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Abstract
We show finite-size bounds on the deviation of the optimal type II error from its asymptotic value
in the quantum hypothesis testing problem of Stein’s lemma with composite null-hypothesis. The
proof is based on some simple properties of a new notion of quantum Rényi divergence, recently
introduced in [Müller-Lennert, Dupuis, Szehr, Fehr and Tomamichel, J. Math. Phys. 54, 122203,
(2013)], and [Wilde, Winter, Yang, arXiv:1306.1586].
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1 Introduction

Rényi defined the α-divergence [36] of two probability distributions p, q on a finite set X as

Dα(p‖q) := 1
α− 1 log

∑
x∈X

p(x)αq(x)1−α,

where α ∈ (0,+∞) \ {1}. These divergences have various desirable mathematical properties;
they are strictly positive, non-increasing under stochastic maps, and jointly convex for
α ∈ (0, 1) and jointly quasi-convex for α > 1. For fixed p and q, Dα(p‖q) is a monotone
increasing function of α, and the limit α → 1 yields the relative entropy (a.k.a. Kullback-
Leibler divergence), probably the single most important quantity in information theory. Even
more importantly, the Rényi divergences have great operational significance, as quantifiers of
the trade-off between the relevant operational quantities in many information theoretic tasks,
including hypothesis testing, source compression, and information transmission through noisy
channels [12]. A direct operational interpretation of the Rényi divergences as generalized
cutoff rates has been shown in [12].

In the view of the above, it is natural to look for an extension of the Rényi divergences
for pairs of quantum states. One such extension has been known in quantum information
theory for quite some time, defined for states ρ and σ as [34]

D(old)
α (ρ‖σ) := 1

α− 1 log Tr ρασ1−α.
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These divergences also form a monotone increasing family, with the Umegaki relative entropy
D1(ρ‖σ) := Tr ρ(log ρ − log σ) as their limit at α → 1. They are also strictly positive;
however, monotonicity under stochastic (i.e., completely positive and trace-preserving) maps
only holds for α ∈ [0, 2]. Recently, a new quantum Rényi divergence has been introduced in
[28, 41], defined as

D(new)
α (ρ‖σ) := 1

α− 1 log Tr
(
σ

1−α
2α ρσ

1−α
2α

)α
.

Again, these new divergences yield the Umegaki relative entropy in the limit α → 1, and
monotonicity only holds on a restricted domain, in this case for α ∈ [1/2,+∞).

Operational interpretation has been found for both definitions in the setting of binary
hypothesis testing for different and matching domains of α. The goal in hypothesis testing is
to decide between two candidates, ρ and σ, for the true state of a quantum system, based
on a measurement on many identical copies of the system. The quantum Stein’s lemma
[19, 32] states that it is possible to make the probability of erroneously choosing ρ (type
II error) to vanish exponentially fast in the number of copies, with the exponent being
the relative entropy D1(ρ‖σ), while the probability of erroneously choosing σ (type I error)
goes to zero asymptotically. If the type II error is required to vanish with a suboptimal
exponent r < D1(ρ‖σ) (this is called the direct domain) then the type I error can also be
made to vanish exponentially fast, with the optimal exponent being the Hoeffding divergence
Hr := supα∈(0,1)

α−1
α [r −D(old)

α (ρ‖σ)] [4, 18, 30]. Thus, the D(old)
α with α ∈ (0, 1) quantify

the trade-off between the rates of the type I and the type II error probabilities in the
direct domain. Based on this trade-off relation, a more direct operational interpretation was
obtained in [25] as generalized cutoff rates in the sense of Csiszár [12]. On the other hand,
if the type II error is required to vanish with an exponent r > D1(ρ‖σ) (this is called the
strong converse domain) then the type I error goes to 1 exponentially fast, with the optimal
exponent being the converse Hoeffding divergence H∗r := supα>1

α−1
α [r −D(new)

α (ρ‖σ)] [26].
Thus, the D(new)

α with α > 1 quantify the trade-off between the rates of the type I success
probability and the type II error probability in the strong converse region. Based on this, a
direct operational interpretation of the D(new)

α as generalized cutoff rates was also given in
[26] for α > 1.

In the view of the above results, it seems that the old and the new definitions provide the
operationally relevant quantum extension of Rényi’s divergences in different domains: for
α ∈ (0, 1), the operationally relevant definition seems to be the old one, corresponding to the
direct domain of hypothesis testing, whereas for α > 1, the operationally relevant definition
seems to be the new one, corresponding to the strong converse domain of hypothesis testing.

This is the picture at least when one wants to describe the full trade-off curve; most
of the time, however, one is interested in one single point of this curve, corresponding to
α = 1, where the transition from exponentially vanishing error probability to exponentially
vanishing success probability happens. It is known that using the “wrong” divergence can be
beneficial to obtaining coding theorems at this point. Indeed, the strong converse property
for hypothesis testing and classical-quantum channel coding has been proved using D(old)

α for
α > 1 in [29, 32, 33] (“wrong” divergence with the “right” values of α), while a proof for the
direct part of these problems was obtained recently in [8], using D(new)

2 (“‘wrong” divergence
with a “wrong” value of α).

Further examples of coding theorems based on the “wrong” Rényi divergence were given
in [27], where it was shown that a certain concavity property of the new Rényi divergences,
which the old ones don’t have, make them a very convenient tool to prove the direct part of
various coding theorems in composite/compound settings. This was demonstrated by giving
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90 Convexity Properties of the Quantum Rényi Divergences

short and simple proofs for the direct part of Stein’s lemma with composite null-hypothesis
and for classical-quantum channel coding with compound channels. Although the optimal
rates for these problems have already been known [10, 11, 13, 31], the proofs in [27] are
different from the previous ones, and offer considerable simplifications. The general approach
is the following:

1. We start with a single-shot coding theorem that gives a trade-off relation between the
relevant quantities of the problem in terms of Rényi divergences. For Stein’s lemma, this
is Audenaert’s trace inequality [3], while for channel coding we use the Hayashi-Nagaoka
random coding theorem from [17].

2. We then use general properties of the Rényi divergences to decouple the upper bounds
from multiple to a single null-hypothesis/channel and to derive the asymptotics.

The main advantage of this approach is that the second step only relies on universal properties
of the Rényi divergences and is largely independent of the concrete problem at hand. In
particular, the coding theorems for the composite/compound settings can be obtained with
the same amount of effort as for a simple null-hypothesis/single channel.

In this paper we present a variant for the proof of Stein’s lemma with composite null-
hypothesis. While in [27] exponential bounds on the error probabilities were given, here we
study the asymptotics of the optimal type II error probability for a given threshold ε on the
type I error probability. Building on results from [6] and [27], we derive finite-size bounds
on the deviation of the optimal type II error from its asymptotic value. Such bounds are of
practical importance, since in real-life scenarios one always works with finitely many copies.

The structure of the paper is as follows. Section 2 is a summary of notations. In Section 3
we review some properties of the quantum Rényi divergences, including two inequalities from
[27]: Lemma 4, which gives quantitative bounds between the old and the new definitions
of the quantum Rényi divergences, and Corollary 6, which shows that the convexity of the
new Rényi divergence in its first argument can be complemented in the form of a weak
quasi-concavity inquality. For readers’ convenience, we include the proof of these inequalities.
In Section 4 we prove the above mentioned finite-size version of Stein’s lemma.

2 Notations

For a finite-dimensional Hilbert space H, let B(H)+ denote the set of all non-zero positive
semidefinite operators on H, and let S(H) := {ρ ∈ B(H)+ ; Tr ρ = 1} be the set of all density
operators (states) on H.

We define the powers of a positive semidefinite operator A only on its support; that is, if
λ1, . . . , λr are the strictly positive eigenvalues of A, with corresponding spectral projections
P1, . . . , Pr, then we define Aα :=

∑r
i=1 λ

α
i Pi for all α ∈ R. In particular, A0 =

∑r
i=1 Pi is the

projection onto the support of A, and we use A0 ≤ B0 as a shorthand for suppA ⊆ suppB.

By a POVM (positive operator-valued measure) T on a Hilbert space H we mean a map
T : Y → B(H), where Y is some finite set, T (y) ≥ 0 for all y, and

∑
y∈Y T (y) = I. In

particular, a binary POVM is a POVM with Y = {0, 1}.

We denote the natural logarithm by log, and use the convention log 0 := −∞ and
log +∞ := +∞.
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3 Rényi divergences

For non-zero positive semidefinite operators ρ, σ, the Rényi α-divergence of ρ w.r.t. σ with
parameter α ∈ (0,+∞) \ {1} is traditionally defined as [34]

D(old)
α (ρ‖σ) :=

{
1

α−1 log Tr ρασ1−α − 1
α−1 log Tr ρ, α ∈ (0, 1) or ρ0 ≤ σ0,

+∞, otherwise.

For the mathematical properties of D(old)
α , see, e.g. [22, 25, 35]. Recently, a new notion of

Rényi divergence has been introduced in [28, 41], defined as

D(new)
α (ρ‖σ) :=

 1
α−1 log Tr

(
σ

1−α
2α ρσ

1−α
2α

)α
− 1

α−1 log Tr ρ, α ∈ (0, 1) or ρ0 ≤ σ0,

+∞, otherwise.

For the mathematical properties of D(new)
α , see, e.g. [7, 15, 26, 28, 41].

An easy calculation shows that for fixed ρ and σ, the function α 7→ log Tr ρασ1−α is
convex, which in turn yields immediately that α 7→ D

(old)
α (ρ‖σ) is monotone increasing.

Moreover, the limit at α = 1 can be easily calculated as

D1(ρ‖σ) := lim
α→1

D(old)
α (ρ‖σ) =

{
1

Tr ρ Tr ρ(log ρ− log σ), ρ0 ≤ σ0,

+∞, otherwise,
(1)

where the latter expression is Umegaki’s relative entropy [40]. The same limit relation for
D

(new)
α (ρ‖σ) has been shown in [28, Theorem 5]. The following Lemma, due to [37] and [38],

complements the above monotonicity property around α = 1, and in the same time gives a
quantitative version of (1):

I Lemma 1. Let ρ, σ ∈ B(H)+ be such that ρ0 ≤ σ0, let κ := log(1 + Tr ρ3/2σ−1/2 +
Tr ρ1/2σ1/2), let c > 0, and δ := min

{ 1
2 ,

c
2κ
}
. Then

D1 (ρ‖σ) ≥ D(old)
α (ρ‖σ) ≥ D1 (ρ‖σ)− 4(1− α)κ2 cosh c, 1− δ < α < 1,

and the inequalities hold in the converse direction for 1 < α < 1 + δ.

I Remark 2. Assume that ρ and σ are states. The function f(α) := Tr ρασ1−α is convex in
α, and ρ0 ≤ σ0 implies that f(1) = 1. Hence, α 7→ (f(α)−1)/(α−1) is monotone increasing.
Comparing the values at 1/2 and 3/2, we see that Tr ρ3/2σ−1/2 + Tr ρ1/2σ1/2 ≥ 2, and thus
κ > 1.

I Remark 3. The Rényi entropy of a positive semidefinite operator ρ ∈ B(H)+ with parameter
α ∈ (0,+∞) is defined as

Sα(ρ) := −D(old)
α (ρ‖I) = −D(new)

α (ρ‖I) = 1
1− α log Tr ρα − 1

1− α log Tr ρ.

By the above considerations, α 7→ Sα(ρ) is monotone decreasing, and comparing its values at
α and at 0, we get

Tr ρα ≤ (Tr ρ0)(1−α)(Tr ρ)α, α ∈ (0, 1). (2)
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According to the Araki-Lieb-Thirring inequality [2, 23], for any positive semidefinite
operators A,B, TrAαBαAα ≤ Tr(ABA)α for α ∈ (0, 1), and the inequality holds in the
converse direction for α > 1. A converse to the Araki-Lieb-Thirring inequality was given in
[5], where it was shown that Tr(ABA)α ≤

(
‖B‖α TrA2α)1−α (TrAαBαAα)α for α ∈ (0, 1),

and the inequality holds in the converse direction for α > 1. Applying these inequalities to
A := ρ

1
2 and B := σ

1−α
α , we get

Tr ρασ1−α ≤ Tr
(
ρ

1
2σ

1−α
α ρ

1
2

)α
≤ ‖σ‖(1−α)2

(Tr ρα)1−α (Tr ρασ1−α)α (3)

for α ∈ (0, 1), and the inequalities hold in the converse direction for α > 1. In terms of the
Rényi divergences, the above inequalities yield the ones in the following Lemma, the first of
which has already been pointed out in [41] and [14].

I Lemma 4. Let ρ, σ ∈ S(H) be states. For any α ∈ (0,+∞),

D(old)
α (ρ‖σ) ≥ D(new)

α (ρ‖σ) ≥ αD(old)
α (ρ‖σ)− |α− 1| log dimH. (4)

Proof. The first inequality is immediate from the first inequality in (3). Taking into account
(2), and that ‖σ‖ ≤ 1, the second inequality in (3) yields the second inequality in (4) for
α ∈ (0, 1). For α > 1, we have Tr(ρ/ ‖ρ‖)α ≤ Tr(ρ/ ‖ρ‖, and hence we get Tr

(
ρ

1
2σ

1−α
α ρ

1
2

)α
≥

‖σ‖(1−α)2
‖ρ‖−(α−1)2 (

Tr ρασ1−α)α. Using that ‖ρ‖ ≤ 1 and that ‖σ‖ ≥ 1/ dimH, we get
the second inequality in (4) for α > 1. J

For ρ, σ ∈ B(H)+, let

Q(old)
α (ρ‖σ) := Tr ρασ1−α, Q(new)

α (ρ‖σ) := Tr
(
σ

1−α
2α ρσ

1−α
2α

)α
(5)

be the core quantities of the Rényi divergences D(old)
α and D

(new)
α , respectively. Q(old)

α is
jointly concave in (ρ, σ) for α ∈ [0, 1] (see [22, 35]) and jointly convex for α ∈ [1, 2] (see
[1, 35]). The general concavity result in [20, Theorem 2.1] implies as a special case that
Q

(new)
α (ρ‖σ) is jointly concave in (ρ, σ) for α ∈ [1/2, 1). (See also [15] for a different proof of

this). In [28, 41], joint convexity of Q(new)
α was shown for α ∈ [1, 2], which was later extended

in [15], using a different proof method, to all α > 1. These results are equivalent to the
monotonicity of the Rényi divergences under completely positive trace-preserving maps, for
α ∈ [0, 2] in the case of D(old)

α , and for α ≥ 1/2 in the case of D(new)
α .

The next lemma shows that the concavity of Q(new)
α in its first argument can be comple-

mented by a subadditivity inequality for α ∈ (0, 1):

I Lemma 5. Let ρ1, . . . , ρr ∈ S(H) be states and σ ∈ B(H)+, and let γ1, . . . , γr be a
probability distribution. For every α ∈ (0, 1),∑

i

γiQ
(new)
α (ρi‖σ) ≤ Q(new)

α

(∑
i

γiρi

∥∥∥σ) ≤∑
i

γαi Q
(new)
α (ρi‖σ). (6)

Proof. The function x 7→ xα is operator concave on [0,+∞) for α ∈ (0, 1) (see Theorems
V.1.9 and V.2.5 in [9]), from which the first inequality in (6) follows immediately. To prove
the second inequality, we use a special case of the Rotfel’d inequality, for which we provide a
proof below. First let A,B ∈ B(H)+ be invertible. Then

Tr(A+B)α − TrAα =
∫ 1

0

d

dt
Tr(A+ tB)α dt =

∫ 1

0
αTrB(A+ tB)α−1 dt

≤
∫ 1

0
αTrB(tB)α−1 dt = TrBα

∫ 1

0
αtα−1 dt = TrBα, (7)
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where in the first line we used the identity (d/dt) Tr f(A + tB) = TrBf ′(A + tB), and
the inequality follows from the fact that x 7→ xα−1 is operator monotone decreasing on
(0,+∞) for α ∈ (0, 1). By continuity, we can drop the invertibility assumption, and (7)
holds for any A,B ∈ B(H)+. Obviously, (7) extends to more than two operators, i.e.,
Tr(A1 + . . . + Ar)α ≤ TrAα1 + . . . + TrAαr for any A, . . . , Ar ∈ B(H)+ and α ∈ (0, 1).
Choosing now Ai := σ

1−α
2α γiρiσ

1−α
2α yields the second inequality in (6). J

I Corollary 6. Let ρ1, . . . , ρr ∈ S(H) be states and σ ∈ B(H)+, and let γ1, . . . , γr be a
probability distribution. For every α ∈ (0, 1),

min
i
D(new)
α (ρi‖σ) + log min

i
γi ≤ D(new)

α

(∑
i

γiρi

∥∥∥σ) ≤∑
i

γiD
(new)
α (ρi‖σ) .

Proof. Immediate from Lemma 5. J

4 Stein’s lemma with composite null-hypothesis

In the general formulation of binary quantum hypothesis testing, we assume that for every
n ∈ N, a quantum system with Hilbert space Hn is given, together with two subsets H0,n
and H1,n of the state space of Hn, corresponding to the null-hypothesis and the alternative
hypothesis, respectively. Our aim is to guess, based on a binary POVM, which set the true
state of the system falls into. Here we consider the i.i.d. case with composite null-hypothesis
and simple alternative hypothesis. That is, for every n ∈ N, Hn = H⊗n for some finite-
dimensional Hilbert space H; the null-hypothesis is represented by a set of states N ⊆ S(H),
and the alternative hypothesis is represented by a single state σ ∈ S(H). For every n ∈ N,
we have H0,n = N (⊗n) := {ρ⊗n : ρ ∈ N}, and H1,n = {σ⊗n}.

Given a binary POVM Tn = (Tn(0), Tn(1)), with Tn(0) corresponding to accepting the
null-hpothesis and Tn(1) to accepting the alternative hypothesis, there are two possible
ways of making an erroneous decision: accepting the alternative hypothesis when the null-
hypothesis is true, called the type I error, or the other way around, called the type II error.
The probabilities of these two errors are given by

αn(Tn) := sup
ρ∈N

Tr ρ⊗nTn(1), (type I) and βn(Tn) := Trσ⊗nTn(0), (type II).

Note that in the definition of αn, we used a worst-case error probability.
In the setting of Stein’s lemma, one’s aim is to keep the type I error below a threshold ε,

and to optimize the type II error under this condition. For any setM⊆ S(H⊗n) and any
ε ∈ (0, 1), let

βε(M‖σ⊗n) := inf
{

Trσ⊗nTn(0) : sup
ω∈M

TrωTn(1) ≤ ε
}
,

where the infimum is taken over all binary POVM Tn on H⊗n. When M consists of one
single element ω, we simply write βε(ω‖σ⊗n). The quantum Stein’s lemma states that

lim
n→+∞

1
n

log βε
(
N (⊗n)‖σ⊗n

)
= −D1(N‖σ) := − inf

ρ∈N
D1(ρ‖σ). (8)

This has been shown first in [19, 33] for the case where N consists of one single element
ρ. Theorem 2 in [16] uses group representation techniques to give an approximation of the
relative entropy in terms of post-measurement relative entropies, which, when combined with
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Stein’s lemma for probability distributions, yields (8) for finite N . A direct proof for the
case of infinite N , also based on group representation theory, has recently been given in [31].
A version of Stein’s lemma with infinite N has been previously proved in [10], however, with
a weaker error criterion.

Here we give a different proof of the quantum Stein’s lemma with possibly infinite
composite null-hypothesis. Our proof is based on the results of [6], where bounds on βε were
obtained in terms of Rényi divergences, and general properties of the Rényi divergences from
Section 3. Moreover, we give a refined version of (8) in Theorem 9 by providing finite-size
corrections to the deviation of 1

n log βε
(
N (⊗n)‖σ⊗n

)
from its asymptotic value −D1(N‖σ)

for every n ∈ N.
We will need the following results from [6]:

I Lemma 7. Let ρ, σ ∈ S(H). For every ε ∈ (0, 1) and every α ∈ (0, 1),

log βε(ρ‖σ) ≤ −D(old)
α (ρ‖σ) + α

1− α log ε−1 − h2(α)
1− α , (9)

where h2(α) := −α logα− (1− α) log(1− α) is the binary entropy function. Moreover, for
every n ∈ N,

1
n

log βε
(
ρ⊗n‖σ⊗n

)
≥ −D1(ρ‖σ)− 1√

n
4
√

2κ log(1− ε)−1, (10)

where κ is given in Lemma 1.

Proof. The upper bound (9) is due to [6, Proposition 3.2], while the lower bound in (10) is
formula (19) in [6, Theorem 3.3]. J

When N is infinite, we will need the following approximation lemma, which is a special
case of [24, Lemma 2.6]:

I Lemma 8. For every δ > 0, let Nδ ⊂ N be a set of minimal cardinality such that
supρ∈N infρ′∈Nδ ‖ρ− ρ′‖1 ≤ δ. Then |Nδ| ≤ min{|N |, (1 + 2δ−1)D}, where D = (dimH +
1)(dimH)/2, and

sup
ρ∈N

inf
ρ′∈Nδ

∥∥ρ⊗n − (ρ′)⊗n
∥∥

1 ≤ n sup
ρ∈N

inf
ρ′∈Nδ

‖ρ− ρ′‖1 ≤ nδ, n ∈ N. (11)

Now we are ready to prove our main result:

I Theorem 9. Let ε ∈ (0, 1), and for every n ∈ N, let 0 ≤ δn ≤ ε/(2n). Then

1
n

log βε
(
N (⊗n)‖σ⊗n

)
≤−D1(N‖σ)

+
√

log (2|Nδn |ε−1)
n

· 2
[
8κ2

max + log dimH+D1(N‖σ)
] 1

2

+
log
(
2|Nδn |ε−1)
n

· 4κmax, (12)
1
n

log βε
(
N (⊗n)‖σ⊗n

)
≥−D1(N‖σ)− 1√

n
4
√

2 log(1− ε)−1κmax, (13)

where κmax := supρ∈N {log(1 + Tr ρ3/2σ−1/2 + Tr ρ1/2σ1/2)} ≤ log(2 + Trσ−1/2) < +∞.
In (12), the slowest decaying term after −D1(N‖σ) is of the order 1/

√
n when N is

finite, and when N is infinite, it can be chosen to be of the order
√

logn
n .
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Proof. The lower bound in (13) is immediate from (10), and hence we only have to prove
(12). We have

log βε
(
N (⊗n)‖σ⊗n

)
≤ log βε−nδn

(
N (⊗n)
δn
‖σ⊗n

)
≤ log β ε−nδn

|Nδn |

 ∑
ρ∈Nδn

1
|Nδn |

ρ⊗n
∥∥∥∥σ⊗n


≤ −D(old)

α

 ∑
ρ∈Nδn

1
|Nδn |

ρ⊗n
∥∥∥∥σ⊗n

+ α

1− α log |Nδn |
ε− nδn

≤ −D(new)
α

 ∑
ρ∈Nδn

1
|Nδn |

ρ⊗n
∥∥∥∥σ⊗n

+ α

1− α log |Nδn |
ε− nδn

,

where the first inequality is due to (11), the second inequality is obvious, the third one follows
from (9), and the last one is due to Lemma 4. Note that ε−nδn ≥ ε/2 by assumption. Using
Corollary 6, we can continue the above upper bound as

log βε
(
N (⊗n)‖σ⊗n

)
≤ − min

ρ∈Nδn
D(new)
α

(
ρ⊗n‖σ⊗n

)
+ log |Nδn |+ + α

1− α log |Nδn |+
α

1− α log 2
ε

≤ −n inf
ρ∈N

D(new)
α (ρ‖σ) + 1

1− α log |Nδn |+
1

1− α log 2
ε
,

where in the last line we used the additivity property D(new)
α (ρ⊗n‖σ⊗n) = nD

(new)
α (ρ‖σ).

By Lemmas 4 and 1, for every α ∈ (1/2, 1) such that α > 1− c
2κmax

,

inf
ρ∈N

D(new)
α (ρ‖σ) ≥ α inf

ρ∈N
D(old)
α (ρ‖σ)− (1− α) log dimH

≥ α inf
ρ∈N

D1 (ρ‖σ)− 4α(1− α)κ2
max cosh c− (1− α) log dimH,

where c is an arbitrary positive constant. Now choose α := 1− a/
√
n. Then

1
n

log βε
(
N (⊗n)‖σ⊗n

)
≤−

(
1− a√

n

)
D1(N‖σ) + a√

n

(
4κ2

max cosh c+ log dimH
)

+ 1
a
√
n

(
log |Nδn |+ log 2

ε

)
.

Optimizing over a yields

1
n

log βε
(
N (⊗n)‖σ⊗n

)
≤ −D1(N‖σ) + 2√

n

[
4κ2

max cosh c+ log dimH+D1(N‖σ)
] 1

2 ·
[
log(2|Nδn |ε−1)

] 1
2 .

(14)

The optimum is reached at

a∗ =
[
log(2|Nδn |ε−1)

] 1
2 ·
[
4κ2

max cosh c+ log dimH+D1(N‖σ)
]− 1

2 ,

and we need a∗/
√
n ≤ 1/2 and a∗/

√
n ≤ c/(2κmax), which is satisfied if

κ2
max cosh c ≥ 1

n
log(2|Nδn |ε−1) and c2 cosh c ≥ 1

n
log(2|Nδn |ε−1).
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Let us choose c > 0 such that cosh c = 2 + 1
n log(2|Nδn |ε−1). By Remark 2, κmax > 1, and

hence the first inequality is satisfied. Moreover, with this choice c > 1, and thus the second
inequality is satisfied as well.

Substituting this choice of c into (14), and using the subadditivity of the square root, we
get (12).

When N is finite, we can choose δn = 0, and hence Nδn = N , for every n. This shows
that the second term in (12) is of the order 1/

√
n, while the third term is of the order 1/n.

When N is infinite, we can choose δn = ε/(2n2), whence the order of the second term in (12)
is
√

logn
n , and the order of the third term is logn

n . J

I Remark 10. In the case of a simple null-hypothesis N = {ρ}, the limit

lim
n→+∞

√
n

(
1
n

log βε(N (⊗n)‖σ⊗n) +D1(N‖σ)
)
, (15)

called the second-order asymptotics, has been determined in [21, 39]. Their results show that
the finite-size bounds of [6] are not asymptotically optimal, and hence the same holds for
the bounds in Theorem 9. The merit of these latter results, on the other hand, is that the
correction terms are easily computable, and the bounds are valid for any finite n. To the best
of our knowledge, the value of the limit (15) has not yet been determined when |N | > 1, and
our bounds in Theorem 9 give bounds on the second-order asymptotics in this case.

Acknowledgements. The author is grateful to Professor Fumio Hiai and Nilanjana Datta
for discussions.
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