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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 14351 “Decision Pro-
cedures and Abstract Interpretation”. The seminar brought together practitioners and reseach-
ers in abstract interpretation and decision procedures. The meeting highlighted the connections
between the two disciplines, and created new links between the two research communities. Joint
activities were also conducted with the participants of Dagstuhl Seminar 14352 “Next Generation
Static Software Analysis Tools”, which was held concurrently.
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1 Executive Summary

Aditya Thakur
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The seminar was successful in bringing the following two communities together:
designers and implementors of abstract interpreters, and
designers and implementors of decision procedures.

The abstract interpretation (AI) and decsion procedure (DP) communities have several
interests in common. Tools created by each of these communities can be viewed as using
symbolic techniques to explore the state state of a transition system. However, the respective
repertoires of techniques used in the two disciplines are quite different, and each community
has its own mindset and outlook. The seminar sought to capitalize on recent ideas that
demonstrated new connections between the two disciplines, and, consequently, promote the
cross-fertilization between the areas at a deep technical level.

The seminar had 27 participants from both the AI and DP communities. To keep
pariticipants from both areas engaged during a session, the organizers refrained from filling a
session only with talks focusing on a particular community. Instead, each session consisted of
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talks by participants of both research communities. Furthermore, talks by young researchers
were scheduled earlier in the week, which enabled them to get better feedback on their
research.

The Dagstuhl Seminar 14352 “Next Generation Static Software Analysis Tools” was held
concurrently with Dagstuhl Seminar 14351. There were a number of joint activities organized
to foster interaction among participants of the two seminars:

The first session on Monday was a joint session for participants of both seminars. In
this session, all participants introduced themselves and briefly described their research
interests. Furthermore, Patrick Cousot, an organizer for Seminar 14352, and Thomas
Reps, an organizer for Seminar 14351, each gave a “scene-setting” talk.
The Wednesday excursion to the steel mill and Egyptian exhibit was organized as a joint
activity.
A joint session was organized on Thursday afternoon. The talks in this session were given
by participants of both seminars.
The seating arrangement for the Friday dinner was organized so that participants from
both seminars sat together.
The schedule of talks for both seminars was shared with all participants. Hence, parti-
cipants of one seminar were able to attend a specific talk in the other seminar, if they
felt the talk was especially relevant.

Apart from the planned activities listed above, the week saw a lot of informal discussions
among participants of these two seminars in the evenings.

The seminar also featured talks about two other research areas: constraint programming
(CP) and machine learning (ML). The talks by Mine, Rueher, and Truchet highlighted the use
of abstract interpretation in CP. The talks by Reps, Seshia, Sharma, and Thakur discussed
the application of ML techniques, such as inductive learning, to problems in AI and DP. Both
these sets of talks garnered interesting discussions about the connections among all these
various reseach areas. Furthermore, this discussion indicates that future seminars should
include even more researchers and practitioners from not just the AI and DP communities,
but also the CP and ML communities.
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3 Overview of Talks

3.1 Symbolic Optimization with SMT Solvers
Aws Albarghouthi (University of Toronto, CA)

License Creative Commons BY 3.0 Unported license
© Aws Albarghouthi

Joint work of Li, Yi; Albarghouthi, Aws; Kincaid, Zachary; Gurfinkel, Arie; Chechik, Marsha
Main reference Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, M. Chechik, “Symbolic Optimization with SMT

Solvers,” in Proc. of the 41st ACM SIGPLAN-SIGACT Symp. on Principles of Programming
Languages (POPL’14), pp. 607–618, ACM, 2014.

URL http://dx.doi.org/10.1145/2535838.2535857

The rise in efficiency of Satisfiability Modulo Theories (SMT) solvers has created numerous
uses for them in software verification, program synthesis, functional programming, refinement
types, etc. In all of these applications, SMT solvers are used for generating satisfying
assignments (e. g., a witness for a bug) or proving unsatisfiability/validity(e. g., proving
that a subtyping relation holds). We are often interested in finding not just an arbitrary
satisfying assignment, but one that optimizes (minimizes/maximizes) certain criteria. For
example, we might be interested in detecting program executions that maximize energy usage
(performance bugs), or synthesizing short programs that do not make expensive API calls.
Unfortunately, none of the available SMT solvers offer such optimization capabilities.

In this talk, I describe SYMBA, an efficient SMT-based optimization algorithm for
objective functions in the theory of linear real arithmetic (LRA). Given a formula Phi and
an objective function t, SYMBA finds a satisfying assignment of Phi; that maximizes the
value of t. SYMBA utilizes efficient SMT solvers as black boxes. As a result, it is easy to
implement and it directly benefits from future advances in SMT solvers. Moreover, SYMBA
can optimize a set of objective functions, reusing information between them to speed up the
analysis. We have implemented SYMBA and evaluated it on a large number of optimization
benchmarks drawn from program analysis tasks, namely, symbolic abstraction for a large
family of numerical abstract domains. Our results indicate the power and efficiency of
SYMBA in comparison with competing approaches, and highlight the importance of its
multi-objective-function feature.

3.2 Spatial Interpolants
Joshua Berdine (Microsoft Research UK – Cambridge, GB)

License Creative Commons BY 3.0 Unported license
© Joshua Berdine

Joint work of Albargouthi, Aws; Berdine, Josh; Cook, Byron; Kincaid Zachary

We propose SplInter, a new technique for proving safety properties of heap manipulating
programs that marries (1) a new separation logic–based analysis for heap reasoning with (2)
an interpolation-based technique for refining and strengthening heap shape invariants with
data invariants. SplInter is property-directed, precise, and produces counterexample traces
in case a property does not hold. Using the novel notion of spatial interpolants modulo
theories, SplInter can infer complex invariants over general recursive predicates, e. g., of the
form all data elements in a linked list are even or a binary tree is sorted. Furthermore, we
treat interpolation as a black box, which gives us the freedom to encode data manipulation
in whatever theory is suitable for the program at hand (e. g., bitvectors, arrays, or linear
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arithmetic), so that our technique immediately benefits from any future advances in SMT
solving and interpolation.

3.3 The Transformer Refinement Prover – A Work in (Lack of)
Progress Talk

Martin Brain (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Martin Brain

Over the past few years there have been a number of interesting papers showing that
algorithms used for SAT solving (Stalmarck’s, DPLL, CDCL) can be lifted to work over
abstract domains. This raises the question of whether the architecture of a SAT solver can be
lifted to produce a generic solver which can be parameterised with different abstract domains
to produce a range of concrete decision procedures. The Transformer Refinement Prover
(TRP) is an attempt to build such a tool. This talk discusses some of the issues engineering,
architectural and conceptual that have been encountered during the construction.

3.4 A formal approach to the Analysis of Reliability Architectures
Alessandro Cimatti (Bruno Kessler Foundation – Trento, IT)

License Creative Commons BY 3.0 Unported license
© Alessandro Cimatti

Joint work of Bozzano, Marco; Cimatti, Alessandro; Mattarei, Cristian
Main reference M. Bozzano, A. Cimatti, C. Mattarei, “Efficient Analysis of Reliability Architectures via Predicate

Abstraction,” in Proc. of the 9th Int’l Haifa Verification Conf. (HVC’13), LNCS, Vol. 8244,
pp. 279–294, Springer, 2013.

URL http://dx.doi.org/10.1007/978-3-319-03077-7_19

The development of complex and critical systems calls for a rigorous and thorough evaluation
of reliability aspects. Over the years, several methodologies have been introduced in order to
aid the verification and analysis of such systems. Despite this fact, current technologies are
still limited to specific architectures, without providing a generic evaluation of redundant
system definitions.

In this talk, we present a novel approach able to assess the reliability of an arbitrary
combinatorial redundant system. We rely on an expressive modeling language to represent a
wide class of architectural solutions to be assessed. On such models, we provide a portfolio
of automatic analysis techniques: we can produce a fault tree, that represents the conditions
under which the system fails to produce a correct output; from it, we can extract a function
over the components reliability, which represents the failure probability of the system. At its
core, the approach relies on the logical formalism of equality and uninterpreted functions.
Advanced automated reasoning techniques, in particular Satisfiability Modulo Theories
decision procedures, and Predicate Abstraction, are suitably combined to achieve efficiency.

We carried out an extensive experimental evaluation of the proposed approach on a wide
class of multi-stage redundant systems. We are able to obtain, in a fully automated manner,
all the results that are manually obtained in previous works, and we cover a much wider class
of architectures, demonstrating scalability for a large number of components, thus enabling
the analysis of complex architectures of realistic size.
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3.5 Lifting Satisfiability Procedures to Reachability Analysis
Vijay DSilva (Google – San Francisco, US)

License Creative Commons BY 3.0 Unported license
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Joint work of D’Silva, Vijay; Haller, Leopold; Kroening, Daniel
Main reference V. D’Silva, L. Haller, D. Kroening, “Abstract Conflict Driven Learning,” in Proc. of the 40th

Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL’13),
pp. 143–154, ACM, 2013.

URL http://dx.doi.org/10.1145/2429069.2429087

There have been many attempts at lifting ideas from the satisfiability literature to pro-
gram analysis. The intuition behind the abstract satisfaction approach is that the objects
manipulated by satisfiability solvers satisfy similar axioms to abstract domains used in
program analysis. An immediate consequence of identifying these axioms is that satisfiability
procedures can be lifted to all structures satisfying these axioms. In this work, we show that
the DPLL and Conflict Driven Clause Learning (CDCL) algorithms lift to certain families of
lattices and transformers used for reachability analysis. The resulting reachability analyzers
automatically refine fixed points using the notions of decisions and learning. This approach
has been applied successfully to bound the error of floating point computations in embedded
software.

References
1 Vijay D’Silva, Leopold Haller and Daniel Kroening. Satisfiability Solvers are Abstract In-

terpreters. Static Analysis Symposium, 2012
2 Vijay D’Silva, Leopold Haller and Daniel Kroening. Abstract Conflict Driven Learning.

Principles of Programming Languages, 2013

3.6 Solving Exists/Forall Problems With SMT
Bruno Dutertre (SRI – Menlo Park, US)

License Creative Commons BY 3.0 Unported license
© Bruno Dutertre

Joint work of Dutertre, Bruno; Jovanovic, Dejan

We describe an algorithm for solving problems of the form exists x. for all y. P(x, y) by
relying of two SMT or SAT solvers. One solver searches for candidate x while the other
attempts to refute x by exhibiting a y for which P(x, y) is false. A key component of this
algorithm is generalizing from a counterexample y. We describe generalization methods that
work for different quantification domains, including a method based on model-guided virtual
term substitution.
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3.7 Predicate Abstraction in IC3
Alberto Griggio (Bruno Kessler Foundation – Trento, IT)

License Creative Commons BY 3.0 Unported license
© Alberto Griggio

Joint work of Cimatti, Alessandro; Griggio, Alberto; Mover, Sergio; Tonetta, Stefano
Main reference A. Cimatti, A. Griggio, S. Mover, S. Tonetta, “IC3 Modulo Theories via Implicit Predicate

Abstraction,” in Proc. of the 20th Int’l Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’14), LNCS, Vol. 8413, pp. 46–61, Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-642-54862-8_4

We present a novel approach for generalizing the IC3 algorithm for invariant checking from
finite-state to infinite-state transition systems, expressed over some background theories.
The procedure is based on a tight integration of IC3 with Implicit (predicate) Abstraction,
a technique that expresses abstract transitions without computing explicitly the abstract
system and is incremental with respect to the addition of predicates. In this scenario, IC3
operates only at the Boolean level of the abstract state space, discovering inductive clauses
over the abstraction predicates. Theory reasoning is confined within the underlying SMT
solver, and applied transparently when performing satisfiability checks. When the current
abstraction allows for a spurious counterexample, it is refined by discovering and adding a
sufficient set of new predicates. Importantly, this can be done in a completely incremental
manner, without discarding the clauses found in the previous search.

3.8 Property Directed Polyhedral Abstraction
Arie Gurfinkel (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Arie Gurfinkel

Joint work of Gurfinkel, Arie; Bjørner, Nikolaj

We show how to combine the benefits of Polyhedral Abstract Interpretation (poly-AI) with the
flexibility of Property Directed Reachability (PDR) algorithms for computing safe inductive
convex polyhedral invariants. We develop two algorithms that integrate Poly-AI with PDR
and show their benefits on a prototype in Z3 using a preliminary evaluation. The algorithms
mimic the traditional forward Kleene and a chaotic backward iterations, respectively. Our
main contribution is to show how to replace the expensive convex hull and quantifier
elimination computations, a major bottleneck in poly-AI, with a lazy property-directed
algorithms based on interpolation and model-based projection. Our approach integrates
seamlessly within the framework of PDR adapted to Linear Real Arithmetic, and allows to
dynamically decide between computing convex and non-convex invariants as directed by the
property.
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3.9 The PAGAI static analyzer
Julien Henry (VERIMAG – Gières, FR)

License Creative Commons BY 3.0 Unported license
© Julien Henry

Joint work of Henry, Julien; Monniaux, David; Moy, Matthieu

Pagai is a static analyzer based on combinations of abstract interpretation and SMT, that
computes numerical invariants for LLVM bitcode. Abstract interpretation can be made more
precise by distinguishing every paths inside loops for delaying least upper bounds, at the
expense of an exponential blowup. SMT allows symbolic and sparse representation of sets
of paths, and the fixpoint computation is guided by SMT queries. We present early but
promising experimental results of PAGAI on the SV-Comp benchmarks. In a second part,
we present a new approach to the estimation of Worst-Case execution time, by defining the
problem as an instance of optimization modulo theory. Naive encodings of the problem into
SMT lead to formulas intractable for any production- grade solver based on DPLL(T). We
show that simple static pre-analysis of program fragments provide invariants that dramatically
improve the efficiency of the SMTsolver on these examples.

3.10 Projection using Parametric Objectives
Jacob Howe (City University – London, GB)

License Creative Commons BY 3.0 Unported license
© Jacob Howe

Joint work of Howe, Jacob; King, Andy
Main reference J.M. Howe, A. King, “Polyhedral Analysis using Parametric Objectives,” in Proc. of the 19th Int’l

Symp. on Static Analysis (SAS’12), LNCS, Vol. 7460, pp. 41–57, Springer, 2012.
URL http://dx.doi.org/10.1007/978-3-642-33125-1_6

The abstract domain of polyhedra lies at the heart of many program analysis techniques.
However, its operations can be expensive, precluding their application to polyhedra that
involve many variables. This talk describes a new approach to computing polyhedral domain
operations. The core of this approach is an algorithm to calculate variable elimination
(projection) based on parametric linear programming. The algorithm enumerates only non-
redundant inequalities of the projection space, hence permits anytime approximation of the
output. Some preliminary data from experiments are included.

3.11 Abstract Conflict-Driven Learning
Daniel Kroening (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Daniel Kroening

Joint work of D’Silva, Vijay; Haller, Leopold; Kroening, Daniel
Main reference V. D’Silva, L. Haller, D. Kroening, “Abstract Conflict Driven Learning,” in Proc. of the 40th

Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL’13),
pp. 143–154, ACM, 2013.)

URL http://dx.doi.org/10.1145/2429069.2429087

Modern satisfiability solvers implement an algorithm, called Conflict Driven Clause Learning,
which combines search for a model with analysis of conflicts. We show that this algorithm
can be generalised to solve the lattice-theoretic problem of determining if an additive
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transformer on a Boolean lattice is always bottom. Our generalised procedure combines
overapproximations of greatest fixed points with underapproximations of least fixed points
to obtain more precise results than computing fixed points in isolation. We generalise
implication graphs used in satisfiability solvers to derive underapproximate transformers from
overapproximate ones. Our generalisation provides a new method for static analyzers that
operate over non-distributive lattices to reason about properties that require disjunction.

3.12 A method to infer inductive numeric invariants inspired by
Constraint Programming

Antoine Mine (ENS – Paris, FR)

License Creative Commons BY 3.0 Unported license
© Antoine Mine

Joint work of Mine, Antoine; Truchet, Charlotte; Sankaranarayanan, Sriram

In this talk, we suggest the idea of using algorithms inspired by Constraint Programming in
order to infer inductive invariants on numeric programs. Similarly to Constraint Programming
solvers on continuous domains, our algorithm approximates the problem from above, using
decreasing iterations that may split, discard, and tighten axis-aligned boxes. If successful, the
algorithm outputs a set of boxes that includes the initial states and is a post-fixpoint of the
abstract semantic function of interest. Our work is very preliminary; many improvements still
need to be performed to determine if the method is usable in practice, and in which contexts.
Nevertheless, we show that a naive proof-of-concept implementation of our algorithm is
already capable of inferring non-trivial inductive invariants that would otherwise require the
use of relational or even non-linear abstract domains when using more traditional abstract
interpretation iteration methods.

3.13 Automating Separation Logic with Trees and Data Using SMT
Solvers

Ruzica Piskac (Yale University, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Piskac, Ruzica; Wies, Thomas; Zufferey, Damien
Main reference R. Piskac, T. Wies, D. Zufferey, “Automating Separation Logic with Trees and Data,” in Proc. of

the 26th Int’l Conf. on Computer Aided Verification (CAV’14), LNCS, Vol. 8559, pp. 711–728,
Springer, 2014.

URL http://dx.doi.org/10.1007/978-3-319-08867-9_47

Separation logic (SL) follows a discipline of local reasoning that mimics human intuition about
how to prove the correctness of heap-manipulating programs. Central to this discipline is the
frame rule, a Hoare logic proof rule that decomposes the global heap into a footprint, the
region on which a program fragment operates, and a frame, the region that remains untouched
by the program fragment. Automation of the frame rule involves the actual inference of
the frame from SL assertions expressing the global heap and the footprint. In this talk, I
present Grasshopper, a tool for compositional verification of heap-manipulating programs.
What makes our tool unique is its decidable specification language, which supports mixing of
assertions expressed in separation logic and first-order logic. We achieve this combination of
specification languages through a translation to programs whose specifications are expressed
in a decidable fragment of first-order logic. This logic is well-suited for automation using
SMT solvers.
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3.14 Verification with Recursive Functions
Régis Blanc (EPFL – Lausanne, CH)
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We present the Leon system, a verifier for a subset of the Scala programming language.
Along with several functional features of Scala, Leon supports imperative constructs such
as mutations and loops, using a translation into recursive functional form. Both properties
and programs in Leon are expressed in terms of user-defined functions. We discuss several
techniques that led to an efficient semi-decision procedure for first-order constraints with
recursive functions, which is the core solving engine of Leon. We illustrate the current
capabilities of Leon on an interactive web interface.

3.15 Setting the Scene for “Decision Procedures and Abstract
Interpretation”

Thomas W. Reps (University of Wisconsin – Madison, US)
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Confidence Software and Systems Conf. (HCSS’14); manuscript available from author’s webpage.
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This talk is intended as a “scene-setting” talk about Seminar 14351 for the benefit of the
participants of both Seminars 14351 and 14352. It presents a somewhat personal view of the
opportunity offered by the seminar, and concentrates mainly on two topics. The first is the
use of logic to support abstract interpretation (i. e., for performing alpha on a set of states
described by a formula, for applying the best transformer, for creating a representation of the
best transformer, and for creating the reduced product of two or more values). The second
is the use of abstract interpretation to support decision procedures better (e. g., by reverse-
engineering existing decision procedures to identify uses of abstract domains, which allows
them to be generalized by using more expressive abstract domains; and by using logic-based
abstraction methods directly for unsatisfiability checking and validity checking).

The seminar is intended to expose members of two communities to each other, namely, (i)
designers/implementers of abstract interpreters, and (ii) designers/implementers of decision
procedures. One connection between the two communities is that the tools that are created
by their respective members can be viewed as using symbolic techniques to explore a state
space. However, the repertoires of techniques used in the two disciplines are quite different,
and each has its own mindset and outlook. The ideas and methods presented in the talk
demonstrate new connections between the two disciplines, and suggest that the time is ripe
for cross-fertilization between them to occur.
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3.16 On Suspicious Intervals for Floating-Point Number Programs
Michel Rueher (University of Nice, FR)
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Programs with floating-point computations are often derived from mathematical models or
designed with the semantics of the real numbers in mind. However, for a given input, the
computed path with floating-point numbers may differ from the path corresponding to the
same computation with real numbers. State-of-the-art tools compute an over- approximation
of the error introduced by floating-point operations with respect to the same sequence of
operations in an idealized semantics of real numbers. Thus, totally inappropriate behaviours
of a program may be dreaded but the developer does not know whether these behaviours
will actually occur, or not. That is why it is very important to estimate the accuracy of
floating-point computations with respect to the same sequence of operations in an idealized
semantics of real numbers. To tackle this problem, we will present some capabilities of CP
techniques for: a) Computing tight approximations for value analysis; b) Identify suspicious
values. The crux of the matter is the accuracy of the estimation of floating-point computations
because a rough approximation may generate numerous false alarms. We show that a hybrid
approach for value analysis of floating-point programs that combines abstract interpretation
and CP techniques is more effective than static analyser and CP solvers, when used separately.
Interestingly, the refutation capabilities of CP solvers over floating-point numbers and over
real numbers can significantly improve the precision of the domains computed by abstract
interpretation. When the approximation remains nevertheless too rough, CP techniques can
also help to identify suspicious values, that is values for which the behaviour of the program
over the floating-point numbers is significantly different from the behaviour one could expect
over the real numbers. In other words, for verifying whether a program can actually produce
values inside the part of the approximation over the floats that intersect with a forbidden
interval.

3.17 Inferring Invariants by Strategy Iteration
Peter Schrammel (University of Oxford, GB)
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URL http://dx.doi.org/10.1007/978-3-319-10936-7_16

Template polyhedral analysis abstracts numerical variables inside a program by one polyhed-
ron per control location, with a priori fixed directions for the faces. The strongest inductive
invariant in such an abstract domain may be computed by a combination of strategy iteration
and SMT solving. Unfortunately, the above approaches lead to unacceptable space and
time costs if applied to a program whose control states have been partitioned according to
predicates. We therefore propose a modification of the strategy iteration algorithm where
the strategies are stored succinctly, and the linear programs to be solved at each iteration
step are simplified according to an equivalence relation.
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3.18 Solvers, Abstraction, and Inductive Learning
Sanjit A. Seshia (University of California – Berkeley, US)
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This talk seeks to make connections between three topics: decision procedures (SMT solvers),
abstraction and abstract interpretation, and inductive learning (machine learning). There
are three main messages in the talk. First, we make the point that many verification tasks
are effectively solved through "reduction to synthesis". Examples include the generation
of inductive invariants for proofs by induction, and the generation of abstract models for
abstraction-based verification. Second, the resulting synthesis problems can be tackled
through a combination of induction (learning from examples), deduction, and a structure
hypothesis. An example is the counterexample-guided inductive synthesis (CEGIS) paradigm.
We compare CEGIS with "traditional" machine learning algorithms. Finally, we pose some
fundamental questions about the efficiency and convergence (termination) of CEGIS. Initial
results are presented that draw from results in machine learning theory.

3.19 Data-Driven Invariant Inference
Rahul Sharma (Stanford University, US)
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pp. 88–105, Springer, 2014.
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We discuss two applications that leverage concrete states to improve invariant inference. First,
for many abstract interpretations, concrete states can help reduce the number of fixpoint
iterations required to reach convergence. In the second application, concrete states guide a
search based invariant inference engine. The main advantage of a search based procedure
is the generality and we show how to retarget our procedure to infer invariants for many
different domains.

3.20 Verification using Small and Short Worlds
Rohit Sinha (University of California – Berkeley, US)
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We consider the verification of safety properties in systems with large arrays and data
structures. Such systems are common at the low levels of software stacks; examples are
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hypervisors and CPU emulators. The very large data structures in such systems (e. g., address-
translation tables and other caches) make automated verification based on straightforward
state-space exploration infeasible. We present S2W, a new abstraction-based model-checking
methodology to facilitate automated verification of such systems. As a first step, inductive
invariant checking is performed. If that fails, we compute an abstraction of the original
system by precisely modeling only a subset of state variables while allowing the rest of the
state to evolve arbitrarily at each step. This subset of the state constitutes a "small world"
hypothesis, and is extracted from the property. Finally, we verify the safety property on the
abstract model using bounded model checking. We ensure the verification is sound by first
computing a bound on the reachability diameter of the abstract model. For this computation,
we developed a set of heuristics that we term the "short world" approach.

3.21 More Algorithms for Symbolic Abstraction
Aditya Thakur (University of Wisconsin – Madison, US)
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This talk describes two algorithms for performing symbolic abstraction [1]: Given a formula
ϕ in a logic L and an abstract domain A, the symbolic abstraction of ϕ is the strongest
consequence of ϕ that is expressible in A. Symbolic abstraction has a dual use: it can be used
to compute abstract transformers in abstract interpretation, and to check unsatisfiability of
a formula.

The talk presents the bilateral framework [2] for performing symbolic abstraction that
maintains an over-approximation and under-approximation of the final answer. The algorithm
performs symbolic abstraction by intelligently querying an SMT solver. The framework was
instantiated to synthesize abstract transformers for machine- code analysis.

The next algorithm for symbolic abstraction is applicable to a new fragment of separation
logic (SL) [3]. The algorithm works by performing a bottom-up evaluation of the formula
using an abstract domain of shape graphs. This algorithm can be used to check unsatisfiability
of an SL formula.

References
1 Reps, T., Sagiv, M., Yorsh, G. (2004). Symbolic implementation of the best transformer. In

Verification, Model Checking, and Abstract Interpretation (pp. 252-266). Springer Berlin
Heidelberg.

2 Thakur, A., Elder, M., Reps, T. (2012). Bilateral algorithms for symbolic abstraction. In
Static Analysis (pp. 111-128). Springer Berlin Heidelberg.

3 Thakur, A., Breck, J., Reps, T. (2014). Satisfiability modulo abstraction for separation logic
with linked lists . In Symposium on Model Checking of Software (SPIN) (pp. 58–67). ACM.
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3.22 Abstract Domains for Constraint Programming
Charlotte Truchet (University of Nantes, FR)
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Constraint Programming (CP) in a domain of Artificial Intelligence that offers a variety
of tools to model and solve hard combinatorial problems. Abstract Interpretation (AI) is
a domain of Semantics that studies approximations of program traces in order to prove
correctness properties. Although they are distinct scientific areas, these two domains have
a lot in common. In both cases, we are interested in some set that is hard to compute or
intractable: solution set in CP, concrete domain in AI. In both cases, instead of computing
this set, we study some over-approximations of it: abstract domains in AI, consistent domains
in CP. But the methods differ when the over-approximations are not good enough. CP has
developed sophisticated algorithmic mechanisms to exactly solve the problem if the variables
are discrete, or reach a given precision if they are continuous. In AI, the abstract domains
themselves are refined, either by adding operators, or by increasing their expressivity. In the
end, CP provides with solving methods that are very efficient on many NP problems, but
are rather monolithic. For instance, they are unable to solve mixed problems with integer
and real variables. AI analyzes huge programs using a lot of expressive abstract domains,
but does not feature a notion of precision.

In this talk, we showed how to introduce the notion of abstract domain in CP using the
example of the Octagons, which offer a good trade between efficiency and expressivity. Then
we presented Absolute, a prototype constraint solver without constraints: it is built upon a
library of abstract domains called Apron, by Miné and Jeannet. It, thus, naturally copes
with mixed problems.

3.23 Ideal Abstractions
Thomas Wies (New York University, US)
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Many concurrent infinite state systems can be seen as well-structured transition systems
(WSTS). Examples include concurrent programs with shared-memory and dynamic thread
creation, as well as distributed message passing systems in the actors framework. WSTS
are an attractive class of systems for formal analysis because they admit generic decision
procedures for important verification problems such as coverability. Unfortunately, these
decision procedures often have very high complexity or provide termination guarantees only
in special cases that are not of practical relevance. To obtain a practical analysis with
more general termination guarantees, we propose an abstract interpretation that is inspired
by decision procedures for the covering problem of WSTS. The abstract domain of our
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analysis builds on the ideal completion of the well-quasi-ordered state space to obtain an
efficient symbolic representation of infinite sets of states. A widening operator that mimics
acceleration-based forward algorithms for computing covering sets ensures termination while
controlling the loss of precision of the analysis. I will resent an instance of our analysis
framework for the class of depth-bounded WSTS and its application to verifying progress
properties of concurrent data structure implementations.

3.24 Parametric Program Analysis
Hongseok Yang (University of Oxford, GB)
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Recent years have seen the development of successful commercial programming tools based
on static analysis technologies, which automatically verify intended properties of programs or
find tricky bugs that are difficult to detect by testing techniques. One of the key reasons for
this success is that these tools use clever strategies for abstracting programs—most details
about a given program are abstracted away by these strategies, unless they are predicted to
be crucial for proving a given property about the program or detecting a type of program
errors of interest. Developing such a strategy is, however, nontrivial, and is currently done
by a large amount of manual engineering efforts in most tool projects. Finding a good
abstraction strategy automatically or even reducing these manual efforts involved in the
development of such a strategy is considered one of the main open challenges in the area of
program analysis.

In this talk, I will explain how I tried to address this challenge with colleagues in the past
few years. During this time, we worked on parametric program analyses, where parameters
for controlling the degree of program abstraction are expressed explicitly in the specification
of the analyses. For those analyses, we developed algorithms for searching for a desired
parameter value with respect to a given program and a given property, which use ideas from
the neighbouring areas of program analysis such as testing, searching and optimisation. In
my talk, I will describe the main ideas behind these algorithms without going into technical
details. I will focus on intuitions about why and when these algorithms work. I will also talk
briefly about a few lessons that I learnt while working on this problem.

3.25 A Simple and Scalable Static Analysis for Bound Analysis and
Amortized Complexity Analysis

Florian Zuleger (TU Wien, AT)
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We present the first scalable bound analysis that achieves amortized complexity analysis.
In contrast to earlier work, our bound analysis is not based on general purpose reasoners
such as abstract interpreters, software model checkers or computer algebra tools. Rather, we
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derive bounds directly from abstract program models, which we obtain from programs by
comparatively simple invariant generation and symbolic execution techniques. As a result,
we obtain an analysis that is more predictable and more scalable than earlier approaches.
We demonstrate by a thorough experimental evaluation that our analysis is fast and at the
same time able to compute bounds for challenging loops in a large real-world benchmark.

Technically, our approach is based on lossy vector addition systems (VASS). Our bound
analysis first computes a lexicographic ranking function that proves the termination of a
VASS, and then derives a bound from this ranking function. Our methodology achieves
amortized analysis based on a new insight how lexicographic ranking functions can be used
for bound analysis.
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