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Abstract
A popular approach to verification of software system correctness is model checking. To achieve
scalability needed for large systems, model checking has to be augmented with abstraction. In this
paper, we provide an overview of selected techniques of program verification based on predicate
abstraction. We focus on techniques that advanced the state-of-the-art in a significant way,
including counterexample-guided abstraction refinement, lazy abstraction, and current trends in
the form of extensions targeting, for example, data structures and multi-threading. We discuss
limitations of these techniques and present our plans for addressing some of them.
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1 Introduction

Software systems are nowadays ubiquitous and therefore it is important that they work
correctly. An erroneous behavior may lead to loss of lives, money, and resources especially
in safety-critical systems that are used, for example, in the domains of transportation and
healthcare. It is necessary that as many errors as possible are detected and fixed before
the deployment of a given system. We need techniques and tools able to reason about the
behavior of programs in order to check the program safety and find errors. One approach
to detection of errors is the use of program verification. The state-of-the-art verification
techniques work for simple programs, but it is desirable that they scale also to large programs,
have a good performance, and require little manual effort (automation).

In this paper, we provide an overview of selected recent contributions in the area of
program verification that address these challenges. A very popular approach to program
verification is model checking [15], which decides whether a given program satisfies a desired
property by exhaustively exploring its state space. The state space of non-trivial programs
is generally too large, and therefore an abstraction of some kind is needed to reduce its
size. In particular, predicate abstraction [22] has been a subject of extensive research (e.g.,
[5, 11, 24, 28, 29]). We introduce the reader to successful verification techniques based on
predicate abstraction and discuss possible directions of their further improvement.

We use the example program in Figure 1 throughout the paper to illustrate the basic
principles of checking program safety with predicate abstraction. The program consists
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28 Predicate Abstraction in Program Verification

1: procedure main()
2: a← an arbitrary array of integers
3: i← findGreater(a, 10)
4: assert i < length(a) =⇒ a[i] > 10

5: function findGreater(a, c)
6: for 0 ≤ j < length(a) do
7: if a[j] > c then
8: return j

9: return length(a)

Figure 1 Example program.

of the procedure main, which creates an array of an arbitrary length, calls the function
findGreater, and subsequently asserts a specific property of the returned value i. The
function findGreater takes array a and constant c as arguments, and by iterating over
the array a it finds an index j such that the array element a[j] is greater than c. If no such
index exists it returns the length of the array a. There are two locations, associated with
lines 4 and 7, where the program execution may fail. The assertion at line 4 is violated if the
value of the variable i points to an element of the array a whose value is less then or equal
to 10. An error might arise also when attempting to access elements outside the bounds of
the array at line 7.

The rest of the paper is structured in the following way. In Section 2, we give an overview
of the state-of-the-art verification techniques based on predicate abstraction, and describe
a procedure that can be used to verify the example program in Figure 1. In Section 3,
we discuss limitations of the state-of-the-art techniques and the corresponding challenges.
Finally, we present our plans and goals in this research area, including our current work
to date (Section 4). Note that although in this paper we focus only on techniques related
to predicate abstraction, there are many other approaches to program verification such as
bounded model checking [13], and techniques tailored to efficient detection of errors of specific
types, such as wrong usage of data structures and pointers [7, 20].

2 Overview

All the techniques presented in this section apply model checking to abstract programs. Their
general idea is to automatically construct the most coarse-grained abstraction of an input
program that is sufficient to prove the program safe. Such an abstraction captures all feasible
behaviors of the program and also some infeasible behaviors.

First, we describe the basic procedure for model checking with predicate abstraction in
Section 2.1. This is followed by a description of techniques that build on the basic procedure.
We focus on verification techniques that can be divided into the following four categories:
counterexample-guided abstraction refinement (Section 2.2), lazy abstraction (Section 2.3),
combinations of multiple approaches (Section 2.4), and techniques targeting data structures,
concurrency, and modular design (Section 2.5). The order of the subsections follows roughly
the chronological development of the respective techniques.

2.1 Model Checking with Predicate Abstraction
The use of predicate abstraction enables efficient reasoning over an abstract state space that
is much smaller than the original concrete one, because each abstract state represents a
possibly large set of concrete states. Each abstract state corresponds to a specific valuation
of abstraction predicates that express relationships between program variables.

In order to verify that the example program (Figure 1) is safe, it is necessary to determine
whether there exists an execution under which any of the error locations is reached. The first
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step is to reduce the size of the state space to be explored by constructing an abstraction
in the form of a boolean program [5, 17]. A set of abstraction predicates must be defined
and given as input to the construction of the abstract boolean program. In the case of the
example program, the set of abstraction predicates necessary to prove its safety includes the
following: i < length(a), a[i] > 10, j ≥ 0, j < length(a), a[j] > c, and c = 10. Although
the predicates can be defined manually, the general aim is to design automated techniques
for their inference and construction of the abstraction.

Now, we describe a run of the model checking procedure over the example program in
Figure 1. The states of the abstract program correspond to different valuations (true, false,
or unknown) of the abstraction predicates at different program locations. Figure 2 shows
the whole reachable abstract state space. Each node represents an abstract state — it is
labeled with the corresponding program location (source code line number) and predicates
that evaluate to true.

The process of verification of this program starts at the entry point of main (line 2) with
all the predicates valuated to unknown. The program statements are executed symbolically
until the invocation of findGreater at line 3. At this point, the valuation of c = 10 is
set to true, and the program execution continues at line 6, where branching takes place;
one branch corresponds to the variable j pointing beyond the bounds of the array a, and
the second branch corresponds to j pointing to some element of the array. The verification
procedure needs to explore both state space branches. Suppose the procedure takes the
first branch, so that the program execution continues to line 9 (left side of Figure 2). After
returning to main, the abstraction predicate i < length(a) valuates to false, and therefore
the assertion at line 4 holds. Next, the verification procedure explores the second branch,
i.e. the body of the loop, and the program execution reaches line 7 (right side of Figure 2).
The loop invariant 0 ≤ j < length(a) ensures that only array elements at valid indices
are accessed. Again, both branches of the if-statement have to be explored. We describe
only the branch in which the body of the if-statement is executed because the other leads
to an already visited state (through the dashed arc). In this branch, both the abstraction
predicates a[j] > c and c = 10 valuate to true at line 8. After returning to main, the value
of j is assigned to the variable i, hence a[i] > 10 is true and the assertion is satisfied. All the
traces in the abstract program have been explored without reaching an error state, and thus
the example program is safe.
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One of the key requirements for automation of such verification procedure is that effects of
individual statements on valuation of abstraction predicates are encoded precisely. A natural
approach is to use logic formulæ. Obviously, the choice of a suitable logic plays an important
role and affects the precision and complexity of the verification technique that relies on it.
The building blocks of commonly used theories of the first-order logic include: equality logic,
linear integer arithmetic, and uninterpreted functions. SMT solvers are often used to decide
validity of formulæ that capture effects of program statements. However, invocations of an
SMT solver are typically expensive, and therefore some of the techniques that we describe
later try to minimize the number of invocations performed during the verification of a given
program.

2.2 Counterexample-Guided Abstraction Refinement
The first technique for automated program verification based on predicate abstraction that
we describe is Counterexample-Guided Abstraction Refinement (CEGAR) [16]. Figure 3
shows the main loop of the algorithm, which consists of these four steps: construction of
an abstract program, model checking, analysis of a counterexample, and refinement of the
abstraction. The initial abstraction does not consider any data values and the control-flow at
branching points is entirely non-deterministic. Such an abstraction usually permits spurious
executions, which do not correspond to real executions of the original program. This is true
especially for infeasible counterexamples, which are eliminated by abstraction refinement.
Note that the abstract program is constructed from scratch in each iteration.

In the rest of this section, we describe the individual steps of the main loop:

1. An abstract boolean program is constructed for the given input program. The boolean
program contains boolean variables that represent values of the abstraction predicates,
and captures the effects of statements from the original program on the values of pre-
dicates. Every assignment statement in the original program is modeled in the abstract
program by an assignment of boolean values to variables representing individual pre-
dicates. Branching conditions are modeled by the boolean variable that represents the
corresponding abstraction predicate. If the value of the predicate is unknown or no such
abstraction predicate is defined, a non-deterministic choice is used.

2. A model checker is used to verify the abstract program. In case an error state is reachable,
the model checker produces a counterexample in the form of a trace that represents the
program execution from the initial state to the error state. If the abstract program is
safe then the original program is safe as well.

3. The next step is to analyze the counterexample (error trace). The error trace is associated
with a trace formula, which is constructed by conjoining subformulæ that express the
semantics of individual statements in the trace. Satisfiability of this formula is checked
to determine feasibility of the counterexample. If there exists a satisfying assignment to
variables of the trace formula, then we get a real counterexample, which is then reported
to the user.

4. Infeasible counterexamples are eliminated through refinement of the abstraction. New
predicates are inferred based on the counterexample, and used in the next iteration
to improve precision of the generated abstraction, so that the trace representing the
infeasible counterexample is no longer permitted.

The verification procedure terminates when a real counterexample is encountered (step 3),
or the program is proven safe (step 2). CEGAR is the basis of a large number of automated
approaches to program verification, some of which we describe in the next three sections.
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2.3 Lazy Abstraction

The construction of the full abstract boolean program from scratch in each iteration of
the CEGAR loop is costly. More recent techniques [24,28] use an incremental approach to
abstraction refinement. Their key differences from the techniques described in the previous
section is that (1) both construction and refinement of the abstraction are performed on-
the-fly during model checking, and (2) the refinement does not affect already explored parts
of the abstract state space, which saves a large computational effort. The basic idea is to
iteratively unroll a control-flow graph of the given program into an abstract reachability
graph (ARG). The nodes of ARG correspond to abstract states and edges reflect the program
control-flow. At the beginning of the verification procedure, the ARG contains only the
initial state. In each iteration, the procedure expands a leaf state and adds its children states
into the graph. If an error state is added into the ARG, the corresponding error trace is
analyzed for feasibility. The error may be either real, in which case it is reported and the
procedure terminates, or spurious. In the case of a spurious error, the abstract states along
the corresponding trace are refined with new predicates in order to eliminate the error. The
new predicates for each location on the trace are obtained using interpolants [25,28]. The
locality of the newly added predicates makes it possible to keep the abstract state space
reasonably small, as the verification procedure refines the precision only where necessary.
The procedure uses a covering relation to ensure that, in each step, it explores only those
abstract states that have not yet been processed before.

When unrolling the ARG, the abstraction may be constructed either in an eager or lazy
fashion. The eager approach [25] computes the reachable abstract states using an abstract post
operator, which involves multiple SMT queries. Blast [9] is an example of a verification tool
that uses lazy predicate abstraction with an eager construction of the abstraction. The lazy
approach [28], called Impact, overapproximates all abstract states with true and postpones
the construction of a precise abstraction to the refinement step.

2.4 Combinations of Multiple Approaches

Lazy abstraction is an efficient technique as long as a relatively coarse abstraction is sufficient
to find a real error or prove safety of the given program. Otherwise, the verification procedure
has to perform a large number of refinement steps, which is computationally expensive.
Loops in the program code, in particular, often require a complete unrolling of the ARG
and numerous refinement steps, which reduce the benefits of abstraction. In this section, we
describe some techniques that address this problem and improve scalability.

Yogi [23] is a tool that implements the Dash algorithm [6], which combines testing and
verification in order to achieve better performance. The Dash algorithm works in an iterative
fashion, and maintains two data structures: (1) an abstraction of the input program, which
serves for proving the program’s safety, and (2) a collection of already executed tests. At the
start of each iteration, the algorithm inspects the current abstraction to see if there is any
abstract error trace (counterexample). For the counterexample, Dash identifies the longest
prefix that is covered by previously executed tests, and attempts to construct a new test that
follows the prefix and reaches the next state in the counterexample after the prefix. If there is
such a test, either its execution confirms the presence of a real error, or it guides abstraction
refinement along the spurious counterexample. Otherwise, if such a test does not exist, the
last abstract state of the prefix is refined by adding predicates that are derived from the
transition between the prefix and the rest of the trace. An advantage of this approach is
that it is computationally much less expensive for two reasons: (1) execution of tests may
save many refinement steps, and (2) predicates are derived without the use of SMT.

ICCSW’14
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Ufo [2] is a verification framework, which combines a configurable forward computation of
the program abstraction with usage of interpolants to achieve sufficient precision. Depending
on the particular configuration, the abstraction may be constructed in an eager or lazy
manner (as in lazy abstraction). Ufo differs from the previously mentioned approaches in
that it does not construct a separate trace formula for every trace that reaches an error
location. Instead, it captures multiple traces in the ARG with a single formula, and thus
significantly reduces the number of necessary refinement steps. A satisfying assignment of
the formula’s variables yields a real counterexample, whereas unsatisfiability of the formula
enables the use of interpolants to refine the abstraction. In this way, the ARG is refined
globally rather than along a single trace at a time, and each abstract state is refined as in
lazy abstraction.

Another notable framework is CPAchecker [11], which supports custom configurable
program analyses (CPA) [10]. The definition of each analysis consists of an abstract domain,
transfer relation, merge operator, and a stop operator. The merge operator specifies if and
how to merge abstract states when two control-flow paths meet. The stop operator detects
whether a newly reached state is already covered and does not have to be explored again.
Multiple custom analyses can be put together to form a combined analysis. The verification
algorithm of CPAChecker performs a simple reachability analysis parametrized with a
given CPA. It is implemented in the tool with the same name [11], which provides the
CPA’s with a compact interface to other necessary pieces of modern program verification
frameworks, such as the input parser and SMT solvers.

2.5 Data Structures, Concurrency, and Modularity
In this section, we provide an overview of recent notable advancements within verification
techniques towards support of realistic programs. This support is important for broader
practical applicability, precision, and scalability of program verification. Specifically, we show
techniques that can handle some of the following aspects of realistic programs: heap and
data structures, object-oriented constructs, modular design (libraries), and concurrency.

Basically, every larger program uses data structures such as arrays, linked lists, and trees.
This makes verification more challenging because more complex logics have to be used for
reasoning about such programs. There exist verification techniques that address arrays [3,26]
and data structures of other kinds [14,27].

The approach proposed in [3] focuses on precise reasoning over arrays of unknown length.
Interesting properties of arrays and their elements (e.g., whether a given array is sorted) can
be expressed only using quantifiers. The basic idea of [3] is to compute an overapproximation
of the set of states backward-reachable from error states [21]. Then, the task of verifying
safety of a given program reduces to a check for an empty intersection with the set of
initial states. Spurious errors are eliminated through lazy abstraction. This approach was
implemented in the SAFARI tool [4].

Modular verification is a popular approach to achieve scalability. Parts of the program
can be analyzed separately in order to reduce the total cost of the verification. In particular,
library code can be analyzed just once, even in the case of methods that are called at
multiple locations in a given program. Authors of [27] propose to replace the calls of library
methods that manipulate data structures with summary transitions that are derived from
their specifications. The Whale algorithm [1] computes method summaries, which are
necessary for the proof of correctness, using an iterative approach based on interpolation.

A difficult challenge related to programs with multiple threads is the need to model
concurrent updates of shared data. The first step towards overcoming this challenge was
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proposed in [19]. The central idea is to perform the CEGAR loop on a parallel composition
of multiple instances of the boolean program that abstracts the input program. Predicates
referring just to thread-local variables are modeled with local boolean variables (a fresh
copy per thread is used), and predicates involving only shared variables are modeled with
shared boolean variables. In the case of predicates that refer to a mixture of local and
shared variables, this verification procedure also uses local boolean variables to represent such
predicates but each update of such a variable is broadcast to all the threads. To compute
the correct value to be broadcast from an active thread ta to a given thread t, the procedure
uses predicates associated with ta, predicates associated with t, and all shared predicates.
In contrast, the approach proposed in [30] extends the Impact algorithm with support for
concurrency, and uses partial order reduction [15] to achieve reasonable performance.

3 Limitations and Challenges

Our survey of the state-of-the-art verification techniques based on predicate abstraction
indicates that great advancements have been made in the last decade, but the techniques
still have certain limitations in terms of their support of features used in realistic programs,
performance, scalability, and automation. In particular, they are applicable only to programs
of a moderate size (up to tens of thousands of source code lines in C) and they can handle
only programs with a limited usage of data structures.

The comparison [12] of the two fundamental approaches to lazy abstraction [24, 28]
analyzes the effects of their individual features on performance. The authors implemented
and compared several different configurations of the approaches using the same framework.
Results show that the two approaches have similar performance in configurations that involve
larger block encodings [8]. The general conclusion is that less refinement steps and cheaper
covering tests lead to better performance.

4 Our Research Goals

Our main goal is to create a framework for verification of multi-threaded Java programs that
involve loops, recursion, and usage of data structures. We especially intend to investigate
automated generation of abstraction predicates by combination of static analysis with dynamic
analysis, which is known to handle programs with loops very well.

We have already done some initial work on using predicates to capture the state and
behavior of data collections. In [29], we defined a predicate language for modeling lists, sets,
and maps, and implemented the language in the J2BP tool that automatically generates
abstract programs [31]. We also started investigating the capabilities of predicate abstraction
in the context of on-the-fly state space traversal combined with a dynamic analysis. We imple-
mented basic support for predicate abstraction into the tool called Abstract Pathfinder [18],
which is an extension to the Java Pathfinder verification framework [32].
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