m). Ditto for the O and Ω notations.

Proof. The upper bound holds by merely invoking the ε-tester, T , of Π for m times; that is,
on input (x1, . . . , xm), we output (T x1 , . . . , T xm).

Turning to the lower bound, we start by invoking the MiniMax Principle of von Neu-
mann [14] as adapted by Yao [15]. That is, let q def= Qε(Π), and consider a two-player zero-sum
game between an algorithmic player and an adversarial player. In the game, the algorithmic
player selects (randomly or deterministically) a deterministic oracle machine M that makes
at most q − 1 queries and the adversarial player selects (randomly or deterministically) an
input x. The algorithmic player wins if and only if either x 6∈ (Π ∪ Γε(Π)) or Mx outputs
the correct answer.

By our hypothesis, the algorithmic player has no strategy that guarantees winning with
probability at least 2/3; that is, for every distribution on deterministic oracle machinesM
that make at most q− 1 queries, there exists a string x ∈ Π∪Γε(Π) such that when selecting
M ←M the probability that Mx is correct is smaller than 2/3. The MiniMax Principle
asserts that, in this case, there exists a distribution of inputs in Π ∪ Γε(Π) on which each
(deterministic) oracle machine M that make at most q − 1 queries fails with probability
greater than 1/3. Let us denote this distribution by D.

Now, consider an arbitrary (randomized) oracle machine M0 of query complexity q0 that
solves DSmε (Π). By straightforward amplification, we obtain a machineM of query complexity
q1 = 10q0 having an error probability of at most 1/6 on each answer. That is, letting Mx

i

denote the ith bit in Mx, for each x = (x1, . . . , xm) and each i ∈ [m], the following holds:
1. If xi ∈ Π, then Pr[Mx

i =1] ≥ 5/6.
2. If xi ∈ Γε(Π), then Pr[Mx

i =0] ≥ 5/6.

O. Goldreich 711

Now, consider the m-way Cartesian product of D, denoted Dm, and consider the execution
of M on an input drawn from Dm. Fix i ∈ [m] such that the expected number of queries
that M makes to its ith input is at most q′ = q1/m, where the expectation is taken over Dm

as well as over the coins of M . Then, with probability at least 5/6, machine M makes at
most 6q′ queries to its ith input. It follows that, with probability at least (5/6)− (1/6) = 2/3,
machine M makes at most 6q′ queries to its ith input and yet answers correctly regarding
this input.

Using M , we obtain a randomized oracle machine M ′ that makes at most 6q′ queries and
solves the basic problem on D with probability at least 2/3, where the probability is taken
over both D and the internal coins of M ′: Machine M ′ just emulates the execution of M ,
while using its own input as the ith input of M , emulating the other inputs (by generating
m − 1 samples according to D), and terminating the execution of M if M tries to make
more than 6q′ queries to its ith input (which happens with probability at most 1/6). Using
an averaging argument, we obtain a deterministic oracle machine M ′′ that makes at most
6q′ queries and succeeds on D with probability at least 2/3. It follows that 6q′ > q − 1 (or
6q′ ≥ q), and thus q0 = q1

10 = m·q′
10 ≥

m·q
60 . J

4 The Direct Product Problem

Recall that in this problem, on input (x1, . . . , xm) ∈ {0, 1}mn, we should output σ ∈ {0, 1}
such that the following holds:
1. If for every i ∈ [m] it holds that xi ∈ Π, then Pr[σ=1] ≥ 2/3.
2. If there exists i ∈ [m] such that xi ∈ Γε(Π), then Pr[σ=0] ≥ 2/3.
Let us denote this problem by DPmε (Π).

I Theorem 4 (The Direct Product Theorem). For every property Π, proximity parameter ε,
and integer m, the query complexity of DPmε (Π) is Θ(m · Qε(Π)).

Proof. The upper bound follows by combining Lemma 1 with the upper bound of Theorem 3:
That is, we use the reduction of the lemma, and apply the straightforward algorithm asserted
by the theorem. Turning to the lower bound, we start as in the proof of Theorem 3, and let D
denote the corresponding “hard” distribution. Actually, we consider ε-testers for Π that are
(only) correct with probability at least 0.51, and derive a lower bound of Ω(Qε(Π)) on their
query complexity, denoted q, because otherwise a contradiction follows by a straightforward
amplification.

Let D′ denote the distribution obtained from D by conditioning that the string is in Π,
and likewise D′′ is obtained by conditioning that the string is in Γε(Π). For each i ∈ [m],
we will consider the distribution D(i) that consists of the Cartesian product of m− 1 copies
of D′ and a single copy of D′′ placed in the ith position. We shall also consider the m-way
Cartesian product of D′, denoted (D′)m.

Given any oracle machine M0 of query complexity q0 that solves DPmε (Π), we consider its
amplification to a machine M of query complexity q1 = O(q0) having error probability at
most 0.01 on each input. We first consider the invocation of M on inputs drawn from (D′)m,
and fix i ∈ [m] such that the expected number of queries that M makes to its ith input is
at most q′ = q1/m. Hence, with probability at least 0.99, machine M makes at most 100q′
queries to the ith input. We now consider two cases regarding the execution of M on an
input drawn from D(i):
1. If when invoked on D(i), with probability at least 5/6, machine M makes at most 100q′

queries to the ith input, then we proceed as in the proof of Theorem 3. Specifically, in

APPROX/RANDOM’14

712 On Multiple Input Problems in Property Testing

this case the 100q′-query truncated executions of M yield a machine M ′′ for ε-testing Π,
and so 100q′ > q − 1 must hold (which in turn implies q0 = Ω(m · q)).

2. Otherwise (with probability at least 1/6, machine M makes more than 100q′ queries to
the ith input), we can use this as an indication to whether M runs on (D′)m or on D(i),
which in turn yields an ε-tester for Π. Specifically, consider an alternative randomized
machine T that on input x ∈ {0, 1}n invokes M on input (x1, . . . , xi−1, x, xi+1, . . . , xm),
where (x1, . . . , xm) ← (D′)m, outputs 0 if M tries to make more than 100q′ queries
to x, and otherwise outputs the outcome of a coin with bias 0.55 towards 1. Then,
Prx←D′ [T x=1] ≥ 0.99 · 0.55 > 0.51, whereas Prx←D′′ [T x=0] ≥ 5

6 · 0.45 + 1
6 > 0.51. Thus,

the probability that T decides D correctly exceeds 0.51, and we again derive 100q′ > q−1.
The theorem follows. J

5 The Concatenation Problem

Recall that in this problem, on input (x1, . . . , xm) ∈ {0, 1}mn, we should output σ ∈ {0, 1}
such that the following holds:
1. If for every i ∈ [m] it holds that xi ∈ Π (equiv., (x1, . . . , xm) ∈ Πm), then Pr[σ=1] ≥ 2/3.
2. If there exists ε1, . . . , εm that sum-up to mε such that for every i ∈ [m] it holds that

xi ∈ Γεi
(Π) (equiv., (x1, . . . , xm) ∈ Γε(Πm)), then Pr[σ=0] ≥ 2/3.

Let us denote this problem by CPmε (Π).

I Theorem 5 (The First Concatenation Theorem). Suppose that Qε(Π) increases at least
linearly with 1/ε; that is, Qε/2(Π) ≥ min(Ω(n), 2 · Qε(Π)) for every ε > 0. Then, the query
complexity of CPmε (Π) is O(log(1/ε))3 · Qε/4(Π) = Õ(Qε/4(Π)).

The condition Qε/2(Π) ≥ min(Ω(n), 2 · Qε(Π)) must be made to avoid making the requirement
an impossible one, since any property Π can be tested with n queries. Further relaxations of
the condition are possible, but the conclusion should be corrected accordingly. For example,
if Qε/2(Π) ≥ 2 ·Qε(Π) holds for every ε ≥ ε0(n), then the conclusion holds for every ε ≥ 2ε0(n).

Proof. Fixing any (x1, . . . , xm), let δi ∈ [0, 1] denote the distance of xi from Π. The key
observation is that if

∑
i∈[m] δi ≥ m · ε, then for ` = dlog2(1/ε)e+ 1 there exists some j ∈ [`]

such that |{i ∈ [m] : δi ∈ [2−j , 2−(j−1)]}| ≥ m · 2jε/4` (see Fact A.1).6 But in such a case,
sampling O(`/2jε) indices i, and 2−j-testing each input xi w.r.t Π will do (i. e., with high
constant probability, we will sample an instance that is 2−j-far from Π). Details follow.

First, let us spell out the proposed ε-tester (for Πm). On input (x1, . . . , xm), for every
j ∈ [`], the tester samples O(`/2jε) indices i, and 2−j-tests each input xi w.r.t Π, with error
probability ε2 (rather than 1/3).7 Hence, we make O(`) · Q2−j (Π) queries to each xi that is
sampled in the jth iteration, and can neglect the probability that we obtained a wrong result
for any xi in any iteration. The tester accepts if and only if all the aforementioned tests
answer 1 (i. e., all sampled xi’s were verified as being in Π).

Turning to the analysis of the above tester, we first note that the number of queries made
by it is upper-bounded by q def=

∑
j∈[`] O(`/2jε)·O(`·Q2−j (Π)), whereas Q2−j (Π) ≤ ε/4

2−j ·Qε/4(Π)
(by the theorem’s hypothesis). Thus, q ≤

∑
j∈[`] O(`2) · Qε/4(Π), which meets the asserted

6 Consider the uniform distribution over [m], and let q(s) = δs.
7 Error reduction is used here in order to upper bound the probability that any of the tests returns 0
when (x1, . . . , xm) ∈ Πm. Indeed, this is not necessary in the case of one-sided error. Actually, one can
avoid the error reduction step also in the case of two-sided error by using the ideas underlying Lemma 1
(and save a factor of O(`)), but we did not bother to do so.

O. Goldreich 713

complexity bound. Next, note that if (x1, . . . , xm) ∈ Πm, then each of the tests answers 1
with probability at least 1 − ε2, whereas the number of tests is

∑
j∈[`] O(`/2jε) = O(`/ε).

On the other hand, if (x1, . . . , xm) ∈ Γε(Πm), then, for some j ∈ [`], with probability at least
3/4, some xi ∈ Γ2−j (Π) is sampled and 2−j-tested (and so answered 0 with probability at
least 1− ε2 > 0.99). The theorem follows. J

I Theorem 6 (The Second Concatenation Theorem). Suppose that, for some constant c > 1,
it holds that Qε(Π) increases at least linearly with 1/εc; that is, Qε/2(Π) ≥ min(Ω(n), 2c ·Qε(Π))
for every ε > 0. Then, the query complexity of CPmε (Π) is O(Qε/4(Π)).

Proof. We follow the proof of Theorem 5, while using a slightly different analysis of the
various “buckets” (or the sets) Bj

def= {i ∈ [m] : δi ∈ [2−j , 2−(j−1)]}. Specifically, for
` = dlog2(1/ε)e+ 1 and p(j) def= (`+ 5− j)−2, we first prove that if

∑
i∈[m] δi ≥ m · ε, then

there exists some j ∈ [`] such that |Bj | ≥ m · p(j) · 2jε. This is essentially proved in Fact A.2,
and the argument is adapted next (for the reader’s convenience). Indeed, assuming towards
the contradiction that for every j ∈ [`] it holds that |Bj | < m · p(j) · 2jε, we get

∑
i∈[m]

δi <

∑
j∈[`]

m · p(j) · 2jε · 2−(j−1)

+m · 2−`

≤ 2mε ·

∑
j∈[`]

p(j)

+m · ε/2

< 2 · mε2

where the last inequality uses
∑
j∈[`] p(j) < 1/4. But this contradicts the hypothesis that∑

i∈[m] δi ≥ mε.
We next present the modified ε-tester. On input (x1, . . . , xm), for every j ∈ [`], the tester

samples O((p(j) · 2jε)−1) indices i, and 2−j-tests each input xi w.r.t Π with error probability
p(j)2 · 2jε/O(1) = exp(−Θ(` + 1 − j)). Hence, we make O(` + 1 − j) · Q2−j (Π) queries to
each xi that is sampled in the jth iteration, and can neglect the the probability that we
obtained a wrong result for any xi in any iteration (since a wrong answer is obtained in the
jth iteration with probability at most p(j)/O(1)). The number of queries made by this tester
is upper-bounded by∑

j∈[`]

O((p(j) · 2jε)−1) ·O(`+ 1− j) · Q2−j (Π)

≤ O(1/ε) ·
∑
j∈[`]

`+ 5− j
p(j)2j ·

(
ε/4
2−j

)c
· Qε/4(Π)

= O(εc−1) ·
∑
k∈[`]

(k + 4)3 · 2(c−1)(`+1−k) · Qε/4(Π)

≤ O(1) ·
∑
k∈[`]

(k + 4)3 · 2−(c−1)k · Qε/4(Π)

where the first inequality uses the theorem’s hypothesis, the equality uses the definition of p(j)
(and the substitution k = `+1−j), and the last inequality uses ` = dlog2(1/ε)e+1 < log2(4/ε).
Using

∑
k∈[`](k + 4)3 · 2−c′k = O(1), for any c′ > 0, the claim follows. J

APPROX/RANDOM’14

714 On Multiple Input Problems in Property Testing

6 Ramifications: Nonadaptivity and One-Sided Error

In this section, we consider the ramification of our study to nonadaptive algorithms and to one-
sided error algorithms. Specifically, in Section 6.1 we consider nonadaptive algorithms (with
two-sided error), whereas in Section 6.2 we consider (adaptive) one-sided error algorithms.
In each of these cases, we compare the complexity of restricted algorithms solving the
multiple-instance problems to the complexity of similarly restricted ε-testers of Π.

We note that nonadaptivity “dominates” one-sided error (see Section 6.3): The results
for nonadaptive algorithms with one-sided error behave more like the results for nonadaptive
algorithms with two-sided error than the results for general (i. e., adaptive) algorithms with
one-sided error.

6.1 Nonadaptive Algorithms

An algorithm (or rather an oracle machine) is called nonadaptive if it determines its queries
solely based on its randomness, regardless of the answers obtained to “prior” queries. (Indeed,
in this case, the order of the queries is arbitrary and/or immaterial.)

As noted at the beginning of Section 1.4, the lower bounds for the Direct Sum and
Product problems are much easier to establish in the nonadaptive case. In this case, the
queries of the algorithm solving the multi-instance problem are oblivious of the instances, and
so we can easily derive from it a single-instance algorithm (of easily related query complexity).
On the other hand, the efficient reduction of the Direct Product Problem to the Direct Sum
Problem, captured by Lemma 1, does not seem to work anymore (since the reduction that
we presented is inherently adaptive). Letting Qna

ε denote the minimum query complexity of
all nonadaptive ε-testers for Π, we get:

I Theorem 7 (Nonadaptive Query Complexity of Multiple-instance Problems). For every
property Π, proximity parameter ε, and integer m, the following holds.
The Direct Sum Problem: The nonadaptive query complexity of DSmε (Π) is Θ(m · Qna

ε (Π)).
The Direct Product Problem: The nonadaptive query complexity of DPmε (Π)

is Ω(m) · Qna
ε (Π) and O(m logm) · Qna

ε (Π).
The Concatenation Problem: For c ≥ 1, suppose that Qε(Π) increases at least linearly with

1/εc. Then, the nonadaptive query complexity of CPmε (Π) is O(log(1/ε))3 ·Qna
ε/4(Π) if c = 1,

and O(Qna
ε/4(Π)) otherwise (i. e., for c > 1).

Indeed, closing the gap for the Direct Product Problem is left as an open problem. As
observed by Ron Rothblum, the gap disappears whenever Qna

ε (Π) = O(Qdr
ε (Π)), where Qdr

ε (Π)
is as defined in Section 6.3. Note that it may be the case that the nonadaptive query
complexity of DPmε (Π) is Θ(m) · Qna

ε (Π) for some Π and Θ(m logm) · Qna
ε (Π) for others.

Proof Sketch. Both lower bounds follow by starting with an algorithm that solves the
multi-instance problem with query complexity q, and deriving an ε-tester for Π with expected
query complexity of at most q/m. By truncating executions that make more than 10q/m
queries, we obtain an ε-tester that errs with probability (1/3) + 0.1. Lastly, error reduction
yields a standard ε-tester for Π of query complexity O(q/m) ≥ Qε(Π), and the lower bound
claims follow (for both problems). Regarding the Concatenation Problem, we note that the
reductions presented in Section 5 are actually nonadaptive, and so the upper bound claims
follow. J

O. Goldreich 715

6.2 One-sided Error Algorithms
An ε-tester for Π is said to have one-sided error if it always accepts (i. e., output 1) inputs in Π
(rather than accept them with probability at least 2/3). We denote by Qose

ε the minimum query
complexity of all one-sided error ε-testers for Π. The notion of one-sided error algorithms
extends naturally to the three multiple-instance problems we have studied: In the Direct
Sum Problem it asserts that σi is always 1 if xi ∈ Π, whereas in the other two problems it
asserts that the algorithm always accepts a sequence in Πm.

In the context of one-sided error algorithms, there is a simpler reduction of the Direct
Product Problem to the Direct Sum Problem (i. e., simpler than the one captured by
Lemma 1); that is, solving DPmε (Π) (with one-sided error) reduces to a single invocation of a
(one-sided error) algorithm solving DSmε (Π). The Direct Sum solver outputs 1 if and only if
the m-bit long vector of answers obtained for the Direct Sum Problem is all 1. This implies
that the one-sided error query complexity of DPmε (Π) is O(m · Qose

ε (Π)), but we shall see a
stronger result below. Regarding the Concatenation Problem, as in the nonadaptive case, it
is clear that the algorithms presented in Section 5 operate also in the case of one-sided error
(i. e., the reductions preserve one-sided error). Actually, we can save a log(1/ε) factor (see
Footnote 7).

Regarding the lower bounds, it turns out that the argument for the Direct Sum Problem
can be adapted (as shown below), but the one for Direct Product Problem fails. In fact, there
are cases in which the one-sided error query complexity of the Direct Product Problem is very
close to the one-sided error query complexity of testing Π. Specifically, the one-sided error
query complexity of DPmε (Π) is O(m · Qε(Π) + Qose

ε (Π)), whereas in some cases Qε(Π) is much
smaller than Qose

ε (Π) (e. g., ε-testing ρ-clique in the dense graphs model has poly(1/ε)-query
two-sided error tester [5, Sec. 7], but no o(

√
n)-query one-sided error testers [5, sec. 10.1.6]).8

I Theorem 8 (One-sided Error Query Complexity of Multiple-instance Problems). For every
property Π, proximity parameter ε, and integer m, the following holds.
The Direct Sum Problem: The one-sided error query complexity of DSmε (Π) is Θ(m·Qose

ε (Π)).
The Direct Product Problem: The one-sided error query complexity of DPmε (Π)

is Θ(m · Qε(Π) + Qose
ε (Π)).

The Concatenation Problem: For c ≥ 1, suppose that Qε(Π) increases at least linearly with
1/εc. Then, the one-sided error query complexity of CPmε (Π) is O(log(1/ε))2 · Qose

ε/4(Π) if
c = 1, and O(Qose

ε/4(Π)) otherwise (i. e., for c > 1).

Proof Sketch. When proving the lower bound for DSmε (Π), we modify the distribution D
as follows. For q = Qose

ε (Π), the algorithmic player we consider here selects (randomly or
deterministically) a deterministic oracle machine that makes at most q − 1 queries and
always outputs 1 on any input in Π. As before, the adversarial player selects (randomly or
deterministically) an input in Π ∪ Γε(Π). Now, D is a distribution on inputs in Π ∪ Γε(Π)
such that for any deterministic machine M of query complexity at most q − 1 that always
accepts inputs in Π it holds that Prx∈D[Mx=0|x∈Γε(Π)] < 2/3 (which in particular means
that Prx∈D[x∈ Γε(Π)] > 0). Finally, we proceed as in the proof of Theorem 3, with two
exceptions:
1. Here we start with a one-sided error machine M0 that solves the multi-instance problem

DSmε (Π), and our aim is to derive a one-sided error ε-tester for Π.

8 Another natural example is ε-testing cycle-freeness in the bounded-degree graphs model [8, Sec. 4]. Also
note that the set Π of n-bit strings having at least n/2 one-entries has a two-sided error O(1/ε2)-query
tester, but requires at least n/2 queries for one-sided error testing.

APPROX/RANDOM’14

716 On Multiple Input Problems in Property Testing

2. When truncating executions that make too many queries to the ith instance, we make
the modified algorithm output 1.
Note that in the proof of Theorem 3, the output in these truncated executions was left
unspecified. Hence, the specific setting used above does not affect the validity of the
analysis of the case that the instance is in Γε(Π). But this specific setting guarantees
that inputs in Π are always accepted (by the single-instance algorithm that we derive).

This completes the proof of the lower bound for DSmε (Π).
Turning to DPmε (Π), we first note that the lower bound follows by combing the lower

bound on two-sided testers (i. e., Ω(m · Qε(Π))) with the obvious lower bound of Qose
ε (Π). As

for the upper bound, we consider an algorithm that first finds a candidate instance in Γε(Π),
by using a two-sided error ε-tester, and then applies a one-sided error ε-tester to it. The
first step is easy to implement by invoking the two-sided error tester O(logm) times on each
instance (and ruling by majority), but we aim at a better upper bound. The idea is to use
a modification of the algorithm presented in the proof of Lemma 1. Specifically, on input
(x1, . . . , xm), the algorithm, denoted A, proceeds as follows:
1. Algorithm A invokes the reduction presented in the proof of Lemma 1, while implementing

a two-sided error algorithm for the Direct Product Problem (of Π) by using the two-sided
error ε-tester for Π. If the reduction outputs 1, then A outputs 1. Otherwise, let I be the
“too big” set considered at the iteration in which the reduction halts with output 0.

2. Algorithm A selects uniformly at random i ∈ I, invokes the one-sided error ε-tester for Π
on xi, and outputs the output it has obtained.

By Lemma 1, algorithm A has query complexity O(m)·Qε(Π)+Qose
ε (Π), and by its construction

it only outputs 0 if the one-sided error tester of Π outputs 0 on one of the xi’s. Thus, A has
one-sided error. On the other hand, if some of the xi’s are in Γε(Π), then with probability at
least 2/3, algorithm A proceeds to its second step. A closer look at the proof of Lemma 1
reveals that we can guarantee that, in this case, with probability at least 3/4, at least half
of the instances in I are in Γε(Π). (All that is needed is to reduce the error probability
on individual instances from 2−(j+3) to 2−(j+4).) This is the case because, for j ≥ 2, with
probability at least 3/4, at the beginning of the jth iteration the set I may contain at most
0.5 · 2−(j−1) ·m instances in Π, whereas halting occurs when |I| > 2−(j−1) ·m. Hence, with
probability at least 3

4 · 0.5 ·
2
3 , algorithm A outputs 0. J

6.3 Nonadaptive Algorithms with One-sided Error
The proof of Theorem 7 can be adapted to the case of (nonadaptive) algorithms of one-sided
error. All that is required is to be careful about the lower bound arguments. Specifically,
when truncating executions that make too many queries to a certain instance, we let the
algorithm output 1 (rather than halt with arbitrary output). Actually, we can close the gap
left in Theorem 7 (and get a tight result also for the Direct Product Problem) by using the
simple reduction of the Direct Product Problem to the Direct Sum Problem mentioned in
Section 6.2. Hence, letting Qdr

ε denote the minimum query complexity of all nonadaptive
one-sided error ε-testers for Π, where “dr” stands for doubly restricted, we get:

I Theorem 9 (Doubly Restricted Query Complexity of Multiple-instance Problems). For every
property Π, proximity parameter ε, and integer m, the following holds.
The Direct Sum Problem: The nonadaptive one-sided error query complexity of DSmε (Π)

is Θ(m · Qdr
ε (Π)).

The Direct Product Problem: The nonadaptive one-sided error query complexity of DPmε (Π)
is Θ(m · Qdr

ε (Π)).

O. Goldreich 717

The Concatenation Problem: For c ≥ 1, suppose that Qε(Π) increases at least linearly with
1/εc. Then, the nonadaptive one-sided error query complexity of CPmε (Π) is O(log(1/ε))2 ·
Qdr
ε/4(Π) if c = 1, and O(Qdr

ε/4(Π)) otherwise (i. e., for c > 1).

Acknowledgements. We are grateful to Tom Gur and Ron Rothblum for comments on an
early draft of this paper. We thank Ilan Newman for calling our attention to the fact that
Lemma 1 is implicit in the work of Feige et al. [1].

References
1 U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with Noisy Information. SIAM

Journal on Computing, Vol. 23 (5), pages 1001–1018, 1994.
2 O. Goldreich. Foundations of Cryptography – Basic Tools. Cambridge University Press,

2001.
3 O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University

Press, 2008.
4 O. Goldreich, editor. Property Testing – Current Research and Surveys. Lecture Notes in

Computer Science, Vol. 6390, Springer, 2010.
5 O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning

and approximation. Journal of the ACM, pages 653–750, July 1998. Extended abstract in
37th FOCS, 1996.

6 O. Goldreich and L.A. Levin. A hard-core predicate for all one-way functions. In the
proceedings of 21st ACM Symposium on the Theory of Computing, pages 25–32, 1989.

7 O. Goldreich, N. Nisan and A. Wigderson. On Yao’s XOR-Lemma. ECCC, TR95-050,
1995.

8 O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica, pages
302–343, 2002. Extended abstract in 29th STOC, 1997.

9 L.A. Levin. One-way functions and pseudorandom generators. In proc. of the 17th ACM
Symposium on the Theory of Computing, pages 363–365, 1985.

10 I. Newman. Computing in Fault Tolerant Broadcast Networks and Noisy Decision Trees.
Random Struct. Algorithms, Vol. 34 (4), pages 478–501, 2009.

11 D. Ron. Property testing: A learning theory perspective. Foundations and Trends in
Machine Learning, Vol. 1 (3), pages 307–402, 2008.

12 D. Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends
in TCS, Vol. 5 (2), pages 73–205, 2009.

13 R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2), pages 252–271, 1996.

14 J. von Neumann. Various techniques used in connection with random digits. Applied Math
Series, Vol. 12, pages 36–38, 1951. Reprinted in von Neumann’s Collected Works, Vol. 5,
pages 768–770, Pergamon, 1963.

15 A.C.C. Yao. Lower Bounds by Probabilistic Arguments (Extended Abstract). In Proc.
24th IEEE Symposium on Foundations of Computer Science, pages 420–428, 1983.

APPROX/RANDOM’14

718 On Multiple Input Problems in Property Testing

A In Passing

In this appendix, we elaborate on two comments that were made in the main text. Section A.1
discusses a well-known result, while expressing an opinion of its contents. Section A.2 explicitly
presents a useful idea, which is implicit in many prior works (as well as in Section 5).

A.1 On Yao’s MiniMax Principle
As is well known, Yao [15] made the influential observation that von Neumann’s MiniMax
Principle for zero-sum games [14] can be applied in the context of the analysis of randomized
algorithms. In particular, Yao considered an “algorithmic” player selecting a distribution over
deterministic algorithms and an “adversarial (input)” player selecting an input distribution.
Then, the application of the game theoretic principle implies that the profit (e. g., success
probability) of the best randomized algorithm on the worst-case input equals the upper
bound on the profit of any (deterministic) algorithm under some fixed distribution of inputs.
(The same applies when one consider the cost (e. g., in resources) incurred by the algorithm.)

Our point is that the above statement has two directions. The first direction (which is
obvious and more commonly used) is that the profit of the best algorithm on the worst-case
input cannot exceed the profit any algorithm may get under some (adversarially chosen) input
distribution. The second direction, which is the remarkable one, asserts that the upper bound
obtained in this way (i. e., by a worst adversarial selection of an input distribution) is tight. In
other words, the foregoing method of bounding the profit of randomized algorithms is complete
(or optimal). Thus, in our opinion, Yao contribution was in pioneering and advocating the
method of obtaining lower bounds via the design of adversarial input distributions, not in
proving the soundness of this method. (Again, the method’s soundness is obvious, what is
remarkable is its completeness.)

For sake of clarity, let us cast the above discussion in precise terms. Let p(r, c) be the
profit attained by the row player, when it picks the row r and the column player picks c. Let
V be the value obtained when the row player picks r under the best possible distribution on
rows, denoted R, and the column player picks c to minimize the row player’s profit; that
is, V def= minc{Er←R[p(r, c)]}. Let U be the upper bound on the profit obtained when the
column player uses a distribution, denoted C, that minimizes the profit of the best choice of
a row r; that is, U def= maxr{Ec←C [p(r, c)]}. Obviously, V ≤ U :

V = min
c
{Er←R[p(r, c)]}

≤ Er←R,c←C [p(r, c)]
≤ max

r
{Ec←C [p(r, c)]}

= U.

The actual contents of the MiniMax Principle is that this upper bound is actually tight;
that is, V = U . The known proofs of the latter assertion are far more complex than the
above manipulation: The classical proof proceeds by presenting a transformation over the
space of strategy pairs such that its fixed-points are equilibria pairs, and applying Brouwer’s
fixed-point theorem. A popular alternative proof proceeds by formulating the problem of
finding an optimal strategy (for the row player) as a linear program and applying the strong
LP-Duality Theorem.

Summary. We claim that three things are being confused: (1) The generic fact that V ≤ U ;
(2) the generic fact that V actually equals U ; and (3) the suggestion that in many specific

O. Goldreich 719

settings (e. g., where the payoff represents the success probability of an algorithm on an
input) it is beneficial to prove upper bounds on V by proving upper bounds on U .

A.2 On Levin’s Economical Work Investment Strategy
In some situations one can sample a huge space that contains elements of different quality
such that elements of lower quality require more work to utilize. The aim is to utilize some
element, but the work required for utilizing the various elements is not known a priori, and
it only becomes known after the entire amount of required work is invested. Note that it
may be that most of the elements are of very poor quality, and so it is not a good idea to
select a single element and invest as much work as is needed to utilize it. Instead one may
want to select many samples points and invest in each of them a limited amount of work
(which may be viewed as probing the required amount of work).

To be more concrete, suppose that the work that needs to be invested in a sample point
s (in order to utilize it) is inversely proportional to its (unknown to us) quality q(s). We
only know a lower bound ε on the average quality of an element (i. e., Es[q(s)] > ε), and we
wish to minimize the total amount of work invested in utilizing some element. One natural
strategy that comes to mind is to sample O(1/ε) points and invest O(1/ε) work in each of
these points. In this case we succeed with constant probability, while investing O(1/ε2) work.
The analysis is based on the fact that Es[q(s)] > ε implies that Prs[q(s) > ε/2] > ε/2. The
following fact suggests a more economical strategy.

I Fact A.1 (A Refined Counting Argument). Let D be a probability distribution, q : Supp(D)→
[0, 1], and ε ∈ (0, 1]. Suppose that Es←D[q(s)] > ε, and let ` = dlog2(2/ε)e. Then, there
exists j ∈ [`] such that Prs←D[q(s) > 2−j] > 2jε/4`.

Hence, an alternative strategy can succeed, with constant probability, by investing Õ(1/ε)
work. Specifically, for each j ∈ [`], we take O(`/2jε) samples, and invest O(2j) work in each
of these sample points. (Note that we cannot expect to invest less than o(1/ε) work in total,
since we may have q(s) = 2ε for each sample point s, and so the alternative strategy is almost
optimal.)

We learned this alternative strategy from Leonid Levin in the mid-1980s. This strategy is
used in [9] (see the last paragraph of [9, Sec. 9]) and is stated explicitly in [6, Lem. 3] (see [2,
Clm. 2.5.4.1] for an alternative presentation). Within the context of property testing, this
strategy was first used in [8] (see Lemma 3.3 in the proceeding version and Lemma 3.6 in
the journal version).

Proof. Let Bj
def= {s : 2−j < q(s) ≤ 2−(j−1)}, and assume towards the contradiction that for

every j ∈ [`] it holds that Prs[q(s) > 2−j] ≤ 2jε/4`. This implies that for every j ∈ [`] it
holds that Prs[s ∈ Bj] ≤ 2jε/4` (and q(s) ≤ ε/2 for every s 6∈

⋃
j∈[`] Bj). We get

Es[q(s)] ≤
ε

2 +
∑
j∈[`]

Prs[s ∈ Bj] · 2−(j−1)

≤ ε

2 +
∑
j∈[`]

2jε
4` · 2

−(j−1)

= ε

2 +
∑
j∈[`]

ε

2`

which contradicts the fact’s hypothesis. J

APPROX/RANDOM’14

720 On Multiple Input Problems in Property Testing

The Case of Required Work that Increases Faster than O(1/q(·)). The above description
refers to the case that the work that needs to be invested in utilizing an element is inversely
proportional to its quality (i. e., the work that needs to be invested in s is Θ(1/q(s))). In
that case, we sought a set S such that the product Prs[s ∈ S] ·mins∈S{q(s)} is maximized.
(Actually, we identified O(log(1/ε)) candidate sets S, and invested Õ(1/ε) work in each of
them.) We now consider the case that for some c > 1 (e. g., c = 2), the work that needs to
be invested in order to utilize the element s is Θ(1/q(s)c). In this case, we seek a set S such
that the product Prs[s ∈ S] ·mins∈S{q(s)c} is maximized. (Indeed, the case of c = 2 arises
quite often in applications; for example, it arises whenever one wishes to approximate some
[0, 1]-valued quantity up to ±q(s).)

Here the straightforward solution is to sample O(1/ε) points and invest O(1/εc) work
in each of these sample points. In this case we succeed with constant probability, while
investing O(1/εc+1) work. The following fact suggests a more economical procedure.

I Fact A.2 (An Alternatively Refined Counting Argument). Let D be a probability distribution,
q : Supp(D) → [0, 1], and ε ∈ (0, 1]. Suppose that Es←D[q(s)] > ε, and let ` = dlog2(2/ε)e.
Then, there exists j ∈ [`] such that Prs←D[q(s) > 2−j] > 2jε/(`+ 5− j)2.

Hence, an alternative strategy can succeed with constant probability by investing O(1/εc)
work, which is optimal (since we may have q(s) = 2ε for all s). Specifically, for each j ∈ [`],
we take O((`+ 5− j)2/2jε) samples, and invest O(2cj) work in each sample point. Indeed,
for every c > 1, it holds that∑

j∈[`]

(`+ 5− j)2

2jε · 2cj = 1
ε
·
∑
k∈[`]

(k + 4)2 · 2(c−1)·(`+1−k)

= O(1/ε)c ·
∑
k∈[`]

(k + 4)2 · 2−(c−1)·k

which equals O(1/εc), because
∑
k∈[`](k + 4)2 · 2−c′k = O(1) for every c′ > 0.

Proof. The proof is by a simple adaptation of the proof of Fact A.1. As before, let Bj
def=

{s : 2−j < q(s) ≤ 2−(j−1)}, and assume towards the contradiction that for every j ∈ [`] it
holds that Prs[q(s) > 2−j] ≤ 2jε/(` + 5 − j)2. This implies that for every j ∈ [`] it holds
that Prs[s ∈ Bj] ≤ 2jε/(`+ 5− j)2 (and q(s) ≤ ε/2 for every s 6∈

⋃
j∈[`] Bj). We get

Es[q(s)] ≤
ε

2 +
∑
j∈[`]

Prs[s ∈ Bj] · 2−(j−1)

≤ ε

2 +
∑
j∈[`]

2jε
(`+ 5− j)2 · 2

−(j−1)

= ε

2 +
∑
k∈[`]

2ε
(k + 4)2

which contradicts the fact’s hypothesis (since
∑
k∈[`](k + 4)−2 < 1/4). J

	Introduction
	The Three problems
	Nonadaptive Queries and One-sided Error Versions
	Two Comments
	Techniques
	Organization

	Preliminaries
	The Direct Sum Problem
	The Direct Product Problem
	The Concatenation Problem
	Ramifications: Nonadaptivity and One-Sided Error
	Nonadaptive Algorithms
	One-sided Error Algorithms
	Nonadaptive Algorithms with One-sided Error

	In Passing
	On Yao's MiniMax Principle
	On Levin's Economical Work Investment Strategy

