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Abstract
John Bell has shown that the correlations entailed by quantum mechanics cannot be reproduced
by a classical process involving non-communicating parties. But can they be simulated with the
help of bounded communication? This problem has been studied for more than twenty years
and it is now well understood in the case of bipartite entanglement. However, the issue was
still widely open for multipartite entanglement, even for the simplest case, which is the tripartite
Greenberger–Horne–Zeilinger (GHZ) state. We give an exact simulation of arbitrary independent
von Neumann measurements on general n-partite GHZ states. Our protocol requires O(n2) bits
of expected communication between the parties, and O(n logn) expected time is sufficient to
carry it out in parallel. Furthermore, we need only an expectation of O(n) independent unbiased
random bits, with no need for the generation of continuous real random variables nor prior
shared random variables. In the case of equatorial measurements, we improve earlier results with
a protocol that needs only O(n logn) bits of communication and O(log2n) parallel time. At the
cost of a slight increase in the number of bits communicated, these tasks can be accomplished
with a constant expected number of rounds.
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1 Introduction

The issue of non-locality in quantum physics was raised in 1935 by Einstein, Podolsky and
Rosen when they introduced the notion of entanglement [10]. Thirty years later, Bell proved
that the correlations entailed by entanglement cannot be reproduced by classical local hidden
variable theories between noncommunicating parties [2]. This momentous discovery led to
the natural question of quantifying quantum non-locality.

A natural quantitative approach to the non-locality inherent in a given entangled quantum
state is to study the amount of resources that would be required in a purely classical theory to
reproduce exactly the probabilities corresponding to measuring this state. More formally, we
consider the problem of sampling the joint discrete probability distribution of the outcomes
obtained by people sharing this quantum state, on which each party applies locally some
measurement on his share. Each party is given a description of his own measurement but
not informed of the measurements assigned to the other parties. This task would be easy
(for a theoretician!) if the parties were indeed given their share of the quantum state, but
they are not. Instead, they must simulate the outcome of these measurements without any
quantum resources, using as little classical communication as possible.
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8 Exact Classical Simulation of the GHZ Distribution

This conundrum was introduced by Maudlin in 1992 in the simplest case of linear polar-
ization measurements at arbitrary angles on the two photons that form a Bell state [17].
Similar concepts were reinvented independently years later by other researchers [5, 20].
This led to a series of results, culminating with the protocol of Toner and Bacon to simulate
arbitrary von Neumann measurements on a Bell state with a single bit of communication
in the worst case [21]. Later, Regev and Toner extended this result by giving a simulation
of the correlations entailed by arbitrary binary von Neumann measurements on arbitrary
bipartite states of any dimension using two bits of communication, also in the worst case [19].
Inspired by Ref. [20], Cerf, Gisin and Massar showed that the effect of an arbitrary pair
of positive-operator-valued measurements (POVMs) on a Bell state can also be simulated
with a bounded amount of expected communication [8]. A more detailed early history of the
simulation of quantum entanglement can be found in Ref. [4, Sect. 6].

All this prior work is concerned strictly with the simulation of bipartite entanglement.
Much less is known when it comes to simulating multipartite entanglement with classical
communication, a topic that is still teeming with major open problems. Consider the simplest
case, which is the simulation of independent arbitrary von Neumann measurements on
the tripartite GHZ state, named after Greenberger, Horne and Zeilinger [14], which we
shall denote |Ψ3〉 = 1√

2 |000〉+ 1√
2 |111〉, or more generally on its n-partite generalization

|Ψn〉 = 1√
2 |0

n〉+ 1√
2 |1

n〉.
The easiest situation arises in the special case of equatorial measurements (defined in

Section 2) on the GHZ state because all the marginal probability distributions obtained by
tracing out one or more of the parties are uniform. Hence, it suffices in this case to simulate
the n-partite correlation. Once this has been achieved, all the marginals can easily be made
uniform [11]. Making the best of this observation, Bancal, Branciard and Gisin have given a
protocol to simulate equatorial measurements on the tripartite and fourpartite GHZ states
at an expected cost of 10 and 20 bits of communication, respectively [1]. Later on, Branciard
and Gisin improved this in the tripartite case with a protocol using 3 bits of communication
in the worst case [3]. The simulation of equatorial measurements on |Ψn〉 for n ≥ 5 was
handled subsequently by Brassard and Kaplan in a paper published in the 2012 edition of
this Conference on Theory of Quantum Computation, Communication and Cryptography,
with an expected cost of O(n2) bits of communication [6]. This was the best result obtained
until now on this line of work.

Despite substantial effort, the case of arbitrary von Neumann measurements, even on
the original tripartite GHZ state |Ψ3〉, was still wide open. Here, we solve this problem
in the general case of the simulation of the n-partite GHZ state |Ψn〉, for any n, under
the random bit model introduced in 1976 by Knuth and Yao [16], in which the only source
of randomness comes from the availability of independently distributed unbiased random
bits. Furthermore, we have no needs for prior shared random variables between the parties.
An expected number of 6n + 17 perfect random bits suffices to carry out our simulation.
The expected communication cost is O(n2) bits, but only O(n logn) time if we count one
step for sending bits in parallel according to a realistic scenario in which no party has to
send or receive more than one bit in any given step. Furthermore, in the case of equatorial
measurements, we improve the earlier best result [6] with an expected communication cost
of only O(n logn) bits and O(log2n) parallel time. At the cost of a slight increase in the
number of bits communicated and the number of required random bits, these tasks can be
accomplished with a constant expected number of rounds.

More formally, the quantum task that we want to simulate is as follows. Each party i holds
one qubit from state |Ψn〉 = 1√

2 |0
n〉+ 1√

2 |1
n〉 and is given the description of a von Neumann
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measurement Mi. By local operations, they collectively perform ⊗ni=1Mi on |Ψn〉, thus
obtaining one outcome each, say bi ∈ {−1,+1}, which is their output. The joint probability
distribution p(b) of the bi’s is defined by the joint set of measurements (see Section 2).
Our purpose is to sample exactly this joint probability distribution by a purely classical
process that involves no prior shared random variables and as little communication as possible.
Our complete solution builds on four ingredients: (1) Gravel’s decomposition of p(b) as a
convex combination of two sub-distributions [12, 13]; (2) Knuth and Yao’s algorithm to sample
exactly probability distributions assuming only a source of unbiased identically independently
distributed (i.i.d.) bits [16]; (3) the universal method of inversion [9, for instance]; and (4) our
own distributed version of the classic von Neumann’s rejection algorithm [18].

We define precisely our problem in Section 2 and we formulate our convex decomposition
of the GHZ distribution, which is the key to its simulation. Then, we explain how to sample
according to a Bernoulli distribution even when only approximations to the distribution’s
parameter are available. We also explain how the classic von Neumann rejection algorithm
can be used to sample in the sub-distributions defined by our convex decomposition. However,
little attention is paid in Section 2 to the fact that the various parameters that define the joint
distribution are not available in a single place. Section 3 is concerned with the communication
complexity issues. It culminates with a complete protocol to solve our problem, as well as
its complete analysis. This is followed by variations on the theme, in which we consider a
parallel model of communication, an expected bounded-round solution, and improvements on
the prior art for the simulation of equatorial measurements. We conclude with a discussion
and open problems in Section 4.

2 Sampling exactly the GHZ distribution in the random bit model

Any von Neumann measurement on a single qubit can be conveniently represented by a
point on the surface of a three-dimensional sphere, known as the Bloch sphere, whose
spherical coordinates can be specified by an azimuthal angle θ ∈ [0, 2π) and an elevation
angle ϕ ∈ [−π/2, π/2]. These parameters defines a Hermitian idempotent operator

M = xσ1 + y σ2 + z σ3 =
(

sinϕ e−ıθ cosϕ
eıθ cosϕ − sinϕ

)
,

where x = cos θ cosϕ, y = sin θ cosϕj , z = sinϕ, and σ1, σ2 and σ3 are the Pauli operators.
In turn, this operator defines a measurement in the usual way, which we shall also call M
for convenience, whose outcome is one of its eigenvalues +1 or −1. The azimuthal angle θ
represents the equatorial part of the measurement and the elevation angle ϕ represents its
real part. A von Neumann measurement is said to be equatorial when its elevation angle
ϕ = 0 vanishes and it is said to be in the computational basis when ϕ = ±π/2.

Consider a set of n von Neumann single-qubit measurements Mj , represented by their pa-
rameters (θj , ϕj), 1 ≤ j ≤ n. This set of operators defines a joint measurementM = ⊗nj=1Mj .
In turn, this measurement defines a probability distribution p, which we shall call the GHZ
distribution, on the set {−1,+1}n. This distribution corresponds to the probability of
all possible outcomes when the n-partite GHZ state |Ψn〉 = 1√

2 |0
n〉+ 1√

2 |1
n〉 is measured

according to M .
It is shown in [12, 13], albeit in the usual computer science language in which von Neumann

measurements are presented as a unitary transformation followed by a measurement in the
computational basis, that the probability p(b) of obtaining b = (b1, . . . , bn) in {−1,+1}n can
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10 Exact Classical Simulation of the GHZ Distribution

be decomposed as

p(b) = cos2( θ
2
)
p1(b) + sin2( θ

2
)
p2(b) , where θ =

∑n
j=1 θj and (1)

p1(b) = 1
2
(
a1(b) + a2(b)

)2
, p2(b) = 1

2
(
a1(b)− a2(b)

)2
, (2)

a1(b) =
n∏
j=1

cos
( 1

2
(
ϕj − π

2 bj
))
, a2(b) =

n∏
j=1
− sin

( 1
2
(
ϕj − π

2 bj
))
. (3)

Hence, we see that distribution p(b) is a convex combination of sub-distributions p1(b)
and p2(b), in which the coefficients cos2(θ/2) and sin2(θ/2) depend only on the equatorial
part of the measurements, whereas the sub-distributions depend only on their real part.
Furthermore, the squares of a1 and a2 are themselves discrete probability distributions.

Sampling p is therefore a matter of sampling a Bernoulli distribution with defining
parameter cos2(θ/2) before sampling either p1 or p2, whichever is the case. Notice that
sampling p2 reduces to sampling p1 if, say, we replace ϕ1 by ϕ1 + 2π. As we shall see, full
knowledge of the parameters is not required to sample p exactly. We shall see in subsection 2.1
how to sample a Bernoulli distribution with an arbitrary p ∈ [0, 1] as parameter (not the
same p as our probability distribution for GHZ) using a sequence of approximants converging
to p and using an expected number of only five unbiased identically independently distributed
(i.i.d.) random bits. Subsequently, we shall see in subsection 2.2 how to sample p1 by modifying
von Neumann’s rejection algorithm in a way that it uses sequences of approximants and
unbiased i.i.d. random bits. For simulating exactly the GHZ distribution, an expected number
of 6n+ 17 perfect random bits is sufficient.

2.1 Sampling a Bernoulli distribution
Assume that only a random bit generator is available to sample a given probability distribution
and that the parameters that specify this distribution are only accessible as follows: we can
ask for any number of bits of each parameter, but will be charged one unit of cost per bit
that is revealed. We shall also be charged for each random bit requested from the generator

To warm up to this conundrum, consider the problem of generating a Bernoulli random
variable Y with parameter p ∈ [0, 1]. If U = 0.U1U2 . . . is the binary expansion of a uniform
[0, 1) random variable, i.e. U1, U2, . . . is our source of unbiased independent random bits,
and if p = 0.p1p2 . . . is the binary expansion of p (in case p = 1 we can proceed as if it were
0.p1p2 . . . with each pi = 1), we compare bits Ui and pi for i = 1, 2, . . . until for the first time
Ui 6= pi. Then, if Ui = 0 < pi = 1, we return Y = 1, and if Ui = 1 > pi = 0, we return Y = 0.
It is clear that Y = 1 if and only if U < p. Therefore, Y is Bernoulli(p). The expected
number of bits required from p is precisely 2. The expected number of bits needed from our
random bit source is also 2.

Now, suppose that the parameter p defining our Bernoulli distribution is given by
p = cos2(θ/2), as in the case of our decomposition of the GHZ distribution. None of the
parties can know θ precisely since it is distributed as a sum of θi’s, each of which is known only
by one individual party. If we could obtain as many physical bits of p as needed (although
the expected number of required bits is as little as 2), we could use the idea given above in
order to sample according to this Bernoulli distribution. However, it is not possible in general
to know even the first bit of p given any fixed number of bits of the θi’s. (For instance, if θ
is arbitrarily close to π/2, we need arbitrarily many bits of precision about it before we can
tell if the first bit in the binary expansion of cos2(θ/2) is 0 or 1). Nevertheless, we can use



G. Brassard, L. Devroye, and C. Gravel 11

approximations of p, rather than truncations, which in turn can come from approximations
of the θi’s.

I Definition 1. A k-bit approximation of a quantity v is any v̂ such that |v − v̂| ≤ 2−k.
A special case of k-bit approximation is the k-bit truncation v̂ = bv2kc/2k. For convenience,
we sometimes use the shorthands k-approximation and k-truncation. Note that the value of
k corresponds to the number of bits in the fractional part, without limitation on the size of
the integer part.

We postpone to Section 3.1 the detail of how these approximations can be obtained in
a distributed setting. For the moment, assume that, for any k, we can obtain p(k) so that
|p(k)−p| ≤ 1/2k. Then, setting U(k) = 0.U1 . . . Uk, we have that U ≤ p if U(k) ≤ p(k)− 2/2k
whereas U ≥ p if U(k) ≥ p(k) + 1/2k. Thus, one can check if U < p by generating only
as many bits of U and increasingly good approximations of p as needed. These ideas are
formalized in Algorithm 1. It is elementary to verify that the Y generated by this algorithm
is Bernoulli(p) because P{U < p} = p if U is a continuous uniform random variable on (0, 1).

Algorithm 1 Sampling a Bernoulli random variable with approximate defining parameter
1: Set k ← 1
2: Set U(0)← 0
3: repeat forever
4: Generate an i.i.d. unbiased bit Uk
5: Compute U(k)← U(k − 1) + Uk/2k {hence U(k) = 0.U1 . . . Uk}
6: Obtain p(k) so that |p(k)− p| ≤ 1/2k
7: if U(k) ≤ p(k)− 2/2k then
8: return Y = 1
9: else if U(k) ≥ p(k) + 1/2k then

10: return Y = 0
11: else
12: k ← k + 1
13: end if
14: end repeat

The number of iterations before Algorithm 1 returns a value, which is also its required
number of independent unbiased random bits, is a random variable, say K. We have seen
above that E{K}, the expected value of K, would be exactly 2 if we could generate arbitrarily
precise truncations of p. But since we can only obtain arbitrarily precise approximations
instead, which is why we needed Algorithm 1 in the first place, we shall have to pay the price
of a small increase in E{K}.

P{K > k} ≤ P
{
|U(k)− p(k)| ≤ 2

2k

}
≤ P

{
|U − p| ≤ 4

2k

}
≤ 8

2k .

Therefore,

E{K} =
∞∑
k=0

P{K > k} ≤
∞∑
k=0

min
(

1, 8
2k

)
= 5.

2.2 Sampling p1 (or p2) in the random bit model
As mentioned already, it suffices to concentrate on p1 since one can sample p2 in exactly the
same way provided one of the angles ϕi is replaced by ϕi + 2π: this introduces the required

TQC’14



12 Exact Classical Simulation of the GHZ Distribution

minus sign in front of a2 to transform p1 into p2. Let us define

αj = cos
( 1

2
(
ϕj−π

2
))

= sin
( 1

2
(
ϕj+π

2
))

and βj = cos
( 1

2
(
ϕj+π

2
))

= − sin
( 1

2
(
ϕj−π

2
))
. (4)

Consider n Rademacher 1 random variables Bj that take value −1 with probability β2
j and

+1 with complementary probability α2
j . The random vector with independent components

given by (B1, . . . , Bn) is distributed according to

q1(b) def=
∏
j∈Fb

β2
j

∏
j∈Gb

α2
j ,

where Fb = {j | bj = −1} and Gb = {j | bj = +1} for all b = (b1, . . . , bn) ∈ {−1,+1}n. It is
easy to verify that q1(b) = a2

1(b) for all b, where a1 is given in Equation (3). Similarly,
the random vector with independent components given by (−B1, . . . ,−Bn) is distributed
according to

q2(b) def=
∏
j∈Fb

α2
j

∏
j∈Gb

β2
j = a2

2(b) .

The key observation is that both q1 and q2 can be sampled without any needs for com-
munication because each party j knows his own parameters α2

j and β2
j , which is sufficient

to draw independently according to local Rademacher random variable Bj or −Bj . More-
over, a single unbiased independent random bit s drawn by a designated party suffices
to sample collectively from distribution q = q1+q2

2 , provided this bit is transmitted to all
parties: everybody samples according to q1 if s = 0 or to q2 if s = 1. Now, It follows from
Equation (2) that p1(b) + p2(b) = a2

1(b) + a2
2(b) = q1(b) + q2(b) for all b ∈ {−1,+1}n, and

therefore p1(b) ≤ q1(b) + q2(b) = 2q(b).
The relevance of all these observations is that we can apply von Neumann’s rejection

algorithm [18] to sample p1(b) since it is bounded by a small constant (2) times an easy-to-
draw probability distribution (q). For the moment, we assume once again the availability of
a continuous uniform random generator, which we shall later replace by a source of unbiased
independent random bits. We also assume for the moment that we can compute the αi’s,
p1(b), q1(b) and q2(b) exactly. This gives rise to Algorithm 2.

Algorithm 2 Sampling p1 using von Neumann’s rejection algorithm
1: repeat
2: Generate U uniformly on [0, 1)
3: Generate independent Rademacher random variables B1, . . . , Bn

with parameters α2
1, . . . , α

2
n

4: Generate an unbiased independent random bit S
5: if S = 1 then
6: set B ← (B1, . . . , Bn)
7: else
8: set B ← (−B1, . . . ,−Bn)
9: end if

10: until (q1(B) + q2(B))U ≤ p1(B)

By the general principle of von Neumann’s rejection algorithm, probability distribution
p1 is successfully sampled after an expected number of 2 iterations round the loop because

1 A Rademacher random variable is like a Bernoulli, except that it takes value ±1 rather than 0 or 1.
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p1(b) ≤ 2q(b) for all b ∈ {−1,+1}n. Within one iteration, 2 expected independent unbiased
random bits suffice to generate each of the n Rademacher random variables by a process
similar to what is explained in the second paragraph of Section 2.1. Hence an expected total
of 2n+ 1 random bits are needed each time round the loop for an expected grand total of
4n+ 2 bits to sample p1. But of course, this does not take account of the (apparent) need
to generate continuous uniform [0, 1) random variable U . It follows that the expected total
amount of work required by Algorithm 2 is O(n), provided we count infinite real arithmetic
at unit cost. Furthermore, the time taken by this algorithm, divided by n, is stochastically
smaller than a geometric random variable with constant mean, so its tail is exponentially
decreasing.

Now, we modify and adapt this algorithm to eliminate the need for the continuous
uniform U (and hence its generation), which is not allowed in the random bit model.
Furthermore, we eliminate the need for infinite real arithmetic and for the exact values of
q1(B), q2(B) and p1(B), which would be impossible to obtain in our distributed setting since
the parameters needed to compute these values are scattered among all parties, and replace
them with approximations—we postpone to Section 3.2 the issue of how these approximations
can be computed. (On the other hand, arbitrarily precise values of the αi’s are available
to generate independent Rademacher random variables with these parameters because each
party will be individually responsible to generate his own Rademacher.)

In each iteration of Algorithm 2, we generated a pair (U,B). However, we did not really
need U : we merely needed to generate a Bernoulli random variable Y for which

P{Y = 1} = P {(q1(B) + q2(B))U ≤ p1(B)} .

For this, we adapt the method developed for Algorithm 1. Again, we denote by U(k) the k-bit
truncation of U , so that U(k) < U < U(k) + 2−k, except with probability 0. Furthermore, we
use Lk (L for left) and Rk (R for right) to denote k-bit approximations of q1(B) + q2(B) and
p1(B), respectively, so that |Lk −

(
q1(B) + q2(B)

)
| ≤ 2−k and |Rk − p1(B)| ≤ 2−k. Then

using εk to denote arbitrary real numbers in the interval (−1, 1),

|U(k)Lk − U(q1(B) + q2(B))| =
∣∣∣U(k)Lk − U

(
Lk + εk

2k
)∣∣∣

=
∣∣∣(U(k)− U)Lk −

Uεk
2k
∣∣∣ ≤ Lk

2k + 1
2k ≤

3
2k .

Similarly, |Rk − p1(B)| ≤ 1
2k .

Thus, we know that Y = 1 whenever U(k)Lk + 3/2k < Rk − 1/2k, whereas Y = 0
whenever U(k)Lk − 3/2k > Rk + 1/2k. Otherwise, we are in the uncertainty zone and we
need more bits of U , q1(B) + q2(B) and p1(B) before we can decide on the value of Y. This
is formalized in Algorithm 3 (on next page).

It follows from the above discussion that this algorithm can be used to sample random
variable Y, which is used as terminating condition in Algorithm 2, in order to eliminate
the need for the generation of a continuous uniform random variable U ∈ [0, 1) and for the
precise values of q1(B), q2(B) and p1(B). Since Lk → q1(B) + q2(B) and Rk → p1(B) as
k →∞, Algorithm 3 halts with probability 1. Let K be a random variable corresponding
to the value of k upon exiting from the repeat forever loop in the algorithm, which is
the number of times round the loop and hence the number of bits needed from U and the
precision in q1(B) + q2(B) and p1(B) required in order to sample correctly Bernoulli random
variable Y. Next, we calculate an upper-bound on E{K}, the expected value of K.

TQC’14



14 Exact Classical Simulation of the GHZ Distribution

Algorithm 3 Generator for the stopping condition in Algorithm 2
1: Note: B ∈ {−1,+1}n is given to the algorithm, generated according to q1+q2

2
2: Set k ← 1
3: Set U(0)← 0
4: repeat forever
5: Generate an i.i.d. unbiased bit Uk
6: Compute U(k)← U(k − 1) + Uk/2k {hence U(k) = 0.U1 . . . Uk}
7: Compute Lk and Rk from B

8: if U(k)Lk −Rk < − 4
2k then

9: return Y = 1
10: else if U(k)Lk −Rk > 4

2k then
11: return Y = 0
12: else
13: k ← k + 1
14: end if
15: end repeat

If the algorithm has not yet halted after having processed U(k), Lk and Rk, then we
know that

|U(q1(B) + q2(B))− p1(B)|

=
∣∣(U(q1(B) + q2(B))− U(k)Lk

)
+
(
Rk − p1(B)

)
+
(
−Rk + U(k)Lk

)∣∣
≤ |U(q1(B) + q2(B))− U(k)Lk|+ |Rk − p1(B)|+ |Rk − U(k)Lk|

≤ 3
2k + 1

2k + 4
2k = 8

2k .

Therefore

P{K > k | B} ≤ P{|U(q1(B) + q2(B))− p1(B)| ≤ 8/2k | B}

= P
{
U ∈

(
p1(B)
2q(B) −

1
2

8
2k

1
q(B) ,

p1(B)
2q(B) + 1

2
8
2k

1
q(B)

)}
≤ 8

2k
1

q(B) .

Thus, using k0 to denote
⌈

3 + log2

(
1

q(B)

)⌉
,

E{K | B} =
∞∑
k=0

P{K > k | B}

≤
∞∑
k=0

min
(

1, 8
2kq(B)

)
≤

∑
k<k0

1 +
∑
k≥k0

8
2kq(B)

≤ 5 + log2

(
1

q(B)

)
(this step requires a messy calculation).
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Now, we uncondition in order to conclude:

E{K} ≤ 5 +
∑

b∈{−1,+1}n

q(b) log2

(
1
q(b)

)
= H(q) + 5 (5)
≤ n+ 5 , (6)

where H(q) denote the entropy of distribution q = q1+q2
2 .

3 Communication complexity of sampling

In this section, we consider the case in which the sampler of the previous section no longer
has full knowledge of the GHZ distribution to be simulated. The sampler, whom we call the
leader in a distributed setting, has to communicate through classical channels in order to
obtain partial knowledge of the parameters belonging to the other parties. Partial knowledge
results in approximation of the parameters involved in sampling the GHZ distribution, but,
as we saw in the previous section, we know how to sample exactly in the random bit model
using such approximations.

3.1 Sampling a Bernoulli distribution whose parameter is distributed
In order to sample the GHZ distribution, we know from Section 2 that we must first sample
the Bernoulli distribution with parameter cos2(θ/2), where θ =

∑n
j=1 θj . Let us say that

the leader is party number 1. Since he knows only θ1, he must communicate with the other
parties to obtain partial knowledge about θi for i ≥ 2. The problem of sampling a Bernoulli
distribution with probability cos2(θ/2) reduces to learning the sum θ with sufficient precision
in order to use Algorithm 1.

The problem of computing a k-bit approximation of cos2(θ/2) = cos2(∑n
i=1 θi/2

)
is

relatively easy. Define ϑ = θ/2 and ϑi = θi/2 for each i. If the leader obtains an `-bit
approximation ϑ̂i of each ϑi, i ≥ 2, and if we define ϑ̂ =

∑n
i=1 ϑ̂i, we need to find the value

of ` for which cos2(ϑ̂) is a k-bit approximation of cos2(ϑ). It is an elementary exercise in
Taylor series expansion to verify that |cos2(ϑ)− cos2(ϑ̂)| ≤ n/2`. Hence, it suffices to choose
` = k + d log2 ne in order to conclude as required that |cos2(ϑ)− cos2(ϑ̂)| ≤ 2−k. Taking into
account the integer part of each ϑi, which must also be communicated, and remembering that
0 ≤ ϑi ≤ 2π since it is an angle 2, the required number of communicated bits in the sequential
model is therefore (n− 1)(`+ 3) = (n− 1)

(
3 + k + d log2 ne

)
, which is O(kn+n logn). In our

case, the expected value of k is bounded by 5 (see the analysis of the Bernoulli sampling
Section 2.1), so that this operation requires an expected communication of O(n logn) bits.

3.2 Approximating a product of bounded numbers
Once the leader has produced a bit Z with probability cos2(θ/2), he samples either p1
or p2, depending on whether he got Z = 0 or Z = 1. The problem of sampling p2 reduces
to sampling p1 if the leader replaces his own ϕ1 with ϕ1 + 2π; thus we concentrate on
sampling p1. Of course, the leader does not know ϕi for i ≥ 2. This problem reduces

2 Actually, 0 ≤ ϑi ≤ π since ϑi is a half angle and one fewer bit is needed to communicate its integer
part, but we prefer to consider here the more general case of approximating the cosine square of a sum
of arbitrary angles.
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16 Exact Classical Simulation of the GHZ Distribution

to learning with sufficient precision the products a1(B) =
∏n
j=1 cos

( 1
2
(
ϕj − π

2Bj
))

and
a2(B) =

∏n
j=1− sin

( 1
2
(
ϕj − π

2Bj
))
, given that the Bj ’s are independent Rademacher distri-

butions with parameters α2
j , 1 ≤ i ≤ n defined in Equation (4). Once these products are

known with k + 2 bits of precision, the left and right k-bit approximations Lk and Rk are
easily computed, which allows us to run the modified von Neumann’s rejection algorithm
from Section 2.2.

In this section, we explain how to compute a k-bit approximation to a1(B) and a2(B)
at an expected communication cost of O(kn+ n logn) bits. For our specific application of
simulating the GHZ distribution, we proved at the end of Section 2.2 (Equation 6) that
the expected value of k is bounded by n+ 5. It follows that an expected cost of O(n2) bits
suffices to carry out the simulation.

Given B = (B1, . . . , Bn) with the Bi’s distributed according to non-identical independent
Rademachers with parameter cos2( 1

2
(
ϕi − π

2
))

or cos2( 1
2
(
ϕi + π

2
))
, we need to compute k-bit

approximations of a1(B) and a2(B). We use cj and sj to denote cos
( 1

2
(
ϕj − π

2Bj
))

and
− sin

( 1
2
(
ϕj − π

2Bj
))
, respectively, as well as ĉj and ŝj to denote their respective `-truncations.

We need to determine ` such that the products
∏n
j=1 ĉj and

∏n
j=1 ŝj are k-approximations

of a1(B) and a2(B), respectively. Notice that each party knows exactly his own cj and sj,
and hence ĉj and ŝj can be transmitted directly to the leader, rather than approximations of
the ϕi’s. For each cj , there exists εj ∈ [−1, 1] such that cj = ĉj + εj

2` ; thus, using I to denote
{1, 2, . . . , n}, we have

n∏
j=1

cj =
∑

A∈P(I)

∏
j∈A

ĉj
∏
j 6∈A

εj
2` =

n∏
j=1

ĉj +
∑

A∈P(I)\I

∏
j∈A

ĉj
∏
j 6∈A

εj
2`

and hence we can bound the error as follows:∣∣∣∣ n∏
j=1

cj −
n∏
j=1

ĉj

∣∣∣∣ ≤ n∑
j=1

((
n

j

)
1

2j`

)
− 1 =

(
1 + 1

2`

)n
− 1 .

Setting ` =
⌈
− log2

((
1 + 2−k

)1/n − 1
)⌉
≤ k + d log2 ne+ 2, we have

∣∣∣∣ n∏
j=1

cj −
n∏
j=1

ĉj

∣∣∣∣ ≤ 1
2k .

Taking account of the need to transmit the `-truncations to both cj and sj , which consists
of the sign of these numbers in addition to the first ` bits of their binary expansion, the
expected communication cost is 2(n− 1)(`+ 1) bits, which indeed is O(kn+ n logn).

3.3 Protocol for sampling the GHZ distribution
We are finally ready to glue all the pieces together into Algorithm 4 (on next page),

which samples exactly the GHZ distribution under arbitrary von Neumann measurements,
thus solving our conundrum. Its correctness is proven below, and it is shown that the
expected amount of randomness used in this process is upper-bounded by 6n+ 17 bits and an
expected O(n2) bits of communication suffice to complete the task. Variations are discussed
subsequently.

Correctness of the protocol: The part occurring before the first “repeat” (line 5) samples
a Bernoulli with parameter cos2(∑n

i=1 θi/2
)
, which allows the leader to decide whether to
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Algorithm 4 Complete protocol for sampling the GHZ distribution in the sequential model
1: The leader, who is party number 1, communicates with the other parties in order to

obtain increasingly precise approximations of θ =
∑n
i=1 θi until he can sample random

bit Z according to exact Bernoulli random distribution with parameter cos2(θ/2)
2: if Z = 1 then
3: The leader adds 2π to his own ϕ-parameter i.e. ϕ1 ← ϕ1 + 2π

{to sample p2 rather than p1}
4: end if

{Now entering the modified von Neumann’s “distributed” sampler for p1}
5: repeat
6: The leader generates a fair random bit S and broadcasts it to the other parties

{The bit S determines whether to sample q1 or q2}
7: Locally, each party j generates a random Bj ∈ {−1,+1} according to an independent

Rademacher distribution so that Bj = +1 with probability cos2( 1
2
(
ϕj − π

2
))

{Random variable B = (B1, . . . , Bn) is now sampled according to q1}
8: if S = 1 then
9: Each party does Bj ← −Bj

{In this case, random variable B = (B1, . . . , Bn) is now sampled according to q2}
10: end if

{Random variable B = (B1, . . . , Bn) is sampled according to q = q1+q2
2 }

{The leader starts talking with the other parties to decide whether to accept B}
11: Each party computes cj = cos

( 1
2
(
ϕj − π

2Bj
))

and sj = − sin
( 1

2
(
ϕj − π

2Bj
))

12: The leader sets k ← 1
13: The leader sets U(0)← 0
14: repeat forever
15: The leader generates an i.i.d. unbiased bit Uk
16: The leader computes U(k)← U(k − 1) + Uk/2k {hence U(k) = 0.U1 . . . Uk}
17: The leader requests (k + 3 + d log2 ne)-approx. of cj and sj from each party j ≥ 2
18: The leader uses this information to compute (k + 2)-approximations of a1(B) and

a2(B), which are used to compute k-bit approximations Lk of a2
1(B) + a2

2(B) and
Rk of p1(B)

19: if U(k)Lk −Rk < − 4
2k then

20: Set Y ← 1 and break from the repeat forever loop. {Vector B is accepted}
21: else if U(k)Lk −Rk > 4

2k then
22: Set Y ← 0 and break from the repeat forever loop. {Vector B is rejected}
23: else
24: Set k ← k + 1 and continue the repeat forever loop

{The leader does not yet have enough information to decide whether to accept or
reject B. Therefore, he needs to compute the next bit of a1(B) and a2(B).
For this, he needs more information from all the other parties.}

25: end if
26: end repeat
27: until Y = 1 {accepting}
28: The leader informs all the other parties that the simulation is complete and, therefore,

that the time has come for each party j (including the leader himself) to output his
current value of Bj
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18 Exact Classical Simulation of the GHZ Distribution

sample B according to p1 (by leaving his ϕ1 unchanged) or according to p2 (by adding 2π to
his ϕ1). Notice that the leader does not have to inform the other parties of this decision since
they do not need to know if the sampling will be done according to p1 or p2. In Section 3.1,
we showed how to sample exactly a Bernoulli with parameter cos2(∑n

i=1 θi/2
)
when the θi’s

are not known to the leader for i ≥ 2.
The part within the outer “repeat” loop (lines 5 to 27) is essentially von Neumann’s

rejection algorithm, which has been adapted and modified to work in a distributed scenario.
The leader must first know which of q1 or q2 to sample. For this purpose, he generates an
unbiased random bit S and broadcasts it to the other parties. Sampling either q1 or q2 can now
be done locally and independently by each party j, yielding a tentative Bj ∈ {−1,+1}. The
parties will output these Bj ’s only at the end, provided this round is not rejected. Now, each
party uses his Bj to compute locally cj = cos

( 1
2
(
ϕj − π

2Bj
))

and sj = − sin
( 1

2
(
ϕj − π

2Bj
))
,

which will be sent bit by bit to the leader upon request, thus allowing him to compute
increasingly precise approximations Lk and Rk of q1(B) + q2(B) and p1(B), respectively.
These values are used to determine whether a decision can be made to accept or reject this
particular B, or whether more information is needed to make this decision. As shown at the
end of Section 2.2 (Equation 6), the expected number of bits needed in Lk and Rk before we
can break out of the “repeat forever” loop is k ≤ n+ 5. At that point, flag Y tells the leader
whether or not this was a successful run of von Neumann’s rejection algorithm. If Y = 0, the
entire process has to be restarted from scratch, except for the initial Bernoulli sampling, at
line 6. On the other hand, once the leader gets Y = 1, he can finally tell the other parties
that they can output their Bj ’s because, according to von Neumann’s rejection algorithm,
this signals that the vector (B1, . . . , Bn) is distributed according to p1 (or p2, depending
on the initial Bernoulli). Also according to von Neumann’s rejection algorithm, we have
an expectation of C = 2 rounds of the outer “repeat” loop before we can thus conclude
successfully.

Expected communication cost and number of random coins: The expected amount of
randomness used in this process is upper-bounded by 6n+ 17 bits. This is calculated as
follows: the expected number of bits for sampling Bernoulli Z is bounded by 5. This is
followed by an expectation of C = 2 rounds of von Neumann’s rejection algorithm (the outer
“repeat” loop). In each of these rounds, we need 1 bit for S and expect 2 bits for each
of the Bj ’s (hence 2n in total), before entering the “repeat forever” loop. The expected
number of times round this loop is bounded by n+ 5, and one more random bit Uk is needed
each time. Putting it all together, the expected number of random bits is bounded by
5 + 2(1 + 2n+ (n+ 5)) = 6n+ 17.

The expected amount of communication is dominated by the leader’s need to obtain
increasingly accurate approximations of cj and sj from all other parties at line 17 in order to
compute increasingly accurate approximations of Lk and Rk, which he needs in order to decide
whether or not to break from the “repeat forever” loop and, in such case, whether or not to
accept B as final output. On the k-th time round the loop, the leader needs k + 3 + d log2 ne
bits of precision plus one bit of sign about each cj and sj , j ≥ 2 (in addition to having full
knowledge about his own c1 and s1, of course). This would be very expensive if all those
bits had to be resent each time round the loop, with increasing values of k. Fortunately, this
process works well if the parties send truncations of these values to the leader, because each
truncation simply adds one bit of precision to the previous one. Hence, it suffices for the
leader to request 2(5 + d log2 ne) bits from each other party at the onset, when k = 1, and only
two additional bits per party are needed afterwards for each subsequent trip round the loop
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Figure 1 Binomial tree structure defining the parallel model.

(one for cj and one for sj). All counted, a total of 2(n− 1)(k + 5 + d log2 ne) bits will have
been requested from all other parties by the time we have gone through the “repeat forever”
loop k times. Since the expected value of k upon exiting this loop is bounded by n+ 5,
the expected number of bits that have to be communicated to the leader to complete von
Neumann’s rejection algorithm (lines 5 to 27) is bounded by 2(n− 1)((n+ 5) + 5 + d log2 ne).
This is O(n2) expected bits of communication. The additional amount of communication
required to sample Bernoulli Z at step 1 (which is (n− 1)(5 + log2 n) bits) and for the leader
to broadcast to all parties the value of S, as well as synchronization bits by which he needs
to inform the other parties of success or failure each time round the loop is negligible. All
counted, Algorithm 4 needs O(n) bits of randomness and O(n2) bits of communication in
order to sample exactly the GHZ distribution under arbitrary von Neumann measurements.

Using Equation (5) rather than Equation (6), we shall show in the final journal version
of this work that Algorithm 4 needs only O(n logn) bits of communication in order to
sample exactly the GHZ distribution under computational-basis von Neumann measurements.
Of course, O(n) bits of communication would suffice, even in the worst case, if we knew
ahead of time that all measurements are in the computational basis, but our protocol works
seamlessly with O(n logn) expected bits of communication even if the measurements are not
exactly in the computational basis, and if up to O(logn) of the measurements are arbitrary.

3.4 Variations on the theme
We can modify Algorithm 4 in a variety of ways to improve different parameters at the
expense of others. Here, we mention briefly three of these variations: the parallel model,
bounding the number of rounds, and the simulation of equatorial measurements.

The parallel model: Until now, we have considered only a sequential model of communica-
tion, in which the leader has a direct channel with everyone else. In this model, communication
takes place sequentially because the leader cannot listen to everyone at the same time. How-
ever, it is legitimate to consider a parallel model, in which arbitrary many pairs of parties
can communicate simultaneously. In this model, any number of bits can be sent and received
in the same time step, provided no party has to send or receive more than one bit at any
given time. If we make the parties communicate with one another following the binomial tree
structure shown in Fig. 1, with the leader at the root, we shall show in the final journal version
of this work that the exact simulation of the GHZ distribution under arbitrary independent
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20 Exact Classical Simulation of the GHZ Distribution

von Neumann measurements can be accomplished within O(n logn) expected parallel time.
The expected total number of bits communicated with this approach is slightly greater than
with Algorithm 4, but it remains O(n2).

Reducing the number of rounds: Algorithm 4 is efficient in terms of the number of bits
of randomness as well as the number of bits of communication, but it requires an expected
O(n) rounds, in which the leader and all other parties take turn at sending messages. This
could be prohibitive if they are far apart and their purpose is to try to convince examiners
that they are actually using true entanglement and quantum processes to produce their
joint outputs, because it would prevent them from responding quickly enough to be credible.
We leave it for the reader as an exercise to verify that if we change line 24 of Algorithm 4 from
“k ← k + 1” to “k ← 2k”, the expected number of rounds is decreased from O(n) to O(logn).
If in addition we start with “k ← n” instead of “k ← 1” at line 12, the expected number of
rounds becomes a constant. (Alternatively, we could start with “k ← n” at line 12 and step
with “k ← k + n” at line 24.)

Equatorial measurements: Recall that equatorial measurements are those for which ϕj = 0
for each party j. In this case, the leader can sample according to p1 or p2, without any help
or communication from the other parties, since he has complete knowledge of their vanished
elevation angles. Therefore, he can run steps 5 to 27 of Algorithm 4 all by himself! However,
he needs to communicate in step 1 of Algorithm 4 in order to know from which of p1 or p2
to sample. The only remaining need for communication occurs in step 28, which has to be
modified from “The leader informs all the other parties that the simulation is complete” to
“The leader informs all the other parties of which value of Bj ∈ {−1,+1} he has chosen for
them”.

Only step 1 requires significant communication since the new step 28 needs only the
transmission of n− 1 bits. We have already seen at the end of Section 3.1 that step 1, which
is a distributed version of Algorithm 1, requires an expected communication of O(n logn)
bits in the sequential model. This is therefore the complexity of our simulation, which is an
improvement over the previously best technique known to simulate the GHZ distribution
under arbitrary equatorial von Neumann measurements [6], which required an expectation of
O(n2) bits of communication.

A more elegant protocol can be obtained if we adapt Equations (1), (2) and (3), which
were given at the beginning of Section 2 to define the GHZ probability distribution p(b) for
b ∈ {−1,+1}n, to the special case of equatorial measurements. Because all the elevation
angles ϕj vanish, these formulas reduce to

p(b) =
{

21−n cos2( θ
2
)

if b ∈ X

21−n sin2( θ
2
)

if b 6∈ X
where X =

{
b ∈ {−1,+1}n

∣∣∣ n∏
j=1

bj = +1
}
.

Now, each party j other than the leader can simply choose an independent unbiased
Rademacher bj ∈ {−1,+1} as final output, without any consideration of his own input θj
nor communication with anyone else, and inform the leader of this choice. It simply remains
for the leader to choose his own b1 in order to make

∏n
j=1 bj equal to +1 with probability

cos2(θ/2) or −1 with probability sin2(θ/2). For this, we still need step 1 from Algorithm 4,
which requires an expected communication of O(n logn) bits. We shall show in the final
journal version of this work that this process can be achieved with only O(log2 n) expected
time steps in the parallel model of communication.
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4 Discussion and open problems

We have addressed the problem of simulating the effect of arbitrary independent von Neumann
measurements on the qubits forming the general GHZ state 1√

2 |0
n〉+ 1√

2 |1
n〉 distributed

among n parties. Rather than doing the actual quantum measurements, the parties must
sample the exact GHZ probability distribution by purely classical means, which necessarily
requires communication in view of Bell’s theorem. Our main objective was to find a protocol
that solves this conundrum with a finite amount of expected communication, which had only
been known previously to be possible when the von Neumann measurements are restricted
to being equatorial (a severe limitation indeed). Our solution needs only O(n2) bits of
communication, which can be dispatched in O(n logn) time if bits can be sent in parallel
according to a realistic scenario in which nobody has to send or receive more than one bit in
any given step. We also improved on the former art in the case of equatorial measurements,
with O(n logn) bits of communication and O(log2n) parallel time.

Knuth and Yao [16] initiated the study of the complexity of generating random integers
(or bit strings) with a given probability distribution p(b), assuming only the availability of
a source of unbiased identically independently distributed random bits. They showed that
any sampling algorithm must use an expected number of bits at least equal to the entropy∑
b p(b) log2(1/p(b)) of the distribution, and that the best algorithm does not need more

than two additional bits. For further results on the bit model in random variate generation,
see Ref. [9, Chap. XIV].

The GHZ distribution has an entropy no larger than n, and therefore Knuth and Yao
have shown that it could be sampled with no more than n+ 2 expected random bits if all
the parameters were concentrated in a single place [16]. Even though we have studied the
problem of sampling this distribution in a setting in which the defining parameters (here the
description of the von Neumann measurements) are distributed among n parties, and despite
the fact that our main purpose was to minimize communication between these parties, we
were able to succeed with 6n+ 17 expected random bits, which is just above six times the
bound of Knuth and Yao. The amount of randomness required by our protocols does not
depend significantly on the actual measurements they have to simulate. However, some sets
of measurements entail a probability distribution p(B) whose entropy H(p) is much smaller
than n. In the extreme case of having all measurements in the computational basis, H(p) is
a single bit! Can there be protocols that succeed with as few as H(p) + 2 expected random
bits, thus meeting the bound of Knuth and Yao, or failing this as few as O(H(p)) expected
random bits, no matter how small H(p) is for the given set of von Neumann measurements?
Notice that all the protocols presented here require Ω(n) random bits since they ask each
party to sample independently at least once a Rademacher random variable, a hurdle that
can only be alleviated in the case of measurements in the computational basis.

Are our protocols optimal in terms of the required amount of communication? Could
we simulate arbitrary von Neumann measurements as efficiently as the case of equatorial
measurements, i.e. with O(n logn) bits of communication? We leave this as open question,
but point out that Broadbent, Chouha and Tapp have proved an Ω(n logn) lower bound on
the worst case communication complexity of simulating measurements on n-partite GHZ
states [7], a result that holds even for equatorial measurements, and even under the promise
that cos

∑n
i=1 θi = ±1 [15].

As a recent development, which we shall formalize in the final journal version of this work,
we have discovered how to simulate more general multipartite states than the GHZ state.
For instance, we know how to simulate the so-called W state 1√

3 |100〉+ 1√
3 |010〉+ 1√

3 |001〉
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and more generally

Wn = 1√
n

(
|10n−1〉+ |010n−2〉+ |0010n−3〉+ · · ·+ |0n−11〉

)
with O(n3) expected bits of communication and the need of only O(n2) expected unbiased
independent random bits. However, we leave for further research the problem of simulating
arbitrary positive-operator-valued measurements (POVMs) on the single-qubit shares of
GHZ states (or on more general multipartite states), as well as the problem of simulating
multipartite entanglement other than equatorial von Neumann measurements on the tripartite
GHZ state [3] with worst-case bounded classical communication.
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