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Abstract
We study set-disjointness in a generalized model of randomized two-party communication where
the probability of acceptance must be at least α(n) on yes-inputs and at most β(n) on no-
inputs, for some functions α(n) > β(n). Our main result is a complete characterization of the
private-coin communication complexity of set-disjointness for all functions α and β, and a near-
complete characterization for public-coin protocols. In particular, we obtain a simple proof of
a theorem of Braverman and Moitra (STOC 2013), who studied the case where α = 1/2 + ε(n)
and β = 1/2 − ε(n). The following contributions play a crucial role in our characterization and
are interesting in their own right.
1. We introduce two communication analogues of the classical complexity class that captures

small bounded-error computations: we define a “restricted” class SBP (which lies between
MA and AM) and an “unrestricted” class USBP. The distinction between them is analogous
to the distinction between the well-known communication classes PP and UPP.

2. We show that the SBP communication complexity is precisely captured by the classical cor-
ruption lower bound method. This sharpens a theorem of Klauck (CCC 2003).

3. We use information complexity arguments to prove a linear lower bound on the USBP com-
plexity of set-disjointness.
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1 Introduction

In the set-disjointness problem, Alice is given an x ⊆ [n], Bob is given a y ⊆ [n], and their
task is to decide whether x ∩ y = ∅. Equivalently, viewing x and y as binary strings, we
define

Disj(x, y) := ¬
∨
i∈[n]

(xi ∧ yi) .

Set-disjointness is the preeminent coNP-complete problem in communication complexity [2,
13]. A fundamental result of Kalyanasundaram and Schnitger [23] (with alternative proofs
given by [31, 4]) states that every randomized protocol for set-disjointness requires Ω(n)
bits of communication to achieve a constant error probability that is bounded away from
1/2. These lower bounds have been extremely useful in applications of communication
complexity to other areas of theoretical computer science, including circuit complexity,
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distributed computing, streaming, data structures, combinatorial optimization, and more;
see [28, 22, 13].

In this work, we study set-disjointness in a generalized setting where the probability
of acceptance must be at least α(n) on yes-inputs and at most β(n) on no-inputs, for any
prescribed functions α(n) > β(n).

1.1 Main Result
Our main result is a complete characterization of the private-coin communication complexity
of set-disjointness for all functions α and β, and a near-complete characterization for public-
coin protocols. Roughly speaking, we prove that the randomized complexity is

Θ(n · (1− β/α))

for typical functions α and β; see subsection 1.4 for the statement of the exact bounds.
As a special case, we obtain a simple proof of a result of Braverman and Moitra [6]. They

showed that the communication complexity of set-disjointness is Θ(εn) in case α = 1/2 + ε(n)
and β = 1/2− ε(n). While this special case might suggest that the complexity is determined
by the additive gap α− β, our characterization reveals that, in fact:

Central tenet: It is not the additive gap between α and β that determines the com-
plexity of set-disjointness; what matters is the multiplicative gap.

Our proof follows this ideology: we show that in order to understand the communication
complexity for all α and β it suffices to understand the small bounded-error case where α is
tiny (e.g., exponentially small in n) and β = α/2.

1.2 SBP: Small Bounded-error Probabilities
In classical time-bounded (i.e., poly-time Turing machine) complexity theory, small bounded-
error acceptance probabilities are captured by a counting class called SBP, which was
introduced by Böhler, Glaßer, and Meister [5] and has also been studied in [38]. In par-
ticular, [5] observed that SBP is sandwiched between the Arthur–Merlin classes MA and
AM [3].

In this work, we introduce two communication complexity analogues of SBP: a restricted
class called SBP, and an unrestricted class called USBP. These classes are natural and
interesting in their own right. Most importantly, they serve to structure our argument.

Randomized Communication Complexity. In what follows, we assume familiarity with
basic definitions of communication complexity [28, 22]. Fix a two-party function f : {0, 1}n×
{0, 1}n → {0, 1} where on input (x, y) Alice is given x and Bob is given y. We say (x, y)
is a b-input if (x, y) ∈ f−1(b). We let Rpub

α, β(f), respectively Rpriv
α, β(f), denote the minimum

communication complexity (as a function of n) of a public-coin, respectively private-coin,
protocol for f such that the probability of acceptance is at least α(n) on all 1-inputs and
at most β(n) on all 0-inputs. As is customary [2], for any communication measure C(f) we
often let C stand for the class of functions f with C(f) = polylog(n).

PP and UPP. To motivate our upcoming definitions for SBP, we take a little detour and
recall the communication classes associated with the standard complexity class PP. There
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are in fact two distinct measures—restricted and unrestricted—as introduced in [2, 30]:

PP(f) := min
ε(n)>0

Rpub
1/2 + ε, 1/2− ε(f) + log(1/ε),

UPP(f) := min
ε(n)>0

Rpriv
1/2 + ε, 1/2− ε(f).

In the (restricted) public-coin model, one needs to charge the additional log(1/ε) term in order
for the measure to be well-behaved when ε is tiny. (For example, note that Rpub

1/2 + ε, 1/2− ε(f) ≤
2 for ε = 2−n−1.) The original definition of PP(f) given in [2] actually charged for the number
of public coin flips instead of the + log(1/ε); however, by standard sparsification techniques
(see [29] and [28, Theorem 3.14]) the two versions are essentially equivalent—they are within
a constant factor plus O(logn)—and the definition we have stated is much more prevalent
in recent literature. It also follows from standard sparsification that we may convert any
PP protocol into a UPP protocol of comparable cost: UPP(f) ≤ O(PP(f) + logn). In the
converse direction, an exponential separation between UPP and PP is known [8, 33, 34].

SBP and USBP. Analogously to the above, we define

SBP(f) := min
α(n)>0

Rpub
α, α/2(f) + log(1/α),

USBP(f) := min
α(n)>0

Rpriv
α, α/2(f).

Here the constant factor 1/2 = β/α can be replaced by any positive constant less than 1
while affecting the complexity measures by only a constant factor: if we run a protocol `
times and accept iff all iterations accept, then β/α gets raised to the power ` while the
communication and the log(1/α) term each get multiplied by `. We call this procedure
and-amplification (in contrast to the usual majority-amplification). We also note that by
standard sparsification, USBP(f) ≤ O(SBP(f) + logn) holds for all f . In the converse
direction, we do not know whether USBP is significantly more powerful than SBP (though
a small separation is witnessed by the greater-than function, which has constant USBP
complexity but Θ(logn) SBP and PP complexity [7]).

Relationship to Arthur–Merlin Classes. Klauck [25, 27] and Aaronson and Wigderson [1]
took up the study of communication complexity analogues of Arthur–Merlin games. Their
results have already found applications in data streaming [9, 10, 19]. We do not define the
communication models MA and AM here, but we note that the classical inclusions continue
to hold in the communication setting (for the same reasons):

MA ⊆ SBP ⊆ AM.

Indeed, if MA(f) = m then by majority-amplification and by absorbing Merlin’s nondetermin-
ism into the randomness we obtain Rpub

2−m−1, 2−m−2(f) ≤ O(m2). Thus SBP(f) ≤ O(MA(f)2)
(and the quadratic blow-up is necessary for “black-box” simulations [15]). On the other
hand, AM(f) ≤ O(SBP(f) + logn) holds by sparsifying the randomness and using the
Goldwasser–Sipser protocol [18].

1.3 Results for SBP and USBP
We prove that SBP communication complexity is exactly characterized by the well-known
corruption lower bound method (also known as the rectangle bound or one-sided discrepancy).

APPROX/RANDOM’14
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The definition of the corruption bound Corr(f) is given in section 2, but for now, we note
that Corr(f) essentially depends on the size of the largest approximately 1-monochromatic
rectangle in the communication matrix of f . (For an extensive discussion of the different lower
bound methods in communication complexity, see [20].) Previously, Klauck [25] showed that
Corr(f) lies somewhere between the MA and AM communication complexities of f ; namely
Ω(AM(f)) ≤ Corr(f) ≤ O(MA(f)2). Klauck also gave a combinatorial near-characterization
of Corr(f) (tight up to logarithmic factors) using so-called one-sided uniform threshold covers.
The following theorem sharpens these results by pinpointing precisely the class between MA
and AM that is characterized by corruption.

I Theorem 1. SBP(f) = Θ(Corr(f)) for all f .

One way to frame Theorem 1 is as follows. A lot of effort (e.g., [25, 20, 24, 21, 17])
has been spent on comparing the relative strengths of different lower bound methods in
communication complexity with the goal of finding a natural method that captures the
bounded-error randomized communication complexity of every function. Theorem 1 can be
viewed as achieving a diametrically opposite goal: we start with a historically important
lower bound method (i.e., corruption) and find a natural communication measure that it
captures. Theorem 1 is also somewhat analogous, in content and proof, to another result of
Klauck [26] showing that the discrepancy bound captures PP.

Razborov [31] famously proved that Corr(Disj) = Θ(n). (The first linear lower bound
for set-disjointness [23] did not use corruption.) By the results of [25], this implies that
MA(Disj) ≥ Ω(

√
n). We immediately have a stronger corollary.

I Corollary 2. SBP(Disj) = Θ(n).

While the classical rectangle-based methods suffice to analyze SBP protocols, these
techniques are not well-suited for handling acceptance probabilities α(n) that are arbitrarily
small functions of n (e.g., doubly exponentially small in n). To obtain lower bounds for
USBP we pursue a different avenue and show that the information complexity framework, as
formulated by Bar-Yossef, Jayram, Kumar, and Sivakumar [4] (see also [12]), can be adapted
to suit our purposes. The main technical result of this work is the following, proved in
section 3.

I Theorem 3. USBP(Disj) = Θ(n).

We note that the statement of Theorem 3 is similar in spirit to Forster’s theorem [16] stating
that the UPP complexity of the inner product function is Θ(n). Note also that Theorem 2 is
of course a corollary of Theorem 3, too, but the corruption-based proof via Theorem 1 is
arguably more elementary than the proof of Theorem 3. Finally, we note that the well-studied
gap-Hamming-distance promise problem [11, 37, 36] (where 1-inputs have distance ≥ n

2 +
√
n

and 0-inputs have distance ≤ n
2 −
√
n) has SBP and USBP complexities Θ(

√
n), where the

lower bound follows by Theorem 3 and a standard reduction from Disj, and the upper bound
follows by and-amplification of the trivial protocol that checks inequality at a random bit
position.

1.4 Characterization for All α and β

Using our results for SBP and USBP in a black-box manner we derive the following (near)
complete characterization for the randomized communication complexity of set-disjointness
in section 4.
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I Theorem 4 (Private-coin). For all α(n) > β(n),

Rpriv
α, β(Disj) = Θ(n · (1− β/α) + logn).

I Theorem 5 (Public-coin). There is a universal constant C > 0 such that for all α(n) > β(n),

Rpub
α, β(Disj) =

{
Θ(n · (1− β/α)) when log(1/α) ≤ C · n · (1− β/α),
2 when log(1/α) ≥ dn · (1− β/α)e.

We stress that for the public-coin characterization (and in particular, the result of [6] as a
corollary), it suffices to rely only on Razborov’s corruption lemma (via Theorem 2), and
not on any information complexity techniques. Braverman and Moitra [6] observed that
Rpub

1/2 + ε, 1/2− ε(Disj) ≥ Ω(ε2n) follows from the standard bounded-error lower bound by
majority-amplification, and they obtained the tight Ω(εn) bound by developing information
complexity techniques tailored to this setting. Our idea is that and-amplification imposes
only an ε factor loss (rather than the ε2 factor loss imposed by majority-amplification) while
still reducing to a case where the corruption method applies.

We also note that for public-coin protocols there remains a small gap in the parameters
around the threshold log(1/α) = Θ(n · (1− β/α)) that is not covered by our theorem. As we
discuss in section 4, the power of the public coins kicks in at this threshold.

Finally, we mention that all the set-disjointness lower bounds in this paper continue to
hold under the unique-intersection promise where the inputs are either disjoint or intersect
in exactly one coordinate: for Theorem 2 this property is inherited from Razborov’s proof;
for Theorem 3 this property is implicit in our proof.

2 SBP is Characterized by Corruption

In this section we prove Theorem 1, which states that SBP(f) = Θ(Corr(f)) for all f . We
start by defining the corruption bound. We say a distribution µ over inputs is balanced (with
respect to f) if µ(f−1(1)) = µ(f−1(0)) = 1/2. We say a rectangle R is 1-biased (with respect
to f and µ) if µ(R ∩ f−1(0)) ≤ µ(R)/8. The corruption bound is defined as

Corr(f) := max
balanced µ

min
1-biased R

log
(

1
µ(R)

)
.

It was proved in [25] that the constant factor of 1/8 (in the definition of 1-biased) can be
replaced by any positive constant at most 1/8 while affecting the corruption bound by only
a constant factor. It was also proved in [25] that the bound is robust with respect to the
balance condition on µ.

2.1 SBP is Lower Bounded by Corruption
Here we show the lower bound SBP(f) ≥ Ω(Corr(f)). The intuition is as follows. The first
step is to fix the public randomness of an SBP protocol in such a way that the average-case
behavior of the resulting deterministic protocol mimics the worst-case behavior of the original
protocol. Typically, this sort of thing is done by invoking the distributive law (linearity of
expectation), but here we need a more elaborate calculation due to the asymmetric nature of
SBP. Then, the rest of the argument follows along similar lines as the proof in [25] (that
Corr(f) ≤ O(MA(f)2)), showing that the 1-inputs are mostly covered by “small” transcript
rectangles (of our average-case protocol), hence many such rectangles are needed.

APPROX/RANDOM’14
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We proceed with the formal proof. Let Π be an Rpub
α, α/32 protocol for f ; recall that by

and-amplification we may assume β = α/32 rather than β = α/2 in the definition of SBP.
Assuming log(1/α) < Corr(f)/2, we show that Π uses Ω(Corr(f)) bits of communication. To
this end, fix a balanced distribution µ such that for all 1-biased rectangles R, µ(R) ≤ 2−Corr(f).

Identify the possible outcomes of public randomness with {1, . . . ,m}, and let Πi denote
Π running with public randomness i. Let pi be the probability the public randomness is i
(so pi = 1/m if the public randomness is uniformly distributed). Let qi be the probability
over µ that Πi accepts, conditioned on the input being a 1-input. Let ri be the same but
conditioned on a 0-input. Now∑

i

piqi = Pr
i,(x,y)∼µ

[
Πi(x, y) accepts

∣∣ f(x, y) = 1
]
≥ α, (1)∑

i

piri = Pr
i,(x,y)∼µ

[
Πi(x, y) accepts

∣∣ f(x, y) = 0
]
≤ α/32. (2)

I Claim 6. There exists an i∗ such that qi∗ ≥ α/2 and ri∗ ≤ qi∗/16.

Proof of claim. Suppose for contradiction that for all i either qi < α/2 or ri > qi/16. Let
S ⊆ {1, . . . ,m} be such that for all i ∈ S, qi < α/2, and for all i ∈ S, ri > qi/16. Then∑

i

piri ≥
∑
i∈S

piri ≥
∑
i∈S

piqi/16

= 1
16

(∑
i

piqi −
∑
i∈S

piqi

)
≥ 1

16

(
α−

(∑
i∈S

pi

)
α/2

)
≥ α/32.

Furthermore, at least one of the inequalities must be strict, contradicting (2). J

Fix an i∗ guaranteed by Claim 6. Using i∗ as the public randomness in Π, we can now
apply the usual corruption argument. Consider the 1-rectangles that correspond to accepting
transcripts of Πi∗ . Call a 1-rectangle R large if µ(R) > 2−Corr(f) and small otherwise. Recall
that by our assumption on µ, no large 1-rectangle is 1-biased: for every large 1-rectangle
R we have µ(R ∩ f−1(0)) > µ(R)/8. Under µ, the total measure of large 1-rectangles is at
most half the total measure of all 1-rectangles, since otherwise

ri∗ = 2 Pr(x,y)∼µ
[

Πi∗(x, y) accepts and f(x, y) = 0
]

= 2
∑

1-rectangles R µ(R ∩ f−1(0))

≥ 2
∑

large 1-rectangles R µ(R ∩ f−1(0))

> 1
4
∑

large 1-rectangles R µ(R)

> 1
4 ·

1
2
∑

1-rectangles R µ(R)

≥ 1
8
∑

1-rectangles R µ(R ∩ f−1(1))

= 1
8 Pr(x,y)∼µ

[
Πi∗(x, y) accepts and f(x, y) = 1

]
= 1

8 · qi∗/2
= qi∗/16.

Therefore
∑

small 1-rectangles R µ(R) ≥ 1
2
∑

1-rectangles R µ(R) ≥ 1
2 ·qi∗/2 ≥ α/8 > 2−Corr(f)/2−3.

Thus there are at least 2−Corr(f)/2−3/2−Corr(f) = 2Corr(f)/2−3 small 1-rectangles, which implies
that Π uses at least Corr(f)/2− 3 bits of communication.
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2.2 SBP is Upper Bounded by Corruption
Here we show the upper bound SBP(f) ≤ O(Corr(f)). The intuition is as follows. If the
corruption bound is small, that means for every balanced distribution over inputs there
exists a rectangle (which can be viewed as a 2-bit protocol) that exhibits average-case
SBP-like behavior—accepting a random 1-input with not-too-small probability, and accepting
a random 0-input with constant-factor-smaller probability. We use the minimax theorem to
convert this property into a distribution over rectangles, with a worst-case SBP guarantee.
Several technical issues arise with this argument. One is the asymmetry between 1-inputs
and 0-inputs, but this can be massaged away using a linear transformation of probabilities
before invoking minimax. Another is that the corruption bound can yield an average-case
SBP rectangle with a different “α” for different balanced distributions, whereas the minimax
application requires a single α to work uniformly for all balanced distributions. This issue is
fixed by passing to an appropriate subrectangle to decrease the α if necessary, for any given
balanced distribution.

We proceed with the formal proof. For notational convenience we let 0 and 1 stand for
the events f−1(0) and f−1(1), respectively. For example, µ(0 |R) = µ(R ∩ f−1(0))/µ(R)
and µ(R |0) = µ(R ∩ f−1(0))/µ(f−1(0)).

Define α = 2−Corr(f).

I Claim 7. For every balanced µ there exists a rectangle R with µ(R |1) ≥ α and µ(R |0) ≤
α/2.

Proof of claim. Fix a balanced distribution µ. By definition of corruption, there exists a
rectangle S such that µ(S) ≥ α and µ(0 |S) ≤ 1/8. Decompose S as the disjoint union
S1 ∪ S2 ∪ · · · ∪ Sm where the Si’s are the individual rows of S, sorted in nondecreasing order
of µ(0 |Si). Let Ri = S1 ∪ S2 ∪ · · · ∪ Si. For every i we know that µ(0 |Ri) ≤ µ(0 |S) ≤ 1/8.
If there exists an i such that α ≤ µ(Ri |1) ≤ 2α then R = Ri witnesses the claim since

µ(Ri |0) = µ(0 |Ri) · µ(Ri |1) · µ(1)
µ(0) · µ(1 |Ri)

≤ (1/8) · 2α · (1/2)
(1/2) · (7/8) = 2α/7 ≤ α/2.

Otherwise, since µ(Rm |1) = µ(S |1) = µ(1 |S) · µ(S)/µ(1) ≥ (7/8) · α/(1/2) > α and
µ(R0 |1) = 0 < α, there must exist an i such that µ(Ri |1) > 2α and µ(Ri−1 |1) < α and
thus µ(Si |1) > 2α− α = α. In this case, the rectangle R = Si ∩ 1 witnesses the claim since
µ(Si ∩ 1 |1) = µ(Si |1) > α and µ(Si ∩ 1 |0) = 0 ≤ α/2. J

Let M be the matrix with rows indexed by inputs (x, y) ∈ {0, 1}n × {0, 1}n and columns
indexed by rectangles R ⊆ {0, 1}n × {0, 1}n such that

M(x,y),R =


1 if f(x, y) = 1 and (x, y) ∈ R
0 if f(x, y) = 1 and (x, y) 6∈ R
0 if f(x, y) = 0 and (x, y) ∈ R
α

1−α/2 if f(x, y) = 0 and (x, y) 6∈ R

.

We claim that for every distribution µ over inputs, there exists a rectangle R such that
E(Mµ,R) ≥ α (where E denotes expectation). If µ(0) = 0 then take R = {0, 1}n × {0, 1}n,
and if µ(1) = 0 then take R = ∅. Otherwise, let µ′ be the balanced version of µ and invoke
Claim 7 to find an R such that µ′(R |1) ≥ α and µ′(R |0) ≤ α/2. Then we have

E(Mµ,R) = µ(R |1) · µ(1) + α
1−α/2 · µ(R |0) · µ(0)

APPROX/RANDOM’14
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= µ′(R |1) · µ(1) + α
1−α/2 · µ

′(R |0) · µ(0)

≥ α · µ(1) + α
1−α/2 · (1− α/2) · µ(0)

= α.

Now by the minimax theorem, there exists a distribution D over rectangles such that for
every input (x, y), E(M(x,y),D) ≥ α. If f(x, y) = 1 this means the probability a random
rectangle from D contains (x, y) is at least α. If f(x, y) = 0 this means α

1−α/2 times the
probability a random rectangle from D does not contain (x, y) is at least α, in other words
the probability a random rectangle from D contains (x, y) is at most α/2. Thus the protocol
that picks a random rectangle from D and accepts iff the input is in the rectangle shows
that Rpub

α, α/2(f) ≤ 2 and hence SBP(f) ≤ 2 + log(1/α) = 2 + Corr(f).

3 USBP Lower Bound

In this section we prove Theorem 3, which states that USBP(Disj) = Θ(n). We first give an
informal overview.

Our proof uses the by-now standard information complexity approach [4, 12]. In this
approach, one considers some suitably distributed random input (X,Y ) and measures
the amount of information that the protocol transcript Π(X,Y ) (i.e., the concatenation
of all messages sent) “leaks” about the input as quantified by the mutual information
I(Π(X,Y );X,Y ). Lower bounding the mutual information has the side effect of lower
bounding the entropy H(Π(X,Y )) of the transcript, which in turn lower bounds the length
of the transcript and thereby the communication complexity. It is often useful to involve the
conditional versions of these information measures, defined by H(Π |Z) = Ez∼ZH(Π |Z = z)
and I(Π;X,Y |Z) = Ez∼ZI(Π;X,Y |Z = z) where Z is some random variable (jointly
distributed with X and Y ). We refer the reader to [14] for discussions of these basic
information theory concepts.

A key benefit of studying mutual information is that one automatically obtains for it a
direct sum property (as in [12, 4]), as long as the coordinates (Xi, Yi), i ∈ [n], are mutually
independent. This way, the task of proving an Ω(n) lower bound for the original problem
reduces to the task of proving an Ω(1) information lower bound for some constant-size
“gadget”. For set-disjointness Disj = Andn ◦Nandn this gadget is typically Nand.

Our proof follows this outline. The reduction to the single-gadget case will be packaged
into Theorem 8 and is standard. By contrast, in proving the Ω(1) information lower bound
for the single gadget, we need to overcome the following two new technical issues.

(1) Small Acceptance Probabilities. Since the protocol is only required to succeed with
a tiny probability α(n) on 1-inputs, the transcript of Π can be useless most of the time:
Imagine a protocol that rejects with probability 1 − α at the start (and otherwise does
something useful). The entropy of the transcript of such protocols can be as low as O(α).

To address this issue, we do not work with the transcript distribution of Π directly, but
rather with the conditional distribution given that the protocol accepts. That is, for 1-inputs
(x, y), we consider the random variable

T (x, y) := Π(x, y) |Π(x, y) is an accepting transcript

and proceed to lower bound I(T (X,Y );X,Y ) instead. One subtlety is that conditioning
on acceptance does not “commute” with the reduction to the single-gadget case. We must
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Protocol Π∗. On input (x, y) ∈ {0, 1}2:
1. If x = 0 Alice sends a “1”. If x = 1 Alice sends

a “1” with probability α and rejects otherwise
(by sending a “0”).

2. Suppose Alice sent a “1”. Then if y = 0 Bob
accepts (by sending a “1”). If y = 1 then
Bob accepts with probability α and rejects
otherwise.

11

11 11

11

10

10

0 0

0

1

0 1

Figure 1 Protocol Π∗ for Nand. In the illustration on the right, each of the input blocks is
further subdivided into rectangles according to the outcomes of the private coins. The rectangles
are labeled with the associated transcripts.

consider the distribution of T that arises from first conditioning on acceptance and then
doing the reduction, which is generally not the same distribution as if we did the reduction
and then conditioned on acceptance. However, this is not a significant technical obstacle.

(2) Large Acceptance Probabilities. The acceptance probability of a protocol Π can vary
between α and 1 when run on different 1-inputs. This, together with our conditioning
idea above, introduces a new problem: there are USBP protocols for Nand such that the
associated T leaks no information about the input!

Indeed, consider the protocol Π∗ for Nand given in Figure 1. This protocol accepts
the 1-input (0, 0) with probability 1, the 1-inputs (0, 1) and (1, 0) with probability α, and
the 0-input (1, 1) with probability α2. Choosing α such that α2 ≤ α/2 we obtain a USBP
protocol for Nand where the associated conditioned-on-acceptance variable T ∗ is constant
(the protocol Π∗ has only one accepting transcript, namely “11”).

To avoid this problem, we use a more complicated gadget than Nand; see Figure 2a.
The new gadget G contains two instances of Nand: in Figure 2b one instance of Nand
corresponds to the pair of edges ab and another one to ac. We show that the bad situation
described above cannot happen simultaneously for both of them. One subtlety is that the bad
situation—i.e., when a transcript has much higher probability of appearing on the 1-input
(0, 0) of Nand than on the other two 1-inputs (0, 1) and (1, 0) of Nand—depends on the
transcript, with some transcripts being bad for ab and some being bad for ac, but none
being bad for both. We prove an information lower bound (conditioned on acceptance) for
whichever instance of Nand behaves better for “most” transcripts.

We note that a similar technical issue arose in the proof of Braverman and Moitra [6]
when analyzing the case α = 1/2 + ε, β = 1/2− ε. Their solution involved applying a certain
type of random-self-reduction (they called it smoothing) to the inputs before invoking the
protocol. This approach is highly tailored to their setting and does not seem to be directly
helpful to us. Nevertheless, our gadget G was inspired by their analysis.

3.1 Proof of Theorem 3

Define the gadget G : {0, 1, 2} × {1, 2} → {0, 1} as the indicator for non-equality; see
Figure 2a. Define the function F : {0, 1, 2}n × {1, 2}n → {0, 1} by F = Andn ◦ Gn, i.e.,
F (x, y) = 1 iff G(xi, yi) = 1 for all i ∈ [n]. Since G reduces to Disj on 2 bits by the map
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(a)

1 1

0 1

1 0

0

1

2

1 2

(b)

a

b
c

Figure 2 (a) Truth table of the gadget G. (b) Distributions Qa, Qb, and Qc are uniform over
the endpoints of the edges a, b, and c, respectively.

(0 7→ 00, 1 7→ 01, 2 7→ 10), we find that F reduces to Disj on 2n bits. Hence it suffices to
prove that USBP(F ) ≥ Ω(n).

Input Distribution. Define Qa, Qb, Qc to be the following three distributions over {0, 1, 2}×
{1, 2}: Qa is uniform over {(0, 1), (0, 2)}, Qb is uniform over {(0, 1), (2, 1)}, and Qc is uniform
over {(0, 2), (1, 2)}; see Figure 2b. For i ∈ [n], u ∈ {0, 1, 2}, v ∈ {1, 2}, and z a length-(n− 1)
string over the alphabet {a,b,c} indexed by [n]\{i}, define Di,u,v,z to be the distribution
over pairs (x, y) ∈ {0, 1, 2}n × {1, 2}n obtained by setting xi = u, yi = v, and for each j 6= i

(independently) sampling (xj , yj) from Qzj . Note that support(Di,u,v,z) ⊆ F−1(G(u, v)) and
that x and y are independent when sampled from Di,u,v,z.

Reduction to the Single-gadget Case. Let Π be an Rpriv
α, α/4 protocol for F (recall that by

and-amplification we may assume β = α/4 in the definition of USBP). Let Π(x, y) denote the
transcript of Π on input (x, y). Thus Π(x, y) is a random variable whose outcome depends on
the private coins of the protocol. For (x, y) ∈ F−1(1) define T (x, y) as the random variable
whose distribution is that of Π(x, y) conditioned on Π(x, y) being an accepting transcript.

Suppose for contradiction that the transcripts have length less than n/2400. Using the
direct sum methodology we will next find a coordinate i (and a string z) such that the
protocol leaks very little information about the i-th input (conditioned on the data z). This
is formalized in the following lemma whose proof we defer to subsection 3.2 as it is essentially
identical to the corresponding argument in [4]. Below, ‖X − Y ‖ denotes the statistical
distance between the distributions of the random variables X and Y .

I Lemma 8. If γ > 0 is such that for all i and z either ‖T (Di,0,1,z)− T (Di,0,2,z)‖ ≥ γ or
‖T (Di,0,1,z)− T (Di,2,1,z)‖ ≥ γ or ‖T (Di,0,2,z)− T (Di,1,2,z)‖ ≥ γ, then some transcript has
length at least nγ2/6.

Contrapositively, letting γ = 1/20, Theorem 8 implies that there exists an i and z (which
we fix henceforth) such that ‖T (Di,0,1,z) − T (Di,0,2,z)‖, ‖T (Di,0,1,z) − T (Di,2,1,z)‖, and
‖T (Di,0,2,z)− T (Di,1,2,z)‖ are all less than γ.

The Single-gadget Case. Let (u, v) be an input to G and let τ be a transcript. We define

πuv(τ) := Pr
[
Π(Di,u,v,z) = τ

]
for any (u, v),

tuv(τ) := Pr
[
T (Di,u,v,z) = τ

]
for (u, v) ∈ G−1(1).
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We henceforth adopt the convention that 0/0 = 0. Let

S :=
{
accepting τ : π01(τ)

t01(τ) ≤
π02(τ)
t02(τ)

}
and let S := {accepting τ}\S. Since ‖T (Di,0,1,z) − T (Di,0,2,z)‖ < γ, we have either
Pr
[
T (Di,0,1,z) ∈ S

]
≥ 1−γ

2 or Pr
[
T (Di,0,2,z) ∈ S

]
≥ 1−γ

2 . Henceforth assume the former
case; a completely analogous argument handles the latter case.

Note that π22(τ) · π01(τ) = π21(τ) · π02(τ) by the basic rectangular structure of τ . Also
note that if G(u, v) = 1 and τ is accepting, then the following both hold.

We have πuv(τ) = 0 iff tuv(τ) = 0, and hence πuv(τ) = πuv(τ)
tuv(τ) · tuv(τ).

Assuming πuv(τ) and tuv(τ) are nonzero, we have πuv(τ)
tuv(τ) ≥ α by the correctness of Π.

For (u, v) ∈ {(2, 1), (0, 2)} define γuv(τ) = |tuv(τ)− t01(τ)| and note that∑
accepting τ γuv(τ) = 2‖T (Di,u,v,z)− T (Di,0,1,z)‖ < 2γ. (3)

By a case analysis, we have t21(τ) · t02(τ) ≥ t01(τ)2 − t01(τ)
(
γ21(τ) + γ02(τ)

)
. Recalling our

convention that 0/0 = 0, and considering the case t01(τ) = 0 separately, we find that in all
cases

t21(τ) · t02(τ)
t01(τ) ≥ t01(τ)− γ21(τ)− γ02(τ). (4)

Thus we have

Pr
[
Π(Di,2,2,z) accepts

]
=

∑
accepting τ

π22(τ)

≥
∑
τ∈S

π22(τ)

≥
∑
τ∈S

π21(τ) · π02(τ)
π01(τ)

=
∑
τ∈S

π21(τ)
t21(τ) ·

π02(τ)
t02(τ)

π01(τ)
t01(τ)

· t21(τ) · t02(τ)
t01(τ)

≥
∑
τ∈S

α ·
(
t01(τ)− γ21(τ)− γ02(τ)

)
> α ·

( 1−γ
2 − 2γ − 2γ

)
> α/4.

To see that the fifth line follows from the fourth, consider each τ ∈ S: If t21(τ) 6= 0 and
t02(τ) 6= 0 then it follows by π21(τ)

t21(τ) ≥ α and π02(τ)
t02(τ)

/π01(τ)
t01(τ) ≥ 1 (since τ ∈ S) and (4). On the

other hand, if t21(τ) = 0 or t02(τ) = 0, say, t21(τ) = 0, then it follows since the summand on
the fourth line is 0, and t01(τ)− γ21(τ) = 0 so the summand on the fifth line is nonpositive.
The sixth line follows from the fifth by

∑
τ∈S t01(τ) = Pr

[
T (Di,0,1,z) ∈ S

]
≥ 1−γ

2 and∑
τ∈S γ21(τ) ≤

∑
accepting τ γ21(τ) and (3), and similarly for γ02.

We conclude that Pr
[
Π(x, y) accepts

]
> α/4 for some (x, y) ∈ support(Di,2,2,z) ⊆ F−1(0),

contradicting the correctness of Π. This finishes the proof of Theorem 3.

3.2 Proof of Theorem 8
Define jointly distributed random variables X = X1 · · ·Xn ∈ {0, 1, 2}n, Y = Y1 · · ·Yn ∈
{1, 2}n, and Z = Z1 · · ·Zn ∈ {a,b,c}n as follows: Z is uniform, and given a particular
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choice of Z, for each i ∈ [n] (independently) (Xi, Yi) is sampled from QZi . Thus the marginal
distribution of (X,Y ) is that for each i (independently), (Xi, Yi) has probability 1/3 for each
of (0, 1), (0, 2), and probability 1/6 for each of (2, 1), (1, 2). Since the support of (X,Y ) is in
F−1(1), we may also view T as a random variable distributed jointly with (X,Y, Z). Let
Z−i denote Z1 · · ·Zi−1Zi+1 · · ·Zn.

For any i ∈ [n], zi ∈ {a,b,c}, and z−i ∈ {a,b,c}n−1 indexed by [n]\{i}, we can view(
T (Di,Qzi

,z−i
), Qzi

)
as a pair of jointly distributed random variables that is distributed

identically to
(
T, (Xi, Yi)

∣∣ Zi = zi, Z−i = z−i
)
. For all i and z−i, by a standard lemma

(see [4, Lemma 6.2 and Proposition 6.10]) we have I
(
T (Di,Qa,z−i

);Qa
)
≥ ‖T (Di,0,1,z−i

) −
T (Di,0,2,z−i)‖2/2 and similarly for b and c. Therefore

Maximum length of transcript ≥ H(T |Z)
≥ I(T ;X,Y |Z)
≥
∑
i I(T ;Xi, Yi |Z)

=
∑
i Ez−i

1
3
∑
zi
I
(
T ;Xi, Yi

∣∣ Zi = zi, Z−i = z−i
)

=
∑
i Ez−i

1
3
∑
zi
I
(
T (Di,Qzi

,z−i
);Qzi

)
≥
∑
i Ez−i

1
3 ·

1
2

(
‖T (Di,0,1,z−i )− T (Di,0,2,z−i )‖2

+‖T (Di,0,1,z−i )− T (Di,2,1,z−i )‖2

+‖T (Di,0,2,z−i )− T (Di,1,2,z−i )‖2
)

≥
∑
i Ez−i

(γ2/6)
= nγ2/6.

where the third line follows by a standard direct sum property for conditional information
cost [4].

4 The Complexity of Set-Disjointness

We now prove Theorem 4 and Theorem 5 using Theorem 3 and Theorem 2.

4.1 Lower Bounds
Private-coin Lower Bounds. Let Π be an Rpriv

α, β protocol for Disj. We prove that the cost
of Π is both Ω(n · (1− β/α)) and Ω(logn), as required for Theorem 4.

First, if we do and-amplification by iterating the protocol d1/(1 − β/α)e times and
accepting iff all runs accept, we get an Rpriv

α′, α′/2 protocol for Disj with α′ = αd1/(1−β/α)e (since
(β/α)d1/(1−β/α)e < 1/2). By Theorem 3 the amplified protocol must use Ω(n) communication
and hence Π must have used Ω(n · (1− β/α)) communication.

Second, Forster’s result [16] that the UPP complexity of inner product is Ω(n) gives us
the Ω(logn) lower bound for Π. Indeed, the inner product function reduces to Disj with
exponential blow-up (see [35, Proposition 6.5]) and we may convert Π into an UPP protocol
by shifting the acceptance threshold near 1/2.

Public-coin Lower Bounds. Let Π be an Rpub
α, β protocol for Disj. We consider the two parts

of Theorem 5 separately.
For the first part, suppose log(1/α) ≤ C ·n ·(1−β/α) for a to-be-specified constant C. We

proceed exactly as above: We first and-amplify Π into an Rpriv
α′, α′/2 protocol. The parameters

satisfy log(1/α′) = log(1/α) · d1/(1−β/α)e ≤ C ·n · (1−β/α) · d1/(1−β/α)e ≤ 2C ·n. Hence
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if C is a sufficiently small universal constant then the Ω(n) lower bound for the amplified
protocol (provided now by Theorem 2) must be coming from the communication cost and
not from the log(1/α′) term. We conclude that the original protocol Π must have used
Ω(n · (1− α/β)) communication.

For the second part, we do not need any restriction on the parameters. We claim that
since Disj has a 2 × 2 identity submatrix, we cannot have Rpub

α, β(Disj) ≤ 1.1 Suppose for
contradiction there is a 1-bit protocol and yet Disj(x, y) = Disj(x′, y′) = 1 and Disj(x, y′) =
Disj(x′, y) = 0. Say r is the probability Alice declares the output and 1− r is the probability
Bob declares the output. Conditioned on Alice declaring the output let px, px′ be the
acceptance probability for the x and x′ rows, and conditioned on Bob declaring the output let
qy, qy′ be the acceptance probability for the y and y′ columns. Letting πxy = rpx + (1− r)qy
be the overall acceptance probability on input (x, y), we have α−β ≤ πxy−πx′y = r(px−px′)
and α− β ≤ πx′y′ − πxy′ = r(px′ − px), a contradiction.

4.2 Upper Bounds
Public-coin Protocols. We start with a simple Rpub

1, β/α protocol for Disj of cost Θ(n · (1−
β/α)).

Basic public-coin protocol Π.
1. Use public randomness to pick a uniformly random S ⊆ [n] of size dn · (1−β/α)e.
2. Alice sends the substring x|S to Bob.
3. Bob outputs Disj(x|S , y|S).

It is straightforward to check that Π is indeed an Rpub
1, β/α protocol. To obtain an Rpub

α, β

protocol for the first part of Theorem 5 (without needing any restriction on the parameters),
we can reject with probability 1 − α at the beginning and otherwise run Π. To obtain a
protocol of cost 2 for the second part of Theorem 5, we need to better exploit the power of
public coins. If we modify Π so that additional public coins are used to guess x|S , then Alice
can just send one bit indicating whether the guess is correct, and Bob can send the output
bit (rejecting if the guess was wrong). This yields an Rpub

1/2|S|, β/α2|S| protocol which, by the
restriction that α ≤ 1/2|S|, can be adapted into an Rpub

α, β protocol by automatically rejecting
with probability 1− α2|S|.

In fact, the above protocols can be seen as special cases of the following general protocol,
which interpolates between them. For simplicity of presentation, let us assume that log(1/α)
is an integer and log(1/α) ≤ |S|. In step 2 of the basic protocol Π, Alice can expedite the
sending of her message to Bob as follows: Alice and Bob interpret additional public coins as
guessing the first log(1/α) bits of Alice’s message. Alice can use one bit of communication
to indicate whether this guess is correct, and if so she can send the other |S| − log(1/α) bits

1 For the public-coin version of UPP, an equivalence actually holds. For all f , we have UPPpub(f) ≤ 2,
and it is not difficult to show that the following are equivalent: (i) UPPpub(f) ≤ 1, (ii) there exist row
and column values px, qy ∈ [0, 1] and r ∈ [0, 1] such that

∣∣rpx + (1 − r)qy − f(x, y)
∣∣ < 1/2, (iii) the

rows and columns can be permuted so each row and each column is monotonically nondecreasing (0’s
then 1’s), (iv) f does not contain as a submatrix the 2× 2 identity (or its complement). To see that
(iii)⇒(ii), take r = 1/2, and px = fraction of 1’s in the x row, and qy = (y − 1/2)/(number of columns)
where y is viewed as a positive integer.
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of her message normally. The probability that the public guess is correct is 2− log(1/α) = α.
Thus, this new protocol ends up working in a familiar way: with probability 1 − α the
public guess fails (in which case we reject), but otherwise we are able to run Π successfully.
This results in an Rpub

α, β protocol of cost |S| − log(1/α) + 2. Here the +2 comes from Alice
indicating whether the public guess is correct and Bob sending the final answer.

Private-coin Protocols. By sparsification, we may assume the basic protocol Π uses only
O(logn) bits of public randomness. Thus we have Rpriv

1, β/α(Disj) ≤ O(n · (1− β/α) + logn)
since Alice can pick S privately and send it to Bob along with x|S . An Rpriv

α, β protocol for
Theorem 4 can be obtained as previously: automatically reject with probability 1− α and
otherwise run the Rpriv

1, β/α protocol.

5 Open Problems

It would be interesting to separate SBP and USBP, or to separate MA and SBP, even by a
promise problem. In the classical world, it is known that MA and SBP can be separated by
an oracle [5, 32]. The relationship between USBP and AM is also open (in both directions).

Among the complexity measures PP, UPP, SBP, and USBP, the first three are charac-
terized by discrepancy [26], sign-rank [30], and corruption (Theorem 1), respectively. It is
straightforward to show that the fourth is characterized by the log of the smallest nonnegative
rank of a matrix such that the minimum value of a 1-input’s entry is at least twice the
maximum value of a 0-input’s entry. It is open to provide a more natural characterization of
USBP.

Acknowledgements. We thank Mark Braverman, Tom Gur, Toniann Pitassi, and anony-
mous reviewers for comments and discussions.

References
1 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.

ACM Transactions on Computation Theory, 1(1), 2009.
2 László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication com-

plexity theory. In Proceedings of the 27th Symposium on Foundations of Computer Science
(FOCS), pages 337–347. IEEE, 1986.

3 László Babai and Shlomo Moran. Arthur–Merlin games: A randomized proof system, and a
hierarchy of complexity classes. Journal of Computer and System Sciences, 36(2):254–276,
1988.

4 Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004.

5 Elmar Böhler, Christian Glaßer, and Daniel Meister. Error-bounded probabilistic compu-
tations between MA and AM. Journal of Computer and System Sciences, 72(6):1043–1076,
2006.

6 Mark Braverman and Ankur Moitra. An information complexity approach to extended
formulations. In Proceedings of the 45th Symposium on Theory of Computing (STOC),
pages 161–170. ACM, 2013.

7 Mark Braverman and Omri Weinstein. A discrepancy lower bound for information complex-
ity. In Proceedings of the 16th International Workshop on Randomization and Computation
(RANDOM), pages 459–470. Springer, 2012.



M. Göös and T. Watson 735

8 Harry Buhrman, Nikolai Vereshchagin, and Ronald de Wolf. On computation and communi-
cation with small bias. In Proceedings of the 22nd Conference on Computational Complexity
(CCC), pages 24–32. IEEE, 2007.

9 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Annotations in data streams.
In Proceedings of the 36th International Colloquium on Automata, Languages, and Program-
ming (ICALP), pages 222–234. Springer, 2009.

10 Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and Suresh
Venkatasubramanian. On interactivity in Arthur–Merlin communication and stream com-
putation. Technical Report TR13-180, Electronic Colloquium on Computational Complex-
ity (ECCC), 2013.

11 Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication com-
plexity of Gap-Hamming-Distance. SIAM Journal on Computing, 41(5):1299–1317, 2012.

12 Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Yao. Informational complex-
ity and the direct sum problem for simultaneous message complexity. In Proceedings of
the 42nd Symposium on Foundations of Computer Science (FOCS), pages 270–278. IEEE,
2001.

13 Arkadev Chattopadhyay and Toniann Pitassi. The story of set disjointness. SIGACT News,
41(3):59–85, 2010.

14 Thomas Cover and Joy Thomas. Elements of Information Theory. Wiley, 2006.
15 Scott Diehl. Lower bounds for swapping Arthur and Merlin. In Proceedings of the 11th

International Workshop on Randomization and Computation (RANDOM), pages 449–463.
Springer, 2007.

16 Jürgen Forster. A linear lower bound on the unbounded error probabilistic communication
complexity. Journal of Computer and System Sciences, 65(4):612–625, 2002.

17 Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information and communi-
cation. Technical Report TR14-049, Electronic Colloquium on Computational Complexity
(ECCC), 2014.

18 Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof
systems. In Proceedings of the 18th Symposium on Theory of Computing (STOC), pages
59–68. ACM, 1986.

19 Tom Gur and Ran Raz. Arthur–Merlin streaming complexity. In Proceedings of the 40th
International Colloquium on Automata, Languages, and Programming (ICALP), pages 528–
539. Springer, 2013.

20 Rahul Jain and Hartmut Klauck. The partition bound for classical communication com-
plexity and query complexity. In Proceedings of the 25th Conference on Computational
Complexity (CCC), pages 247–258. IEEE, 2010.

21 Rahul Jain, Troy Lee, and Nisheeth Vishnoi. A quadratically tight partition bound for
classical communication complexity and query complexity. Technical report, arXiv, 2014.

22 Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Algo-
rithms and Combinatorics. Springer, 2012.

23 Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication complexity
of set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992.

24 Iordanis Kerenidis, Sophie Laplante, Virginie Lerays, Jérémie Roland, and David Xiao.
Lower bounds on information complexity via zero-communication protocols and applica-
tions. In Proceedings of the 53rd Symposium on Foundations of Computer Science (FOCS),
pages 500–509, 2012.

25 Hartmut Klauck. Rectangle size bounds and threshold covers in communication complexity.
In Proceedings of the 18th Conference on Computational Complexity (CCC), pages 118–134.
IEEE, 2003.

APPROX/RANDOM’14



736 Communication Complexity of Set-Disjointness for All Probabilities

26 Hartmut Klauck. Lower bounds for quantum communication complexity. SIAM Journal
on Computing, 37(1):20–46, 2007.

27 Hartmut Klauck. On Arthur Merlin games in communication complexity. In Proceedings
of the 26th Conference on Computational Complexity (CCC), pages 189–199. IEEE, 2011.

28 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

29 Ilan Newman. Private vs. common random bits in communication complexity. Information
Processing Letters, 39(2):67–71, 1991.

30 Ramamohan Paturi and Janos Simon. Probabilistic communication complexity. Journal
of Computer and System Sciences, 33(1):106–123, 1986.

31 Alexander Razborov. On the distributional complexity of disjointness. Theoretical Com-
puter Science, 106(2):385–390, 1992.

32 Miklos Santha. Relativized Arthur–Merlin versus Merlin–Arthur games. Information and
Computation, 80(1):44–49, 1989.

33 Alexander Sherstov. Halfspace matrices. Computational Complexity, 17(2):149–178, 2008.
34 Alexander Sherstov. The pattern matrix method. SIAM Journal on Computing, 40(6):1969–

2000, 2011.
35 Alexander Sherstov. The unbounded-error communication complexity of symmetric func-

tions. Combinatorica, 31(5):583–614, 2011.
36 Alexander Sherstov. The communication complexity of Gap Hamming Distance. Theory

of Computing, 8(1):197–208, 2012.
37 Thomas Vidick. A concentration inequality for the overlap of a vector on a large set,

with application to the communication complexity of the Gap-Hamming-Distance problem.
Chicago Journal of Theoretical Computer Science, 2012(1):1–12, 2012.

38 Thomas Watson. The complexity of estimating min-entropy. Computational Complexity,
2015. To appear. Preprint: http://eccc.hpi-web.de/report/2012/070/.

http://eccc.hpi-web.de/report/2012/070/

	Introduction
	Main Result
	SBP: Small Bounded-error Probabilities
	Results for SBP and USBP
	Characterization for All a and b

	SBP is Characterized by Corruption
	SBP is Lower Bounded by Corruption
	SBP is Upper Bounded by Corruption

	USBP Lower Bound
	Proof of Theorem 3
	Proof of Theorem 8

	The Complexity of Set-Disjointness
	Lower Bounds
	Upper Bounds

	Open Problems

