
Report from Dagstuhl Seminar 14241

Challenges in Analysing Executables: Scalability,
Self-Modifying Code and Synergy
Edited by
Roberto Giacobazzi1, Axel Simon2, and Sarah Zennou3

1 Università degli Studi di Verona, IT, roberto.giacobazzi@univr.it
2 TU München, DE, Axel.Simon@in.tum.de
3 Airbus Group Innovations-Suresnes, FR, sarah.zennou@eads.net

Abstract
This report summarizes the program and the outcomes of the Dagstuhl Seminar 14241, entitled
“Challenges in Analysing Executables: Scalability, Self-Modifying Code and Synergy”. The sem-
inar brought together practitioners and researchers from industry and academia to discuss the
state-of-the art in the analysis of binaries, the handling of the most challenging malware and
the ever-lasting problem of scalability. The meeting created new links within this very diverse
community and highlighted the broad interest in dealing with obfuscated code.

Seminar June 9–13, 2014 – http://www.dagstuhl.de/14241
1998 ACM Subject Classification B.2.2 Worst-case analysis, D.2.4 Formal methods, D.3.2

Macro and assembly languages, D.3.4 Debuggers and Interpreters, D.4.5 Fault-tolerance and
Verification, D.4.6 Information flow controls and Invasive software, D.4.8 Modelling and pre-
diction, D.4.9 Linkers and Loaders, F.3.2 Operational semantics and Program analysis, I.2.2
Program modification

Keywords and phrases Executable analysis, reverse engineering, malware detection, control flow
reconstruction, emulators, binary instrumentation

Digital Object Identifier 10.4230/DagRep.4.6.48
Edited in cooperation with Ed Robbins

1 Executive Summary

Axel Simon

License Creative Commons BY 3.0 Unported license
© Axel Simon

As a follow-up on the previous Dagstuhl Seminar 12051 on the analysis of binaries, the
interest in attending this new seminar was very high. In the end, less than half the people
that we considered inviting could attend, namely 44 people. In contrast to the previous
seminar that ran for 5 days, this seminar was a four-day seminar due to a bank holiday
Monday. Having arranged the talks by topic, these four days split into two days on the
analysis of binaries and into (nearly) two days on obfuscation techniques.

The challenges in the realm of general binary analysis have not changed considerably since
the last gathering. However, new analysis ideas and new technologies (e. g. SMT solving)
continuously advance the state-of-the-art and the presentations where a reflection thereon.
With an even greater participation of people from industry, the participants could enjoy a
broader view of the problems and opportunities that occur in practice. Given the tight focus
on binary code (rather than e. g. Java byte code), a more detailed and informed discussion

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Challenges in Analysing Executables: Scalability, Self-Modifying Code and Synergy, Dagstuhl Reports, Vol. 4,
Issue 6, pp. 48–63
Editors: Roberto Giacobazzi, Axel Simon, and Sarah Zennou

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/14241
http://dx.doi.org/10.4230/DagRep.4.6.48
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Roberto Giacobazzi, Axel Simon, and Sarah Zennou 49

ensued. Indeed, the different groups seem to focus less on promoting their own tools rather
than seeking collaboration and an exchange of experiences and approaches. In this light, the
seminar met its ambition on synergy. It became clear that creating synergy by combining
various tools is nothing that can be achieved in the context of a Dagstuhl Seminar. However,
the collaborative mood and the interaction between various groups give hope that this will
be a follow-on effect.

The second strand that crystallized during the seminar was the practical and theoretic
interest in code obfuscation. Here, malware creators and analysts play an ongoing cat-and-
mouse game. A theoretic understanding of the impossibility of winning the game in favor
of the analysts helps the search for analyses that are effective on present-day obfuscations.
In practice, a full understanding of some obfuscated code may be unobtainable, but a
classification is still possible and useful. The variety of possible obfuscations creates many
orthogonal directions of research. Indeed, it was suggested to hold a Dagstuhl Seminar on
the sole topic of obfuscation.

One tangible outcome of the previous Dagstuhl Seminar is our GDSL toolkit that was
presented by Julian Kranz. We believe that other collaborations will ensue from this Dagstuhl
Seminar, as the feedback was again very positive and many and long discussions where held
in the beautiful surroundings of the Dagstuhl grounds. The following abstracts therefore
do not reflect on the community feeling that this seminar created. Please note that not
all people who presented have submitted their abstracts due to the sensitive nature of the
content and/or the organization that the participants work for.

14241

50 14241 – Challenges in Analysing Executables

2 Table of Contents

Executive Summary
Axel Simon . 48

Overview of Talks
Binary-level analysis for safety-critical systems
Sebastien Bardin . 52

High-level semantics for low-level code
Frederic Besson . 52

Verified Abstract Interpretation Techniques for Disassembling Low-level Self-modifying
Code
Sandrine Blazy . 53

CopperDroid: On the Reconstruction of Android Malware Behaviors
Lorenzo Cavallaro . 53

Practical Problems in Automated Static Analysis of Malware
Cory Cohen . 54

Evaluating the strength of software protections
Bjorn De Sutter . 54

Understanding Programs that Don’t Want to be Understood
Saumya K. Debray . 54

Static analysis of avionics software at Airbus
David Delmas . 55

Insight: A(nother) Binary Analysis Framework
Emmanuel Fleury . 55

Decompilation into Logic using HOL4
Anthony Fox . 56

Similarity analysis in Big Code of executables
Roberto Giacobazzi . 56

Large Scale Concurrent ISA Semantics (via the Sail DSL)
Kathryn E. Gray . 57

Dynamic Analysis: Knowing When to Stop
Paul Irofti . 57

Generic Decoder Specification Language
Julian Kranz . 57

Formal Specification and Validation of ARM Machine-Code Analyses
Alexey Loginov . 58

CoDisasm :a disassembly of self-modifying binaries with overlapping instructions
Jean-Yves Marion . 58

Worst Case Execution Time for Safty Critical Systems
Florian Martin . 59

Obfuscation as Incomplete Approximation
Isabella Mastroeni . 59

Roberto Giacobazzi, Axel Simon, and Sarah Zennou 51

Sendmail crackaddr – Static Analysis strikes back
Bogdan Mihaila . 60

Through the Lens of Abstraction
Aditya Thakur . 60

Turbulence – an assembly level obfuscator
Axel Tillequin . 61

Interactive static analysis
Franck Vedrine . 61

Jackdaw: Automatic, unsupervised, scalable extraction and semantic tagging of
(interesting) behaviors
Stefano Zanero . 61

Binary analysis and manipulation at Airbus Group Innovations
Sarah Zennou . 62

Participants . 63

14241

52 14241 – Challenges in Analysing Executables

3 Overview of Talks

3.1 Binary-level analysis for safety-critical systems
Sebastien Bardin (CEA LIST, FR)

License Creative Commons BY 3.0 Unported license
© Sebastien Bardin

Joint work of Bardin, Sebastien; Védrine, Franck; Herrmann, Philippe

We present in this talk the work done at CEA LIST on binary-level analysis of safety-critical
programs. Our efforts have been focused on Intermediate Languages for modelling the
semantics of machine code instructions, generation of test data through dynamic symbolic
execution and safe recovery of the Control-Flow Graph. We present our solutions, their
limitations and a few case-studies on safety-critical programs from aeronautics and energy.
We conclude by presenting some directions we want to explore and some ongoing work.

References
1 Sebastien Bardin, Philippe Baufreton, Nicolas Cornuet, Philippe Herrmann, Sebastien

Labbé: Binary-Level Testing of Embedded Programs. QSIC 2013:11–20. IEEE
2 Sebastien Bardin, Philippe Herrmann: OSMOSE: automatic structural testing of execut-

ables. Softw. Test., Verif. Reliab. 21(1):29–54 (2011)
3 Sebastien Bardin, Philippe Herrmann, Jérôme Leroux, Olivier Ly, Renaud Tabary, Aymeric

Vincent: The BINCOA Framework for Binary Code Analysis. CAV 2011: 165-170. Springer
4 Sebastien Bardin, Philippe Herrmann, Franck Védrine: Refinement-Based CFG Recon-

struction from Unstructured Programs. VMCAI 2011:54–69. Springer

3.2 High-level semantics for low-level code
Frederic Besson (IRISA – Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Frederic Besson

The “flat” memory model – where memory is as an array of bytes – is the archetype of a
memory model that is not suitable for static analysis. The reason is that a local loss of precision
has a dramatic (in the sense of drama) effect on the rest of the analysis. Memory models based
on regions – address is an offset with respect to an abstract pointer – have proved valuable
for analysing higher-level languages. For binary programs, this model is too abstract and fails
to give a concrete semantics to certain programs. Borrowing ideas from symbolic execution,
we show how to enhance this idealised model to capture low-level idioms. The semantics is
executable and leverages SMT solvers. We have an implementation of this enhanced memory
model for the CompCert C compiler. See http://www.irisa.fr/celtique/ext/csem/.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.irisa.fr/celtique/ext/csem/

Roberto Giacobazzi, Axel Simon, and Sarah Zennou 53

3.3 Verified Abstract Interpretation Techniques for Disassembling
Low-level Self-modifying Code

Sandrine Blazy (IRISA – Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Sandrine Blazy

Joint work of Blazy, Sandrine; Laporte, Vincent; Pichardie, David
Main reference S. Blazy, V. Laporte, D. Pichardie, “Verified Abstract Interpretation Techniques for Disassembling

Low-level Self-Modifying Code,” in Proc. of the 5th Int’l Conf. on Interactive Theorem Proving
(ITP’14), LNCS, Vol. 8558, pp. 128–143, Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-319-08970-6_9

Static analysis of binary code is challenging for several reasons. In particular, standard static
analysis techniques operate over control flow graphs, which are not available when dealing
with self-modifying programs which can modify their own code at runtime. We formalize
in the Coq proof assistant some key abstract interpretation techniques that automatically
extract memory safety properties from binary code. Our analyzer is formally proved correct
and has been run on several self-modifying challenges, provided by Cai et al. in their PLDI
2007 paper.

3.4 CopperDroid: On the Reconstruction of Android Malware
Behaviors

Lorenzo Cavallaro (RHUL – London, GB)

License Creative Commons BY 3.0 Unported license
© Lorenzo Cavallaro

Joint work of Fattori, Aristide; Tam, Kimberly; Khan, Salahuddin J.; Reina, Alessandro; Cavallaro, Lorenzo

Today mobile devices and their application marketplaces drive the entire economy of the
mobile landscape. For instance, Android platforms alone have produced staggering revenues
exceeding 5 billion USD, which unfortunately attracts cybercriminals with malware now
hitting the Android markets at an alarmingly rising pace.

To better understand this slew of threats, in this talk I present CopperDroid, an automatic
VMI-based dynamic analysis system to reconstruct the behavior of Android malware. Based
on the key observation that all interesting behaviors are eventually expressed through system
calls, CopperDroid presents a novel unified analysis able to capture both low-level OS-specific
and high-level Android-specific behaviors. To this end, CopperDroid presents an automatic
system call-centric analysis that faithfully reconstructs events of interests, including IPC and
RPC interactions and complex Android objects, to describe the behavior of Android malware
regardless of whether it is initiated from Java or native code execution. CopperDroid’s
analysis generates detailed behavioral profiles that abstract a large stream of low-level –
sometimes uninteresting – events into concise high-level semantics, which are well-suited to
provide effective insights.

Extensive evaluation on more than 2,900 Android malware samples, show that Cop-
perDroid faithfully describes OS- and Android-specific behaviors and, through the use of
a simple yet effective app stimulation technique, successfully triggers and discloses addi-
tional behaviors on more than 60 precent (on average) of the analyzed malware samples,
qualitatively improving code coverage of dynamic-based analyses.

14241

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-08970-6_9
http://dx.doi.org/10.1007/978-3-319-08970-6_9
http://dx.doi.org/10.1007/978-3-319-08970-6_9
http://dx.doi.org/10.1007/978-3-319-08970-6_9
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

54 14241 – Challenges in Analysing Executables

References
1 Aristide Fattori and Kimberly Tam and Salahuddin J. Khan and Alessandro Reina and

Lorenzo Cavallaro. CopperDroid: On the Reconstruction of Android Malware Behaviors.
Technical Report MA-2014-01 Royal Holloway University of London, Februrary, 2014

2 Alessandro Reina and Aristide Fattori and Lorenzo Cavallaro. A System Call-Centric Ana-
lysis and Stimulation Technique to Automatically Reconstruct Android Malware Behaviors.
Proceedings of the 6th European Workshop on System Security (EUROSEC), April, 2013

3.5 Practical Problems in Automated Static Analysis of Malware
Cory Cohen (Software Engineering Institute – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Cory Cohen

Operational malware analysts have different priorities and motivations than most academic
researchers in the static analysis of binaries. This presentation will highlight some of those
differences, and provide suggestions on how to promote adoption of research prototypes
for operational use. It also presents some background on the current state of malware,
examples of problem areas interesting to malware analysts, and discusses stack delta analysis
algorithms as an example of these ideas.

3.6 Evaluating the strength of software protections
Bjorn De Sutter (Ghent University, BE)

License Creative Commons BY 3.0 Unported license
© Bjorn De Sutter

Main reference ASPIRE EU FP7 Project – Advanced Software Protection: Integration, Research and Exploitation.
URL http://www.aspire-fp7.eu

An overview of the ASPIRE project is presented, focusing on the major goals of developing
a protection tool flow, a reference architecture for protected applications, and decision
support to select and apply protections. Then the challenge of modelling and evaluating the
protection strength against attacks is discussed, and an overview is given of different types of
evaluation metrics, ranging from software engineering metrics, compiler-based code analysis
metrics, formal modelling metrics, tool-based metrics, and human experiments and human
comprehension modelling. Their strong points and weak points are discussed, after which the
talk concludes with a list of open challenges in the domain of protection strength evaluation.

3.7 Understanding Programs that Don’t Want to be Understood
Saumya K. Debray (University of Arizona – Tucson, US)

License Creative Commons BY 3.0 Unported license
© Saumya K. Debray

Joint work of Yadegari, Babak; Johannesmeyer, Brian; Whitely, Benjamin

Malicious software are usually obfuscated to avoid detection and resist analysis. When new
malware is encountered, such obfuscations have to be penetrated or removed (“deobfuscated”)

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.aspire-fp7.eu
http://www.aspire-fp7.eu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Roberto Giacobazzi, Axel Simon, and Sarah Zennou 55

in order to understand the internal logic of the code and devise countermeasures. This
talk discusses a generic approach for deobfuscation of obfuscated executable code. Our
approach does not make any assumptions about the nature of the obfuscations used, but
instead uses semantics-preserving program transformations to simplify away obfuscation
code. We have applied a prototype implementation of our ideas to a variety of different
kinds of obfuscation, including emulation-based obfuscation, emulation-based obfuscation
with runtime code unpacking, and return-oriented programming. Our experimental results
are encouraging and suggest that this approach can be effective in extracting the internal
logic from code obfuscated using a variety of obfuscation techniques, including tools such as
Themida that previous approaches could not handle.

3.8 Static analysis of avionics software at Airbus
David Delmas (Airbus S.A.S. – Toulouse, FR)

License Creative Commons BY 3.0 Unported license
© David Delmas

Analysis of executables rely on static analyzers based on Abstract Interpretation: aiT WCET
(for time-critical applications) and Stackanalyzer (for most avionics software). Run-time
error analysis is performed at source code level using Astrée. These analyzers scale up to
very large avionics software, while remaining sufficiently precise for industrial use. More local
analyzes rely on tools such as Caveat, Frama-C and Fluctuat. Formal verification at source
code level is still valid at binary level, provided a certified compiler is used, e. g. CompCert.

Considering raising security concerns and upcoming related standards for avionics, more
binary analyses will be needed. Integration of third party binaries onto a software platform
requires the verification of conformance to platform interface requirements. Detection of
memory vulnerabilities and CFG reconstruction are of interest to audit third party software.
Also, CFI/SFI sandboxing approaches, and related automatic verification, are of interest for
some software platforms. Among new challenges is the security evaluation of some non-critical
equipments, using standard connected PCs/tablets, and external Java bytecode.

For the future, timing analysis of multithreaded applications running on top of embedded
OS and complex processors remains also an objective. Side-channel analyzes, e. g. information
leakage through caches, is of interest. At source code level, formal verification of correct
implementation of a given security policy on large complex systems is a long term challenge.

The main industrial requirements for such analyses are automation, scalability and
precision. In safety-related domains, soundness is paramount.

3.9 Insight: A(nother) Binary Analysis Framework
Emmanuel Fleury (University of Bordeaux, FR)

License Creative Commons BY 3.0 Unported license
© Emmanuel Fleury

We aim to have a full and efficient platform to easily try out novel algorithms or techniques.
For this, we provide a full C++ framework designed for Unix systems (*BSD, Linux, MacOS
X, . . .) which contains a wide-spectrum binary format loaders (ELF, PE, Mach-O, . . .), a
decoder translating from assembly code (i386, amd64, . . .) into our intermediate language,

14241

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

56 14241 – Challenges in Analysing Executables

an interpreter to execute the program over a (potentially abstract) domain and several
facilities to simplify, manipulate or transform the graph and the expressions extracted from
the original program.

This talk introduces the Insight framework and includes a small demonstration of our
interactive symbolic debugger.

3.10 Decompilation into Logic using HOL4
Anthony Fox (University of Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Anthony Fox

Joint work of Fox, Anthony; Myreen, Magnus

We present formal ISA models and tools that support the decompilation of machine-code
into HOL4 functions. This decompilation is validated through the use of certificate theorems.
We provide an overview of our ISA models and list some notable case studies. The HOL4
tools are demonstrated.

3.11 Similarity analysis in Big Code of executables
Roberto Giacobazzi (University of Verona, IT)

License Creative Commons BY 3.0 Unported license
© Roberto Giacobazzi

Data-sets in huge software enclaves, such as code, specifications, analyses, etc. put forward
new and unconventional challenges to traditional Big-Data research. If Big-Data requires
adequate infrastructures and abstractions for mining and learning information from huge data-
sets, in Big-Code we need to include interpretation in order to be able to extract and represent
the extensional meaning of programs. Any Big-Code analytics is therefore necessarily
based on a form of interpretation and analysis, able to mine semantics and returning
approximate information about programs behavior. We introduce a mixed syntactic/semantics
approximation model based on symbolic automata for similarity analysis of large enclaves
of binary executables. Following the structure of their control flow graph, disassembled
binary executables are represented as symbolic automata, where nodes are program points
and predicates represent the semantics of each basic block. Approximation is made by
abstract interpretation, acting on these symbolic automata both at syntactic and semantic
level. At syntactic level, the code of basic blocks is approximated by extracting their
BinJuice. At semantic level the data information is abstracted in standard numerical
domains. Simplification operations of the resulting abstract symbolic automata are discussed
in order to extract common signatures of similar executables.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Roberto Giacobazzi, Axel Simon, and Sarah Zennou 57

3.12 Large Scale Concurrent ISA Semantics (via the Sail DSL)
Kathryn E. Gray (University of Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Kathryn E. Gray

There has been much work on formal models of ISA behaviour and on domain- specific
languages for expressing them, but it has not addressed the relaxed- memory concurrency of
multiprocessors such as IBM Power and ARM. On the other side, recent work by Sarkar et
al. has established semantics for the latter but is not integrated with a large-scale ISA model.
We discuss what is necessary to combine a large-scale ISA model with a realistic concurrency
semantics and our work (in progress) to that end: using our Sail language to express a Power
ISA model that we semi-automatically extract from the IBM documentation.

3.13 Dynamic Analysis: Knowing When to Stop
Paul Irofti (Bucharest, RO)

License Creative Commons BY 3.0 Unported license
© Paul Irofti

I made a lot of progress on the emulator since my last talk two years ago at the 12051 Seminar
“Analysis of Executables: Benefits and Challenges”. It is now a mature production-ready
project (see the ’Other’ document for a whitepaper on it) and I want to talk about the
problems I faced, focusing on one in particular which is the stopping problem.

The classic scenario is that an executable gets loaded and emulated until the executable
exit by itself. But there are times when the executable takes longer to be emulated than you’d
want it to or, worse yet, the emulation process gets hogged somewhere due to anti-debugging
techniques or bugs in the actual program. That’s why most dynamic analysis solutions
in the malware industry employ some sort of watchdog-like mechanism that forces a stop
in emulation after a certain threshold is reached. These solutions involve time-based or
emulated instruction-based thresholds that are either non-deterministic or unfair to certain
machines (be it really fast machines or older, slower ones).

And so, I want to talk about a solution that provides a deterministic and fair on all
systems mechanism of stopping the emulation process.

3.14 Generic Decoder Specification Language
Julian Kranz (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Julian Kranz

Joint work of Kranz, Julian; Sepp, Alexander; Simon, Axel
Main reference A. Sepp, J. Kranz, A. Simon, “GDSL: A Generic Decoder Specification Language for Interpreting

Machine Language,” in Proc. of the 3rd Workshop on Tools for Automatic Program Analysis
(TAPAS’12), ENTCS, Vol. 289, pp. 53–64, Elsevier, 2012; pre-print available from author’s
webpage.

URL http://dx.doi.org/10.1016/j.entcs.2012.11.006
URL http://www2.in.tum.de/bib/files/sepp12gdsl.pdf

Analysing binary code begins with the interpretation of a low-level binary input stream.
This process consists of two steps: turning the byte stream into a sequence of instructions,

14241

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.entcs.2012.11.006
http://dx.doi.org/10.1016/j.entcs.2012.11.006
http://dx.doi.org/10.1016/j.entcs.2012.11.006
http://dx.doi.org/10.1016/j.entcs.2012.11.006
http://dx.doi.org/10.1016/j.entcs.2012.11.006
http://www2.in.tum.de/bib/files/sepp12gdsl.pdf

58 14241 – Challenges in Analysing Executables

i. e. giving syntax to it, and giving meaning to the instructions, i. e. translating them into
some kind of semantics representation. Addressing the first step, we present our functional
language called GDSL which is geared to the simple and effective specification of binary
decoders. To this end, the language is equipped with special syntax that allows the easy
access to slices of bytes. As a proof of its practicability, GDSL ships with a complete decoder
for Intel x86 implemented in GDSL. We demonstrate the effectiveness of the GDSL compiler
by comparing our decoding performance to Intel’s XED decoder. Regarding the translation
to semantics, we present the minimalistic language RReil which is designed to be suited for
binary analysis. Using a simple optimization, we achieve a translation output size of roughly
only three semantic primitives per x86 instruction.

3.15 Formal Specification and Validation of ARM Machine-Code
Analyses

Alexey Loginov (GrammaTech Inc.- Ithaca, US)

License Creative Commons BY 3.0 Unported license
© Alexey Loginov

We will describe the foundations of extending GrammaTech’s machine-code analysis to the
ARM instruction-set architecture (ISA). We will start with our approach to the creation of a
trustworthy specification of ARM instruction semantics. We will then describe our efforts on
validating every step in the creation of intermediate representations of ARM binaries. The
goal is to construct intermediate representations that enable sound, yet precise, static analysis.
Our validation covers instruction decoding, disassembly, concrete instruction semantics, as
well as abstract analyses. Finally, we will describe our approach to ISA-independent regression
testing of static analyses, such as Value-Set Analysis (VSA). This approach enabled rapid
adaptation of existing x86-only regression tests to testing static analyses of ARM binaries.

3.16 CoDisasm :a disassembly of self-modifying binaries with
overlapping instructions

Jean-Yves Marion (LORIA – Nancy, FR)

License Creative Commons BY 3.0 Unported license
© Jean-Yves Marion

Disassembly is a key task in software debugging and malware analysis. It involves the recovery
of assembly instructions from binary machine code. It can be problematic in the case of
malicious code, as malware writers often employ techniques to thwart correct disassembly by
standard tools. Nonetheless, disassembly is a crucial step in malware reverse engineering.
Correct disassembly of binaries is necessary to produce a higher level representation of the
code and thus allow the analysis to develop high-level understanding of its behavior and
purpose.

In this paper, we focus on the disassembly of self-modifying binaries with overlapping
instructions. Current state-of-the-art disassemblers fail to interpret these two common forms
of obfuscation, causing an incorrect disassembly of large parts of the input.

We have developed a standalone disassembler called CoDisasm that implements this
approach, together with a plug-in for the popular reversing engineering tool IDA called

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Roberto Giacobazzi, Axel Simon, and Sarah Zennou 59

BinViz to visualize the code waves generated by CoDisasm and to visualize overlapping
instructions. Our approach substantially improves the success of disassembly when confronted
with both self-modification and code overlap in analyzed binaries. Experimental results on
about five hundred malware samples show that our approach correctly recovers large parts
of the code. To our knowledge, no other disassembler thwarts both of these obfuscations
methods together.

3.17 Worst Case Execution Time for Safty Critical Systems
Florian Martin (AbsInt – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Florian Martin

Joint work of Martin, Florian; Daniel Kästner, Markus Pister, Gernot Gebhard, Christian Ferdinand

All contemporary safety standards require to demonstrate the absence of functional and
non-functional safety hazards. In real-time systems this includes demonstrating the absence
of critical timing hazards.

To meet this verification objective it is necessary to show the correctness of the timing
behavior with ad- equate confidence. Adequate confidence means that the evidence provided
can be trusted beyond reason- able doubt. There are two main sources of doubt: the logical
doubt associated with the validity of the reasoning and the epistemic doubt associated
with uncertainty about the underlying assumptions. A fundamental timing property is the
per-task worst-case execution (WCET). It is an ingredient for determining all higher-level
timing concepts like worst-case response times, and system-wide end-to-end times. This talk
gives an overview of the challenges in ensuring timeliness of real-time software focusing on the
worst-case execution time problem. It describes the principles of abstract interpretation-based
WCET analysis and summarizes the confidence argument for applying it in the certification
process of safety-critical software, addressing both logical and epistemic doubt.

3.18 Obfuscation as Incomplete Approximation
Isabella Mastroeni (University of Verona, IT)

License Creative Commons BY 3.0 Unported license
© Isabella Mastroeni

Main reference R. Giacobazzi, N. Jones, I. Mastroeni, “Obfuscation by Partial Evaluation of Distorted
Interpretation,” in Proc. of the ACM SIGPLAN 2012 Workshop on Partial Evaluation and
Program Manipulation (PEPM’12), pp. 63–72, ACM, 2012.

URL http://dx.doi.org/10.1145/2103746.2103761

We present a novel approach to automatically generating obfuscated code P ′ from any
program P whose source code is given. Start with a (program-executing) interpreter interp
for the language in which P is written. Then “distort” interp so it is still correct, but its
specialization P ′ w.r.t. P is transformed code that is equivalent to the original program,
but harder to understand or analyze. Potency of the obfuscator is proved with respect
to a general model of the attacker, modeled as an approximate (abstract) interpreter. A
systematic approach to distortion is to make program P obscure by transforming it to P ′ on
which (abstract) interpretation is incomplete. Interpreter distortion can be done by making
residual in the specialization process sufficiently many interpreter operations to defeat an

14241

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2103746.2103761
http://dx.doi.org/10.1145/2103746.2103761
http://dx.doi.org/10.1145/2103746.2103761
http://dx.doi.org/10.1145/2103746.2103761

60 14241 – Challenges in Analysing Executables

attacker in extracting sensible information from transformed code. Our method is applied
to: code flattening, data-type obfuscation, and opaque predicate insertion. The technique is
language independent and can be exploited for designing obfuscating compilers.

3.19 Sendmail crackaddr – Static Analysis strikes back
Bogdan Mihaila (TU München, DE)

License Creative Commons BY 3.0 Unported license
© Bogdan Mihaila

Joint work of Mihaila, Bogdan; Sepp, Alexander; Simon, Axel
Main reference A. Sepp, B. Mihaila, A. Simon, “Precise Static Analysis of Binaries by Extracting Relational

Information,” in Proc. of the 18th Working Conference on Reverse Engineering (WCRE’11),
pp. 357–366, IEEE, 2011.

URL http://dx.doi.org/10.1109/WCRE.2011.50

The “sendmail crackaddr” bug from 2003 is an example for a vulnerability that is difficult to
prove using static analysis. In the course of analyzing the simplified version of this famous
example we discovered that it is surprisingly easier than expected to separate the vulnerable
from the non-vulnerable example. We show that it can be solved using abstract interpretation
and show what invariants are inferred by our binary analysis framework: Bindead. Though
the results are promising, there is still some work necessary to apply the same methods to
the original example.

References
1 B. Mihaila, A. Sepp and A. Simon. Widening as Abstract Domain. In G. Brat, N. Rungta

and A. Venet, editors, NASA Formal Methods, volume 7871 of LNCS, pages 170–186,
Moffett Field, California, USA, May 2013. Springer.

2 A. Sepp, B. Mihaila and A. Simon. Precise Static Analysis of Binaries by Extracting Re-
lational Information. In M.Pinzger and D. Poshyvanyk, editors, Working Conference on
Reverse Engineering, Limerick, Ireland, October 2011. IEEE Computer Society.

3.20 Through the Lens of Abstraction
Aditya Thakur (University of Wisconsin – Madison, US)

License Creative Commons BY 3.0 Unported license
© Aditya Thakur

Joint work of Thakur, Aditya; Reps, Thomas

This talk explores the use of abstraction in two areas of automated reasoning: verification of
programs, and decision procedures for logics.

Establishing that a program is correct is undecidable in general. Program- verification
tools sidestep this tar-pit of undecidability by working on an abstraction of a program, which
over-approximates the original program’s behavior. The theory underlying this approach is
called abstract interpretation, and is around forty years old. However, harnessing abstraction
to develop a scalable and precise abstract interpreter still remains a challenging problem.

This talk also exposes the use of abstraction in the design and implementation of decision
procedures. I call such an abstraction-centric view of decision procedures Satisfiability
Modulo Abstraction. Abstraction provides a new language for the description of decision
procedures, leading to new insights and new ways of thinking.

The common use of abstraction also brings out a non-trivial and useful relationship
between program verification and decision procedures.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/WCRE.2011.50
http://dx.doi.org/10.1109/WCRE.2011.50
http://dx.doi.org/10.1109/WCRE.2011.50
http://dx.doi.org/10.1109/WCRE.2011.50
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Roberto Giacobazzi, Axel Simon, and Sarah Zennou 61

3.21 Turbulence – an assembly level obfuscator
Axel Tillequin (Airbus Group – Suresnes, FR)

License Creative Commons BY 3.0 Unported license
© Axel Tillequin

Turbulence is an assembly level obfuscator used inside Airbus Group for IP protection. It
has been developed since 2005. It seamlessly integrates into the gcc toolchain and manages
to automatically determine how many obfuscating iterations are needed by reaching a fixed
point on the distribution of its internal set of obfuscating transforms. Open questions are
related to finding a good measure of complexity of some obfuscated code in order to provided
an adaptive approach of reaching an uniform complexity by orienting the obfuscator on badly
obfuscated parts.

3.22 Interactive static analysis
Franck Vedrine (CEA – Gif-sur-Yvette, FR)

License Creative Commons BY 3.0 Unported license
© Franck Vedrine

Only few abstract interpreters have an interactive interface. In this talk we present the
concepts behind the interactive interface of the Fluctuat static analyzer for C programs [1], and
possible usages. While already useful for source-level analysis, we do think that interactivity
is even more interesting for binary-level analysis, where it is not so evident for a user to
define an analysis scenario or to insert annotations at a dedicated point. The implementation
into CFGBuiler is future work.

References
1 Franck Vedrine, Eric Goubault, Sylvie Putot, Tristan Le Gall: Interactive Analysis in

FLUCTUAT. Tools for Automatic Program Analysis – TAPAS 2012, Deauville, France
2012

3.23 Jackdaw: Automatic, unsupervised, scalable extraction and
semantic tagging of (interesting) behaviors

Stefano Zanero (Politecnico di Milano University, IT)

License Creative Commons BY 3.0 Unported license
© Stefano Zanero

Joint work of Polino, Mario; Scorti, Andrea; Maggi, Federico; Zanero, Stefano

When analyzing (malicious) software, hybrid static-dynamic program analysis techniques help
the analyst in finding interesting behaviors. One of the key requirements of these methods is
a catalog of patterns or specifications of such interesting behaviors, which need to be created
manually.

Due to the rising number of complex malicious software and the growth of their potential,
unknown yet interesting behaviors, automatic techniques are needed to build their specific-
ations, present them to the analyst, and create a catalog of matching rules and relevant
implementations (e. g., variants).

14241

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

62 14241 – Challenges in Analysing Executables

We propose Jackdaw, an automatic behavior extractor and semantic tagger. Our system
first exploits jointly static control-flow analysis and dynamic data- flow analysis on malware
samples to find interesting, connected sequences of API calls that are potential behaviors.
Then, it maps these building blocks to their implementation(s), taking care of capturing and
modeling the distinct characteristics of each variant’s implementation. Finally, it associates
semantic information to the behaviors, so as to create compact and descriptive summary that
help the analysts in the first phases of reverse engineering. To do this, it matches relevant
code against Web knowledge bases.

We tested Jackdaw on 1,272 distinct variants drawn from 17 families. We compared the
behaviors extracted automatically by Jackdaw against a ground truth of 44 behaviors created
manually by expert analysts: Jackdaw matched 77.3% of them. We also discover 466 novel
behaviors, among which manual exploration reveals interesting findings. Manual analysis
confirms also that the semantic tags that Jackdaw attaches to the behaviors are meaningful.

3.24 Binary analysis and manipulation at Airbus Group Innovations
Sarah Zennou (Airbus Group – Suresnes, FR)

License Creative Commons BY 3.0 Unported license
© Sarah Zennou

Joint work of Zennou, Sarah; Biondi, Philippe; Mehrenberger, Xavier; Tillequin, Axel

This talk presents research activities at the research center of Airbus Group that are linked
to the topics of the seminar: malware classification, scalable static analyses and obfuscation.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Roberto Giacobazzi, Axel Simon, and Sarah Zennou 63

Participants

Davide Balzarotti
EURECOM – Biot, FR

Sébastien Bardin
CEA LIST, FR

Frederic Besson
IRISA – Rennes, FR

Sandrine Blazy
IRISA – Rennes, FR

Juan Caballero
IMDEA Software Institute –
Madrid, ES

Lorenzo Cavallaro
RHUL – London, GB

Aziem Chawdhary
University of Kent, GB

Cory Cohen
Software Engineering Institute –
Pittsburgh, US

Mila Dalla Preda
University of Verona, IT

Bjorn De Sutter
Ghent University, BE

Saumya K. Debray
Univ. of Arizona – Tucson, US

David Delmas
Airbus S.A.S. – Toulouse, FR

Thomas Dullien
Google Switzerland, CH

Emmanuel Fleury
University of Bordeaux, FR

Anthony Fox
University of Cambridge, GB

Roberto Giacobazzi
University of Verona, IT

Kathryn E. Gray
University of Cambridge, GB

Paul Irofti
Bucharest, RO

Yan Ivnitskiy
Trail of Bits Inc. – New York, US

Andy M. King
University of Kent, GB

Tim Kornau
Google Switzerland, CH

Julian Kranz
TU München, DE

Colas Le Guernic
Direction Generale de
l’Armement, FR

Junghee Lim
GrammaTech Inc.- Ithaca, US

Alexey Loginov
GrammaTech Inc.- Ithaca, US

Federico Maggi
Politecnico di Milano Univ., IT

Jean-Yves Marion
LORIA – Nancy, FR

Florian Martin
AbsInt – Saarbrücken, DE

Isabella Mastroeni
University of Verona, IT

Bogdan Mihaila
TU München, DE

Magnus Myreen
University of Cambridge, GB

Gerald Point
University of Bordeaux, FR

Edward Robbins
University of Kent, GB

Bastian Schlich
ABB AG Forschungszentrum
Deutschland – Ladenburg, DE

Alexander Sepp
TU München, DE

Axel Simon
TU München, DE

Aditya Thakur
University of Wisconsin –
Madison, US

Axel Tillequin
Airbus Group – Suresnes, FR

Franck Védrine
CEA – Gif-sur-Yvette, FR

Aymeric Vincent
University of Bordeaux, FR

Xueguang Wu
TU München, DE

Brecht Wyseur
NAGRA Kudelski Group SA –
Cheseaux, CH

Stefano Zanero
Politecnico di Milano Univ., IT

Sarah Zennou
Airbus Group – Suresnes, FR

14241

	Executive Summary Axel Simon
	Table of Contents
	Overview of Talks
	Binary-level analysis for safety-critical systems Sebastien Bardin
	High-level semantics for low-level code Frederic Besson
	Verified Abstract Interpretation Techniques for Disassembling Low-level Self-modifying Code Sandrine Blazy
	CopperDroid: On the Reconstruction of Android Malware Behaviors Lorenzo Cavallaro
	Practical Problems in Automated Static Analysis of Malware Cory Cohen
	Evaluating the strength of software protections Bjorn De Sutter
	Understanding Programs that Don't Want to be Understood Saumya K. Debray
	Static analysis of avionics software at Airbus David Delmas
	Insight: A(nother) Binary Analysis Framework Emmanuel Fleury
	Decompilation into Logic using HOL4 Anthony Fox
	Similarity analysis in Big Code of executables Roberto Giacobazzi
	Large Scale Concurrent ISA Semantics (via the Sail DSL) Kathryn E. Gray
	Dynamic Analysis: Knowing When to Stop Paul Irofti
	Generic Decoder Specification Language Julian Kranz
	Formal Specification and Validation of ARM Machine-Code Analyses Alexey Loginov
	CoDisasm :a disassembly of self-modifying binaries with overlapping instructions Jean-Yves Marion
	Worst Case Execution Time for Safty Critical Systems Florian Martin
	Obfuscation as Incomplete Approximation Isabella Mastroeni
	Sendmail crackaddr – Static Analysis strikes back Bogdan Mihaila
	Through the Lens of Abstraction Aditya Thakur
	Turbulence – an assembly level obfuscator Axel Tillequin
	Interactive static analysis Franck Vedrine
	Jackdaw: Automatic, unsupervised, scalable extraction and semantic tagging of (interesting) behaviors Stefano Zanero
	Binary analysis and manipulation at Airbus Group Innovations Sarah Zennou

	Participants

