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—— Abstract

We present a small object-oriented language with communication primitives. The language allows
the assignment of binary session types to communication channels in order to govern the interac-
tion between different objects and to statically calculate communication costs. Class declarations
are annotated with size information in order to determine the cost of sending and receiving ob-
jects. This paper describes our first steps in the creation of a session-based, object-oriented
language for communication optimization purposes.
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1 Introduction

In the near future, parallel machines with thousands of cores are expected and programming
languages that easily scale for such machines are needed. Furthermore, it is possible to
have concurrent computations with a large number of messages exchanged and develop
programs with such communications can be a hard task and liable to several errors. Session
types [9, 16] are a well-established mechanism to describe message-passing computations
that allows to ensure communication safety and the absence of race conditions and deadlocks.
When assigned to communication channels they can be used to express the kind of messages
exchanged among the different partners of a communication and their order as well as to
statically verify if the communication proceeds as specified by session types. There are two
variants of session types: binary (or two-party) session types to describe the communication
between two parties and multiparty session types to govern the communication among
multiple participants.

In this work, we are interested in the design of a new object-oriented programming
language that uses session types to govern the communication between different objects and
to statically calculate the respective communication costs. We start only with two-party
sessions and then when we achieve our goals we will expand our approach to multiparty
session types. We present a Java-like syntax with communication primitives where objects
may communicate using channels with session types assigned.

The contributions of this paper can be summarized as our first steps in the design of a
session-based, object-oriented language that allows to express the size of data structures and
to statically calculate communication costs, using session types, for optimization purposes.
We believe that in the future we will be able to use this information to apply optimizations
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class C[{NTY{F*; M*}
Method declarations: M ::= (@set sa (this.f),v;)" 7 m((x: p)*){e}
Field declarations: F :=[@sa v :|T f;

Class declarations: D ::

Size annotations: sa ::=has | hasup_to
Values: v == constant | N | v+v | wvxv
Types: T :=boolean | integer | char | string[v] | C[{v™")]
Return types: 7 =T | void
Parameter types: p =T | ST

Figure 1 Syntax of classes and types.

such as, to change the location of the objects—given that the location of objects has impact
in the communication cost (if two objects are distant the communication cost is worst than if

they are close) we can change the objects topology in order to obtain a better performance.

Structure of the document: The document is organised as follows. Section 2 describes our
syntax of classes and types. Section 3 shows the syntax of session types followed by Section 4
with the syntax of session operations. The calculation of communication costs is described
in Section 5. We present Section 6 and we finish this document with conclusion and future
work in Section 7.

2 Syntax of classes and types

Our base language follows the syntax of Java; each program is a set of class declarations and
each class declaration contains sets of fields and method declarations. However, we annotate
our class declarations with information about the size of the objects (the number of elements
of a data structure). Moreover we also annotate field and method declarations and the type
parameters of our method declarations may be session types. The syntax of classes is shown
in Figure 1, with the identifiers conventions: C for class identifiers, f for field identifiers, m
for method identifiers, and N for size parameter identifiers.

Size parameters are annotated in class declarations and used in field declarations to
describe (exactly or in maximum) how many elements a data structure has. For some class
declaration Cj3, consider, for instance, the class declarations:

class C1(N) { ©@has N: C3c3; } class Co(N) { @hasup_to N: C3c3; }

The type C1(5) represents an object that has exactly 5 elements of type C3 while the type
C3(5) represents an object that maximally has 5 elements of class Cs.

The method declaration is very similar to the Java method declaration where the returning
type can be a type T or the void type and it has a set of parameters (each one with a type
assigned). Note the possibility to have channel end-points as parameters (a variable assigned
to a session type). The set annotation is used to change the size of an object. For instance
if we add or remove elements of a data structure we need to indicate the new number of
elements. A value v (a natural number or the result of an arithmetic expression) may denote
either the number of elements of the object or the repetitions of a given communication
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Session type declaration: ST ::= session S[(N*)] = SB
Session type body: SB :=!T.SB | ?T.SB | end |
—l—{ll : SBi}ie] ‘ &{ll : SBi}ie[ ‘ rec a.SB ‘ CL[’U] | SB1; SB>

Session type invocation: SI := S(v*) | dualof S(v*)

Figure 2 Syntax of session types.

pattern (recursive session types). We omit the syntax of expressions because it should be
similar to that of Java expressions. However, note that our language supports also session
operations. Session operations and session types are explained later. Our syntax allows five
different types: the primitives boolean, integer, char and the string[v] type (representing an
array of chars of length v), and the object types, represented by a class identifier and the
respective annotation for size.

In order to complement the explanation of our language we can use an example where
we have a professor communicating with an administrative system. The professor should
authenticate her credentials and after that she can provide an identifier of a course and
ask to the system a list of students, or she can give a particular student identifier and
obtain the respective student. Below, we show four class declarations useful to this example.

class Login { class Student {
string [50] username; string [150] name;
string [20] password; integer age;
}
class StudentList<N> { class Node {
@has up_to N; Node next;
Node head; Student student;
} }

The class Login is a class with two fields only, username and password. Each instance of the class
Student has a name (which in maximum has 150 characters) and an age. The class StudentList
represents a list with a maximum of N students. In fact, we have that the list has N nodes,
however each node has 1 student and therefore we may say that there are N students in the
list. The class Node has a reference to the next node in the list and a reference to its student.
If we want to add operations to change the list (for instance, add a new student) we can
write the following method declaration in the class StudentList.

@set has(this.head), N + 1; void addStudent(Student n) { ... }

This means that after the invocation of this method, the list will have one more Student.

3 Syntax of session types

We intend to integrate this language with the theory of session types to describe the
communication during one session [9, 16]. We consider bidirectional channels, where each
channel is composed of two end-points; when two processes/objects communicate, each one
possesses one of the channel ends and each channel end has a session type assigned. For I
some index set and with the identifiers conventions N € Id, for size and repetition parameters,
and S € Id, for session identifiers, Figure 2 shows the syntax of session types.
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A session type declaration, ST assigns an identifier and size information to a session type,
the session type body. It binds the size variables, denoted by N, that may be used in the
session type body. We may use the session type !T.SB to describe a channel end that should
send a value of type T and then proceed as SB, or the type ?71.5B to receive a value of type
T and continue behaving as described in SB. To describe an end-point that selects an option
from a fixed range of options, we use the type +{l; : SB;};cr. The session type to describe
an end-point that offers this menu of options is &{l; : SB;}icr. The type end should be
assigned to end-points where no further interaction may occur. The syntax presented is very
similar to other languages with support for binary session types, such as [6, 16]. However
we introduce two constructs that we believe to be different from the other approaches: the
limitation of recursion, through the type variable annotation (usually the type/recursion
variable is not annotated with information about repetition), and the sequence of session
types. Using recursive types of the form rec a.SB and the annotated type variable a[v],
it is also possible to write a session type that maximally allows the repetition of a given
behaviour v times. For instance, the type rec a.linteger.a[3] when assigned to an end-point,
means that it can send 3 integers. We can consider that rec a.linteger.a[3] is equivalent to
linteger.linteger.linteger.end. The type rec a + {l1 :IT3.a[3], 12 :!T5.a[2]} governs a channel end
that selects between [; and ls a total of 5 times, sends 3 values of type 77 and 2 values of
type Tz. An end-point assigned to SBi; SBy will first behave as defined by SB; and then
as SBy. We may say that the session type SB1; SBs is an abbreviation for SB; where we
replace end by SBs, which is [SBy/end]SB; 1. In order to use a declared session type our
syntax provides a constructor for the session type invocation composed of the name assigned
to the session type, S, and the value or the result of the arithmetic expression, v, to be used
in the session type SB. It also provides for a dual type invocation, that give the dual session
type—it is important to ensure that when one of the channel ends sends a value of type
T, the other must be ready to receive a value of type T' and when one of the channel ends
selects an option from a menu, the other must offer a menu that contains this option. This
means that the end-points of a channel must have dual behaviours 2.

Our first session type declaration is the one to govern the administrative system commu-
nication side:

session Admin<ul, u2> =

rec a. ?Login.

+{authentication_denied: !string[ul].
&{try_again: a[2], close: end},
authentication_accepted:

rec b. &{all_students: ?integer: !StudentList<u2>.end,
single_student: ?integer. !Student.b[u2]}

}

First the system receives an object Login with the credentials of the professor, then it
should select between authentication_denied and authentication_accepted. If it selects the first
option, then it must send the string with the failure reason to the professor and offer a choice
between try_again and close. The professor may only try to login 3 times; after that, the
communication channel is closed. When the system selects the option authentication_accepted,
it offers two options to the professor: all_students, where the system expects to receive an
integer with course identifier to respond with a StudentList, or single_student where the system

L We still need to verify if the session type is well-formed. For instance the type rec a. end; a is allowed
by our syntax however it is not contractive. Recursive types are required to be contractive, that is, it
cannot be of the form or has any sub-type of the form rec al, ... rec an. al

2 The duality function can be found in https://wp.doc.ic.ac.uk/jvicentl/files
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Session operations: O = xy = new (S[1QL,SI,QLs) | z.send(e) |

z.receive() | z.select(l) | switch(z){case l; : e;}icr | startSession{e.m(e*),e.m(e*)}

where x,y, z are channel names, [ denotes labels and L location identifiers.

Figure 3 Syntax of session operations.

expects an integer with the student identifier and replies with a Student. When the option
single_student is selected, the menu will be available again, after the sending of the student,
in a maximum of u2 times.

4 Session operations

In this section we present the syntax of session operations shown in Figure 3. We start with
the channel creation of the form x y = new (SI1@QL,SI,@QLs) to create a new channel
defined by two end-points x and y. The end-point z is assigned to the resulting session
type of the type invocation SI;, while y is assigned to S5, which should be dual of ST;.
The channel end z will be used by an object in some location L; while y will be used from
location Lo. An end-point can be used to send the result of an expression with z.send(e), to
receive a value, z.receive(), to select an option labelled as I, from a fixed range of options, with
z.select(l) and to offer a menu of options, using switch(z){case I; : e; }icr, for I some index
set. Our syntax support also a primitive to start the session between two participants of
the communication by invoking two methods—we assume that the communication happens
between those methods. Note that the channel ends must be passed as parameters of
the method, so that the communication may proceed. For instance in order to start the
communication in our example we can use the following code 3.

// declaration of maxStudents and failureReason variables

Administrator a = new Administrator(maxStudents);

Professor p = new Professor(maxStudents);

x y = new (Admin<failureReason.length, maxStudents> @ L1,

dualof Admin<failureReason.length, maxStudents> @ L2);
startSession{a.communicate(x), p.communicate(y)}

5 Calculation of communication cost

In this section we present the methodology to calculate the communication cost of a given
channel using its session type. We assume that we have: a function sending_cost that expects
two abstract locations L; and Lo and returns the cost of sending 1 word from the concrete
location of Lq to the concrete location of Lo; a function receiving_cost that also expects two
abstract locations L1 and Ly and returns the cost of receiving 1 word from the concrete
location of Ly to the concrete location of L;. We also consider that a label of a choice type
fits in 1 byte (for instance, the selection of an option is equivalent to the output of a label
and we can use the function sending_cost). Furthermore, we assume that we have a function
sizeOf that expects a type T and returns the number of bytes of a value or object of this

type?.

3 What we envision as the full code of our example can be found in https://wp.doc.ic.ac.uk/jvicent1/
files.
4 We are currently working in this function and we do not include it in the document due space limitation.
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In this section we show how to calculate the communication cost of a channel with
the Admin session type assigned. The first step is to normalise the session type, that is,
for a session type SB; we need to obtain a different session type SBs that has the same
communication cost as SB; and respects the following properties:

In a session type of the form rec a.SB the type variable a appears free in SB only once;

In a choice type (selection or branching) if there is an option SB; which has a free type

variable, then the menu of options is composed only by SB;.
This step is important when we have a branching type with recursion. A naive approach
would be to calculate the cost of all options and choose the worst case (most expensive
communication). However if we analyse, for instance, our session type Admin we can conclude
that it would be an optimistic cost given that the authentication can be denied twice before to
be accepted. After the normalisation, we are able to calculate the communication cost. The
intuition behind the communication cost function is very simple. For the input/output types
we only need to calculate the size of the parameter and sum to the cost of the continuation
type. And given that the type is normalised, the cost of a branch type is the maximum cost
of all branches. Both definitions of the functions normalisation and communication cost can
be found in https://wp.doc.ic.ac.uk/jvicentl/files.

The normalisation

Informally, we may say that in the worst case, an end-point governed by the Admin session
type receives three objects of type Login, meaning that the professor failed the first two
authentication attempts. For each failed authentication the server sends the failure reason and

offers the option to try to authenticate again. Then it selects the label authentication_accepted.

After that, the end-point should be used to send b objects of type Student after receive b
values of type integer (when the option single_student is selected by the professor). Finally
the channel end should be used to receive an integer and send the complete list of students,
called StudentList. If we normalise the Admin session type, we obtain:

rec a.?Login. + {authentication_denied :!string[u1].&{try_again : a[2]}};
?Login. + {authentication_denied : &{close : end},
authentication_accepted : rec b.&{single_student :?integer.!Student.b[us] };

&{all_students :?integer.!StudentList.end} }

The result is a session type that governs an end-point that performs the operations described
above. As we can see the above session type includes two subtypes that terminate the
communication in the channel end—the types &{all_students :?integer.!StudentList.end} and
Istring[u1].&{close : end}— and we only want to consider the worst case, that is, the first
subtype. Therefore this should be taken into account in the communication cost function.

The communication cost calculation

Now that we have our normalised type we can calculate the communication cost of the first
subtype (the calculation for the rest of the types is similar).

costc(rec a.?Login. + {authentication_denied :!string[u].&{try_again : a[2]}}; L1, Lo) =
2% g(Ly, L2) * (sizeOf(Login) + 1) 4+ 2 * f(Lq, La) * (1 4 sizeOf(string[u1]))
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6 Related work

There are already several papers about the incorporation of session types in object-oriented
languages. Dezani et al. proposed the first integration of a class-based object-oriented
programming language with session types [5]. This work was followed by the programming
language Moose [4], a multi-threaded object-oriented core language augmented with session
types, and by an extension of Moose [3], with bounded session types for object oriented
languages. Hu et al. introduced an extension of Java, called SJ [10], a session-based distributed
programming language. Following a different approach, Gay et al. [7] presented a distributed
object-oriented programming language where it is possible to specify the possible sequences
of method calls attaching session types to class definitions. Based on this work, Bica [1] is
an extension to Javab that allows the verification of Java code against session types, and
Mool [2] is a minimal object-oriented language with support for concurrency. There is also
an integration of multiparty session types with a Java extension, inspired on SJ, presented
by Sivaramakrishnan et al. [14, 15].

In the scope of high-performance computing, Ng et al. created Session C, a programming
framework for message-passing parallel programming that combines multiparty session types
with the C programming language and its respective runtime libraries [12]. Based on Session
C, Ng et al. presented a programming framework for safe and reconfigurable parallel designs
and Pable a parametrised protocol description language [13, 11]. Honda et al. also proposed
a methodology for MPI programs based on session types [8]. As in Session C, the idea is
to check MPT programs against local protocols (obtained from multiparty session types), in
polynomial time, to ensure type safety, communication safety and deadlock freedom.

At the best of our knowledge, all of these languages, and other which we do not mention,
do not use session types to calculate communication costs. Some of them consider some
optimizations using session types, such as [14, 15], however none of them do it as we intend
to do in the future: use these costs to optimise the communication.

7 Conclusion and further work

Conclusion. We present our first steps towards the creation of a new object oriented
programming language with primitives for communication over bidirectional channels. Session
types will be assigned to Channels allowing to statically verify if the exchanged messages
respect the expected order and type and in addition to calculate the communication cost of
an end-point when this is located at some location. We believe that this communication cost
information can be used to improve the communication in a concurrent computation, even
that it only gives us the communication cost for the worst case.

Further Work. This is work is still in the beginning and there are yet several questions
that we have to answer and several points to improve, such as, about the correctness of our
functions and how we can check that the number of repetitions of session types and the
number of elements of a data structure are correct. Moreover we want to integrate the sizeOf
function and find a better solution for the annotated type variable in the duality function.
Furthermore, we started our work with binary session types however our main goal is to
have a object-oriented programming language with multiparty session types. Given that
multiparty session types can be projected into local session types, we decided to start our
work with binary session types and after we achieve our goals, we can extend our ideas to
multiparty session types. In addition, we intend to study what optimizations we can do using
this cost information.
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