
Local Search for the Resource Constrained
Assignment Problem
Markus Reuther

Zuse Institute Berlin
Takustrasse 7, 14195 Berlin, Germany
reuther@zib.de

Abstract
The resource constrained assignment problem (RCAP) is to find a minimal cost cycle partition
in a directed graph such that a resource constraint is fulfilled. The RCAP has its roots in an
application that deals with the covering of a railway timetable by rolling stock vehicles. Here, the
resource constraint corresponds to maintenance constraints for rail vehicles. Moreover, the RCAP
generalizes several variants of vehicle routing problems. We contribute a local search algorithm
for this problem that is derived from an exact algorithm which is similar to the Hungarian
method for the standard assignment problem. Our algorithm can be summarized as a k-OPT
heuristic, exchanging k arcs of an alternating cycle of the incumbent solution in each improvement
step. The alternating cycles are found by dual arguments from linear programming. We present
computational results for instances from our railway application at Deutsche Bahn Fernverkehr
AG as well as for instances of the vehicle routing problem from the literature.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Assignment Problem, Local Search, Rolling Stock Rotation Problem,
Vehicle Routing Problem

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.62

1 Introduction

Let D = (V,A) be a directed graph and let c : A 7→ Q+ be a cost function. Generally
speaking, the resource constrained assignment problem (RCAP) is to find a cost minimal
cycle partition in G such that a resource constraint is fulfilled. The RCAP generalizes several
variants of the Vehicle Routing Problem (VRP) [20], e.g., the capacitated vehicle routing
problem (CVRP) and the asymmetric traveling salesman problem (ATSP). Moreover, the
RCAP is a specialization of the rolling stock rotation problem (RSRP) [18].

The ATSP can be formulated as: Find a cost minimal cost partition of G in cycles
with the additional side constraint that there is no sub-tour. We handle the no sub-tour
constraint as resource constraint, i.e., the traveling salesman has to collect a flower at each
city, he can load at most |V | − 1 flowers and he has to drop the flowers at some special depot
node. This modeling idea is already used in mixed integer programming formulations for the
symmetric TSP [13]. For vehicle routing problems the resource constraint appears as the
maximal vehicle capacity, while the distance between two successive maintenance inspections
is constrained for rolling stock rotations.

For similar problems that consider an acyclic graph a method of choice is column generation
with dynamic programming. For the resource constrained shortest path problem in acyclic
graphs there exist a huge variety of powerful pseudo-polynomial time algorithms [5]. For
problems with cyclic graphs one has to deal with node repetitions in dynamic programming

© Markus Reuther;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 62–78

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.62
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Reuther 63

approaches which is a rather hard task. By today, there is no method of choice to tackle
these resource constraints in graphs that contain cycles, see [15].

Almost all algorithms for instances of the VRP, ATSP, or RSRP take use of some kind
of local search procedures. They are either used as working horse to prune the search
space within exact algorithms or as standalone algorithms. Local search algorithms can be
distinguished between those that make use of linear programs and others which do not.

Mixed integer programming (MIP) based local search heuristics like RENS [2], RINS [4],
local branching [6], and crossover [19] restrict the original problem to a much smaller MIP by
introducing bound changes and additional constraints. The remaining problems are solved
by using the linear relaxation as pruning argument. Apart from such methods there exist a
huge set of combinatorial motivated local search algorithms. They are designed to take use of
one or more elementary local move operations and to quickly explore a large neighborhood.
The papers [12], [10], and [3] are classical seminal references in the case of the TSP, ATSP,
and VRP.

A powerful method that integrates linear programming arguments and local move opera-
tions is the modulo network simplex method for the periodic event scheduling problem [14].
This algorithm can be summarized as a local search procedure that improves the current
incumbent solution by move operations emerged from a modified network simplex algorithm.
We follow this line by using [1] as basis for a linear programming guided heuristic for the
RCAP. In [1] there is described an exact method to solve the assignment problem. This
algorithm is similar to the famous Hungarian method. The most important difference is that a
perfect matching, i.e, a feasible primal incumbent solution is always at hand. The incumbent
solution is iteratively improved by applying cycles that alternate between arcs to delete and
arcs to add. Our idea is to use the alternating cycles emerged from this algorithm for an
improvement heuristic for the RCAP. Using alternating cycles as neighborhood structure
has been extensively studied in the literature. In particular a local search algorithm, namely
the Lin-Kernighan [12] heuristic for the symmetric traveling salesman problem, which is still
the best performing heuristic for the symmetric TSP. The main difference to our approach
is that we find the alternating cycles by arguments from linear programming. Thus, the
definition of predefined neighborhood graphs to derive candidate lists is not necessary by
using our approach.

The paper is organized as follows. In Section 2 we formally introduce the RCAP. We give
a detailed description of the method proposed in [1] in Section 3. Section 4 explains our
heuristic extension for which we give computational results in the last section.

2 The Resource Constrained Assignment Problem

Let D = (V,A) be a directed graph and let c : A 7→ Q be some objective function. We assume
that a dedicated event is performed at each arc of D. Further, we introduce a resource
function r : A 7→ Q+ ×Q+ that assigns a pair of rational numbers (r1

a, r
2
a) stating a resource

consumption before and after the event on an arc and we define ra := r1
a + r2

a. We distinguish
replenishment events from other events and call arcs with replenishment events replenishment
arcs. Let B ∈ Q+ be a resource constraint. We call a cycle C ⊆ A feasible cycle if one of the
following two conditions is fulfilled:

1.
∑

a∈C ra = 0 or
2. at least one arc of C is a replenishment arc and for all paths P = (ã, a1, ..., am, â) of C

such that ã and â are replenishment arcs and a1, ..., am are not replenishment arcs, the
inequality r2

ã +
∑m

i=1 rai
+ r1

â ≤ B is fulfilled.

ATMOS’14

64 Local Search for the RCAP

I Definition 1 (Resource Constrained Assignment Problem (RCAP)). Given a directed Graph
D = (V,A), a resource function r, an objective function c, and a resource constraint B. The
RCAP is to find a partition of the nodes of D into a set of feasible cycles that minimizes c.

W.l.o.g. we assume that G is complete. Graphs that are not complete can be made
complete by introducing arcs which sufficient high cost. We also assume that G does not
contain multiple arcs between two nodes.

The RCAP is a specialization of the rolling stock rotation problem [18] and has its roots in
it. In rolling stock rotation planning the resource constraint models for example a maintenance
constraint for rail vehicles, e.g., refueling. To model time or distance consumptions directly
before or after replenishment events at the arc a ∈ A one can use the pair (r1

a, r
2
a).

As already explained, the RCAP generalizes the symmetric and asymmetric traveling
salesman problem. In the ATSP example from Section 1 all in the depot node ingoing arcs
would perform the replenishment event “drop the flowers” and all other arcs the event “take
the flower of the last city”.

Moreover, variants for the vehicle routing problems can also be seen as instances of the
RCAP. For example, the capacitated vehicle routing problem (CVRP) [3] is to find a minimal
set of cycles, namely tours, in a complete undirected graph G = (V ∪ {d}, E) with node
demands rv ∈ Q for all v ∈ V such that each node of V is covered exactly once by one cycle,
each cycle covers d exactly once,

∑
v∈V ∩C rv ≤ B holds for each cycle C of the solution, and

the solution minimizes some linear objective function c : E 7→ Q. For the CVRP the minimal
number of tours t can be computed by t =

⌈(∑
v∈V

rv

)
/B

⌉
for many instances. An instance

of the CVRP can be modeled as an instance of the RCAP by introducing t copies of d, using
the resource function of the outgoing arcs of a node to model the demand of the node, and
declaring the outgoing or incoming arcs of the depot as replenishment arcs.

We use the proposed transformations for the TSP, ATSP, and CVRP for our computational
results and moreover they show that the RCAP is a NP-hard combinatorial optimization
problem.

Let RCAP’ be the problem if we relax the resource constraint in the RCAP with the
graph D = (V,A), i.e., if all ra = 0. The standard assignment problem (AP) [11] is to find
a cost minimal perfect matching in a complete bipartite undirected graph G = (T ∪H,E)
with T ∩H = ∅ for some linear objective function.

The following lemma motivates the name Resource Constrained Assignment Problem.

I Lemma 2. The RCAP’ is equivalent to the standard assignment problem.

Proof. Let t : V 7→ T and h : V 7→ H be two bijective functions. An arc a = (u, v) ∈ A
with u, v ∈ V of D can be bijectively transformed to an edge e = {t(u), h(v)} of G such that
c(a) = c(e). Therefore any solution A0 ⊆ A of the RCAP’ can be uniquely transformed to a
solution E0 ⊆ E of the AP and vice versa. J

In the remaining part of the paper we assume that a node of V is associated with a tail
and a head node of T and H as it was introduced in the proof of 2. Since edges in G and arcs
in D have a one-to-one correspondence, we identify arcs of the directed graph D = (V,A)
for the RCAP and edges of the undirected graph G = (T ∪H,E) for the AP. We either use
D = (V,A) or G = (T ∪H,A) as notation for the considered graphs depending on what is
appropriate.

M. Reuther 65

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

switch arcs in G
→

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

Figure 1 Alternating cycle.

3 A Primal Hungarian Method

The algorithm proposed in [1], that we call call Primal Hungarian Method in this paper, is
the basis for our approach. We will introduce this algorithm in this section.

Let G = (T ∪H,A) be a complete bipartite graph with |T | = |H| and c : A 7→ Q. Further
let xa be a binary decision variable that is equal to one if a belongs to a solution and zero
otherwise. Further, let πt

u be a free dual variable for each tail node u ∈ T and let πh
v be a

free dual variable for each head node v ∈ H. We denote the set of incoming and outgoing
arcs of v ∈ V by δ+(v) := {a ∈ A | a = (u, v)} and δ−(v) := {a ∈ A | a = (v, w)}, respectively.
The standard assignment problem can be formulated by the following dual linear programs:

(P) min
∑

a∈A caxa

s.t.
∑

a∈δ+(v) xa = 1, ∀v ∈ T∑
a∈δ−(v) xa = 1, ∀v ∈ H

xa ≥ 0, ∀a ∈ A

(D) max
∑

u∈T π
t
u +

∑
v∈H π

h
v

s.t. πtu + πhv ≤ ca, ∀a = (u, v) ∈ A

πtu ∈ Q, ∀u ∈ T
πhv ∈ Q, ∀v ∈ H.

In each basic solution of (P) the x-variables are all binary and thus the integrality constraints
for them can be relaxed if one solves (P) with a simplex method. Let da := ca − πt

u − πh
v

be the reduced cost of the arc a = (u, v) ∈ A. By the strong duality theorem the x- and
π-variables have optimal value if and only if they are feasible for (P) and (D) and the reduced
cost or the x-variable is zero for each arc:

xa · da = 0, ∀a ∈ A. (1)

The famous Hungarian method [11] can be summarized as follows. Start with a feasible
solution for (D) and choose an initial (possibly empty) matching in G with corresponding
x-variables for (P) such that (1) is fulfilled. In each iteration of the (dual) Hungarian
method the current matching is extended by preserving (1) and dual feasibility as long as
the matching becomes perfect. That is, the method provides dual feasibility at every stage
of the algorithm and can therefore be seen as a dual method.

In the primal Hungarian method the linear programs (P) and (D) change their roles. It
starts with a perfect matching in G and a configuration of the π-variables that must not be
feasible for (D) but have to satisfy (1). In each iteration of the primal Hungarian method
the perfect matching in G is improved as long as all arcs have positive reduced cost, i.e., the
π-variables provide dual feasibility. The same distinction for the (dual) and primal Hungarian
method holds for the primal and dual simplex algorithm.

ATMOS’14

66 Local Search for the RCAP

The improvements found by the primal Hungarian method have a dedicated structure.
Given a perfect matching M ⊆ A, an alternating cycle is a cycle in the underlying undirected
graph of G that alternates between arcs of M and A\M . Figure 1 illustrates this definition.
On the left there is a bipartite graph with five nodes. The perfect matching is represented by
the black arcs. The dashed arcs do not belong to the matching but to the alternating cycle
which is blue. It is easy to see, that if we delete all arcs of the matching that are contained
in the alternating cycle and add all dashed arcs we get another perfect matching which is
illustrated on the right of Figure 1.

Listing 1 describes the general flow of the method. We start with an arbitrary perfect
matching in G and initialize the dual variables as shown in Listing 2. It is easy to see, that (1)
is fulfilled through this initialization.

Listing 1 Primal Hungarian Method
1 primalHungarianMethod ()
2 {
3 find initial perfect matching ;
4 initializeDuals ();
5 for(a? ∈ {a ∈ A | da < 0}) // pricing loop
6 {
7 if(findAlternatingCycle (a?)) { applyAlternatingCycle (a?); }
8 }
9 }

Suppose that we have found an arc a? ∈ A with negative reduced cost, i.e., da < 0 during
the pricing loop. An iteration of the Primal Hungarian Method is a single call to the function
described in Listing 3 with a? as argument. If this function returns true, an alternating
cycle that leads to an improvement has been found. If it returns false the dual variables
have been modified such that da? ≥ 0.

Listing 2 Initialization of dual variables
1 initializeDuals ()
2 {
3 for(v ∈ H)
4 {
5 u := tail(v); // tail of v in current matching
6 πtu := c(u,v);
7 πhv := 0;
8 }
9 }

We start in line 5 at the tail node of a? and do a breath-first-search (BFS) in (the
underlying undirected graph of) G. Whenever a tail or head node has been processed during
this BFS, we label these nodes with the predecessor nodes, see Listing 4. The BFS is applied
to the equality set A0 = {a ∈ A | da = 0} restricted to all tail and head nodes that have not
become labeled yet, see lines 8 to 16.

If we could not reach the tail of a? we modify the dual variables. We can choose any
ε ∈ Q and increase the dual variables of all tail nodes that have an outgoing arc in A0 if we
simultaneously decrease the duals of all heads that have an incoming arc in A0 by ε. By such
a modification (1) is clearly preserved because for all a = (u, v) ∈ A with xa = 1 we either
decrease the dual for u and increase the dual for v by the same value or we do not modify
both duals. Hence, da = 0 for all a ∈ A with xa = 1.

To ensure that the method terminates, we choose ε as small as possible but positive, see

M. Reuther 67

lines 18 to 21. This choice ensures for the new reduced cost d′a of an arc a ∈ A:

da ≥ 0 ⇒ d′a ≥ 0. (no cycling)

Listing 3 Search for an alternating cycle
1 boolean findAlternatingCycle (a? = (u?, v?) ∈ A)
2 {
3 Lv? := u?; // set label of head node v?

4 Q := {tail(v?)}; // start BFS with tail of v? in current matching
5
6 while(da? < 0)
7 {
8 while (Q 6= ∅)
9 {

10 choose u ∈ Q;
11 Q := Q\{u};
12 for((u, v) ∈ {a = (u, v) ∈ A | v is not labeled, da = 0})
13 {
14 if(isAlternatingCycle ((u, v), u?)) { return true; }
15 }
16 }
17
18 J := {a = (u, v) ∈ A |u is labeled, v is not labeled, da ≥ 0};
19
20 if(J 6= ∅) { ε := min{da | a ∈ J}; }
21 else { ε := −da? ; }
22
23 for(u ∈ {u ∈ T |u is labeled}) { πtu := πtu + ε; }
24 for(v ∈ {v ∈ H | v is labeled}) { πhv := πhv − ε; }
25
26 J := {a = (u, v) ∈ A |u is labeled, v is not labeled, da = 0};
27
28 for(v ∈ {v ∈ H | ∃ a = (u, v) ∈ J})
29 {
30 choose a = (u, v) ∈ J;
31 if(isAlternatingCycle ((u, v), u?)) { return true; }
32 }
33 }
34
35 return false;
36 }

Thus, once an arc a ∈ A has positive reduced cost, a will not get negative reduced cost again.
Due to the choice of ε we either extended A0 such that we can still hope to reach the tail of
a? by continuing the BFS in lines 26 to 32 or we modified the dual variables such that

da? < 0 ⇒ d′a? ≥ 0. (dual improvement)

We stop the BFS if we reach the tail node u? of a?. The alternating cycle C ∈ A is defined
by the (predecessor-) labels and alternates between arcs of the current incumbent matching
and arcs of the equality set plus a?. The function applyAlternatingCycle() could be
implemented as follows: Set xa = 0 for all arcs a ∈ A of the alternating cycle with xa = 1 in
the current matching and set xa = 1 for the other arcs a ∈ A of the alternating cycle with
xa = 0 in the current primal solution. All new arcs a ∈ A of the alternating cycle were chosen

ATMOS’14

68 Local Search for the RCAP

v1

v3 v2

v4

v5

switch arcs in D
→

v1

v3 v2

v4

v5

Figure 2 k-OPT move defined by an alternating cycle

such that da = 0 but not da? . To ensure (1) also for a? we finalize the improvement by setting
πh

v? := πh
v? − da? . An alternative for this is to call the function initializeDuals() after

each primal improvement.
Listing 4 Check for an alternating cycle

1 boolean isAlternatingCycle ((u, v) ∈ A, u? ∈ T)
2 {
3 w := tail(v); // tail of v in current matching
4 Q := Q ∪ {w};
5
6 Lw := v; // set label of tail node w

7 Lv := u; // set label of head node v

8
9 if(w == u?) { return true; }

10 else { return false; }
11 }

Let M ⊆ A be a perfect matching and M ′ ⊆ A be the resulting perfect matching if we
apply the alternating cycle C that has been found for a? ∈ A with da? < 0. We have an
improvement of the objective function, i.e., c(M ′)− c(M) < 0 because we can subtract all
dual variables associated with nodes covered by C on both sides of the inequality and get
d(M ′)− d(M) < 0. All arcs of M and M ′ have zero reduced cost except for a?:

c(M ′)− c(M) = d(M ′)− d(M) = da? < 0. (primal improvement)

The presented explanation, in particular (primal improvement), (dual improvement), and
(no cycling) prove the correctness of the primal Hungarian method.

4 A Primal Hungarian heuristic for the RCAP

Given a set of arcs A′, an operation that deletes k arcs from A′ and simultaneously adds k
new arcs to A′ is known as a k-opt move in the literature. Almost all combinatorial motivated
local search algorithms are based on dedicated k-opt moves. For example the k-opt algorithm
for the TSP over the undirected graph G = (V,E) checks an incumbent Hamiltonian tour
T ⊆ E if there exist any two subsets K ⊂ E and X ⊂ T with |K| = k and |X| = k such that
(T\X)∪K is an improved tour. A special class of k-opt moves are the sequential k-opt moves
that are characterized by a cycle that alternates between arcs to delete and new arcs. Indeed,
the most successful heuristics for the TSP are based mainly on sequential k-opt moves, [8].

If we compute an optimal partition of cycles in the graph D = (V,A) with objective
function c : A 7→ Q+ by the primal Hungarian method we observe that this algorithm
performs sequential k-opt moves. This is illustrated in Figure 2 which shows the equivalent

M. Reuther 69

operation in D defined by the alternating cycle in G. The nodes ui (vi) in Figure 1 appear
as tail (head) node of vi in Figure 2.

I Lemma 3. Consider an instance of the RCAP with relaxed resource constraint. Given a
cycle partition C in D = (V,A) and c : A 7→ Q+. There is always a sequence of m ≤ |V |
sequential k-OPT moves such that the sequence of cycle partitions C1, . . . , Cm that result
from applying the k-OPT moves fulfills c(C1) > . . . > c(Cm) and Cm is optimal w.r.t. c.

Proof. The primal Hungarian method produces a sequence of sequential k-OPT moves. J

Clearly, Lemma 3 does not provide a deep new insight, but it emphasizes an important
fact. Since the objective value decreases by applying the k-OPT moves, the method does
not suffer from degeneracy. Note that Lemma 3 does not hold for the TSP, e.g., the so
called quad-change with k = 4 can not be decomposed into sequential k-opt moves [12]. The
primal Hungarian method can be seen as an exact local search procedure for the assignment
problem since a feasible primal solution is always at hand. In the case of the RCAP clearly
not all sequential k-opt moves found by the primal Hungarian method lead to a feasible
solution. Our idea is to use the moves as a suggestion and to only apply (parts of) those
moves that lead to a feasible improved solution of the RCAP. Listing 5 describes our heuristic
algorithm that runs in the local search loop while(isLocalOptimal() == false); after
initializing an initial matching and dual solution as described in Listing 2. In lines 5 to 9
we do the same as in the unconstrained case described in Section 3. Note that each arc
with negative reduced cost potentially leads to an alternating cycle. Thus, we test every arc
to prove local optimality. The main difference to the exact algorithm for the AP is, that
we do not directly apply each alternating cycle found, but check the feasibility w.r.t. the
resource constraint before. In our implementation we restrict to only those alternating cycles
exchanging at most 20 arcs to provide computational tractability. To avoid cycling of the
algorithm we have to disable arcs that were already tried as it is described in Listing 5.

Listing 5 Prove local optimality
1 bool isLocalOptimal ()
2 {
3 do
4 {
5 for(a? ∈ {a ∈ A | da < 0, a is enabled}) // pricing loop
6 {
7 if(findAlternatingCycle (a?))
8 {
9 if(tryAlternatingCycle (a?))

10 {
11 enable all a ∈ A;
12 return false;
13 }
14 disable a?;
15 }
16 }
17 } while(orthogonalizeDuals ());
18
19 return true;
20 }

We apply the sequential k-opt moves found by the primal Hungarian method as follows.
Let a+

1 = (u1, v2) be an arc that is not contained in the current matching. Further, let

ATMOS’14

70 Local Search for the RCAP

(1.) (2.) (3.)

Figure 3 Flip operations

a−1 = (u1, v1) be the arc outgoing from u1 and let a−2 = (u2, v2) be the arc incoming in v2
w.r.t. the current matching. If we decide to insert a+

1 in the current matching we have
to delete a−1 and a−2 at least and the least onerous operation to close the matching is to
insert the closing arc a+

1 = (u2, v1). We call this 2-opt move defined by the alternating cycle
C = {a+

1 , a
−
1 , a

+
2 , a

−
2 } flip(a

+
1). Figure 3 illustrates the possible operations performed by a

flip. The red arcs are the ones that we delete and the blue arcs are the ones that we add. In
Sub-figures (1.) and (2.) the only two possibilities that arise if we exchange two arcs are
shown: We either merge two cycles to a new one or split on cycle into two new cycles. The
third sub-figure shows the relation to the usual 2-OPT move for the symmetric TSP. In fact,
the usual 2-OPT move exchanges more that two arcs: It also inverts a segment of the current
Hamiltonian cycle which is clearly very different to the modifications performed by a flip.

In our data structure for the current matching, the flip operation has complexity O(|V |),
because in the latter we take use of a function of the data structure that evaluates if the
current matching is feasible w.r.t. the resource constraint or not. To provide such a function
one needs to known if two nodes are in the same cycle or not and thus we always have to do
bookkeeping for the cycles of the nodes at least.

Let C = {a+
1 , a

−
1 , . . . , a

+
n , a

−
n } ⊆ A be the alternating cycle found in Listing 5 where a+

i

and a−i are the arcs to add and the arcs to delete, respectively. We can apply n − 1 flip
operations to obtain the result defined by C, independent w.r.t. the order. This is true,
because after applying n− 1 the matching clearly contains n− 1 of the a+

i arcs and each flip
inserts a closing arc that is deleted by another flip since C is an alternating cycle. Thus, the
matching must contain also the last of the n a+

i arcs. Otherwise it is not a matching what is
the case after apply a set of flip operations. We use this property in the following way.

We do two search strategies, namely a greedy strategy and an “anti-greedy” strategy, in
the function tryAlternatingCycle(). One search strategy consists of n− 1 flips applied to
the current matching. In the greedy strategy we always apply that move that leads to the
best objective function value, while in the anti-greedy search strategy we always apply that
move that leads to the worse objective function value. Finally we continue with the best
feasible matching that appeared during the two search strategies. Note that this procedure
can also lead to non-sequential k-opt moves since it happens that we “only” apply m < n− 1
flips which increases the local search neighborhood.

The algorithm described in Listing 5 restricted to lines 5 to 16 results in a locally optimal
solution. In the literature there are many methods known to escape from local optima. The
outer loop in Listing 5 has also this purpose. But differently to known methods we alter the
dual solution to increase the neighborhood rather then modifying the primal solution. An
observation is that we can initialize the dual variables in the function initializeDuals()
arbitrarily:

I Lemma 4. Let M ⊆ A be perfect matching in the bipartite graph G = (T ∪H,A) with

M. Reuther 71

c : A 7→ Q. There are |M | dual variables that can be chosen arbitrarily to be used as valid
starting point for the primal Hungarian method.

Proof. For each a = (u, v) ∈M we either chose πt
u or πh

v arbitrarily and set the other such
that ca = πt

u + πh
v . In this way, the reduced cost of all a ∈ M are zero and (1) is fulfilled.

Thus, these dual variables are a valid starting point for the primal Hungarian method. J

Listing 6 Compute new dual variables
1 bool orthogonalizeDuals ()
2 {
3 if(|B| == |V |) { return false; }
4
5 J := {i |Bi,1 6= 0}; // non -zero indices in first dual vector
6
7 if(J == ∅) { return false; }
8
9 k := min{i | i ∈ J}+ |B| − 1) mod |V |;

10 b := ek; // b ∈ Q|V | is initialized as unit vector ek ∈ Q|V |

11
12 for(a ∈ B) { b := b− ak

<a,a>
a; } // Gram - Schmidt orthogonalization

13
14 B := B ∪ {b}; // append column b to matrix B

15
16 for(v ∈ H) // set new dual variables
17 {
18 u := tail(v); // tail of v in current matching
19 πtu := bv;
20 πhv := c(u,v) − πtv;
21 }
22 return true;
23 }

Lemma 4 provides the insight that we can chose an unlimited number of dual solution
vectors as starting point. Our idea to diversify the search w.r.t. the dual solution is described
in Listing 6. Before the algorithm starts we initialize the |T |×1 matrix B, i.e., B consists of a
single column vector. This column vector is defined by the values of all πt dual variables that
were chosen in the function described in Listing 2. The matrix B is iteratively extended to
an orthogonal basis of the vector space Q|T | by a standard Gram-Schmidt process. Note that
we can not find such a basis if all arcs of the initial matching have zero costs, because then
the first column in B is the zero vector. But this is a rather rare case. After each extension
of B which is done in the outer loop in Listing 5 we try to find and apply sequential k-opt
moves w.r.t. the new dual solution. Our hope associated with this Gram-Schmidt strategy is
that we consider enough different dual starting points to search a reasonable neighborhood.
The “enough different” is claimed to be fulfilled by |T | orthogonal vectors. Also a randomly
initialized dual starting point could be considered but our approach has the benefit of being
deterministic: Two independent calls to the algorithm produce exactly the same result.

5 Computational results

All our computations were performed on computers with an Intel(R) Xeon(R) CPU X5672
with 3.20GHz, 12MB cache, and 48GB of RAM in single thread mode. In Table 1 we tested
our primal Hungarian heuristic from Section 4 for 15 RCAP instances that are specializations

ATMOS’14

72 Local Search for the RCAP

of the rolling stock rotation problem (RSRP) [18]. The interpretation of the RCAP in rolling
stock rotation planning is to cover a given set of timetabled passenger trips (which are
represented by the nodes of the RCAP graph) by a set of cycles, called vehicle rotations.
The resource constraint appears as a limit on the driven distance between two consecutive
maintenance services. These maintenance services are performed between the operation
of two trips, i.e., on the arcs of the RCAP graph. The main objective is to minimize the
number of vehicles and number of deadhead trips (needed to overcome different arrival and
departure locations between two trips). Our instances for the RCAP coming from the RSRP
are associated with three timetables (indicated by the number of nodes in column three) for
different upper bounds of a dedicated maintenance constraint denoted in column two.

Table 1 Results for RCAP instances from Rolling Stock Rotation Planning.

instance B [km] |V | c? gap time
RCAP_01 1000 617 - - -
RCAP_02 2000 617 320230 26.03 3069.6
RCAP_03 4000 617 244968 2.38 311.7
RCAP_04 6000 617 241001 0.24 420.3
RCAP_05 8000 617 235585 0.01 238.3
RCAP_06 1000 97 - - -
RCAP_07 2000 97 99704 21.89 1.7
RCAP_08 4000 97 78935 0.00 1.7
RCAP_09 6000 97 78935 0.00 0.9
RCAP_10 8000 97 78935 0.00 17.2
RCAP_11 1000 310 - - -
RCAP_12 2000 310 73321282 27.27 1230.8
RCAP_13 4000 310 53615075 10.92 47.9
RCAP_14 6000 310 52283288 9.99 25.0
RCAP_15 8000 310 47335343 0.00 11.1

Clearly, the rolling stock rotation Problem [18] consists of many more aspects as vehicle
composition, regularity, and infrastructure capacity. We observed that the maintenance
constraints in this applications are the ones that the most increase the complexity. The
results provided in Table 1 provide an insight for practitioners: They show how the cost for
operating a timetable might increase by decreasing the limit for the maintenance constraint.
Given an instance of RCAP we compute the local optimal solution with objective value
c? (which is positive for all instances) as well as the optimal solution of the assignment
relaxation which provides a lower bound c̃ for a RCAP instance. Using this we are able to
compute a worst case optimality gap as (c?−c̃)

c? ∗ 100 in percent. The time for computing the
local optimal solution is given in the last column in seconds. In the industrial application
RCAP_05, RCAP_10, and RCAP_15 are the ones of interest. For those instances we obtained
very good results w.r.t. the gap and running time. For the other instances, the results w.r.t.
the primal solutions found are as expected from an applied point of view. For seven instances
we could produce a worst case gap below three percent within seven minutes at most. For
the instances with the smallest resource constraint we could not find any feasible solution.

Since the RCAP generalizes the traveling salesman and capacitated vehicle routing
problem we also made experiments for those instances taken from the literature [16, 17].
We present results for all ATSP instances from [17] and TSP instances with less than 500

M. Reuther 73

Table 2 Summary for VRP instances.

type number of instances arithmethic mean shifted geometric mean
ATSP 19 1.70 1.21
CVRP 107 5.09 3.81
TSP 64 2.60 1.97
all 190 3.91 2.78

nodes. From [16] we consider all CVRP instances from the test sets A, B, E, F, G, M, P,
and V except for six instances (e.g., ulysses-n22-k4) for which we could not reproduce
the claimed optimal objective value based on the solutions provided in the library. Table 2
summarizes the results in Table 3. Let {g1, . . . , gn} be the values in column bk gap of Table 3.
The third column denotes

∑n

i=1
gi

n and the fourth column denotes n
√∏n

i=1 (gi + 1)− 1 for
all instances of a dedicated type. Almost all of these instances are much harder constrained
than the RCAP instances from rolling stock rotation planning, which is indicated by the
column lb gap. But for the ATSP, TSP, and also for some CVRP instances we obtained
rather good results. Nevertheless, in comparison to other more problem specific heuristics for
those instances from the literature as described in [7, 9] our heuristic is not quite competitive
w.r.t. solution quality and running time.

In summary our primal Hungarian heuristic is an efficient method to compute high-quality
solutions for RCAP instances that are not too hard constrained w.r.t. the assignment bound.

Table 3 in the appendix reports computational results of the primal Hungarian heuristic
for 190 instances from the literature. Column |V | denotes the number of nodes w.r.t. the
corresponding RCAP instance. Let b ∈ Q be the best known objective value for a dedicated
instance, let c̃ be the objective value of the initial solution used for the primal Hungarian
heuristic, let l be the objective value of an optimal solution to the underlying assignment
problem, and let c? be the objective value of the local optimal solution. Column initial gap
denotes c̃−b

b · 100, column lb gap b−l
b · 100, and column bk gap denotes c?−b

b · 100. The running
time is reported in the last column in seconds.

References

1 M. L. Balinski and R. E. Gomory. A primal method for the assignment and transportation
problems. Management Science, 10(3):578–593, 1964.

2 Timo Berthold. Rens – the optimal rounding. Technical Report 12-17, ZIB, Takustr.7,
14195 Berlin, 2012.

3 G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12(4):568–581, 1964.

4 Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation induced
neighborhoods to improve mip solutions. Mathematical Programming, 102(1):71–90, 2005.

5 I. Dumitrescu. Constrained Path and Cycle Problems. University of Melbourne, Department
of Mathematics and Statistics, 2002.

6 Matteo Fischetti and Andrea Lodi. Local branching. Mathematical Programming, 98(1-
3):23–47, 2003.

7 Chris Groër, Bruce Golden, and Edward Wasil. A library of local search heuristics for the
vehicle routing problem. Mathematical Programming Computation, 2(2):79—-101, 2010.

8 Keld Helsgaun. An effective implementation of k-opt moves for the linkernighan tsp heur-
istic. Technical report, Roskilde University, 2006.

ATMOS’14

74 Local Search for the RCAP

9 Keld Helsgaun. General k-opt submoves for the Lin–Kernighan TSP heuristic. Mathemat-
ical Programming Computation, 1(2-3):119—-163, 2009.

10 Paris-C. Kanellakis and Christos H. Papadimitriou. Local search for the asymmetric trav-
eling salesman problem. Operations Research, 28(5):1086–1099, 1980.

11 H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

12 S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations Research, 21(2):498–516, 1973.

13 C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of traveling
salesman problems. J. ACM, 7(4):326–329, October 1960.

14 Karl Nachtigall and Jens Opitz. Solving Periodic Timetable Optimisation Problems by
Modulo Simplex Calculations. In ATMOS’08, volume 9 of OpenAccess Series in Informatics
(OASIcs), Dagstuhl, Germany, 2008. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

15 Luigi Di Puglia Pugliese and Francesca Guerriero. A survey of resource constrained shortest
path problems: Exact solution approaches. Networks, 62(3):183–200, 2013.

16 T. Ralphs. Branch cut and price resource web (http://www.branchandcut.org), June 2014.
17 G. Reinelt. TSPLIB - A T.S.P. Library. Technical Report 250, Universität Augsburg,

Institut für Mathematik, Augsburg, 1990.
18 Markus Reuther, Ralf Borndörfer, Thomas Schlechte, and Steffen Weider. Integrated optim-

ization of rolling stock rotations for intercity railways. In Proceedings of RailCopenhagen,
Copenhagen, Denmark, May 2013.

19 Edward Rothberg. An evolutionary algorithm for polishing mixed integer programming
solutions. INFORMS Journal on Computing, 19(4):534–541, 2007.

20 Paolo Toth and Daniele Vigo, editors. The Vehicle Routing Problem. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2001.

A Results for VRP instances

Table 3 Results for VRP instances.

instance type |V | initial gap best known lb gap bk gap time
br17 ATSP 17 76.65 39.00 100.00 0.00 20.7
ft53 ATSP 53 50.52 6905.00 15.48 1.60 49.9
ft70 ATSP 70 31.04 38673.00 2.17 0.38 462.0
ftv170 ATSP 171 61.45 2755.00 7.78 3.43 200.2
ftv33 ATSP 34 42.56 1286.00 13.69 6.34 574.6
ftv35 ATSP 36 40.44 1473.00 12.59 6.77 576.4
ftv38 ATSP 39 38.90 1530.00 6.14 0.13 549.1
ftv44 ATSP 45 39.77 1613.00 6.92 1.29 553.9
ftv47 ATSP 48 58.59 1776.00 7.35 0.39 536.2
ftv55 ATSP 56 59.54 1608.00 11.96 1.35 15.9
ftv64 ATSP 65 61.55 1839.00 7.27 0.92 17.3
ftv70 ATSP 71 59.84 1950.00 10.85 1.56 226.2
kro124p ATSP 100 82.71 36230.00 8.18 2.10 276.8
p43 ATSP 43 8.77 5620.00 97.37 0.11 29.5
rbg323 ATSP 323 79.37 1326.00 1.78 1.78 33.2
rbg358 ATSP 358 83.58 1163.00 0.60 0.60 48.6
rbg403 ATSP 403 69.02 2465.00 0.40 0.40 619.8
rbg443 ATSP 443 68.80 2720.00 0.15 0.15 674.5

Continued on next page

M. Reuther 75

Table 3 – continued from previous page
instance type |V | initial gap best known lb gap bk gap time
ry48p ATSP 48 73.42 14422.00 15.74 2.91 29.3
A-n32-k5 CVRP 36 57.69 784.00 35.58 5.77 454.4
A-n33-k5 CVRP 37 55.79 661.00 36.76 0.00 32.1
A-n33-k6 CVRP 38 50.53 742.00 36.83 0.27 472.3
A-n34-k5 CVRP 38 55.44 778.00 41.00 9.11 39.1
A-n36-k5 CVRP 40 58.17 799.00 40.38 4.54 607.6
A-n37-k5 CVRP 41 61.88 669.00 28.16 2.90 183.8
A-n37-k6 CVRP 42 52.09 949.00 47.20 3.46 413.9
A-n38-k5 CVRP 42 58.64 730.00 47.78 7.48 34.7
A-n39-k5 CVRP 43 56.46 822.00 41.46 7.64 636.2
A-n39-k6 CVRP 44 60.35 831.00 40.28 3.26 620.0
A-n44-k6 CVRP 49 58.61 937.00 31.61 0.95 620.6
A-n45-k6 CVRP 50 60.44 944.00 44.94 12.35 49.8
A-n45-k7 CVRP 51 49.16 1146.00 43.26 5.21 585.2
A-n46-k7 CVRP 52 59.41 914.00 41.17 6.16 59.5
A-n48-k7 CVRP 54 56.87 1073.00 40.07 4.03 82.5
A-n53-k7 CVRP 59 62.52 1010.00 41.56 4.81 189.4
A-n54-k7 CVRP 60 55.75 1167.00 56.67 12.52 525.8
A-n55-k9 CVRP 63 62.18 1073.00 39.87 0.74 453.9
A-n60-k9 CVRP 68 58.30 1354.00 57.57 7.64 617.2
A-n61-k9 CVRP 69 65.34 1034.00 47.80 10.79 122.5
A-n62-k8 CVRP 69 67.66 1288.00 50.95 5.99 884.7
A-n63-k10 CVRP 72 57.98 1314.00 53.45 7.46 691.3
A-n63-k9 CVRP 71 55.00 1616.00 53.32 9.77 982.2
A-n64-k9 CVRP 72 55.75 1401.00 43.88 5.27 823.1
A-n65-k9 CVRP 73 68.36 1174.00 39.97 4.63 585.6
A-n69-k9 CVRP 77 68.57 1159.00 39.54 4.53 221.7
A-n80-k10 CVRP 89 63.68 1763.00 44.97 6.07 946.0
att-n48-k4 CVRP 51 73.90 40002.00 26.98 1.67 49.4
bayg-n29-k4 CVRP 32 56.10 2050.00 17.91 0.24 433.9
bays-n29-k5 CVRP 33 43.40 2963.00 25.99 0.13 27.1
B-n31-k5 CVRP 35 50.44 672.00 31.39 1.90 552.9
B-n34-k5 CVRP 38 59.71 788.00 33.83 1.62 28.8
B-n35-k5 CVRP 39 59.64 955.00 38.94 2.65 263.7
B-n38-k6 CVRP 43 56.37 805.00 45.41 2.78 610.0
B-n39-k5 CVRP 43 75.23 549.00 53.83 2.14 613.2
B-n41-k6 CVRP 46 64.10 829.00 65.20 8.70 629.6
B-n43-k6 CVRP 48 59.16 742.00 53.26 1.20 45.9
B-n44-k7 CVRP 50 61.42 909.00 63.71 5.21 99.5
B-n45-k5 CVRP 49 66.14 751.00 46.86 1.70 647.2
B-n45-k6 CVRP 50 62.87 678.00 44.09 2.31 685.2
B-n50-k7 CVRP 56 69.51 741.00 34.82 0.00 241.4
B-n50-k8 CVRP 57 48.39 1312.00 57.54 2.60 94.7
B-n51-k7 CVRP 57 66.49 1032.00 42.71 9.31 77.8
B-n52-k7 CVRP 58 68.94 747.00 61.85 1.06 81.9
B-n56-k7 CVRP 62 78.10 707.00 64.11 3.15 339.3
B-n57-k7 CVRP 63 65.98 1153.00 73.49 22.41 786.9
B-n57-k9 CVRP 65 53.42 1598.00 37.16 4.99 813.1

Continued on next page

ATMOS’14

76 Local Search for the RCAP

Table 3 – continued from previous page
instance type |V | initial gap best known lb gap bk gap time
B-n63-k10 CVRP 72 64.43 1496.00 60.46 6.56 162.8
B-n64-k9 CVRP 72 70.05 861.00 55.11 16.16 969.7
B-n66-k9 CVRP 74 60.18 1316.00 60.29 5.32 211.8
B-n67-k10 CVRP 76 68.86 1032.00 46.04 4.97 193.3
B-n68-k9 CVRP 76 62.27 1272.00 59.55 7.29 447.5
B-n78-k10 CVRP 87 67.58 1221.00 62.34 3.40 1014.2
dantzig-n42-k4 CVRP 45 5.93 1142.00 50.55 3.79 594.8
E-n101-k14 CVRP 114 69.14 1071.00 31.39 5.31 260.4
E-n101-k8 CVRP 108 75.95 817.00 23.12 4.11 598.8
E-n13-k4 CVRP 16 39.61 247.00 10.93 0.00 390.9
E-n22-k4 CVRP 25 55.52 375.00 30.13 0.00 19.5
E-n23-k3 CVRP 25 53.59 569.00 21.58 0.18 174.6
E-n30-k3 CVRP 32 64.75 534.00 41.73 1.84 642.8
E-n31-k7 CVRP 37 73.02 379.00 29.17 12.27 289.7
E-n33-k4 CVRP 36 39.32 835.00 29.43 1.30 39.0
E-n51-k5 CVRP 55 67.15 521.00 25.88 8.27 614.6
E-n76-k10 CVRP 85 61.68 830.00 34.49 7.05 329.7
E-n76-k14 CVRP 89 57.90 1021.00 39.68 7.94 974.5
E-n76-k7 CVRP 82 70.75 682.00 24.40 3.26 104.8
E-n76-k8 CVRP 83 69.09 735.00 29.05 4.67 132.2
F-n135-k7 CVRP 141 81.21 1162.00 57.00 9.64 1682.6
F-n45-k4 CVRP 48 67.39 724.00 42.76 0.14 62.0
F-n72-k4 CVRP 75 76.81 237.00 34.27 4.44 60.7
fri-n26-k3 CVRP 28 21.79 1353.00 18.94 1.81 605.4
G-n262-k25 CVRP 286 76.79 6119.00 52.90 2.24 26665.4
gr-n17-k3 CVRP 19 46.76 2685.00 30.18 2.61 578.4
gr-n21-k3 CVRP 23 45.30 3704.00 33.76 8.59 583.9
gr-n24-k4 CVRP 27 42.20 2053.00 31.09 3.89 28.6
gr-n48-k3 CVRP 50 69.42 5985.00 27.97 3.25 647.9
hk-n48-k4 CVRP 51 70.14 14749.00 28.31 3.55 81.0
M-n101-k10 CVRP 110 60.69 820.00 39.15 8.28 923.6
M-n121-k7 CVRP 127 68.17 1034.00 68.64 18.33 1615.0
M-n151-k12 CVRP 162 78.10 1053.00 35.46 2.50 1822.5
M-n200-k17 CVRP 215 78.05 1373.00 46.53 10.14 4711.9
P-n101-k4 CVRP 104 74.91 681.00 16.71 4.35 184.1
P-n16-k8 CVRP 23 10.00 450.00 16.70 2.39 587.9
P-n19-k2 CVRP 20 44.36 212.00 25.23 4.50 583.3
P-n20-k2 CVRP 21 49.41 216.00 19.82 2.70 173.3
P-n21-k2 CVRP 22 53.42 211.00 18.48 0.00 18.9
P-n22-k2 CVRP 23 52.53 216.00 19.00 2.26 615.3
P-n22-k8 CVRP 29 22.29 603.00 43.88 6.51 23.8
P-n23-k8 CVRP 30 30.12 529.00 45.81 13.14 517.9
P-n40-k5 CVRP 44 64.36 458.00 20.04 2.35 386.0
P-n45-k5 CVRP 49 66.02 510.00 20.77 1.92 33.1
P-n50-k10 CVRP 59 56.66 696.00 32.39 6.07 60.6
P-n50-k7 CVRP 56 64.28 554.00 22.52 1.77 656.3
P-n50-k8 CVRP 57 56.75 631.00 33.62 8.55 132.8
P-n51-k10 CVRP 60 45.11 741.00 33.89 5.61 711.8

Continued on next page

M. Reuther 77

Table 3 – continued from previous page
instance type |V | initial gap best known lb gap bk gap time
P-n55-k10 CVRP 64 58.98 694.00 26.97 2.53 589.1
P-n55-k15 CVRP 69 40.31 989.00 51.52 25.08 648.7
P-n55-k7 CVRP 61 63.14 568.00 23.49 4.70 51.3
P-n55-k8 CVRP - - 588.00 - - -
P-n60-k10 CVRP 69 60.82 744.00 30.07 2.75 142.0
P-n60-k15 CVRP 74 50.66 968.00 33.73 3.97 208.4
P-n65-k10 CVRP 74 59.51 792.00 29.94 6.27 163.3
P-n70-k10 CVRP 79 62.39 827.00 32.38 5.38 903.8
P-n76-k4 CVRP 79 74.06 593.00 23.82 9.47 537.0
P-n76-k5 CVRP 80 69.88 627.00 20.96 2.64 648.6
swiss-n42-k5 CVRP 46 49.33 1668.00 32.89 2.74 52.4
ulysses-n16-k3 CVRP 19 48.94 7965.00 19.25 3.21 22.6
ulysses-n22-k4 CVRP 25 41.15 9179.00 35.00 1.95 250.3
a280 TSP 280 8.16 2579.00 9.01 3.15 528.6
att48 TSP 48 78.68 10628.00 22.19 1.88 502.1
bayg29 TSP 29 65.19 1610.00 10.56 0.00 21.3
bays29 TSP 29 64.88 2020.00 12.67 0.00 485.6
berlin52 TSP 52 66.03 7542.00 22.33 6.83 41.9
bier127 TSP 127 69.98 118282.00 20.42 1.75 538.3
brazil58 TSP 58 80.35 25395.00 35.68 1.39 60.4
brg180 TSP 180 98.36 1950.00 100.00 6.70 44.7
burma14 TSP 14 27.16 3323.00 17.33 0.00 596.1
ch130 TSP 130 87.22 6110.00 29.28 1.37 732.7
ch150 TSP 150 87.64 6528.00 16.72 2.19 718.8
d198 TSP 198 29.86 15780.00 33.65 1.29 2121.2
d493 TSP 493 69.17 35002.00 15.55 2.40 3148.9
eil101 TSP 101 69.50 629.00 11.47 2.48 649.6
eil51 TSP 51 67.43 426.00 13.36 1.84 40.6
eil76 TSP 76 72.68 538.00 12.79 3.06 570.2
fl417 TSP 417 78.61 11861.00 40.56 5.01 5234.5
fri26 TSP 26 17.81 937.00 11.10 0.00 548.6
gil262 TSP 262 90.96 2378.00 21.93 3.41 1486.6
gr120 TSP 120 86.12 6942.00 16.38 1.01 714.2
gr137 TSP 137 28.07 69853.00 19.88 1.91 386.0
gr17 TSP 17 55.84 2085.00 20.96 0.24 566.7
gr202 TSP 202 30.94 40160.00 15.18 1.45 525.4
gr21 TSP 21 59.11 2707.00 10.60 0.00 14.2
gr229 TSP 229 25.15 134602.00 20.58 2.89 1012.7
gr24 TSP 24 62.98 1272.00 17.68 0.47 17.1
gr431 TSP 431 26.45 171414.00 21.21 5.81 4779.5
gr48 TSP 48 74.56 5046.00 19.49 1.77 29.8
gr96 TSP 96 31.85 55209.00 18.57 2.06 679.2
hk48 TSP 48 76.21 11461.00 17.91 4.68 603.4
kroA100 TSP 100 88.88 21282.00 20.04 0.41 660.4
kroA150 TSP 150 90.79 26524.00 21.77 3.56 928.9
kroA200 TSP 200 92.15 29368.00 24.04 3.41 2166.7
kroB100 TSP 100 85.91 22141.00 25.32 1.53 426.0
kroB150 TSP 150 90.44 26130.00 23.59 2.53 871.3

Continued on next page

ATMOS’14

78 Local Search for the RCAP

Table 3 – continued from previous page
instance type |V | initial gap best known lb gap bk gap time
kroB200 TSP 200 91.01 29437.00 21.36 1.11 890.6
kroC100 TSP 100 88.69 20749.00 23.12 4.69 253.1
kroD100 TSP 100 87.55 21294.00 23.07 0.96 703.9
kroE100 TSP 100 88.28 22068.00 26.39 2.65 273.7
lin105 TSP 105 60.58 14379.00 40.33 4.19 603.3
lin318 TSP 318 64.94 42029.00 37.66 3.98 1851.2
pcb442 TSP 442 77.07 50778.00 9.15 1.49 1455.4
pr107 TSP 107 29.40 44303.00 51.04 10.40 1352.8
pr124 TSP 124 40.34 59030.00 39.17 7.75 828.7
pr136 TSP 136 66.28 96772.00 14.08 2.81 931.7
pr144 TSP 144 37.41 58537.00 68.96 9.18 1806.2
pr152 TSP 152 54.23 73682.00 42.80 2.09 2768.0
pr226 TSP 226 27.21 80369.00 39.28 2.28 1457.4
pr264 TSP 264 36.99 49135.00 37.08 6.38 4250.4
pr299 TSP 299 42.29 48191.00 20.35 3.75 641.9
pr439 TSP 439 60.38 107217.00 31.70 4.76 3022.6
pr76 TSP 76 28.27 108159.00 30.33 2.28 667.1
rat195 TSP 195 42.36 2323.00 12.42 2.88 1027.7
rat99 TSP 99 42.98 1211.00 15.05 5.54 592.5
rd100 TSP 100 84.36 7910.00 18.68 1.93 402.6
rd400 TSP 400 92.91 15281.00 21.06 2.40 3393.9
si175 TSP 175 18.79 21407.00 5.84 0.42 968.1
st70 TSP 70 80.21 675.00 24.45 1.75 49.4
swiss42 TSP 42 55.08 1273.00 20.74 0.00 334.5
ts225 TSP 225 54.20 126643.00 9.78 1.16 929.5
tsp225 TSP 225 62.16 3916.00 12.72 0.00 329.4
u159 TSP 159 3.00 42080.00 17.66 0.00 104.5
ulysses16 TSP 16 29.03 6859.00 18.46 0.09 94.5
ulysses22 TSP 22 42.51 7013.00 25.33 0.99 493.1

	Introduction
	The Resource Constrained Assignment Problem
	A Primal Hungarian Method
	A Primal Hungarian heuristic for the RCAP
	Computational results
	Results for VRP instances

