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Abstract
Random Access Codes is an information task that has been extensively studied and found many
applications in quantum information. In this scenario, Alice receives an n-bit string x, and wishes
to encode x into a quantum state ρx, such that Bob, when receiving the state ρx, can choose
any bit i ∈ [n] and recover the input bit xi with high probability. Here we study a variant
called parity-oblivious random acres codes, where we impose the cryptographic property that
Bob cannot infer any information about the parity of any subset of bits of the input, apart form
the single bits xi.

We provide the optimal quantum parity-oblivious random access codes and show that they
are asymptotically better than the optimal classical ones. For this, we relate such encodings to
a non-local game and provide tight bounds for the success probability of the non-local game via
semi-definite programming. Our results provide a large non-contextuality inequality violation
and resolve the main open question in [22].
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1 Introduction

Quantum Information theory studies how information is encoded in quantum mechanical
systems and how it can be transmitted through quantum channels. A main question is
whether quantum information is more powerful than classical information. A celebrated
result by Holevo [13], shows that quantum information cannot be used to compress classical
information. In high level, in order to transmit n uniformly random classical bits, one needs
to transmit no less than n quantum bits. This might imply that quantum information is no
more powerful than classical information. This however is wrong in many situations. In the
model of communication complexity, one can show that transmiting quantum information
may result in exponential savings on the communication needed to solve specific problems
([20, 5, 3, 11, 21]).

One specific information task that has been extensively studied in quantum information
is the notion of random access codes (RACs) [1, 16]. In this scenario, Alice receives an n-bit
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string x, drawn from the uniform distribution, and wishes to encode x into a quantum state
ρx, such that Bob, when receiving the state ρx, can choose any bit i ∈ [n] and recover the
input bit xi with high probability by performing some general quantum operation on ρx.

RACs have been used in various situations in quantum information and computation,
including in communication complexity, non-locality, extractors and divide-independence
cryptography. [4, 14, 19, 10, 15]. Even though this task seems easier than transmitting the
entire input string x, it is known that both in the classical and the quantum world, the
length of the encoding must be at least Ω(n) and in fact, there is no gain between classical
and quantum encodings [16].

On the other hand, a well-known example of the superiority of quantum information is
the example of dense coding, or equivalently a RAC of length 1 for uniform inputs of length
n = 2. In this case, the optimal classical encoding can achieve success probability 3/4, while
there exists a quantum encoding that achieves strictly higher success probability, in fact
cos2(π/8) [8, 23]. An advantage can also be proven for the case of encoding three bits into
one qubit, but not for n ≥ 4 [12].

Nevertheless, a question remained of whether there are variants of random access codes,
for which we can have an asymptotically significant advantage in the quantum case. We
show that this is indeed the case for the so-called parity-oblivious RACs. These are the usual
RACs with the extra cryptographic property that the receiver cannot infer any information
about the parity of any subset of bits of the input, apart from the single bits xi.

Random acres codes that are parity-oblivious have been considered before. For example,
the dense coding examples for encoding two or three classical bits in one qubit have this
property. It is not hard to check, that for the 2-to-1 encoding, Bob’s reduced density matrix
is exactly the same for the cases where the inputs have parity 0 or 1, in other words, Bob
has no information about x1 ⊕ x2. Moreover, Spekkens, Buzacott, Keehn, Toner, and Pryde
[22] used parity-oblivious RACs to provide non-contextuality inequalities.

1.1 Our results
In this paper, we provide the optimal quantum parity-oblivious RAC and show that it is
asymptotically better than the optimal classical one. We say that an encoding with success
probability 1

2 (1 + α) has bias α. More precisely, we prove the following theorem.

I Theorem 1. For any n ∈ N, the optimal quantum parity-oblivious random access code for
inputs of size n, denoted here as PO-RACn, has bias 1√

n
.

The main idea of the proof is that quantum encodings can be studied through their
relation to non-local games. Such equivalences between encodings and non-local games were
previously noted in [17, 7]. A non-local game is a game between two non-communicating
parties, who receive some inputs and must produce outputs that satisfy some known predicate.
The best-known example is the CHSH game, where the two parties must output bits a and b,
whose parity is equal to the logical and of their inputs x and y. The important quantity of
such games is the optimal success probability when the two parties are allowed to share an
arbitrary entangled state in the beginning of the protocol. In [7], it was shown that certain
variants of the CHSH game are equivalent to some variants of quantum RACs and their
respective success probabilities are equal.

In order to show an upper bound on the bias of quantum PO-RACs, we first define a
weaker variant where only the parities of even-size subsets are hidden, denoted as EPO-RACn.
An upper bound on the bias of these codes would imply an upper bound on the bias of the
general PO-RACs.
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Then, we study a natural non-local game which we call the INDEX game and show that
EPO-RAC with average bias are equivalent to the INDEX game. In other words, the bias of
any INDEX game strategy and the average decoding bias of an EPO-RAC are equal. In the
INDEXn game (parameterized by n here), Alice receives an n-bit string x, Bob receives an
index t, and Alice and Bob are supposed to output bits a and b such that a⊕ b = xt.

I Theorem 2 (Equivalence). For any n ∈ N, there exists a quantum EPO-RACn with average
decoding bias α if and only if there exists a quantum INDEXn strategy with bias α.

Last, noting that the INDEX game is an XOR game, i.e. the winning condition depends
on the XOR of Alice and Bob’s one-bit answers, we use a tight semidefinite programming
characterization due to [9] and provide the exact optimal quantum bias.

I Theorem 3 (Optimal INDEX game biases). For any n ∈ N, the optimal quantum bias of
an INDEXn strategy is 1/

√
n and the optimal classical bias is

√
2
πn (1 +O(1/n)).

Since the worst case bias of a quantum PO-RAC is obviously upper bounded by the
optimal average case bias of a quantum EPO-RAC, Theorems 2 and 3 show that every
PO-RACn has bias at most 1/

√
n. On the other hand, we give an explicit construction of

a PO-RACn with bias 1/
√
n that uses bn/2c qubits. First, we provide a parity-oblivious

encoding where Alice and Bob share bn/2c EPR pairs and then Alice sends one classical bit
of communication.

I Theorem 4 (Optimal PO-RACn). For any integer n, there exists a PO-RACn with bias
1/
√
n that uses bn/2c qubits and 1 classical bit.

We also remark that even though quantum PO-RACn and EPO-RACn both share the
same optimal bias, the same is not true if we consider odd-parity-oblivious encodings where
the S-parities are hidden for |S| odd and strictly greater than 1. Consider encoding a six-bit
string (x1, . . . , x6) where the first three bits are encoded using the optimal PO-RAC3, and
similarly for the last three bits. It is a straightforward exercise to verify this is odd-parity
oblivious with bias 1/

√
3 > 1/

√
6.

1.2 Application to non-contextuality
The basic primitives in an operational theory are preparations and measurements. A
hidden variable model is preparation and measurement non-contextual, if whenever two
preparations yield the same statistics for all possible measurements then they have an
equivalent representation in the model; and whenever two measurements have the same
statistics for all preparations then they have an equivalent representation in the model
[22]. Similar to non-locality, a non-contextuality inequality is any inequality on probability
distributions that follows from the assumption that there exists a hidden variable model that
is preparation or measurement non-contextual.

Spekkens, Buzacott, Keehn, Toner, and Pryde [22] proved the following non-contextuality
inequality (or NC inequality, for short): In an operational theory that admits a preparation
non-contextual hidden variable model, the average case bias for any PO-RACn is at most
1/n.

Then, they noted that quantum mechanics violates this non-contextuality (NC) inequality
for n ∈ {2, 3}, since there exists a quantum parity-oblivious encoding of two and three
classical bits into one qubit, with average decoding probability 1

2 (1 + 1√
2 ) and 1

2 (1 + 1√
3 ),

respectively [1, 12]. It was left as an open question whether quantum mechanics violates this
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NC inequality for larger n. The main difficulty to extend these results for larger input size is
that we pose no bound on the dimension of the encoding.

Through our Theorem 1 that provides the optimal bias for PO-RACns, we resolve the
main open question in [22] and provide a family of non-contextuality inequality violations
that grow with the input size n. More precisely, we show an explicit non-contextuality
violation of order

√
n.

I Theorem 5. For any integer n, there exists an explicit non-contextuality inequality that
provides a violation of order

√
n.

2 Preliminaries

We provide the definitions of the different variants of random access codes that we use and
of the non-local game we consider.

2.1 Random Access Codes
I Definition 6 (Random access code). For an integer n ≥ 2, a quantum random access
code of n bits, denoted RACn, with bias α consists of an encoding map of x ∈ {0, 1}n into
quantum states ρx together with a sequence of n possible measurements such that the result
of the i’th measurement is xi with probability at least 1

2 (1 + α).

Note that the usual treatment of RACs is to analyze the relationships between n, α, and
the encoding dimension (i.e., the dimension of ρx). In this paper, we are not concerned with
the encoding dimension, but rather the optimal bias when we enforce certain cryptographic
properties to RACs. For example, we enforce that Bob remains oblivious of some information
about the string x, meaning that he cannot infer any information about it from the encoding.
In particular, we consider for each subset S of bits of x the S-parity, which is defined as⊕

i∈S xi.

I Definition 7 (Parity-oblivious random access codes). For an integer n ≥ 2, a quantum
parity-oblivious random access code, denoted as PO-RACn, is a RACn with the cryptographic
constraint that the receiver is oblivious of every S-parity, for |S| ≥ 2.

For classical codes, the optimal bias of a PO-RACn is known to be 1
n (Proposition 1).

In our proofs, we also use a weaker variant of parity-oblivious random access codes, where
only the S-parities of even-size remain oblivious.

I Definition 8 (Even-parity-oblivious random access codes). For an integer n ≥ 2, a quantum
even-parity-oblivious random access code, denoted as EPO-RACn, is a RACn with the
cryptographic constraint that the receiver is oblivious of every S-parity, for |S| even.

I Remark. In the definition of RACns, we have that every bit is decode with bias α. We
have occasion to study EPO-RACns with average case bias α, that is, the average over all
i ∈ [n] of the decoding probabilities. When we consider average case biases, it is explicitly
mentioned, otherwise, worst-case bias is assumed.

2.2 Non-local games
In a non-local game, two non-communicating parties, Alice and Bob, receive some inputs x
and y, respectively, and must output a and b, respectively, such that (x, y, a, b) satisfy some
specific condition. For example in the CHSH game, the condition is a⊕ b = x · y. The goal is
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to find the optimal quantum (classical) success probability of satisfying the condition when
Alice and Bob are allowed to share some initial quantum state (shared randomness).

We define the following non-local game.

I Definition 9 (Index game). The Index game, denoted here as INDEXn, is the following
XOR game:

Alice’s input: Alice receives a random s from the set S := {0, 1}n.

Bob’s input: Bob receives a random index t from the set T := [n].

Winning condition: They win if Alice’s output bit a and Bob’s output bit b satisfy
a⊕ b = st.

The choice of initial resource state and local measurement operators (that depend on the
respective inputs) comprise a strategy. We say that a strategy has bias α if it succeeds with
probability 1

2 (1 + α).
Note that our game is similar to the retrieval games studied in [17].

3 Equivalence of EPO-RACn decoding and INDEXn strategies

In this section we prove the equivalence in Theorem 2.

I Theorem 2 (Equivalence). For any n ∈ N, there exists a quantum EPO-RACn with bias
α if and only if there exists a quantum INDEXn strategy with bias α.

3.1 From EPO-RACn to INDEXn

Let us fix an EPO-RACn {ρx}x∈{0,1}n with bias α. Let B the Hilbert space used for the
encoding. Our goal is to construct a strategy for INDEXn with bias α. For each ρx, we fix a
purification |ψx〉 of ρx in the space A⊗B. For a ∈ {0, 1}, let a be the n-bit string (a, . . . , a)
and s̄ is the complement string of s. We define

|Ωs〉 = 1√
2

∑
a∈{0,1}

|a〉O|ψs⊕a〉AB = 1√
2

(|0〉|ψs〉+ |1〉|ψs̄〉) .

We would like to show that if Bob has the register B of the above state, then he has no
information about s. Note that his reduced state is the state σs = 1

2ρs + 1
2ρs̄.

The first step is to see that Bob has no information about any parity (odd or even) of the
string s. For the even parities, note that we started with an EPO-RACn encoding and that
the strings s and s̄ have the same even parities. Hence, Bob has with half probability the
state ρs from which he cannot get any information about the even parities of s and with half
probability the state ρs̄ from which he cannot get any information about the even parities of
s̄ and consequently s.

For the odd parities: fix an subset S ⊆ {1, . . . , n} of odd size and let sS = ⊕i∈Ssi. Let
M = {M0,M1} be any two outcome POVM. Let Pb = {s ∈ {0, 1}n : sS = b}. Each Pb has
size 2n−1 and s ∈ Pb ⇔ s̄ ∈ Pb̄ since S is an odd subset. We have
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Pr[Bob guesses sS using M ] = 1
2n
∑
s∈P0

tr(M0σs) +
∑
s∈P1

tr(M1σs)

= 1
2n
∑
s∈P0

tr(M0σs) +
∑
s∈P0

tr(M1σs̄)

= 1
2n
∑
s∈P0

tr((M0 +M1)σs) using ∀s, σs = σs̄

= 1
2n
∑
s∈P0

tr(Iσs) = |P0|
2n = 1/2 .

This means that for any measurement M , Bob has probability 1/2 to guess sS which means
that Bob has no information about this bit.

In the following lemma we prove that if someone has no information about any parity of
subsets of bits of a string x, then he has no information about the string x. This is intuitively
an obvious statement that we rigorously prove below.

I Lemma 10. Let X be the uniform distribution on x ∈ {0, 1}n. If Bob has no information
about any parity of subsets of bits of x, then he has no information about x.

Proof. If Bob has some information about x, then the states ρx cannot be all the same, which
in turn implies that there exists a subset T ∈ {0, 1}n of size 2n−1 such that ρT = 1

2n−1

∑
x∈T ρx

is not equal to ρT̄ = 1
2n−1

∑
x∈T̄ ρx. This means that there exists a two-outcome measurement

that outputs 1 if x ∈ T and −1 otherwise, with positive bias. We now show for a contradiction
that this measurements must also output a parity of some subset with positive bias. Define
the function f : {0, 1}n → {−1,+1}, as the indicator function of T and let b the measurement
outcome. Then

E[b · f(x)] > 0 .

By taking the Fourier representation of the function and denoting xS =
⊕

i∈S xi we have

E[b ·
∑
S

f̂(S)xS ] > 0 ,∑
S

f̂(S)E[b · xS ] > 0 .

Since for the empty set we have f̂(∅) = E[f(x)] = 0, the above implies that there exists a
parity S for which E[b · xS ] > 0, which is a contradiction. J

The above statement means that for each s, we have TrOA|Ωs〉〈Ωs| = TrOA|Ω0〉〈Ω0|. In
particular, this means that there exist unitaries {Us} acting on AO such that (Us⊗ I)|Ω0〉 =
|Ωs〉.We use the state |ψ0〉 to define the INDEXn strategy:

Alice and Bob share the state |Ω0〉 ∈ A ⊗ B.
Upon receiving s ∈ {0, 1}n, Alice applies Us on OA such that Alice and Bob share |Ωs〉.
Alice measures register O in the computational basis and outputs the corresponding a.
For Alice’s input s and output a, Bob has an encoding ρx where x = s ⊕ a. Upon
receiving t ∈ [n], Bob measures B just as in the EPO-RACn to learn xt. He outputs b
equal to his guess.
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Alice and Bob win the game if b = st ⊕ a = xt meaning that they win the game if and
only if Bob correctly guesses xt.

Since our encoding has bias α, we see that with this INDEXn strategy, they succeed with
probability

1
n

n∑
i=1

Pr[Bob outputs a⊕ st] = 1
n

n∑
i=1

Pr[Bob outputs xt] = 1
2(1 + α),

as desired. J

3.2 From INDEXn to EPO-RACn

Suppose Alice and Bob have a strategy to win the INDEXn game with bias α with starting
state |ψ〉 ∈ A ⊗ B. On input s ∈ {0, 1}n, Alice performs her side of the optimal strategy for
INDEXn and has some output a. We have:

1
n

n∑
i=1

Pr[Bob outputs a⊕ st] = 1
2(1 + α) .

Let ρs,a the state that Bob has when Alice inputs s and outputs a. Let x such that ∀i, xi =
si ⊕ a. When Alice has inputs satisfying s⊕ a = x, Bob has the state σx = 1

2 (ρx,0 + ρx̄,1).
We show that {σx}x is an EPO-RACn with average bias α.
1. It’s a EPO-RACn: for every even parity S, we have

⊕
i∈S xi =

⊕
i∈S(si ⊕ a) =

⊕
i∈S si.

Bob has no information about s from non signalling so Bob has no information about⊕
i∈S si.

2. It has average bias α: Alice and Bob win the INDEXn game with bias α hence

1
n

n∑
i=1

Pr[Bob outputs xt] = 1
n

n∑
i=1

Pr[Bob outputs a⊕ st] = 1
2(1 + α) .

I Remark. Note that the above equivalence also holds in the classical setting.

4 On the structure of optimal Index Game strategies

In this section, we prove Theorem 3, below.

I Theorem 11 (Optimal Index Game biases). For any n ∈ N, the optimal quantum bias of
an INDEXn strategy is 1/

√
n and the optimal classical bias is

√
2
πn (1 +O(1/n)).

4.1 The quantum value
The quantum bias of any XOR game can be found efficiently by solving a semidefinite
program (SDP) [9]. Specifically, the quantum bias of the INDEXn game can be calculated
as the optimal value of either SDP below

Primal problem (P)
supremum: 〈B,X〉
subject to: diag(X) = e,

X � 0,

Dual problem (D)
infimum: 〈e, y〉

subject to: Diag(y) � B,
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where
diag(X) is the vector on the diagonal of the square matrix X,
e is the vector of all ones,
Diag(y) is the diagonal matrix with the vector y on the diagonal,

B := 1
2

[
0 A

AT 0

]
, where As,t := (−1)st

n2n .

For (P), consider the positive semidefinite matrix X := Y Y >, where

Y :=
[ √

n 2nA
IT

]
.

To show X is feasible in (P), one can check that each diagonal entry of X is equal to 1
from the definition of A above. Note that 〈B,X〉 :=

√
n 2n〈A,A〉 = 1/

√
n proving that the

quantum bias is at least 1/
√
n (since the quantum bias is the maximum of 〈B,X〉 over all

feasible X).

For (D), let y :=
[
u eS
v eT

]
where u, v > 0 and eS and eT are the vectors of all ones

indexed by entries in S and T , respectively. Then

Diag(y) � B ⇐⇒
[

uIS − 1
2A

− 1
2A

T vIT

]
� 0 ⇐⇒ uvIT �

1
4A
>A = 1

4n22n IT .

From above, if we set v := 1
2n
√
n

and u := 1
2
√
n2n

, then y is feasible in (D). Since

〈e, y〉 = 2nu+ nv = 1√
n
, we know the quantum bias is at most 1/

√
n (since the quantum

bias is equal to the minimum of 〈e, y〉 over all feasible y).
Therefore, the quantum bias is exactly 1/

√
n, as required.

4.2 The classical value
We can assume without loss of generality that Alice and Bob’s strategies are deterministic.
Define b ∈ {0, 1}n as the string of potential answers Bob gives where bt is the bit that
Bob outputs on input t ∈ [n]. Now let us examine Alice’s strategy. For a fixed input s,
if she outputs 0, they win the game with probability 1

n |b ⊕ s|H , where |x|H denotes the
Hamming weight of a string x ∈ {0, 1}n. If she outputs 1, they win the game with probability
1
n |b⊕ s|H = n− 1

n |b⊕ s|H . This means that they win the game with probability at most

E
s∈{0,1}n

[
1
n

max{|b⊕ s|H , n−
1
n
|b⊕ s|H}

]
= 1
n
E
s

[n
2 +

∣∣∣n2 − |b⊕ s|H ∣∣∣]
= 1

2 + 1
n
E
s

[∣∣∣n2 − |b⊕ s|H ∣∣∣] .
The quantity Es[|n/2− |b⊕ s|H |] corresponds to the expected deviation that the uniform
binomial distribution has from the average. This is a well studied quantity and we know that

E
s

[∣∣∣n2 − |b⊕ s|H ∣∣∣] = 2√
π

Γ(n+ 1/2)
Γ(n) =

√
2n
π

(
1 +O

(
1
n

))
.

Therefore, any strategy has success probability bounded above by

1
2 + 1

n
E
s

[∣∣∣n2 − |b⊕ s|H ∣∣∣] = 1
2 +

√
2
πn

(
1 +O

(
1
n

))
.
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Now, consider the following strategy: Alice outputs a which equals the majority of s, and
Bob outputs 0. This strategy has success probability precisely

1
2 + 1

n
E
s

[∣∣∣n2 − |b⊕ s|H ∣∣∣]
which is optimal.

5 A construction of a quantum PO-RACn with optimal bias

In this section we give an explicit construction of an quantum PO-RACn with optimal bias.

I Theorem 12 (Optimal PO-RACn). For any integer n ≥ 2, there exists a PO-RACn with
bias 1/

√
n that uses bn/2c qubits and 1 classical bit.

Our construction builds upon the well-known RACs for sending 2 (resp. 3) bits with bias
1/
√

2 (resp. 1/
√

3) [24, 2, 12]. These are the vertices from the corners of a square inscribed
in an equatorial plane in the Bloch sphere, and the corners of a cube inscribed in the Bloch
sphere, respectively. To generalize this idea to an n-cube inscribed in an n-dimensional
sphere, we use the intuition of hyperbits which is a way to visualize such unit vectors in a
quantum mechanical setting. A full discussion of hyperbits and their equivalence to certain
quantum protocols is beyond the scope of this paper, but we refer the interested reader to
the work of Pawlowski and Winter [18].

5.1 The construction
Our construction is very similar to the proof of Tsirelson’s theorem [23]. We start by
recursively defining the observables Gn,1, . . . , Gn,n which are used to define the actions of
Alice and Bob in the PO-RACn.

For n = 2 and n = 3, we define

G2,1 := X, G2,2 := Y and G3,1 := X, G3,1 := Y, G3,3 := Z.

We use the n = 3 observables as a base case for a recursive formula: for n even, we define

Gn,i := Gn−1,i ⊗X, for i ∈ {1, . . . , n− 1}, and Gn,n = I⊗ Y

and for n odd, we define

Gn,i := Gn−2,i ⊗X, for i ∈ {1, . . . , n− 2}, Gn,n−1 = I⊗ Y, and Gn,n = I⊗ Z.

Note that these act on bn/2c qubits, have eigenvalues ±1, and satisfy the anti-commutation
relation

{Gn,i, Gn,j} = 2δi,jI.

Define the following operators for x ∈ {0, 1}n and t ∈ [n]:

Ax := 1√
n

n∑
i=1

(−1)xiGi and Bt := G>t .

Note that A2
x = I, for all x in{0, 1}n, and B2

t = I, for all t ∈ [n], so each have ±1 eigenvalues.
The PO-RACn protocol is defined below.
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Encoding states: Alice chooses a uniformly random x ∈ {0, 1}n, creates bn/2c EPR pairs,
and measures the first “halves” with the observable Ax to get an outcome a ∈ {−1,+1}.
She sends the second “halves” and a to Bob. Bob now has a quantum state encoding the
string x.
Decoding procedure: If Bob wishes to learn xt, he measures his EPR halves with the
observable Bt to get an outcome b ∈ {−1,+1}. He computes c = ab and outputs 0 if
c = +1, and 1 otherwise.

In the next two lemmas, we show that the bias of this RACn is 1√
n

and that it is
parity-oblivious, thereby proving Theorem 4.

I Lemma 13. This RACn has bias 1/
√
n.

Proof. We can assume at the beginning of the protocol, Alice and Bob share the maximally
entangled state

|ψ〉 := 1√
2bn

2 c

2b
n
2 c∑

j=1
|j〉A|j〉B.

The expectation value of the observable C = Ax ⊗Bt in this state is given by:

〈C〉 = 〈ψ|Ax ⊗Bt|ψ〉 = 1√
n

1
2bn

2 c

n∑
i=1

(−1)xi

2b
n
2 c∑

j,k=1
〈j|A〈j|BGi ⊗G>t |k〉A|k〉B︸ ︷︷ ︸

=2b
n
2 cδi,t

= (−1)xt

√
n

.

where the third equality is derived from the anti-commutation relation.
Now, 〈C〉 = Pr[c = +1]− Pr[c = −1] = 〈ψ|Ax ⊗Bt|ψ〉, so

Pr[Bob outputs 0] = Pr[c = +1] = 1
2

[
1 + (−1)xt

√
n

]
Pr[Bob outputs 1] = Pr[c = −1] = 1

2

[
1− (−1)xt

√
n

]
implying

Pr[Bob outputs xt] = 1
2

(
1 + 1√

n

)
,

as desired. J

I Lemma 14. This RACn is parity-oblivious.

Proof. Protocols involving shared entanglement and sending one bit of classical information
have limited guessing probabilities for functions such as parity, as shown in [18]. In particular,
it can be been shown that the biases of learning

⊕
i∈S xi, denoted here as αS , satisfy∑

S⊆{0,1}n\Empty Set

α2
S ≤ 1.

For our protocol,∑
S:|S|=1

α2
S = n ·

(
1√
n

)2
= 1

implying αS = 0 for all S of size 2 or greater, implying it is parity-oblivious. J
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6 Large non-contextuality inequality violations

Spekkens et al. [22] constructed a family of non-contextuality inequalities from the notion of
parity-oblivious random access codes. More precisely, they showed that
I Proposition 1 ([22], NC inequality). In any operational theory that admits a preparation
non-contextual hidden variable model, the average case bias for any PO-RACn is at most
1/n.

In order to quantify the violation of this NC inequality, we consider the ratio of the
average case bias of quantum PO-RACn and PO-RACn of any operational theory that admits
a preparation non-contextual hidden variable model.

Note, that if three exists a game for which the winning probability of any classical
strategy cannot deviate from 1/2 by more than δ1 and, moreover, there is a quantum strategy
obtaining winning probability at least 1/2 + δ2, then we can obtain a violation of order δ2/δ1
(see [6] for details).

Then, Theorem 5 is a direct consequence of Proposition 1 and our Theorem 1.

I Theorem 15. For any n ∈ N, there exists an explicit non-contextuality inequality that
provides a violation of order

√
n.
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