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Abstract
A quantum algorithm for the Hidden Subgroup Problem over the group Z/prZ o Z/qsZ is pre-
sented. This algorithm, which for certain parameters of the group qualifies as ‘efficient’, general-
izes prior work on related semi-direct product groups.
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1 Introduction and Related Work

1.1 Introduction
The quantum algorithm to factorize integers as given by Shor [8] in 1994 is exponentially
faster than any known classical algorithm. The success of Shor’s algorithm resulted in a
great deal of interest in quantum computing, subsequently resulting in the design of several
more quantum algorithms that are exponentially faster than their classical counterparts.
Several of these algorithms solve the problem of finding subgroup generators of a group
using evaluations of a function that “hides” the subgroup [2]. This generalized framework
is captured by the Hidden Subgroup Problem (referred henceforth as HSP) and has been
successful in admitting quantum algorithms that are exponentially faster than their classical
counterparts. It is known that there exists an efficient solution to the HSP for finite Abelian
groups, but this is not known to hold for non-Abelian groups. The motivation for research
in this area stems from knowledge that an efficient solution to the HSP over the symmetric
group (dihedral group) will result in an efficient quantum algorithm for graph isomorphism
(shortest vector in a lattice). In this article, we present an algorithm to solve the hidden
subgroup in the specific class of non-Abelian groups, i.e. the semi-direct product groups
of the form G := Z/prZ o Z/qsZ, where p, q are prime with p 6= q and r, s ∈ Z+ with the
relative sizes of the subgroups bounded by pr/qt−j ∈ O(poly(log pr)) where j ∈ {0, . . . , t−1}
is a parameter specific to the group. For certain parameters of G and its subgroup, this
algorithm has running time O(poly(log |G|)), and hence qualifies as ‘efficient’.

In Section 2 we clarify the structure of the group Z/prZoZ/qsZ and its subgroups. The
quantum algorithm that will help solve for the hidden subgroup, H within this specific class
of non-Abelian groups is presented in Section 3.
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1.2 Related Work
There has been considerable work in trying to solve the HSP in semi-direct product groups.
In this article we discuss the case Z/prZ o Z/qsZ. It was shown in [1] that the HSP in
Z/NZoZ/qZ, for positive integers N, q such that N/q ∈ O(poly(logN)), reduces to finding
cyclic subgroups of order q and can be efficiently solved. This work was extended in [6], which
developed an efficient HSP algorithm in (Z/prZ)m o Z/pZ, with p prime and integers r,m.
Following this, in 2009 an efficient quantum algorithm to solve the HSP in Z/pZ o Z/qsZ
for distinct odd primes and s > 0 such that p/q ∈ O(poly(log p)) was shown [4]. More
recently in [5], the HSP problem was considered in Z/prZ o Z/qsZ where p, q are distinct
primes such that pr/q ∈ O(poly(log pr)). The current article extends this previous result [5].
Specifically, the group Z/prZ o Z/qsZ has a parameter t (as explained in the next section)
that characterizes the group. In [5] an algorithm was presented for the t = 1 case; here
we deal with all possible values t ∈ {0, . . . , s}. Whether or not our algorithm qualifies as
efficient depends on the specific parameters of G and its subgroup, which will be explained
in Section 3.

2 The Group Z/prZ o Z/qsZ and Its Subgroups

2.1 Some Properties of the Group Z/prZ o Z/qsZ
In this section we discuss and prove various properties of the semi-direct product group
G := Z/prZ o Z/qsZ, with p, q prime and r, s ∈ Z+. We know that Z/prZ and Z/qsZ are
finite, cyclic, Abelian groups. Let φ : Z/qsZ → Aut(Z/prZ) be the group homomorphism
that defines G, for all a, c ∈ Z/prZ and all b, d ∈ Z/qsZ:

(a, b)(c, d) = (a+ φ(b)(c), b+ d). (1)

As Z/qsZ is cyclic, we have for all b that φ(b) = φ(1+ · · ·+1) = φ(1)b. In a similar vein, since
Z/prZ is also cyclic, we have φ(1)(c) = φ(1)(1 + · · ·+ 1) = φ(1)(1) + · · ·+φ(1)(1) = cφ(1)(1).
We thus see that φ is completely determined by the single value φ(1)(1), which from now on
will be denoted by α := φ(1)(1) ∈ (Z/prZ)∗. The group operation in G = Z/prZ oα Z/qsZ
thus simplifies to

(a, b)(c, d) = (a+ αbc, b+ d). (2)

The identity in G is (0, 0) and the inverse is expressed by (a, b)−1 = (−α−ba,−b).
Because it must hold that 1 = α0 = α(qs) we have that there exists a smallest integer

t ∈ {0, . . . , s} such that α(qt) = 1. As explained in [5], if the groups G = Z/pr oα Z/qsZ and
G′ = Z/pr oα′ Z/qsZ have the same t-parameter (t = t′), then these groups are isomorphic.
Additionally, if t = 0 we have that α = 1, making G Abelian. From now on we will thus
assume that t ∈ {1, . . . , s}. It can be shown that qt | (p− 1). We also note that it can be
shown that G is supersolvable.

2.2 Subgroups of Z/prZ o Z/qsZ
Following [5, Theorem 2], the subgroups of the group G = Z/prZ oα Z/qsZ are from either
one of three types. With t ∈ {1, . . . , s} the parameter of G as explained in the previous
section, these types are as follows.
Type I: HI

i,j = 〈(pi, qj)〉, for each i ∈ {0, . . . , r} and j ∈ {t, . . . , s}.
Type II: HII

j,η = 〈(η, qj)〉, for each j ∈ {0, . . . , t− 1} and η ∈ Z/prZ.
Type III: HIII

i,j,η = 〈(pi, 0), (η, qj)〉, for each i ∈ {0, . . . , r − 1}, j ∈ {0, . . . , t − 1}, and
η ∈ {0, . . . , pi − 1}.
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112 Hidden Subgroup Quantum Algorithms for a Class of Semi-Direct Product Groups

We point out that [5, Theorem 2] allows the η parameter for Type III subgroups to be
from the whole set {0, . . . , pr − 1} but that this creates ambiguity as, for example, HIII

0,0,0 =
〈(1, 0), (0, 1)〉 = G and HIII

0,0,1 = 〈(1, 0), (1, 1)〉 = G as well. By limiting η to the set
{0, . . . , pi − 1} each triplet of parameters (i, j, η) defines a unique Type III subgroup.

Next, we will describe the parameterization of the elements of these three types of
subgroups. The elements of the Type I subgroup are of the form (pi, qj)z = (zpi, zqj) where
z ∈ Z and where we used the fact that α(qj) = 1 as j ≥ t. Because gcd(pr, qs) = 1 we can
further simplify this description to

HI
i,j = {(xpi, yqj) : x ∈ {0, . . . , pr−i − 1}, y ∈ {0, . . . , qs−j − 1}}, (3)

showing that HI
i,j has pr−iqs−j elements.

The subgroups of Type II and III are less trivial to describe. To better understand the
elements of the subgroup 〈(η, qj)〉, consider first some small powers of the generating element
(η, qj):

(η, qj)−1 = (−ηα(−qj),−qj)
(η, qj)0 = (0, 0)
(η, qj)1 = (η, qj)
(η, qj)2 = (η + ηα(qj), 2qj)
(η, qj)3 = (η + ηα(qj) + ηα(2qj), 3qj)

(4)

and so on. In general we have the following characterization.

I Lemma 1. Let G = Z/prZ oα Z/qsZ and let t ∈ {1, . . . , s} be the smallest positive
integer such that α(qt) = 1. For any η ∈ Z/prZ and j ∈ {0, . . . , t − 1} consider the cyclic
subgroup H = 〈(η, qj)〉. For each exponent y ∈ Z, the elements of H can be described by
(η, qj)y = (ηS(y), yqj) where S : Z→ Z/prZ is defined by

S(y) := α(yqj) − 1
α(qj) − 1

. (5)

As a result, the subgroup has qs−j elements such that

HII
j,η := 〈(η, qj)〉 = {(ηS(y), yqj) : y ∈ {0, . . . , qs−j − 1}}. (6)

Proof. In [5, Lemma A2] it is shown that α(qj)−1 is invertible in Z/prZ hence the definition
of S in Equation 5 does indeed make sense. Assuming for a given y that (η, qj)y = (ηS(y), yqj)
we get (η, qj)y+1 = (η, qj)(ηS(y), yqj) = (η(1 + α(qj)S(y)), (y + 1)qj). With this relation
S(y + 1) = 1 + α(qj)S(y) and S(0) = 0 the Equality 5 can be proven by induction on y.

From the Z/qsZ part of G it is obvious that the values y such that (ηS(y), yqj) = (0, 0)
must obey that y is a multiple of qs−j . Conversely, if y = λqs−j , then S(y) = (α(λqs) −
1)/(α(qj) − 1) = 0. Hence (ηS(y), yqj) = (0, 0) if and only if y = 0 mod qs−j . J

Upon further inspection it is clear that S has period qt−j , which will be helpful in the
reduction of the complexity of finding the hidden subgroup H in G.

The Type III subgroups are obviously extensions of the previous type. As we have
(pi, 0)(ηS(y), yqj) = (pi + ηS(y), yqj) and (ηS(y), yqj)(pi, 0) = (ηS(y) + α(yqj)pi, yqj) it is
clear that the elements of HIII can be described by

HIII
i,j,η = {(xpi + ηS(y), yqj) : x ∈ {0, . . . , pr−i − 1}, y ∈ {0, . . . , qs−j − 1}}, (7)

which also shows that it has pr−iqs−j elements, and hence that HIII
0,0,η = G, regardless of η.

More generally, it is only the value η mod pi that matters in the definition of this subgroup.
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3 Quantum Algorithm for HSP in Z/prZ o Z/qsZ

3.1 Overview of Algorithm

In this section we will present a quantum algorithm that solves the hidden subgroup problem
in G = Z/prZ oα Z/qsZ, but before doing so we will reduce the problem significantly. As in
the previous section, the group operation is defined by (a, b)(c, d) = (a+ αbc, b+ d) where
α ∈ (Z/prZ)∗ and for which there exists a smallest integer t ∈ {1, . . . , s} such that α(qt) = 1.
Let f be the subgroup hiding function on G, which obeys

f((a, b)) = f((a′, b′)) if and only if (a, b)−1(a′, b′) ∈ H. (8)

In other words, f is constant on the left cosets of H and f is different between different
cosets of H.

Recall from Section 2.2 that the subgroups of G are one of three types with potentially
unknown parameters i, j, η. In [5, Section 3] it was claimed that it was sufficient to solve the
HSP for Type II subgroups but the current authors were unable to reproduce this result.
Instead we will present an alternative way of finding the hidden subgroup.

We assume that all the parameters (p, r, q, s, α, and t) of the group G are known.
For our purposes, an algorithm is considered efficient if its running time is bounded by
O(poly(log(|G|)) = O(poly(r log p+ s log q)). Note that when an algorithm suggests that a
group H ′ is the hidden subgroup, then that suggestion can be checked by querying f on
(0, 0) and on the generators of H ′. If H ′ passes this check we can conclude that H ′ ≤ H;
otherwise a mistake was made and the algorithm should be executed again to find another
suggestion for H. Repeating the above procedure will give a ‘largest’ subgroup that with
high probability will equal the true hidden subgroup.

Because of the just described approach to solve the HSP, it is sufficient to use an
algorithm that finds the hidden subgroup with a success rate that is significant enough.
For the current case of possible subgroups of G it is therefore sufficient to simply guess
the parameters i ∈ {0, . . . , r} and j ∈ {0, . . . , s} as the probability of doing so correctly
equals 1/rs ∈ Ω(1/ poly(log |G|)). If the subgroup is of Type I this will have answered
the HSP completely. In the case of Type II or Type III subgroups the following quantum
algorithms will have to be employed to find the unknown parameter η ∈ Z/prZ (Type II) or
η ∈ {0, . . . , pi − 1} (Type III).

3.2 Quantum Algorithm for Finding HSP in Z/prZ o Z/qsZ

I Theorem 2. Let p and q be distinct primes and let r and s be positive integers. Define
the semi-direct product group G := Z/prZ oα Z/qsZ by the non-commuting group operation
that, for all a, c ∈ Z/prZ and all b, d ∈ Z/qsZ, has (a, b)(c, d) = (a + αbc, b + d) for an
α ∈ (Z/prZ)∗. Let t ∈ {1, . . . , s} be the smallest positive integer such that α(qt) = 1.

Let the function f on G hide a Type II subgroup H = 〈(η, qj)〉 and assume that the
parameter j ∈ {0, . . . , t− 1} is known. There exists a probabilistic quantum algorithm that
determines the unknown parameter η ∈ Z/prZ with success probability (1 − 1/p)(qt−j/pr)
using only one query to f .

Proof. This proof is inspired by the PGM algorithm described in [1], but it uses several
additional ingredients specific to the properties of this group G and its subgroups (for which
see Section 2).
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1. Initialize the register in the state,

|ψ1〉 = 1√
prqt−j

∑
x∈Z/prZ

qt−j−1∑
y=0

|x, yqj , f((x, yqj))〉.

Note how the second register contains only multiples of qj and how the range of yqj goes
only to qt and not qs.

2. The pr different left cosets of H that are relevant for this algorithm are described by
(`, 0)H = {(`+ ηS(y), yqj) : y ∈ {0, . . . , qt−j − 1}}, for each ` ∈ Z/prZ. After measuring
(and ignoring) the third register of |ψ1〉 in the computational basis we thus get the state

|ψ2〉 = 1√
qt−j

qt−j−1∑
y=0

|`+ ηS(y), yqj〉,

for an unknown and irrelevant ` ∈ Z/prZ.
3. Applying the Fourier Transform over Z/prZ to the first register of |ψ2〉 we get, with

ω := exp(i2π/pr),

|ψ3〉 = 1√
prqt−j

∑
k∈Z/prZ

qt−j−1∑
y=0

ωk(`+ηS(y))|k, yqj〉

= 1√
prqt−j

∑
k∈Z/prZ

ωk`|k〉
qt−j−1∑
y=0

ωkηS(y)|yqj〉.

4. Measure the first register in the computational basis and assume the result is some
invertible k ∈ (Z/prZ)∗ (which occurs with probability (1 − 1/p)). Tracing out this k
register gives us the remaining superposition

|ψ4〉 = 1√
qt−j

qt−j−1∑
y=0

ωkηS(y)|yqj〉.

5. We now take the yqj register in |ψ4〉 and use it to append a second register with the
value kS(y) = k(α(yqj)− 1)/(α(qj)− 1) mod pr. As α, q, j, pr, k are known and (α(qj)− 1)
is invertible, this transformation can be done efficiently, yielding

|ψ5〉 = 1√
qt−j

qt−j−1∑
y=0

ωkηS(y)|yqj , kS(y)〉.

6. Because k is invertible and the function S is injective on {0, . . . , qt−j−1}, we can determine
a unique solution y from the value kS(y). Using Shor’s discrete logarithm algorithm we
can hence efficiently implement the unitary mapping |yqj , kS(y)〉 7→ |0, kS(y)〉, giving

|ψ6〉 = 1√
qt−j

qt−j−1∑
y=0

ωkηS(y)|kS(y)〉.

7. Finally, we perform an inverse Fourier transform over Z/prZ in the hope of observing
the unknown η. To calculate the probability of this occurring, consider the ideal state
|η̂〉 :=

∑
z∈Z/prZ ω

zη|z〉/
√
pr, which is guaranteed to give η. The fidelity squared between

this perfect state and our actual state is |〈ψ6|η̂〉|2 = (qt−j)/pr, which is thus the probability
of observing η at the end of this step.
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The above algorithm requires one f -query and poly(log |G|) time and space. Its overall
success probability equals (1− 1/p)(qt−j/pr). J

The algorithm for finding Type III subgroups is an adaptation of the just described
algorithm. Crucially, the unknown parameter η is an element of the set {0, . . . , pi− 1}, which
influences the first register of the algorithm.

I Theorem 3. Let p and q be distinct primes and let r and s be positive integers. Define
the semi-direct product group G := Z/prZ oα Z/qsZ by the non-commuting group operation
that, for all a, c ∈ Z/prZ and all b, d ∈ Z/qsZ has (a, b)(c, d) = (a + αbc, b + d) for an
α ∈ (Z/prZ)∗. Let t ∈ {1, . . . , s} be the smallest positive integer such that α(qt) = 1.

Let the function f hide a Type III subgroup H = 〈(pi, 0), (η, qj)〉 in G and assume that the
parameters i ∈ {0, . . . , r − 1} and j ∈ {0, . . . , t− 1} are known. There exists a probabilistic
quantum algorithm that can determine the unknown parameter η ∈ {0, . . . , pi − 1} with
success probability (1− 1/p)(qt−j/pi) using only one query to f .

Proof. This algorithm is quite similar to the one of the previous theorem, except for the
fact that the first register will be restricted to elements of Z/piZ.
1. Initialize the register in the state

|ψ1〉 = 1√
piqt−j

pi−1∑
x=0

qt−j−1∑
y=0

|x, yqj , f((x, yqj))〉.

Note how the second register contains only multiples of qj , how the range of yqj goes
only to qt and not qs, and how the first register contains only pi elements.

2. The pi different left cosets of H that are relevant for this algorithm are described by
(`, 0)H = {(`+ xpi + ηS(y), yqj) : x ∈ {0, . . . , pr−i − 1}, y ∈ {0, . . . , qt−j − 1}}, for each
` ∈ {0, . . . , pi − 1}. As the first register contains values from the set {0, . . . , pi − 1} this
description further reduces to {(`+ηS(y) mod pi, yqj) : y ∈ {0, . . . , qt−j−1}}. Measuring
the third register of |ψ1〉 in the computational basis we get the state

|ψ2〉 = 1√
qt−j

qt−j−1∑
y=0

|`+ ηS(y) mod pi, yqj〉,

for an unknown and irrelevant ` ∈ {0, . . . , pi − 1}.
3. From now on we interpret the first register of |ψ2〉 as containing values from Z/piZ and

we apply the Fourier Transform over Z/piZ to it. With ω := exp(i2π/pi), we get

|ψ3〉 = 1√
piqt−j

∑
k∈Z/piZ

qt−j−1∑
y=0

ωk(`+ηS(y))|k, yqj〉

= 1√
piqt−j

∑
k∈Z/piZ

ωk`|k〉
qt−j−1∑
y=0

ωkηS(y)|yqj〉.

4. Measure the first register in the computational basis and assume the result is some
invertible k ∈ (Z/piZ)∗, which occurs with probability (1 − 1/p). Tracing out this k
register gives us the remaining superposition

|ψ4〉 = 1√
qt−j

qt−j−1∑
y=0

ωkηS(y)|yqj〉.

TQC’14
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5. We now take the yqj register in |ψ4〉 and use it to append a second register with the
value kS(y) = k(α(yqj) − 1)/(α(qj) − 1) mod pi. As α, q, j, pi, k are known and (α(qj) − 1)
is invertible, this transformation can be done efficiently, yielding

|ψ5〉 = 1√
qt−j

qt−j−1∑
y=0

ωkηS(y)|yqj , kS(y)〉.

6. Because k is invertible and the function S is injective on {0, . . . , qt−j−1}, we can determine
a unique solution y from the value kS(y). Using Shor’s discrete logarithm algorithm we
can hence efficiently implement the unitary mapping |yqj , kS(y)〉 7→ |0, kS(y)〉, giving

|ψ6〉 = 1√
qt−j

qt−j−1∑
y=0

ωkηS(y)|kS(y)〉.

7. Finally we perform an inverse Fourier transform over Z/piZ in the hope of observing
the unknown η. To calculate the probability of this occurring consider the ideal state
|η̂〉 :=

∑
z∈Z/piZ ω

zη|z〉/
√
pi, which is guaranteed to give η. The fidelity squared between

this perfect state and our actual state is |〈ψ6|η̂〉|2 = (qt−j)/pi, which is thus the probability
of observing η at the end of this step.

The above algorithm requires one f -query and poly(log |G|) time and space. Its overall
success probability equals (1− 1/p)(qt−j/pi). J

Summarizing the above theorems, we have the following result.

I Corollary 4. Let p and q be distinct primes and let r and s be positive integers. Define
the semi-direct product group G := Z/prZ oα Z/qsZ by the non-commuting group operation
that, for all a, c ∈ Z/prZ and all b, d ∈ Z/qsZ, has (a, b)(c, d) = (a + αbc, b + d) for an
α ∈ (Z/prZ)∗. Let t ∈ {1, . . . , s} be the smallest positive integer such that α(qt) = 1. Let the
function f on G hide a subgroup H. There exists a quantum algorithm that determines H
with a time complexity depending on the type of H in the following manner.
Type I: If HI

i,j = 〈(pi, qj)〉 for some unknown i ∈ {0, . . . , r} and j ∈ {t, . . . , s}, then H will
be found efficiently in time O(poly(log |G|)).

Type II: If HII
j,η = 〈(η, qj)〉 for some unknown j ∈ {0, . . . , t − 1} and η ∈ Z/prZ, then H

will be found in time O(poly(log |G|, pr/qt−j)).
Type III: If HIII

i,j,η = 〈(η, qj)〉 for some unknown i ∈ {0, . . . , r − 1}, j ∈ {0, . . . , t − 1} and
η ∈ {0, . . . , pi − 1}, then H will be found in time O(poly(log |G|, pi/qt−j)).

The quantum algorithm can be considered efficient, i.e. has running time O(poly(log |G|)), if
the subgroup is of Type I, or if the Type II subgroup HII

j,η has pr/qt−j ∈ poly(log |G|), or if
the Type III subgroup HIII

i,j,η has pi/qt−j ∈ poly(log |G|).

These running times should be compared to the classical algorithm of repeatedly sim-
ply guessing the parameters i, j, η of the hidden subgroup. For Type I, II, and III sub-
groups this approach gives a running time of O(poly(log |G|)), O(poly(log |G|, pr)), and
O(poly(log |G|, pi)) respectively. Hence we see that the presented quantum algorithm pro-
vides a speed-up of order Ω(qt−j) for subgroups of Type II and III.

4 Conclusion

In this paper, we consider the Hidden Subgroup Problem in the semi-direct product group
Z/prZoZ/qsZ with p, q distinct primes. Our result generalizes the work in [5], which imposed
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a restriction on the kind of homomorphism that the semi-direct product uses. The result
here holds for all possible Z/prZoZ/qsZ. While our algorithm is efficient for certain cases of
the parameters of G and H, it is not so in other cases. This partial result is not unexpected
as the design of an efficient algorithm for the HSP for the dihedral group Z/prZ o Z/2Z
remains a major open problem in the theory of quantum algorithms.
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