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Preface

The 9th Conference on the Theory of Quantum Computation, Communication and Cryp-
tography was held at the National University of Singapore, from the 21st to the 23rd May
2014.

Quantum computation, quantum communication, and quantum cryptography are subfields
of quantum information processing, an interdisciplinary field of information science and
quantum mechanics. The TQC conference series focuses on theoretical aspects of these
subfields. The objective of the conference is to bring together researchers so that they can
interact with each other and share problems and recent discoveries.

A list of the previous editions of TQC follows:

TQC 2013, University of Guelph, Canada

TQC 2012, The University of Tokyo, Japan

TQC 2011, Universidad Complutense de Madrid, Spain

TQC 2010, University of Leeds, UK

TQC 2009, Institute for Quantum Computing, University of Waterloo, Canada

TQC 2008, University of Tokyo, Japan

TQC 2007, Nara Institute of Science and Technology, Nara, Japan

TQC 2006, NTT R&D Center, Atsugi, Kanagawa, Japan

The conference consisted of invited talks, contributed talks, a poster session, a rump
session, and a business meeting. The invited talks were given by Fernando G.S. L. Brandao
(University College London, London), Vittorio Giovannetti (NEST, Scuola Normale Superiore,
Pisa) and Yaoyun Shi (University of Michigan, Ann Arbor).

The conference was possible thanks to the financial support of the Centre for Quantum
Technologies, Singapore.

We wish to thank the members of the Program Committee and all subreviewers for their
precious help. Our warm thanks also go to the members of the Local Organizing Committee,
for their considerable efforts in organizing the conference. We would like to thank Marc
Herbstritt and Michael Wagner (Dagstuhl Publishing) for their technical help. Finally, we
would like to thank the members of the Steering Committee for giving us the opportunity to
work for TQC. And, of course, all contributors and participants!
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More Randomness From Noisy Sources*

Jean-Daniel Bancal®' and Valerio Scarani':?

1 Centre for Quantum Technologies, National University of Singapore
3 Science Drive 2, Singapore 117543

2 Department of Physics, National University of Singapore
2 Science Drive 3, Singapore 117542

—— Abstract

Bell experiments can be used to generate private random numbers. An ideal Bell experiment

would involve measuring a state of two maximally entangled qubits, but in practice any state
produced is subject to noise. Here we consider how the techniques presented in [1] and [2], i.e.
using an optimized Bell inequality, and taking advantage of the fact that the device provider is
not our adversary, can be used to improve the rate of randomness generation in Bell-like tests
performed on singlet states subject to either white or dephasing noise.

1998 ACM Subject Classification J.2 Physical Sciences and Engineering
Keywords and phrases Randomness, Bell inequalities, Trusted provider assumption

Digital Object ldentifier 10.4230/LIPIcs. TQC.2014.1

1 Introduction

It is well known that the violation of a Bell inequality rules out the possibility for the
outcomes of a Bell-type experiment to be known in advance [3]. Therefore, these outcomes
are certifiably unpredictable. Recent works have shown that the uncertainty present in these
outcomes can be quantified, thus allowing one to lower bound the number of random bits
that can be extracted from a given Bell-type experiment [4, 5].

This possibility has given rise to a variety of randomness-related studies based on a
similarly varied set of working assumptions. For instance, many works considered the case
in which the adversary (the actor for whom outcomes are to be certifiably unpredictable)
is allowed to distribute the quantum state measured by the authorized parties, and keep a
purification of this state. Under this assumption, it was shown that randomness expansion
is possible: if the user holds a secret string of finite length, he can expand it into a longer
one [6], or, in principle, even an infinite one [8, 7].

Also, the outcomes observed by the user can be certified to contain some amount of
randomness even when the adversary, in addition to distributing the state, holds partial
information about the initial random string of the user [9]. This possibility, refered to as
randomness amplification, was proved recently for initial randomness issued from a generic
min-entropy source [10, 11] after a series of partial results [12, 13].

These results show the full power of quantum certification in principle. However, when
it comes to realizing such protocols, a number of questions arise. For instance, in which
practical situation would one wish to expand a random string if we already have access
to a source that can produce initial random strings? Also, in the context of randomness

* This work was supported by the National Research Foundation (partly through the Academic Research
Fund Tier 3 MOE2012-T3-1-009) and the Ministry of Education, Singapore.
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More Randomness From Noisy Sources

amplification, it is unclear in which meaningful situation the dependence would exist at all
but be bounded. If the adversary is allowed to tamper with the devices, for instance, or even
to produce them, then he may have hidden some kind of emitter inside the boxes, in order
to retrieve all numbers produced by the boxes (which otherwise work as expected). This
simple possibility would compromise any certification of randomness.

For these reasons, in the design and assessment of practical realization of randomness
protocols , it is very reasonable to work under the assumption that the adversary has no
access to the devices used by the authorized partners. This trusted provider assumption
was already introduced in the context of randomness protocols in [14], where it was shown
that it restricts the adversary to hold only classical side information (i.e. he cannot hold a
purification of the quantum state). Note that this contrasts with the case of quantum key
distribution (QKD): practical QKD also requires the trusted provider assumption, for the
same reason as mentione above, however the adversary can still hold a purification in this
case since the quantum state passes in his hands. Another consequence mentioned in [14]
is that the initial string used by the user to choose settings for his Bell test need not be
private, but can be fully known in advance by the adversary. One thus speaks of randomness
generation in this context.

It was shown in [1] that additional randomness can be certified under the trusted provider
assumption compared to that granted by randomness expansion protocols, by extracting
randomness from all the settings. Moreover, this same paper as well as [2] demonstrated
that Bell-like inequalities that certify more randomness than usual Bell inequalities (like
e.g. CHSH) can be derived from knowledge of the full correlations. In this paper, we
analyse the advantage provided by these techniques when the quantum state measured by
the user is a singlet states mixed either with white or dephasing noise. White noise typically
describes the effect of many small errors in a setup whereas dephasing noise is the dominant
noise in SPDC-based sources when the pump power is low. The case of white noise was
already partially studied in both [1] and [2]. The analysis given here gathers the information
presented in both studies and provides a comparison with the dephasing noise case.

Even though our analysis relies on the trusted provider assumption, it is worth noting
that some of the results obtained here could also apply to more general adversaries; we refer
to [15] for a concise review of adversarial classes relevant to randomness protocols.

For the present paper, we assume that the source emits exactly one pair of particles per
unit time and that these are detected with certainty. The case of finite detection efficiency
was studied in [1], in absence of noise; when the emission is not heralded, more effects come
into play, see e.g. [16].

Another assumption that we make here is that the devices used by the user are i.i.d. and
that he can use as many of them as he wants. We thus focus on the rate of randomness
generation, defined as the number of random bits generated in each use of the devices.

2 Randomness analysis

We consider here a usual Bell-type experiment performed by a user [3]. At each round,
the user chooses some inputs z,y for his two devices to use as measurement settings, and
observes their outcomes a,b. The i.i.d. behavior of the boxes follows the quantum conditional
probability P(a,blz,y) € Q.

In general, these correlation can admit a decomposition {gx, Py} such that

P(ablzy) = > qxPx(ablzy) (1)
A
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with gx >0, >~ ¢x =1, Px(ablzy) € Q. When this decomposition is not trivial, by knowing
in each round which value of A corresponds to the realization of the box, the adversary can
hold a more precise decription of the box’s behavior for that run, as given by Pj(ablxy).

Following [1, 2], we thus define the adversary’s guessing probability on the outcomes
observed by the user when using settings x,y and in presence of the decomposition {gx, Py}
as

Gey({ar PA}) = 3 g max Py (ablay). )
SR

The average guessing probability when settings are chosen with probability p(z,y) is then
the maximum of

G(P)=> p(x,y)) ax max Py (ablzy) (3)

Ty A

over all decompositions (1) compatible with the correlations P(ab|zy).

It was shown in [1] that this quantity can be upper bounded by considering an SDP
(Semidefinite Program) relaxation of the set of quantum correlations [17]. In the following
section, we thus use this program to evaluate the rate, as given by the min entropy

Hyin(P) = —logy(G(P)), (4)

at which random bits are generated in the experiment.
Note that the particular case of this optimization where randomness is extracted from
a fixed choice of settings (pzy = 0z,2,0y,y,), Or Where the outcomes of different settings are

allowed to by guessed with different decomposition, was also presented independently in [2].

In the following we compare three quantities:

1. The rate of randomness obtained from a fixed set of settings as certified by a CHSH
violation.

2. The rate of randomness obtained from a fixed set of settings as certified by an optimized
Bell-type expression.

3. The rate of randomness obtained when using all settings with the same probability as
certified by an optimized Bell-type expression.

Note that here we consider extracting randomness from the pair of outcomes (a, b) rather
than from the outcome of a single party. A similar computation could be done by taking
only one party’s outcome into consideration, but would result in a lower rate. Also, for the

first two quantities, the fixed set of settings is chosen as to maximize the rate of randomness.

For all results presented next, the numerical computations were performed using the
relaxation of the SDP hierarchy at local level 2 [18].

2.1  White noise

First, let us consider the case in which the measured state is
p(V) =VI]p* ) (¢T |+ (1 - V)1/4, (5)

for some visibility V. The settings which provide the largest violation 2v/2V of the CHSH
inequality

S = (AoBo) + (AoB1) + (A1Bo) — (A1By) <2, (6)

TQC’14
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ratio

Randomness [bits/run]

0 L L L L L
0.7 0.75 0.8 0.85 0.9 0.95 1
\'

Figure 1 Rate of private randomness generation certified by the measure 1, 2 and 3 for a singlet
state mixed with white noise. The inset presents the ratio of the curves to the lowest one.

where A,, B, are Alice’s and Bob’s observables, are the same for all V:

+ (=1)Y0,
Ag =02, Ay =0, By:w. (7)
We thus computed for this state and settings the three different rates of randomness
mentioned above. The result is presented in Figure 1.
The randomness rate obtained in case 2 (middle curve) can be certified with the help of

the following Bell expression:
a<A0B0> + <AQB1> + <A1BO> - ﬂ<AlBl>, (8)

where the values of a and 8 depend on V' (see [2] for a description of this dependence). The
inset in Figure 1 shows that the advantage provided by using this optimized Bell expression
is however quite limited.

The largest amount of randomness is obtained in case 3 when considering the outcomes
observed when all settings are used with the same probability (i.e. p(z,y) = 1/4). As
mentioned in [1], the improvement, of the order of a factor of 2, is certified with the usual
CHSH inequality.

2.2 Dephasing noise
Second, we consider measurement of the state
p(p) = pl¢™)(¢*] + (1 — p)(|00){00] + [11)(11]). (9)

The optimal violation of the CHSH inequality by this state, S = 24/1 + p2, is provided by
using the following settings [19]:

AO =0z, Al =0z,

B, =cosxo,+ (—1)Ysiny oy, (10)

with x = arctan(p).



J.-D. Bancal and V. Scarani

0.8}

0.6}

Randomness [bits/run]
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0.2}

0 0.2 0.4 0.6 0.8 1

Figure 2 Rate of private randomness generation certified by the measure 1, 2 and 3 for a singlet
state mixed with dephasing noise. The inset presents the ratio of the curves to the lowest one.

The three randomness rates obtained with these state and settings are presented in
Figure 2. Similarly to the previous case, strictly more randomness can be certified in case
3 than in case 2, and in case 2 than in case 1. The inequality that certifies the largest
amount of randomness is again CHSH in case 3, and a different inequality in case 2. One can
check that this inequality, however, beyond being a correlation inequality presents no special
symmetry. In particular, it is not of the form (8). Nevertheless, we note that when the
randomness is extracted from a single set of settings, using an optimized inequality provides
a larger advantage for this dephasing noise than it did in the case of mixture with white
noise (as shown in the inset of Figure 2).

3 Conclusion

We have presented an application of the techniques presented in [1, 2] to the case where
the measured state is a singlet mixed with either white noise or dephasing noise. While
a significant advantage in terms of randomness rate can be obtained in both cases when
randomness is extracted uniformly from all settings, the advantage for extraction from a
fixed choice of settings is much more significant in the case of dephasing noise.

In a practical experiment, characteristics of both white and dephasing noise are expected
to appear [20], as well as various other kind of noises and imperfections [16]. The present
analysis is not meant to exhaust all the parameter space of a realistic experiment; but it
should be clear that the techniques used here can be extended to describe experiments with
all their features.

We have focused here on the asymptotic rate of randomness generation. It would be
interesting to extend our analysis to take into account finite statistics, maybe in a way similar
to [14] or [21]. This would allow one to quantify how many random bits can be extracted
from a Bell experiment which involves only a finite number of rounds.

TQC’'14
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of the GHZ Distribution
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—— Abstract

John Bell has shown that the correlations entailed by quantum mechanics cannot be reproduced
by a classical process involving non-communicating parties. But can they be simulated with the
help of bounded communication? This problem has been studied for more than twenty years
and it is now well understood in the case of bipartite entanglement. However, the issue was
still widely open for multipartite entanglement, even for the simplest case, which is the tripartite
Greenberger-Horne—Zeilinger (GHZ) state. We give an exact simulation of arbitrary independent
von Neumann measurements on general n-partite GHZ states. Our protocol requires O(n?) bits
of expected communication between the parties, and O(nlogn) expected time is sufficient to
carry it out in parallel. Furthermore, we need only an expectation of O(n) independent unbiased
random bits, with no need for the generation of continuous real random variables nor prior
shared random variables. In the case of equatorial measurements, we improve earlier results with
a protocol that needs only O(nlogn) bits of communication and O(log?n) parallel time. At the
cost of a slight increase in the number of bits communicated, these tasks can be accomplished
with a constant expected number of rounds.

1998 ACM Subject Classification J.2 Physical Sciences and Engineering: Physics

Keywords and phrases Entanglement simulation, Greenberger—Horne—Zeilinger (GHZ) state,
Multiparty entanglement, von Neumann’s rejection algorithm, Knuth-Yao’s sampling algorithm

Digital Object Identifier 10.4230/LIPIcs. TQC.2014.7

1 Introduction

The issue of non-locality in quantum physics was raised in 1935 by Einstein, Podolsky and
Rosen when they introduced the notion of entanglement [10]. Thirty years later, Bell proved
that the correlations entailed by entanglement cannot be reproduced by classical local hidden
variable theories between noncommunicating parties [2]. This momentous discovery led to
the natural question of quantifying quantum non-locality.

A natural quantitative approach to the non-locality inherent in a given entangled quantum
state is to study the amount of resources that would be required in a purely classical theory to
reproduce exactly the probabilities corresponding to measuring this state. More formally, we
consider the problem of sampling the joint discrete probability distribution of the outcomes
obtained by people sharing this quantum state, on which each party applies locally some
measurement on his share. Each party is given a description of his own measurement but
not informed of the measurements assigned to the other parties. This task would be easy
(for a theoretician!) if the parties were indeed given their share of the quantum state, but
they are not. Instead, they must simulate the outcome of these measurements without any
quantum resources, using as little classical communication as possible.
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Exact Classical Simulation of the GHZ Distribution

This conundrum was introduced by Maudlin in 1992 in the simplest case of linear polar-
ization measurements at arbitrary angles on the two photons that form a Bell state [17].
Similar concepts were reinvented independently years later by other researchers [5, 20].
This led to a series of results, culminating with the protocol of Toner and Bacon to simulate
arbitrary von Neumann measurements on a Bell state with a single bit of communication
in the worst case [21]. Later, Regev and Toner extended this result by giving a simulation
of the correlations entailed by arbitrary binary von Neumann measurements on arbitrary
bipartite states of any dimension using two bits of communication, also in the worst case [19].
Inspired by Ref. [20], Cerf, Gisin and Massar showed that the effect of an arbitrary pair
of positive-operator-valued measurements (POVMs) on a Bell state can also be simulated
with a bounded amount of expected communication [8]. A more detailed early history of the
simulation of quantum entanglement can be found in Ref. [4, Sect. 6].

All this prior work is concerned strictly with the simulation of bipartite entanglement.
Much less is known when it comes to simulating multipartite entanglement with classical
communication, a topic that is still teeming with major open problems. Consider the simplest
case, which is the simulation of independent arbitrary von Neumann measurements on
the tripartite GHZ state, named after Greenberger, Horne and Zeilinger [14], which we
shall denote |¥3) = —5|000) + 5|111), or more generally on its n-partite generalization
W) = 7510") + Z5117).

The easiest situation arises in the special case of equatorial measurements (defined in
Section 2) on the GHZ state because all the marginal probability distributions obtained by
tracing out one or more of the parties are uniform. Hence, it suffices in this case to simulate
the n-partite correlation. Once this has been achieved, all the marginals can easily be made
uniform [11]. Making the best of this observation, Bancal, Branciard and Gisin have given a
protocol to simulate equatorial measurements on the tripartite and fourpartite GHZ states
at an expected cost of 10 and 20 bits of communication, respectively [1]. Later on, Branciard
and Gisin improved this in the tripartite case with a protocol using 3 bits of communication
in the worst case [3]. The simulation of equatorial measurements on |¥,) for n > 5 was
handled subsequently by Brassard and Kaplan in a paper published in the 2012 edition of
this Conference on Theory of Quantum Computation, Communication and Cryptography,
with an expected cost of O(n?) bits of communication [6]. This was the best result obtained
until now on this line of work.

Despite substantial effort, the case of arbitrary von Neumann measurements, even on
the original tripartite GHZ state |¥3), was still wide open. Here, we solve this problem
in the general case of the simulation of the n-partite GHZ state |¥,), for any n, under
the random bit model introduced in 1976 by Knuth and Yao [16], in which the only source
of randomness comes from the availability of independently distributed unbiased random
bits. Furthermore, we have no needs for prior shared random variables between the parties.
An expected number of 6n + 17 perfect random bits suffices to carry out our simulation.
The expected communication cost is O(n?) bits, but only O(nlogn) time if we count one
step for sending bits in parallel according to a realistic scenario in which no party has to
send or receive more than one bit in any given step. Furthermore, in the case of equatorial
measurements, we improve the earlier best result [6] with an expected communication cost
of only O(nlogn) bits and O(log?n) parallel time. At the cost of a slight increase in the
number of bits communicated and the number of required random bits, these tasks can be
accomplished with a constant expected number of rounds.

More formally, the quantum task that we want to simulate is as follows. Each party i holds
one qubit from state [¥,,) = —5[0") + —5[1") and is given the description of a von Neumann
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measurement M;. By local operations, they collectively perform ®P ,M; on |¥,), thus
obtaining one outcome each, say b; € {—1, 41}, which is their output. The joint probability
distribution p(b) of the b;’s is defined by the joint set of measurements (see Section 2).
Our purpose is to sample exactly this joint probability distribution by a purely classical
process that involves no prior shared random variables and as little communication as possible.
Our complete solution builds on four ingredients: (1) Gravel’s decomposition of p(b) as a
convex combination of two sub-distributions [12, 13]; (2) Knuth and Yao’s algorithm to sample
exactly probability distributions assuming only a source of unbiased identically independently
distributed (i.i.d.) bits [16]; (3) the universal method of inversion [9, for instance]; and (4) our
own distributed version of the classic von Neumann’s rejection algorithm [18].

We define precisely our problem in Section 2 and we formulate our convex decomposition
of the GHZ distribution, which is the key to its simulation. Then, we explain how to sample
according to a Bernoulli distribution even when only approximations to the distribution’s
parameter are available. We also explain how the classic von Neumann rejection algorithm
can be used to sample in the sub-distributions defined by our convex decomposition. However,
little attention is paid in Section 2 to the fact that the various parameters that define the joint
distribution are not available in a single place. Section 3 is concerned with the communication
complexity issues. It culminates with a complete protocol to solve our problem, as well as
its complete analysis. This is followed by variations on the theme, in which we consider a
parallel model of communication, an expected bounded-round solution, and improvements on
the prior art for the simulation of equatorial measurements. We conclude with a discussion
and open problems in Section 4.

2 Sampling exactly the GHZ distribution in the random bit model

Any von Neumann measurement on a single qubit can be conveniently represented by a
point on the surface of a three-dimensional sphere, known as the Bloch sphere, whose
spherical coordinates can be specified by an azimuthal angle 6 € [0,27) and an elevation
angle ¢ € [—m/2,7/2]. These parameters defines a Hermitian idempotent operator
( sing e cosp )
M=zo1+yost+zo3={( . ;
e cosp  —sing

where x = cosfl cos ¢, y = sinf cosp;, 2 = sin g, and o1, 02 and o3 are the Pauli operators.
In turn, this operator defines a measurement in the usual way, which we shall also call M
for convenience, whose outcome is one of its eigenvalues +1 or —1. The azimuthal angle 6
represents the equatorial part of the measurement and the elevation angle ¢ represents its
real part. A von Neumann measurement is said to be equatorial when its elevation angle
© = 0 vanishes and it is said to be in the computational basis when p = +m /2.

Consider a set of n von Neumann single-qubit measurements M, represented by their pa-
rameters (6;,¢;), 1 < j < n. This set of operators defines a joint measurement M = ®7_; M;.
In turn, this measurement defines a probability distribution p, which we shall call the GHZ
distribution, on the set {—1,4+1}". This distribution corresponds to the probability of
all possible outcomes when the n-partite GHZ state [¥,,) = —5[0") + —5[1") is measured
according to M.

It is shown in [12, 13], albeit in the usual computer science language in which von Neumann
measurements are presented as a unitary transformation followed by a measurement in the
computational basis, that the probability p(b) of obtaining b = (by,...,b,) in {—1,+1}" can

TQC’14
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be decomposed as

p(b) = cos?(§) p1(b) +sin®(§) p2(b) , where 6 = 37", 6; and (1)
1 1 2

pi(b) = 5 (a1 (b) +a2(b)", p2(b) = 5 (a1(b) —a2(b))", (2)

ar(b) = [ ] cos (3 (5 — 505)). a2(0) = [ ] —sin (3¢5 — 505)) (3)

Hence, we see that distribution p(b) is a convex combination of sub-distributions p;(b)
and py(b), in which the coefficients cos?(#/2) and sin?(f/2) depend only on the equatorial
part of the measurements, whereas the sub-distributions depend only on their real part.
Furthermore, the squares of a; and as are themselves discrete probability distributions.

Sampling p is therefore a matter of sampling a Bernoulli distribution with defining
parameter cos?(/2) before sampling either p; or py, whichever is the case. Notice that
sampling ps reduces to sampling p; if, say, we replace ¢1 by 1 + 27. As we shall see, full
knowledge of the parameters is not required to sample p ezactly. We shall see in subsection 2.1
how to sample a Bernoulli distribution with an arbitrary p € [0, 1] as parameter (not the
same p as our probability distribution for GHZ) using a sequence of approximants converging
to p and using an expected number of only five unbiased identically independently distributed
(i.i.d.) random bits. Subsequently, we shall see in subsection 2.2 how to sample p; by modifying
von Neumann’s rejection algorithm in a way that it uses sequences of approximants and
unbiased i.i.d. random bits. For simulating exactly the GHZ distribution, an expected number
of 6n + 17 perfect random bits is sufficient.

2.1 Sampling a Bernoulli distribution

Assume that only a random bit generator is available to sample a given probability distribution
and that the parameters that specify this distribution are only accessible as follows: we can
ask for any number of bits of each parameter, but will be charged one unit of cost per bit
that is revealed. We shall also be charged for each random bit requested from the generator

To warm up to this conundrum, consider the problem of generating a Bernoulli random
variable Y with parameter p € [0,1]. If U = 0.U;Us ... is the binary expansion of a uniform
[0,1) random variable, i.e. Uy, Us, ... is our source of unbiased independent random bits,
and if p = 0.pyps ... is the binary expansion of p (in case p = 1 we can proceed as if it were
0.p1p2 ... with each p; = 1), we compare bits U; and p; for ¢ = 1,2,... until for the first time
U; # p;. Then, if U; =0<p; =1, wereturn Y =1, and if U; =1 > p; =0, we return Y = 0.
It is clear that Y = 1 if and only if U < p. Therefore, Y is Bernoulli(p). The expected
number of bits required from p is precisely 2. The expected number of bits needed from our
random bit source is also 2.

Now, suppose that the parameter p defining our Bernoulli distribution is given by
p = cos?(0/2), as in the case of our decomposition of the GHZ distribution. None of the
parties can know 6 precisely since it is distributed as a sum of 6;’s, each of which is known only
by one individual party. If we could obtain as many physical bits of p as needed (although
the expected number of required bits is as little as 2), we could use the idea given above in
order to sample according to this Bernoulli distribution. However, it is not possible in general
to know even the first bit of p given any fixed number of bits of the 6;’s. (For instance, if 6
is arbitrarily close to 7/2, we need arbitrarily many bits of precision about it before we can
tell if the first bit in the binary expansion of cos?(/2) is 0 or 1). Nevertheless, we can use
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approxzimations of p, rather than truncations, which in turn can come from approximations
of the 0;’s.

» Definition 1. A k-bit approzimation of a quantity v is any © such that |[v — 9| < 27F.
A special case of k-bit approximation is the k-bit truncation © = |v2F|/2*. For convenience,
we sometimes use the shorthands k-approximation and k-truncation. Note that the value of
k corresponds to the number of bits in the fractional part, without limitation on the size of
the integer part.

We postpone to Section 3.1 the detail of how these approximations can be obtained in
a distributed setting. For the moment, assume that, for any k, we can obtain p(k) so that
Ip(k)—p| < 1/2%. Then, setting U (k) = 0.U; ... Uy, we have that U < pif U(k) < p(k) — 2/2F
whereas U > p if U(k) > p(k) + 1/2F. Thus, one can check if U < p by generating only
as many bits of U and increasingly good approximations of p as needed. These ideas are
formalized in Algorithm 1. It is elementary to verify that the Y generated by this algorithm
is Bernoulli(p) because P{U < p} = p if U is a continuous uniform random variable on (0, 1).

Algorithm 1 Sampling a Bernoulli random variable with approximate defining parameter

1: Set k«+ 1

2: Set U(0) «+ 0

3: repeat forever

4:  Generate an i.i.d. unbiased bit Uy

5. Compute U(k) + U(k — 1) + Uy /2* {hence U(k) = 0.U; ... Uy}
6:  Obtain p(k) so that |p(k) — p| < 1/2*

7. if U(k) < p(k) — 2/2* then
8:
9

return Y =1
. else if U(k) > p(k) + 1/2* then
10: return Y =0

11:  else
12: k+—k+1
13:  end if

14: end repeat

The number of iterations before Algorithm 1 returns a value, which is also its required
number of independent unbiased random bits, is a random variable, say K. We have seen
above that E{ K}, the expected value of K, would be exactly 2 if we could generate arbitrarily
precise truncations of p. But since we can only obtain arbitrarily precise approximations
instead, which is why we needed Algorithm 1 in the first place, we shall have to pay the price
of a small increase in E{K}.

p(c > 1) < P{w - ol < o b <P {lo sl < < o

Therefore,
E{K} =) P{K>k} <> min (1, 28;) =5.
k=0 k=0
2.2 Sampling p; (or p2) in the random bit model

As mentioned already, it suffices to concentrate on p; since one can sample ps in exactly the
same way provided one of the angles ¢; is replaced by ; + 2m: this introduces the required
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minus sign in front of as to transform p; into ps. Let us define
aj = cos(3(p;—5)) =sin(z(p;+5)) and B =cos(3(p;+3)) = =sin(3(+;—-3)) - (4)

Consider n Rademacher ! random variables B; that take value —1 with probability BJZ and
+1 with complementary probability a?. The random vector with independent components
given by (Bi,..., By,) is distributed according to

q1(b) S H 5]2' H Ol?,
JEF,  JEG,
where F, = {j | bj = —1} and G, = {j | b; = +1} for all b = (by,...,b,) € {—1,+1}". Tt is
easy to verify that g(b) = a3(b) for all b, where a; is given in Equation (3). Similarly,
the random vector with independent components given by (—Bj,...,—B,) is distributed
according to

e(0) = ] o2 T] 82 = a20).

JEFY JjE€GY

The key observation is that both g; and g2 can be sampled without any needs for com-
munication because each party j knows his own parameters a? and 5]2, which is sufficient
to draw independently according to local Rademacher random variable B; or —B;. More-
over, a single unbiased independent random bit s drawn by a designated party suffices
to sample collectively from distribution g = %, provided this bit is transmitted to all
parties: everybody samples according to ¢; if s =0 or to g9 if s = 1. Now, It follows from
Equation (2) that p1(b) + pa2(b) = a?3(b) + a3(b) = ¢1(b) + q=(b) for all b € {—1,+1}", and
therefore p1(b) < q1(b) + q2(b) = 2¢(b).

The relevance of all these observations is that we can apply von Neumann’s rejection
algorithm [18] to sample p; (b) since it is bounded by a small constant (2) times an easy-to-
draw probability distribution (g). For the moment, we assume once again the availability of
a continuous uniform random generator, which we shall later replace by a source of unbiased
independent random bits. We also assume for the moment that we can compute the «;’s,

p1(b), q1(b) and ¢2(b) exactly. This gives rise to Algorithm 2.

Algorithm 2 Sampling p; using von Neumann’s rejection algorithm

1: repeat

2:  Generate U uniformly on [0,1)

3:  Generate independent Rademacher random variables By, ..., B,
with parameters a?,..., a2

4 Generate an unbiased independent random bit S

5: if S=1 then

6: set B« (By,...,By)

7. else

8 set B < (—=B1,...,—Bp)

9: end if

10: until (q1(B) + q2(B)) U < py(B)

By the general principle of von Neumann’s rejection algorithm, probability distribution
p1 is successfully sampled after an expected number of 2 iterations round the loop because

1" A Rademacher random variable is like a Bernoulli, except that it takes value +1 rather than 0 or 1.
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p1(b) < 2¢(b) for all b € {—1,+1}"™. Within one iteration, 2 expected independent unbiased
random bits suffice to generate each of the n Rademacher random variables by a process
similar to what is explained in the second paragraph of Section 2.1. Hence an expected total
of 2n 4+ 1 random bits are needed each time round the loop for an expected grand total of
4n + 2 bits to sample p;. But of course, this does not take account of the (apparent) need
to generate continuous uniform [0, 1) random variable U. It follows that the expected total
amount of work required by Algorithm 2 is O(n), provided we count infinite real arithmetic
at unit cost. Furthermore, the time taken by this algorithm, divided by n, is stochastically
smaller than a geometric random variable with constant mean, so its tail is exponentially
decreasing.

Now, we modify and adapt this algorithm to eliminate the need for the continuous

uniform U (and hence its generation), which is not allowed in the random bit model.

Furthermore, we eliminate the need for infinite real arithmetic and for the exact values of
q1(B), g2(B) and p;(B), which would be impossible to obtain in our distributed setting since
the parameters needed to compute these values are scattered among all parties, and replace
them with approximations—we postpone to Section 3.2 the issue of how these approximations
can be computed. (On the other hand, arbitrarily precise values of the «;’s are available
to generate independent Rademacher random variables with these parameters because each
party will be individually responsible to generate his own Rademacher.)

In each iteration of Algorithm 2, we generated a pair (U, B). However, we did not really
need U: we merely needed to generate a Bernoulli random variable Y for which

P{Y =1} = P{(a1(B) + ¢2(B)) U < p1(B)} .

For this, we adapt the method developed for Algorithm 1. Again, we denote by U (k) the k-bit
truncation of U, so that U(k) < U < U(k) + 27F, except with probability 0. Furthermore, we
use Ly (L for left) and Ry, (R for right) to denote k-bit approximations of ¢ (B) + ¢2(B) and
p1(B), respectively, so that |Lj — (q1(B) + q2(B))| < 27" and |Ry, — p1(B)| < 27%. Then
using € to denote arbitrary real numbers in the interval (—1, 1),

UL~ U@(B)+@B) = |vt)Ly—U(Lx+ 5|
- ‘(U(k)—U)Lk—% < %+2ik < 2%

Similarly, |Rr — p1(B)| < Qik .

Thus, we know that Y = 1 whenever U(k)Ly + 3/2% < Ry, —1/2*, whereas Y = 0
whenever U(k)L;, — 3/2F > Ry + 1/2*. Otherwise, we are in the uncertainty zone and we
need more bits of U, ¢1(B) + g2(B) and p1(B) before we can decide on the value of Y. This
is formalized in Algorithm 3 (on next page).

It follows from the above discussion that this algorithm can be used to sample random
variable Y, which is used as terminating condition in Algorithm 2, in order to eliminate
the need for the generation of a continuous uniform random variable U € [0, 1) and for the
precise values of ¢;(B), ¢2(B) and p1(B). Since L — ¢1(B) 4+ ¢2(B) and Ry — p1(B) as
k — oo, Algorithm 3 halts with probability 1. Let K be a random variable corresponding
to the value of k upon exiting from the repeat forever loop in the algorithm, which is
the number of times round the loop and hence the number of bits needed from U and the
precision in ¢ (B) + ¢2(B) and p1(B) required in order to sample correctly Bernoulli random
variable Y. Next, we calculate an upper-bound on E{K}, the expected value of K.

13
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Algorithm 3 Generator for the stopping condition in Algorithm 2

1: Note: B € {—1,+1}" is given to the algorithm, generated according to %

2: Set k <+ 1

3: Set U(0) <0
4: repeat forever

5:  Generate an i.i.d. unbiased bit Uy

6:  Compute U(k) < U(k — 1) + Ui /2% {hence U(k) = 0.U; ... Uy}
7. Compute Li and Ry from B

8 ifU(k)Lr— Ri < —% then

9: return Y =1

10:  else if U(k) Ly — Ry > 5 then

11: return Y =0

12:  else

13: k+—k+1

14:  end if

15: end repeat

If the algorithm has not yet halted after having processed U(k), Ly and Ry, then we

know that

|U(q1(B) + q2(B)) — p1(B)|

Therefore

A\

|(U(q1(B) + q2(B)) — U(k)Li) + (Ri — p1(B)) + (= R, + U(k)Ly)|

|U(q1(B) + q2(B)) — U(k)Li| + |Ri. — p1(B)| + | Ry — U (k) Lg|
3 1 4 8

PR Tor T oan

P{K > k| B} <P{|U(q:(B) + ¢2(B)) — p1(B)| < 8/2" | B}
1

1 I
2q(B) 22k q(B) " 2¢(B) 22%q(B)

Thus, using kg to denote [3 + log, (—) —‘,

E{K | B}

IN

IA

IN

8 1
~ 28¢(B)
1
q(B)
> P{K >k|B}
k=0
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Now, we uncondition in order to conclude:

E{K} < 5+ Y. q(b)10g2(1)

B AT
— H(@)+5 (5)
< n+5, (6)

. . . _ +
where H(q) denote the entropy of distribution ¢ = 54,

3 Communication complexity of sampling

In this section, we consider the case in which the sampler of the previous section no longer
has full knowledge of the GHZ distribution to be simulated. The sampler, whom we call the
leader in a distributed setting, has to communicate through classical channels in order to
obtain partial knowledge of the parameters belonging to the other parties. Partial knowledge
results in approximation of the parameters involved in sampling the GHZ distribution, but,
as we saw in the previous section, we know how to sample ezactly in the random bit model
using such approximations.

3.1 Sampling a Bernoulli distribution whose parameter is distributed

In order to sample the GHZ distribution, we know from Section 2 that we must first sample
the Bernoulli distribution with parameter cos?(6/2), where 6 = Z?Zl ;. Let us say that
the leader is party number 1. Since he knows only #;, he must communicate with the other
parties to obtain partial knowledge about 6; for ¢ > 2. The problem of sampling a Bernoulli
distribution with probability cos?(6/2) reduces to learning the sum 6 with sufficient precision
in order to use Algorithm 1.

The problem of computing a k-bit approximation of cos?(6/2) = cos?( Y1, 0;/2) is
relatively easy. Define ¥ =60/2 and 9; = 0,;/2 for each i. If the leader obtains an ¢-bit
approximation J; of each ¥;, i > 2, and if we define 0= S ¥;, we need to find the value
of ¢ for which cos?(1) is a k-bit approximation of cos?(¥). It is an elementary exercise in
Taylor series expansion to verify that |cos2(d) — cos?(9)| < n/2¢. Hence, it suffices to choose
{ = k + [logy, n] in order to conclude as required that |cos2(9) — cos?(J)| < 27*. Taking into
account the integer part of each 1J;, which must also be communicated, and remembering that
0 < ¥; < 27 since it is an angle 2, the required number of communicated bits in the sequential
model is therefore (n — 1)(¢ 4+ 3) = (n — 1)(3 + k + [logy n]), which is O(kn+nlogn). In our
case, the expected value of k is bounded by 5 (see the analysis of the Bernoulli sampling
Section 2.1), so that this operation requires an expected communication of O(nlogn) bits.

3.2 Approximating a product of bounded numbers

Once the leader has produced a bit Z with probability cos?(0/2), he samples either p;
or po, depending on whether he got Z =0 or Z = 1. The problem of sampling ps reduces
to sampling p; if the leader replaces his own ¢ with ¢ + 27; thus we concentrate on
sampling p;. Of course, the leader does not know ¢; for ¢ > 2. This problem reduces

2 Actually, 0 < 9; < 7 since ¥; is a half angle and one fewer bit is needed to communicate its integer
part, but we prefer to consider here the more general case of approximating the cosine square of a sum
of arbitrary angles.

15
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to learning with sufficient precision the products a;(B) = H?Zl cos (%(cpj — gBj)) and
as(B) = H;L 1 —sin (l( - 5B; )) given that the B;’s are independent Rademacher distri-
butions with parameters a , 1 <i <n defined in Equation (4). Once these products are
known with k + 2 bits of precision, the left and right k-bit approximations Lj and Ry are
easily computed, which allows us to run the modified von Neumann’s rejection algorithm
from Section 2.2.

In this section, we explain how to compute a k-bit approximation to a;(B) and aq(B)
at an expected communication cost of O(kn + nlogn) bits. For our specific application of
simulating the GHZ distribution, we proved at the end of Section 2.2 (Equation 6) that
the expected value of k is bounded by n + 5. It follows that an expected cost of O(n?) bits
suffices to carry out the simulation.

Given B = (By, ..., B,) with the B;’s distributed according to non-identical independent
Rademachers with parameter cos ( (<p7 - )) or coS ( ((p,- + g)), we need to compute k-bit
approximations of a;(B) and as(B). We use ¢; and s; to denote cos (3 (¢; — ZB;)) and
—sin (% (cpj — gBj) ), respectively, as well as ¢; and 3; to denote their respective /-truncations.
We need to determine £ such that the products [[}_, ¢; and [[}_, 8; are k-approximations
of a1(B) and aq(B), respectively. Notice that each party knows exactly his own ¢; and s;,
and hence ¢; and 3; can be transmitted directly to the leader, mther than approximations of
the ;’s. For each c;, there exists €; € [—1, 1] such that ¢; = &; + thus, using I to denote
{1,2,...,n}, we have

H > Molls - Hcﬁ > Mall

AeP(I)jcA jEA AeP(I)\I jEA jeA

2@7

and hence we can bound the error as follows:

- LN - n\ 1 1\"
ITe-T1o| = 3 ((7)5) -1 - (1+5) -
j=1 Jj=1 Jj=1
Setting £ = [— log, ((1 + 2"‘“)”” - 1)—‘ < k+ [logy,n] + 2, we have
j=1 j=1

Taking account of the need to transmit the ¢-truncations to both c; and s;, which consists
of the sign of these numbers in addition to the first £ bits of their binary expansion, the
expected communication cost is 2(n — 1)(¢ + 1) bits, which indeed is O(kn + nlogn).

1
27]{: .

3.3 Protocol for sampling the GHZ distribution

We are finally ready to glue all the pieces together into Algorithm 4 (on next page),
which samples exactly the GHZ distribution under arbitrary von Neumann measurements,
thus solving our conundrum. Its correctness is proven below, and it is shown that the
expected amount of randomness used in this process is upper-bounded by 6n + 17 bits and an
expected O(n?) bits of communication suffice to complete the task. Variations are discussed
subsequently.

Correctness of the protocol: The part occurring before the first “repeat” (line 5) samples
a Bernoulli with parameter cos?(3;"; 6;/2), which allows the leader to decide whether to
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Algorithm 4 Complete protocol for sampling the GHZ distribution in the sequential model

1:

The leader, who is party number 1, communicates with the other parties in order to
obtain increasingly precise approximations of 6 = Z?:l 0; until he can sample random
bit Z according to eract Bernoulli random distribution with parameter cos?(6/2)

2: if Z =1 then

The leader adds 27 to his own p-parameter i.e. @1 < @1 + 27
{to sample py rather than p;}

4: end if
{Now entering the modified von Neumann’s “distributed” sampler for p; }

5: repeat

6:  The leader generates a fair random bit S and broadcasts it to the other parties
{The bit S determines whether to sample ¢; or g2}

7. Locally, each party j generates a random B; € {—1, 41} according to an independent
Rademacher distribution so that B; = +1 with probability cos?(3(¢; — %))
{Random variable B = (By,..., By,) is now sampled according to ¢; }
if S =1 then

Each party does B; < —B;
{In this case, random variable B = (B, ..., B,) is now sampled according to g2}
10:  end if
{Random variable B = (By,...,B,) is sampled according to ¢ = 239}
{The leader starts talking with the other parties to decide whether to accept B}
11:  Each party computes c¢; = cos(%(cpj — gBj)) and s; = — Sin(%(gaj — %Bj))
12:  The leader sets k < 1
13:  The leader sets U(0) <— 0
14: repeat forever
15: The leader generates an i.i.d. unbiased bit Uy
16: The leader computes U(k) « U(k — 1) + Uy /2* {hence U(k) = 0.U; ... Uy}
17: The leader requests (k + 3 + [ log, n|)-approx. of ¢; and s; from each party j > 2
18: The leader uses this information to compute (k + 2)-approximations of a;(B) and
az(B), which are used to compute k-bit approximations Ly of a?(B) + a3(B) and
Ry, of p1(B)
19: if U(k)Ly — Ry, < _% then
20: Set Y + 1 and break from the repeat forever loop. {Vector B is accepted}
21: else if U(k)Ly — Ry, > o then
22: Set Y + 0 and break from the repeat forever loop. {Vector B is rejected}
23: else
24: Set k < k + 1 and continue the repeat forever loop
{The leader does not yet have enough information to decide whether to accept or
reject B. Therefore, he needs to compute the next bit of a;(B) and ag(B).
For this, he needs more information from all the other parties.}
25: end if
26: end repeat
27: until Y = 1 {accepting}
28: The leader informs all the other parties that the simulation is complete and, therefore,

that the time has come for each party j (including the leader himself) to output his
current value of B;
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sample B according to p; (by leaving his ¢; unchanged) or according to py (by adding 27 to
his ¢1). Notice that the leader does not have to inform the other parties of this decision since
they do not need to know if the sampling will be done according to p; or ps. In Section 3.1,
we showed how to sample exactly a Bernoulli with parameter cos? (Z?:l 0;/ 2) when the 6;’s
are not known to the leader for ¢ > 2.

The part within the outer “repeat” loop (lines 5 to 27) is essentially von Neumann’s
rejection algorithm, which has been adapted and modified to work in a distributed scenario.
The leader must first know which of ¢; or g2 to sample. For this purpose, he generates an
unbiased random bit .S and broadcasts it to the other parties. Sampling either ¢; or ¢o can now
be done locally and independently by each party j, yielding a tentative B; € {—1,+1}. The
parties will output these B;’s only at the end, provided this round is not rejected. Now, each
party uses his B; to compute locally ¢; = cos(%(apj - gBj)) and s; = —sin(%(apj - gBj)),
which will be sent bit by bit to the leader upon request, thus allowing him to compute
increasingly precise approximations Ly and Ry of ¢1(B) + ¢2(B) and p;(B), respectively.
These values are used to determine whether a decision can be made to accept or reject this
particular B, or whether more information is needed to make this decision. As shown at the
end of Section 2.2 (Equation 6), the expected number of bits needed in Ly and Ry, before we
can break out of the “repeat forever” loop is k£ < n + 5. At that point, flag Y tells the leader
whether or not this was a successful run of von Neumann’s rejection algorithm. If Y = 0, the
entire process has to be restarted from scratch, except for the initial Bernoulli sampling, at
line 6. On the other hand, once the leader gets Y = 1, he can finally tell the other parties
that they can output their B;’s because, according to von Neumann’s rejection algorithm,
this signals that the vector (By, ..., By) is distributed according to p; (or pa, depending
on the initial Bernoulli). Also according to von Neumann’s rejection algorithm, we have
an expectation of C' = 2 rounds of the outer “repeat” loop before we can thus conclude
successfully.

Expected communication cost and number of random coins: The expected amount of
randomness used in this process is upper-bounded by 6n + 17 bits. This is calculated as
follows: the expected number of bits for sampling Bernoulli Z is bounded by 5. This is
followed by an expectation of C' = 2 rounds of von Neumann’s rejection algorithm (the outer
“repeat” loop). In each of these rounds, we need 1 bit for S and expect 2 bits for each
of the B;’s (hence 2n in total), before entering the “repeat forever” loop. The expected
number of times round this loop is bounded by n + 5, and one more random bit Uy, is needed
each time. Putting it all together, the expected number of random bits is bounded by
542(1+2n+ (n+5)) =6n+17.

The expected amount of communication is dominated by the leader’s need to obtain
increasingly accurate approximations of ¢; and s; from all other parties at line 17 in order to
compute increasingly accurate approximations of Ly and Ry, which he needs in order to decide
whether or not to break from the “repeat forever” loop and, in such case, whether or not to
accept B as final output. On the k-th time round the loop, the leader needs k + 3 + [log, n]
bits of precision plus one bit of sign about each ¢; and s;, j > 2 (in addition to having full
knowledge about his own ¢; and si, of course). This would be very expensive if all those
bits had to be resent each time round the loop, with increasing values of k. Fortunately, this
process works well if the parties send truncations of these values to the leader, because each
truncation simply adds one bit of precision to the previous one. Hence, it suffices for the
leader to request 2(5 4 [logy n]) bits from each other party at the onset, when k& = 1, and only
two additional bits per party are needed afterwards for each subsequent trip round the loop
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Figure 1 Binomial tree structure defining the parallel model.

(one for ¢; and one for s;). All counted, a total of 2(n — 1)(k + 5 + [logy n]) bits will have
been requested from all other parties by the time we have gone through the “repeat forever”
loop k times. Since the expected value of k upon exiting this loop is bounded by n + 5,
the expected number of bits that have to be communicated to the leader to complete von
Neumann’s rejection algorithm (lines 5 to 27) is bounded by 2(n — 1)((n + 5) + 5 + [ log, n]).
This is O(n?) expected bits of communication. The additional amount of communication
required to sample Bernoulli Z at step 1 (which is (n — 1)(5 + log, n) bits) and for the leader
to broadcast to all parties the value of S, as well as synchronization bits by which he needs
to inform the other parties of success or failure each time round the loop is negligible. All
counted, Algorithm 4 needs O(n) bits of randomness and O(n?) bits of communication in
order to sample exactly the GHZ distribution under arbitrary von Neumann measurements.

Using Equation (5) rather than Equation (6), we shall show in the final journal version
of this work that Algorithm 4 needs only O(nlogn) bits of communication in order to
sample exactly the GHZ distribution under computational-basis von Neumann measurements.
Of course, O(n) bits of communication would suffice, even in the worst case, if we knew
ahead of time that all measurements are in the computational basis, but our protocol works
seamlessly with O(nlogn) expected bits of communication even if the measurements are not
exactly in the computational basis, and if up to O(logn) of the measurements are arbitrary.

3.4 \Variations on the theme

We can modify Algorithm 4 in a variety of ways to improve different parameters at the
expense of others. Here, we mention briefly three of these variations: the parallel model,
bounding the number of rounds, and the simulation of equatorial measurements.

The parallel model: Until now, we have considered only a sequential model of communica-
tion, in which the leader has a direct channel with everyone else. In this model, communication
takes place sequentially because the leader cannot listen to everyone at the same time. How-
ever, it is legitimate to consider a parallel model, in which arbitrary many pairs of parties
can communicate simultaneously. In this model, any number of bits can be sent and received
in the same time step, provided no party has to send or receive more than one bit at any
given time. If we make the parties communicate with one another following the binomial tree
structure shown in Fig. 1, with the leader at the root, we shall show in the final journal version
of this work that the exact simulation of the GHZ distribution under arbitrary independent
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von Neumann measurements can be accomplished within O(nlogn) expected parallel time.
The expected total number of bits communicated with this approach is slightly greater than
with Algorithm 4, but it remains O(n?).

Reducing the number of rounds: Algorithm 4 is efficient in terms of the number of bits
of randomness as well as the number of bits of communication, but it requires an expected
O(n) rounds, in which the leader and all other parties take turn at sending messages. This
could be prohibitive if they are far apart and their purpose is to try to convince examiners
that they are actually using true entanglement and quantum processes to produce their
joint outputs, because it would prevent them from responding quickly enough to be credible.
We leave it for the reader as an exercise to verify that if we change line 24 of Algorithm 4 from
“k < k+ 17 to “k < 2k”, the expected number of rounds is decreased from O(n) to O(logn).
If in addition we start with “k <— n” instead of “k <— 1” at line 12, the expected number of
rounds becomes a constant. (Alternatively, we could start with “k <— n” at line 12 and step
with “k < k 4+ n” at line 24.)

Equatorial measurements: Recall that equatorial measurements are those for which ¢; =0
for each party j. In this case, the leader can sample according to p; or ps, without any help
or communication from the other parties, since he has complete knowledge of their vanished
elevation angles. Therefore, he can run steps 5 to 27 of Algorithm 4 all by himself! However,
he needs to communicate in step 1 of Algorithm 4 in order to know from which of p; or ps
to sample. The only remaining need for communication occurs in step 28, which has to be
modified from “The leader informs all the other parties that the simulation is complete” to
“The leader informs all the other parties of which value of B; € {—1,+1} he has chosen for
them”.

Only step 1 requires significant communication since the new step 28 needs only the
transmission of n — 1 bits. We have already seen at the end of Section 3.1 that step 1, which
is a distributed version of Algorithm 1, requires an expected communication of O(nlogn)
bits in the sequential model. This is therefore the complexity of our simulation, which is an
improvement over the previously best technique known to simulate the GHZ distribution
under arbitrary equatorial von Neumann measurements [6], which required an expectation of
O(n?) bits of communication.

A more elegant protocol can be obtained if we adapt Equations (1), (2) and (3), which
were given at the beginning of Section 2 to define the GHZ probability distribution p(b) for
be {—1,41}", to the special case of equatorial measurements. Because all the elevation
angles ¢; vanish, these formulas reduce to

21—n cosz(g) ifbe X
p(b) = ;
2

where X = {b e {-1,+1}"
27msin?(4) ifbg X

jﬁlbj :+1}.

Now, each party j other than the leader can simply choose an independent unbiased
Rademacher b; € {—1,+1} as final output, without any consideration of his own input 6,
nor communication with anyone else, and inform the leader of this choice. It simply remains
for the leader to choose his own b; in order to make H?Zl b; equal to +1 with probability
cos?(6/2) or —1 with probability sin?(6/2). For this, we still need step 1 from Algorithm 4,
which requires an expected communication of O(nlogn) bits. We shall show in the final
journal version of this work that this process can be achieved with only O(log?n) expected
time steps in the parallel model of communication.
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4 Discussion and open problems

We have addressed the problem of simulating the effect of arbitrary independent von Neumann
measurements on the qubits forming the general GHZ state —z|0") + —=[1") distributed
among n parties. Rather than doing the actual quantum measurements, the parties must
sample the exact GHZ probability distribution by purely classical means, which necessarily
requires communication in view of Bell’s theorem. Our main objective was to find a protocol
that solves this conundrum with a finite amount of expected communication, which had only
been known previously to be possible when the von Neumann measurements are restricted
to being equatorial (a severe limitation indeed). Our solution needs only O(n?) bits of
communication, which can be dispatched in O(nlogn) time if bits can be sent in parallel
according to a realistic scenario in which nobody has to send or receive more than one bit in
any given step. We also improved on the former art in the case of equatorial measurements,
with O(nlogn) bits of communication and O(log?n) parallel time.

Knuth and Yao [16] initiated the study of the complexity of generating random integers
(or bit strings) with a given probability distribution p(b), assuming only the availability of
a source of unbiased identically independently distributed random bits. They showed that
any sampling algorithm must use an expected number of bits at least equal to the entropy
>y p(b)logy(1/p(b)) of the distribution, and that the best algorithm does not need more
than two additional bits. For further results on the bit model in random variate generation,
see Ref. [9, Chap. XIV].

The GHZ distribution has an entropy no larger than n, and therefore Knuth and Yao
have shown that it could be sampled with no more than n + 2 expected random bits if all
the parameters were concentrated in a single place [16]. Even though we have studied the
problem of sampling this distribution in a setting in which the defining parameters (here the
description of the von Neumann measurements) are distributed among n parties, and despite
the fact that our main purpose was to minimize communication between these parties, we
were able to succeed with 6n + 17 expected random bits, which is just above six times the
bound of Knuth and Yao. The amount of randomness required by our protocols does not
depend significantly on the actual measurements they have to simulate. However, some sets
of measurements entail a probability distribution p(B) whose entropy H(p) is much smaller
than n. In the extreme case of having all measurements in the computational basis, H(p) is
a single bit! Can there be protocols that succeed with as few as H(p) + 2 expected random
bits, thus meeting the bound of Knuth and Yao, or failing this as few as O(H(p)) expected
random bits, no matter how small H(p) is for the given set of von Neumann measurements?
Notice that all the protocols presented here require 2(n) random bits since they ask each
party to sample independently at least once a Rademacher random variable, a hurdle that
can only be alleviated in the case of measurements in the computational basis.

Are our protocols optimal in terms of the required amount of communication? Could
we simulate arbitrary von Neumann measurements as efficiently as the case of equatorial
measurements, i.e. with O(nlogn) bits of communication? We leave this as open question,
but point out that Broadbent, Chouha and Tapp have proved an Q(nlogn) lower bound on
the worst case communication complexity of simulating measurements on n-partite GHZ
states [7], a result that holds even for equatorial measurements, and even under the promise
that cos Y ., 0; = £1 [15].

As a recent development, which we shall formalize in the final journal version of this work,
we have discovered how to simulate more general multipartite states than the GHZ state.
For instance, we know how to simulate the so-called W state —=|100) + 7]010) + —z]001)
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and more generally
W, = ﬁ (J10"71) 4 [010™7%) 4 |0010™ %) 4 - - + [0 '1))

with O(n?) expected bits of communication and the need of only O(n?) expected unbiased
independent random bits. However, we leave for further research the problem of simulating
arbitrary positive-operator-valued measurements (POVMs) on the single-qubit shares of
GHZ states (or on more general multipartite states), as well as the problem of simulating
multipartite entanglement other than equatorial von Neumann measurements on the tripartite
GHZ state [3] with worst-case bounded classical communication.
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—— Abstract

We consider the natural extension of two-player nonlocal games to an arbitrary number of players.
An important question for such nonlocal games is their behavior under parallel repetition. For
two-player nonlocal games, it is known that both the classical and the non-signaling value of
any game converges to zero exponentially fast under parallel repetition, given that the game is
non-trivial to start with (i.e., has classical/non-signaling value < 1). Very recent results [7, 5, 10]
show similar behavior of the quantum value of a two-player game under parallel repetition. For
nonlocal games with three or more players, very little is known up to present on their behavior
under parallel repetition; this is true for the classical, the quantum and the non-signaling value.

In this work, we show a parallel repetition theorem for the non-signaling value of a large class
of multi-player games, for an arbitrary number of players. Our result applies to all multi-player
games for which all possible combinations of questions have positive probability; this class in
particular includes all free games, in which the questions to the players are chosen independently.
Specifically, we prove that if the original game G has a non-signaling value v,5(G) < 1, then the
non-signaling value of the n-fold parallel repetition is exponentially small in n. Stronger than
that, we prove that the probability of winning more than (vys(G) + d) - n parallel repetitions is
exponentially small in n (for any 6 > 0).

Our parallel repetition theorem for multi-player games is weaker than the known parallel
repetition results for two-player games in that the rate at which the non-signaling value of the
game decreases not only depends on the non-signaling value of the original game (and the number
of possible responses), but on the complete description of the game. Nevertheless, we feel that
our result is a first step towards a better understanding of the parallel repetition of nonlocal
games with more than two players.
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1 Introduction

Background

In an m-player nonlocal game G, m players receive respective questions x1, ..., Z,,, chosen

according to some joint probability distribution, and the task of the m players is to provide

“good” answers azi, ..., ay, without communicating with each other. The players are said to

win the game if the given answers jointly satisfy some specific property with respect to the

given questions. The value of a given game is defined to be the maximal winning probability
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of the players. One distinguishes between the classical, the quantum, and the non-signaling
value, depending on whether the players are restricted to be classical, may share entanglement
and do quantum measurements, or are allowed to make use of any hypothetical strategy that
does not violate non-signaling.

An important question for nonlocal games is their behavior under parallel repetition.
This question is somewhat understood in the case of two players, where m = 2. Indeed,
Raz showed in his celebrated parallel repetition theorem [14] that if the classical value
of a two-player game G is v.(G) < 1 then the classical value v.(G") of the n-fold parallel
repetition of G satisfies v.(G") < v.(G)™/ 1°8(*) where s denotes the number of possible pairs
of answers a; and az, and 9.(G) < 1 only depends on v.(G). Raz’s result was improved and
simplified by Holenstein [9], who gave an explicit and tighter dependency between v.(G)
and v¢(G), namely 9.(G) = 1 — g555(1 — vc(G))?. Holenstein also showed that a similar
result holds for the non-signaling value of any two-player game: v,s(G") < ps(G)™ for
Uns(G) = 1 — 5755 (1 —vns(G))?. Parallel repetition results for the quantum value of two-player
games were first derived for certain special classes of games, like XOR~games [6] or unique
games [11], or for a non-standard parallel repetition where the different repetitions of the
original game are intertwined with modified versions of the original game [12]. Recently,
several results about the parallel repetition of more general quantum games have been
obtained [7, 5, 10].

There are further improvements to the above results on two-player games. For instance,
Rao [13] showed a concentration result for the classical value of any two-player game, saying
that the probability to win more than (v,s(G) 4 6) - n out of the n repetitions is exponentially
small (for any § > 0).! Furthermore, he improved the bound on the classical value under
parallel repetition for projection games. A similar improvement on the bound on the classical
value under parallel repetition was given by Barak et al. [1] for free games, together with a
further improvement, namely a strong parallel repetition theorem (meaning that meaning
that v.(G") < v.(G)*™), for free projection games.

When considering multi-player nonlocal games with strictly more than 2 players, to the
best of our knowledge, very little is known about their behavior under parallel repetition,
except for trivial cases. This applies to the classical, the quantum, and the non-signaling
value. In [15], Rosen proved a parallel-repetition result for more than 2 players. While her
proof strategy is very similar to ours (closely following [9]), a somewhat unnatural definition
of multi-player non-signaling correlations is used where no m — 1 provers together can signal
to the remaining prover. In our (standard) model, one also demands that any subset (of
arbitrary size) of provers can not signal to the remaining provers.

Another result about multi-player games is by Briét et al. [2] about the related question
of XOR repetition. They show the existence of a 3-player XOR game whose classical value
of the XOR repetition is bounded from below by a constant (independent of the number of
repetitions). Hence, XOR repetition does not hold for this game (but parallel repetition might
still hold). Our result does not imply anything about those games, because the non-signaling
value of XOR games is always 1.

Possible applications of our result could be of cryptographic nature where the hardness of
a basic task is amplified by parallel repetition. A likely scenario for applying our results (and
our original motivation to study the problem) is position-based quantum cryptography [3, 4],
in the spirit of a recent result on parallel repetition of a particular game [17]. However, as

! Rao claims the concentration result only for the classical value, but the same techniques also apply to
the non-signaling value.
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our result only applies to a restricted class of games, we were not able yet to apply it to in
this cryptographic context.

Our Results

We show a parallel repetition and a concentration theorem for the non-signaling value of
m-player games for any m, for a large class of games. The class of games to which our result
applies consists of all multi-player games with complete support, meaning that all possible
combinations of questions 1, ...,z must have positive probability of being asked. This
class of games in particular includes all free games, in which the questions to the different
players are chosen independently. For any m-player game G with complete support, we show
that if v,s(G) < 1 then there exists Uns(G) < 1 so that vys(G™) < Ups(G)™, and the probability
of winning more than (vys(G) 4 d) - n out of the n repetitions with an arbitrary non-signaling
strategy is exponentially small (for any J > 0).

We point out that our parallel repetition result for multi-player games (with complete
support) is of a weaker nature than the parallel repetition results for two-player games
discussed above, in that in our result the constant v,5(G) depends on the complete description
of the game G, and not just on its non-signaling value vys(G). Still, our result is the first
that shows a parallel repetition result for a large class of m-player games with m > 2 for one
of the three values (the classical, quantum or non-signaling) of interest.

For proving our results, we borrow and extend tools from [9] and [13], and combine them
with some new technique. The new technique involves considering strategies that are almost
non-signaling, meaning that the non-signaling properties only hold up to some small error.
We then show (Proposition 18) and use in our proof that the non-signaling value of a game
is robust under extending the quantification over all non-signaling strategies to all almost
non-signaling strategies.

2 Preliminaries

2.1 Basic Notation

For any m-partite set X = Xy X - -+ X Xy, any m-tuple © = (x1,...,2,,) € X, and any index
set I ={i1,...,ix} C{1,...,m}, we write X; to denote the k-partite set X = X, x -+ x X, ,
and we write z to denote the k-tuple x = (z;,,...,z;, ) € Xr. To denote elements from the n-
fold Cartesian product of an m-partite set X as above, we write = (z!,...,2") € X x---x X
with 2* = (2¢,...,2%,) € X. For i € {1,...,m}, we then write x; for z; = (z},...,27), and
for I = {i1,... i} € {1,...,m}, 2% is naturally understood as z§ = (zf ... ,xfk) and ¢y
as ¢y = (x4,,...,x; ). Corresponding notation is used for random variables X over X and

Xover X x---x X.

2.2 Probabilities and Random Variables

We consider finite probability spaces, given by a non-empty finite sample space {2 and a
probability function P : Q@ — [0,1]. A random variable is a function X :  — X from 2
into some finite set X’. The distribution of X, denoted as Py, is given by Px(z) = P[ X =
x] = P[{w € Q| X(w)=2x}]. The joint distribution of a pair of random variables X and Y
is denoted by Pxy, i.e., Pxy(z,y) = P[ X =2 AY =y], and the conditional distribution of
X given Y is denoted by Px|y and defined as Pxy (z|y) = Pxy(z,y)/Py(y) for all z and y
with Py (y) > 0. An event £ is a subset of €2, and the conditional distribution of a random
variable X given £ is denoted as Px|¢ and given by Pxe(x) = P[X =2 AE]/P[E].
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The variational (or statistical) distance between two probability distributions Py and
Qx for the same random variable X : QO — X over two probability spaces (2, P) and (2, Q)
(with the same ), is defined as

1Px —Qxlli= 5 3 IPx(x) — Qx(x)]
reX
If Px and QQx are e-close in variational distance, we also write Px ~. Qx.
Usually, we leave the probability space (€2, P) etc. implicit, and understand random
variables X,Y, ... to be defined by their joint distribution Pxy..., or by some “experiment”
that uniquely determines their joint distribution.

2.3 Some Useful Facts
The following lemma states that the variational distance cannot increase when less information
is taken into account.

» Lemma 1. Let Pxy and Qxy be joint distributions for random variables X and Y with
respective ranges X and ), and let Px and Qx be the corresponding marginals. Then,

[Px — Qx| < [|[Pxy — Qxvll-

Proof.

23 Px@) — Qx@) = 5 3 |3 (Pev(ey) ~ Qxv(a,9)

reX zeX |yeY

I1Px — Qx|

IA

3 Y P (ay) — Qur ()| = 1 Pxy — Qv

zeX yey

The next lemma is due to Holenstein [9] (a simplified version of his Corollary 6).

» Lemma 2. Let T and U',...,UY be random variables with distribution Ppya..pr =
Pr - Py - Pyuyr (ie. the U'’s are conditionally independent given T ), and let £ be an

event. Then ;
1
;:1 | Prueie — Prie - Pyeyrl| < \/Llog(w) ~

The following is Hoeffding Inequality’s for sampling without replacement [8].

» Theorem 3 (Hoeffding Inequality for sampling without replacement). Let w € {0,1}" be an
n-bit string with %Z?:l w; = w. Let the random variables Dy, Ds, ..., Dk be obtained by
sampling K random entries from w without replacement. Then, for any € > 0, the random
variable D := %= ", Dy, satisfies
P[ﬁ <w-— 5} < exp(f252K) .

Finally, we will make use of the Azuma-Hoeffding Inequality, stated below. We first define
the notion of a supermartingale.

» Definition 4 (Supermartingale). A sequence of real valued random variables My, My, ..., Mk
is called a supermartingale if E[My| Mo - - - My 1] < Mj_1 (with probability 1) for every k& > 1.
» Theorem 5 (Azuma-Hoeffding Inequality). If My, M1, ..., Mk is a supermartingale with
My < My_1+1, then

P[My > My +eK ] < exp(—£°K/2).
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2.4 Nonlocal Games

» Definition 6. An m-player nonlocal game, or simply (m-player) game G consists of two
m-partite sets X = Xy x --- x X, and A = Ay x --- x A,,, a probability distribution
7: X —=[0,1] on X, ie., > m(x) =1, and a verification predicate V : X x A — {0,1}.

» Definition 7. A strategy for an m-player game G = (X, A, 7, V) is a conditional probability
distribution ¢(-|-) : A x X = [0,1], i.e., >, ¢(alz) =1 for all z € X.

» Definition 8. For any m-player game G = (X, A, 7, V) and any strategy ¢ for G, the value
of the game with respect to ¢ is given by

o[g(G) =Y m(x)q(alz) V(z,a).

rzeEX
acA

Any m-player game G = (X, A, 7, V) and any strategy ¢ for G together naturally define
a probability space with random variables X = (X1,...,X,;) and A = (44,..., 4,,) with
joint probability distribution Px 4 given by Pxa(x,a) = 7(z)q(alz). The random variable
X describes the choice of the input x € X according to m, and the random variable A then
describes the reply a € A chosen according to the distribution ¢(-|2). It obviously holds that
Px =7, and Py x(-|z) = q(-|z) for any 2 € & with Px(x) > 0. A subtlety is that for z € X
with Px(z) = 0, the distribution P4 x (-|z) is strictly speaking not defined whereas q(:|x) is.
The value of the game with respect to strategy ¢ can be written in terms of these random
variables as v[q](G) = P[V(X,A)=1]. In the following we define the classical, quantum and
non-signaling values of m-player games. Only the last one will be used in the rest of the
paper, but we provide all of them for the sake of completeness.

» Definition 9. A strategy ¢ for an m-player game G = (X, A, 7, V) is classical (or local) if
there exists a probability distribution p on a set VW and conditional probability distributions
q1,---,qm such that

m

q(ar,...,amlz1, .. 2n) = Z P(M)qu‘(adu’ci,w)-

wew i=1

The classical value of a game G is defined as v.(G) := sup, v[q](G), where the supremum is
over all classical strategies ¢q for G.

» Definition 10. A strategy g for an m-player game G = (X, A, 7, V) is quantum if there

exists an m-partite quantum state [¢) € Ha, ®---@Ha,, and for every z = (21,...,Ty) € X
there exist POVMs Eil = {Eil,al}aleAu L ER = {E" . }a,.eA, such that for all
a=(a,...,am) € Aand z = (z1,...,2,m) € X:

q(ale) = (V|E;, o0 © - @B, [¥)

The quantum value of a game G is defined as vqu(G) := sup, v[q](G), where the supremum is
over all quantum strategies ¢ for G.

» Definition 11. A strategy g for an m-player game G = (X, A, 7, V) is non-signaling if for
any index subset I C {1,...,m} and its complement J = {1,...,m} \ I, it holds that

Z qlar,azlzr,xy) = Z qlar,ay|zr,2’y) forall a; € Ap, xp € Xy and 2,2 € X .
ajEA; ajEA

The non-signaling value of a game G is defined as vns(G) := sup, v[g](G), where the supremum
is over all non-signaling strategies ¢ for G.
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The following relaxed notion of non-signaling is crucial for the understanding of our
parallel-repetition proof.

» Definition 12. A strategy g for an m-player game G = (X, A, m, V) is e-almost non-signaling
if for any index subset I C {1,...,m} and its complement J = {1,...,m} \ I, it holds that

Z qlar,ay|lrr,xy)— Z qlar,azlzr,2’;)| <e forallay € A, z;y € Xy and 25,2, € X .

aj€EA aj€EA;

3 A Multi-Player Parallel Repetition Theorem

3.1 The Parallel Repetition of Nonlocal Games

Given a game G, the n-fold parallel repetition G" is the game where the referees samples
n independent inputs = = (z!,...,2") € X x --- x X and G" is won if and only if all its
sub-games are won. For the sake of notational convenience, we also introduce the following
way of denoting the fact that ¢ of the n parallel repetitions are won.

» Definition 13 (t-out-of-n Parallel Repetition). For any n € N and ¢t € R, the t-out-of-n
parallel repetition of a game G = (X, A, m,V) is given by the game G!/™ = (X", A?, 7" Vt/™)
where X" = X x --- x X and A" = Ax --- x A, and for all x = (z},...,2") € ™ and
a=(al,...,a") € A"

1 oif Yo V(zhat) >t

T (x) = H m(at) and VI, a) = { 0 else
=1

The (standard) n-fold parallel repetition of a game G is given by the game G" := gn/m.

Similar to the observation after Definition 8, for any game G and for any strategy? ¢(")
for the t-out-of-n (or the n-fold) parallel repetition, random variables X = (X!,..., X") and
A= (Al ... A"™), together with their joint distribution Pxa, are naturally determined.

Note that for any £ € {1,...,n}, X* is of the form X’ = (X{,..., X!, where X/
represents the question to the i-th player in the ¢-th repetition of G (and is distributed over
X;). Therefore, for any i € {1,...,m}, we write X; for X; = (X},..., X"), and for any
I={i1,...,ir} C{1,...,m}, X¢ should be understood as X¢ = (Xfl, ... ,ka) and X7 as
Xr=(Xi,...,X;,). The corresponding holds for A.

To simplify notation, for the n-fold repetition of a given game G with a given strategy
¢, we define W, to be the random variable W, := V(X¥, A?) that indicates if the ¢-th
repetition of G is won, and we define W := % > 7—1 W to be the fraction of repetitions that
are won. Obviously, v[¢(™](G!/") = P[W >t/n].

3.2 Concentration and Parallel Repetition Theorems

Our concentration and parallel repetition theorems below hold for all multi-player nonlocal
games G up to the following restriction on the distribution .

» Definition 14. We say that an m-player game G = (X, A, 7, V) has complete support if
m(x) >0forallz € X, ie., every x € X = Xy X --- X Xy, is a “valid input” to the game.

2 We write q<”) (rather than e.g. ¢") to emphasize that it is a strategy for an n-fold repetition of G, but
it is not (necessarily) the n-fold independent execution of a strategy ¢ for G.
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An important class of games that satisfy the complete-support property are the so-called
free games, as studied for instance in [1]. In a free game, 7 is required to be a product
distribution, i.e., m(x) = m(x1) - T (2) for all @ = (21,...,25) € X = X X ... X Xy
Such a game has obviously full support.?

» Theorem 15 (Concentration Theorem). Let G be an arbitrary m-player game with complete
support. Then there exists a constant p > 0, depending on G, such that for any § > 0, any
n € N, and for t = (vys(G)+0)n:

vns(gt/") < 8exp(—64un) .
As an immediate consequence, we get the following parallel-repetition theorem.

» Theorem 16 (Parallel-Repetition Theorem). Let G be an arbitrary m-player game with
complete support and non-signaling value vns(G) < 1. Then there exists v < 1, depending on
G, such that vys(G™) < 8™ for any n € N.

We point out that the constants p (in Theorem 15) and v (in Theorem 16) not only depend
on the non-signaling value v,(G) of G, but on the game G itself. The restriction to games
with complete support stems from the fact that p becomes 0 when the smallest probability
in the distribution 7 goes to 0, rendering the bound useless.

3.3 The Proof

A central idea of our proof is the robustness of the non-signaling value of a game. We will use
the following result from [16, Section 10.4] about the sensitivity analysis of linear programs.

» Lemma 17. Let A be an m X n-matriz, and let A be such that for each nonsingular
submatriz B of A, all entries of B~ are at most A in absolute value. Let ¢ be a row
n-vector, and let b’ and b" be column m-vectors such that both max,{cx|Ax < V'} and
max,{cz | Az < b"} are finite. Then *

max{czr | Ax <"} — max{cx| Az <V} | <nAlclly - b — ]| -
z€RN z€Rn

» Proposition 18 (Robustness of v,5(G)). Let G be an m-player game with non-signaling
value vns(G). Then, there exists a constant ¢(G) such that for any € > 0 and for any
strategy q for G that is e-almost non-signaling, the value of G with respect to q is bounded by
v[g)(9) < vns(G) +¢(9) - .

3 After possibly having restricted the sets X71,..., X, appropriately.
4 For = (x1,...,%n) € R", the norms are defined as ||z|1 = ZZ |zi| and ||z||co = max; |z;].
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Proof. The non-signaling value v,4(G) is the optimal value of the following linear program:

maximize Z m(x)V(z,a)q(alx)

rzEX
ac€A
subject to (1)
q(alz) >0 forallac A, z € X, (2)
Z q(alz) =1 forallz € X, (3)
acA
Z qlar,ay|lzr,xy) —qlar,aslzr,a’) =0forall T C {1,...,m}, J={1,....m}\ I
ajEA

and for all a; € Ay, 2y € Xy and 5,2/, € X .

(4)

Lemma 17 gives a bound on how much the optimal value of this linear program can vary if
we optimize over e-almost non-signaling strategies instead of a fully non-signaling strategies.
Formally, we can express the linear program above in the “standard form” max{cz | Az < b’}
by expanding the equality constraints (3) and (4) as < and > inequality constraints. According
to Definition 12, e-almost non-signaling strategies fulfill the constraints (4) only up to an error
of at most 2e. Hence, relaxing the constraints from non-signaling to e-almost non-signaling
amounts to change the b’-coordinates corresponding to the non-signaling constraints (4)
from 0 to 2e. Hence, the parameters of Lemma 17 are || — V||oc = 26, n = |X] - |A],
Ilellr = Zﬁéf |7 (z)V(z,a)| <|A| and A is a finite constant that depends on the number of

players m and the number of answers | A| and questions |X|.> Finally, we note that we can
apply the lemma, because the objective function is at most one (and thus finite) irrespective
of which strategies we are considering. Setting c¢(G) := 2|X||.A|?A yields the claim. <

» Lemma 19 (Main Lemma). Let G be a game with complete support. Consider an n-fold
repetition G of G with an arbitrary non-signaling strategy ¢ for G™. Let £ be an arbitrary
event (in the underlying probability space). Then for any subset S = {v1,..., v} C{1,...,n},
the probability P[Wy =1|&] for a randomly chosen V in {1,...,n}\ S is bounded by

PIWy=1]€] < vn(@) +¢(9) - \/75 lox(pfs)

where ¢/ (G) = 3-2™¢(G)/ min, w(x) is some constant that only depends on G.
The following is an immediate consequence.

» Corollary 20. Let G be a game with complete support. Consider an execution of the
n-fold repetition G™ with an arbitrary non-signaling strategy for G™. For any £ € {1,...,n},
let & be the event that the £-th repetition is accepted, i.e. Wy, = 1. Then for any subset
S =A{v1,...,u5} C{1,...,n}, there exists vgt+1 € {1,...,n}\ S such that

PlEupy [En Ao NE ] S uns(@) +¢(9) - [75 los (prerirey)

where ¢'(G) is some constant that only depends on G.

® In our case, the relevant constraint matrix A has n = |X| - |A] columns and at most
2 ((|A| X 41X P)™ 4 \2\,’|) rows. Let A := max{|(371)ij
which depends only m, | A[, | X].

| B a nonsingular submatrix of A}7
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Proof (of Lemma 19). Let 7, > 0 be such that n(z) > 7, for all z € X; by assumption
on G, such a 7, exists. By re-ordering the (strategies of the) n executions, we may assume
without loss of generality that S = {n —k+1,...,n}, and we now need to argue about the
probability over a random V in {1,...,n — k}. To simplify notation, let us define

€:= ,/ﬁlog(ﬁ).

Fix a subset I C {1,...,m} and let J = {1,...,m} \ I be the complement of I. Consider
the distribution

n n
PXIXJAI = PXIAI.PXJ‘X]A] = PXIAI.PXJlxl = PXIAI.HPXf;lX[ = PXIAI'HPX§|XIAI
=1 =1

where the second equality is due to non-signaling, the third due to the independence of every
pair (X%, X%), and the third again due to non-signaling. We can thus apply Lemma 2 (with
T = (Xy,Ar) and U* = X%) and obtain

n—k

(n—k)-e= \/(n — k) log(ﬁ) > ZHPXngA,\s - PXIAllg : Pxﬁ\XIAIH
(=1
n—k n—k
> |Pxexeacie = Pxeatie - Pxejxeac|| = D[ Pxcexsatje = Pxeace - Pxe x|
=1 =1

n—k
= ZHPX}ZX“}lE “Pyeixexee = Pyt - Parixee 'PX§|X§H :
=1

The first inequality holds by Lemma 2. The second inequality follows from Lemma 1 which
states that the distance of the random variables X f , X §, A§ cannot be larger than the distance
of all random variables X, X f}, Aj. The subsequent equality holds due to the non-signaling
condition between subsets I and J, and the last equality is a simple re-writing of some
probabilities.

By means of Lemma 2 (setting 7' to be a constant), we can also conclude that } -, || Pxexe (s —
Pyexe ||, and thus in particular ), ||Pxf|g — Py I, is upper bounded by (n — k)e. Therefore,
noting that PXfo, = Px,x,, we can conclude that

n—k

D NIPxix, - Parjxexee = Pxyx, - Pazjxeel] < 3(n —k)e.
(=1

By summing over all subsets I C {1,...,m} (and letting J be its complement), changing
the order of the summation, and defining

eri= D _IIPxix, - Pagixpxcie = Pxox, - Pagixe
I

we get
n—k
Zeg <3-2"(n—k)e.
=1
Note that by definition of €;, for any choice of I and J = {1,...,m} \ I, it holds that

| Px,x, - Pagxexee = Px;x, - Pacixee|| < e,
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and hence, by the lower bound 7, on Px,x,, that

&y
[PasixexseCler, ) = Paeyxee(ler)|| < -
for any 2y and z ;. For any ¢ € {1,...,n — k}, consider the strategy g, for (one execution of)

G, defined by ge(alr) = Pa¢|xeg(alr). By the above, o is (g¢/7,)-almost non-signaling.
Furthermore, by the definition of §s, the probability P[&,| £ ] that the ¢-th repetition of
the n-fold repetition of G is accepted equals the probability v[g](G) that a single execution of
G is accepted when strategy ¢, is played. Since g, is (g¢/m,)-almost non-signaling, it follows
from Proposition 18 that this probability is at most vys(G) +¢(G) - €¢/mo. The claimed bound
on P[&y | £] for a randomly chosen V' in {1,...,n—k} now follows from the bound on ), &,
where ¢/(G) is given by 3 - 2™¢(G) /7. <

We are now ready to prove our main concentration bound.

Proof (of Theorem 15). Let K be some integer parameter, to be defined later. Let V1, ..., Vg
be a random subset of distinct integers from {1,...,n}, and let Dy be the random variable
Dy, = Wy, = V(X" AY) for any k € {1,..., K}. Understanding Vi, ..., Vx as a “sample
subset" of the n parallel repetitions of G, Dy indicates whether the k-th game in the sample
is won. A pair (di,...,dx) € {0,1}* and (v1,...,vx) € {1,...,n} of k-tuples is called typical
if Pp,..pgvivi (dis ooy dilvr, .o ok) > 272K Let T be the event that (D;--- Dy) and
(V1--- V) form a typical pair. Note that the corresponding complementary events satisfy
T = ﬁH as well as

P[ﬁ]: Z PV1~~~V;€(U17~--7Uk)PD1»--Dk|V1--~Vk(d1"'dk|vl"'vk)<2_K~

atypical pairs
(dy...dg),(vy...vp)

Let v := 1—wv,s(G) —e where € := 6/3. Note that we obviously may assume that § < 1—v,5(G)
so that v > 0. We now define a sequence of random variables My, ..., M as follows. Random
variable Mj takes the value 0 with certainty, and My, is inductively defined as

Mos e My +~ if Dpy1=1 and Ty,
M7 Me— (1—1)  otherwise .

We want to show that My, ..., Mk forms a supermartingale. We fix k € {0,..., K—1} and we
fix values (v1, ..., vy) for the random variables V1, ..., V. Up to the end of this paragraph, all
probabilities etc. are to be understood conditioned on these values. We define £ to be the event
that Dy, ..., Dy take on some arbitrary but fixed values (dy,...,dg). If the pair (di,...,dy)
and (vy,...,vg) is atypical, then conditioned on £ we have M1 = Mi+~v—1 < M} and thus
E[Myy1|My -+ - My] < E[M|My--- Mg] = My. In the other case, if the pair (dy,...,dy) and
(v1,...,vx) is typical then P[£] > 272K, Furthermore, Lemma 19 implies that Pp, (1) =
P[&viy, [€] < vas(G) + ¢ (G)/10g(1/P[E])/(n — k) < vas(G) + ¢ (G)/2K/(n — K). We
want this last term to be upper bounded by v,5(G) + € = 1 — 7, which we achieve by choosing
K as K := |an] where o := min{e?/(3¢'(G)?),1/3}, as can easily be verified. It follows
that E[My41|Mo -+ Mi] < (1 — ) (M +7v) + vy(Mr, — (1 — 7)) = My, (when conditioning

on £). Since the argument that the My, ..., Mg form a supermartingale holds independent
of the choice of (di,...,d) and of the choice of (vq,...,v;), Mo,..., Mk indeed forms a
supermartingale in the original probability space (without conditioning on the values for
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Vi,...,Vk). Therefore,

P[ S Dk > (0nn(0)+20)K
k=1

< P[Ti ]+ P[Mx > (vns(G)+26) Ky — (1—45(G) —26) K (1—7) |
<27 K4 P[Mg>(y—14vus(G) +26)K ] = 275 + P[Mg >cK]
< 27K Lexp(—€2K/2) < 2exp(—e*K/2).

The first inequality holds by definition of Mk, and the second by a simple manipulation

of the terms. The equality holds by definition of 7, and the subsequent inequality by the

Azuma-Hoeffding Inequality. Finally, the last inequality holds since € < 1 and exp(%) < 2.
On the other hand, setting D := % Zle Dy, we can also write

P[D > vys(G) +2¢] > P[W > 035(G) + 8] - P[D > v3s(G) + 26 | W > v,5(G) + 6
where by the Hoeffding Inequality (and using that e = §/3)
P[D > vys(G)+2e | W > vps(G) + 6| > 1 — exp(—2e°K).
Therefore,

wW exp(—e2K
P[W > vs(G) + 4] SM'

In case that exp(—2e?K) < %, we obtain the bound

P[W > vn(G) + 6] < - exp(—e°K/2) . (5)

w| oo

Note that in the other case, if exp(—2¢2K) > 1, then 2exp(—e?K/2) > 1 and the bound (5)
holds trivially.

Setting p:=1/(2-3% - ¢/(G)?), and recalling that e = §/3 and K := |an] with a chosen
as o := min{e?/(3¢/(G)?),1/3}, leads to the claim. <

4 Conclusion and Open Questions

This article initiates the investigation of the behavior of multi-player nonlocal games under
parallel repetition. For the case of the non-signaling value, we provide a concentration
bound for games with complete support. Our results might serve as a stepping stone for
the investigation of the quantum and classical values. Other interesting questions include
improving the rate of repetition (e.g. by making it independent of the minimal probability that
any question is asked) or finding cryptographic applications, for instance in position-based
cryptography.
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—— Abstract

We introduce a general mapping for encoding quantum communication protocols involving pure
states of multiple qubits, unitary transformations, and projective measurements into another
set of protocols that employ coherent states of light in a superposition of optical modes, linear
optics transformations and measurements with single-photon threshold detectors. This provides
a general framework for transforming a wide class of protocols in quantum communication into
a form in which they can be implemented with current technology. In particular, we apply
the mapping to quantum communication complexity, providing general conditions under which
quantum protocols can be implemented with coherent states and linear optics while retaining
exponential separations in communication complexity compared to the classical case. Finally, we
make use of our results to construct a protocol for the Hidden Matching problem that retains
the known exponential gap between quantum and classical one-way communication complexity.
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1 Introduction

What information-processing tasks are unachievable in a classical world but become possible
when exploiting the intrinsic quantum mechanical properties of physical systems? This
question has been a driving force of numerous research endeavours over the last two decades
and remarkable progress has been made in our understanding of the advantages that quantum
mechanics can provide, as well is in developing the experimental platforms that will allow
them to be realized in practice [18, 7, 13, 22]. An example pertains to the field of quantum
communication [14], where quantum systems can be used, for instance, to distribute secret
keys [4, 5] or reduce the amount of communication required for joint computations [8, 9, 19, 2].

In terms of experimental implementations, only quantum key distribution (QKD) has
been routinely demonstrated and deployed over increasingly complex networks and large
distances [24, 21]. This is possible largely due to the fact that, fundamentally, QKD can be
carried out with sequences of independent signals and measurements [22]. QKD and other
cryptographic applications are easier to implement, as imperfections in implementations only
need to be overcome to the point of being able to achieve their qualitative goal.

Other tasks, such as those in quantum communication complexity, face the additional
challenge of demonstrating, in practice, their quantitative improvements over classical
alternatives. Moreover, many of these tasks require sophisticated quantum states to be
transmitted and measured. As such, there is a large set of quantum communication protocols
1@.) Juan Miguel Arraz.ola and Norbert. Liitkenhaus; GQG
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whose potential advantages currently escape the grasp of available technology. Thus, only a
few proof-of-principle implementations have been reported [28, 26, 16].

Confronted with these challenges we face two alternatives: We can either strive to
improve current technology or we can flip the issue around and ask: Can protocols in
quantum communication be adapted to a form that makes them ready to be deployed with
available techniques? To adopt the latter strategy is to push for a theoretical reformulation
that converts previously intractable protocols into a form that, while conserving their relevant
features, eliminates the obstacles affecting their implementation. This is precisely the road
that has already been successfully followed for QKD.

In this work, we describe in detail an abstract mapping that converts quantum communi-
cation protocols that use pure states of multiple qubits, unitary operations, and projective
measurements into another class of protocols that use only a sequence of coherent states,
linear optics operations, and measurements with single-photon threshold detectors. The new
class of protocols requires a number of optical modes equal to the dimension of the original
states, but the number of photons can be chosen freely and is typically very small. This
results in the signal states occupying a small Hilbert space, so that they can only be used
to transmit the equivalent of a number of qubits that is only logarithmic in the number of
modes used. We proceed by examining how the mapping may be generally applied in the
context of quantum communication complexity and conclude by illustrating a coherent-state
protocol for the Hidden Matching problem.

2 Coherent-state Protocols

We consider a wide class of quantum communication protocols that require only three basic
operations: the preparation of pure states of a fixed dimension, unitary transformations on
these states, and projective measurements on a canonical basis. This set of protocols is not
completely general since we are not accounting for the possibility of shared entanglement
or non-unitary evolution, although these extensions could potentially be considered. The
simplest form of a protocol in this class is one in which Alice prepares a state [¢)) and
sends it to Bob, who then applies a unitary transformation Ug to that state, followed by a
projective measurement on the canonical basis. More complex protocols can be constructed
by increasing the number of these basic operations as well as the number of parties. Even
though these protocols generally involve states of some arbitrary dimension d, we can always
think of them as corresponding to a system of O(log, d) qubits. Hence, we refer to them as
qubit protocols.

An exact implementation of such protocols can be achieved without the use of actual
physical qubits by instead considering a single photon in a superposition of optical modes.
Any pure state |[¢) = 22:1 Ak k), with 22:1 |Ak|?> = 1, can be equally thought of as the
state of a single photon in a superposition of d modes

d
al, 10) = > " A 1), (1)
k=1

where a;(p = ZZ:1 A;J); for a collection of creation operators {by, ba,...,bq} corresponding
to d optical modes, and where |1), is the state of a single photon in the A-th mode.

In this picture, unitary operations correspond exactly to linear optics transformations,
and measurements in the canonical basis are equivalent to a photon counting measurement in
each of the modes. From a practical perspective, the issue with implementing qubit protocols
in terms of a single photon in a superposition of modes is that the experimental preparation

37

TQC’14



Quantum Communication Complexity with Coherent States and Linear Optics

of these states also presents daunting challenges. Instead, we are interested in an adaptation
of this formulation of qubit protocols into another that is more readily implementable in
practice.

With this purpose in mind, we outline a method for converting qubit protocols into
another class of protocols that, although seemingly disparate, actually retain the essential
properties of the original ones. We call these coherent-state protocols since they can be
implemented by using only coherent states of light and linear optics operations. The recipe
for constructing coherent-state protocols is specified by the following rules:

Coherent-state Mapping
1. The original Hilbert space H of dimension d with canonical basis {|1),|2),...,|d)} is
mapped to a set of d orthogonal optical modes with corresponding annihilation operators

{bhbg,. .. ,bd}i
k) —> by (2)

2. A state [¢p) = 22:1 Ak |k) is mapped to a coherent state with parameter « in the mode
Aoy = Ei:l /\kbkt

1) — lev,) == Day, (@) [0)
d
=l Ak (3)
k=1

where |a M), is a coherent state with parameter o A; in the k-th mode. The value of «
can be chosen freely but remains fixed.

3. A unitary operation U acting on a state in A is mapped into linear optics transformation
corresponding to the same unitary operator U acting on the modes {by, bs,...,bq}. Thus,
the transformation of a state is linked to a transformation of the modes as:

by by

. by b)
Why=ul)— | | =v]| 4)

by b,
4. A projective measurement in the canonical basis {|1),|2),...,|d)} is mapped into a

two-outcome measurement in each of the modes:

{1k (K} — {Fy Fliach ()

no-click?

where F¥ .. =10)(0] is a projection onto the vacuum, F¥ .. = 3" |n);(n|; and
|n), is a state with n photons in the k-th mode. As such, an outcome in a coherent-state
protocol corresponds to a pattern of clicks in the modes. For coherent-state protocols,
the observation of N clicks correspond to a particular pattern of N outcomes of a qubit
protocol. Thus, an immediate interpretation of the outcomes is not provided by the

mapping, but instead must be chosen according to the particular context.

Since any qubit protocol can be constructed from the basic operations of state preparation,
unitary transformations, and projective measurements, the above instructions are sufficient
to construct the coherent-state version of any qubit protocol up to an interpretation of the
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Qubit Protocol

Coherent-State Protocol

o

|a)q v A1)
|vac)s laAz)2
|vac)q | Ad)a

Figure 1 (Color online) In a simple qubit protocol, Alice prepares a state |i)) = ZZ=1 Ak |k) of
log, d qubits by applying a unitary transformation Uy on an inital state ‘()> = \O)®1°g2 4. She sends
the state to Bob, who applies a unitary transformation Up and measures the resulting state in the
computational basis. In the equivalent coherent-state protocol, the initial state corresponds to a
coherent state in a single mode and the vacuum on the others. The state |a, ¢) = ®Z:1 | Ay, is
prepared by applying the transformation Uy to the optical modes. This state is sent to Bob, who
applies the transformation Up and consequently measures each mode for the presence of photons
with threshold single-photon detectors.

measurement outcomes. As an illustration, a simple qubit protocol and its coherent-state
counterpart are depicted in Fig. 1.

An immediate appealing property of coherent-state protocols is that their implementation
faces much lesser obstacles than their qubit counterparts. Indeed, the fundamental challenge
of a quantum-optical implementation of qubit protocols lies in the difficulty of generating

entangled states of many qubits and performing global unitary transformations on them.

On the other hand, coherent-state protocols face significantly less daunting obstacles. The
experimental generation of coherent states is a commonplace task and the construction
of linear-optical circuits can, in principle, be realized with simple devices such as beam
splitters and phase-shifters [20], though experimental challenges may remain depending
on the required unitary operation. Moreover, the platforms for linear optics experiments
continue to improve at a fast rate, most notably with the development of integrated optics
[25] and time-bin encodings [17, 10].

As we have mentioned already, an advantage of coherent-state protocols is that they
employ a coherent state in a superposition of modes, which is equivalent to a tensor product of
individual coherent states across the various modes. However, qubit protocols usually require
high amounts of entanglement. This seems to indicate that the ‘quantumness’ of the original
qubit protocol has been lost through the mapping. Nevertheless, it is important to realize
that this is not the case, as coherent-state protocols showcase a truly quantum property:
non-orthogonality. Given two states |a, ) = ®Z:1 la Ak), and |a, ) = ®Z:1 | vg),, with
d > «, the individual coherent states in each mode will typically be highly non-orthogonal,
ie. (avglaA;) = 1. Moreover, the presence of single-photon detectors also permit truly

quantum phenomena, such as unambiguous state discrimination of non-orthogonal states.

In fact, it can be useful to intuitively think of the coherent-state mapping as an exchange
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between entanglement and non-orthogonality, since an implementation of qubit protocols
with actual physical qubits usually requires entanglement amongst the qubits.

In coherent-state protocols, the average photon number, |a|?, is a parameter that can
be chosen independently of the dimension of the states of the original qubit protocol. This
is to be put in contrast with any quantum-optical realization of a qubit protocol, which
inevitably requires a number of photons that scales with the dimension of the states. Hence,
coherent-state protocols offer an intrinsic saving in the number of photons required for
their implementation. The drawback, of course, is that the number of optical modes is
exponentially larger than the number of qubits in the original protocol. This means that the
mapping is only suitable for its application to protocols that originally require only a small
number of qubits. From a theoretical perspective, the relationship between these two types of
protocols may provide an insight into the trade-offs between different resources in quantum
communication, as well as into the interplay between entanglement and non-orthogonality in
quantum mechanics.

Now that we have outlined the coherent-state mapping, we continue by describing how
these techniques can be applied in the construction of protocols in quantum communication
complexity.

3 Quantum Communication Complexity

Communication complexity is the study of the amount of communication that is required
to perform distributed information-processing tasks. This corresponds to the scenario in
which two parties, Alice and Bob, respectively receive inputs « € {0,1}" and y € {0,1}"
and their goal is to collaboratively compute the value of a Boolean function f(x,y) with as
little communication as possible [27]. Although they can always do this by communicating
their entire input, the pertaining question in communication complexity is: What is the
minimum amount of communication that is really needed? Likewise, quantum communication
complexity studies the case where the parties are allowed to employ quantum resources such
as quantum channels and shared entanglement [6, 7].

Remarkably, it has been proven that there exist various problems for which the use of
quantum resources offer exponential savings in communication compared to their classical
counterparts [9, 19, 2, 12, 8]. As discussed previously, coherent-state protocols require a
number of modes that is exponentially larger than the number of qubits of the original
protocol. Thus, from a practical perspective, the exponential savings that are possible for
certain tasks in quantum communication complexity conveniently balance the exponential
increase in the number of modes, making them a natural candidate for the application of the
coherent-state mapping.

We are first interested in quantifying the amount of communication that takes place in
a quantum communication complexity protocol. Informally, this is done by counting the
number of qubits that are employed. But what happens if a protocol uses physical systems
that are manifestly not qubits? In that case, we quantify the amount of communication in
terms of the smallest number of qubits that would be required, in principle, to replicate
the performance of the protocol. More precisely, if a quantum communication protocol uses
states in a Hilbert space of dimension d, this space can be associated to a system of O(log, d)
qubits. Therefore, the amount of communication C' in a quantum protocol is generally given
by

C = log,[dim(#)] (6)
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where H is the smallest Hilbert space containing all states of the protocol. Moreover,
Holevo’s theorem [15] guarantees that no more than log, d classical bits of information could
be transmitted, on average, by a quantum protocol that uses state in a Hilbert space of
dimension d.

Quantifying communication in qubit protocols is straightforward. For coherent-state
protocols, even though the actual Hilbert space associated to all possible signal states is large
(distinct coherent states are linearly independent), they effectively occupy a small Hilbert
space, as is expressed in the following theorem:

» Theorem 1. [1] For any state 1) in a Hilbert space of dimension d, let |, ) be the state
associated to it through the coherent-state mapping. Then, for any € > 0, there exists a
Hilbert space H,, of dimension d, such that

log, do = O(log2 d),
<04»77/1|PH,1 ‘Ck, ¢> >1- €,

and where Py, is the projector onto H,.

Proof. For a given A > 0, let H, be the subspace spanned by the set of Fock states
{|n1) ® |n2) ® ... ® |ng)} over d modes whose total photon number n = ZZ=1 ny satisfies
In — |a|?| < A. The dimension of H,, is equal to the the number of distinct ways in which n
photons can be distributed into the d different modes. Since the photons are indistinguishable,
this quantity is given by the binomial factor ("Zf;l) [23]. In the case of H,, there are 2A
different possible values of n, the largest being n = |a|? + A. Thus, the dimension d,, of this

subspace satisfies

2 —
log, d < log, {2A<|a| erAJ;d 1)]

<(la]* + A)logy [(Ja]* + A +d — 1)] + log,(24), (7)

which is O(log, d) for any fixed @ and A.
Now notice that the number (a, |Py_ |, 1) is equal to the probability of performing
a photon number measurement on |a, ) and obtaining a value satisfying |n — |a|?| < A.
Since any coherent state |, 1) has a Poissonian photon number distribution with mean |a/?,
we can use the properties of this distribution to calculate the probability that the measured
number of photons lies within the desired range. This probability satisfies [11]
2\ lel?+a
elal ) ()

—lal?] > < 9p—lal® [ _C1H
P(ln—|a]?] > A) < 2e (|a|2 A

which can be made equal to any € > 0 by choosing A accordingly while keeping « fixed. <

Therefore, the fact that the mean photon number |a|? is fixed in coherent-state protocols
leads to the states involved effectively occupying a Hilbert space of dimension that is
comparable to that of the original one. This implies that the asymptotic behaviour of the
amount of communication is the same for both classes of protocols. Moreover, the effectively
unused sections of the entire Hilbert space can still be used, in principle, for other purposes
such as the transmission of additional information.

We now focus on the bounded-error model in which Alice and Bob have randomness at
their disposal and need only determine the value of the function f(z,y) with probability
greater or equal to 1 — € for all possible values of x and y. They can send quantum states to
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each other, apply unitary transformations on these states, and make measurements in the
same way as the quantum communication protocols discussed before. Since they are only
interested in learning the value of the function, their final measurement can always be thought
of as a projective measurement onto two orthogonal subspaces Hy and H;, corresponding to
f(z,y) =0 and f(z,y) = 1 respectively.

In a coherent-state version of this model, the crucial difference lies in the measurement
stage, where the subspaces Hy and H; are mapped onto sets of modes Sy and S7. Unlike the
qubit protocol, there can be clicks happening in both sets of modes and as a consequence,
checking for the presence of clicks does not suffice to determine the value of the function.
Instead, in order to decide between both possible values of f(x,y), we opt for the strategy of
counting the number of clicks that occur in each set of modes and selecting the one with the
largest number of clicks.

Let % be the random variable corresponding to the number of clicks observed in the set
of modes Sy, with b = 0, 1. The distribution of Cj is known as a Poisson-binomial distribution
and its expectation value is given by

E(Cy) = 3 Pak = o, (9)
kESy

where p, . = 1 — exp(—|a Ag|?) is the probability of obtaining a click in the k-th mode.

This distribution can be difficult to work with in its exact form, so it is usual to
approximate it by a Poisson distribution with the same mean. This approximation can be
made precise through the following result:

» Theorem 2. [3] Let Cy, be a Poisson-binomial random variable with mean py,. Similarly,
let Ly be a Poisson random variable with the same mean uy,. Then, for any set A, it holds
that

|Pr(Cy, € A) — Pr(Ly € A)| < min(l,u;l)Tb, (10)
where T, = Zkesb (Pa.k)? and pa.x is the probability of obtaining a click on the k-th mode.

We can use this fact to show that, under certain conditions, a coherent-state version of a
bounded-error qubit protocol also gives the correct value of the function with bounded error.

» Theorem 3. Let a qubit protocol for communication complexity have a probability of
success P > 1 —¢€. Then the corresponding coherent-state protocol has a probability of success
P, > 1 — ¢ if there exists a = |a|? such that

2671 (2ePu)!"? + mancmin(1, )} < e -

where , is the expected number of clicks in the set of modes Sy and T =Y, (Pa.k)?*-

Proof. Without loss of generality, we take f(z,y) = 0 to correspond to the correct value of
the function. We can bound the success probability as

P, = Pr(CO > Cl)
> PI"(C() > %)Pr(Cl < %)
=(1-Pr(Cp < %))(1 —Pr(C; > %))
From Theorem 2 we can also write

Pr(Co < &) < Pr(Lo < £) +min(1, g )70

2 n/2
< e Ho ( iim) + min(l,,ual)m,
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where we have bounded the Poisson distribution as in Eq. (8). Similarly we have

2 n/2
Pr(C; > §) <e ™ (€m> + min(1, uy )7

Putting these together we get

2 n/2 2 w2
P, > (1 —e Mo <6M0) — min(1, ual)T()) (1 —e (e,ul> —min(1, u; )71
1 7

9 )2 9 n/2

o () e (BR) - mntgn -t

W H

>1 — e Pr(2ePpy/? — == (2e(1 — P)u)*/? — max{min(1, s, 1) }7,
Ho,H1

where 7 =79+ 71 = >, (Pa,k)? and we have used the fact that

Pu=Y"laPpe > " (1—e o) =y (12)

k€So k€So

and similarly (1—P)p > p1. Whenever P > 1/2, it holds that e F#(2ePu) > e~ =PI (2¢(1—
P)p) so we can finally write

P, >1—2e PH(2ePpu)*/? — max{min(1, s, *)}7. (13)
Mo,

From this expression it is clear that whenever condition (11) holds, P, > 1 —e as desired. <«

Notice that the quantity 2e=F "(ZePu)“/ 2 can be made arbitrarily small for any P > 1 —¢
by choosing a large enough value of y = |a|?. However, large values of 4 result in higher values
of the individual click probabilities {pi o} and consequently larger values of 7 =Y, (pa.k)?,
making it harder for the quantity max,, ,, {min(1, u; ')} to be small. Therefore, condition
(11) may only be satisfied when the original probabilities {p;} are very small, as this results in
a small 7 even when p is large. Of course, whenever the communicated states lie in a Hilbert
space of large dimension, we expect the outcome probabilities to be small and, consequently,
the coherent-state protocol to function adequately.

We would like to apply the coherent-state mapping to known protocols in quantum com-
munication complexity. In fact, this has already been demonstrated in [1], where, essentially,
a coherent-state mapping was used to construct a protocol for quantum fingerprinting. We
now discuss how the mapping can be used to construct a protocol for the Hidden Matching
Problem.

The Hidden Matching Problem. In this communication complexity problem, Alice receives
an n-bit string « € {0,1}" as input, with n an even number. Additionally, Bob receives a
perfect matching M = {(i1,j1), (i2, j2), - - -, (in/2, Jn/2) } on the set of numbers {1,2,...,n},
i.e. a partition into n/2 disjoint pairs. A perfect matching can be visualized as a graph
with n vertices and n/2 edges, where each vertex is connected to only one other vertex.
Only one-way communication from Alice to Bob is permitted and their goal is to output an
element of the matching (7,5) and a bit value b such that b = z; & z;, where x; is the i-th
bit of the string x.

It has been shown that any classical protocol requires Q(y/n) bits of communication,
even in the presence of errors [2]. On the other hand, there exists an efficient quantum
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Figure 2 (Color online) An example of an implementation of a coherent-state protocol for
the Hidden Matching problem. Alice receives a string of six bits and Bob receives the matching
(1,6),(2,5),(3,4), as represented in the graph. Alice encodes her input values in the phases of six
coherent states in different modes and sends them to Bob. His measurement consists of a circuit
in which the modes are permutated in accordance with the matching and then interefere pairwise
in three balanced beamsplitters. Bob can output a correct solution to the problem based on the
detectors that click.

protocol that uses only O(log, n) qubits of communication and outputs the correct answer
with certainty. In this protocol, Alice prepares the state

n

2) = 3 (=1)7 [3) (14)
=1

S

and sends it to Bob, who measures it in the basis
{2500 = i} (15)

with (i,7) € M. The outcome %(|z>+|y>) only occurs if z;@x; = 0 and similarly, %(\z)—m)
only occurs if x; ® x; = 1. This allows Bob to give a correct output after performing his
measurement. Note that Bob’s measurement basis is constructed from the canonical basis by
applying a Hadamard transformation to the subspaces {|i),|j)}, with (¢,5) € M.

To construct a coherent-state protocol for the Hidden Matching problem, we just have to
apply the rules of the mapping. In this case, Alice prepares the state

o) = @ |- 5 (16)
i=1

and sends it to Bob. The linear-optical equivalent of a Hadamard gate is a balanced beam-
splitter, so Bob’s measurement consists of interfering each of the pairs of modes {b;,b;} (with
(i,7) € M) in a balanced beam-splitter and detecting photons in the outputs as illustrated in
Fig. 2. If the incoming states to the input ports of the beam splitter are

gy o[ ). )

the output states will be

’(1 + (71)301-69%-) %> ® ’(1 . (71)901'6990]') %> . (18)
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Notice that for each possible value of x; @ x;, one of the output states will be a vacuum
while the other is a coherent-state with non-zero amplitude. Therefore, we can associate
a value of x; @ z; to each of the output detectors so that whenever a click occurs, the
correct value can be inferred with certainty. Even if there are many clicks, they will always
correspond to a correct value. Thus, the only issue that can arise is that no-clicks occur and
the probability that this happens is given by

Pno-click = 6_‘0427 (19)

which can be made arbitrarily small by choosing a appropriately. Moreover, Theorem 1
guarantees that the amount of communication in the coherent-state protocol is O(log, n)
and an exponential separation in communication complexity is maintained.

4  Conclusions

We have outlined a general framework for encoding quantum communication protocols
involving pure states, unitary transformations, and projective measurements, into another
set of protocols that employs coherent states of light in a superposition of modes, linear
optics transformations, and measurements with single-photon threshold detectors. Although
seemingly disparate at first glance, qubit and coherent-state protocols share in fact many
properties, including the amount of communication required and the outcome statistics.
Moreover, since the mapping depends on a parameter a that can be freely chosen, coherent-
state protocols offer increased tunability compared to qubit protocols.

This work thus provides a general method for mapping protocols in quantum communica-
tion into a form in which they can be implemented with current technology. It is of great
interest to explore what other protocols in quantum communication, besides the ones we
have outlined in this work, could be implemented by applying the coherent-state mapping to
their qubit versions.

Fundamentally, coherent-state protocols require a fixed and small number of photons
at the price of an exponentially large number of optical modes. For practical purposes,
this implies that their application to protocols that originally require a large number of
qubits will be difficult. Nevertheless, the fact that very few photons are needed not only
implies an inherent savings in the energy cost of communication, but may also provide
other practical advantages. For example, since optical multiplexing is limited by nonlinear
effects arising from large amplitudes of the electromagnetic field, the fact that coherent-state
protocols employ signals with very few photons implies that they can be easily assimilated
into multiplexing schemes, or even provide a new way of multiplexing quantum messages, for
example by utilizing the unused sections of the entire Hilbert space. Additionally, the low
photon number may result in increased clock rates: Since only a few clicks are expected to
occur even in cases when many modes are transmitted, the detector dead times and jitter
times do not pose a barrier to the achievable rates.

From a theoretical perspective, the coherent-state mapping can be thought of as a tool
for understanding fundamental aspects about quantum communication and information. In
particular, the mapping provides us with a connection between two intrinsically quantum
properties: entanglement and non-orthogonality. It may also serve as a theoretical test bed
for proving results regarding qubit protocols, in the same way as many other dualities have
been useful in both physics and mathematics.
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—— Abstract

We study zero-error entanglement assisted source-channel coding (communication in the presence
of side information). Adapting a technique of Beigi, we show that such coding requires existence
of a set of vectors satisfying orthogonality conditions related to suitably defined graphs G and
H. Such vectors exist if and only if 9(G) < ¢¥(H) where ¥ represents the Lovész number. We
also obtain similar inequalities for the related Schrijver ¥~ and Szegedy ¥ numbers.

These inequalities reproduce several known bounds and also lead to new results. We provide
a lower bound on the entanglement assisted cost rate. We show that the entanglement assisted
independence number is bounded by the Schrijver number: o*(G) < ¥~ (G). Therefore, we are
able to disprove the conjecture that the one-shot entanglement-assisted zero-error capacity is
equal to the integer part of the Lovasz number. Beigi introduced a quantity 8 as an upper bound
on o and posed the question of whether 5(G) = |¥(G)]. We answer this in the affirmative
and show that a related quantity is equal to [9(G)]. We show that a quantity Xveet(G) recently

introduced in the context of Tsirelson’s conjecture is equal to [97(G)].
1998 ACM Subject Classification E.4 Coding and Information Theory
Keywords and phrases source-channel coding, zero-error capacity, Lovasz theta

Digital Object ldentifier 10.4230/LIPIcs. TQC.2014.48

1 Introduction

The zero-error source-channel coding problem is as follows. Suppose Alice wishes to send a
message T € X to Bob through a noisy classical channel N : S — V in such a way that Bob
may deduce Alice’s message with zero probability of error. Alice encodes her message via
some function f: X — S before sending it through the channel. Bob is aided by some side
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the Philip Leverhulme Trust; furthermore by the Spanish MINECO, project FIS2008-01236, with the
support of FEDER funds.
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Figure 1 A zero-error source-channel coding scheme.

information u € U regarding Alice’s message. Formally, we can imagine that the symbols =
and w originate from a dual source with probability P(x,u). See Fig. 1.

The success of this protocol can be analyzed using a pair of graphs: G with vertices from
X and H with vertices from V', having edges

x~gy <= Ju € U such that P(xz,u)P(y,u) #0 (1)
s~pt < N(v|s)N(v|t) =0 for all v € V, (2)

where P(z,u) is the probability of input pair z,u and A (v|s) is the probability that the
channel outputs v given input s. G is the characteristic graph of P and H is the complement
of the confusability graph of N'. Intuitively, G represents the information that needs to be sent
and H represents the information that survives the channel. Bob is able to decode = (with

zero chance of error) if and only if Alice’s encoding satisfies © ~¢ y = f(x) ~g f(y) [11].

Such a function is called a homomorphism from G to H. If such a function exists then G is
homomorphic to H, written G — H.

Many graph quantities can be defined in terms of homomorphisms [8, 9], and the above
protocol puts these in an operational context. If there is no side information then G = K,
the complete graph on n = |X| vertices. The largest n such that K,, — H is the clique
number w(H). Thus the largest number of error-free messages that can be sent through A/
is w(H) (equivalently, a(H ), the independence number of the complementary graph). If A/
is the perfect channel then H = K,, with n = |S|. The smallest n such that G — K, is the
chromatic number x(G). This is the size of the smallest channel that suffices to communicate
inputs from a dual source with characteristic graph G.

Source-channel coding may also be considered in the case where Alice and Bob make use
of an entanglement resource, Fig. 2 [3]. Now Alice’s encoding operation consists of a POVM
{MZ}:cs depending on her input x and producing a value s to be sent to Bob through the
channel. Bob can successfully decode if and only if

pY L pf for all z ~g y and s £g t, (3)

where p? is Bob’s share of the post-measurement entanglement resource after POVM outcome
M?. By analogy to the above, a successful protocol is called an entanglement assisted
homomorphism from G to H. If such a thing exists, one writes G — H. Also by way of
analogy, the entanglement assisted independence number o*(H) is the largest n such that
K, = H and the entanglement assisted chromatic number x*(G) is the smallest n such that
G 5 K,,. These have similar operational interpretations as a(H) and x(G) discussed above.

We consider two relaxations of condition (3) for G = H. The first we denote G i

since it reduces to a construction of Beigi [2] when G = K,,. We say G Z H if there are
vectors |w) and |w?) such that
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Figure 2 An entanglement assisted zero-error source-channel coding scheme.

(w|w) =1

2 [wg) = w)

(w¥wy)y =0 for all z ~g y, s by t
(w?w?) =0 for all s # 1.

Another relaxation G = H is defined similarly, except that the last condition is replaced by

4.

(wf|wf) > 0.

Since these are relaxed conditions, G = H implies G B Hand G5 H. All of our results
follow from two theorems. With 9(G), 9~ (G), and 97 (G) being the Lovész, Schrijver, and
Szegedy numbers of the complementary graph G, we have

» Theorem 1. G 3 H if and only if I(G) < I(H).

» Theorem 2. If G 5 H then 0(G) < (H), 9~ (G) < 0~ (H), and 9+ (G) < 9+ (H).

A number of original results follow as immediate corollaries:

Entanglement assisted zero-error source-channel coding (G = H) requires 9(G) < 9(H),
97 (G) <9~ (H), and 91 (G) < 9+ (H).

a*(H) <9~ (H) (previously only o*(H) < 9(H) was known [2, 4]).

The average number of channel uses required per input, in the asymptotic limit, is
known as the entanglement assisted cost rate n*(G, H). Since ¥ is multiplicative under
appropriate graph products, n*(G, H) > log9(G)/log 9(H).

Beigi defined S(H) to be the largest n such that K, B g (paraphrased into our
terminology) and asked whether B(H) = |9(H)|. The answer is “yes” — this follows
directly from Theorem 1.

By considering instead G S K, one can define a quantity similar to Beigi’s, equal to

[O(H)].

Also as immediate corollaries, we reproduce the following known results:

¥'(G) = 0% (G) [3].

There is a notion of a quantum homomorphism G % H defined in the context of a
quantum pseudo-telepathy game [14, 13]. Since G LH = G5H = G5 H, the
inequalities of Theorem 2 apply to G % H as well.

These various generalized homomorphisms can be arranged in a sequence of most to least

strict:

GoH=G%H — G5>H = G5 H = ¢2 H (4)

It is known that the converse of the first implication does not hold [5, 14], and we show the
converse of the last does not hold. The other two are open. The second converse holds if
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and only if entanglement assisted source-channel coding can always be accomplished using
projective measurements and a maximally entangled state. The third converse holds if,
loosely speaking, it is permissible to drop all mathematical structure from (3) except for the
basic properties related to inner products (pZ, pf).

It is not known whether there can be a gap between the asymptotic entanglement assisted
zero-error capacity ©* and 1. To show such a gap requires a stronger bound on a*. Since
Beigi’s 8 is now shown to be essentially no different from ), this dashes the hope that g
could be used to show such a gap. Our bound o*(H) < 9~ (H) would imply a gap, unless
¥~ regularizes to 9 in the asymptotic limit. Haemers provided a bound on Shannon capacity
which is sometimes stronger than Lovész’s bound [6, 7, 1, 12]; however, this bound does not
apply to the entanglement assisted case [10].
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—— Abstract

A strong converse theorem for channel capacity establishes that the error probability in any
communication scheme for a given channel necessarily tends to one if the rate of communica-
tion exceeds the channel’s capacity. Establishing such a theorem for the quantum capacity of
degradable channels has been an elusive task, with the strongest progress so far being a so-called
“pretty strong converse.” In this work, Morgan and Winter proved that the quantum error of
any quantum communication scheme for a given degradable channel converges to a value larger
than 1/1/2 in the limit of many channel uses if the quantum rate of communication exceeds the
channel’s quantum capacity. The present paper establishes a theorem that is a counterpart to
this “pretty strong converse.” We prove that the large fraction of codes having a rate exceeding
the erasure channel’s quantum capacity have a quantum error tending to one in the limit of many
channel uses. Thus, our work adds to the body of evidence that a fully strong converse theorem
should hold for the quantum capacity of the erasure channel. As a side result, we prove that the
classical capacity of the quantum erasure channel obeys the strong converse property.

1998 ACM Subject Classification H.1.1 Systems and Information Theory, E.4 Coding and In-
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1 Introduction

In his seminal paper on quantum error correction, Shor set out the task of determining
the quantum capacity of a quantum channel [26], defined as the maximum rate at which
it is possible to transmit qubits reliably over a noisy quantum communication channel.
Subsequent to this, the coherent information was identified as being a relevant quantity for
quantum capacity [23], a regularized upper bound on quantum capacity was established
in terms of the coherent information [4, 5], and the coherent information lower bound on
the quantum capacity was established by a sequence of works which are often said to bear
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“increasing standards of rigor” [19, 27, 9]. 1 All of these works did not identify a tractable
characterization of the quantum capacity in general, but Devetak and Shor subsequently
proved that the coherent information is equal to the quantum capacity for a class of channels
bearing the property of degradability [10]. Degradable channels are such that the receiver
of the output of the channel can simulate the channel to the environment by applying a
degrading map.

A particularly simple example of a degradable channel is the quantum erasure channel N,
[13], which has the following action on an input density operator p:

Np(p) = (1= p)p + ple)(el, (1)

where p € [0,1] is the erasure probability and |e) is a state orthogonal to the input space
(i.e., (e|ple) = 0 for all input p). One can readily show that the map to the environment is
equivalent (up to isometry) to an erasure channel with the complementary probability:

No(p) =pp+ (1 —p)le)(el. (2)

The interpretation here is that if the receiver recovers the channel input, then the environment

does not and instead receives the erasure flag, and vice versa.

The quantum capacity of the erasure channel was identified early on by employing a now
well known “no-cloning” argument [7]. That is, when p = 1/2, the channels from input to
the receiver and from input to the environment are the same, so that the quantum capacity
of the original channel must vanish. If this were not the case, then it would be possible to
send quantum data reliably to both the receiver and the environment of the channel, in
violation of the no-cloning theorem. It is then possible to prove that the quantum capacity
of the erasure channel in general is equal to (1 — 2p)logd for p > 1/2 and zero otherwise (in
agreement with the aforementioned reasoning), where d is the dimension of the input space
for the channel.

All of the above works established an understanding of quantum capacity in the following
sense:

1. (Achievability) If the rate of quantum communication is below the quantum capacity,
then there exists a scheme for quantum communication such that the fidelity approaches
one in the limit of many channel uses.

2. (Weak Converse) If the rate of quantum communication is above the quantum capacity,
then there cannot exist an error-free quantum communication scheme.

However, the theorem stated as such still leaves more to be desired. For example, it has

been known for a long time that the classical capacity of a classical channel obeys the strong

converse property [33, 1]: if the rate of communication exceeds capacity, then the error
probability necessarily converges to one in the limit of many channel uses. Furthermore,
many works have now established that the strong converse property holds for the classical
capacity of several quantum channels [32, 22, 18, 31, 30, 3] and for the entanglement-assisted

classical capacity of all quantum channels [6, 8, 14].

Thus, we are left with the strong converse question for the quantum capacity, with the
goal being to sharpen our understanding of quantum capacity. In general, the quantum
capacity of arbitrary channels can exhibit rather exotic behavior [28], so it seems reasonable
to restrict attention for now to the class of degradable channels since they are more well
behaved. In this spirit, a recent work has proved that the quantum capacity of all degradable

! However, see the later works in [16] and [15], which respectively set [19] and [27] on a firm foundation.
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channels exhibits a property dubbed the “pretty strong converse” [20]. These authors have
proven that the quantum error? of any quantum communication scheme for a degradable
channel experiences a sudden jump from zero to at least 1/v/2 when the communicate rate
crosses the quantum capacity threshold (this statement is in the limit of many channel uses).
At the very least, we now know that the quantum capacity experiences this jump, but the
work of [20] left open the question of whether the jump in quantum error is actually from
zero to one in the limit of many channel uses.

In this paper, we prove a statement that is similar in spirit to the pretty strong converse:
for almost all codes having a rate exceeding the quantum capacity of the erasure channel,
the error necessarily converges to one in the limit of many channel uses. We should clarify
that we do not prove a strong converse for all codes, but instead show that the strong
converse property holds for almost all codes. We will be more precise in what follows with
clarifying what we mean by “almost all codes,” but suffice it for now to say if anyone devises
a communication scheme for quantum communication over the erasure channel whose rate
exceeds capacity, then the chances are very good that, regardless of the scheme, it will fail
with probability converging to one in the limit of many channel uses.

In the absence of a proof that the strong converse holds, both the present paper and
[20] are offering an increasing body of evidence that it should indeed hold for the class of
quantum erasure channels. That is, both results allow us to conclude the following statement:
all codes whose rate exceeds the quantum capacity of the erasure channel have a quantum
error converging to 1/4/2 in the limit of many channel uses, and a large fraction of them in
fact have quantum error converging to one.

This paper is organized as follows. The next section reviews the definition of an entan-
glement generation code. Section 3 then reviews the generalized divergence framework of
Sharma and Warsi [25] for establishing bounds relating rate, error, and the channel of interest
in any quantum communication protocol. Section 4 provides a proof for our main result: that
the strong converse property holds for almost all codes used for quantum communication
over the quantum erasure channel. We state some open directions in the conclusion. The
appendix includes, as a side result, a proof that the strong converse holds for the classical
capacity of the quantum erasure channel.

2 Entanglement generation codes

In this paper, we focus on entanglement generation codes, for which the goal is for the sender
Alice to use the channel n times in order to share a state with the receiver Bob, such that this
state is indistinguishable from a maximally entangled state. We focus on this task because
the entanglement generation capacity of a quantum channel serves as an upper bound on its
quantum capacity (this in turn is because a protocol for noiseless quantum communication
can always be used to generate entanglement between sender and receiver). Thus, if one
establishes an upper bound on the entanglement generation capacity, then this bound serves
as an upper bound on the quantum capacity. However, we should emphasize again that our
final statement is a bound that holds for almost all entanglement generation codes, so that
we cannot conclude a full strong converse.

More formally, we now define an (n, R,e,¢, D) entanglement generation code for a
channel N. Such a protocol begins with Alice preparing a state on n + 1 systems, she sends
n shares of the state through n instances of the channel, and then Bob decodes. That is,

2 As quantified by the so-called “purified distance” (see Chapter 3 of [29], for example).
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such a code begins with Alice preparing a state |¢) 44,...4, . The reduced state on system A
has its rank equal to M, where M = 27f. Alice then transmits systems A; - - - A,, through n
uses of the channel, leading to the state

PABn™ ENATL-}B"(QSAAlmAnL (3)

where Nan_,gn = N®" and A" is shorthand for A; - -- A,. Finally, Bob performs a decoding
Dg.._, 5, leading to the state

wap = Dpu,pNanopr(daa,.a,)) (4)
The fidelity of the code is given by
F=(@ 5 wap [®)ap (5)

where |®) , 5 is the maximally entangled state

1 M—-1
1) a5 = Navi > li)ali) g, (6)
1=0

so that the rate of entanglement generation is equal to %logz M. An (n,R,e,¢,D) code
uses the state ¢, the decoder D, the channel n times at rate R, and is such that the fidelity
F > 1—¢. Note that without loss of generality, we can restrict our consideration to pure-state
entanglement generation codes. For if the initial state is a mixed state paa,..4, and the
following condition holds

(lapDpn_,gNanpn(pan,..a,))|®)ap =1 -, (7)

then there always exists at least one pure state in the spectral decomposition of ps4,...4

n

which meets the same fidelity constraint given above.

3 Generalized divergence framework for quantum communication

We now recall the Sharma-Warsi framework for bounding fidelities in quantum communication
[25]. We say that D(X||Y) is a generalized divergence if it satisfies the following monotonicity
inequality for all quantum channels M and positive operators X and Y:

DX|[Y) = DIM(X)[IM(Y)). (8)
Let Ip(A)B), denote the generalized coherent information of a bipartite state pap:

Ip(A)B), = minD(pasp|lls @ o). (9)

Let Ip(N) denote the generalized coherent information of a quantum channel N:

ID(N) = giax ID(A>B)NA’~>B(¢AA’) (10)
A/
:maxminD(NA/%B(qﬁAA/)HIA®JB). (11)
baar OB

If the generalized divergence is equal to the von Neumann relative entropy, then the above
expressions are equal to the usual coherent information of a quantum state and coherent
information of a quantum channel, respectively.
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We now establish a bound relating the rate and error of any entanglement generation
code for a quantum channel N to the generalized coherent information of the tensor-power
channel N'®™. For our purposes here, we begin by considering the generalized divergence
between the state papn defined in (3) that is output from n uses of the channel and any
other operator of the form I4 ® ogn, where og» is a density operator on the systems B™:

By monotonicity under the application of the decoder D g, _, 5 to the system B, the following
inequality holds

D(pap»|[Ia @ opn) = D(w,zl[{a ® Dy, glopn)). (13)

Next, consider the following test (a completely positive trace-preserving map), which outputs
a flag indicating whether a state is maximally entangled or not:

Thpoz() = Te{®@ 45 ()L + Tr{(Lyz — ©45) () }0)(0]. (14)

Intuitively, this test is simply asking, “Is the entanglement decoded or not?” Applying
monotonicity of the generalized divergence under this test, we find that the following
inequality holds

D(WABHIA ® DB"—>B(UB")) 2 D(TAB—>Z (wAB)HTAB—>Z (IA ® DB?L%B(UB")))' (15)

By defining

pr = FI1) (1] + (1 = F)[0)(0], (16)
1 1
P, = —|1)(1 M- — 1
s = s (3= 57 ool (17)
we see that
D(TAB—>Z<WAB>HTAB—>Z<IA ® DBn—>B(UB"))) = D(pFHPﬁ)a (18)
which follows from (5) and the fact that
1
To{® 45 (12 @ Dy (7))} = == (19)
Thus, putting everything together, we obtain the following inequality
D(papn||la © opn) > D(pFHPﬁ). (20)

This inequality holds for any choice of og», so we can obtain the tightest upper bound on
D(prp||P1) for a particular entanglement generation code with initial state ¢a4,...a, by
taking a minimization over all such opgn:

min D(papn||Ia ® opn) 2D<pp||Pﬁ>. (21)
ogn

We can then remove the dependence of the bound on any particular entanglement generation
code by taking a maximization over all initial states ¢p44,...4,:

n

max minD(papn||ls @ ogn) > D(pFHPﬁ). (22)

PAAy.. A, OB

By employing the definition in (10), we find that the bound is equivalent to

Ip(N®") = D(pr Py ). (23)
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3.1 Specializing to Rényi relative entropies

The above development applies for any divergence satisfying monotonicity, and the Rényi
relative entropy is a particular example of a generalized divergence, defined as

1
a—1

Da(pllo) = logy Tr{p®o'~*}. (24)
Monotonicity of D, (p||o) under quantum channels holds for all « € [0, 2] (see Appendix B
of [29], for example). In the present paper, we are focused on « € (1, 2], especially when «
is in a neighborhood near one in this interval. This is because the Rényi relative entropy
converges to the von Neumann relative entropy as a — 1.

Now we can evaluate the bound in (21) for the case when the divergence is chosen to be
the Rényi relative entropy:

minD(papn||Ia ® opn) > Do (pF||PT14) (25)
opgn

ﬁ log, [F“ (L) s (- F)° <M - ]\14> 1“] (26)

1 1
> alf - J1-«a 9
> tons [P (57 )] (27)
= af - log,[F] + log, M (28)
o
=7 log,[F] +nR (29)

If we optimize over all entanglement generation codes, then we have the bound

max min Dy (papn|[la ® opn) > a log,[F| + nR. (30)
bAA,-.A, OB a—1
This is equivalent to
TN e — - log,[F] + nF, (31)
o —

where we define the Rényi coherent information I, of a quantum channel according to the
recipe in (10). Rewriting this, the bound is equivalent to

F < 2-n(*5) (R=51a(V®7)). (32)

» Remark. It is worth noting at this point that if it is possible to prove that I, (N®™) is
an additive function of the channel N, in the sense that

%za (V") = I, (A) (33)
for any finite n, then this would be sufficient to prove that the strong converse holds
according to the argument of [22] (which has since been repeated in different contexts in
both [25] and [14]). (In fact, any subadditivity relation of the following form would suffice:
I, (N®") < nl,(N)+o(n).) One could also consider using the recently developed sandwiched
Rényi relative entropy [21, 31] in this context. So far, it is not clear to us whether either of
the coherent information quantities derived from the traditional or sandwiched Rényi relative
entropies are additive in the above sense for any degradable channel.
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3.2 Application to the quantum erasure channel

We now specialize the above bounds to the case of the quantum erasure channel. Beginning
from (25)-(29), we see that we can choose any state opn for establishing a bound relating rate
and fidelity to an information quantity. So we choose ogn = [N, (7)]®" = ((1—p)7+ple){e|)®",
where m = I /d is the maximally mixed qudit state on the input and N, is the erasure channel
defined in (1). This then leads to the following bound for any (n, R, e, ¢, D) entanglement
generation code:

«@

a1 IOgQ[F(¢)] +nR < gg?Da(NAHB” (¢AA1---ATL)HIA (39 JBn) (34)
< Dqo (NA"—>B" (¢AA1“‘A71)||IA ® [Np(ﬂ')]®n)a (35)

where Nan_,gn = Nf’" and F(¢) denotes the fidelity of an entanglement generation code
with initial state ¢.? Observe now that the output of n uses of the quantum erasure channel
is rather special, in the sense that it can be written as a convex combination of 2" density
operators which are supported on orthogonal subspaces. We can index these by a binary
string ¢ (where ones in this string represent the systems that get erased and zeros represent
systems that do not get erased), and we denote the density operators for Nan_,gn(daa,...a, )
by w'g. and those for [N (7)]®™ by 74,,. Furthermore, let {i} be the set of indices for the
systems that get erased, so that we denote the systems that get erased by A} and those
that do not by A{}°. We then find that

Do (Nanpn(dpaa,...a,)|[la @ [N,y(m)]%™)

=g 3 (- T { [l (Ta @ (7)) (36)
1€{0,1}"

= E Slog Y [ =) P T[40} (37)
i€{0,1}"

= - i . log Z [(1 —p)d“‘l]”"”p“'Tr{[mm}“}, (38)
i€{0,1}n

where the last equality follows because the spectrum of ¢ 4 4¢:3¢ is equal to the spectrum of
¢ 41y for a pure state. Rewriting (34)-(38), we obtain the following bound on the fidelity F'(¢):

F(9) < |27 (557 [ > [T (g4 | (39)
i€{0,1}"
» Remark. By inspecting the above, we see that obtaining a general bound on the fidelity of
an entanglement generation code for the quantum erasure channel is related to the quantum
marginal problem [17], since the various terms Tr{[¢4¢:3]*} in the sum are the a-purities of
all of the 2" marginals of the quantum state ¢a4,...4,,

4  Strong converse for almost all codes

In the previous section, we established the bound (39) on the fidelity F'(¢) of any (n, R, €, ¢, D)
entanglement generation code. In this section, we prove our main result, i.e., that the large

3 'We could denote this fidelity as F(¢, D) because the fidelity of any code depends on the initial state ¢
and the decoder D, but the bound we find here is independent of the decoder D, so we suppress it from
the notation.
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fraction of capacity-exceeding entanglement generation codes satisfy the strong converse
property. Before proving this result, we need to establish a measure on the set of all
entanglement generation codes, in order to talk about the fraction of codes that satisfy the
strong converse property. The most natural measure in this context is the unitarily invariant
measure (Haar measure) on pure states, so that each possible initial state for an entanglement
generation code is “receiving equal weight.”

Now, suppose that we select the pure state ¢4~ at random according to the Haar
measure with |A| = 2"% and |A;| = d for all i € {1,...,n}. What makes the subsequent
reasoning pertinent is the well-known fact that for R < Q(N,) = (1 — 2p) logd, this choice
results in a good code asymptotically with overwhelming probability. (Cf. for instance [15].)

We begin by analyzing the expectation of the fidelity F'(¢):

Es{F(6)} < Ey 2‘"(%‘1)1‘3[ > [(1—p)da—l]"—'ip'i'Tr{[qumJa}}“ (40)
ie{0,1}»
§2"(QQI)R[ Z [(1 = p)a> ] lpll By Ted |40 i ] (41)
{ef o] 1)

with the first inequality following from the development in the previous section and the
second inequality following from concavity of zw for a € (1,2]. So it remains to analyze the
term E{Tr{[¢ 4r1]*}}. Let M M; = ¢ 41 and consider that

Tr{léa]°} = Tef (i) } = mef (fagye (afars) | (42)

< (Il ) e d (agf as) b = (IngliZ ) (43)
By employing the above inequalities and concavity of 2~ for o € (1,2], we find that

E{Tr{[pa0]"}} < [E{IM:[5 ] (44)

For a randomly chosen pure state ¢¥)grg on systems R and S and such that ¥g = MTM, we
have the estimate

E{|M|2,} < Cdg', (45)

where dp = dim(Hg) and C is a universal constant independent of dg [2]. This then implies
the following bound for our setting:

E{Te{[pa0]}} < (Ca)ot = gartahilti=e, o)

where we recall that d is the dimension of an individual input to the channel (so that the
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support of v 41 has dimension d/?l). Plugging back in to (41), we find the upper bound

1

B (F(6)} < [27 (57 [ > [a p)d“l]”i'p'iE{Tr{[mma}}] a (47)

1€{0,1}"
< [Q—n(%)R} l Z [ _p)dal]ni|p|ica1d|i(1a)‘| (48)
ie{0,1}n
— 2—n( D‘;l)R co-1 Z [(1 _p)da—l]n—m |:pd(1—a):| |1|] (49)
ie{0,1}"
=2 (SR ol [(1 - p)ao 4 d'op) (50)
— 9~ n(*5) (R g5ty log[(1-p)d " +d'~p|— 5 log C) (51)

We now argue that if the rate R of quantum communication is strictly larger than the
quantum capacity (1 — 2p)logd of the erasure channel, then we can pick a as a constant
near one and n large enough such that

a—1 1 a—1 11—« _ g
( " )(R—a_llog[(l—p)d +d'~p| nlogC’) > 0. (52)

So consider the term:

p— log[(1—p)d*~" +d"~*p]. (53)

Let us set a = 1+ t, so that the above is

1

: log((1—p)d" +d "p). (54)
The limit of this quantity as t — 0 (o — 1) is given by

(1 —p)dtlogd — pd—tlogd
(1 —p)dt+d-tp

= (1 —2p)logd. (55)
t=0
The other term —% log C' in the exponent becomes arbitrarily small as n becomes larger.
Thus, it is always possible to pick a constant « and n large enough so that (52 ) is satisfied,
and we recover a strong converse property for the expectation of the fidelity under randomly
chosen entanglement generation codes.

Since the fidelity F'(¢) is a non-negative random variable between zero and one, we can
appeal to Markov’s inequality to recover the following bound:

Pr{F(¢) > 9-3n( 252 ) (R— gty log[(1-p)d* ' +d" " p] - 1ogc)}
¢

Ey{F(9)}

27%71( =LY (R— 515 log[(1—p)de—1+d!~ep]— 2 log C')

< 2—%71(0‘771)(1%—& log[(l—p)d"‘71+d17"‘p]—% log C) , (56)

where we used the bound in (51) for the second inequality. Thus, our conclusion is that if
R > (1 —2p)logd, then we can choose « a constant and n large enough so that (52) holds,
with the fraction of codes satisfying the strong converse property rapidly approaching one as
the number of channel uses increases.

We can obtain an even sharper statement about the convergence by appealing to Levy’s
Lemma (see [12], for example):
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» Lemma 1 (Levy's Lemma). Let f: C? — R and n > 0 be such that for all pure states |¢1)
and |@s) in C?

£ (o)) = )] < nlller) — le2) -
Let |p) be a random pure state in C?. Then for all § € [0,n)], the following bound holds

Pr{| /(o)) — E{f())} = 6} < 4exp{—if7},

where ¢ is a positive constant.

We obtain a Lipschitz constant for the fidelity as a function of pure input states as follows:

|[F(p1) = F(p2)| < [F(p1) — F(2)| + [[1 = F(e1)] = [1 = F(p2)]| (57)
< o1 = w21l (58)
< 2|l[p1) = lp2)l2- (59)

The first inequality is obvious, the second follows from monotonicity of trace distance under
quantum operations (with these operations being a test for the maximally entangled state,
the decoder, the channel and the encoder), and the third inequality is straightforward (see
Lemma 1.4 in [11], for example).

Since we have the bound

0 < By{F(¢)} < 27"(5a")(R-atylog[(-p)d™H+d'™"p] = 10g C) — o (60)

it follows from Levy’s lemma that

Pr{F(¢) > g+ 0} < Pr{F(¢) > E¢{F(¢)} + 6} (61)
n[R+logd] §2
< 46Xp{_2+206} (62)

We can take § = g, to find that

Pr{F(qS) > 9.9 () (B-5h log[(1—p)d®~'+d'~*p| -2 log c)}

2n[R+log d] [2—n(QT4)(R—ﬁ log[(l_p)dafl +d1—ap]_% log C’)] 2
< 4dexpy — 2 - (63)

Now, without loss of generality, we can take R < logd (otherwise the strong converse already
holds for all codes), so that R+ logd > 2(0‘7*1)}%. Thus, we see that the fraction of codes
with R > (1 — 2p) log d and obeying the strong converse approaches one doubly exponentially
fast in the number of channel uses.

5 Conclusion

The main result of the present paper is a proof that the large fraction of codes with a quantum
communication rate exceeding the quantum capacity of the erasure channel satisfy the strong
converse. We view this result as adding to the evidence from [20] that a strong converse
should hold for the quantum capacity of these channels. The main open question going
forward from here is to prove that a fully strong converse holds for the quantum capacity of
the erasure channel (i.e., that if the rate of any quantum communication scheme exceeds the
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quantum capacity of the erasure channel, then the quantum error necessarily converges to
one).

The focus on the erasure channel of the present discussion may be justified by the
simplicity of the channel (including its additivity). It also allowed us to give an illustration
of the power of the Rényi divergence approach. At the same time, it seems to be true for all
currently known random code ensembles achieving the coherent information for a channel
N with Stinespring isometry V : A’ — B ® E (with respect to a given input density pa),
that at rates above the same coherent information they have fidelity going to zero, with
overwhelming probability. Of course this has to be verified for each ensemble separately, but
rests on two properties that hold for most codes in the ensemble. Namely, with respect to
the pure state [ apnpn = (I @ VE)|@) garm:

1. Typicality of B. The channel output ¢ g~ is largely in the typical subspace of N'(pa)®"

in the sense that HS, (B™) <nS(N(pa)) + o(n).

2. Saturation of E. The complementary channel output ¥g» covers essentially uniformly

the typical subspace of N¢(p4)®" in the sense that H2, (E™) > nS(N¢(pa)) — o(n).
[In fact, in practice the latter property tends to be true for most states in most code
subspaces.] We refer to [29] (cf. [20]) for the definitions and necessary properties of (smooth)
min- and max-entropies used in the following.

Now, if our code is supposed to generate entanglement at rate R with fidelity F', then by
the decoupling principle,

HYI=F*(A|E™) > nR. (64)

min
On the other hand, using relations between min- and max-entropies as well as chain rules,

Hyio " (AIE") S Hyoe(AIE™)

min max

g Hglax(AEn) - Hrtiun(En)
= H},.(B") — H},;, (E™), (65)

where € = %(1 —V1—F?)and § = %e, the inequalities are true up to terms of order log %.
By the typicality and saturation properties, (64) and (65) bound the rate as desired,

R < S(N(pa)) = SN“(p4)) + o(1) = I(A)B) + o(1). (66)
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A  Strong converse for the classical capacity of the quantum erasure
channel

In this appendix, we detail a proof that the strong converse holds for the classical capacity
of the quantum erasure channel. To our knowledge, a proof of this statement has not yet
appeared in the literature. This result was obtained in collaboration with Naresh Sharma.
Using the generalized divergence framework established in [25] and reviewed in [31] (or
even the method of Koenig-Wehner [18]), we obtain the following bound on the success
probability when transmitting a classical message through the quantum erasure channel

Pouce < 27 (ET)(Foixa(VET)) (67)
where

1 on

EXO: (N ) (68)

is the regularized Rényi-Holevo information of the erasure channel. So our goal is to prove
that this quantity is additive as a function of the quantum erasure channel. First recall that
this quantity can be written as an information radius [24, 31]:

Xa (N®") = minmax D (N®™(pan)||opn). (69)

ogn pan
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With this, we see that we can upper bound this quantity simply by choosing op» to be the
output of the erasure channel when the tensor-power maximally mixed state is input:

Xa (NE") < max Do (N (p.0) [N (7)]7): (70)

As discussed in Section 3.2, the output of the quantum erasure channel is rather special, in
the sense that it can be written as a linear combination of 2™ density operators which are
supported on orthogonal subspaces. We can index these by a binary string ¢ (where ones in
this string represent the systems that get erased and zeros represent systems that do not get
erased), and we denote the density operators for N®™(p4n) by wh, and those for [N (7)]®™
by 74,.. Furthermore, let {i} be the set of indices for the systems that get erased, so that we
denote the systems that get erased by A"} and those that do not by A{}°. We then find
that

max Do (N" (p40) [V ()] ")
= — L loglfl)lff(TI‘{ [NE™ (pan)]* (N (m)] @) 7} (71)
logmax Z )" il H’I‘r{[an] [Tlé”']l_a} (72)
i€{0,1}"
logmax Z ) il HTF{ [patire] [WA{i)C]l_a} (73)
€{0,1}"

The above equalities follow simply by substitution and some algebra. Continuing, the last
line above is equal to

1 —17n—|i|, |i a
= oplosmax 30 [ p)d* ] TR0 ]) (74)
A" iefoyn
1 1 n—lil 14
< —log Y [ -pd] Tl (75)
1€{0,1}n

= i [ log Z (1 —p)d> ] Fp* (Z) (76)

k=0
_ illog((l —p)d D 4 p)" (77)
:nhileQ—mﬂa”+@} (78)

The inequality follows because Tr{[p4i1c]*} < 1 for all & > 1 (and we are considering
€ (1,2] here). The next few equalities are straightforward. Returning to (67), all of this
development implies that we get the following upper bound on success probability

Penee < 275 (B[ 10g((1-p)d* "V 4p)]) (79)

The last line above is a single-letter upper bound. Now, let us set oo = 1 + ¢, so that the
above is

% log((l —p)d' + p). (80)

The limit of this quantity as t — 0 is given by

(1 - p)dtlogd

(1 7p)dt Tp e=0 = (1 _p) log d, (81)
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which is exactly the classical capacity of the quantum erasure channel. Thus, whenever
the classical communication rate R > (1 — p)logd , we can always find a value of a in a
neighborhood of one such that

(a;1><R_ {alllog((l—p)d(a_”w)b > 0. (82)

This concludes the proof.

Interestingly, the proof above demonstrates that tensor-product pure-state codewords
are the optimal choice in order to saturate the bound given above. That is, for pure-state
codewords, we have the equality Tr{[p41:3¢]*} = 1, so that the upper bound is saturated by
this choice.
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—— Abstract

We introduce a novel technique to give bounds to the entangled value of non-local games. The
technique is based on a class of graphs used by Cabello, Severini and Winter in 2010. The upper
bound uses the famous Lovasz theta number and is efficiently computable; the lower one is based
on the quantum independence number, which is a quantity used in the study of entanglement-
assisted channel capacities and graph homomorphism games.
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1 Introduction

In non-local games, two non-communicating players cooperate in order to achieve a task.
Each player receives an input and produces an output, and they must satisfy the task’s
requirements.

In physics, this class of games is also known as “entangled games”. They are mostly used
to investigate the power of entanglement, by designing intuitive Bell inequalities. One designs
a non-local game and proves an upper bound on the winning probability of the classical
players (the Bell inequality). Later, one shows that there exists a quantum strategy that
by using entanglement can beat that winning probability. Two famous examples of such
approach are the CHSH game (based on [3]) and the magic square game (based on [14]).

Non-local games are also important in computer science, where they are usually called
“two-prover one-round games”. Their intuitive nature has been used in complexity theory to
approach the difficult problem of P vs. NP, by defining probabilistically checkable proofs
and ultimately leading to the famous unique games conjecture [9, 10].

Estimating or bounding the value of a game given its description is an important task,
and much effort has been devoted to the question. For example, the entangled value for the
class of XOR games has been shown to be easy to compute with a semidefinite program by
Cirel’son [4]. Also the entangled value of unique games turns out to be easy to compute,
therefore falsifying the unique games conjecture in the quantum world [11].
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Here, we propose a general approach to bound the value of a non-local game based on
graph theory. Given the description of a game, we construct a graph that contains all the
information about the game, and we call it the “game graph”. The construction is based on
the techniques in [7]. Such techniques have also been extended and used in [1].

We first show that the classical value of any game is equal to the independence number
of its game graph (renormalized). This reflects the fact that computing exactly the classical
value of a game is NP-hard. We then show an efficiently computable upper bound on the
quantum value of a game (and therefore on the classical value), given by the celebrated
Lovasz theta number. We then give lower bound for the games on the uniform distribution
given by the quantum independence number, a graph parameter introduced in [5] and futher
discussed in [13, 15]. To conclude, we give a class of games for which this upper bound is
tight.

We believe this graph-theoretical approach is an important and a fertile field for improve-
ments. We discuss these in the conclusions section.

2 Preliminaries

2.1 Non-local games

We now briefly describe the setting of a non-local game G.

Alice and Bob are separated and forbidden to communicate. They receive inputs z and y
from some input sets X and Y, according to some fixed and known probability distribution 7,
and are required to produce outputs a and b from output sets A and B, respectively. The
game rules are encoded in a predicate A : X x Y x A x B — {0,1}, which specifies which
outputs a, b are correct on inputs x,y. In other words, players win the game on inputs x, y if
they output some a,b such that A(z,y,a,b) = 1. The goal of the players is to maximize the
winning probability.

A classical strategy for the game is without loss of generality a pair of functions, f4 :
X — A for Alice and fp : Y — B for Bob. (Shared randomness between the two players
is easily seen not to be beneficial.) The winning probability of a strategy is calculated as
follows:

> w(@y) M@y, fal@), fB(Y)).

z,y

The classical value w(G) of the game is the maximum winning probability among all classical
strategies.

In entangled strategies (a.k.a. quantum strategies), players share a fixed (i.e., independent
of the inputs) entangled state |¢)). For each input z, Alice has a projective measurement
{P?}qca, and for each input y, Bob has a projective measurement {Q} }pc 5. Upon receiving
the inputs, they apply the corresponding measurements to their parts of the entangled state
and produce classical outputs a and b, respectively. The winning probability of a strategy is
calculated as follows:

D w(@ g, y,a,b)(|PF @ Q)|¢).

zy

The entangled value w*(G) of the game is the supremum of the winning probability, taken
over all entangled strategies.

A Bell inequality for a game is an upper bound on its classical value. We have a Bell
inequality violation for a game G if the entangled value is strictly larger than the classical
one. The violation is quantified by the ratio w*(G)/w(G).
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The CHSH game is one particularly famous example [3]. Here, the inputs = € {0,1} and
y € {0,1} are uniformly distributed, and Alice and Bob win the game if their respective
outputs @ € {0,1} and b € {0,1} satisfy a & b = x A y; in other words, a should equal b
unless = y = 1. The classical value of this game is easily seen to be w(G) = 3/4, while the
entangled value is known to be w*(G) = 1/2 + 1/(2v/2) ~ 0.85.

A non-local game is said to be a pseudo-telepathy game if the quantum value is 1 while
the classical value is strictly less than 1.

2.2 Notions of graph theory

A simple graph G = (V, E) consists of a finite vertex set V' and its edge set E C V x V (the
inclusion here is strict because there are no edges of the form (v, v)). Two vertices (v,w) € E

are “adjacent” or equivalently “form an edge”. All graphs considered here are simple graphs.

For a graph G = (V, E), we also denote its vertex set with V(G) and its edge set with E(G)
whenever confusion has to be avoided.

An independent set of a graph is a subset I of V(G) such that no two elements of I are
adjacent. The independence number of a graph G, denoted by a(G), is the maximum size of
an independent set of G.

A d-dimensional orthogonal representation of G = (V, E) is a map ¢ : V — C? such
that for all (v,w) € E, (¢(v)|¢p(w)) = 0. (If all the vectors have unit norm, this is called
orthonormal representation.)

We finally introduce an important graph parameter: the theta number (a.k.a. Lovdsz
number or theta function). It was originally defined by Lovédsz [12] to solve a long-standing
problem posed by Shannon [16]: computing the Shannon capacity of the five-cycle. There
are many equivalent formulations of the theta number (see [8] for a detailed survey). The
one that we use in this paper is the following:

I(G) =max Y (W), (1)

vEV(Q)

where the maximum is over unit vectors ¢ and orthonormal representations {1, },cv(c)-

Lovész [12] proved that a(G) < ¥(G) holds (this inequality is part of the so-called “sandwich
theorem” [8]). The theta number can be approximated to within arbitrary precision in
polynomial time, hence it gives a tractable and in many cases useful bound for a.

2.3 Quantum Independence Number

In this section we define the quantum independence number and state some of its properties.

First, let us briefly give some historical background. In [13] the concept of quantum
independence number is presented in the context of zero-error information theory. This
quantity is usually called in literature “one-shot zero-error entanglement-assisted channel
capacity” and denoted as a*. A new definition of quantum independence number, denoted
as ay, came in [15], in the context of graph homomorphisms. As of today, it is not known if
the two quantities are equal for all graphs. In this paper we use the second quantity, but for
simplicity we omit the details about homomorphisms and provide a direct definition.

As with the quantum chromatic number (see [6]), the quantum independence number
can be defined in terms of a non-local game. Informally, the independent set game with
parameter ¢ for a graph G = (V, E) is as follows. Two players, Alice and Bob, claim that
they know an independent set I of G consisting of ¢ vertices. A referee wants to test this
claim with a non-local game. He forbids communication between the players, generates two
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uniformly random numbers z,y € [¢] and separately asks Alice to provide the z-th vertex
of I and Bob to provide the y-th vertex of I. The players are required to output the same
vertex if x = y, and to output non-adjacent vertices if x # y. A formal definition follows.

» Definition 1. The independent set game with parameter ¢t on the graph G = (V, E) is
a non-local game with input sets X =Y = [t], output sets A = B = V. The probability
distribution 7 is the uniform distribution on the input pairs. Alice gets input = and outputs
v, Bob gets input y and outputs w. The players lose the game in the following two cases:
1. z=yandv#w

2. x#yand (v,w)e Eorv=w

A classical strategy consists w.l.o.g. of two deterministic functions f4 : [t] = V for Alice
and fp : [t] = V for Bob. Shared randomness, as seen for the coloring game, is not beneficial.
A little thought will show that to win with probability 1, we must have f4 = fp (to avoid
the first losing condition) and that {f4(1),..., fa(t)} must be a valid independent set of the
graph of size t (to avoid the second losing condition). It follows that the classical players
cannot win the game with probability 1 when ¢ > «(G).

It is proven in [15] that w.l.o.g. quantum strategies for the independent set game consist of
projective measurements on a maximally entangled state, that the projective measurements
of Alice and Bob are the same and that all the projectors can be real-valued. Therefore we
can define a quantum independent set of size t as a collection of ¢ projective measurements
{P’}yev for all z € [t] that have the whole vertex set as outputs, with the following
consistency condition:

for all (u,v) € E or u= v and for all z # 2/, P*P¥ =0. (2)

» Definition 2. For all graphs G, the quantum independence number aq(G) is the maximum
number ¢ such that there exists a quantum independent set of G of size ¢.

3 Game graphs

3.1 Definition and relation to w(G)

Consider a non-local game G with input sets X,Y , output sets A, B, predicate A : X x Y x
A x B — {0,1} and uniform distribution on the inputs.

» Definition 3. A graph G = (V, E) associated to the game G has:
1. V={zyab|z e X,yeY,a€ A be B and A\(z,y,a,b) =1},
2. E={{zyab, 2’y a'b} | (x=2"Na#£d)V(y=y Ab#V)}.

This definition is inspired by a construction in [7] in the framework of contextuality of
physical theories. The authors used something similar to Definition 3 for the special case of
the CHSH game. Here we generalize to all games.

For simplicity, we prove the results in this section for the case where the game has the
uniform distribution on the inputs and A is a boolean function. It is straightforward to
generalize to games with real-valued predicate and any probability distribution 7 of the
inputs, as follows. Consider the (vertex) weighted graph with all the quadruples zyab in the
vertex set, labelled with weight(xyab) = \(x,y, a,b) - 7(z, y), and the same edge set as before.
The classical bound and the Lovasz theta bound that we will prove later can be adapted
by considering the weighted versions of these parameters. However, we do not know how to
generalize our last result because we do not define the quantum independence number for a
weighted graph.
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Now we prove that that the classical value of a game can be expressed in terms of the
independence number of its game graph.

» Theorem 4. Let G be a non-local game with input sets X and 'Y, uniform input distribution
and associated graph G. Then

_ oG

X xY|

Proof. Let k = |X x Y|. We begin by proving that w(G) > «(G)/k. Namely, we show that
given a maximal independent set I C V of size ¢, we can exhibit a strategy for G that answers

w(9)

correctly to at least £ of the k questions. By the structure of G, the independent set I cannot
contain vertices zyab and xy’a’b’ such that a # a’. Similarly, I cannot contain vertices xyab
and z’ya’t’ such that b # b'. Hence, we have the following strategy: on input z, Alice outputs

the unique a determined by the vertices in the independent set I. Bob behaves similarly.

Since V' contains only winning quadruples zyab, the size ¢ of the independent set means
Alice and Bob answer correctly to at least ¢ input pairs. Hence, w(G) > ¢/k.

Now we show that w(G) < a(G)/k, i.e., if there exists a strategy that wins on £ of the k
input pairs, then there exists an independent set with weight £. We have that w.l.o.g. classical
strategies consist of a pair of functions. Fix Alice and Bob’s functions f4 and fg that win
on ¢ input pairs. Now take the set of quadruples S = {(z,y, fa(z), fB(¥))}eex yey. We
have that I = SNV is a set of £ vertices of G. Since f4 and fp are deterministic, I cannot
contain vertices zyab and xy'a’l’ such that a # o’ nor vertices xyab and x’ya’b’ such that
b # b'. Therefore, there cannot be an edge between any pair of the elements of I and we have
that I is an independent set of G of size ¢. Hence, a(G) > ¢. Combining the two directions
proves the theorem. |

3.2 Bounds on the entangled value of a game

Cabello, Severini and Winter [7] observe that the quantum value of the CHSH game is equal
to the theta number of its associated graph divided by the number of questions. We have
found by direct calculation that this is not always true for general games, for example in the
case of the 2-fold parallel repetition of CHSH. The same conclusion follows from the results
of Acin et al. in [1]. Here we prove the upper bound directly for our specific constructions.

» Theorem 5. Let G be a non-local game with input sets X and Y, uniform input distribution
and associated graph G = (V, E). Then

. (G)
w*(g) < m

Proof. Let k = |X x Y|. Consider a quantum strategy for G that achieves the value w*(G).

It consists of a shared entangled state |¢)) and a collection of projective measurements
{Pr},{Q}}, such that

1 xr 1 xT *

D M@y a)WIPT @ Q) =2 > (WIPF ® QFlv) = w ().

ryab zyabeV

For each quadruple zyab let |¢zyqp) = P¥ ® Qf|¢). This is an orthogonal representation
of G, since for every edge (zyab,z'y'a’t’) either P;'fP;,/ =0or QgQg,/ = 0. Now for each
zyab consider the normalized vector
—_ |¢zyab> _ W}myab> )

Weyasll  /(0]PF @ QYY)

|wa/vyab>
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We have that {1}, . }ayabev and 1 are a feasible solution for the formulation (1) of 9(G).

We conclude

NG > Y (W[ tayan)

zyabeV

— <w‘wmyab>

zygev qujmyabH
_ (¥|Py @ Qfl)?
- va (WIPE © QUlv)

> WIPF @ QYY)

zyabeV

=k-w*(G). <

2

We now have the following lower bound in terms of the quantum independence number.

» Theorem 6. Let G be a non-local game with input sets X and 'Y, uniform input distribution
and associated graph G = (V, E). Then

* O‘q(G)
w*(G) > W

To prove the theorem, we will use the following lemma.

» Lemma 7. Let M, N be positive semidefinite matrices. Then for any vector |v), we have
that

(v[supp(M + N)Jv) = (v|supp(M)|v),
where supp(M) denotes the projector onto the support (i.e., the column space) of M.

Proof. If P is a projector onto a subspace II then (v|P|v) is the squared length of the
projection of |v) into II. Hence, to prove the lemma it suffices to show that supp(M) C
supp(M + N), where by abusing the notation we use supp to denote the support itself (rather
than the projection onto it).

For contradiction, suppose that supp(M) € supp(M + N). Then the orthogonal comple-
ment of supp(M) (i.e. the nullspace Null(M)) does not contain Null(M + N). Hence we can
pick a vector |w) such that (M + N)|w) = 0 but M|w) # 0. This further implies that

(w[Nw) = (w|(M + N)|w) = {w[M|w) = —(w|M|w) <0,

since M is positive semidefinite and M |w) # 0. This completes the proof as we have reached
a contradiction with the initial assumption that N is positive semidefinite. <

Proof of Theorem 6. Given a quantum strategy {P;yab} for the independent set game on
G with parameter ¢, we construct a strategy to win the game G with probability at least
t/|X x Y], as follows.

Players share a maximally entangled state with local dimension d (which is the dimension
of the projectors above). On input x, Alice measures her half of the state using the projective
measurement{ P7 },c 4 U{I — >_, P7}, where the individual elements are defined as follows:

x 7
P = supp E Pmyb ,
yb %
zaybeV
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where we use supp(M) to denote the projector onto the image of M. We show that this

is a valid projective measurement. For all y,b,3/,b" there is an edge (xyab, xy'd’b’) € E.

Therefore in the strategy for the independent set game we have that for all 4, j each projector
Péyab is orthogonal to Piy,a/b/. Hence, for all a # a’ we have P? - P = 0. Bob constructs
projectors P similarly.

Now we lower bound the quantum value of G as follows:

X xY|-w'(G) = Y (¥|Pye P

zyabeV
= > Whswp (X D Y Pl @ Pl 0,
zyabeV [ —Y

zay'b’ €V x’a’ybeV

where we have used the fact that supp(M @ N) = supp(M) ® supp(V) for all matrices M, N
to obtain the last equality. Now by applying Lemma 7, we drop all the terms except the
ones with ¢ = j,a=d’,b =0,z = 2’ and y = 9/, and we have that

X xY[-w (@) 2 Y (Wlsupp (Y Ployy @ Piagy ) 10) (3)

zyabeV i

= Z <’(/}| ( Z Paéayb ® P:iayb) |’(/}> (4)
zyabeV i

= Z Z éTI‘( éayb) (5)
zyabeV i

= > T (©

— ay(). (7)

In the above we have observed that supp(P + @) = P + @ for mutually orthogonal projectors
P and @ to get Expression (4). We have used properties of |¢) = %1 >, 14,4) to obtain
Expression (5). We have used the fact that, for all 4, {P;ayb : Mz, a,y,b) = 1} forms a

measurement to obtain Expression (6). <

3.2.1 Tightness of the lower bound

Here we obtain an equality relation between the value of the game and the quantum
independence number of the game graph, for a class of pseudo-telepathy games.

» Theorem 8. Let G be a pseudo-telepathy game with a 0-1 valued predicate A, admitting
a quantum strategy consisting of a maximally entangled state |¢)) and pairwise commuting
projectors. Let G be the corresponding game graph. Then,

* _ aq(G) _
w (g)—m—

Proof. From Theorem 6 we have ay(G) < |X x Y| - w*(G). We need to prove the other
direction.
Let {P},{Q}} be the strategies that win the game G on [¢). We have:

Sowlry) Y, (WIPTe Qi) =1,

Ty ab:\(zyab)=1

so for all (x,y) we must have
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> WIPreQi) =1

ab:A(zyab)=1

and for all quadruples (z,y, a,b) such that A\(zyab) = 0 we have P*QY = 0.

Let Hgyqp = PYQ}. These are projectors thanks to the commutativity assumption. We
observe:
1. For all (z,y) we have

S me-Srer-Yrya-r
ab:A(zyab)=1 ab a b
where the second equality follows from Q}Q}, = 0pp -

2. For each edge (z,y,a,b),(z',y’,a’,b’) we have a collection of ¢ real-valued projective
measurements { P*},cy for all € [¢] that have the whole vertex set as outputs,

szabHr’y/a/b/ = 07
because if z = 2’ and a # @’ then P*P% =0, and if y = y’ and b # b then Q7QY, = 0.

Therefore, we can construct | X x Y| projective measurements that are a winning strategy
for the independent set game with ¢t = | X x Y| as follows. For each pair (z,y) consider the
projective measurement {Il;yap}a,b:x(zyab)=1 (and zero matrices for the other vertices of the
graph). The first observation above proves that those are valid projective measurements; the
second observation shows that they respect the consistency condition (2). |

4 Concluding remarks and open problems

We have formalized and discussed a novel approach for the study of non-local game in a
combinatorial fashion. Work in progress on this approach relate to the easy generalization to
more than 2 players, and the less-easy computation of graphs for the parallel repetition of
games.

Our approach has ample room for improvement. Open questions include:

1. Can we find a tighter lower bound for the entangled value of all games by using some
variant of the quantum independence number, such as the one in [2]? Alternatively, can
we prove tightness of the current lower bound?

2. Can we find better lower bounds, for example using one of the variants of Lovasz theta
number?

3. Can we characterize the class of games for which the Lovasz bound is tight? We know that
the value of CHSH is exactly the theta number of its game graph (see [7]). Is this true
for all the XOR games? This would reflect the fact that their value is easy to compute.

4. Are there other graph parameters related to the classical and entangled values of specific
classes of games, for example unique games?

5. We have shown that for a class of pseudo-telepathy games that quantum players can win
using commutative projective measurements on maximally entangled state, this bound is
tight. A similar class of games is shown in [13] to be in one-to-one correspondence with a
generalization of Kochen-Specker sets. It is not clear to us if those two results together
could be used to prove something stronger. Perhaps the whole class could be interpreted
as pseudo-telepathy games based on some graph parameter (maybe the homomorphism
games in [15]) and the relationship to the quantum independence number would be a
consequence of this.
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—— Abstract

Random Access Codes is an information task that has been extensively studied and found many
applications in quantum information. In this scenario, Alice receives an n-bit string x, and wishes
to encode z into a quantum state p,, such that Bob, when receiving the state p,, can choose
any bit ¢ € [n] and recover the input bit z; with high probability. Here we study a variant
called parity-oblivious random acres codes, where we impose the cryptographic property that
Bob cannot infer any information about the parity of any subset of bits of the input, apart form
the single bits x;.

We provide the optimal quantum parity-oblivious random access codes and show that they
are asymptotically better than the optimal classical ones. For this, we relate such encodings to
a non-local game and provide tight bounds for the success probability of the non-local game via
semi-definite programming. Our results provide a large non-contextuality inequality violation
and resolve the main open question in [22].
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1 Introduction

Quantum Information theory studies how information is encoded in quantum mechanical
systems and how it can be transmitted through quantum channels. A main question is
whether quantum information is more powerful than classical information. A celebrated
result by Holevo [13], shows that quantum information cannot be used to compress classical
information. In high level, in order to transmit n uniformly random classical bits, one needs
to transmit no less than n quantum bits. This might imply that quantum information is no
more powerful than classical information. This however is wrong in many situations. In the
model of communication complexity, one can show that transmiting quantum information
may result in exponential savings on the communication needed to solve specific problems
([20, 5, 3, 11, 21]).

One specific information task that has been extensively studied in quantum information
is the notion of random access codes (RACs) [1, 16]. In this scenario, Alice receives an n-bit
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string x, drawn from the uniform distribution, and wishes to encode z into a quantum state
Pz, such that Bob, when receiving the state p,, can choose any bit i € [n] and recover the
input bit x; with high probability by performing some general quantum operation on p,.

RACs have been used in various situations in quantum information and computation,
including in communication complexity, non-locality, extractors and divide-independence
cryptography. [4, 14, 19, 10, 15]. Even though this task seems easier than transmitting the
entire input string x, it is known that both in the classical and the quantum world, the
length of the encoding must be at least 2(n) and in fact, there is no gain between classical
and quantum encodings [16].

On the other hand, a well-known example of the superiority of quantum information is
the example of dense coding, or equivalently a RAC of length 1 for uniform inputs of length
n = 2. In this case, the optimal classical encoding can achieve success probability 3/4, while
there exists a quantum encoding that achieves strictly higher success probability, in fact
cos?(m/8) [8, 23]. An advantage can also be proven for the case of encoding three bits into
one qubit, but not for n > 4 [12].

Nevertheless, a question remained of whether there are variants of random access codes,
for which we can have an asymptotically significant advantage in the quantum case. We
show that this is indeed the case for the so-called parity-oblivious RACs. These are the usual
RACs with the extra cryptographic property that the receiver cannot infer any information
about the parity of any subset of bits of the input, apart from the single bits x;.

Random acres codes that are parity-oblivious have been considered before. For example,
the dense coding examples for encoding two or three classical bits in one qubit have this
property. It is not hard to check, that for the 2-to-1 encoding, Bob’s reduced density matrix
is exactly the same for the cases where the inputs have parity 0 or 1, in other words, Bob
has no information about x; ® x3. Moreover, Spekkens, Buzacott, Keehn, Toner, and Pryde
[22] used parity-oblivious RACs to provide non-contextuality inequalities.

1.1 Our results

In this paper, we provide the optimal quantum parity-oblivious RAC and show that it is
asymptotically better than the optimal classical one. We say that an encoding with success
probability %(1 + «) has bias a. More precisely, we prove the following theorem.

» Theorem 1. For any n € N, the optimal quantum parity-oblivious random access code for

inputs of size n, denoted here as PO-RAC", has bias ﬁ

The main idea of the proof is that quantum encodings can be studied through their
relation to non-local games. Such equivalences between encodings and non-local games were
previously noted in [17, 7]. A non-local game is a game between two non-communicating

parties, who receive some inputs and must produce outputs that satisfy some known predicate.

The best-known example is the CHSH game, where the two parties must output bits a and b,
whose parity is equal to the logical and of their inputs x and y. The important quantity of
such games is the optimal success probability when the two parties are allowed to share an
arbitrary entangled state in the beginning of the protocol. In [7], it was shown that certain
variants of the CHSH game are equivalent to some variants of quantum RACs and their
respective success probabilities are equal.

In order to show an upper bound on the bias of quantum PO-RACs, we first define a

weaker variant where only the parities of even-size subsets are hidden, denoted as EPO-RAC".

An upper bound on the bias of these codes would imply an upper bound on the bias of the
general PO-RACs.

77

TQC’14



78

Optimal Bounds for Parity-Oblivious Random Access Codes with Applications

Then, we study a natural non-local game which we call the INDEX game and show that
EPO-RAC with average bias are equivalent to the INDEX game. In other words, the bias of
any INDEX game strategy and the average decoding bias of an EPO-RAC are equal. In the
INDEX" game (parameterized by n here), Alice receives an n-bit string x, Bob receives an
index t, and Alice and Bob are supposed to output bits @ and b such that a ® b = x;.

» Theorem 2 (Equivalence). For anyn € N, there exists a quantum EPO-RAC™ with average
decoding bias « if and only if there exists a quantum INDEX"™ strategy with bias .

Last, noting that the INDEX game is an XOR game, i.e. the winning condition depends
on the XOR of Alice and Bob’s one-bit answers, we use a tight semidefinite programming
characterization due to [9] and provide the exact optimal quantum bias.

» Theorem 3 (Optimal INDEX game biases). For any n € N, the optimal quantum bias of
an INDEX" strategy is 1/y/n and the optimal classical bias is /2= (1 + O(1/n)).

Since the worst case bias of a quantum PO-RAC is obviously upper bounded by the
optimal average case bias of a quantum EPO-RAC, Theorems 2 and 3 show that every
PO-RAC" has bias at most 1/y/n. On the other hand, we give an explicit construction of
a PO-RAC" with bias 1/y/n that uses |n/2]| qubits. First, we provide a parity-oblivious
encoding where Alice and Bob share |n/2] EPR pairs and then Alice sends one classical bit
of communication.

» Theorem 4 (Optimal PO-RAC"). For any integer n, there exists a PO-RAC" with bias
1/y/n that uses |n/2] qubits and 1 classical bit.

We also remark that even though quantum PO-RAC™ and EPO-RAC™ both share the
same optimal bias, the same is not true if we consider odd-parity-oblivious encodings where
the S-parities are hidden for |S| odd and strictly greater than 1. Consider encoding a six-bit
string (z1,...,2¢) where the first three bits are encoded using the optimal PO-RAC?, and
similarly for the last three bits. It is a straightforward exercise to verify this is odd-parity
oblivious with bias 1/v/3 > 1/1/6.

1.2 Application to non-contextuality

The basic primitives in an operational theory are preparations and measurements. A
hidden variable model is preparation and measurement non-contertual, if whenever two
preparations yield the same statistics for all possible measurements then they have an
equivalent representation in the model; and whenever two measurements have the same
statistics for all preparations then they have an equivalent representation in the model
[22]. Similar to non-locality, a non-contextuality inequality is any inequality on probability
distributions that follows from the assumption that there exists a hidden variable model that
is preparation or measurement non-contextual.

Spekkens, Buzacott, Keehn, Toner, and Pryde [22] proved the following non-conteztuality
inequality (or NC inequality, for short): In an operational theory that admits a preparation
non-contextual hidden variable model, the average case bias for any PO-RAC™ is at most
1/n.

Then, they noted that quantum mechanics violates this non-contextuality (NC) inequality
for n € {2,3}, since there exists a quantum parity-oblivious encoding of two and three
classical bits into one qubit, with average decoding probability (1 + %) and $(1+ %),
respectively [1, 12]. It was left as an open question whether quantum mechanics violates this



A. Chailloux, I. Kerenidis, S. Kundu, and J. Sikora

NC inequality for larger n. The main difficulty to extend these results for larger input size is
that we pose no bound on the dimension of the encoding.

Through our Theorem 1 that provides the optimal bias for PO-RAC"s, we resolve the
main open question in [22] and provide a family of non-contextuality inequality violations
that grow with the input size n. More precisely, we show an explicit non-contextuality
violation of order /n.

» Theorem 5. For any integer n, there exists an explicit non-contertuality inequality that
provides a violation of order \/n.

2 Preliminaries

We provide the definitions of the different variants of random access codes that we use and
of the non-local game we consider.

2.1 Random Access Codes

» Definition 6 (Random access code). For an integer n > 2, a quantum random access
code of n bits, denoted RAC", with bias « consists of an encoding map of = € {0,1}" into
quantum states p, together with a sequence of n possible measurements such that the result
of the i’th measurement is z; with probability at least (1 + «).

Note that the usual treatment of RACs is to analyze the relationships between n, «, and
the encoding dimension (i.e., the dimension of p,). In this paper, we are not concerned with
the encoding dimension, but rather the optimal bias when we enforce certain cryptographic
properties to RACs. For example, we enforce that Bob remains oblivious of some information

about the string z, meaning that he cannot infer any information about it from the encoding.

In particular, we consider for each subset S of bits of x the S-parity, which is defined as
Dics =i

» Definition 7 (Parity-oblivious random access codes). For an integer n > 2, a quantum
parity-oblivious random access code, denoted as PO-RAC", is a RAC™ with the cryptographic
constraint that the receiver is oblivious of every S-parity, for |S| > 2.

For classical codes, the optimal bias of a PO-RAC™ is known to be + (Proposition 1).
In our proofs, we also use a weaker variant of parity-oblivious random access codes, where
only the S-parities of even-size remain oblivious.

» Definition 8 (Even-parity-oblivious random access codes). For an integer n > 2, a quantum
even-parity-oblivious random access code, denoted as EPO-RAC™, is a RAC™ with the
cryptographic constraint that the receiver is oblivious of every S-parity, for |S| even.

» Remark. In the definition of RAC"s, we have that every bit is decode with bias a. We
have occasion to study EPO-RAC™s with average case bias o, that is, the average over all
i € [n] of the decoding probabilities. When we consider average case biases, it is explicitly
mentioned, otherwise, worst-case bias is assumed.

2.2 Non-local games

In a non-local game, two non-communicating parties, Alice and Bob, receive some inputs x
and y, respectively, and must output a and b, respectively, such that (x,y,a,b) satisfy some
specific condition. For example in the CHSH game, the condition is a &b = x - y. The goal is
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to find the optimal quantum (classical) success probability of satisfying the condition when
Alice and Bob are allowed to share some initial quantum state (shared randomness).

We define the following non-local game.

» Definition 9 (Index game). The Index game, denoted here as INDEX", is the following
XOR game:

Alice’s input: Alice receives a random s from the set S := {0,1}"™.
Bob’s input: Bob receives a random index ¢ from the set T := [n].

Winning condition: They win if Alice’s output bit a and Bob’s output bit b satisfy
a®b=s;.
The choice of initial resource state and local measurement operators (that depend on the
respective inputs) comprise a strategy. We say that a strategy has bias « if it succeeds with
probability 1(1+ a).

Note that our game is similar to the retrieval games studied in [17].

3 Equivalence of EPO-RAC" decoding and INDEX" strategies
In this section we prove the equivalence in Theorem 2.

» Theorem 2 (Equivalence). For any n € N, there exists a quantum EPO-RAC" with bias
a if and only if there exists a quantum INDEX" strategy with bias c.

3.1 From EPO-RAC" to INDEX"

Let us fix an EPO-RAC" {p;},cf0,13» with bias a. Let B the Hilbert space used for the
encoding. Our goal is to construct a strategy for INDEX™ with bias o. For each p,, we fix a
purification |¢);) of p, in the space A® B. For a € {0, 1}, let a be the n-bit string (a,...,a)
and § is the complement string of s. We define

20 =25 3 ldoltelas = 5

(10)[¥s) + [1)[¢5)) -
\/§ a€{0,1}

We would like to show that if Bob has the register B of the above state, then he has no
information about s. Note that his reduced state is the state oy = % Ps + %pg.

The first step is to see that Bob has no information about any parity (odd or even) of the
string s. For the even parities, note that we started with an EPO-RAC" encoding and that
the strings s and s have the same even parities. Hence, Bob has with half probability the
state ps from which he cannot get any information about the even parities of s and with half
probability the state ps from which he cannot get any information about the even parities of
s and consequently s.

For the odd parities: fix an subset S C {1,...,n} of odd size and let sg = @;css;. Let
M = {My, M1} be any two outcome POVM. Let P, = {s € {0,1}" : sg = b}. Each P, has
size 2"! and s € P, & 5 € P, since S is an odd subset. We have
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1
Pr[Bob guesses sg using M] = _— tr(Moyos) + Z tr(Mios)
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This means that for any measurement M, Bob has probability 1/2 to guess sg which means
that Bob has no information about this bit.

In the following lemma we prove that if someone has no information about any parity of
subsets of bits of a string x, then he has no information about the string x. This is intuitively
an obvious statement that we rigorously prove below.

» Lemma 10. Let X be the uniform distribution on x € {0,1}™. If Bob has no information
about any parity of subsets of bits of x, then he has no information about x.

Proof. If Bob has some information about z, then the states p, cannot be all the same, which
in turn implies that there exists a subset T' € {0, 1}" of size 2"~ ! such that pr = 2%1 Yzt P
is not equal to p5 = 2%1 > e Pz- This means that there exists a two-outcome measurement
that outputs 1 if z € T and —1 otherwise, with positive bias. We now show for a contradiction
that this measurements must also output a parity of some subset with positive bias. Define
the function f : {0,1}™ — {—1,+1}, as the indicator function of T" and let b the measurement
outcome. Then

E[b- f(x)] >0

By taking the Fourier representation of the function and denoting x5 = €, g ¥; we have
E[b- Z f(S)zs] >0,
S H(S)ED - 25] > 0.
s

Since for the empty set we have f() = E[f(z)] = 0, the above implies that there exists a
parity S for which E[b- xg] > 0, which is a contradiction. <

The above statement means that for each s, we have Tro4|Q:)(Qs| = Tro.4|Q0) (|- In
particular, this means that there exist unitaries {U} acting on AQ such that (Us ® I)|Qg) =
|Q).We use the state |¢)g) to define the INDEX" strategy:

Alice and Bob share the state |Qg) € A® B.

Upon receiving s € {0,1}"™, Alice applies Us on OA such that Alice and Bob share |€;).
Alice measures register O in the computational basis and outputs the corresponding a.
For Alice’s input s and output a, Bob has an encoding p, where x = s @ a. Upon
receiving ¢ € [n], Bob measures B just as in the EPO-RAC" to learn x;. He outputs b
equal to his guess.
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Alice and Bob win the game if b = s; ® a = x4 meaning that they win the game if and
only if Bob correctly guesses x;.

Since our encoding has bias a, we see that with this INDEX" strategy, they succeed with
probability

1 1 1
= » Pr[Bob output = = ) Pr[Bob output =-(1
n; r[Bob outputs a @ s¢] n; r[Bob outputs ;] 2( + ),

as desired. |

3.2 From INDEX" to EPO-RAC"

Suppose Alice and Bob have a strategy to win the INDEX" game with bias « with starting
state [¢) € A® B. On input s € {0,1}", Alice performs her side of the optimal strategy for
INDEX" and has some output a. We have:

1O 1
— E Pr[Bob outputs a & s;] = 5(1 +a).
n

i=1

Let ps.q the state that Bob has when Alice inputs s and outputs a. Let = such that Vi, z; =

8; @ a. When Alice has inputs satisfying s ® a = x, Bob has the state o, = %(pm,o + pz.1)-

We show that {0}, is an EPO-RAC" with average bias a.

1. It’s a EPO-RAC™: for every even parity S, we have @, g 2; = P, 5(s5: ® a) = P, 5i-
Bob has no information about s from non signalling so Bob has no information about

Dics si-

2. Tt has average bias a: Alice and Bob win the INDEX" game with bias a hence
1 1O 1
— » Pr[Bob outputs z;] = — » Pr[Bob outputs =-(1 .
n; r[Bob outputs x] n; r[Bob outputs a @ s¢] 2( +a)

» Remark. Note that the above equivalence also holds in the classical setting.

4  On the structure of optimal Index Game strategies

In this section, we prove Theorem 3, below.

» Theorem 11 (Optimal Index Game biases). For any n € N, the optimal quantum bias of
an INDEX" strategy is 1/y/n and the optimal classical bias is \/ 2 (1 + O(1/n)).

4.1 The quantum value

The quantum bias of any XOR game can be found efficiently by solving a semidefinite
program (SDP) [9]. Specifically, the quantum bias of the INDEX"™ game can be calculated
as the optimal value of either SDP below

Primal problem (P) Dual problem (D)
supremum: (B, X) infimum: (e, y)
subject to: diag(X) = e, subject to: Diag(y) »= B,

X =0,
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where

diag(X) is the vector on the diagonal of the square matrix X,

e is the vector of all ones,

Diag(y) is the diagonal matrix with the vector y on the diagonal,
1 { 0 A (=1)*%

B = -
21 AT 0 nan

}, where A ; 1=

For (P), consider the positive semidefinite matrix X := YY T, where
Yo { Vn2mA } .
It

To show X is feasible in (P), one can check that each diagonal entry of X is equal to 1
from the definition of A above. Note that (B, X) := v/n2"(A, A) = 1/4/n proving that the
quantum bias is at least 1/y/n (since the quantum bias is the maximum of (B, X) over all
feasible X).

For (D), let y := [ zzs } where u,v > 0 and eg and er are the vectors of all ones
T

indexed by entries in S and 7', respectively. Then

Diag(y) = B < uls =54 20 e uvlp s SATA= |
s = Y o T=gt T g
F b if t ! d ! th is feasible in (D). Si
rom above, if we set v = and v := ———, then y is feasible in . Since
’ 2/ 2y/n2n’ Y
1
(e,y) = 2™u + nv = —, we know the quantum bias is at most 1/4/n (since the quantum
n

bias is equal to the minimum of (e, y) over all feasible y).
Therefore, the quantum bias is exactly 1/4/n, as required.

4.2 The classical value

We can assume without loss of generality that Alice and Bob’s strategies are deterministic.
Define b € {0,1}™ as the string of potential answers Bob gives where b; is the bit that
Bob outputs on input ¢ € [n]. Now let us examine Alice’s strategy. For a fixed input s,
if she outputs 0, they win the game with probability |b @ s|y, where |z|y denotes the
Hamming weight of a string « € {0,1}". If she outputs 1, they win the game with probability
Lb®5|g =n— L|b@® s|y. This means that they win the game with probability at most

1 1 1 n n
Lomhsatn o] - e 5 - hoa]
SG{gl}n [nmax{|@s|Hn n|@S|H}} B2 0@ sly
i+ tal-we]
2T nwl2 Sl

The quantity Ey[|n/2 — |b @ s|u|] corresponds to the expected deviation that the uniform
binomial distribution has from the average. This is a well studied quantity and we know that

w22 B 1o (2)

Therefore, any strategy has success probability bounded above by

gl -per =5 (o (7))
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Now, consider the following strategy: Alice outputs a which equals the majority of s, and
Bob outputs 0. This strategy has success probability precisely

1

5+ 7E [~ besly]

which is optimal.

5 A construction of a quantum PO-RAC" with optimal bias

In this section we give an explicit construction of an quantum PO-RAC" with optimal bias.

» Theorem 12 (Optimal PO-RAC™). For any integer n > 2, there exists a PO-RAC™ with
bias 1/+/n that uses |n/2] qubits and 1 classical bit.

Our construction builds upon the well-known RACs for sending 2 (resp. 3) bits with bias
1/4/2 (vesp. 1/4/3) [24, 2, 12]. These are the vertices from the corners of a square inscribed
in an equatorial plane in the Bloch sphere, and the corners of a cube inscribed in the Bloch
sphere, respectively. To generalize this idea to an n-cube inscribed in an n-dimensional
sphere, we use the intuition of hyperbits which is a way to visualize such unit vectors in a
quantum mechanical setting. A full discussion of hyperbits and their equivalence to certain
quantum protocols is beyond the scope of this paper, but we refer the interested reader to
the work of Pawlowski and Winter [18].

5.1 The construction

Our construction is very similar to the proof of Tsirelson’s theorem [23]. We start by
recursively defining the observables Gy, 1, ..., Gy, , which are used to define the actions of
Alice and Bob in the PO-RAC".

For n =2 and n = 3, we define

Gog =X, Gap:=Y and Gs1: =X, G31:=Y, G33:=72

We use the n = 3 observables as a base case for a recursive formula: for n even, we define
Grn,i =Gp_1,;,®X, for ie{l,...,n—1}, and G,,=I0Y

and for n odd, we define
Gr,i =Gp_2;®X, for ie{l,....n—2}, Gppo1=1QY, and G,,=I®~Z

Note that these act on |n/2] qubits, have eigenvalues +1, and satisfy the anti-commutation
relation

{Gn,i,Gn,j} =26, ;L

Define the following operators for z € {0,1}" and ¢ € [n]:
1 n
Ay = — —1)* @G, d B,:=G].
\/ﬁ 1:21( ) an t t

Note that A2 =1, for all z in{0,1}", and B? =1, for all t € [n], so each have +1 eigenvalues.
The PO-RAC™ protocol is defined below.
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Encoding states: Alice chooses a uniformly random = € {0,1}", creates |n/2| EPR pairs,

and measures the first “halves” with the observable A, to get an outcome a € {—1,+1}.

She sends the second “halves” and a to Bob. Bob now has a quantum state encoding the
string x.

Decoding procedure: If Bob wishes to learn z;, he measures his EPR halves with the
observable B; to get an outcome b € {—1,+1}. He computes ¢ = ab and outputs 0 if
c = +1, and 1 otherwise.

In the next two lemmas, we show that the bias of this RAC™ is ﬁ and that it is
parity-oblivious, thereby proving Theorem 4.

» Lemma 13. This RAC™ has bias 1/\/n.

Proof. We can assume at the beginning of the protocol, Alice and Bob share the maximally
entangled state

w3

1

|9) = —=— 17).ald) -
QLEJ = AlIEB

The expectation value of the observable C' = A, ® B; in this state is given by:

NE

1en”3;@AmB&®G?WAWB:Cj:ﬂ

:2L%J6i,t

1

(©) = (WlAs ® Bily) = —=—

v

w3

J

Sl=

K3

where the third equality is derived from the anti-commutation relation.
Now, (C) = Pr[c = +1] — Pr[c = —1] = (¢| A, ® Bi|v), so

o

-

Pr[Bob outputs 0] = Pr[c = +1] =

N | =

Pr[Bob outputs 1] = Prjc=—1] =

N =

implying

1 1
Pr[Bob outputs x] = = (1 + ) ,
2 vn

as desired. <
» Lemma 14. This RAC" is parity-oblivious.

Proof. Protocols involving shared entanglement and sending one bit of classical information
have limited guessing probabilities for functions such as parity, as shown in [18]. In particular,
it can be been shown that the biases of learning @

Z a%ﬁl.

SC{0,1}»\Empty Set

ics Ti, denoted here as ay, satisfy

For our protocol,
2
1
2
Z ag=n- () =1
S:|S|=1 \/ﬁ

implying avg = 0 for all S of size 2 or greater, implying it is parity-oblivious. |
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6 Large non-contextuality inequality violations

Spekkens et al. [22] constructed a family of non-contextuality inequalities from the notion of
parity-oblivious random access codes. More precisely, they showed that

» Proposition 1 ([22], NC inequality). In any operational theory that admits a preparation
non-contextual hidden variable model, the average case bias for any PO-RAC™ is at most
1/n.

In order to quantify the violation of this NC inequality, we consider the ratio of the
average case bias of quantum PO-RAC" and PO-RAC" of any operational theory that admits
a preparation non-contextual hidden variable model.

Note, that if three exists a game for which the winning probability of any classical
strategy cannot deviate from 1/2 by more than §; and, moreover, there is a quantum strategy
obtaining winning probability at least 1/2 + d3, then we can obtain a violation of order d5/d;
(see [6] for details).

Then, Theorem 5 is a direct consequence of Proposition 1 and our Theorem 1.

» Theorem 15. For any n € N, there exists an explicit non-contextuality inequality that
provides a violation of order \/n.
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—— Abstract

We show finite-size bounds on the deviation of the optimal type II error from its asymptotic value
in the quantum hypothesis testing problem of Stein’s lemma with composite null-hypothesis. The

proof is based on some simple properties of a new notion of quantum Rényi divergence, recently
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1 Introduction

Rényi defined the a-divergence [36] of two probability distributions p, ¢ on a finite set X" as

L log 3 p(a)gle) e,

a—1
rzeX

Da(pllg) =

where « € (0,400) \ {1}. These divergences have various desirable mathematical properties;
they are strictly positive, non-increasing under stochastic maps, and jointly convex for
a € (0,1) and jointly quasi-convex for a > 1. For fixed p and ¢, D, (p|l¢) is a monotone
increasing function of «, and the limit o — 1 yields the relative entropy (a.k.a. Kullback-
Leibler divergence), probably the single most important quantity in information theory. Even
more importantly, the Rényi divergences have great operational significance, as quantifiers of
the trade-off between the relevant operational quantities in many information theoretic tasks,
including hypothesis testing, source compression, and information transmission through noisy
channels [12]. A direct operational interpretation of the Rényi divergences as generalized
cutoff rates has been shown in [12].

In the view of the above, it is natural to look for an extension of the Rényi divergences
for pairs of quantum states. One such extension has been known in quantum information
theory for quite some time, defined for states p and o as [34]

1
a—1

[e3%

log Tr p®ot .

D (p]) =
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These divergences also form a monotone increasing family, with the Umegaki relative entropy
Dy (pllo) := Trp(logp — logo) as their limit at @« — 1. They are also strictly positive;
however, monotonicity under stochastic (i.e., completely positive and trace-preserving) maps
only holds for a € [0,2]. Recently, a new quantum Rényi divergence has been introduced in
[28, 41], defined as

-« 1—a\ &

D) (p|lo) = log Tr (UWpU z ) .
a—1
Again, these new divergences yield the Umegaki relative entropy in the limit o — 1, and
monotonicity only holds on a restricted domain, in this case for a € [1/2,400).

Operational interpretation has been found for both definitions in the setting of binary
hypothesis testing for different and matching domains of «. The goal in hypothesis testing is
to decide between two candidates, p and o, for the true state of a quantum system, based
on a measurement on many identical copies of the system. The quantum Stein’s lemma
[19, 32] states that it is possible to make the probability of erroneously choosing p (type
IT error) to vanish exponentially fast in the number of copies, with the exponent being
the relative entropy D;(pl||o), while the probability of erroneously choosing o (type I error)
goes to zero asymptotically. If the type II error is required to vanish with a suboptimal
exponent r < D1 (p||o) (this is called the direct domain) then the type I error can also be
made to vanish exponentially fast, with the optimal exponent being the Hoeffding divergence
Hy := sup,¢(o1) S5 [r — D,(f]d)(pHU)] [4, 18, 30]. Thus, the DY with o € (0,1) quantify
the trade-off between the rates of the type I and the type II error probabilities in the
direct domain. Based on this trade-off relation, a more direct operational interpretation was
obtained in [25] as generalized cutoff rates in the sense of Csiszar [12]. On the other hand,
if the type II error is required to vanish with an exponent r > D;(p||o) (this is called the
strong converse domain) then the type I error goes to 1 exponentially fast, with the optimal

exponent being the converse Hoeffding divergence H} := sup,-; %=1 [r — DI (pllo)] [26].

Thus, the D&new) with @ > 1 quantify the trade-off between the rates of the type I success
probability and the type II error probability in the strong converse region. Based on this, a
direct operational interpretation of the D&new) as generalized cutoff rates was also given in
[26] for o > 1.

In the view of the above results, it seems that the old and the new definitions provide the
operationally relevant quantum extension of Rényi’s divergences in different domains: for
a € (0,1), the operationally relevant definition seems to be the old one, corresponding to the
direct domain of hypothesis testing, whereas for a > 1, the operationally relevant definition
seems to be the new one, corresponding to the strong converse domain of hypothesis testing.

This is the picture at least when one wants to describe the full trade-off curve; most
of the time, however, one is interested in one single point of this curve, corresponding to
a = 1, where the transition from exponentially vanishing error probability to exponentially
vanishing success probability happens. It is known that using the “wrong” divergence can be
beneficial to obtaining coding theorems at this point. Indeed, the strong converse property
for hypothesis testing and classical-quantum channel coding has been proved using fold)
a > 11n [29, 32, 33] (“wrong” divergence with the “right” values of «), while a proof for the
direct part of these problems was obtained recently in [8], using D) (¢
with a “wrong” value of «).

Further examples of coding theorems based on the “wrong” Rényi divergence were given
in [27], where it was shown that a certain concavity property of the new Rényi divergences,
which the old ones don’t have, make them a very convenient tool to prove the direct part of

various coding theorems in composite/compound settings. This was demonstrated by giving

for

wrong” divergence
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short and simple proofs for the direct part of Stein’s lemma with composite null-hypothesis
and for classical-quantum channel coding with compound channels. Although the optimal
rates for these problems have already been known [10, 11, 13, 31], the proofs in [27] are
different from the previous ones, and offer considerable simplifications. The general approach
is the following:

1. We start with a single-shot coding theorem that gives a trade-off relation between the
relevant quantities of the problem in terms of Rényi divergences. For Stein’s lemma, this
is Audenaert’s trace inequality [3], while for channel coding we use the Hayashi-Nagaoka
random coding theorem from [17].

2. We then use general properties of the Rényi divergences to decouple the upper bounds
from multiple to a single null-hypothesis/channel and to derive the asymptotics.

The main advantage of this approach is that the second step only relies on universal properties
of the Rényi divergences and is largely independent of the concrete problem at hand. In
particular, the coding theorems for the composite/compound settings can be obtained with
the same amount of effort as for a simple null-hypothesis/single channel.

In this paper we present a variant for the proof of Stein’s lemma with composite null-
hypothesis. While in [27] exponential bounds on the error probabilities were given, here we
study the asymptotics of the optimal type II error probability for a given threshold € on the
type I error probability. Building on results from [6] and [27], we derive finite-size bounds
on the deviation of the optimal type II error from its asymptotic value. Such bounds are of
practical importance, since in real-life scenarios one always works with finitely many copies.

The structure of the paper is as follows. Section 2 is a summary of notations. In Section 3
we review some properties of the quantum Rényi divergences, including two inequalities from
[27]: Lemma 4, which gives quantitative bounds between the old and the new definitions
of the quantum Rényi divergences, and Corollary 6, which shows that the convexity of the
new Rényi divergence in its first argument can be complemented in the form of a weak
quasi-concavity inquality. For readers’ convenience, we include the proof of these inequalities.
In Section 4 we prove the above mentioned finite-size version of Stein’s lemma.

2 Notations

For a finite-dimensional Hilbert space H, let B(H)4+ denote the set of all non-zero positive
semidefinite operators on H, and let S(H) := {p € B(H)+; Trp = 1} be the set of all density
operators (states) on H.

We define the powers of a positive semidefinite operator A only on its support; that is, if
A1, ..., A\ are the strictly positive eigenvalues of A, with corresponding spectral projections
Py,..., P, then we define A® :=3""_| A*P, for all @« € R. In particular, A =Y P, is the
projection onto the support of A, and we use A° < B as a shorthand for supp A C supp B.

By a POVM (positive operator-valued measure) T on a Hilbert space H we mean a map

T: Y — B(H), where ) is some finite set, T(y) > 0 for all y, and }° ., T(y) = I. In
particular, a binary POVM is a POVM with Y = {0, 1}.

We denote the natural logarithm by log, and use the convention log0 := —oco and
log +00 := +00.
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3 Rényi divergences

For non-zero positive semidefinite operators p, o, the Rényi a-divergence of p w.r.t. o with
parameter a € (0, +00) \ {1} is traditionally defined as [34]
1 - 1
DD (pl|o) = —LlogTrp®o' = — L5 logTrp, a€(0,1) or p° <o”,
“ 400, otherwise.

For the mathematical properties of D,(fld), see, e.g. [22, 25, 35]. Recently, a new notion of
Rényi divergence has been introduced in [28, 41], defined as

1 l-a 1—a\ @ 1 0 0
——lo Tr(oz‘a aza) — —logTrp, a€(0,1) or <’
Dg‘new) (PHJ) — a—1 108 P a—1 108 P ( ' ) p

400, otherwise.

For the mathematical properties of D™ see, e.g. [7, 15, 26, 28, 41].

An easy calculation shows that for fixed p and o, the function a — log Tr p®o!~% is
convex, which in turn yields immediately that a — D' (p||lo) is monotone increasing.
Moreover, the limit at & = 1 can be easily calculated as

5 Trp(logp —loga), p° <o,

Di(pllo) := lim DY (pllo) = { (1)
a—1 +

00, otherwise,

where the latter expression is Umegaki’s relative entropy [40]. The same limit relation for
D) (p|lo) has been shown in [28, Theorem 5. The following Lemma, due to [37] and [38],
complements the above monotonicity property around o = 1, and in the same time gives a
quantitative version of (1):

» Lemma 1. Let p,o € B(H)y be such that p° < o°, let k := log(1 + Trp3/2c~1/2 4+
Trp'/201/2), let ¢ > 0, and § := min {%, i} Then
D (pllo) > DY (pllo) > Dy (pllo) — 4(1 — a)x? coshe, l-d<ac<l,

and the inequalities hold in the converse direction for 1 < a <1+ 4.

» Remark 2. Assume that p and o are states. The function f(a) := Tr p®ct=% is convex in
a, and p° < o implies that f(1) = 1. Hence, a +— (f(a) —1)/(ac—1) is monotone increasing.
Comparing the values at 1/2 and 3/2, we see that Tr p?2a= 12 L Ty p' /2612 > 2, and thus
K> 1.

» Remark 3. The Rényi entropy of a positive semidefinite operator p € B(H) with parameter
a € (0,+00) is defined as

1 1
Salp) i= =DV (pl[T) = =D (pl|T) = —— log Tr p — —— log Tr .

l1—« —«

By the above considerations, o+ S, (p) is monotone decreasing, and comparing its values at
a and at 0, we get

Trp® < (T )= (Trp)®,  a € (0,1). 2)
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According to the Araki-Lieb-Thirring inequality [2, 23], for any positive semidefinite
operators A, B, Tr AB*A® < Tr(ABA)“ for a € (0,1), and the inequality holds in the
converse direction for o > 1. A converse to the Araki-Lieb-Thirring inequality was given in
[5], where it was shown that Tr(ABA)* < (||B||* TrAQO‘)l_a (Tr A*B*A*)* for a € (0,1),
and the inequality holds in the converse direction for o > 1. Applying these inequalities to
A= p% and B := Ul_T&, we get

Trpozo,lfa <Tr (pég%p%> < ||0.||(1—a)2 (Trpa)l—a (Trpoéo_l,a)(x (3)

for o € (0,1), and the inequalities hold in the converse direction for o > 1. In terms of the
Rényi divergences, the above inequalities yield the ones in the following Lemma, the first of
which has already been pointed out in [41] and [14].

» Lemma 4. Let p,0 € S(H) be states. For any o € (0, +00),

DY (pllo) = DY (pllo) = aDP' (pllo) - |a - 1] log dim H. (4)
Proof. The first inequality is immediate from the first inequality in (3). Taking into account
(2), and that ||o|| < 1, the second inequality in (3) yields the second inequality in (4) for
a € (0,1). For a > 1, we have Tr(p/ ||pl|)® < Tr(p/ ||pl|, and hence we get Tr (péo%p%)a >

o]l =% ol =@ (Tx poo=2)®. Using that [|p|| < 1 and that [lo]| > 1/ dimH, we get
the second inequality in (4) for a > 1. <

For p,o € B(H)+, let

QW (plle) = Tr pe' =, QU (pllr) = Tr (o5 por %) (5)
irs JUNEET (old) (new) . (old) .
be the core quantities of the Rényi divergences Dy ° and D¢/, respectively. Qg  is

jointly concave in (p,o) for a € [0,1] (see [22, 35]) and jointly convex for « € [1,2] (see

1, 35%). The general concavity result in [20, Theorem 2.1] implies as a special case that
(new

o (pllo) is jointly concave in (p,o) for a € [1/2,1). (See also [15] for a different proof of

new

this). In [28, 41], joint convexity of Qa
in [15], using a different proof method, to all @ > 1. These results are equivalent to the

was shown for a € [1, 2], which was later extended

monotonicity of the Rényi divergences under completely positive trace-preserving maps, for
a € [0,2] in the case of DY and for a > 1/2 in the case of D™,
The next lemma shows that the concavity of Q&new) in its first argument can be comple-

mented by a subadditivity inequality for « € (0,1):

» Lemma 5. Let p1,...,pr € S(H) be states and o € B(H)+, and let v1,...,7 be a
probability distribution. For every a € (0,1),

3500 (pillo) < Q) (Zw 0) <3 Q) (pilo). (6)

Proof. The function = — z® is operator concave on [0, 4+00) for a € (0,1) (see Theorems
V.1.9 and V.2.5 in [9]), from which the first inequality in (6) follows immediately. To prove
the second inequality, we use a special case of the Rotfel’d inequality, for which we provide a
proof below. First let A, B € B(H)4+ be invertible. Then

1 1
Tr(A+ B)Y —TrA® = / %Tr(A +tB)*dt = / aTrB(A+tB)* 'dt
0 0

1 1
g/ aTrB(tB)a_ldt:TrBa/ at*"tdt = Tr B®, (7)
0 0
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where in the first line we used the identity (d/dt) Tr f(A 4+ tB) = Tr Bf'(A + tB), and
the inequality follows from the fact that x — 2®~! is operator monotone decreasing on
(0, +00) for a € (0,1). By continuity, we can drop the invertibility assumption, and (7)
holds for any A, B € B(H);. Obviously, (7) extends to more than two operators, i.e.,
Tr(Ay + ...+ A4)* < TrAY + ...+ Tr AY for any A ..., A, € B(H)+ and a € (0,1).
Choosing now A4; := (712%@%- piolz’_Ta yields the second inequality in (6). <

» Corollary 6. Let p1,...,pr € S(H) be states and o € B(H)4, and let y1,...,7% be a
probability distribution. For every « € (0,1),

a> < 35D (pio)

i

min D((l“ew) (pillo) + log min~; < D&new) (Z YiPi
Proof. Immediate from Lemma 5. <

4 Stein’s lemma with composite null-hypothesis

In the general formulation of binary quantum hypothesis testing, we assume that for every
n € N, a quantum system with Hilbert space H,, is given, together with two subsets Hy
and H, , of the state space of H,, corresponding to the null-hypothesis and the alternative
hypothesis, respectively. Our aim is to guess, based on a binary POVM, which set the true
state of the system falls into. Here we consider the i.i.d. case with composite null-hypothesis
and simple alternative hypothesis. That is, for every n € N, H,, = H®" for some finite-
dimensional Hilbert space H; the null-hypothesis is represented by a set of states N C S(H),
and the alternative hypothesis is represented by a single state o € S(H). For every n € N,
we have Hp,, = N©®") .= {p®": pc N}, and H,,, = {o%"}.

Given a binary POVM T,, = (T,,(0), T, (1)), with T,(0) corresponding to accepting the
null-hpothesis and T,,(1) to accepting the alternative hypothesis, there are two possible
ways of making an erroneous decision: accepting the alternative hypothesis when the null-
hypothesis is true, called the type I error, or the other way around, called the type II error.
The probabilities of these two errors are given by

an(Ty) := sup Tr p®nTn(1)7 (type I) and Bn(Ty) = Tr U®nTn(0)7 (type II).
pEN
Note that in the definition of a.,, we used a worst-case error probability.
In the setting of Stein’s lemma, one’s aim is to keep the type I error below a threshold ¢,

and to optimize the type II error under this condition. For any set M C S(H®") and any
e (0,1), let

Be(M]|c®™) = inf {Tr a®"T,(0) : sup TrwT,(1) < 5} ,
weM
where the infimum is taken over all binary POVM T,, on H®"”. When M consists of one
single element w, we simply write 3. (w||c®™). The quantum Stein’s lemma states that

1
lim —~log 8. (N@[0™") = ~Dy(W ) ==~ inf Dy (p|lo). 8
dim =~ log B (M) (W ]l7) i= — inf_ D (p]) (®)
This has been shown first in [19, 33] for the case where N consists of one single element
p. Theorem 2 in [16] uses group representation techniques to give an approximation of the
relative entropy in terms of post-measurement relative entropies, which, when combined with
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Stein’s lemma for probability distributions, yields (8) for finite N'. A direct proof for the
case of infinite NV, also based on group representation theory, has recently been given in [31].
A version of Stein’s lemma with infinite N has been previously proved in [10], however, with
a weaker error criterion.

Here we give a different proof of the quantum Stein’s lemma with possibly infinite
composite null-hypothesis. Our proof is based on the results of [6], where bounds on 5. were
obtained in terms of Rényi divergences, and general properties of the Rényi divergences from
Section 3. Moreover, we give a refined version of (8) in Theorem 9 by providing finite-size
corrections to the deviation of + log B (J\/(®") [c®™) from its asymptotic value —D1 (N o)
for every n € N.

We will need the following results from [6]:

» Lemma 7. Let p,o € S(H). For every e € (0,1) and every a € (0,1),

e _ ha(a
log B-(pll7) < ~DE (pllo) + o loge=! — 12, Q
where ha(a) := —aloga — (1 — «)log(1l — «) is the binary entropy function. Moreover, for
every n € N,
1 1 _
108 8. (1°"10°") = ~Da(plo) - —=vBxlog(1 ~ ), (10)

where Kk is given in Lemma 1.

Proof. The upper bound (9) is due to [6, Proposition 3.2], while the lower bound in (10) is
formula (19) in [6, Theorem 3.3]. <

When N is infinite, we will need the following approximation lemma, which is a special
case of [24, Lemma 2.6]:

» Lemma 8. For cvery § > 0, let N5 C N be a set of minimal cardinality such that
sup e infpren; o= p'lly < 6. Then |Ns| < min{|N], (1 +26~1)P}, where D = (dim M +
1)(dimH)/2, and

sup inf |p®"

—(N®"||. < nsup inf —p'll; < nd, n € N. 11
sup. inf, (o)l < msup ikl =o'l < (11)

Now we are ready to prove our main result:
» Theorem 9. Let € € (0,1), and for everyn € N, let 0 < 6, < e/(2n). Then

1
~log B (N [0¥") < = Dy (W |o)

log (2[5, [e~1)

[N

-2 [8K2 0 + log dim H + Dy (N|o)]

max

n
-1
n 10’5(2W+n|5) P (12)
1 1
ﬁ IOg 56 (N(®n)||a®n) > - Dl(-/vHJ) - %4\/§log(l - E)_lﬁmaxv (13)

where Kmax 1= sup e pr{log(l + Tr p*2o= 12 4 Tr pt/261/2)} <log(2 4+ Tro—/?) < 4oc0.
In (12), the slowest decaying term after —Dy(N||o) is of the order 1/y/n when N is

finite, and when N is infinite, it can be chosen to be of the order lo%
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Proof. The lower bound in (13) is immediate from (10), and hence we only have to prove
(12). We have

o®n

1
lo (N(®") 0®") < log Be—n (/\/(®n) U®") < log Be-ns, ——p®"
g Be | < log Be—ns, 5 [ = gﬁﬁ pe;(s | 6n|P

1 o N5, |
< _plold) @n || @n 1 n
- Z |5 |p 7 +17a0g57n6n
pENS,, "
1 o NG, |
< _D(new) nl|l _@n 1 "
= o Z |j\/'5n|'0 7 +1fo< Ogsfnén’

PENS,

where the first inequality is due to (11), the second inequality is obvious, the third one follows
from (9), and the last one is due to Lemma 4. Note that € —nd,, > /2 by assumption. Using
Corollary 6, we can continue the above upper bound as

log - (N(®n) HU@n)

2
< — min DI (p="[0®") +1 . “ logZ
< - min Dq (p=" 10=") +10g [N, | + +7—10g [N, | + T——log =

1 2
< —n inf D®eW) 1 log =
< —n inf DI (pllo) + 7 log INs, [+ 7 — log _,

where in the last line we used the additivity property D" (p®m||o®™) = nD™) (pllo)-

By Lemmas 4 and 1, for every « € (1/2,1) such that o > 1 — =-¢

2Kmax ’

inf DI (pllo) = @ inf, DY (pllo) — (1 = ) log dim

>« iéljt:/Dl (pllo) — 4a(l — a)k2,,, coshc — (1 — a)logdim H,
o

max

where ¢ is an arbitrary positive constant. Now choose o := 1 — a/y/n. Then

1 a a
el (®n)|| ,On _ % a 2 . .
- log ¢ (./\/ |lo ) < (1 \/ﬁ) Dy (N|o) + Tn (4k72 45 cosh ¢ + log dim H)

2
+ (log |Ns,.| + log 6) .

1
av/n
Optimizing over a yields

1
~log B (N®)o®")
n

[4k2,. cosh ¢ + log dim H + D1 (N ||o)] 5 [log(2|NG, le™1)] cl
(14)

< —Di(N|o) + %

The optimum is reached at

1
2

a* = [log(2|Ngn|£_1)]% - [4K2 i cosh e + logdim H + Dy (N |o)] 2,

max

and we need a*/y/n < 1/2 and a*/y/n < ¢/(2kmax), which is satisfied if

max

1 1
k2. coshe > —log(2|N5, e 1) and  ¢®coshe > —log(2|Ns, [e71).
n n
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Let us choose ¢ > 0 such that coshc =2+ Llog(2|Nj, [e7!). By Remark 2, kpax > 1, and
hence the first inequality is satisfied. Moreover, with this choice ¢ > 1, and thus the second
inequality is satisfied as well.

Substituting this choice of ¢ into (14), and using the subadditivity of the square root, we
get (12).

When A is finite, we can choose 8, = 0, and hence N5, = N, for every n. This shows
that the second term in (12) is of the order 1/4/n, while the third term is of the order 1/n.
When N is infinite, we can choose d,, = £/(2n?), whence the order of the second term in (12)

is 4/ 10‘;’2", and the order of the third term is l(’%. <

» Remark 10. In the case of a simple null-hypothesis N = {p}, the limit

iV (5108 5. [0°7) + DN o)) (15)
n—+oo n

called the second-order asymptotics, has been determined in [21, 89]. Their results show that
the finite-size bounds of [6] are not asymptotically optimal, and hence the same holds for
the bounds in Theorem 9. The merit of these latter results, on the other hand, is that the
correction terms are easily computable, and the bounds are valid for any finite n. To the best
of our knowledge, the value of the limit (15) has not yet been determined when |N| > 1, and
our bounds in Theorem 9 give bounds on the second-order asymptotics in this case.

Acknowledgements. The author is grateful to Professor Fumio Hiai and Nilanjana Datta
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—— Abstract

Among several tasks in Machine Learning, is the problem of inferring the latent variables of a
system and their causal relations with the observed behavior. A paradigmatic instance of such
problem is the task of inferring the Hidden Markov Model underlying a given stochastic process.
This is known as the positive realization problem (PRP) [3] and constitutes a central problem
in machine learning. The PRP and its solutions have far-reaching consequences in many areas
of systems and control theory, and is nowadays an important piece in the broad field of positive
systems theory [21].

We consider the scenario where the latent variables are quantum (e.g., quantum states of
a finite-dimensional system), and the system dynamics is constrained only by physical trans-
formations on the quantum system. The observable dynamics is then described by a quantum
instrument, and the task is to determine which quantum instrument — if any — yields the process
at hand by iterative application.

We take as a starting point the theory of quasi-realizations, whence a description of the
dynamics of the process is given in terms of linear maps on state vectors and probabilities are given
by linear functionals on the state vectors. This description, despite its remarkable resemblance
with the Hidden Markov Model, or the iterated quantum instrument, is however devoid from
any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity
conditions. The Completely-Positive realization problem then consists in determining whether
an equivalent quantum mechanical description of the same process exists.

We generalize some key results of stochastic realization theory, and show that the problem has
deep connections with operator systems theory, giving possible insight to the lifting problem in
quotient operator systems. Our results have potential applications in quantum machine learning,
device-independent characterization and reverse-engineering of stochastic processes and quantum
processors, and more generally, of dynamical processes with quantum memory [16, 17].
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1 Introduction

Let M be an alphabet with | M| = m symbols and let M* be the set of words of length /.
Let M* be the free monoid generated by M

M= M (1)

£>0

We will be concerned with stochastic processes defined on sequences of random variables
over M, i.e., stationary probability measures over M*. We assume throughout that p is a
stationary stochastic process on M, namely,

p(u) = p(Vy = w1, Vg1 = oy .o, Veyoo1 =ug), u= (uy,...,u) € M (2)

is independent of ¢t. We will use £ to denote a generic length of a word u, so that u can be
written as u = (u1,...,ur) instead of the more cumbersome u = (u1,...,u|y|). Let p be a
stationary stochastic process defined on the alphabet M.

» Definition 1. A quasi-realization of a stochastic process is a quadruple (V,m, D, 7) where
V is a vector space, 7 € V, m € V* and D : M* — L(V) is a representation of M* over V,

DWDW = pwv)  yy v e M*. (3)

In addition, the following relations hold,

a [Z D(“)] =7, [Z D(“)] T=T (4)

ueM ueM

and
p(u) =7 DWr VYue M* (5)

The smallest dimensional quasi-realization admitted by p is called regular realization, and
its dimension is the order of p. The regular realization is efficiently computable given the
probabilities of words of length 2r — 1, where r is the order of p [10, 24].

2 The classical learning problem

A central task in machine learning is to obtain the latent variables that account for the
apparent complexity of a given process p. These variables, although not directly accessible to
the observable dynamics summarize past behavior while still providing complete information
about future probabilities of events. To accomplish this, one aims to find a random variable
X such that the future is independent of the past, given X,

p(viu) =Y P(v|X)P(X|u). (6)
X

However, such a decomposition to exist at any given time we require that state transition
probabilities are only dependent on the generated output, P(Xy, us|X¢—1) in a time-invariant
manner. This implies that X is markovian, and we say that p is a Hidden Markov Process.
In such case, {X;} represents the latent variables of p, and an important problem in machine
learning consists in recovering the probabilities P(Xy, us|X¢—1).

A process’ quasi-realization constitutes an abstract model of the behavior of p. However
this does not suffice to identify its latent variables, as the vector 7D does not necessarily
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satisfy any positivity criterion, and the maps need not be related to any stochastic transition
probabilities. Moreover, the vectors 7D will potentially acquire an unbounded number of
distinct values over V, giving little insight on the essential mechanisms driving p.

A positive realization of p is a quasi-realization (V, 7, D, ), such that D™ are substochas-
tic matrices (nonnegative matrices such that > ., D) is stochastic), 7 is the stationary
distribution, and 7 = (1,1,...,1). The Positive Realization Problem (PRP) is the
problem of finding a positive realization of a process p, given its regular realization [24].

3  The quantum learning problem

We address the natural quantum generalization of this problem, namely, when the relevant
information about the past can be synthesized by a quantum state, rather than a classical
random variable. This requirement, less impositive than the classical one [22], has been
considered from the perspective of e-machines [15], where it was shown that the statistical
complexity of the system could be reduced by a quantum model. Instead, our approach
focuses on the dimension of the quantum system, which can be drastically reduced once one
allows for quantum states. A highly relevant example in a not too distant scenario can be
found in [25].
In the quantum mechanical setting, the factorization condition Eq. (6) is replaced by

p(viu) = pa[MM], (7)

where py represents a quantum state, and M) the POVM element associated with outcome
v. Future probabilities are obtained by the Born rule applied to state p,. The minimum
dimension by which this description can be achieved is given by the positive semidefinite
rank [13]. However, in addition, in order to have a physically meaningful description of the
mechanisms at work, one expects that the state transition probabilities are given by physical
transformations,

Puv = Pu © 8(0)7 (8)

where £() are completely-positive maps, and > vem £™) is unital. The set {£(")} is called
a quantum instrument. This problem has received little attention in the literature. It arises

naturally — albeit in slight disguise — in [5], and more generally in systems identification [6,
17,2, 7.

The completely positive realization problem (CPRP): Given a quasi-realization of process
p(w), determine whether there exist a quantum instrument {E€(Y}, and positive semidefinite
p such that

p(u) = ple™) 0 -0 £M(T)), (9)

such that £ =73, EW s completely positive and unital, and p o & = p. Stochastic processes
admitting a completely-positive realization are called finitely correlated or algebraic [1, 11].

In order to obtain necessary and sufficient conditions for p to be a finitely correlated
process, we first generalize a classical result by Ito, Amari and Kobayashi [18]. The latter is the
stochastic equivalent to a classic result on linear systems theory [19], ¢. e., minimal realizations
are always related by similarity transformations, and are quotients of higher-dimensional
ones.
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Define the W = span{€™(Z)}uesm- as the accessible subspace. It is trivially stable
under the action of £, Yu € M*,

EWW) Ccw. (10)
Analogously, we consider the span of states W= span{p o EM™} cr-. Tts annihilator,

wi = ﬂo W ker o, is the null space, i. e., the subspace which has no effect whatsoever for

computing word probabilities. Also W+ is stable under £ W vue M*,
EWwty cwt. (11)
Dgfine the quotient space V as the accessible space modulo its null component K =
wnwt,
W
= —. 12
- (12

The elements of V are of the form a+ K, a € W. Let L : W — V be the canonical projection
onto V,

(13)
Since £M(K) C (K) let D be the induced quotient map D™ : V — V, as defined by

DWoL =Lo&M. Also, define 7 = L(Z) and 7 as the induced quotient functional 7oL = p.
Using the fact that p[ker L] = 0 we factor through the entire set of maps &),

p(u) = po&M(T) (14a)
= 71o0LoEW(T) (14b)
= moDMW(r). (14c)

This, together with easily shown eigenvector relations (4) illustrate that (V, 7, D™, 7)
constitute a perfectly valid quasi-realization. We call such quasi-realization the quotient
realization. An important step is to realize that the quotient spaces of equivalent quasi-
realizations are minimal and hence isomorphic.

» Theorem 2. [18] Two quasi-realizations Ry = (Vl,m,Dgu), 71) and Ro = (Va, ma, D;u),T2>
of the same stochastic process p, not necessarily of the same dimension, have isomorphic

_ _ T _
quotient realizations R; = (V;, T, Dgu),ﬂ)i:u, Vi 2V,

7w =79 T, (15)
D\ = 1r1DT, (16)
T = T_l?g. (17)

This result follows from [18], which proves it only for the Hidden Markov Model case. The
proof, however, only relies on the nonnegativity of the process’ probabilities, and applies to
any pair of equivalent and well-defined (in the sense that they yield the same nonnegative
measure on M*) quasi-realizations.

This result is important in that it establishes the uniqueness of the quotient space V,
up to basis changes. Let d be the dimension of WW. As can be seen from the definition
d =dimV < n, where n is the original realization’s dimension. By considering the quotient of
a regular realization of dimension r we get d < r. On the other hand r is a lower bound to the
dimension of any quasi-realization. Thus we conclude that d = r, hence quotient realizations
are indeed regular, and all regular realizations can be regarded as quotient realizations.



A. Monras and A. Winter

4 Semidefinite representable cones and quotient operator systems

The CPRP aims at providing a completely-positive lifting of a regular realization R =
(r, D™ 7). As it will be shown, a necessary and sufficient condition is the existence of

certain stable cones of a particular kind, containing the vector 7, and whose dual contains 7.

We focus on finite-dimensional liftings from an r-dimensional regular realization R acting on
VYV &2 R" to a completely positive realization acting on B(H) where H is a finite-dimensional
Hilbert space, H = C". We use ST to denote the positive semidefinite cone in B(H). All
cones we deal with are convex. A cone € is pointed iff x € € and —z € € implies z = 0 and
C is generating if span € = V. We will use calligraphic letters for subspaces of B(#), and for
any given subspace W, W7 will denote its intersection with S*, WT =WnS™.

» Definition 3. Let V be a finite dimensional real vector space. A semidefinite representable
cone (SDR) is a set € € V such that

e=Lwh) (18)
where W C B(H) is a subspace and L : W — V is a linear map.

It is easy to see that pointed and generating SDR cones can always be described by subspaces
W such that W = span(W%) and L is a quotient map from W to W/K = V, with
K NSt ={0}. SDR cones are homogeneous versions of semidefinite representable sets, the
feasibility regions of semidefinite programs [4].

> Lemma 4. Let T € W C B(H) and W C B(H)*, such that W = span(W*) and
K =W NW+ satisfies KNSt = {0}. Let L be the canonical projection L : W — W/K.
Then C = L(WT) is a pointed, generating SDR cone, and its dual is given by

e =L(W+whT) (19)
where L is the canonical projection L:W+Wt - (VV/—F W)/ wt =y,

Since Z € W C B(#H), W can be regarded as an operator system [23]. Let W,, = WQB(C")
and W;f its positive cone. Likewise, given a linear map L : W — V,let L,, = L®RZL, : W,, —
V... We define cones C,, as

Co = La(W) C V. (20)

Since K NSt = {0} then (V,C,, L(Z)) define a quotient operator system [20].

5 Regular quasi-realizations as quotient realizations

From Theorem 2 it follows that given a regular quasi-realization R = (V, 7, D), T), for an
equivalent completely-positive realization Q = (B(H), p, €™, T) to exist, the former must be
a quotient realization of the latter. This implies several constraints on the structure of the
stable subspaces of Q, and provide necessary conditions for the feasibility of the CPRP.

For a hypothetical completely-positive realization for p, the accessible subspace W =
span{£™)(Z)} is an operator system in B(#), and complete positivity of £ in W suffices, by
virtue of Arveson’s theorem, to ensure complete positivity in B(H),

EaW,H) cwit. (21)
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The null space W of Q, and more precisely its restriction to W, K = Wn WL must
also be stable under the action of £, The quotient space is V = W/K and the canonical
projection L : W — V brings Q to R. In particular, we have the following relations

T=L(2), (22a)
moL=p (22b)

which relate R to Q. Under the quotient construction, the induced maps satisfy the relation
DoL=Lo¢&. (23)
Using the definitions of the previous section, we have
Dn(C,) CCpy, Vn>1. (24)

This is precisely the condition of complete positivity in the quotient operator system
(V,C,,L(Z)). Hence a necessary condition for the existence of a CP realization is that
the regular realization is completely-positive with respect to a quotient operator system,
together with relations

T€C (25)
T e ¥, (26)

which follow from (22). However, as it turns out, this condition does not suffice to guarantee
existence of a completely positive lift in W. In fact, there exist completely-positive maps
in V which are not induced quotients of completely-positive maps in WW. To overcome this
difficulty, we will not impose complete positivity in the standard operator systems sense,
but instead impose a stronger condition that guarantees complete positivity in the quotient
operator system V as well as in W.

Let us denote £ for an arbitrary element £ and regard it as an element in B(H) @ B(H)*.
Maps satisfying £E(W) C W and £(K) C K are in the subspace 8 C B(H) ® B(H)*,

S=WeW+K @ B(H)* +B(H) @ W (27)

Let ¢ : K+ — (W/K)* = V* be the natural isomorphism between these two spaces, and let
¢ : B(H)* — B(H)* /W= be the canonical quotient map modulo W+. Then define

LWt +w -2 kL 25 p%, (28)

Now, consider the map L ® L. In principle, the range of this map is not well defined in the
entire B(H) ® B(H)*, and arbitrary extensions would be required. However, for each of these
spaces is well-defined,

L®L: K®B®H)* — 0 (K=kerl) (29)
BH) oWt — 0 W' =kerL) (30)
WaWw — VeV (31)

We thus have that D = L ® Z(S ) € YV ® V* is the induced quotient map. Also, completely-
positive maps with these stable subspaces form a cone 8€F, where CP denotes intersection
with the completely positive cone. Finally, we conclude that

DeP=L®L(8F). (32)
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By the Choi-Jamiolkowski isomorphism, 8€F is isomorphic the positive semidefinite
subcone of some subspace of B(H ® H), hence, P is semidefinite representable. One can
check that D € P implies complete positivity in the operator system (V, C,,, L(Z)).

Notice that the identity map is in P since it just corresponds to the induced map of the
identity in 8€F, which is completely positive and satisfies all the stability conditions. In
addition, other useful properties hold for P. In particular,

P is pointed.

P is closed under composition, i. e. it is a semigroup.

C Qmax C* C P, where ®ax denotes the maximal tensor product, 7. e. the convex hull of

pairs of elements p® o, p € C,0 € C*.

Notice also, that given P and m, 7, one can obtain € from P, € = Pr.
In conclusion, the necessary conditions for the CPRP can be stated as
T € C,
m e C*,
De?.
with P of the type (32). The next section shows that these conditions are also sufficient.

6 Sufficiency of the conditions

So far we have derived a set of necessary conditions which follow from the hypothesis that
an underlying completely-positive realization exists. In this section we show that these are
also sufficient.

» Theorem 5 (Removing spurious eigenvectors). Let {£(")} be a set of completely positive
maps on B(H) with € =Y, EW, and let p, T be positive semidefinite operators in B(H)
such that tr[pZ] = 1. If w is a positive semidefinite eigenvector of € such that tr[pw] = 0,
then there is always another set of CP maps {€(™} on B(ker(w)) and positive semidefinite
operators p, T € B(ker(w)) such that

tr[pEW(T)] = tr[pEM(T)]  Yue M*. (33)

Proof. Let P = ker(w) and Q = range(w) = P+ its orthogonal complement. Let P (resp.

Q) be the corresponding orthogonal projection in H, and IIp = P - P, (resp. Ilg) the
hereditary projection on B(#). Since w is a positive semidefinite eigenvector, we have that
Eollg =Tlg o0& ollg. From positivity, this extends to all £ and thus

IpoE™ =1Ip 0 EMW o Ilp, Vue M*. (34)

From orthogonality of p > 0 and w > 0 it follows that p = IIp(p) and we can write

p(w) = tfpllpe™ ()]
= trfpUpE™IIp o UpE 2 lp - - - pEHIlp (T)]. (35)
Replace H < P, B(H) + B(P) and
EW TpEWIIp (36a)
I « Iip(2) (36b)
p <« Ip(p). (36¢)

The resulting maps are still completely positive and p, Z are positive semidefinite with
support in B(P), thus the new Z has tr[Zw] = 0. In addition, from Eq. (35), they generate
the same process. <
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» Theorem 6. Given a pseudo-realization R = (V,m, D, T), an equivalent, finite-dimensional,
unital, completely-positive realization exists (B(H), p,E,T) if and only if there is an SDR
cone P CV ®@V* such that

1. DW e P, Yue M,

2. T€C,

3. meC".

where C, C* and P are of type (18), (19) and (32), respectively.

Proof. That the conditions are necessary was proven in the previous section. It follows from
condition 1 that CP maps £ : B(H) — B(H) can be defined such that £ (K) C K and
EW (W) C W, and that

Lo&®W =DWoL VYueM. (37)

To lift the vectors 7 and m, notice that since 7 € € and 7 € €*, there is Z € W and

p € W+ +W)T such that
T = L(2) (38)
p = molL. (39)
At this point it is easy to check that D™ (1) = DWL(T) = LEM(T), so that

- DW(r) = po EW(T), Yue M*, (40)

However, the operators p and Z are not left- and right-eigenvectors of £ = (& (u),
so they (B(H),Z,&,p) does not form a realization. In order to find a proper completely-
positive realization, we will iteratively replace them by suitable projections by making use of
Theorem 5, until the desired properties are obtained. In the process, we remove all spurious
contributions to p and Z until only relevant contributions to Eq. (40) remain.

STEP 1: Consider the Cesaro mean w,, = 1 Y}' | €¥(Z). Clearly, w, > 0 Vn. Define the

ratio A = lim,,_, “Tfj“ﬁ“ so that the limit is well-defined,

w= lim 22 (41)

n—oo \"

Clearly, w > 0, and
—1; 1 k+1 _
Ew) = lim —— > EFT) = dw. (42)

At this point, two different scenarios may occur. Either A =1 or A > 1. Consider first
the case when A > 1. This means that there is a contribution to Z which grows under
the action of £, and w captures its asymptotic behavior. One can see that

B RS
trlpw] = nh_)H;oWth[ng(I)]
k=1
= hmoa
_— (43)

Hence, by making use of Theorem 5, we can obtain a new set of CP maps {S(“)}, p and
7 such that tr[Zw] = 0. However, p and Z are still not eigenvectors. Repeat STEP 1 until
A=1.

If A =1 then w = lim,, ,o w, is well defined. Replace Z <+ w and proceed to STEP 2.
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At each iteration of STEP 1 a new w is obtained, orthogonal to all previous ones, and the
associated eigenvalue can only be equal or decrease. The aim of this iteration is to capture
the eigenspace of £ with the largest eigenvalue and remove it without altering the resulting
stochastic process p(u).

Because £ has only finitely many eigenvalues, eventually A will equal 1. In that case, the
resulting w is strictly positive. Proceed to PART 2.

STEP 2: At this point Z is an eigenvector but p is not. Rerurn STEP 1 with the dual
realization, i. e., with (B(H)*,Z,£*, p), interchanging the roles of p and Z.

After STEP 2, p is an eigenvelue of £ but Z may not be. A further iteration of steps 1
and 2 will lead to further dimension reductions. Since the dimension is finite, eventually
no further truncations will be necessary and both Z and p will be proper left- and right-
eigenvalues of £.

Once one has iterated through STEPS 1 and 2, one has a completely-positive realization
(p, € (“)71) with the required stability properties for p and Z. It just remains to ensure that
Z > 0. The procedure is very similar to the one just exposed.

STEP 3: Let Q = ker(Z) and P = Q+ = range(Z) its orthogonal complement. Since Z > 0
is an eigenvector of £, we have that £ (Z) € B(P), Yu € M*. Hence we can make the
substitutions H < P, B(H) < B(P) and

5(u) — Hpg(u)Hp (44&)
I « Ip(D) (44D)
p <« Ilp(p). (44c)

With this, now Z > 0. One can define the completely positive map N (x) = Z~1/22Z~1/2,
Finally, replace

W NEWNT (45a)
I « NO)=1 (45b)
p — NHp). (45¢)

This substitution makes >, (& (v)(1) = 1, while preserving complete positivity and the
resulting p is the stationary state of the system. This concludes the proof. |

Note that several steps in the reduction algorithm could be avoided by imposing further
conditions on the properties of the subspaces defining P, but to explore these relations is
beyond the scope of this work.

This constructive algorithm shows that not only appropriate completely positive maps can
be obtained from the condition D € P, but also that their structure can be cast into the form
of a quantum instrument, where p is a fixed point of >, (& (w) The fact that a dimension
smaller than that of B(H) is capable of reproducing the model described by (B(H), p,&,7)
is ultimately to the non-primitivity of £* and the lack of information completeness of the
POVM elements M = £ (). This theorem establishes under which that this explanation
is the only possible one, revealing the essential traits that a quasi-realization should exhibit
in order to be equivalent to a higher-dimensional quantum model.

7 Discussion

This result represents a generalization of Dharmadhiraki’s polyhedral cone condition [9]
and establishes the type of positivity that needs to be respected at the level of the regular
realization for there to exist a certain lifting in B(H). The result, highlights a central issue
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that goes unnoticed in the commutative case. Unlike in the formulation of Dharmadhiraki’s
cone condition, the truly fundamental object is the set of cones P, from which the cones C
and C* can be derived. This shifts the focus from the geometry of the cone of states, and
sets it on the nature of the semigroup of transformations corresponding to a given process p.

Of course this is far from a full solution to the problem. Although condition (32) can
be verified by a semidefinite program, finding the suitable cone P for a given process is still
a formidable challenge. Our result highlights significant departures from the PRP, so that
novel approaches may be possible. In particular, the CPRP turns out to be deeply related to
lifting properties for quotient operator systems. Aspects of this theory are deeply connected
with several open questions in operator theory [12], such as Connes Embedding Problem
and Kirchberg’s conjecture. In addition, classical algorithms for learning Hidden Markov
Models using matrix factorizations [8] may be extended to semidefinite factorizations [13, 14]
thus establishing links between the computational complexity of the CPRP and that of
other relevant problems in Quantum Information science. An interesting question, from the
operator systems theory point of view, is to identify the abstract operator system in V for
which P is the cone of completely positive maps, and to determine its nuclearity properties.

Just as the positive realization problem, the completely-positive realization problem is
highly relevant in systems identification and quantum control. It addresses the problem of
finding compact models for systems with quantum memory and a classical readout interface.
In particular, modeling stochastic processes which are generated by quantum devices will
be the primary application of our results. The positive description of a process not only
provides insight into the physical mechanisms underlying a process, but allows to identify
latent variables, e. g., variables that are not directly observed but allow to draw order and
simplicity in otherwise apparently chaotic and highly unpredictable behavior. In this sense,
accounting for hidden quantum mechanical mechanisms, and more importantly, quantum
memory to an information source, is potentially the difference between obtaining a simple
description of a process or a highly complex one.
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—— Abstract

A quantum algorithm for the Hidden Subgroup Problem over the group Z/p"Z x Z/q°Z is pre-
sented. This algorithm, which for certain parameters of the group qualifies as ‘efficient’, general-
izes prior work on related semi-direct product groups.
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1 Introduction and Related Work

1.1 Introduction

The quantum algorithm to factorize integers as given by Shor [8] in 1994 is exponentially
faster than any known classical algorithm. The success of Shor’s algorithm resulted in a
great deal of interest in quantum computing, subsequently resulting in the design of several
more quantum algorithms that are exponentially faster than their classical counterparts.
Several of these algorithms solve the problem of finding subgroup generators of a group
using evaluations of a function that “hides” the subgroup [2]. This generalized framework
is captured by the Hidden Subgroup Problem (referred henceforth as HSP) and has been
successful in admitting quantum algorithms that are exponentially faster than their classical
counterparts. It is known that there exists an efficient solution to the HSP for finite Abelian
groups, but this is not known to hold for non-Abelian groups. The motivation for research
in this area stems from knowledge that an efficient solution to the HSP over the symmetric
group (dihedral group) will result in an efficient quantum algorithm for graph isomorphism
(shortest vector in a lattice). In this article, we present an algorithm to solve the hidden
subgroup in the specific class of non-Abelian groups, i.e. the semi-direct product groups
of the form G := Z/p"Z x Z/q*Z, where p, q are prime with p # ¢ and r,s € Z" with the
relative sizes of the subgroups bounded by p"/q'~7 € O(poly(log p")) where j € {0,...,t—1}
is a parameter specific to the group. For certain parameters of G and its subgroup, this
algorithm has running time O(poly(log |G|)), and hence qualifies as ‘efficient’.

In Section 2 we clarify the structure of the group Z/p"Z x Z/q°Z and its subgroups. The
quantum algorithm that will help solve for the hidden subgroup, H within this specific class
of non-Abelian groups is presented in Section 3.
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1.2 Related Work

There has been considerable work in trying to solve the HSP in semi-direct product groups.

In this article we discuss the case Z/p"Z x Z/q°Z. It was shown in [1] that the HSP in
Z/NZ x Z]qZ, for positive integers N, g such that N/q € O(poly(log N)), reduces to finding
cyclic subgroups of order g and can be efficiently solved. This work was extended in [6], which

developed an efficient HSP algorithm in (Z/p"Z)™ % Z/pZ, with p prime and integers r, m.

Following this, in 2009 an efficient quantum algorithm to solve the HSP in Z/pZ % Z/q°Z
for distinct odd primes and s > 0 such that p/q € O(poly(logp)) was shown [4]. More
recently in [5], the HSP problem was considered in Z/p"Z x Z/q*Z where p, q are distinct

primes such that p”/q € O(poly(logp™)). The current article extends this previous result [5].

Specifically, the group Z/p"Z x Z/q°Z has a parameter ¢ (as explained in the next section)
that characterizes the group. In [5] an algorithm was presented for the ¢ = 1 case; here
we deal with all possible values ¢t € {0,...,s}. Whether or not our algorithm qualifies as
efficient depends on the specific parameters of G and its subgroup, which will be explained
in Section 3.

2 The Group Z/p"Z x 7/¢°Z and lts Subgroups
2.1 Some Properties of the Group Z/p"Z x Z/¢*Z

In this section we discuss and prove various properties of the semi-direct product group
G :=7Z/p"Z x L/q°Z, with p,q prime and r,s € Z". We know that Z/p"Z and Z/q°Z are
finite, cyclic, Abelian groups. Let ¢: Z/q°Z — Aut(Z/p"7Z) be the group homomorphism
that defines G, for all a,c € Z/p"Z and all b,d € Z/q¢°Z:

(a,b)(c,d) = (a+ ¢(b)(c), b+ d). (1)

As Z/q*Z is cyclic, we have for all b that ¢(b) = ¢(1+---+1) = #(1)°. In a similar vein, since

Z/p"7Z is also cyclic, we have ¢(1)(c) = ¢(1)(1+---4+1) = ¢(1)(1) +-- -+ o(1)(1) = co(1)(1).

We thus see that ¢ is completely determined by the single value ¢(1)(1), which from now on
will be denoted by « := ¢(1)(1) € (Z/p"Z)*. The group operation in G = Z/p"7Z X, 2./ ¢°Z
thus simplifies to

(a,b)(c,d) = (a + abe,b+d). (2)

The identity in G is (0,0) and the inverse is expressed by (a,b)™! = (—a~’a, —b).

Because it must hold that 1 = a® = a(?") we have that there exists a smallest integer

t €{0,...,s} such that a(4) = 1. As explained in [5], if the groups G = Z/p" %4 Z/q°Z and

G' =7Z/p" X Z/¢°Z have the same t-parameter (¢t = t'), then these groups are isomorphic.

Additionally, if ¢ = 0 we have that o = 1, making G Abelian. From now on we will thus
assume that ¢ € {1,...,s}. It can be shown that ¢' | (p — 1). We also note that it can be
shown that G is supersolvable.

2.2 Subgroups of Z/p"7Z x 7./ ¢°Z

Following [5, Theorem 2], the subgroups of the group G = Z/p"Z x4 Z/q°Z are from either
one of three types. With ¢ € {1,...,s} the parameter of G as explained in the previous
section, these types are as follows.

Type I: H}; = ((p",¢’)), for each i € {0,...,7} and j € {t,...,s}.

Type II: Hj', = ((n,¢7)), for each j € {0,...,t —1} and n € Z/p"Z.

Type llI: H!Y = ((p',0),(n,¢’)), for each i € {0,...,r — 1}, 5 € {0,...,t — 1}, and

4,5,
nef{0,...,p" —1}.
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We point out that [5, Theorem 2] allows the 1 parameter for Type III subgroups to be
from the whole set {0,...,p" — 1} but that this creates ambiguity as, for example, H(%’O =
((1,0),(0,1)) = G and Hy'y; = ((1,0),(1,1)) = G as well. By limiting 7 to the set
{0,...,p" — 1} each triplet of parameters (i, 7,7) defines a unique Type III subgroup.

Next, we will describe the parameterization of the elements of these three types of
subgroups. The elements of the Type I subgroup are of the form (p,¢?)* = (2p', 2¢’) where
z € 7 and where we used the fact that a(9) =1 as j > t. Because ged(p”, ¢®) = 1 we can
further simplify this description to

HiI,j = {(xpl7yqj) ‘T E {Oa ce aprii - 1}7y € {Oa e 'aq87j - 1}}7 (3)

showing that Hl{j has p"~¢°~7 elements.
The subgroups of Type II and III are less trivial to describe. To better understand the
elements of the subgroup {((n, ¢’)), consider first some small powers of the generating element

(n,¢7):

(n,¢)" = (—nal=1), —¢¥)

(n,¢)"  =1(0,0)

mae)t =) (4)
(n,¢%)? =(77+7704(qj_)72qj) v

(m,¢?)? =+ nal?) +nale) 3¢7)

and so on. In general we have the following characterization.

> Lemma 1. Let G = Z/p"Z X0 Z/¢°Z and let t € {1,...,s} be the smallest positive
integer such that &%) = 1. For any n € Z/p"Z and j € {0,...,t — 1} consider the cyclic
subgroup H = ((n,¢?)). For each exponent y € Z, the elements of H can be described by
(n,¢7)Y = nS(y),yq’) where S: Z — Z/p"Z is defined by

awed) — 1

Sly) = S (5)

ald) —1

As a result, the subgroup has ¢*~7 elements such that

H = {(n,¢")) ={(nSW),ya’) -y €{0,...,¢° 7 = 1}}. (6)
Proof. In [5, Lemma A2] it is shown that a(@) — 1 is invertible in Z /P"Z hence the definition
of S in Equation 5 does indeed make sense. Assuming for a given y that (1, 7)Y = 1S(y),yq’)
we get (n,¢)*! = (1,¢7)(nS(y), ya’) = (n(1 + a'7)S(y)), (y + 1)¢?). With this relation
S(y+1) =1+ al)S(y) and S(0) = 0 the Equality 5 can be proven by induction on y.

From the Z/q°Z part of G it is obvious that the values y such that (nS(y),y¢’) = (0,0)
must obey that y is a multiple of ¢*~7. Conversely, if y = A\¢°7, then S(y) = (7)) —
1)/(a'?) — 1) = 0. Hence (nS(y),yq’) = (0,0) if and only if y = 0 mod ¢*~7. <

Upon further inspection it is clear that S has period ¢'~7, which will be helpful in the
reduction of the complexity of finding the hidden subgroup H in G.

The Type III subgroups are obviously extensions of the previous type. As we have
(', 0)(nS(y), ya’) = (" +1S(y),y¢’) and (nS(y),y¢’)(¥",0) = (nS(y) + aWT)pi,yg?) it is
clear that the elements of H™ can be described by

HY = {(zp" +0S(y),ya’) cw € {0,....p" =1}y € {0,....¢" 7 —1}}, (7)

which also shows that it has p"~’¢*~/ elements, and hence that Hg'y, = G, regardless of 7.
More generally, it is only the value 7 mod p’ that matters in the definition of this subgroup.
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3 Quantum Algorithm for HSP in Z/p"Z x Z/q°Z

3.1 Overview of Algorithm

In this section we will present a quantum algorithm that solves the hidden subgroup problem
in G=7Z/p"Z %, Z/¢°Z, but before doing so we will reduce the problem significantly. As in
the previous section, the group operation is defined by (a,b)(c,d) = (a + a®c, b+ d) where

a € (Z/p"7Z)* and for which there exists a smallest integer ¢ € {1,..., s} such that al?) =1.

Let f be the subgroup hiding function on G, which obeys
f((a,b)) = f((d',V")) if and only if (a,b) " (a’, ') € H. (8)

In other words, f is constant on the left cosets of H and f is different between different
cosets of H.

Recall from Section 2.2 that the subgroups of G are one of three types with potentially
unknown parameters 7, j, 7. In [5, Section 3] it was claimed that it was sufficient to solve the

HSP for Type II subgroups but the current authors were unable to reproduce this result.

Instead we will present an alternative way of finding the hidden subgroup.

We assume that all the parameters (p, 7, ¢, s, «, and t) of the group G are known.

For our purposes, an algorithm is considered efficient if its running time is bounded by
O(poly(log(|G])) = O(poly(rlogp + slogq)). Note that when an algorithm suggests that a
group H' is the hidden subgroup, then that suggestion can be checked by querying f on
(0,0) and on the generators of H'. If H' passes this check we can conclude that H' < H;
otherwise a mistake was made and the algorithm should be executed again to find another
suggestion for H. Repeating the above procedure will give a ‘largest’ subgroup that with
high probability will equal the true hidden subgroup.

Because of the just described approach to solve the HSP, it is sufficient to use an

algorithm that finds the hidden subgroup with a success rate that is significant enough.

For the current case of possible subgroups of G it is therefore sufficient to simply guess
the parameters ¢ € {0,...,r} and j € {0,...,s} as the probability of doing so correctly
equals 1/rs € Q(1/poly(log|G|)). If the subgroup is of Type I this will have answered
the HSP completely. In the case of Type II or Type III subgroups the following quantum
algorithms will have to be employed to find the unknown parameter n € Z/p"Z (Type 1I) or

n €{0,...,p" — 1} (Type III).

3.2 Quantum Algorithm for Finding HSP in Z/p"Z % 7./ q°Z

» Theorem 2. Let p and q be distinct primes and let r and s be positive integers. Define
the semi-direct product group G :=Z/p"7Z Xy Z/q°Z by the non-commuting group operation
that, for all a,c € Z/p"Z and all b,d € Z/q*Z, has (a,b)(c,d) = (a + a’c,b+ d) for an
a € (Z/p"Z)*. Lett € {1,...,s} be the smallest positive integer such that a(4) = 1.

Let the function f on G hide a Type II subgroup H = {((n,¢’)) and assume that the
parameter j € {0,...,t — 1} is known. There exists a probabilistic quantum algorithm that
determines the unknown parameter n € Z/p"Z with success probability (1 — 1/p)(¢*=7 /p")
using only one query to f.

Proof. This proof is inspired by the PGM algorithm described in [1], but it uses several
additional ingredients specific to the properties of this group G and its subgroups (for which
see Section 2).
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1. Initialize the register in the state,

gt=i—1

1) = %t ST lmud f((xyq)))
gt z€Z/p"Z y=0
Note how the second register contains only multiples of ¢/ and how the range of y¢’ goes
only to ¢' and not ¢°.
2. The p" different left cosets of H that are relevant for this algorithm are described by
(,00H = {(t+nS(y),y¢’) : y € {0,...,¢"7 — 1}}, for each £ € Z/p"Z. After measuring
(and ignoring) the third register of |¢1) in the computational basis we thus get the state

t 7 —1

|2) = Z €+ nS(y), y’),

for an unknown and irrelevant ¢ € Z/p"Z.
3. Applying the Fourier Transform over Z/p"Z to the first register of |1)o) we get, with
w = exp(i27/p"),

gt—i—1
[s) = ﬁ > Z WSOk, yg?)

keZ/pvZ y=0

q'77-1

s X WM Y W),

kEZ/prZ y=0

4. Measure the first register in the computational basis and assume the result is some
invertible k € (Z/p"Z)* (which occurs with probability (1 — 1/p)). Tracing out this k
register gives us the remaining superposition

gt=i—1

Z wan(y)|yq ).

|¢4> \/7

5. We now take the yqj register in [14) and use it to append a second register with the
value kS(y) = k(a®?) —1)/(a(?) —1) mod p". As a,q,j,p", k are known and (a(?") — 1)
is invertible, this transformation can be done efficiently, yielding

t—i_1
1 ,
[s) = ——= D W Vyg kS(y)).
VvV 4 y=0
6. Because k is invertible and the function S is injective on {0, ..., ¢' =/ —1}, we can determine

a unique solution y from the value £S(y). Using Shor’s discrete logarithm algorithm we
can hence efficiently implement the unitary mapping |yq?, kS(y)) — |0,kS(y)), giving

-1

= Y SIS (y).

y=0

[v6) =

ﬁ

7. Finally, we perform an inverse Fourier transform over Z/p"Z in the hope of observing
the unknown 7. To calculate the probability of this occurring, consider the ideal state
1) :=>_.en/przw"2)/v/PT, which is guaranteed to give . The fidelity squared between
this perfect state and our actual state is |(1g|)|? = (¢*~7)/p", which is thus the probability
of observing 7 at the end of this step.
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The above algorithm requires one f-query and poly(log|G|) time and space. Its overall
success probability equals (1 —1/p)(¢"~7/p"). <

The algorithm for finding Type IIT subgroups is an adaptation of the just described
algorithm. Crucially, the unknown parameter 7 is an element of the set {0, ...,p" — 1}, which
influences the first register of the algorithm.

» Theorem 3. Let p and q be distinct primes and let r and s be positive integers. Define
the semi-direct product group G :=Z/p"Z Xy Z/q°Z by the non-commuting group operation
that, for all a,c € Z/p"Z and all b,d € Z/¢°Z has (a,b)(c,d) = (a + abe,b+ d) for an
a € (Z/p"Z)*. Lett € {1,...,s} be the smallest positive integer such that a(4) = 1.

Let the function f hide a Type III subgroup H = ((p*,0), (n,¢’)) in G and assume that the
parameters i € {0,...,r — 1} and j € {0,...,t — 1} are known. There exists a probabilistic
quantum algorithm that can determine the unknown parameter n € {0,...,p" — 1} with
success probability (1 —1/p)(¢*=7 /p') using only one query to f.

Proof. This algorithm is quite similar to the one of the previous theorem, except for the
fact that the first register will be restricted to elements of Z/p'Z.
1. Initialize the register in the state

p'—1q¢"7-1

1) = \/7”2 Z 2, y¢”, F((2,y47)))-

Note how the second register contains only multiples of ¢, how the range of y¢’ goes
only to ¢* and not ¢°, and how the first register contains only p’ elements.

2. The p different left cosets of H that are relevant for this algorithm are described by
(6,0)H = {(¢ + xp* +1S(y),y¢’) : 2 € {0,...,p" " —1},y € {0,...,¢" 77 — 1}}, for each
?€{0,...,p" —1}. As the first register contains values from the set {0, ...,p" — 1} this
description further reduces to {(¢+nS(y) mod p*,yq¢’) : y € {0,...,¢" 77 —1}}. Measuring
the third register of |¢)1) in the computational basis we get the state

¢ -1

1 o
> 1t +nS(y) mod p', yg’),

\V qt=J y=0

for an unknown and irrelevant ¢ € {0,...,p" — 1}.
3. From now on we interpret the first register of |¢) as containing values from Z/p‘Z and
we apply the Fourier Transform over Z/p'Z to it. With w := exp(i27/p*), we get

[a) =

t J_ i

WFEESW) | g7
R

kez/p'Z y=0

13) =

¢t I-1

F e > WMk DD W),

kEZ/piZ y=0

4. Measure the first register in the computational basis and assume the result is some
invertible k € (Z/p'Z)*, which occurs with probability (1 — 1/p). Tracing out this k
register gives us the remaining superposition

t J_ 1

Z W5 ygl).

vha) =
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5. We now take the yqi register in [¢4) and use it to append a second register with the

value kS(y) = k(a®?) —1)/(a(@’) — 1) mod p'. As a,q,j,p', k are known and ((?) — 1)
is invertible, this transformation can be done efficiently, yielding

q' /-1

1 .
> WOyl kS(y)).

V qt=d y=0

6. Because k is invertible and the function S is injective on {0, ..., ¢' 7 —1}, we can determine
a unique solution y from the value k£S(y). Using Shor’s discrete logarithm algorithm we
can hence efficiently implement the unitary mapping |yq’, kS(y)) — |0,kS(y)), giving

lths) =

q'77-1

1
T L WIkS)):
y=0

7. Finally we perform an inverse Fourier transform over Z/p‘Z in the hope of observing

[v6) =

the unknown 7. To calculate the probability of this occurring consider the ideal state
) = Zzez/piz w?|2)/+/p?, which is guaranteed to give 7. The fidelity squared between
this perfect state and our actual state is | (16]7)|*> = (¢'~7)/p’, which is thus the probability
of observing 7 at the end of this step.
The above algorithm requires one f-query and poly(log|G|) time and space. Its overall
success probability equals (1 — 1/p)(q*=7/p?). <

Summarizing the above theorems, we have the following result.

» Corollary 4. Let p and q be distinct primes and let v and s be positive integers. Define

the semi-direct product group G := Z/p"Z X o 7./ q¢°Z by the non-commuting group operation

that, for all a,c € Z/p"7Z and all b,d € Z/¢*Z, has (a,b)(c,d) = (a + abe,b+ d) for an

a € (Z/p"Z)*. Lett € {1,...,s} be the smallest positive integer such that ald) = 1. Let the

function f on G hide a subgroup H. There exists a quantum algorithm that determines H

with a time complezity depending on the type of H in the following manner.

Type I: If H] ; = ((p',¢7)) for some unknown i € {0,...,r} and j € {t,..., s}, then H will
be found efficiently in time O(poly(log|G|)).

Type II: If HJI’I77 = ((n,¢%)) for some unlmown.j € {0,...,t — 1} and n € Z/p"Z, then H
will be found in time O(poly(log|G|,p"/q'™7)).

Type I If HZHjIn = ((n,¢%)) for some unknown i € {0,...,r —1}, j € {0,...,t — 1} and
n€{0,...,p" — 1}, then H will be found in time O(poly(log |G|, p’/q'~7)).

The quantum algorithm can be considered efficient, i.e. has running time O(poly(log |G|)), if

the subgroup is of Type I, or if the Type II subgroup H]I% has p" /=7 € poly(log|G|), or if

the Type III subgroup Hg]n has p*/q*=7 € poly(log|G|).

These running times should be compared to the classical algorithm of repeatedly sim-
ply guessing the parameters i, 7,7 of the hidden subgroup. For Type I, II, and III sub-
groups this approach gives a running time of O(poly(log|G|)), O(poly(log|G|,p")), and
O(poly(log |G|, p*)) respectively. Hence we see that the presented quantum algorithm pro-
vides a speed-up of order Q(q*~7) for subgroups of Type II and III.

4 Conclusion

In this paper, we consider the Hidden Subgroup Problem in the semi-direct product group
Z/p"ZXZ]q°Z with p, q distinct primes. Our result generalizes the work in [5], which imposed
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a restriction on the kind of homomorphism that the semi-direct product uses. The result
here holds for all possible Z/p"Z x Z/q°Z. While our algorithm is efficient for certain cases of
the parameters of G and H, it is not so in other cases. This partial result is not unexpected
as the design of an efficient algorithm for the HSP for the dihedral group Z/p"Z x Z/27
remains a major open problem in the theory of quantum algorithms.

Acknowledgements. This material is based upon work supported by the National Science
Foundation under Grant No. 0747526.
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Difficult Instances of the Counting Problem for
2-quantum-SAT are Very Atypical *
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—— Abstract

The problem 2-quantum-satisfiability (2-QSAT) is the generalisation of the 2-CNF-SAT problem to
quantum bits, and is equivalent to determining whether or not a spin-1/2 Hamiltonian with two-
body terms is frustration-free. Similarly to the classical problem #2-SAT, the counting problem
#2-QSAT of determining the size (i.e. the dimension) of the set of satisfying states is #P-complete.
However, if we consider random instances of 2-QSAT in which constraints are sampled from the
Haar measure, intractible instances have measure zero. An apparent reason for this is that almost
all two-qubit constraints are entangled, which more readily give rise to long-range constraints.

We investigate under which conditions product constraints also give rise to efficiently solvable
families of #2-QSAT instances. We consider #2-QSAT involving only discrete distributions over
tensor product operators, which interpolates between classical #2-SAT and #2-QSAT involving
arbitrary product constraints. We find that such instances of #2-QSAT, defined on Erdés—Rényi
graphs or bond-percolated lattices, are asymptotically almost surely efficiently solvable except to
the extent that they are biased to resemble monotone instances of #2-SAT.

1998 ACM Subject Classification F.2 Analysis Of Algorithms And Problem Complexity, G.2.1
Combinatorics, J.2 Physical Sciences And Engineering

Keywords and phrases Frustration-free, Hamiltonian, quantum, counting, satisfiability

Digital Object Identifier 10.4230/LIPIcs. TQC.2014.118

1 Introduction

Local spin Hamiltonians are simplified models for physical systems, in which the system
is approximated by finite-range interactions between particle sites in a fixed network. We
consider problems which involve the minimum eigenvalue of two-body Hamiltonians, H =
wa hu, , for projectors h, , acting on pairs of qubits (i.e. spin-1/2 particles) v and v
drawn from some set V. When each h,,, is a projector onto standard basis states, finding
the minimum energy of H is in effect MAX-2-SAT, or the problem of finding an assignment
to boolean variables which satisfies as many constraints as possible, from a given list of
constraints on pairs of bits. Minimum eigenspace problems are therefore at least NP-hard
in general, and are even NP-hard to approximate to within a small percentage error [15].
Even if the minimum energy is known, determining the degeneracy (the dimension of the
lowest-energy eigenspace) is #P-hard in general, or as difficult as determining the number of
satisfying solutions to an instance of 3-SAT [17]. Thus, such problems should be considered
to be intractable, barring major and unexpected advances in technique.
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This article concerns the conditions under which computing the degeneracy of local
Hamiltonians on spin-1/2 particles is possible in polynomial time, as opposed to its worst-
case complexity of being #P-hard. We make this question more precise below.

1.1 Counting problems for frustration-free spin-1/2 Hamiltonians

A special case of interest are frustration-free Hamiltonians, for which there are states |1)
which minimize all of the terms (| hy, |¥) simultaneously. Finding ground states of such
systems may still be hard, but one may at least certify succinct descriptions of ground states,
e.g. by direct calculation of energy contributions from each term h,, ,. These models are
therefore a potentially useful proving ground for analytical techniques in many-body theory.
Indeed, there is a wide class of such Hamiltonians on qubits, for which one may efficiently
characterise the ground-state manifold [5].

Bravyi [2] defines the quantum satisfiability problem, or k-QSAT (for any fixed k > 1),
to be essentially the problem of determining whether a Hamiltonian consisting of a sum
of projectors, each acting non-trivially on at most k spin-1/2 particles, is frustration-free.
Bravyi shows that 2-QSAT is efficiently solvable; by contrast, 3-QSAT may not have any
efficient solutions, even if it were somehow shown that P = NP [9].

A natural problem for frustration-free systems is to determine the “degeneracy” of their
ground-state energy levels. Given a two-body spin-1/2 Hamiltonian H as input, let #2-QSAT
denote the problem of computing the dimension of the subspace of states which minimizes
the energy contributions of each interaction term of H independently. We refer to this
dimension as the value of the instance of #2-QSAT. This value is positive if and only if H is
frustration-free, and greater than one if H is also degenerate. The name #2-QSAT is chosen
(see also Ref. [13]) in analogy to the problem #2-SAT of counting the satisfying assignments
to an instance of 2-SAT . The dimension of the ground-state manifold of a frustration-free
spin-1/2 Hamiltonian is simply the size of a basis for the solution space: if the projectors
hy, are all diagonal operators, this problem is #2-SAT. Thus #2-QSAT may be construed
as a counting problem in the traditional sense.

While 2-SAT is efficiently solvable, the counting problem #2-SAT is #P-complete [17],

i.e. polynomial-time equivalent to counting satisfying assignments for instances of 3-CNF-SAT.

As #2-QSAT generalizes #2-SAT, the former problem is at least as hard in the worst case.
(Ji, Wei, and Zeng [13] show that in fact #2-QSAT € #P.) One may ask if there are broad
subfamilies of #2-QSAT which are considerably easier than #P to compute, and if so, whether
such conditions can themselves be easily decided.

1.2 Entanglement and worst case vs. typical counting complexity

Though #2-QSAT is #P-complete, there is a sense in which “generic” instances of #2-QSAT
are easily solved. Fix any graph G on n vertices. If we assign a qubit to each vertex, and a
term hy» = |Muw) (Mu,0| for each edge uv € G, where |1, ) is distributed according to the
Haar measure, the resulting #2-QSAT instance can be easily solved (except with probability
0) from the structure of G [14, 3]. Specifically, if the graph is a tree, the #2-QSAT instance
has value n + 1; if the graph has a single cycle, it has value 2; and if it has two or more
cycles, it has value zero (.e. it is unsatisfiable, or frustrated as a Hamiltonian).

The apparent reason for this is because a Haar-random state |1,,) is almost certainly
entangled. Following Refs. [2, 14, 5], if h,,, and h, . project onto entangled states |1, .)
and |7,,,), & single-spin state on u determines the feasible single-spin states at both v and
w similarly to an instance of classical 2-XOR-SAT, in which the states of each interacting

119

TQC’14



120

Difficult Instances of the Counting Problem for 2-quantum-SAT are Very Atypical

pair of bits strongly restrict each other. Typical instances of 2-QSAT thus have effective
long-range constraints between qubits within any connected component. As a result, any
graph which is dense enough to contain multiple cycles almost certainly gives rise to an
overconstrained instance of 2-QSAT, corresponding to a frustrated Hamiltonian. This is
in contrast to 2-CNF-SAT formulae, which as instances of 2-QSAT have constraints given by
standard-basis vectors |1, ) = |e,) ®|ey) for ey, e, € {0,1}. Such constraints on qubit-pairs
{u,v} and {v,w} may fail to impose any constraints between the next-nearest neighbour
qubits v and w. This is particularly important in the monotone special case of #2-SAT, which
corresponds to #2-QSAT instances in which [n,.) = |00),, , for all edges uv (corresponding
to the constraint x, V x, on boolean strings € {0,1}"), which is itself #P-complete [17].

1.3 The typical difficulty of #2-QSAT with product constraints

To obtain instances of #2-QSAT which resist solution by polynomial-time algorithms, there
must be a substantial chance of obtaining tensor product constraints on each edge. That
this does not happen for Haar random constraints (a natural analogue to uniformly random
constraints on pairs of bits) is a feature of quantum information theory, but does not shed
much light on the range of difficulty of #2-QSAT. We ask: which random graph families, and
which distributions of constraints, yield difficult instances of #2-QSAT? Specifically, if only
product constraints are involved, when is #2-QSAT likely to be polynomial-time solvable?

We show, both for Erdés—Rényi graphs and for bond-percolated rectangular lattices in
two and three dimensions, that difficult instances of #2-QSAT are rare if we select i.7.d prod-
uct constraints from a distribution which differs substantially from monotone constraints.
In particular, on bond-percolated lattices, we expect the value of any #2-QSAT instance to
be efficiently solvable almost surely; and for Erdés—Rényi graphs, the difficult-to-compute
regime vanishes as the “monotonicity” of the constraint distribution decreases.

We state our results more precisely, as follows. A property which holds asymptotically
almost certainly (or surely) is one which holds with probability 1 — O(1/poly(n)). Following
the usual terminology associated with the study of random graphs, we often omit the word
“asymptotically” in connection with properties which hold almost surely/certainly: state-
ments about discrete distributions which are “almost” certain or sure, are intended to be
interpreted in the limit n — co. Considering (families of) Hamiltonians on n qubits, we say
that a system is highly disconnected if its connected subsystems almost surely all have size
O(logn); similarly, if it can almost surely be decomposed into subsystems of size O(logn)
which are independent of one another (despite chains of intermediate interactions), we say
that the system is highly decoupled. The following Lemma follows easily from the definitions
of these terms: we discuss this in Section 2.4.

» Lemma 1. Instances of #2-QSAT which are highly disconnected, frustrated, or highly
decoupled are easy (solvable in time O(polyn) on e.g. a deterministic Turing machine).

We consider constraint models interpolating between monotone #2-SAT on one hand, and
continuous probability density functions of product constraints on the other. For f > 1, let
q = (¢1,92,-.-,qs) be a distribution on f distinct single-qubit states |a1),|az),...,|af),
used to generate constraints |1, .,) = |ay,) ® |a,), where the factors are independently sam-
pled from q. For example, q = (1,0,0,...) for monotone 2-SAT, and q = (%, %,O, ...) for
uniformly-random 2-SAT. If q = (1/f,1/f,...,1/f,0,...), we have ||q|2 = ||d|lcc = 1/f,
which approaches 0 as f — oo; this limiting distribution is precisely that of single-qubit
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constraints chosen from the Haar measure.! Vector norms of q thus measure how monotone
the random constraints typically are. Let Q2 = 1 — ||q||3, and let Qoo = 1 — ||q||oo-

» Theorem 2 (Erdés—Rényi models). For an Erdds—Rényi graph on n vertices with m = yn
edges, instances of #2-QSAT with v < % are almost certainly highly disconnected, and in-
stances with v > ﬁ are almost certainly frustrated; while if 27Q oo —In(27) > 1, frustration-
free instances are almost certainly highly decoupled.

— thus, in the g — 0 limit, a phase of typically “difficult” problems exists only for m/n ~ %

» Theorem 3 (Bond-percolated lattice models). Let d € {2,3}, and consider a d-dimensional
square or cubic lattice on n vertices: a segment of the rectangular grid Z x Z, of dimensions
O(y/n) x O(y/n), or of the cubic grid Z x Z x Z with dimensions O(¥/n) x O(/n) x O(¥/n),
in which edges are present between nearest neighbours independently with some probability p.
Let p. denote the critical percolation probability, at which there asymptotically almost surely
exists a component of size Q(n). For bond-percolated vertices with m edges, if Qoo is bounded
away from 0, there is a transition at 7- € O(n~Y7) from being almost certainly highly
disconnected and frustration-free to being almost certainly frustrated. If we condition on
frustration-free instances, we find instead that instances for which the percolation probability
is subcritical (that is when 7= < p.) are almost certainly highly disconnected, while instances
for which Qoo is greater than some constant pg, < 1 (which depends on d) are almost
certainly highly decoupled.

— thus, a typical instance is almost surely solvable in polynomial-time even for g which
deviates from monotonicity by only a finite amount.

The above results suggest that the only difficult instances of #2-QSAT must be specially
constructed to resemble monotone instances of #2-SAT. Specifically: (a) hard instances of
#2-QSAT are atypical, and (b) the reason for this does not have to do with entangled con-
straints, but rather that an instance of #2-QSAT is only likely to be difficult if its constraints
are not very diverse and it is relatively sparsely constrained.

Structure of this article

Section 2 contains preliminary definitions and discussion, including types of easily solved
instances of #2-QSAT, and techniques to infer long-range constraints and to count solutions
to instances of #2-QSAT. Section 3 presents the conditions under which #2-QSAT is easily
solvable for instances whose interaction graphs are generated according to either the Erd6s—
Rényi distribution or percolated rectangular/cubic lattice models. In Section 4 we suggest
some ways in which this work might be extended.

2 Preliminaries

We consider simple graphs, containing no parallel edges or single-vertex loops. We denote
the state-space of a generic qubit by H, = C2, and space of a particular qubit u by H,,.
For the sake of brevity we occasionally neglect error terms which are decreasing in n: for
instance, we write f(n) ~ g(n) when f(n) = g(n)[1+0(1)] (which is an equivalence relation)
and f(n) 2 g(n) when f(n) > g(n)[1 £ 0(1)] (which is a quasi-order).

1 As q contains no information about the states |a;), we are glossing over how well-defined the limit
q — 0 is. We do not consider this here, but propose that |{aj|ag)| < 1—Q(1/f) for all j # k should be
sufficient to maintain a promise gap between the ground-state energy level and excited energy levels.
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While 2-QSAT allows for a broader range of constraints, in this article we consider only
Hamiltonians H = > hy, ,, where h,, , is a rank-1 projector on C? ® C? and the sum ranges
over pairs of vertices {u, v} which are adjacent in some graph (usually a typical graph from
a given probability distribution on graphs). It should be easy to see by extending the results
below that instances of 2-QSAT whose constraints correspond to projectors of rank 2 or more
will only increase the probability that the instance is efficiently solvable, by reason of the
emergence of long-range constraints on the marginals of satisfying states.

For each rank-1 projector hy ., we consider the state |1,.,) € Hy @ H, such that

hu,v = |77u,v> <77u,v| & ]lV\{u,v} . (1)

For H frustration-free, the operator (n, ,| is a constraint on any ground-state |¢) of H: for
pu,v the density operator of 1) on {u,v}, we have (14| pu = 0 by hypothesis. Thus, as
with the classical decision problem 2-SAT, we describe instances of 2-QSAT by a list of local
“forbidden” configurations (1, ,| : C* — C on pairs of qubits u,v € V (implicitly taking the
tensor product with the identity on all other qubits) for a global state to avoid.

2.1 Constraint induction

Let |[T7) o |01) —|10) be the singlet state. Following Ref. [2], given constraints (ny.|, (v w|
for u # w which both act on a qubit v € V, we may infer a further implicit constraint (7jy, |,
such that (7y | pu.w = 0 whenever both (1, 4| pu = 0 and (My w| Pv.w = 0 hold:

<77uw| S8 <77u,v| ® <77v,w|} []lu ® ’\1’7> ® ]lw}' (2)

We may renormalise (7, | 80 that (7, w|7u,w) = 1, provided that the operator is non-zero.
We may induce further implicit constraints recursively. For two operators (1, .| and (1, wl,
we may write the operator obtained via Eqn. (2) by (1] * (y,w|- It is easy to show that
the binary operator “x” is associative, so that

(Mol * (Mowl * Ml X | (Nl @ (Mow| @ (Mw,e } [ﬂu ® |\I/_> ® ‘\I}_> ® lx}v (3)

and so forth for longer chains, so that we may write (7, = (Du.»

# (Mol * -+ % (ny,2| for
an operator acting on {u, z} induced by a chain of constraints from the input instance of
2-QSAT. This is similar, in the classical setting, to computing the transitive closure of the im-
plication graph defined by Aspvall, Plass, and Tarjan [1], in which case we may find multiple
constraints between a pair of variables which tightly constrain their values. Similarly, in the
more general quantum setting, we may obtain multiple constraints (777(}2, ,(777(% , ... which
may allow us to represent their joint state-space as a two-dimensional subspace S < H,QH,,
allowing us to reduce the number of qubits involved in the problem by a renormalisation
step [5] without affecting the dimension of the space of satisfying states [¢).

With respect to the operation “x” of induction of constraints, there are two significantly
different constraint types: product constraints (1, | = (a.|®(8y|, and entangled constraints
which do not factor in this manner. It is immediate that for (7y..| = (Mu,v| * (Mvw|, the
constraint (7, .| is a product constraint if either (1, .| or (1, is; and that (7, .| = 0 only
if both (1| = (au] @ (o] and (] = (k] @ {ae| satisty |o;) o« |ag). When this occurs,
the marginal state of u cannot indirectly constrain the marginal on w, or vice-versa, through
the interaction with v: by setting v to the state |&;) in the kernel of (o], we extend any
marginal on {u,w} to one on {u,v,w} which satisfies the constraints (1, .| and (7, |-
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2.2 Randomly generated instances of #2-QSAT

A “random instance” of #2-QSAT is a sample from a probability distribution over instances
of #2-QSAT, generally with a fixed number n of qubits and m of constraints. We consider a
generation process in which one first generates a random graph, either by selecting a fixed
number m of edges from the set of all possible pairs of edges (the Erdds—Rényi graph model),
or by considering a subgraph of some lattice in which each lattice-edge is included with a
probability p such that the expected number of edges is m, associating a qubit to each vertex
of the graph. At each edge uv in the random graph, we assign an operator (n,.,|: C* — C
according to some probability distribution, representing two-body constraints on the qubits.

We would like to also consider instances of #2-QSAT which are guaranteed to have a non-
zero value, corresponding to a distribution on two-body frustration-free Hamiltonians. This
requires a subtler random generation procedure. For a model of random graphs (e.g. either
an Erdés—Rényi model or a percolated lattice model), we select a random order for the edge-
set of the graph. Adding these edges sequentially to graph, we assign a constraint to each,
restricting the choice of constraint so that the resulting instance of 2-QSAT is satisfiable. In
any continuous distribution (such as the Haar measure), any non-trivial restriction of the
constraint model typically will be to a set of measure zero; the notion of restriction we intend
is limit as € — 0, of the Haar measure conditioned on being within an e-neighbourhood (in
the Euclidean norm on C*) of the valid choices of constraint. (For instance, if only a finite set
of constraints avoid making the instance unsatisfiable, such a restriction yields the uniform
distribution over those constraints.) For the Haar measure, as well as for the product-
constraint model of our article, there is always a choice of constraint for which the instance
is satisfiable at each step: this is easy to show in the Haar random case by a minor extension
of Ref. [14], and can be established for the constraint model of this article without difficulty
(see e.g. the beginning of Section 3).

2.3 Remarks on the counting complexity of instances of #2-QSAT

Given a randomly generated instance of #2-QSAT, we ask: with what probability is it a
“difficult” instance? Our notion of “difficulty” is defined relative to some fixed algorithm A:
a family of instances for which A can successfully compute the answer in polynomial time are
“easy”, and families for which A has no such upper bound are “difficult”. Such statements
depend on the state of the art in combinatorics: an improved analysis of random graphs
may show that some family of formerly “difficult” instances happen to be solvable by A in
polynomial time. If one accepts standard complexity-theoretic assumptions such as P # NP,
there are families of instances of 2-QSAT which are inherently “easy” or “difficult” for any
algorithm implemented e.g. on Turing machines. The aim of this article is to establish
bounds on the extent of any such “difficult” regime for certain distributions on #2-QSAT.
An instance of 2-QSAT is monotone if there is a state |ag) € C? such that (n,.| =
(ap] ® (a| for each uv € E(G). This is equivalent to there being a local unitary operator
U such that (n,.| (U ® U) = (00| for all uv € E(G): the classical monotone instances of
#2-SAT are a special case in which we may take U to be the identity. As monotone #2-SAT is
#P-complete [17], it follows that #2-QSAT is at least #P-hard. Ji, Wei, and Zeng [13] show
that #2-QSAT is also contained in #P, by a simple transformation of instances of #2-QSAT
which preserves the solution space and puts the interaction graph into a standard form.
Even monotone instances of #2-QSAT may have structural properties which may render
it “easy”. For instance, instances whose interaction graphs G have bounded tree-width [16]
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(see Ref. [6] for an introductory reference) may be solved in poly(n) time,? albeit with a
constant factor which grows exponentially with the tree-width [8]. This algorithm is useful in
particular for tree graphs or connected graphs which have a single cycle, which respectively
have tree-width 1 and 2. Conversely, instances of #2-SAT which are not monotone may still
be “difficult”: for a fixed graph G, if we assign a uniformly random clause to each uv € E(G),
represented in the format of constraint operators for an instance of #2-QSAT as one of the
operators (n,.,| € {(00[,(01],(10[, (11|} then the non-trivial constraints arising between
pairs of bits by the induction procedure of Eqn. (2) only extend over paths of expected
length O(1) in G. Then only for sets of nodes where the constraints are relatively dense
can there be a chance of giving rise to long-range constraints of order the size of a given
connected component: this is necessary to impose enough structure to obtain an instance of
#2-SAT substantially different in complexity from a monotone instance on n©() variables.

2.4 Three types of easily solved cases of #2-QSAT

We now remark on the simple observations presented in Lemma 1: this will allow us to
reduce the task of proving that instances of #2-QSAT are easy, to showing that they fall
into one of three structural classes of Hamiltonian — frustrated, highly disconnected, or highly
decoupled, in the senses described preceding Lemma 1.

Following Chvatal and Reed [4] concerning phase transitions in the satisfiability of ran-
dom instances of 2-CNF-SAT, one may obtain results concerning random classical #2-SAT
on Erdés—Rényi graphs with n vertices and m clauses. Specifically, an instance of 2-SAT
with density 7* > 1 is almost certainly unsatisfiable, and so by definition has value zero as
an instance of #2-SAT; and this can be determined in polynomial time by detecting certain
unsatisfiable substructures. Similar remarks apply for frustrated instances of #2-QSAT: if
one can efficiently determine that it is frustrated, this suffices to show that it has value zero.

As for easily solvable instances of #2-SAT with positive values, if 7+ < %, the underlying
graph is almost certainly composed of components of size O(logn) having at most one
cycle. One can solve each such component in polynomial time using brute-force techniques
(testing all possible assignments for each component); using dynamic programming and
taking advantage of the existence of a tree decomposition for the component, one can even
solve them in time linear in the component size (up to a logarithmic factor due to handling
vertex labels for a graph of size n). These represent a disconnected regime in random #2-SAT;
and again, similar techniques apply for #2-QSAT if we can establish that the components
scale as O(logn), and/or have treewidth bounded by a constant as we have described above.
It then suffices to multiply the #2-QSAT values for each component together: for random
graph models (such as the ones we consider) where small components dominate, this may
be done efficiently, e.g. using an algorithm which we describe in Appendix A.

Finally, we may consider highly decoupled instances, in which a subsystem which is con-
tiguous nevertheless decomposes into independent subsystems of size O(logn). These may
arise in instances which have been constructed to be frustration-free, due to the proliferation
of qubits whose states are “fixed” by their constraints. When a qubit z can only occupy a
unique state in a satisfying state, we refer to this as the fized state of the qubit z (which we

2 The approach here, for instances having tree-width at most w > 0, is essentially to use dynamic
programming to count the partially-satisfying solutions for each of 2 possible assignments (in some
local basis) for each qubit indexed by a vertex in a tree-decomposition. A more complete description
can be found in [8].
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denote |1Lm>) As we add constraints to a satisfiable instance of 2-QSAT, there are at least

two ways in which an added constraint can increase the number of qubits with fixed states:
either by adding a constraint (1, ,| between some qubit x, and a qubit y which already

(1e ® |iby)) # 0T,

or by adding a constraint which closes a chain of constraints starting and ending at =z,

which is only satisfiable by a single state [t);).

has a fixed state such that (1,

Any constraint (1, | acting on a qubit z with a fixed state will either be satisfied by |1/_)T>
regardless of the state of y, or will serve to fix the state of y. Thus, interactions between
qubits with fixed states with non-fixed qubits will, by construction, fail to give rise to any
long-range constraints between qubits without fixed states. If there are enough qubits with
fixed states, these may then effectively partition the set of non-fixed qubits into independent
subsystems; if these subsystems are of size O(logn), the system is then highly decoupled.
Thus, to solve an instance of #2-QSAT, it also suffices to identify enough fixed qubits to
partition the remainder into systems whose degeneracy may be efficiently computed.

Our result is to show how in two different random graph models, for random instances
of 2-QSAT with enough diversity in the constraints to differ substantially from monotone
instances, there is (at most) a narrow range in which the density of constraints may give
rise to instances which are neither highly disconnected, nor frustrated, nor highly decoupled
almost surely.

3 Discrete probabilistic models

We consider a constraint model of independent factor distributions, in which constraints are
product operators (a|® (3| for some i.i.d. single-qubit operators (|, (8| : C2 — C distributed
over some set of operators {(au]|, (aa|,...,{as|} for some f > 1, where (a;| ¢ (o] for
j # k. Given an edge which represents a product constraint, the probability of obtaining
(Nuw] = (anl, ® (a4, is given by gngqj, where @ = (q1, g2, ..., qy) is a fixed probability
distribution. Throughout the following, we suppose that 1 > ¢ > g2 > --- > ¢y > 0, so
that there is some probability of obtaining non-monotone instances of 2-QSAT.
Independent factor distributions have convenient features for analysis. Following Ref. [13],
the ground-state manifold for an instance of 2-QSAT having only product constraints has a
basis consisting of product states. Furthermore, non-zero induced constraints (1, | * (9y,w|
range over the same two-qubit operators as the individual edge-constraints themselves (al-
beit with a different probability distribution than q ® q). As with Haar-random models,
when we wish to consider only random frustration-free Hamiltonians, we must specially se-
lect the constraints to meet that restriction. We construct the random graph in the same
manner as described in Section 2.2, this time restricting the choice of constraints according
to the condition of not giving rise to a frustrated (i.e. an unsatisfiable) instance of 2-QSAT.
Frustration can only arise if both qubits on which the constraint are each restricted to some
“fixed” state to satisfy the earlier constraints placed on it: a “non-frustrating” choice of
constraint can then be made simply by having it be satisfied by one of the two fixed states.
We may consider how likely long-range constraints (as described in Section 2.1) are
for such a constraint model. Let zg,x¢ € V(G) be two vertices connected by a path P =
ToT1 - - - T¢ in the interaction graph of a random instance of #2-QSAT. We may consider what
constraints may exist on the joint state of xg and x, by virtue of the inducted constraint
Cp = Muoz1 | * May o | %+ % Mz, 2, |- One may show by induction that Cp is non-zero if and
only if (N, 1.z | * (Map,znss | # 0 for each index 0 < h < £ of internal vertices of the path.
For each such h, we have (1)g, , 2, | * (Nop,znsi | = 0 if and only if (2, 0, | = (]| ® (o]
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and (g, ,.an| = (0| @ (| for some j # k. Because the right-factor of (n,, , .,| and the
left-factor of <77:r:h,:r:h +1‘ are independently distributed, this occurs with probability

f
1
Qs == 1—lal} = Y ¢(1—gq) < 1-+, (4)
i=1 f
with equality if and only if q is uniform. Note that QJ3 > 0, where the lower bound is the
infimum as q — (1,0,0,...). As the probabilities of having identical factors at each vertex
are independent, we then have

-1
Prlcy #0] = I10 - tal) = @i (5)

Thus, Cp is non-zero and proportional to (o] ® («;| with probability qhqu?l for each
1 < h,j < f, and equal to zero with probability 1—Q§71. Because the long-range constraints
which involve a particular vertex as a mid-point are not independent of one another, it may be
useful in some cases to bound this probability from below by Q‘-!, where Qo = 1 — ||q]|oo,
where ||q||cc = ¢1 is an upper bound on the probability that the single-qubit operators
(o, (ou| with which two different constraints act on x are the same.

3.1 Erddés—Rényi interaction graphs

The attenuation of the probability of long-range constraints described in Eqn. (5) is similar
to what occurs in uniformly random 2-SAT. For Erdds—Rényi interaction graphs on n vertices
and m edges — a distribution on labelled graphs which may be sampled by listing each of
the (g) potential edges in a random order, and selecting the first m edges for inclusion —
this motivates an analysis which follows closely to that of Chvatal and Reed [4], adapting it
for counting problems and to involve more general constraint distributions. We show that,

except for a “difficult phase” in the regime % <2< ﬁ, a random instance of #2-QSAT is

almost certainly either highly disconnected or frustrated, according to whether ™* is below

or above the boundaries of the difficult phase. In particular, the difficult phase shrinks to a

band of zero width at * ~ % as Q2 — 1. In the special case of frustration-free instances,
m

this band expands to 3 < % < 55— (1+4) for some small § which vanishes as Qoo — 1; this

N n
band also converges to ™ ~ % as Qoo — 1. Thus in the “completely non-monotonic” limit
q — 0, #2-QSAT is always easy; and there is a substantial band of instances which may be
difficult to solve only if the constraint distribution shows a corresponding bias towards a

small, finite number of constraints.

3.1.1 The highly disconnected phase in Erd6s—Rényi models

Whether or not we restrict to frustration-free instances of 2-QSAT, the existence of a highly
disconnected regime in instances of 2-QSAT on Erd6s—Rényi graphs G follows directly from
the random graph model itself. For ™ < %, almost certainly G contains only components of
size O(logn), and almost certainly contains no components having more than one cycle [7].
Any instance of 2-QSAT on such a graph will thus be highly disconnected, regardless of the
constraint distribution. For our results on Erdés—Rényi models, it thus suffices to establish
upper bounds on the extent of any difficult phase.
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Figure 1 Example of a “figure eight” graph on 2¢ — 1 vertices, for £ = 8. By Eqn. (7), the
probability of such a graph describing a frustrated figure-eight subsystem scales as O( %1})

3.1.2 The frustrated phase in unconditional Erdés—Rényi models

For a random graph with m € Q(n) edges, we adapt the analysis of Chvatal and Reed [4,

Theorem 4] to consider the probability that the giant component I' contains a “frustrated

figure eight” (corresponding to a “snake” in Ref. [4]): a subsystem X such that

1. Its interaction graph contains a figure eight graph, which we define as a pair of cy-
cles X7 = xox1 - w12 and Xo = xpxpyq---xop_129¢ of the same length, where
Tg = Ty = Zgg, and where X; and X, intersect only at the vertex xg = ;. (See
Fig. 1 for an example.) There may be additional edges connecting vertex-pairs z;xj
(though these will typically be unlikely), and X = X; U X5 may be connected to other
vertices.

2. For each 0 < j < 2¢, the constraints (1, q,.,| = (8;] ® (v;| satisfy (v;| # (Bj41].

3. We have {(Bo|, (ve—1]} N{(Be|, (12e-1|} = @, so that the constraints imposed by X; and
X5 on their common spin zg are not simultaneously satisfiable.

The cycles X7 and X5 are either “alternating loops” or “quasi-alternating loops” in the
terminology of Ref. [13], and impose constraints on zg is which cannot be simultaneously
satisfied. Thus a frustrated figure eight is unsatisfiable by construction. We consider the
probability of a large frustrated figure-eight arising in a random instance of 2-QSAT with
constraints given by an independent factor distribution, which in particular implies that it
is part of the largest contiguous subsystem of the Hamiltonian.

In a system with a figure-eight subgraph, the probability of (y;_1| # (5, is simply Q2
for each of the 2/ — 2 sites x; of the two cycles, excluding the shared vertex x¢ = z; = xa .
The conditions at the node x,, where we require (8o| = (ve—1| # {Be| = (7v2¢-1], occur with
a probability Qerux Which also depends only on q. (By a routine calculation, one may show
that

Qerux = Z%([qh ZQij:| + [Z % Y. qjqu
A Jkth iZh g k@{h,i}

=1—4llql3 + 2llallz + 4lal3 - 3lali - (6)

Then Qerux — 1 as @ = 0, and Qerux € O(1) for ||q||ec bounded away from 1.) Given a
fixed figure-eight graph X on 2¢ — 1 vertices, the probability that it gives rise to a frustrated
figure-eight system is then

Pr [X a frustrated subsystem} = 3‘3_2 erux- (7)
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Let m = ~n for some constant v > 0. Using a second moment probabilistic argument,
adapting the proof of Ref. [4, Theorem 4], we show that the largest contiguous subsystem
almost certainly contains a frustrated figure eight so long as v > 2(132 .

Let @y denote the number of frustrated figure eight subsystems in G on 2¢ — 1 vertices.

The mean E(p,) over all random graphs on n vertices and m edges can be evaluated by
considering all sets S of 2¢ — 1 vertices, and summing the probability of S being such figure
eight subsystem for all such subsets. We will make use of the equality

! t

ﬁ ~ n'exp(—a(n,t)), where a(n,t):=t+(n—t+3)ln (1 . n) (8)
1

at the beginning of Section 2. By considering (7) the number of ways that we may choose the

which holds for ¢ € o(n),? ignoring a relative error term of O(+) using the notation defined

common vertex, (i) the number of distinguishable ways that we may construct two cycles
on £ vertices (built in either order) which incorporate the common node, (i) the number of
ways of allocating the remaining edges after having built X, and (iv) the probability that
X is a frustrated figure eight given that it is present in the random graph, we may obtain

(5) —20+ 1)

et i e e =

m

N Qerux (Zsz)Q‘{_l exp(—a(n, 20 — 1) + a((g), 20 — 1)) | )

8Q2 exp (a (m, 20 — 1))

For ¢ € o(n'/?), we have a(n,2¢ — 1) € o(1); then we can easily show that ¢, > 0 with
non-zero probability, provided that m = ﬁ(l + Q(%))n

Next, we show that ¢, almost surely doesn’t differ substantially from its mean. Define
a random variable px € {0,1} such that px = 1 for instances of 2-QSAT whose constraint
subgraph contains a frustrated figure-eight on a given subgraph X. We compare E(px)?
against E(pxpy), where X = xgwq---2op—120 and Y = yoy1 - - - y20—1yo are both figure-
eight graphs on 2¢ — 1 vertices, but which may have vertices and edges in common. By
definition, we have Var(yp,) = E(¢?) — E(p¢)?. We have

E(pr) = ZPY[<PX =1], E(p;) = Z Prloxey = 1], (10)
X Xy

n

where we sum over all possible figure-eight subgraphs X,Y on 2¢ — 1 vertices selected from
n vertices. We show that E(¢7) ~ E(p¢)?, which implies that Var(¢,) € o(E(¢¢)?).

Consider the probability that a given subgraph g on ¢ edges occurs as a subgraph of
G. Accounting for how we can distribute ¢ edges among the first m elements of a random
sequence of edges, we have

(T) ‘! [((g())—'t)'] ~ (?)texp(a((g),t)—a(’m,t)). (11)

2

~
=
[
",
=
s
N
2
I

We suppose that £ € o(n'/?), so that f(20 4 5(£)) ~ (2y/nPH0 for §(¢) € +0O(¥),
again using e*(N:Y) ~ 1 for t € 0(N1/2). For figure-eight subgraphs XY on 2¢ — 1 vertices

3 This may be easily recovered using Stirling’s approximation.
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each, write ®(X,Y) := Prloxpy =1 | X UY CG] for the probability of the frustration
conditions on X UY. Then if ’E(X) N E(Y)| =1,

Pr {goxgpy - 1} = Pr {X uY G]@(X,Y) = f(40—)B(X,Y). (12)

For X fixed, define ®;(X) to be the sum of Pr[¢x ¢y = 1] over all figure-cight subgraphs
Y of the same size, for which |E(X) N E(Y)| =i as above (i.e. the probability of obtaining
two frustrated figure-eight subsystems which intersect in this way, one of which is X). The
probability of having any pair of isomorphic frustrated figure eight subgraphs, of which one
is X, is then given by ®(X) := 3", ®;(X).

We may show that for a fixed X, the contribution of ®¢(X) is the only significant
contribution to ®(X). Note that if none of the edges of X and Y overlap, the frustration
conditions for X and for Y are completely independent, even if X and Y share vertices:
that is, ®(X,Y) = [ 35_2 me]2 in this case. We can then upper bound ®4(X) roughly by
removing the restriction on Y that X A'Y have no edges. Let Fby_1 denote the number of
possible frustrated figure eight graphs on 2¢ — 1 vertices selected from n vertices: then

Bo(X) < Y FAOB(X,Y) ~ Fypy (27/n)" Q4 1Q% (13a)
Y

For all other 0 < ¢ < 2¢, we consider the number N (i, j) of figure-eight subgraphs ¥ on
2¢ — 1 vertices, for which X AY has i edges and j vertices, and consider an upper bound
(i, j) for the frustration probabilities ®(X,Y") for all such subgraphs Y. Then we have

@,(X) < 3N = )00, ]) (13D)

for ¢ > 0. We bound the parameters ®(i,j) and N(i,5) by considering bounds on the
frustration conditions holding at each site in X UY, and by considering how the number
of components in X AY affects both N(i,5) and the probability of all the local frustration
conditions holding.

Local frustration conditions

If X and Y intersect at all, the probabilities of the frustration conditions holding for any
shared vertex only differs from what it would be independently for X and for Y if they also
share edges. For instance, if 2; = y;, for j, k ¢ {0,£,2(}, and e, j, e, ;41 ¢ E(Y), then the
frustration conditions for X and for Y at z; are independent of one another and obtain
with probability @3, as if z; and y; were actually distinct vertices. Similarly, if z; = yy
for j,k ¢ {0,£,20}, and e, j,e5 ;41 € E(Y), then the frustration conditions are identical
and they obtain with probability Q2. The most interesting cases are for the “crux” vertices
x¢ and yg, and for the “junction” vertices of degree 3 in X UY arising from z; = y;, for
J, k¢ {0,¢,2¢}.
Vertices in X UY of degree 3 correspond to vertices z; = y;, for j,k ¢ {0,¢,2(}, where
one of the edges e, ; or e, ;11 is equal to one of the edges e,  or ey 1. To satisfy the
frustration conditions, the common edge of X and Y which is adjacent to z; must act
on z; differently from the remaining two edges, but the other two edges may act on z;
in either distinct or identical ways to each other. Routine calculation shows that the
probability of this occurring is Qjunct := [lal|3 — l|lall3-
The probability that the frustration conditions for X holds at xy, when x; = y;, for some
0 < k < 2¢, may be somewhat complicated if some of the edges of Y incident to yy
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overlap some of the edges {€;1,€s¢, €041, €x,2¢} incident to xp. Similar remarks apply
to the other crux vertex y,. As there are at most two crux vertices in X UY, we may
ultimately subsume the probability that these conditions hold at x; or at y, as a constant
factor, and simply bound the probability from above by 1.

Vertex types and simultaneous frustration

The probability of X and Y both being frustrated depends on the number of junction
vertices, crux vertices, and other vertices in X UY, which are closely related to the number of
components. Extending the observation made with respect to the probability of frustration
conditions holding at the crux vertices, we adopt an approach of avoiding case analysis, by
sweeping various scalar factors under the rug when they depend only on a constant number
of vertices. To do so, we define a scalar factor ¢ (which we do not explicitly calculate) to
bound from above any contributions by constant factors in the various cases.

In most cases, the components of X AY (if it is non-empty) will consist of paths, and
possibly one non-path tree component in the case that z, = y, (with at least three of the
edges of X and Y overlapping at that vertex). In rare cases, X AY may have a component
which contains an entire cycle, or indeed two cycles if X = Y. In the typical case where
X AY is cycle-free, the number of components will be the difference j —i; Otherwise, X AY
has one or two cycles, so that it has j —4¢ 4+ 1 or 7 — ¢ + 2 components. In any case, the
number of components is j —i+ O(1). We may then make the following remarks concerning
vertices of different types:

As we note above, X UY has at most O(1) distinct crux vertices, for which frustration
conditions occur with constant probability regardless of the number of edges of X and
Y which overlap at those vertices.
The number of junction vertices is minimized when each component of X AY is a path
segment, with each component having two junction vertices at its endpoints; the largest
number of junction vertices a component may have is four, in the case that the the
two crux vertices coincide so that one component of X A'Y has four leaf nodes. (Three
junction nodes are possible as well if the two crux nodes coincide, but where only three of
the edges of X and of Y coincide.) Thus the number of junction vertices is 2(j —4)+O(1)
in all cases.

The frustration conditions elsewhere are governed by edge-pairs meeting at some vertex,

where either both edges are common to X and Y or both belong to one figure-eight

graph X and Y (the same one), but not to both. Considering the edges zox1, x1z2, etc.
in sequence and pairing each with the one that follows it, we may count these edge-pairs
by considering those edges xjx ;41 for which x4, is not a junction or crux vertex. The
number of edges in X which meet at non-junction, non-crux vertices is 20—2(j—1)—O(1),
and similarly for Y'; and the number of such edges in X AY is i —2(j —i) — O(1), yielding
a total of 44 —2(j —4) —i £ O(1).
Thus for 0 < i < 2¢ we have

(I)(X Y) < CQM i('iumt)2(j ! (14&)
9 X 2
Q2

for some constant ¢ depending only on the probability distribution q of constraint probabil-
ities. For i = 2¢, we have X =Y and j = 2¢ — 1: then following Eqn. (7) we may explicitly
evaluate

DX, X) = Prlpx =1| X C G| = Qerux@5>. (14b)
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Ways to overlap at ¢ edges

Following the analysis of Ref. [4], we may bound N(i,j) by considering upper bounds on
(7) the number of ways a fixed shape for the graph X A'Y could be mapped injectively into
X and into Y, (4) the number of ways that the components of X AY could be arranged into
the vertex-order of Y, and (4ii) the number vertices which may belong to Y\ (X AY'). The
number of subgraphs Y such that X AY has ¢ edges and j vertices can then be bounded by

. 2+2 \° o i
Ne(i,j) < 4<2j —2i—|—2> 0(f — )12 ini—t
< 40(20 4 2)A0—DH g —i 25— (15a)

in the case 0 < i < /¢, and

. 20+2 \°, . o
Ne(i,7) < 4<2j—2i—|—2> 0(j — i) 2i i p2t=i=1
< 8U(20 4 2)*—DHA i i p20—5—1 (15b)

for 0 < i < 2¢ more generally. If for the sake of brevity we define A = 2(2¢ + 2)*/n, we then
have

QNP2 i ) < < 0,

o ) 15¢
AONT T IR2E—1 i 0 <G < 2. (15¢)

Again, we have X =Y if i = 2¢, so that Ny(2¢,j) = 1.

Suppose that £ € o(n'/4), so that A € o(1). We may then use the above remarks to bound
®,;(X) for ¢ > 0. For 0 <4 < ¢, the graph X A'Y has no cycles, so that i +1 < j <2 — 1;
we may then bound

20—1
®;(X) < Y N(,j)(i,5)f (4 — i)
j=i+1
201 . ‘ 2(j—i) 4
< Z 2€Aj—i+1n2€—i1 [CQ;M—% (ngt) ] (ZW/n)M_Z
Jj=i+1 2
20—1 2 Jj—i
) ) —i AQ% e
= 2etha? QY (23 /)" Y (%)
j=i+1 2
) AQ.2 1
< QCEATL_% (27Q2)4[_Z junct _
Q% - AQj2unctQ2 2
2¢Q? )
~ <C%12m> EAQ,',L—QE (27Q2)4£_l. (16&)
2

For ¢ < i < 2¢, we may only bound i < j < 2¢ — 1, and for i = 2¢ we have j =20 — 1 =i — 1;
we may then obtain similar bounds

®;(X) < dclAn~2 (2vQo) for ¢ <i < 20, (16b)
Dos(X) ~ Qurax @320 (29Qa)" for i = 20, (16¢)
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Expanding the formulas for ®;(X) for i > 0 and eliding the constant factors, we may obtain

-1 20—1
B(X) = Bo(X) + n2(29Q2)* 0O <A2 Z(27Q2)‘i +A Z (29Qo) 7t (27Q2)—2f>.(17)
=1 i={

For ¢ € w(1l), the asymptotic expression of the previous equation is bounded from above
by O(A?), provided that poly(¢)(27Q2)~©¥) C o(1). For the latter to hold, it suffices that
27Q2 — 1 € w(f‘l log(ﬁ)). We then obtain the upper bound

B(X) = Do(X) + O<€A2n_%(2'yQ2)4Z). (18)
We may show that ®(X [1 —+ o ]: using Eqn. (8), we may estimate
F =n- 1 1 (€ —1)!
et e -1 e - 1 '
B TL' 1 _
T 8(n—20+1)! it (19)

so that we have

2

(I)O(X) < Fop_ 1(27/71) 4/ 4 zrux _ <86621r1;1)(> n—QZ—l (2,_}/@2)4[’ (20)
2

whereas by £ € o(n'/?) and A € ©(¢*/n) C o(n=5/?) we have
0(5A2n*%(2wg)“) C o(n*f*l(mg)‘“). (21)

We then have ®(X) ~ ®¢(X) as promised. Thus we have E(¢?) ~ E(py)?, so that Var(p,) €
o(E(¢r)?). By Chebyshev’s inequality, the probability that ¢? varies from its mean by
w(Var(pg)) is zero; then in particular o, is almost surely greater than 1 provided that
]E(gag) > 1.

Frustrated subsystems may be efficiently detected when they are present, as follows.
For each vertex z € V(G), constraint-pair ({as|, (@;|), and £ > 1, we may enumerate the
number of alternating paths (in the terminology of Ref. [13]) of length ¢ which begin an end
at « whose first constraint is of the form (o |® (7| and whose final constraint is of the form
(B] ® (j]. We may do so by traversing all alternating paths starting at = by a breadth-first
search, and noting at each step whether in one step we may reach a visited vertex which could
be used to close an alternating path back to z. Any one such path represents an alternating
or quasi-alternating loop at x. If for any ¢ > 1 there are two such loops with inconsistent
constraints, then the constraints at x are unsatisfiable. Exploring all of the alternating paths
from z for any one constraint pair ((a|, (¢;|) can be done in time O(m); doing so for all
constraint-pairs and all € V(G) can be done in time O(nmf?). The frustrated pair of
constraints may not represent a frustrated figure eight (e.g. if the alternating paths starting
and ending at x are of different lengths), but nevertheless serve to certify that the instance
of #2-QSAT is frustrated, and are present for all frustrated instances.

Thus for m > %n for positive ¢ € w(n~/?log(n)), an instance of 2-QSAT constructed on
G selected according to the Erd6s—Rényi distribution will be frustrated almost surely, due to
the presence of multiple frustrated figure-eight subsystems of size O(poly(n)). Furthermore,
one may determine that such frustrations exist in polynomial time, when they are present.
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3.1.3 The highly decoupled phase in frustration-free Erdés—Rényi
models

In constructing frustration-free instances of 2-QSAT from a discrete distribution, we may
suppose that constraints are repeatedly sampled for each new constraint until we obtain
one which does not render the instance unsatisfiable. Any constraint which on the first
“try” would have resulted in a frustrated instance, we call a would-be frustration. We may
then consider the structures in the Hamiltonian which would have arisen, had we taken the
constraint which was first selected for any interaction, and thus speak counterfactually of
such features as “would-be” frustrated figure-eight subsystems.

In frustrated figure-eight subsystems X = X; U X5, the common qubit z, has conflicting
constraints imposed on it by the two cycles X; and Xs. If we condition on frustration-free
instances, this becomes a would-be frustrated figure-eight. As X is being constructed, one of
the cycles (without loss of generality, X;) must be completed before the other: this is either a
loop or quasi-alternating loop at « (in the terminology of Ref. [13]). A quasi-alternating loop
at z fixes the state of z, which by construction do not by themselves satisfy the constraints
imposed on = by X5. Similar remarks apply when X; is an alternating loop, which allows
two possible single-qubit states for x which on their own satisfy the constraints imposed by
X1. In the case that X; is an alternating loop,  may be in one of two states [¢?) or [¢l)
in a product with the rest of X7, in which case all of the other spins of X; are in a product
state |®%) or |®1) (respectively) determined by that state, or it may be entangled with the
rest of the loop in some superposition ug|t)2)|®°) + uy|pl)|®1). In either case, the marginal
of any satisfying state on x is a mixture of [1/0) or |¢)1), neither of which on their own satisfy
the constraints imposed by X5 on z. Then in any case, upon the completion of the cycle
X1, the states of all qubits in X5 which are accessible from z at that time are uniquely
fixed. Each subsequent edge of Xs which connects more qubits to x; also fixes the state of
those qubits. This means in particular that every one of the ¢ qubits v € V(X32) have fixed
states |1Ev> We call such a subsystem of fixed qubits a frozen subsystem. Thus, a would-be
frustrated figure-eight on 2¢ — 1 qubits contains an (actually) frozen cycle of ¢ qubits.

The analysis of the preceding section concerning frustrated figure-eight subsystems X =
X7 U X5 can be used to demonstrate the the existence of a “frozen core”, or a subgraph
of the giant component which itself contains Q(n) vertices. The growth of this frozen core
will gradually start to obstruct long-range constraints within the giant component, until
eventually it renders the #2-QSAT problem highly decoupled.

To describe the growth of large frozen subsystems in frustration-free Erd6s—Rényi models,
we consider a random graph model for qubits with fixed states. Define a directed graph
F defined by the 2-QSAT instance consisting of frozen subsystems, including only vertices
representing qubits with fixed states, and with arcs x — y for qubits connected by constraints
(Ng,y| such that (1, (|1/_)$> ® 1) # 0. We call this digraph the frozen subgraph of G.

We may establish lower bounds on the growth of F' in terms of an Erdés—Rényi graph
U, where edges of G belong to F(U) independently with some probability Q@ < @, and
where all edges of U are covered by arcs of F. We consider Qo = 1 — ||q||c0, and let
Poo = MQuo/(5). We then let U be an Erdés—Rényi graph having me ~ (5)pso edges:
we treat this as a subgraph of the Erdés-Rényi interaction graph G,* including each edge

4 We may simulate randomly sampling over graphs with m edges, by considering graphs in which edges
are present 7.7.d with probability p = m/ (g) — the y/n variance in the number of edges is smaller than
the scales at which phase transitions such as the emergence of the giant component occur.
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of G with probability Q. Consider a random colouring ¢ : V. — {1,2,..., f}, in which
Prc(x) = j] = g;. For a given qubit x which has a fixed state |a(5)), and a newly added edge
ry € E(G), the probability that 2 — y is an arc of the frozen subgraph F'is 1 — qc(y) = Qoo-
From an initial set S of fixed qubits, we then simulate the construction of F' as follows:

1. For each newly included vertex x € V(F') or x € S, assign its colour c¢(x);

2. For each neighbour y of z in G: If zy € U, include x — y in F'; otherwise include = — y

in F' with probability (¢1 — ¢c(x))/q1; otherwise exclude it.

3. Repeat the above until all x € S have been traversed, and no new vertices have been

included in F.

This construction reproduces the probability distribution of arcs in F', with the random
colouring of the vertex c(y) taking the place of the action of constraints (1, | = (8], ® (e (y)|
which fixes the state of the qubit y.

From the above, we may show that the largest (weakly connected) component of F'
grows at least as quickly as that of the Erd6s—Rényi graph U having m., ~ mQ. edges.
In particular, if ¢ > 7y for 75 1= ZQ%’ then U has a giant connected component I'V);
if any vertices of I'U) are in F, then the entire component v(U) is a subgraph of F. As
we have noted, there are frozen cycles (arising from would-be frustrated figure eights) of
size £ € poly(n) for (1 +¢)/2Q2 < ™ < 7: and almost surely a constant fraction of
these vertices are subsumed into '), which has size O(n). Then for T > Yoo, the giant
component of U is almost surely contained in some weakly-connected component of F'. Thus
F almost surely contains a frozen core I'®) for v > ~,o, which is at least as large as T'(V).

Because the qubits in the frozen core cannot mediate non-trivial long-range constraints
between non-fixed qubits, and do not contribute to the value of the #2-QSAT instance,
they in effect play no role in the solution and may be removed. Let v = ™. By Ref. [7,
Theorem 9b], the subgraph T'Y) contains (1 — ﬁog(v@w))n + o(n) vertices, where

kkfl
§p) = Y S (2pe ) (22)

and where ﬁ{ (p) expresses (almost surely and up to o(1) error) the fraction of vertices which
are contained in tree components in an Erdés—Rényi graph with pn edges. Following Ref. [7,
Theorem 4b], the function € : [0,00) — [0,1] has the property that &(p)e=¢(P) = 2pe=2¢.
We may show that for any super-critical edge-density p > %, there is a sub-critical edge-
density p := 2£(p) < % such that the distribution of the sizes of tree-components for the
edge-densities p and p are the same up to a normalization factor.® Thus deleting the giant
component from the Erd6s—Rényi graph with density p gives rise to a graph indistinguishable

from an Erd6s-Rényi graph with density p, albeit on ﬁg(p)n vertices. More generally,

deleting the subgraph ') from the graph G yields a graph indistinguishable from an
Erdés—Rényi graph on ﬁog (vQwo)n vertices, with edge-density given by

5.1 . §(1Qx) 2: 1 1- Qoo 2
v 25(76200) +’7(1 Qoo) Q’YQoo 25(7@00) + 4’YQ§O (’VQOO) ’ (23)

5 Consider a randomly selected tree component T', and let 7,(t) = ﬁtt72(2pe72p)t. The probability

P,(t) that T has size t, when selecting tree-components from the Erdés—Rényi graph with pn edges, is
then P,(t) ~ Tp(t)/zkrp(k) by Ref. [7, Eqn. 2.22]. From p := 1£(p) and Ref. [7, Eqn. 4.4] we may
immediately see that P,(t) = P5(t) for all t. As all but an insignificant number of vertices are contained
in either the giant component or in trees, the two distributions on graphs are indistinguishable.
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where the first term accounts for the density of U ~. TU), and the second term accounts for
the contribution of edges e € E(G) ~ E(U) which are also not incident to T'(Y).

As the frozen core I'®) D I'W) grows, the subgraph of G that remains after removing
I'F) becomes more sparse, and eventually becomes highly disconnected. That is to say, the
instance with the frozen subsystems included is highly decoupled. Note that £(p) = 2p for
p € [0, 3], achieving a maximum of 1 and then decreasing for p > 3. It follows that 7 = v
for 7Qoo < %, achieving a maximum of 1/2Q), and then subsequently bounded by

7 <[5+ 58] 600) < 2Bot(10)

< ,yeé(ono)e—%/Qoo < ,yel_Q'YQoo. (24)

If 2vQoo — In(27) > 1, we then have 7 < % In this case G ~ I'Y) becomes subecritical and
thus highly disconnected; the same is then true of G ~ I'(¥).

Thus for v sufficiently large, frustration-free instances of #2-QSAT almost surely contain
a frozen core pervasive enough to cause the problem to be highly decoupled. It is easy to
show that such a frozen core can be easily detected, as well, using the same techniques as
described in the preceding section for frustrated figure-eights. We may detect the existence
of alternating and quasi-alternating loops at each vertex x in the graph, and then consider
the constraints on z and its neighbours to discover an initial set of frozen spins. Following
this, using a single breadth-first traversal, we may discover the entire frozen subgraph and
its largest component in particular. Discovering the frozen core is therefore possible in
polynomial time using standard techniques.

3.2 Bond-percolated lattice graphs

The analysis for random 2-QSAT is much simpler for bond-percolated square or cubic lattices.
In this graph model, we take vertices labelled either (a,b) € {0,1,...,L —1}? or (a,b,c) €
{0,1,...,L—1}3, and connect each pair of vertices which differ by 1 in a single co-ordinate,
independently with some probability p. We let d denote the dimension of the lattice, let
n = L% be the number of vertices and m ~ dpn be the expected number of edges.

The analysis of phase transitions in the difficulty of #2-QSAT for independent factor
constraints is simpler for percolated lattices than for Erdés—Rényi graphs, as cycles arise
in the percolated lattice much more easily and as the degree of each vertex is necessarily
bounded. Furthermore, we only expect the largest components to grow with n if p is greater
than a “percolation threshold” p. [10],% in which case the largest component is unique and
scales as O(n). For #2-QSAT with independent factor constraints, this allows one to show:

#2-QSAT is almost certainly efficiently solvable for any value of p, as there are overlapping

phases of frustrated and highly disconnected instances, occurring respectively for p €

w(n=7) and p < p. € O(1);

For frustration-free instances of #2-QSAT, provided that Qu := 1 — ||Q|l0c > P, there is

a transition directly from highly disconnected instances for p < p. to highly decoupled

instances for p > p., due to the emergence of frozen subgraph whose components decouple

the system into small non-interacting components (in a way which is similar to, but more
straightforward than, the analogous phenomenon in models on Erdds—Rényi graphs.)

5 For da, we have p. = %; for d = 3, we have p. ~ 0.24881; c.f. Ref [10]. N.B. For d = 3 it is not yet
known whether there exists an infinite component when p = p.; this is known not to occur for d = 2
or d > 19, and the same is conjectured for d = 3 [10, Section 9.4].
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In this Section we outline these results in enough detail to indicate how the results may
be shown more completely. Furthermore, results which are similar in quality could also be
shown for any lattice model, depending in practise only on the size of the smallest cycles
and the percolation threshold p. of the lattice.

3.2.1 Critical thresholds for unconditional percolated lattice models

If each edge in a d-dimensional rectangular lattice (for d € {2,3}) is present independently
with probability p € o(1), then the first components with cycles to emerge as p increases
are the ones with the fewest edges. That is, if the probability of there being a component in
G which is isomorphic to a graph g is (1), then G will contain infinitely many isomorphic
copies of any component ¢’ for which |E(¢')| < |E(g)|. The first components with cycles to
emerge are therefore individual square facets of the lattice, which are almost surely absent
for p € o(n='/*), and present in infinite abundance for p € w(n=1/4).

The smallest subgraph of a rectangular lattice which contains two cycles is a domino
graph, as pictured in Fig. 2, which has seven edges. These are therefore almost certainly
absent for p € o(n~'/7), and almost certainly abundantly present for p € w(n=/7). It is not
difficult to show that each of these has a constant probability of being a frustrated domino:
a system similar to a frustrated-figure eight in which the constraints give rise to unsatisfiable
restrictions on the state of the two central qubits. Consider the three independent paths
between the central vertices of a domino subgraph (also depicted in Fig. 2). Given that
each edge represents a non-zero constraint (which happens with constant probability), the
two outer paths in the domino each give rise to a non-zero path constraint with probability
Q3 = (1 — |lqJ|3)%2. With some probability, the three path constraints will act on each of
their endpoints in a different way from the others. This remains true even for classical
instances of #2-SAT, if the constraint-operators are chosen from a probability distribution
over a distribution on {(00], (01], (10|, (11|} in which each element occurs with probability
(1), each such domino is unsatisfiable with constant probability, in which case the entire
instance of #2-SAT which contains it has value zero. (This would occur, for instance, for an
independent factor distribution q = (¢1,¢2) in which (1| = (0] and (as| = (1|, where ¢; and
@2 are both bounded away from zero.) Thus, there is a phase transition at p € 9(n_1/ ) from
almost certain satisfiability to almost certain unsatisfiability, due to the probable emergence
of frustrated dominoes, of which there are almost surely infinitely many once p € w(n=/7).

The components in a bond-percolated lattice for p € O(n~'/7) almost certainly have size
O(1): specifically, they will almost surely have seven vertices or fewer. Thus the complex-
ity of computing #2-QSAT is almost surely governed by that of multiplying O(n) “small”
integers. A simple algorithm to do so is described in Appendix A. Thus, #2-QSAT is almost
surely easy for p increasing up to, and even through, the phase transition at p € @(nfl/ s
afterwards, of course, the value is almost surely zero. Difficult instances of #2-QSAT on
percolated lattices are thus either ones which are asymptotically monotone — that is, for
which @5 decreases with n — or ones which almost surely never occur. Similar phenomena
will occur for any lattice model, with a phase transition at p € ©(n~'/#), where 8 is the
number of edges in the smallest subgraph having more than one cycle.

3.2.2 Critical thresholds for frustration-free percolated lattice models

To obtain interesting instances of #2-SAT or #2-QSAT on a percolated rectangular lattice, we
must condition on models which are frustration-free. However, for p less than the percolation
probability p.., almost surely the resulting graph G contains only components of size o( f(n))
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Figure 2 (Top:) An isolated “domino” subgraph of a square lattice. Dashed lines indicate
missing edges incident to the subgraph. A domino subgraph in a 3D lattice may also occur with the
two cycles meeting at a right angle. (Bottom:) Illustration of the three independent paths between
the central qubits of a domino subgraph. If the constraints acting on b do so with different tensor
factors (|, (¢/|,{a”| : C* — C and similarly for the constraints (3|, (3’|, (8”| : C* — C acting on
e, and the path-constraints are all non-zero, then these form an infeasible system of constraints on
the states of b and e. Similar remarks apply for any pair of qubits connected by more than two
independent paths.

for any f € w(1).” This implies that for p < p,, it again suffices to compute the values
of #2-QSAT for each component individually,® so that #2-QSAT is almost surely efficiently
solvable so long as p < p.. It thus suffices for us to consider the regime p > p.

We may proceed similarly to the analysis of the giant component in frustration-free
Erdos—Rényi models in Section 3.1.3. Would-be frustrated subsystems — such as frustrated
figure-eights on seven vertices (consisting of two square cells intersecting at one qubit) or
would-be frustrated dominoes — will arise in abundance for p € ©(1). Each one gives rise
to several qubits with fixed states, which contribute to the presence of a non-empty frozen
subgraph F. If there is a giant component I'(“)| then there are almost certainly would-be
frustrated subsystems inside it: we ask to what extent these give rise to frozen subsystems
which decouple T'(¢).

As with the Erdés—Rényi case, we may let Qs = 1 — ||q||ec be a lower bound on the
probability that any two constraints coinciding at a qubit give rise to a non-zero constraint
on a path of length two, such that we may treat this as as independent events even for
various pairs of constraints meeting acting on the same qubit. For instance, the probability
that any domino subgraph is a would-be-frustrated domino is at least Q7. For any qubit
x € V(F), the probability that some neighbour y in G is also subsumed into V(F) is also at
least Q.. We may then consider a percolated lattice model U in which edges are present
with probability (), and any such component which contains a frozen seed gives rise to a
component in the frozen subgraph F'.

When does the frozen core I'F) decouple an instance of #2-QSAT? That is: when does
G~ V(F(F )) decompose as a collection of small components? This relates to the problem,
when U has a giant component I'")| of whether the complement of T'U) in the complete

" For d = 2 (for which p. = %) or d = 3 (for which p. ~ 0.24881), the distribution of component sizes
decreases geometrically for p < p. [10, Section 6.3].

8 As the components all have essentially constant size, this may be done for each component in O(logn)
time, dominated merely by the time required to process the labels of vertices.
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(square or cubic) lattice has any infinite components (in the limit n — o0). For both
d € {2,3}, there exists a threshold ps, < 1 [11] such that the complement of T(Y) in the
lattice decomposes into components of finite size when Q.. > pa,.? Consider the case
Qoo > et
If p = 1 (that is, G is simply the entire O(n)-vertex square or cubic lattice segment),
then by construction G\ U is a collection of small components. As I'Y) is almost surely
subsumed by a frozen core I'F) of qubits with fixed states, which do not contribute to
the value of the #2-QSAT instance. As the complete lattice with ') removed consists
of components of finite size, the resulting instance of #2-QSAT is highly decoupled.
If p < 1, then we may model the resulting 2-QSAT instance on the percolated lattice
by reducing from the previous case (in which the instance is highly decoupled), and
removing each constraint in the complete lattice with probability 1 — p: doing so does
not make the instance any less decoupled.
Thus, for Qoo > pan (which occurs for ||q||e below some constant), there is a phase transition
for random frustration-free instances of #2-QSAT from highly disconnected instances to
highly decoupled instances. This means that for d = 2, difficult instances of #2-QSAT are
only likely if the constraint model is “at least as monotone” as some distribution of classical
#2-SAT constraints; for d = 3, a bias towards monotonicity which would be substantial even
for #2-SAT is necessary to obtain difficult instances.!®
As a final remark, note that even in the case that (oo < pgn, there is a chance that
frozen subsystems will decouple the largest component I'() into small subsystems. Any
domino-shaped subsystem of T'() has a finite probability of containing a frozen cycle, which
can be treated in the giant component as nodes which are removed from I'(¢) with some
finite probability 1 — Psite > 0. Using results on mixed site- and bond-percolation [12], if
Piite p < Pe, the giant component T'(¢) still decouples into small subsystems whose degener-
acy may be efficiently computed. We do not present any quantitative results for Q.. < pc,
but mention this to indicate that it likely that #2-QSAT may remain easy even for some
values Qoo < pe, for reasons similar to what we have shown for Q.. > pe.

4 Open questions

The results of this article may allow for some improvements, which would further bound
any “difficult” regime in random distributions of #2-QSAT on random graphs.
For frustration-free instances, Qo = min;(1 —¢;) is used as a percolation probability on
an existing random graph, to obtain lower bounds on the transition to a highly decoupled
phase; whereas Q2 = E; [1 — qj] is used for potentially frustrated models (where we take
Pr[j] = ¢;). Can we replace bounds involving Q with tighter bounds involving Q27
If we remove the condition of frustration-freeness from #2-QSAT altogether, we are left
with the problem of computing the degeneracy of the ground-state manifold of a po-
tentially frustrated Hamiltonian. Physical intuition suggests that this is typically “17,
but as with #2-QSAT, the classical problem of determining how many boolean strings
satisfy a maximum number of constraints is a hard problem in general. Under what

9 A simple duality argument shows that pg, = p. = % for d = 2 [11]. For d = 3, only know the more
general result p. < pan < 1 is currently known. While no numerical results are known about pg, for
d = 3, the growth of infinite clusters in each planar cross-section of the cubic lattice suggests that pan
is closer to 1 — p. than to 1.

10This implies, for instance, that uniformly random #2-SAT on bond-percolated cubic lattices is almost
surely efficiently solvable whether or not we condition on satisfiability.
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conditions is it provably easy to compute the ground-state degeneracy of random local
Hamiltonians?
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Difficult Instances of the Counting Problem for 2-quantum-SAT are Very Atypical

A An effective technique for multiplying together long lists of mostly
small numbers

The value of an instance of #2-QSAT is at most 2. We may decompose the value of an
instance of #2-QSAT as a product of the values of each connected component. In the easily
solved instances which arise either when the interaction graph is highly disconnected, or when
a large frozen subsystem decouples the Hamiltonian into small independent subsystems,
the value of #2-QSAT for these instances is O(logn). One might then show that simply
multiplying together these values can be performed in polynomial time, by accounting for
the increase in size of the integers involved in the multiplication as more and more factors
are included in the product. Rather than analyse the growth of the product in an iterative
multiplication algorithm, we will show a different algorithm, by which the complexity of
evaluating this product is asymptotically no greater than multiplying two n-digit numbers.

By sorting the non-giant components of G in order of size (we assume only non-giant
components henceforth), we may construct a binary tree such that

The leaves represent sets, each of which contains an individual component and having a

stored #2-QSAT value of one more than the component size;

Each node which is not a leaf represents the union of the sets of components represented

by its child nodes, and stores the product of the #2-QSAT values of its children;

The #2-QSAT values of the children of any node are either similar in size (e.g. differing

by a factor of at most 3), or the degeneracy of one of them is constant (e.g. at most 3).
We start by pairing the largest component with the second largest component; in the case
that the second-largest component is less than half the size of the largest, we first pair it
together with a small component (e.g. isolated vertices), and pair the largest component with
the parent to these two nodes. We continue similarly for the next two largest components,
using the smallest components to compensate for differences in the size of the degeneracies
of subtrees. (Because there are O(n) components in the Erdés—Rényi graph for any number
of edges m, the components of constant size must dominate, and the smallest ones will
occur most frequently as a result of the reduced probability of being merged with other
components. For bond-percolated lattices, the distribution of component sizes is monotone
decreasing for any bond-percolation probability p, so again small components dominate.)
The degeneracy of the root node of the tree then is the degeneracy of the Hamiltonian.

The number of bits required to represent the degeneracy at each level in the tree ei-
ther remains about constant, or decreases by a factor of 2, with each level down from the
parent node. Due to the domination by components of constant size, there will be ©(n)
leaves on either side of the tree, so that it will have depth O(logn); most subtrees will be
balanced. Thus there will be approximately O(logn) rounds of (in principle parallelisable)
multiplications, where the t*® round from the final one is between numbers of size n/2t, and
each round involves about 2¢ multiplications in total. For any given multiplication algo-
rithm running in some time O(n?) (e.g. where d = 2 for the usual straightforward algorithm
taught in schools), we can recursively evaluate the value of the entire #2-QSAT instance,
corresponding to the root node of the tree, in time

O(logn) g ©OUogn) (1—d) O((1—d) logn)
n _ 2 -2 s
> 2 (?) = 2 2t = { 1—20-d) n® € O(n). (25)
t=1 t=1
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—— Abstract

An obfuscator is an algorithm that translates circuits into functionally-equivalent similarly-sized
circuits that are hard to understand. Efficient obfuscators would have many applications in cryp-
tography. Until recently, theoretical progress has mainly been limited to no-go results. Recent
works have proposed the first efficient obfuscation algorithms for classical logic circuits, based

on a notion of indistinguishability against polynomial-time adversaries. In this work, we propose
a new notion of obfuscation, which we call partial-indistinguishability. This notion is based on
computationally universal groups with efficiently computable normal forms, and appears to be
incomparable with existing definitions. We describe universal gate sets for both classical and
quantum computation, in which our definition of obfuscation can be met by polynomial-time al-
gorithms. We also discuss some potential applications to testing quantum computers. We stress
that the cryptographic security of these obfuscators, especially when composed with translation
from other gate sets, remains an open question.
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1 Introduction

1.1 Past work on circuit obfuscation

Informally, an obfuscator is an algorithm that accepts a circuit as input, and outputs a
hard-to-understand but functionally equivalent circuit. In this subsection, we briefly outline
the state of current research in classical circuit obfuscation. To our knowledge, quantum
circuit obfuscation has not been considered in any prior published work.

Methods used for obfuscating logic circuits in practice have so far been essentially ad
hoc [11, 41]. Until recently, theoretical progress has primarily been in the form of no-go
theorems for various strong notions of obfuscation [7, 21]. The ability to efficiently obfuscate
certain circuits would have important applications in cryptography. For instance, sufficiently
strong obfuscation of circuits of the form “encrypt with a hard-wired private key” could
turn a private-key encryption scheme into a public-key encryption scheme. As this example
illustrates, one undesirable outcome is when the input circuit can be recovered completely
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from the obfuscated circuit. In this case, we say that the obfuscator completely failed on
that circuit [7]. Unfortunately, every obfuscator will completely fail on some circuits (e.g.,
learnable circuits.) On the other hand, there are trivial obfuscators which will erase at least
some information from some circuits, e.g., by removing all instances of X "' X for some
invertible gate X.

In order to give a useful formal definition of obfuscation, one must decide on a reasonable
definition of “hard-to-understand.” The most stringent definition in the literature demands
black-box obfuscation, i.e., that the output circuit is computationally no more useful than
a black box that computes the same function. Barak et al. [8] gave an explicit family of
circuits that are not learnable and yet cannot be black-box obfuscated. They also showed
that there exist (non-learnable) private-key encryption schemes that cannot be turned into
a public-key cryptosystem by obfuscation. Their results do not preclude the possibility of
black-box obfuscation for specific families of circuits, or of applying obfuscation to produce
public-key systems from private ones in a non-generic fashion. It is an open problem whether
quantum circuits can be black-box obfuscated.

A weaker but still quite natural notion is called best-possible obfuscation; in this case,
we ask that the obfuscated circuit reveals no more information than any other circuit
that computes the same function. Goldwasser and Rothblum [21] showed that for efficient
obfuscators, best-possible obfuscation is equivalent to indistinguishability obfuscation, which
is defined as follows. For any circuit C, let |C| be the number of elementary gates, and let
fc be the Boolean function that C' computes.

» Definition 1. A probabilistic algorithm O is an indistinguishability obfuscator for the

collection C of circuits if the following three conditions hold:

1. (functional equivalence) for every C € C, fo(c) = fc;

2. (polynomial slowdown) there is a polynomial p such that |O(C)| < p(|C|) for every C € C;

3. (indistinguishability obfuscation) For any Cy, Cy € C such that fo, = fe, and |Cy] = |Cy],
the two distributions O(C;) and O(C?) are indistinguishable.

In the third part of the above definition, one must choose a notion of indistinguishability
for probability distributions. Goldwasser and Rothblum [21] consider three such notions:
perfect (exact equality), statistical (total variation distance bounded by a constant), and
computational (no probabilistic polynomial-time Turing Machine can distinguish samples
with better than negligible probability). They show that the existence of an efficient statistical
indistinguishability obfuscator would result in a collapse of the polynomial hierarchy to
the second level. This result also applies if the condition |C1| = |C2| in property (3) of
Definition 1 is relaxed to |Cy| = k|Cs| for any fixed constant & [21].

A recent breakthrough has shown that computational indistinguishability may be achiev-
able in polynomial time. Combining a new obfuscation scheme for NC1 circuits with fully
homomorphic encryption, Sahai et al. gave an efficient obfuscator which achieves the compu-
tational indistinguishability condition under plausible hardness conjectures [19]. Subsequent
work outlined a number of cryptographic applications of computational indistinguishabil-
ity [38].

1.2  Qutline of present work

1.2.1 New notion of obfuscation

An exact deterministic indistinguishability obfuscator would yield a solution to the circuit
equivalence problem. For general Boolean circuits, this problem is co-NP hard. Therefore,
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exact deterministic indistinguishability obfuscation of general Boolean circuits cannot be
achieved in polynomial time under the assumption P # NP. We propose an alternative route
to weakening the exactness condition, by pursuing a notion of “partial-indistinguishability”.
In partial-indistinguishability obfuscation, we relax condition (3) so that it need only hold for
C; and Cs that are related by some fixed, finite set of relations on the underlying gate set.

» Definition 2. Let G be a set of gates and T' a set of relations satisfied by the elements of

G. An algorithm O is a (G, T')-indistinguishability obfuscator for the collection C of circuits

over G if the following three conditions hold:

1. (functionality) for every C € C, fc = fo(c);

2. (polynomial slowdown) there is a polynomial p such that |O(C)| < p(|C|) for every C € C;

3. ((G,T)-indistinguishability) for any C1, Cs € C that differ by some sequence of applications
of the relations in I, O(C1) = O(Cy).

The power of the obfuscation is now determined by the power of the relations I'. If
I is a complete set of relations, generating all circuit equivalences over G, then a (G,T')-
indistinguishability obfuscator is a perfect indistinguishability obfuscator according to Defini-
tion 1. (Complete sets of relations for {Toffoli} and {AND, OR,NOT} are given in [27, 26].)
If T is the empty set then even the identity map fits the definition, and no obfuscation is
taking place. With different sets of relations, one can interpolate between these extremes.
The intermediate obfuscators form a partially ordered set, where a (G, I"”)-indistinguishability
obfuscator is strictly stronger than a (G, T')-indistinguishability obfuscator if T is a strict
superset of I'. We remark that partial-indistinguishability is no stronger than perfect
indistinguishability, and appears to be incomparable with statistical and computational
indistinguishability. This is part of our motivation in considering this new definition.

In the context of quantum computation, we make only a few minor changes to Definitions
1 and 2. First, the obfuscators will still be classical algorithms. On the other hand, the gates
will be unitary and the circuits to be obfuscated will be unitary quantum circuits. Finally,
the notion of functional equivalence now simply means that the operator-norm distance
between the unitary implemented by C and the unitary implemented by O(C) is bounded
by a small constant € > 0.

1.2.2 Group normal forms

A finitely generated group can be specified by a presentation. This is a list of generators
01,...,0, and a list of relations obeyed by these generators. (A relation is simply an identity
such as 0103 = 03071.) All group elements are obtained as products of the generators and their
inverses. However, by applying the relations, we can get multiple words in the generators
and their inverses that encode the same group element. A normal form specifies, for each
group element, a unique decomposition as a product of generators and their inverses. For
certain groups, including the braid groups, polynomial time algorithms are known which,
given a product of generators and their inverses, can reduce it to a normal form. The word
problem is, given two words in the alphabet {oy,...,0,, Jfl, ..., 0n}, to decide whether
they specify the same group element. If a normal form can be computed, then this solves
the word problem: just reduce both words to normal form and check whether the results are
identical. However, an efficient solution for the word problem does not in general imply an
efficiently computable normal form.

1 QOur construction for satisfying this definition uses reversible gates. The definition of functional
equivalence becomes more technical in that context, as discussed in Section 3.1.
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1.2.3 Efficient constructions from group representations

In this paper, we propose a general method of designing partial-indistinguishability obfuscators
based on groups with efficiently computable normal forms. If a set of gates G obeys the
relations I' of the generators of a group with an efficiently computable normal form, then
the reduction to normal form is an efficient (G, T")-indistinguishablity obfuscator. The gates
may obey additional relations beyond I', which is why the obfuscator does not solve the
circuit-equivalence problem, which is believed to be intractable for both classical and quantum
circuits.

To demonstrate this method, we discuss an implementation using the braid groups B,
for both classical reversible circuits and unitary quantum circuits. The number of strands
n in the braid group depends linearly on the number of dits or qudits on which the circuit
acts. In Section 3, we describe a computationally universal reversible classical gate obeying
the braid group relations, which was constructed in [34, 37, 31] from the quantum double of
As. In Section 4.1, we describe a computationally universal quantum gate obeying the braid
group relations, which was constructed in [18] from the Fibonacci anyons. Our obfuscation
scheme is similar in spirit to previously-proposed obfuscation schemes based on applying
local circuit identities [41], but the uniqueness of normal forms adds a qualitatively new
feature. One consequence of this feature is that we can satisfy Definition 2 and guarantee
the partial-indistinguishability property against computationally unbounded adversaries.
The running time of the obfuscator is the same as the running time of the the normal form
algorithms, which take time O(I?mlogm) for m-strand braids of length [ [14].

We remark that these gate sets that obey the braid group relations are not artificial
constructions; in fact, they are the most natural choice in many contexts, some of which we list
here. In the quantum case, these gates are native to certain proposed physical implementations
of quantum computers [31], where the topological braiding property provides inherent fault-
tolerance. The problem of approximating the Jones Polynomial invariant of links is complete
for polynomial-time quantum computation [2]; an analogous fact is true for a restricted case
of quantum computations motivated by NMR implementations [40]. Both of these facts are
naturally expressed in the gate set constructed from the Fibonacci representation. In the
classical case, the gate set derived from quantum doubles of finite groups was recently used
to show BPP-completeness for approximation of certain link invariants [32].

We remark that another potential group family for constructing partial-indistinguishability
obfuscators are the mapping class groups MCG(3,) of unpunctured surfaces of genus g.
These groups also have quantumly universal representations [5] and an efficiently solvable
word problem [23]. It is not known if there are also classically universal permutation
representations, or if there are efficiently computable normal forms.

1.2.4 Other gate sets

In some applications the native gate set will be different than the ones used in our construction.
It is natural to ask if our obfuscators can be used in these settings as well. By universality
(quantum or classical), one has an efficient algorithm B which translates circuits from the
native gate set to the braiding gate set, as well as an efficient algorithm C for translation in
the opposite direction. We also let N denote the partial-indistinguishability obfuscator. One
might then attempt to obfuscate by applying the following:

» Algorithm 1.
1. dnput: a circuit C onn (qu)dits
2. output: The circuit C(N(B(C)))



G. Alagic, S. Jeffery, and S. Jordan
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Figure 1 The generator o; represents the (clockwise) crossing of strands ¢ and ¢ + 1 connecting
a bottom row of “pegs” to a top row. Multlphcatlon of group elements corresponds to composition
of braids. As an example, we show the 3-strand braid o Log (left), and the same braid composed
with its inverse o5 'o1 (middle), which is equivalent to the identity element of Bs (right).

We stress that, unlike the map N, the composed map N o B does not necessarily satisfy
Definition 2. As we discuss in Section 5.1, careless choice of the map B can partially or
completely break the security of the obfuscator. Finding translation algorithms securely
composable with partial-indistinguishability obfuscators is an area of current investigation.

2 Relevant Properties of the Braid Group

The braid group B, is the infinite discrete group with generators o1, ...,0,_1 and relations
0,05 = 0;0; V|Z—]|22 (1)
0i0i410; = 0i410i0;41 Vi

The group B, is thus the set of all words in the alphabet {oy,...,00 1,07 ,...,0, %}, up
to equivalence determined by the above relations. In 1925 Artin proved that the abstract
group defined above precisely captures the topological equivalence of braided strings [6], as
illustrated in Fig. 1. A charming exposition of this subject can be found in [30].

In the word problem on B,, we are given words w and z, and our goal is to determine if
they are equal as elements of B,,. One solution is to put both w and z into a normal form,
and then check if they are equal as words. For our purposes, it is enough to describe the
normal form and specify the complexity of the algorithm for computing it. The details of
the algorithm, along with a thorough and accessible presentation of the relevant facts about
braids, can be found in [14].

We first observe that the word problem is easily shown to be decidable if we restrict our
attention to an important subset of B,. Note that the presentation (1) can also be viewed as
a presentation of a monoid, which we denote by B;". The elements of B, are called positive
braids, and are words in the generators o; only (no inverses), up to equivalence determined
by the relations in (1). Since all the relations of B,, preserve word length, and there are
only finitely many words of any given length, we can decide the word problem (albeit very
inefficiently) simply by trying all possible combinations of the relations.

Building upon this, one can give an (inefficient) algorithm for the word problem on B,
itself [22]. First, given two elements a,b of BN, we write a < b if there exists z € B;" such
that b = az; in this case we say that a is a left dzmsor of b. Similarly, we write a = b if there
exists y € B; such that b = ya; in this case we say that a is a right divisor? of b. The center
of B, is the cyclic group generated by A2, where

An = An—lan—la—n—Q 01 € B:

2 The terminology is not accidental; it turns out that we can also define l.c.m.s and g.c.d.s in B;, and that
By, is the group of fractions of B,}. These facts are some of the achievements of Garside theory [20].

145

TQC’14



146

Circuit Obfuscation Using Braids

(see p.30 of [22] for a simple proof). Geometrically, A,, implements a twist by 7 in the z-plane
as the strands move from z = 0 to z = 1. One can show that o; < A, for all 4, i.e. there
exists z; € B, such that 0;1 = 2;A, 1. Given a word w in the o; and their inverses, we first
replace the leftmost instance of an inverse generator (say it is o; ') with ;A '. We then
insert A 1A, in front of x;, and observe that conjugating a positive braid x by A,, results
in another positive braid (specifically, the rotation of z by 7 in the z-plane). In this way,
we can push A1 all the way to the left. We repeat this process for each inverse generator
appearing in the word, resulting in a word of the form APb where p € Z and b € B,. Since
we can solve the word problem in B, we can factor out the maximal power of A,, appearing
as a left divisor of b. We thus have that, as elements of the braid group, w = Aﬁ/ b with A,
not a left divisor of " and p’ unique. This solves the word problem in B,,.

We can make the above algorithm efficient by finding an efficiently computable normal
form for a positive braid word b that does not have A,, as a left divisor. Recall that the
symmetric group S, has a remarkably similar presentation to B,. Indeed, starting with
(1), letting o; = (i i + 1) and adding the relations o = 1 for all 4 results in the standard
presentation of S,,. In other words, there is a surjective homomorphism 7 : B, — S,, with
o; — (i i+1). In terms of the geometric interpretation, a braid is mapped to the permutation
on [n] defined by the connections between the top and bottom “pegs,” as in Figure 1. For
each o € S,,, there is a unique preimage of o that can be drawn so that any given pair of
strands cross only in the positive direction, and at most once. We call such braids simple
braids, and they form a subset of B of size n!.

» Definition 3 (p. 4 of [14]).

1. A sequence of simple braids (s1,...,sp) is said to be normal if, for each j, every o; that
is a left divisor of 5,41 is a right divisor of s;.

2. A sequence of permutations (fi, ..., f,) is said to be normal if, for each j, fj_+11 (i) >
f4 i+ 1) implies f;(i) > f;(i +1).

A sequence of simple braids (s, ..., sp) is normal if and only if the sequence of permutations

(7(s1),...,7(sp)) is normal. Given a permutation f € S, let f denote the simple braid of

B, satisfying 7(f) = f.

» Theorem 4 (p. 4 of [14] and Ch. 9 of [15]).

1. Every braid z in By, admits a unique decomposition of the form Al'sy...sp, withm € Z
and (s1,...,5p) a normal sequence of simple braids satisfying s1 # A, and sp # 1.

2. Every braid z in B, admits a unique decomposition of the form Azlfl N fp withm € Z
and (f1,..., fp) a normal sequence of permutations satisfying f1 # m(A,) and f, # 1.

The most efficient algorithms for computing the normal form of a word w in the generators
of B, have complexity O(|w|*nlogn) [14].

3 Obfuscation of Classical Reversible Circuits

3.1 Reversible Circuits

In the next section, we will describe a gate R which is universal for classical computation
and satisfies Definition 2 when I is the set of relations of the braid group. Because group
elements are invertible, R must be a reversible gate, that is, it must bijectively map its
possible inputs to its possible outputs. We will thus work in the setting of reversible classical
circuits. These circuits are composed entirely of reversible gates. For more background on
reversible computation see [9, 17, 36].
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Because reversible circuits cannot erase any information, they operate using ancillary dits
(“ancillas”) to store unerasable data left over from intermediate steps in the computation. A
reversible circuit evaluating a function f : {0,...,d—1}" — {0,...,d—1}™ thus operates on
r > max(n,m) dits, where r —n of the input dits are work dits to be initialized to some fixed
value independent of the problem instance, and r — m of the output dits contain unerasable
leftover data, to be ignored. Efficient procedures are known for compiling arbitrary logic
circuits into reversible form, e.g., by using the Toffoli (or CCNOT) gate [9, 17].

In adapting Definitions 1 and 2 to reversible circuits, one is faced with two natural choices
for the notion of functional equivalence. One may either demand that the original and
obfuscated circuits implement the same function f : {0,1}" — {0,1}"™, ignoring the ancilla
dits (weak equivalence), or demand that they implement the same transformation on the
entire set of r dits, including the ancillas (strong equivalence). Our constructions will satisfy
the latter. Strong equivalence implies weak equivalence, so our construction proves that
both possible definitions of partial-indistinguishability are polynomial-time achievable when
T" is the set of relations of the braid group. We remark that, as with ordinary irreversible
circuits, determining if two arbitrary reversible circuits are equivalent (weakly or strongly) is
coNP-complete [29].

3.2 Classical computation with braids

We now briefly describe a classical reversible gate R which satisfies the braid relations. The
complete details of the construction and the proof of universality of R are given in Appendix
A. Taken together with Theorem 4, this yields an obfuscator satisfying Definition 2.

Let G be a finite group and set d = |G|. Consider the reversible gate R that acts on pairs
of dits encoding group elements by

R(a,b) = (b,b~"ab). (2)

Let R; denote R acting on the i and (i + 1) wires of a circuit. By direct calculation, one
can check that the set {Ry,..., R,_1} satisfies the braid relations, that is,

RiR; = R;R; Vi ] > 2 @
RiRi\ Ry = RipRiRiy Vi

In 1997, Kitaev discovered that the gate set {R, R~'} is universal for classical reversible
computation when G is the symmetric group S; [31]. Ogburn and Preskill subsequently

showed that the alternating group As, which is half as large as Ss, is already sufficient [37].

The universality construction for As; was subsequently presented in greater detail and
generalized to all non-solvable groups by Mochon [34]. To make our presentation more
accessible and self-contained, we give in Appendix A an explicit description of Mochon’s
universality construction in the the case G = As. The construction proves computational
universality by showing how to efficiently compile Toffoli circuits into R-circuits.

Given any R-circuit, we can apply the algorithm of Theorem 4 by interpreting each
R; as o; and each Ri_l as ai_l.
R-circuits. A discussion of whether this can also yield meaningful obfuscation for classical

circuits constructed from other gate sets is given in Section 5.

This leads to partial-indistinguishability obfuscation of
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4 Quantum Circuits

4.1 Quantum computation with braids

In Section 3.2 and Appendix A, we discuss classical universality of circuits encoded as braids.
It turns out that an analogous theory can be developed for quantum circuits, and is well-
understood. The family of so-called Fibonacci representations of the braid groups have dense
image in the unitary group, and there are efficient classical algorithms for translating any
quantum circuit into a braid (and vice-versa) in a way that preserves unitary functionality [18].
A brief synopsis of these facts is given below. We remark that there are in fact many unitary
representations of the braid groups that satisfy these properties, and which are physically
motivated by the so-called fractional quantum Hall effect. In this setting, the image of these
representations consists of unitary operators which describe the braiding of excitations in a
2-dimensional medium [31].

Approachable descriptions of the Fibonacci representation are given in [40, 42]. In
[40], what we call the “Fibonacci representation” here, is called the “xx” irreducible sub-
representation. This is a family of representations pgﬁ)) : B, — U(F,—4), where F}, is
the k-th Fibonacci number. For our application, the essential properties of the Fibonacci
representation are locality and local density. These two properties mean that, under a certain
qubit encoding, braid generators correspond to local unitaries, and local unitaries correspond
to short braid words. Standard arguments from quantum computation tell us that we
can achieve the latter to precision € with O(log2'71(1 /€)) braid generators by means of the
Solovay-Kitaev algorithm [13].

A natural basis for the space of pgﬁ)) can be identified with strings of length n from the
alphabet {, p}, which begin with x, end with p, and do not contain “xx” as a substring?.
Following [2]%, for n a multiple of four, we identify a particular subspace V,, of pgill)o by
discarding some basis elements, as follows. Partition a string s into substrings of length four.
If each of these substrings is equal to either xp x p (this will encode a 0) or xppp (this will
encode a 1), then the basis element corresponding to s is in V,,; otherwise, it is not. Note
that dim V,, = 2/%. The following theorem follows from [2, 13].

» Theorem 5. There is a classical algorithm which, given an (n/4)-qubit quantum circuit C

and € > 0, outputs a braid b € B, of length O(|C|log® ™ (1/¢)) satisfying

<e€;

— )

n

HC— P (b) §

this algorithm has complezity O(]b]).

For the opposite direction, we can identify a subspace W,, C (C2)®" by discarding all
bitstrings except those that start with 0, end with 1 and do not have “00” as a substring.

Then dim W,, = dim pgf[)) and we have the following.

» Theorem 6. There is a classical algorithm which, given b € B, and ¢ > 0, outputs a
quantum circuit C' on n qubits of length O(|b|log>™ (1/€)) such that

HC\wn - p(éfi(b)H <e;

this algorithm has complezity O(|C|).

In [40] the ** subrepresentation of B, acts on strings of length n + 1 that begin and end with *. One
can leave the initial and/or final x implicit as these are left unchanged by all braiding operations. We
omit the final x leaving us strings of length n that begin with x and end with p.

Reference [2] describes the basis vectors in terms of “paths”. The correspondence between the path
notation and the px notation is given in appendix C of [40].
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The two algorithms in the above theorems are described explicitly in [2].

4.2 Obfuscating quantum computations

While the state of knowledge about classical obfuscation is limited, essentially nothing is
known about the quantum case. Here we discuss how to use the facts from the previous
section to construct a partial-indistinguishability obfuscator for quantum circuits.

In light of Theorem 5, {prib(c1), - .-, pFib(0n—1)} may be regarded as a universal set of
elementary quantum gates. By the homomorphism property of pgy,, this set satisfies the
braid relations. These gates differ from conventional quantum gates in that they do not
possess locality defined in terms of a strict tensor product structure. Nevertheless, as shown
above, the power of unitary circuits composed from these gates is equivalent to standard
quantum computation. By interpreting each ppin(c;) as a braid-group generator o, we can
apply the algorithm from Theorem 4 directly to circuits from this gate set, resulting in a
partial-indistinguishability obfuscator satisfying Definition 2.

With the algorithms from the previous section in hand, we could also attempt to apply
the obfuscation algorithm, Algorithm 1, directly to quantum circuits. For an input circuit C
on n qubits, the running times of both of this algorithm is O(|C|?n - polylog(n, 1/¢)). The
length of the output cannot be longer than the running time. We are not aware of a better
upper bound for the length of the output. The security of this algorithms is questionable,
and some attacks and possible countermeasures are discussed in Section 5.

Note that reduction of arbitrary quantum circuits to a normal form using a complete set of
gate relations should not be possible in polynomial time; this would yield a polynomial-time
algorithm for deciding whether a quantum circuit is equivalent to the identity, which is a
coQMA-complete problem [28].

4.3 Testing claimed quantum computers with a quantum obfuscator

It is natural to consider quantum analogues of the applications of obfuscation from classical
computer science. We now consider a potential application of quantum circuit obfuscation
that does not fit this mold: testing claimed quantum computers. A similar proposal using a
restricted class of quantum circuits has been previously made in [39].

Suppose Bob claims to have access to a universal quantum computer with some fixed
finite number of qubits. Alice has access to a classical computer only, as well as a classical
communication channel with Bob. Can Alice determine if Bob is telling the truth? Barring
tremendous advances in complexity theory, a provably correct test is unlikely;® can we still
design a test in which we have a high degree of confidence? Given the extensive work on
classical algorithms for factoring, a reasonable idea is to simply ask Bob to factor a sufficiently
large RSA number. However, Shor’s algorithm only begins to outperform the best classical
algorithms when thousands of logical qubits can be employed. A much smaller universal
quantum computer (e.g., a few dozen qubits) is likely to be a far simpler engineering challenge
and could still be quite useful, e.g., for simulating certain quantum systems. A test that
works in this case would thus be very valuable. We now outline a new proposal for such a test.

5 Notice that even a proof that BQP # BPP would be insufficient; one would have to find specific
problems and instance sizes where some quantum strategy provably beats every classical one. We
are thus left with a situation analogous to the practical security guarantees of modern cryptographic
systems, which tell us how many bit operations it would take to crack a given instance using the fastest
known algorithms.
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Simply put, we propose asking questions that are classically easy to answer, but posing them
in an obfuscated manner. In this test, Alice would repeatedly generate quantum circuits and
ask Bob to run them. At least some of the circuits would in fact be quantumly-obfuscated
classical reversible circuits, allowing Alice to easily check the answers. Previous work has
yielded tests of quantum computers in the case that the verifier can perform some limited
quantum operations [10, 3].

We have considerable freedom when designing an obfuscation-based test of quantum
computers. How to choose these parameters in a way that makes the test difficult to fool
with a classical computer is an open question. For purposes of illustration, we give one
example. Let O be the obfuscation algorithm for quantum circuits described above.

» Algorithm 2.

1. Select a random bitstring s of length k.

2. Let C be the (k + 1)-bit circuit that, on all-zero input, initializes wires 2 through k + 1 to
s and then computes the parity of s into the first wire.

3. Compute O(C), and let n be the number of qubits needed to run O(C).

4. Ask Bob to run D on the all zeros string and return the first bit of output.

Clearly, & must be chosen so that n is smaller than the number of logical qubits Bob claims to
control. To fool Alice, a purely classical Bob must determine the parity of s. The dictionary
attack (i.e. Bob repeatedly guesses at k, obfuscates the corresponding circuit, and compares
the result to the circuit given by Alice) is of no use provided k is reasonably large, e.g.,
80 bits, which can be encoded using a braid of 115 strands using the Zeckendorf encoding
described in [40].

We now show that there can be no efficient general-purpose algorithm for breaking our
test by detecting whether a given quantum circuit is in fact (almost) classical, and if so,
simulating it.

» Definition 7. Let ¢ be a bit string specifying a quantum circuit via a standard universal set
Q@ of quantum gates, and let U, be the corresponding unitary operator. Fix some constants
r,d,a € N, and fix a set R of reversible gates. The problem CLASS(r,d,a,Q, R) is to find
a reversible circuit of at most r|c|? gates from R such that the corresponding permutation
matrix P satisfies ||U, — P|| < 279l

Note that CLASS(r,d, a, @, R) is not a decision problem. Thus, to formulate the question of
whether this problem can be efficiently solved, we must ask not whether CLASS(r,d, a, Q, R)
is contained in P but whether it is contained in FP. We now provide some formal evidence
that this is not the case. Note that the following theorems continue to hold if we change the
classicality condition in Definition 7 to | U, — P| < |¢| ™.

» Theorem 8. For any fized r,d,a € N, any universal reversible gate set R, and any universal
quantum gate set Q, if CLASS(r,d, a,Q, R) € FP then QCMA C PP,

Note that, QCMA C PNP would be very surprising because, among other things, it would
imply BQP C PH, and there is evidence that this is false [1, 16].

Proof. The standard QCMA-complete language L is as follows. Let C be the set of all
quantum circuits (expressed as a concatenation of bitstrings that index elements of the gate
set Q). C decomposes as the disjoint union of £ and £ where £ consists of the quantum
circuits that accept at least one classical (i.e. computational basis state) input, and £ consists
of the circuits that reject all inputs. Given a quantum circuit V3 € C, (the “verifier”) we can
amplify it using standard techniques [33, 35] to accept YES instances with probability at
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least 1 — O(27™) and accept NO instances with probability at most O(27™). Let V5 be such
an amplified verifier. Further, let

D
Vi = -
3 V Vol

where the second-to-top qubit is the acceptance qubit of Vo. If V; € £ then ||V3 — 1| =
O(27™). By assumption, there exists a polynomial time classical algorithm for solving
CLASS(r,d,a,Q, R). When presented with V3, this algorithm will produce a polynomial-size
reversible circuit Vj strongly equivalent to the identity. By querying an oracle for the problem
of strong equivalence of reversible circuits, one can decide whether V} is equivalent to the
circuit of no gates, and hence to the identity operation. If V; € £, this oracle will accept.
If V1 € L then the algorithm for problem 1 will answer NO or produce a circuit that this
oracle rejects. As shown in [29], the problem of deciding strong equivalence of reversible

PcoNP

circuits is contained in coNP. Thus, we can decide QCMA in , which is equal to the

more familiar complexity class PNF. <

5 Some Attacks

5.1 Compiler attacks

The security or insecurity of braid-based partial-indistinguishability obfuscation remains an
area of current investigation. From a purely information-theoretic point of view, the power of
this obfuscation comes from the many-to-one nature of the map N that takes arbitrary braid
words to their normal form. If the initial braid words are highly structured because they are
obtained by compilation from a different gate set, then this can undermine or destroy the
many-to-one feature of N.

In Section 3.2, we describe a reversible gate R on pairs of 60-state dits, corresponding to
elements of A5, that obeys the relations of the braid group and can perform universal classical
computation. The gate itself and the proof that it is universal come from the quantum
computation literature [31, 37, 34]. Appendix A recounts the universality proof of [34], which
can be viewed as a compiler B that maps circuits constructed from the well-known universal
reversible Toffoli gate into circuits constructed from the R gate. As a cautionary example,
we now show that naively obfuscating Toffoli circuits using the composed map N o By is
completely insecure.

The construction in Appendix A gives a general mapping from a Toffoli gate to a
corresponding braid. We will refer to braids obtained in this way as Toffoli braids. Recall
that the normal form of a braid in B,, has the form AT's;...s, for a normal sequence of
simple braids (s1,...,s,). A Toffoli braid obtained from a Toffoli with controls ¢; and ¢y
and target ¢ has normal form

A s1(c1, o, t)5253545556575850 (€1, C2, 1) s10511512513(C1, €2, 1) 514 (2). (4)

The factors so, ..., Ss, S10, S11 and s12 only depend on n, and not on the wires ¢, ¢o or t.
Note that this is a positive braid — consisting only of o1, ..., 0,_1 and none of their inverses.

Any product of such braids will thus also be a positive braid, so attempting to obfuscate a
circuit in Toffoli gates using this construction will yield only positive braids.
Because Toffoli is a 3-bit gate, there are only (g) ways to apply a Toffoli to n bits. Thus,

”) possibilities as a guess for the last gate

one may, in polynomial time, test each of these (7
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of the obfuscated circuit. One performs the test by compiling the guessed Toffoli gate into a
braid, appending the inverse of this braid to the normal form braid produced as the output
the obfuscator, and then reducing the resulting braid to normal form. If the guess is correct,
then the resulting braid is still a braid corresponding to a circuit — the original obfuscated
circuit with its last Toffoli gate removed — and thus this will result in a positive braid. If
the guess is incorrect, then appending the inverse of a positive braid, which consists entirely

-1
n—1»

of oy Lo might result in a braid that is no longer positive — that is, has a negative
power of A,,, and this seems to be the case with any wrong guess, based on some limited
tests.

Furthermore, the presence of a negative power of A,, is efficiently recognizable, so it is
immediately clear whether or not the guess was correct.

This attack is related to so-called length-based attacks. These have been introduced in
the cryptanalysis of braid based key-exchanged protocols [25]. In the present context, the
natural length-based attack is to guess the final gate, append the inverse of the corresponding
braid to the normal-form braid produced by the obfuscator, and the reduce the product
braid to normal form. If the result is a shorter word in the braid-group generators than the
original normal form, then this can be taken as heuristic evidence that the guess was correct.
Intuitively, one expects that the longer the braid words are that implement individual gates
from the original gate set, then the better such attacks should work.

One can easily propose modifications to the naive obfuscator N o Br that thwart guessing-
based attacks such as the two attacks described above. In particular, one finds that the gate
R described in Appendix A has order 60. Hence, one can start with the positive Toffoli
braid in equation (4) and then each generator o; can independently, with probability %,
be replaced with o; 9 without altering the functionality of the circuit. The number of
generators in a Toffoli braid depends on n, and which wires the Toffoli acts on, but there are
always at least 124. Thus, each gate will be compiled into one of 224 braid-words uniformly
at random. Thus, guessing-based attacks on the composition of this compiler with N may
become impractical. Whether such a scheme is vulnerable to other attacks remains an open
question for future research.

5.2 Dictionary attacks

The partial-indistinguishability obfuscator described in the preceding sections deterministi-
cally maps input circuits to obfuscated circuits. This creates a potential weakness in the
obfuscation. Suppose Alice wishes to run a computation C' on Bob’s server but does not
wish Bob to know what computation she is running. Thus, she sends the obfuscated circuit
O(C) to Bob, who executes it, and returns the result. To improve security, Alice may instead
use a circuit C’ in which her desired input is hard-coded, and which applies a one-time pad
at the end of the computation. If the obfuscation is secure, then Bob is unlikely to learn
anything about C, the input, or the output. However, if Bob knows that the circuits Alice is
likely to want to execute are drawn from some small set S, then Bob can simply compute
{O(s)|s € S} and identify Alice’s computation by finding it in this list. Such attacks are
sometimes called “dictionary” attacks after the practice of recovering passwords by feeding all
words from a dictionary into the hash function and comparing against the hashed password.

Dictionary attacks may or may not be a serious threat to our obfuscation scheme,
depending on the the size of the set of likely circuits to be obfuscated. In cryptographic
applications where dictionary attacks are a concern, the standard way to protect against
them is to append random bits prior to encryption. (In the context of hashing passwords,
this practice is called “salting”.) Such a strategy can be applied to our obfuscator, but some
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care must be taken in doing so. The most obvious strategy is to append a random circuit on
the output ancillas prior to obfuscation. However, attackers can defeat this countermeasure
by using the polynomial-time algorithms for computing left-greatest-common-divisors in the
braid group [15]. However, prior to obfuscation, one may introduce extra dits, and apply
random circuits before, after, and simultaneously with the computation, in a way so as not
to disrupt it. The problem of optimizing the details of this procedure so as to maximize
security and efficiency is left to future work.

6 Future Work

6.1 Classical and quantum universality

It is of interest to consider other computationally universal representations of the braid
group, which might provide more efficient translations from circuits to braids. One avenue
for obtaining such representations is by finding other solutions to the Yang-Baxter equation,
besides the operator R from Appendix A. Our investigations so far prove that no permutation
matrix solution of dimension up to 16 x 16 is a universal gate and suggest that no permutation
matrix solution of dimension 25 x 25 is a universal gate. In the quantum case, it has been
shown that no 4 x 4 unitary solution is universal [4].

More generally, one may look for other finitely-generated groups with computationally
universal representations and efficiently computable normal forms. One potential candidate
family are the mapping class groups MCG(XZ,) of unpunctured surfaces of genus g. These
groups also have quantumly universal representations [5] and an efficiently solvable word
problem [23]. Tt is not known if there are also classically universal permutation representations,
or if there are efficiently computable normal forms.

6.2 Expanding the set of indistinguishability relations

By [29], achieving efficient indistinguishability obfuscation for the complete set of relations
of a universal gate set is unlikely. However, it is possible that partial-indistinguishability

obfuscation on R gates could be achieved with a larger set of relations than the braid relations.

For example, the universal reversible gate described in Appendix A has order 60. If we
add the relations 0?0 =1fori=1,2,...,n—1 to B,, we obtain a “truncated” (but still
infinite for large n [12]) factor of the braid group. If a normal form can still be computed in
polynomial time for this group then one could construct an efficient obfuscator using the
relations of this truncated group, which would be strictly stronger than our braid group
obfuscator. This approach also provides motivation for finding a complete set of relations for
the gate R.
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Ry

Ry

R3

Figure 2 An example of a reversible circuit constructed from a single gate R. As a product of
matrices, we write this Ry R3R1, in keeping with the convention [36] that circuit diagrams are to
be read left-to-right, whereas the matrix product acts right-to-left. Note that in subsequent circuit
diagrams we drop the subscripts from the R gates as these can be read off from the “wires” the
gates act on.

A Classical Computation with Braids

In this section, we present a reversible gate R on pairs of 60-state dits that can perform uni-
versal computation and obeys the relations of the braid group. The universality construction
for this gate comes from the quantum computation literature [31, 37, 34], but we present it
here in purely classical language to make it accessible to a broader audience.

Suppose we arrange n dits on a line, and allow R to act only on neighboring dits. Further,
we do not allow R to be applied “upside-down”. Then, there are n — 1 choices for how to
apply R. We label these Ry, Ra, ..., R,_1, as illustrated in Figure 2. Each of Ry,..., R,_1
corresponds to a d" x d" permutation matrix. Specifically, R; is obtained by taking the

tensor product of R with identity matrices according to R; = ﬂ?x({i_l) QR® ]I?X(Z_j -,

Ry,...,R,_1 generate a subgroup of Sg». Among others, these generators obey the
relations

R,R; = R;R, V|i—j|>2. (5)
If R satisfies

RiRyRy = RyRy Ry (6)
then

RiRi+1Ri = Ri+1RiRi+1 Vi (7)

and in this case the gates Ry, ..., R,_1 satisfy all the relations of the braid group B,,. In
other words, the map defined by o; — R; and o, Ly R; !'is a homomorphism from B,, to
Sgn, i.e. a representation of the braid group. Note that this representation is never faithful
as B,, is infinite.

The condition 6 is known as the Yang-Baxter equation®. Finding all the matrices satisfying
the Yang-Baxter equation at a given dimension has only been achieved at d = 2 [24]. However,
certain systematic constructions coming from mathematical physics can produce infinite
families of solutions. In particular, let G be any finite group, and let R be the permutation
on the set G x G defined by

R(a,b) = (b, b ab). (8)

6 Actually, two slightly different equations go by the name Yang-Baxter in the literature. Careful sources
distinguish these as the algebraic Yang-Baxter equation and the braided Yang-Baxter relation (which
is sometimes called the quantum Yang-Baxter equation). Equation 6 is the latter. Furthermore,
some sources treat a more complicated version of the Yang-Baxter equation in which R depends on
a continuous parameter. In such works equation 6 is often referred to as the constant Yang-Baxter
equation.
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By direct calculation one sees that any such an R satisfies the Yang-Baxter equation. (In

physics language, R comes from the braiding statistics of the magnetic fluxes in the quantum
double of G.)

In 1997, Kitaev discovered that choosing G to be the symmetric group S5 yields an
R gate sufficient to perform universal reversible computation [31]. Ogburn and Preskill
subsequently showed that the alternating group Ajs, which is half as large as Sy, is already
sufficient. The universality construction for As was subsequently presented in greater detail
and generalized to all non-solvable groups by Mochon [34]. In the remainder of this section
we give a self-contained exposition of the universality construction from [34], shorn of physics
language.

To obtain a representation of the braid group, we must strictly enforce the requirement
that application of R to neighboring dits on a line is the only allowed operation. In particular,
we are not given as elementary operations the ability to apply R upside-down, or to non-
neighboring dits, or to move dits around. Thus, to prove computational universality, it is
helpful to first construct a SWAP gate from R gates, which exchanges neighboring dits. As
is well-known, the n — 1 swaps of nearest neighbors on a line generate the full group S,, of
permutations, and thus a SWAP gate enables application of R to any pair of dits.

For R gates of the form (2), two pairs of inverse group elements in the order a,a=1,b,b~!
can be swapped by applying the product RyR3R;Ry. Thus, in the construction of [37, 34],
elements of A are always paired with their inverses. This can be regarded as a form of
encoding; |As| = 60, so each 60-state dit is encoded by a corresponding pair of elements of
As. We introduce the notation § = (g, ¢~ !) for this encoding, and similarly, abbreviate the
encoded swap operation as follows.

a b
~ 7 —1 —1
I R
b a = R

bt a~t

~ —_~—

Similarly, the sequence Ry R3R3Rs performs the transformation (a,b) — (a,aba=1) on a pair
of encoded dits. We abbreviate this in circuit diagrams as follows.

i E

b aba—1! =
e, ¢ 1

a a a” —1 —1 a-

~ o R R _

b a~lba = b TRt g [ a”'ba
I | —1;-1
b a b a

This notation can easily be extended to provide a shorthand for the sequence of gates needed
to implement a C gate between non-neighboring pairs of bits, as illustrated by the following
examples.
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—oF-

5]
€ =
Next, consider the following product of elements of A5 (which should be read right-to-left).

F(g1.92) = (521)g1(14352)g2(124) g7 ' (15342) g5 * (521) 9)

One sees that

F(345),(345) = 1
f((345), (435)) 1
f((435), (345)) 1
F((435),(435)) = (12)(34)

where 1 denotes the identity permutation. Furthermore, conjugating (345) by (12)(34) yields
(435), and conversely, conjugating (435) by (12)(34) yields (345). Thus, we may think of
(345) as an encoded zero and (435) as an encoded one, and we see that

flg1,92)90f (g1, 92) " (10)

toggles gg between one and zero if g; and go are both encoded ones and leaves gy unchanged
otherwise. Such a doubly-controlled toggling operation is known as a Toffoli gate, which is
well-known to be a computationally universal reversible gate [17].

As a circuit diagram, this construction can be expressed as follows.

—— —~

(14352) (14352)
(15312) (15342)
(124) (1249)
(521) —9 +— (521)

9344 cHoHce HeHoHe %

g1 . . g1

g2 92

Here, if go, g1, g2 encode bits by, b1, ba then g} encodes by @ by A by. The four ancillary dits

—_—

(14352), (15342), (124), and (521), are used to “catalytically” facilitate the construction
of a Toffoli gate, and thus computations built from arbitrarily many Toffoli gates can be
performed with only one copy of these four dits.

Unpacking the various shorthand notations, one sees that the above circuit represents
the following braid of 132 crossings on 14 strands, which encodes a Toffoli gate with the first
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wire as target, and the second and third wires as controls.

T = 08090908 01001109010 010011011010 01001109010
02030102 04050304 06070506 08090908
06070506 04050304 02030102 012013011012
01001109010 010011011010 01001109010 012013011012
06070506 08090908 06070506 01001109010 (11)
01_0101_1101_1101_01 01001109010 04050304 06070506
08090908 06070506 04050304 012013011012
01001109010 01_0101_1101_1101_01 01001109010 012013011012
08090908

Note that we take the convention that this should be read backwards compared to the way
one reads English text. This is in keeping with the conventional notation for the composition
of functions and our right-to-left multiplication of R matrices. We have used whitespace to
divide crossings into groups of four as these correspond to elementary S and R gates.
Given this construction of the Toffoli gate by braid crossings, it is a simple matter to
“compile” any given logic circuit into a corresponding braid. As has 60 elements. Thus,
encoding a single bit into a a pair of Ay elements appears somewhat wasteful. It is natural to
try to find Yang-Baxter solutions acting on d-state dits for smaller d that achieve universal
classical computation. In appendix B, we improve upon the As-based construction to show
that d = 44 suffices. We have also used exhaustive computer search to find all permutation
solutions satisfying the Yang-Baxter equation up to d =5 (i.e. up to 25 x 25 permutation
matrices). Our examination of these solutions suggests that none are computationally
universal. Where between 5 and 44 lies the minimal d remains an interesting open question.

B Optimizing Classical Braid Gates

In appendix A we have recounted the construction of [34], which shows that the reversible
gate R, which acts on pairs of 60-state dits and satisfies the Yang-Baxter equation, can
perform universal classical computation. In this section, based on a suggestion of Robert
Konig, we show that R can be modified to obtain a gate acting on pairs of 44-state dits

that satisfies the Yang-Baxter equation and can perform universal classical computation.

Our computational evidence suggests that no reversible gate on d-state dits satisfying the
Yang-Baxter equation can perform universal computation for d < 5. Where between 5 and 44
the minimal d lies for which computationally universal reversible Yang-Baxter gates acting
on d-state qudits exist remains an open question.

The universality construction of [34], recounted in appendix A, starts with all dits
initialized to states from the following set.

S = {g,97"g € So}
So = {(14352),(15342), (124), (521), (345), (435)}

Here we show that the orbit of S under the action of the gate R is not all of As, rather the
orbit has only 44 elements. Thus the restriction of the matrix R onto this 44-dimensional
subspace is a permutation-matrix that satisfies the Yang-Baxter equation and is capable of
universal classical computation.

Recalling (2), one sees that the orbit O of S under R is

Or = {b"'abla € S,b € (S)} (12)
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where (S) is the subgroup of As generated by S. A simple computer algebra calculation
shows that (S) = A, thus Op consists of exactly those elements of A5 conjugate to S.
It is well known that the conjugacy classes of A5 are as follows.

1) the identity 1 element)

) (
2) 3-cycles (20 elements)
3) conjugates of (12)(34) (15 elements)
4) conjugates of (12345)  (
5) conjugates of (21345)  (

12 elements)

12 elements)

One sees that Og contains 2), and does not contain 1) or 3). The only remaining question
is whether Og contains both 4) and 5) or just one of them. A simple computer algebra
calculation shows that (14352) and (15342) are non-conjugate elements of As. Hence Op
must contain both 4) and 5). Therefore, |Og| = 44.
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A unitary operator that satisfies the constant Yang-Baxter equation immediately yields a unitary

representation of the braid group B, for every n > 2. If we view such an operator as a quantum-
computational gate, then topological braiding corresponds to a quantum circuit. A basic question
is when such a representation affords universal quantum computation. In this work, we show
how to classically simulate these circuits when the gate in question belongs to certain families of
solutions to the Yang-Baxter equation. These include all of the qubit (i.e., d = 2) solutions, and
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1 Introduction

The Yang-Baxter equation, named after C.N. Yang and R.J. Baxter, appears in a number
of areas of mathematics and physics. Yang encountered the equation while working on
two-dimensional quantum field theory, while Baxter applied it to exactly solvable models
in statistical mechanics [2]. An accessible review of some of the many applications of the
Yang-Baxter equation can be found in [21]. In this work, we will consider what is typically
called the constant quantum Yang-Baxter equation, and is defined as follows. Let V be a
finite-dimensional complex Hilbert space and R a linear operator on V ® V. Then R satisfies
the quantum Yang-Baxter equation (YBE) if

(RINIR®R)(RRI)=I®R)(R®I)(I®R),

where I denotes the identity operator on V. In this case, we say that R is a Yang-Baxter
operator. The YBE bears a close resemblance to the relation

0i0i+10; = 0i4+10i041

of the braid group B,,. Indeed, a Yang-Baxter operator naturally gives the space V&" the
structure of a representation p(g ) of B,. Turaev showed that if R also satisfies the so-called
Markov property, then it corresponds to an invariant of links [24]. The invariant is given
by the (appropriately scaled) trace of p(g ), evaluated at any braid whose trace closure
is equal to the link. More generally, one can derive a link invariant from the trace of any
representation of B,, which satisfies the Markov property. This is the case for the famous
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Jones representation and the corresponding Jones Polynomial invariant [15]. Freedman,
Kitaev, Larsen and Wang [8, 9, 10] showed that the Jones representation has significant
meaning in quantum computation. Informally speaking, the Jones representation provides a
functionality-preserving “dictionary” between quantum circuits and braids. One consequence
of these results is that additively approximating the Jones Polynomial is a universal problem
for quantum computation. It also appears that this dictionary could correspond to a
physically plausible implementation of quantum computers by means of exotic particles
called non-abelian anyons [22]. One downside of the Jones representation in this context is
that topological locality of braiding does not translate naturally into tensor-product locality
of the corresponding quantum circuit. In particular, it is not the case that braiding two
adjacent strands correponds to applying a Yang-Baxter operator on the space of two adjacent
qubits. One might hope that the Jones representation could be made to look this way, e.g.,
by changing bases or manipulating the multiplicities of its irreducible summands. However,
Rowell and Wang recently showed that this is impossible unless the Jones representation in
question! is in fact not quantum-universal (see Corollary 4.2 in [23].)

Alternatively, one may ask if there exist other representations of the braid groups with
the desired local structure and which exhibit computational universality. This amounts to
finding unitary solutions to the YBE and determining if they are universal gates. In this
work, we investigate low-dimensional solutions with this motivation in mind. All of the
qubit (i.e., d = dim V' = 2) solutions to the YBE were found by Hietarinta [12]; the unitary
ones among those were identified by Dye [5]. It was previously known that, when their
eigenvalues are roots of unity, these solutions yield braid group representations with finite
image [7, 6]. We show how to classically approximate the matrix entries of any quantum
circuit constructed from a particular kind of two-qudit gate. Most of the qubit solutions to
the YBE, as well as some solution families of arbitrary dimension, are special cases of this
gate. For the remaining qubit solutions, we give a different result: how to classically simulate
a quantum computation that begins in any product state, and ends with a measurement of
an observable on logarithmically many qubits. This is typically considered sufficient to rule
out quantum universality. However, some caution is called for: there are gate sets which
are known to be classically simulable in this sense but become hard to simulate when one is
allowed to measure all the output qubits in the computational basis [17, 3].

We remark that, as pointed out by Lomonaco and Kauffman [18], some qubit solutions to
the YBE are entangling gates, and any entangling gate together with arbitrary single-qubit
gates is universal [4]. However, in that case we are no longer computing with representations
of the braid group. Indeed, a primary motivation for the topological approach to quantum
computation is to rely on the topological stability of braiding for fault-tolerance. Applying
single-qubit gates fault-tolerantly as part of this approach would require additional ideas.
For this reason, we restrict ourselves to just one gate, which acts on two qubits and is a
solution to the YBE. Some classes of entangling gates that have previously been shown to be
classically simulatable are given in [16, 11].

2 Preliminaries

2.1 Gates, circuits, and universality

We briefly review basic notions about quantum gates, circuits, and computational universality.
For more details, we refer the reader to the text of Nielsen and Chuang [20]. Given an integer

1 Recall that, just like the Jones polynomial, the Jones representation has a parameter (in addition to
n) which is typically a root of unity. Quantum universality holds for most but not all values of this
parameter.
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d>1,1et [d ={0,1,...,d —1}. Let V = C[d] be a d-dimensional complex Hilbert space
with distinguished orthonormal basis {|i) : ¢ € [d]}. We refer to copies of [d] as dits and
copies of V as qudits. For any k and any z € [d]*, set |z) = |71) ® |22) ® - - - @ |21). The
space V@ has a preferred basis {|z) : = € [d]*}, which we will call the computational basis.
A unitary operator on V®* is called a k-qudit gate.

Let R be a set of gates which act on k or fewer qudits. Fix n > 0 and, for each [-qudit
gate R € R, define R; € U(V®™) to be the operator that applies R to qudits j,...,j+ [ and
the identity operator I to the rest. Define R(™ to be the set of all R;, for every R € R and
every valid index j. An n-qudit quantum circuit over the gate set R (or R-circuit for short)
is a finite sequence

C=(U,Us,...,Upy)

where for each i, U; € R or U[l e R, We will sometimes denote the number of gates
in the circuit C' by |C| = m. The circuit defines an operator

C=Up -Up_1- Uy € UVO).

Note that we have overloaded notation so that C refers to both the sequence of gates and
the operator implemented by their composition. Pictorially, an R-circuit is represented by a
diagram like the following, where each wire corresponds to one qudit.

U,
Uy

] Us  Us |

o
— L Us |

For pictorial convenience, the gates shown in the figure only act on nearest neighbors. While
the nearest-neighbor condition is needed for certain other types of circuits to be classically
simulatable (e.g. matchgates [16]), our results do not require it. We adopt here the common
convention that circuits are applied from left to right (unfortunately, the opposite of the
case for operators.) Of general interest are gate sets which allow for universal quantum
computation.

» Definition 1. A gate set R is universal if there exists N > 0 such that N-qudit R-circuits
form a dense subset of U(V®V).

The Solovay-Kitaev theorem [20] tells us that, for universal R, any unitary operator in

U(V®N) can be approximated to precision e with an N-qudit R-circuit of length polylog(1/e).

Standard arguments also show that density can be extended from N to any n > N.

Quantum-computational power can also be defined in terms of complexity classes. The
class that is typically associated with efficient quantum computation is called BQP, which
stands for bounded-error quantum polynomial time. A drawback of BQP is the lack of
known complete problems, i.e., problems which are both in BQP and at least as hard (under
classical polynomial-time reduction) as any other problem in BQP. The classical analogue
BPP (bounded-error probabilistic polynomial time) suffers from the same drawback. For
this reason, we will work with promise versions of these two classes, i.e., PromiseBQP and
PromiseBPP. We will not need the formal definitions of these classes (see, e.g., [14]). For us
it will suffice to refer to the following.

» Definition 2. Given a set R of quantum gates, the problem Z(R) is defined as follows.

Given an n-qudit R-circuit C' and ditstrings x and y, as well as a promise that either
(z|Cly) > 2/3 or (z|Cly) < 1/3, decide which is the case.
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We may define PromiseBQP as the class of problems which reduce to Z(R) for some universal
set of quantum gates R. Interestingly, there are gate sets R which are not universal in
the density sense but for which Z(R) is nonetheless PromiseBQP-hard; an example is
R = {Hadamard, Toffoli}. This gate set is dense over the special orthogonal group, but since
the matrix entries are all real, it cannot be dense over the unitary group.

Later on, we will show that when R consists of a single gate which belongs to certain
solution families of the Yang-Baxter equation, then Z(R) € PromiseBPP. This means that
R is not quantum universal under either of the above definitions, unless the widely believed
conjecture that quantum computation is more powerful than classical computation is false.

2.2 Pauli group and Clifford group

Recall that the single-qubit Pauli operators are defined by

S RS B () RS (0

Each Pauli operator is self-adjoint and unitary. In the n-qubit case, we set
X; =19 "o Xl

and likewise for Y; and Z;. We define the n-qubit Pauli group P,, to be the group generated
by {X;,Y;,Z;:j=1,...,n}. An important property for us is that P, spans the space of
n-qubit Hermitian operators.

The Clifford group on n qubits is defined to be the normalizer of the Pauli group inside
the unitary group, i.e.,

C,={UcU@2"):UPU' € P, forall PcP,}.

By direct computation, it’s easy to check that the following gates are elements of C,, for any
n > 2:

100 0

1 /1 1 10 0100
H=— P= NOT =

ﬂ(l —1)’ <0 z> CNO 000 1

0010

It is a theorem (see [11]) that the above gates, when applied to arbitrary qubits or pairs
of qubits, actually generate C,,. We will thus call any circuit made up of these gates a
Clifford circuit. Since P, C C,, we can also add the Pauli operators to this gate set for free.
We remark that the conjugation action of a Clifford circuit on an element of P, is easy to
compute in a direct, gate-by-gate fashion. For details, see [11].

Due to the frequent appearance of C, in various areas of quantum information, the
computational power of Clifford circuits is well-studied. While C,, is finite and not universal,
adding any gate outside C,, results in a universal set [19]. A thorough analysis of the
computational power of Clifford circuits under various models is performed in [17].

2.3 Yang-Baxter operators and representations of the braid group

Let V = C[d] and R € U(V ® V). Then R satisfies the quantum Yang-Baxter equation
(YBE) if

(RINIRR)(RR)=I®R)(RI)(I®R), (1)
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where I denotes the identity operator on V. In this case, we say that R is a Yang-Baxter
operator. Let T : |a ® b) — |b ® a) denote the swap operator on V ® V. By comparing circuit
diagrams, it’s not hard to see that R is a solution to (1) if and only if S = RT is a solution
to

512513523 = 523513512, (2)

where
512:S®I, S13=(I®T)(S®I)(I®T), Sos=1®S.

Equation (2) is sometimes called the algebraic Yang-Baxter equation.

Recall that the braid group B, is a finitely generated group with generators 01,09, - , 05,1
and relations
003 = 0,05 V|Z*]|22
0i0i+10; = 044100541 V i.

In 1925 Artin proved that the abstract group defined above precisely captures the topological
equivalence of braided strings [1]. Pictorially, braids are represented with a diagram; an
example diagram for oy 105 103Jf ! is shown below. We read such diagrams left-to-right,
keeping the same convention as with circuits. The second generating relation of B,, is known
as the Yang-Baxter relation. A solution R € U(V ® V) of the Yang-Baxter equation yields a
unitary representation p(g ) of B, on the space V& for every n. It is defined by

PRy (o) = 120"V @ R 197171

The images of braids under p(g ) are precisely the R-circuits on n qudits, where d = dim V.
For example, the braid o3 102_ 10301_ 1 and the corresponding R-circuit are shown below.

A\ e B
\. /

Under a plausible physical interpretation, a computation is performed by braiding particle-like
excitations whose exchange statistics are described by R. If R is a universal gate, this model
would result in universal topological computation. Such a model could provide a basis for a
quantum computer architecture with inherent fault-tolerance [22].

3 Classical simulation of certain quantum circuits

In this section, we prove a general result about simulating certain quantum circuits with a
classical probabilistic algorithm. We begin with two straightforward lemmas about classical
sampling. (See A for proofs).

» Lemma 3. Let {P;}}_; be probability distributions on [d] and let P = II;P; be the
corresponding product distribution over [d]™. Suppose that we can calculate Pj(k) for every
j and every k in total time poly(n, d). Then there’s a classical probabilistic algorithm that
runs in time poly(n, d) and samples from [d]™
that |P — D| < 1/2p°W (),

according to a probability distribution D such
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We will also require the following Chernoff-Hoeffding bound for complex-valued random
variables.

» Lemma 4. Let X1, Xo,..., X, be independent complex-valued random variables with
E[X;] = p and | X;| < b for all j. Let S =73, X;/n. Then

Pr(|S — p| > €] < 4exp (—ne’/8b7) .

Let S; denote the symmetric group, i.e., the group of permutations of d letters. We
denote the action of 7 € S on an integer 1 < j < d by =j.

» Definition 5. Let @ be an invertible d x d matrix over C, and G a subgroup of S4. Define
matrices A, B by setting 4;; = |Q;;| and B;; = [(Q71)i;|. We say that @ satisfies property
(G) if for every m € G and every k, [, we have Zj Ak -;Bji < 1.

If @ is unitary, then by Cauchy-Schwarz and the orthonormality of the rows of @,

1/2

S AkniBiu < | Y 1Ak PY IBal | =1
J J i
It follows that unitary matrices satisfy property (Sy).

We are now ready to present the main classical simulation algorithm. When we refer to
the matrix entries of operators in GL(C[d]) = GL4(C), it will always be in the computational
basis. We say that such an operator is computable if its entries can be computed exactly by
a classical algorithm in poly(d) time. Recall that T : a ® b — b ® a is the swap operator, and
that for a subset S of a group G, (S) denotes the subgroup of G generated by S.

» Theorem 6. Let R = {R;, Ra,..., R} be a set of unitary 2-qudit gates, each one a
composition

R =(Q®Q)D;P(C;®C)(Qe Q)™ (3)

of computable, invertible operators. Suppose that for each i, D; is a diagonal unitary, C;
is a d X d permutation matriz, and P, = I or P, = T. Finally, let Q satisfy property
(G) where G = {{C;}F_,) < S4. Then there exists a classical probabilistic algorithm which,
given an n-qudit R-circuit U and strings x,z € [d|™ and € > 0, outputs a number r in time
poly(n, |U|,1/€) such that |r — (x|U|z)| < € except with probability exponentially small in n
and 1/e.

Proof. Set S; = D;P;(C; ® C;). If we expand each R;-gate to turn U into a circuit made from
S;-gates and Q-gates, then all of the Q)-gates except the initial and final ones are cancelled,
as in the example below. We are thus left with a circuit of the form Q®"V(Q~1)®" where V
is an {S;}-circuit. We remark that, in this expanded form, the entire circuit is not necessarily
a proper quantum circuit, since ) might not be unitary. The circuit V', on the other hand,
is quantum since all of its gates are unitary.

S1

Before we proceed, note that a non-nearest-neighbor gate can be written as a nearest-neighbor
gate conjugated with a swap gate. We depict our gates as acting on nearest neighbors for
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convenience only, but this condition is not needed for the result to hold. The action of an

S;-gate on the j-th and (j 4 1)-st qudits of a computational basis state is simple to compute.
The values of the two qudits are both in [d] initially, and remain in [d] after the action of C;.

Second, these new values are either swapped or left unchanged by P;. Third, the D;-gate
adds an overall phase factor to the state. By composing these easily-computable actions,
the action of V' on a computational basis state can be computed in time polynomial in n,
d, and |V|. Up to phases, this action consists of permuting the n qudits by some 7 € S,,,
and applying some bijection f; : [d] — [d] to the initial value of the 7(j)-th qudit. Each
f; is a composition of C;-gates, in the order specified by V. Explicitly, for a basis state
ly) = |v1y2 - - - Yn), We write

V‘y> = ei¢(y)|flyﬂ1 @ f2y7r2 Q- fny7rn> )

where ¢(y) is the overall phase resulting from the D;-gates. For simplicity of notation, we

denoted the image of k£ under the permutation 7 as 7k, and wrote f;y.; in place of f;(yx;)-.

Next we consider the matrix element

(@|U]z) = («|(@Q)®"V(Q™H)™"[z) = Y («l@)*" VIy){yl(Q")*"|2)

y€ld]™
= Z ) H <£Ej\Q|ijwj><yj‘Qil‘Zj> .
y€ld)" J=1

We expand the matrix elements of @ and Q! in terms of magnitudes and phases:

<7"‘Q|5> = A(T7S)eia(r,s)
(rlQ~"|s) = B(r, s)e’ (")

where A, B, «, 8 are real-valued and r, s € [d]. Then

@@ V(Q)®"2) = > W T Alwy, fyx5)Blys, %)

ye[d]™ j=1
= Z e?W) HA(xj»fajyj)B(yj’zj)7
yeld™ J=1

1

where 0 = 77+ and

e(y) = ¢(y) + Z(a(xjvfajyj) + ﬂ(yﬁzj)) .

j=1
Now we introduce the following normalization factor:
n n
p= > [[ A fosu) By, z) = [ D Az, fo;k)B(k, 2) .
y€ld]™ j=1 Jj=1ke[d]

This allows us to define a natural probability distribution over [d]™ by

P(y) = - [T Ay, f2595)B(y;,25)
j=1

=
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which factorizes as P(y) = [[}_, P;(y;), where

A(zj, f;1)B(l, z5)

P(l) = e A, fojk)B(k, 25) |

Note that p and all of the P;(l) can be computed in time linear in n and d. By Lemma 3, we
can efficiently sample from [d]™ according to P, with error exponentially small in n.

In order to estimate (z|U|z), sample repeatedly from this distribution, obtaining outcomes
£(j) € [d]™ for j € {1,2,...} and output the average of the random variables X, :=
pexp(if(&(4))). Observe that, for each j,

EX; = > pe® P P(z) = (2|U]2).
z€[d]™

To control the absolute value, recall that f,; is a composition of the permutation matrices C,
and is thus an element of ({C;}¥ ;) < S,. Since Q satisfies property (({C;}F_,)), we have

2 n
< Hl2 <1.
j=1

112 = 1012 = T| 3 Alay. k) Bk, 2)
]

Jj=1 keld

by Cauchy-Schwarz, for each j. Now set S(r) = Z§=1 X;/r. By Lemma 4, for r > 8n/e® we
have
Pr[|S(r) — (z|U|z)| > €] < 4exp(—re®/8) < dexp(—n/e).

<

An immediate corollary is that, for R as in the theorem, Z(R) is in PromiseBPP. We will
also need the following simple result about simulating circuits constructed from conjugated
Clifford gates.

» Theorem 7. Let S € Co, and R = (Q ® Q)S(Q ® Q) where Q is a single-qubit gate.
Let U be a {R}-circuit on n qubits, M a Hermitian operator on O(log(n)) qubits, and
V), |¢) arbitrary n-qubit product states. Then (Y|UT(M @ I)U|¢) can be computed exactly
in O(poly(n)) classical time.

Proof. We first apply the procedure from (4) as before, and write
U=Q®v(@h®"

where V' is described by a circuit consisting only of .S gates. The unitary operator implemented
by V is an element of C,,. Now let M be a Hermitian operator on m = clog(n) qubits, and
suppose for simplicity that it acts only on the first m qubits. Let I denote the identity
operator on the (m + 1)st through nth qubits. We write

<¢‘UT(M®[)U‘¢> — <1/J|Q®nVTQT®”(M® I)Q®HVQT®”|¢)>
= @IQ®" V(M @ DV QT®"|g),

where M’ = Q¥m™MQI®™.

As discussed earlier, a basis for the space of Hermitian operators on m qubits is the
m-qubit Pauli group P,,, which has size O(poly(n)). The expansion of M’ in that basis can
be computed in polynomial time by basic linear algebra. Embedding the first m qubits into
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all n qubits gives the obvious embedding of P, into P,, and this also gives (the same, still
polynomial-size) expansion of M’ into n-qubit Paulis. We write

M = Z O .

0EPnNPm

We emphasize that this is a sum over polynomially many terms, and that each coefficient
can be calculated from knowledge of M and @ in polynomial time. Moreover, since V is a
Clifford circuit, its conjugation action o + " := VToV on a Pauli group element o € P,, is
easily computed by direct gate-by-gate matrix multiplication (see, e.g., [11]).

We now return to the main calculation, to see that

W|UN M @ IU|¢) = ($|Q®"VI(M' @ I)VQT™"|¢)

> @ VieV QI |g)

cEPRNPm

S @ @lQe Q1®"¢)

cEP,NPm

= > a [ @WlQo) Q).
=1

cEP,NPm, J

The sum and product in the final expression are both of polynomial size, and each term in
the product can be computed in constant time. <

4  Qubit solutions to Yang-Baxter

4.1 The four solution families

Hietarinta classified all solutions to the Yang-Baxter equation in the qubit (i.e., 4 x 4)

case [12]. The qubit solutions which are also unitary operators were identified by Dye [5].

All of these are of the form

R=kQ®Q)ST(Q®Q)™" (5)

where k is a unit-norm scalar, T' is the swap gate, and

a b
=(¢ 4
is an invertible matrix. The trivial solution is S =T which implies R = kI. There are four

nontrivial solution families, depending on the possible values taken by S, which are listed
below, along with the required conditions on the matrix entries.

100 0
o p oo o
S q 0 1=|pl=lg|=Ir|; c=—ab/d
000 r
000 p -
0010 (bb + dd)(ab + &d) _
52 = = = =;q9=1/p;c# —ab/d
i 0100 P (aa + cc)(ab + cd) ¢=1/pic# /
g 0.0 0
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000 p i
0010 _ (dd)?  _ (ad)? -
S: = M = —_—- :1' :—bd
5=10 1 0 0 PP = (a1 (dd)27|PQ\ ; c=—ab/
g 0 0 0
1 0 1
1 0O 1 1 0 =, 3
S4_ﬁ 0 1 -1 0 |a|—|d|,c_—ab/d.
-1 0 0 1

For j =1,2,3,4, let R; be the Yang-baxter operator (5) resulting from choosing S = S;.

4.2 Families one, two and three are unlikely to be universal

We will show that Theorem 6 applies to the single-element gate sets {R1}, {R2}, and {Rs}.
We assume that all of the above matrix entries are exactly computable in constant time via
a classical algorithm.

The gate Ry has the form (3) where C; = I, P, =T, and D; = kS;. It remains to check
that @ satisfies property (G) where G is the trivial group consisting only of the identity; this

18 Conﬁrmed by Lemma 8 belOW.
f)
=

For the gate Ry, we set
and check that M®@M = Ss. It follows that Ry = kT (QMQ1®QMQ~1!) is not an entangling
gate. Since Ry is unitary, so is QM@Q~!. By the spectral theorem, there exist diagonal V' and
unitary U such that UVU ! = QMQ~'. Observe that Ry = (U @ U)k(V @ V)T(U @ U)~*
satisfies the conditions of Theorem 6.

For the gate R3, we first rewrite the matrices as follows. Set

—1/4 0
(P
N_<0 p“)

and Q' = QN ! and S; = (N ® N)S3(N ® N)~!. It’s not hard to check that
R3=k(Q®Q)S:T(Qe Q)™ =k(Q ®Q)ST(Q Q)" ,

and that Q' and S% satisfy the conditions of the third YBE solution family, with the additional
property that p = 1 and |g| = 1. Note further that S4(X ® X) is a diagonal unitary operator,

where
0 1
X_<1 0).

We now see that R is of the form (3) from Theorem 6, where C; = X, D; = kS5(X ® X),
and P = T. Tt remains to check that Q' satisfies property ({(X)), which is done in Lemma 9
below.

» Lemma 8. Let Q be an invertible 2 x 2 matrix defined by

a b
o=(2 1)

such that ¢ = —ab/d. Then Q satisfies property (I).
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Proof. Define the relevant matrices

b Ll
a= () ma et ( .
el 1d] jad=bel \Ie| [a

Note that a = 0 implies ¢ = 0, which would make ) non-invertible.
We compute each case separately. First let k =1=1.

alld| + [bl|c alld| + |b||ab/d|
AB s A g, — lalld bl _ lalld + [blab/d

lad — be| lad + bab/d|
Ldlalld? +[allb®) _ Jal(d? + ) _
|d|(Jadd 4 abb|) |a||dd + bb|

Next, let £ =1 =2, and we again get

c||b] + |d||a
Ag1B1a + Az Bag = |||ad|bc|||| =1

Now suppose k=1 and [ = 2.

la|[b] + |b]]al 2|al[b|

A11B1a + A12Bas = - b/d|

11812 12822 lad — be| lad + abb/d|
20allblld]  2b||d]

" ladd +abb| AP+ b2
It remains to note that
b1 + [df* — 2[]|d] = (6] - |d])* > 0.
Finally, we choose £k =2 and [ = 1.

clld| + |d||e 2lallb
A21B11 +A22321: | H | | H ‘ _ | ||| <1

lad —bc|]  |ad —be| = 7’

by two applications of ¢ = —ab/d and the previous case. |

» Lemma 9. Let Q be an invertible 2 x 2 matrix defined by

a b
o=(1 1),
such that ¢ = —ab/d and |a|? = |d|?. Then Q satisfies property (Ss).

Proof. Define the matrices A and B as in Lemma 8. The case of m equal to the trivial
permutation is handled by Lemma 8. We compute the remaining cases. Set 7 = (12) and
k=1=1. Then

allc| + |b||d aab/d| + |bd
A12311+A11321:|H‘ [blld| _ |aab/d| + |bd]

lad —bc|  |ad — abb/d|
_ |aab| + |bdd|  |aab| + |baa|  |ab| + |bal
" |add + abb|  |aad +abb|  |a]>+[b]?’

where we have applied the facts ¢ = —al_)/ d and aa = dd and a # 0. Now note that

|af? + (8% — (lab| + [bal) = |al* + [b]* — 2|allb] = (Ja] — [b])* > 0.
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Hence (|ab| + |ba|)/(|a|? + |b]?) < 1. For k =1 = 2, we again get

alle| + |bl|d
A22312+A21322=7| el + ol |§1-
lad — be|

Now set k =1 and [ = 2. Then
e e
lad —bc|  |ad + abb/d|

_1dI(la? + [B2) _ [di(lal® + [b2) _
|add 4 abb lal(|d]? + |b]?)

A12B12 + A11 B2

1.

Finally, for K =2 and [ = 1, write b = —¢d/a and calculate

[ N e o
lad — be| — |ad + dcc/al
_ lal(lel +1d?) _ lal(lel* +1d[*) _ 1
|daa + dec]| |d|(]c|? + |al?) '

AsoB11 + A21Boy =

To conclude, we have shown the following.

» Theorem 10. Let R € {R1, R2, R3} be a unitary solution to the Yang-Bazter equation on
qubits. Then Z({R}) is in PromiseBPP.

In particular, if one could perform (perhaps encoded) universal quantum computation with
these circuits then PromiseBQP = PromiseBPP. We can also formulate the lack of universality
for these solutions in the following terms.

» Theorem 11. Let R € {R;, R, R3} be a unitary solution to the Yang-Bazter equation on
qubits, and let p,, : B, — SU(2™) be the corresponding unitary representation of the braid
group. Then the image of p, is not dense in SU(2™) for any n > 2, unless PromiseBQP =
PromiseBPP.

Proof. (Sketch) For a contradiction, suppose there exists an n > 2 such that the image of
prn is dense. Let C' be an arbitrary m-qubit quantum circuit. We can assume without loss of
generality that C' only consists of 2-qubit gates acting on adjacent qubits, and that n is even.
For each of the m qubits, assign n/2 qubits from the space of p,,. By the density of the image
of pn, we can then simulate C' inside p;,, /2 gate-by-gate via the Solovay-Kitaev theorem.
Then we can use the classical algorithm from Theorem 6 to approximate the relevant matrix
entry of the resulting R-circuit, thus solving the PromiseBQP-hard problem of approximating
the corresponding entry of C. |

4.3 Family four is unlikely to be universal

Recall that the fourth solution family is of the form Ry = k(Q ® Q)S4T(Q ® Q). We begin
by demonstrating a Clifford circuit which is equal to the gate S,T'.

1 0 01
N FEE
Yo valo 11 0] Hzle{Z7]
-1 0 01
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We also note that, in this solution family, @ is a scaled unitary operator. To see this,
note that

2 2 1= 2 2
to la|® + [c] ab+ecd \ _ lal* + |c| 0 ~ (lal? + b2 10
@e (ab-i—cd b2 + |dJ? 0 P jap) = U EEO g
where we first applied the condition ¢ = —ab/d to the off-diagonal elements and the condition
la|? = |d|? to the diagonal ones; the last equality follows from combining these two conditions
to get |c[? = |b]2. Now set o = (|a|> + |b]?)"/? and Q; = a~'Q. Using the above, one easily
checks that Q; is unitary and that Q1 = Q™. It follows that

QEQAQ® Q)™ = (aQ1 ® aQ)A('Ql ® a™'Q]) = (Q1 ® Q1)A(Q1 ® Q1)

for any A. For us it will thus suffice to assume that @ is in fact unitary. This allows us to
apply Theorem 7 and get the following result.

» Theorem 12. Let U be a {R4}-circuit on n qubits, M a Hermitian operator on O(log(n))
qubits, and 1)), |¢) arbitrary n-qubit product states. Then (|UT(M @I)U|@) can be computed
exactly in O(poly(n)) classical time.

5 Some simple high-dimensional solutions

Finally, we list some simple unitary solution families to the Yang-Baxter equation that exist
in every dimension, and to which Theorem 6 applies. We begin by observing that, whenever
a 2-qudit gate S is a solution, then by (4) so is (Q ® Q)S(Q ® Q)~! for any 1-qudit gate Q.
For A, B € U(V), the operator T(A® B) is a solution to the Yang-Baxter equation if and
only if A and B commute. This is easily seen by following the wires in the circuits below.

If A and B do commute, then there’s a unitary change of basis Q on V such that Q~'AQ
and Q1 BQ are both diagonal. Therefore, Theorem 6 applies to T(A ® B), so any circuits
using this gate are classically simulable. Of course, this is not surprising, as they do not even
entangle the qudits.
More generally, suppose S € U(V ® V) is diagonal in the computational basis, and set
Aij = (ij|Slig) — for .5 € [d],
where d = dim V. Note that
Sp=Sel=F P, Ss=IeS=PS, I1eT=T7T.
keld] keld] keld]
where P, = ©ciqAril. We also have
Ss=IT)(Se(IeT)= TPT.
keld)
Substituting the above into the two sides of the algebraic Yang-Baxter equation (2), we get
P TPTS  and P STRTP
ke(d] ke(d]
Clearly, Py, and S are symmetric. Since (ab|T'|cd) = d4adpe = (cd|T|ab), so is T. By applying
the transpose to one of the two sides above, we see that S satisfies algebraic Yang-Baxter.
Thus ST is a solution to the YBE, one to which Theorem 6 clearly applies.
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A Appendix

We will now prove Lemmas 3 and 4.

Proof of Lemma 3. To sample from P;, flip m unbiased coins to get an integer 0 <1 < 2™,

Subdivide 2™ into intervals according to
2m = P;(0)2™ + P;(1)2™ + - - - + Pj(d — 1)2™

and output k if [ falls into the kth interval. Then the probability D;(k) with which you
output k satisfies |D;(k) — P;(k)| < 1/2™. Now do this for two indices, say 1 and 2 and note
that
|P1(k)Pa(l) — D1(k) D2 ()] = [PL(k) Po(l) — Dy(k)Da(l) + D1 (k) Po(l) — D1 (k) P(1))]
< |B()(Py (k) — Dy (k)| + D1 (B) (Bs(0) — DaD)|
< 2/2m

Extending this to the case of multiplying all n distributions together, we get |P(y) — D(y)| <

n/2™ for all y € [d]™. The total variation distance then satisfies
1 —-n
[P—D|=3 > |P(z) - D(x)| < 5— <2
Ie[d]"
so long as m > 3nlogd. |

Proof of Lemma 4. We expand the X into real and imaginary parts and apply the standard
bound. Set S, = > Re[X;]/n and S; = >, Im[X;]/n and p, = E[Re[X;]] and p; =
E[Im[X,]]. Note that |Re[X,]| < b and [Im[X]| < b. By the Chernoff-Hoeffding bound for
real-valued random variables [13], we have

Pr(S, — pr| > €/2] < 2exp (—ne/8b%) |
and likewise for the imaginary part. Taking the union bound, we have that
1S = pl =[S = pr +i(Si — )| < [Sp = pr| + 185 — pi| < €/2+€/2 =€

except with probability 4 exp (—ne?/8b%). <
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—— Abstract

While building a universal quantum computer remains challenging, devices of restricted power
such as the so-called one pure qubit model have attracted considerable attention. An important
step in the construction of these limited quantum computational devices is the understanding of
whether the verification of the computation within these models could be also performed in the
restricted scheme. Encoding via blindness (a cryptographic protocol for delegated computing)
has proven successful for the verification of universal quantum computation with a restricted
verifier. In this paper, we present the adaptation of this approach to the one pure qubit model,
and present the first feasible scheme for the verification of delegated one pure qubit model of
quantum computing.

1998 ACM Subject Classification Quantum computation theory, Cryptography, Model verifica-
tion and validation

Keywords and phrases Delegated Computing, Verification, Measurement-based Model

Digital Object Identifier 10.4230/LIPIcs. TQC.2014.176

1 Introduction

The physical realisation of quantum information processing requires the fulfilment of the
five criteria collated by DiVincenzo [13]. While enormous progress had been made in
realising them since, we are still some way from constructing a universal quantum computer.
This raises the question whether quantum advantages in computation are possible without
fulfilling one or more of DiVincenzo’s criteria. From a more foundational perspective, the
computational power of the intermediate models of computation are of great value and
interest in understanding the computational complexity of physical systems. Several such
models are known, including fermionic quantum computation [6], instantaneous quantum
computation [7], permutational quantum computation [21], and boson sampling [1].

Deeply entwined with the construction of a quantum information processor is the issue of
its verification. How do we convince ourselves that the output of a certain computation is
correct and obtained using quantum-enhanced means. Depending on a given computation,
one or both may be non-trivial. For instance, the correctness of the output of Shor’s factoring
algorithm [33] can be checked efficiently on a classical machine, but in general this is not
known to be possible for all problems solvable by a quantum computer. On the other hand,
by allowing a small degree of quantumness to the verifier [2, 18], or considering entangled
non-commuting provers [17], the verification problem has been solved for universal quantum
1@.) Theodoros Kapour.niotis, Elham Kasheﬁ, and Animesh Datta; GQG
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computation. However, not much attention has been given to verifying restricted models of
quantum-enhanced computation. It is in this direction that we endeavour to embark.

One of the earliest restricted models of quantum computation was proposed by Knill and
Laflamme, named ‘Deterministic Quantum Computation with One quantum bit (DQC1)’,
also referred to as the one pure qubit model [22]. It addresses the challenge of DiVincenzo’s
first criterion, that of preparing a pure quantum input state, usually the state of n separate
qubits in the computational basis state zero. Instead, in the DQC1 model, only one qubit is
prepared in a pure state (computational basis zero state) and the rest of the input qubits
exist in the maximally mixed state. This model corresponds to a noisier, more feasible
experimental setting and was initially motivated by liquid-state NMR proposals for quantum
computing. The DQC1 model was shown to be capable of estimating the coefficients of
the Pauli operator expansion efficiently. Following this, Shepherd defined the complexity
class ‘Bounded-error Quantum 1-pure-qubit Polynomial-time (BQ1P)’, to capture the power
of the DQC1 model [32], and proved that a special case of Pauli operator expansion, the
problem of estimating the normalised trace of a unitary matrix to be complete for this
class. This problem, and others that can be reduced to it, such as the estimation of the
value of the Jones polynomial (see Ref. [12] for more such connections), is interesting from

a complexity theoretical point of view since it has no known efficient classical algorithm.

Moreover they are not known to belong to the class NP, therefore the problem of verifying
the correctness of the result is non-trivial. More recently, it was shown that an ability to
simulate classically efficiently a slightly modified version of this model would lead to the
collapse of the polynomial hierarchy to the third level [29].

The approach of the Verifiable Universal Blind Quantum Computing (VUBQC) [18]
is based on the intermediate step of blind computing, a cryptographic protocol where a
restricted client runs the desired computation on a powerful server, such that the server does
not learn anything about the delegated computation. A protocol for universal blind quantum
computation with a client able to prepare only single qubits, based on Measurement-based
Quantum Computing (MBQC) [31] model was introduced in [8]. Here, we take the same
approach towards verification by first adapting this existing protocol for blind computing to
the DQC1 model. Thus, the first goal is to define what it means to have a DQC1 computation
in the MBQC setting. Fixing the input state to almost maximally mixed as it is done in
the circuit picture of the DQC1 model does not suffice since the required auxiliary qubits
for MBQC could potentially increase the number of pure qubits in the system by more
than a logarithmic amount . This adaptation is also necessary as almost all the optimal
schemes [2, 8, 15, 25, 4, 27, 28, 34, 23, 19] for the blind computation exploit the possibility
of adaptive computation based on the measurement, a freedom not allowed in the original
DQC1 model 2. The main results presented in this paper are the following.

We introduce a new definition of DQC1 computation within the MBQC framework, called
the DQC1-MBQC model 2, which captures the essential property of its original definition
in the circuit model. Moreover, we show that the original definition of complexity class
BQI1P is contained in DQC1-MBQC, where the latter is able to capture the process where
new qubits are introduced or traced out during the execution of the computation.

! Increasing the number of pure qubits in the input to the order of logarithmic in the size of the
computation is shown not to add extra power to the one pure qubit complexity class [32].

2 Ref. [26] does not require the server to use measurement-based quantum computing.

3 We use a different acronym than DQC1 to emphasis the structural distinction with the standard DQC1
model.
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We provide a sufficient condition for a graph state (underlying resource for an MBQC
computation [20]) to be usable within DQC1-MBQC. A direct consequence of this is that
the universal blind protocol, which satisfies this condition, can be directly adapted to the
setting where the server is a DQC1-MBQC machine and the client is able to send one
single qubit at a time.

Building on the blind protocol and adapting the methods presented in [18], a verification
protocol for the class DQC1-MBQC with a server restricted to DQC1-MBQC is given,
where the probability of the client being forced to accept an incorrect result can be
adjusted by setting the security parameter of the model. Since the protocol of [18] does
not satisfy the sufficient condition and hence not runnable in the DQC1-MBQC, an
alternative method is presented which also leads to different complexity results.

1.1 Preliminaries

We first introduce the notation necessary to describe a computation in MBQC [31, 11]. A
generic pattern, consists of a sequence of commands acting on qubits:
N;(|g)): Prepare the single auxiliary qubit 4 in the state |g);
E; j: Apply entangling operator controlled-Z to qubits ¢ and j;
M¢: Measure qubit ¢ in the basis {%(|O> + el(1)), %(|O> — e™|1))} followed by trace
out the measured qubit. The outcome of measuring qubit 7 is called result and is denoted
by si;
X7, 77 Apply a Pauli X or Z correction on qubit i depending on the result s; of the
measurement on the j-th qubit.
The corrections could be combined with measurements to perform ‘adaptive measurements’
denoted as **[M]% = Mi(fl)sm @Fs=T A pattern is formally defined by the choice of a finite
set V' of qubits, two not necessarily disjoint sets the input and the output, I C V and O C V
determining the pattern inputs and outputs, and a finite sequence of commands acting on V.

» Definition 1 ([10]). A pattern is said to be runnable if
(R0O) no command depends on an outcome not yet measured;
(R1) no command (except the preparation) acts on a measured or not yet prepared qubit;

(R2) a qubit is measured (prepared) if and only if it is not an output (input).

The entangling commands E; ; define an undirected graph over V referred to as (G, I, O).
Along with the pattern we define a partial order of measurements and a dependency function
d which is a partial function from O€ to P!, where P denotes the power set. Then, j € d(i)
if j gets a correction depending on the measurement outcome of ¢. In what follows, we will
focus on patterns that realise (strongly) deterministic computation, which means that the
pattern implements a unitary on the input up to a global phase. A sufficient condition on
the geometry of the graph state to allow unitary computation is given in [10, 9] and will be
used later in this paper. In what follows, x ~ y denotes that z is adjacent to y in G.

» Definition 2 ([10]). A flow (f, =) for a geometry (G, I, O) consists of a map f: O°+— I°

and a partial order < over V such that for all z € O°¢
(FO) z~ f(z);

(F1) z = f(a);

(F2) forall z,y:y+# z,y~ f(z) we have x < y.
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1.2 Main results
1.2.1 DQC1-MBQC

We define the class BQ1P formally as introduced by Shepherd [32], and then recast it into
the MBQC framework.

» Definition 3 (Bounded-error Quantum 1-pure-qubit Polynomial-time complexity class, [32]).

BQI1P is defined using a bounded-error uniform family of quantum circuits — DQC1. A DQC1
circuit takes as input a classical string @, of size n, which encodes a fixed choice of unitary
operators applied on a standard input state |0)(0| ® I,_1/2¥~L. The width of the circuit w
is polynomially bounded in n. Let @, (z) be the result of measuring the first qubit of the
final state of a DQCI1 circuit. A language in BQ1P is defined by the following rule:

VYa € L: Pr(Qn(a) =1) > % + 2q1n) (1)
Va ¢ L: Pr(Qn(a) = 1) < % - 2;”) 2)

for some polynomially bounded q(n).

An essential physical property of DQC1 that we mean to preserve in DQC1-MBQC is its
limited purity. To capture this we introduce the purity parameter:

m(p) = logy (Tr(p®)) +d, (3)

where d is the logarithm of the dimension of the state p. For a DQCI circuit with k£ pure
qubits, at each state of the computation the value of purity parameter 7 for that state
remains constant equal to k. In fact, Shepherd showed that the class BQ1P is not extended
by increasing the number of pure input qubits logarithmically. Thus, a purity that does not
scale too rapidly with the problem size still remains in the same complexity class.

A characterisation of MBQC patterns compatible with the idea of the DQC1 model as
introduced above is presented next. Any MBQC pattern is called DQC1-MBQC when there
exists a runnable rewriting of this pattern such that after every elementary operation (for
any possible branching of the pattern) the purity parameter m does not increase over a fixed
constant. We assume that the system at the beginning has only the input state and at the
end has only the output state.

We define a new complexity class that captures the idea of one pure qubit computation
in the MBQC model. This complexity class, that we name DQC1-MBQC, can be based on
any universal DQC1-MBQC resource pattern, which is defined analogously to the DQC1
circuits [32] as a pattern that can be adapted to execute any DQC1-MBQC pattern of
polynomial size. A particular example of such a resource, as we will present later, can
be built using the the brickwork state of [8] designed for the purpose of universal blind
quantum computing. The input to a universal pattern is the description of a computation
as a measurement angle vector and is used to classically control the measurements of the
MBQC pattern. The quantum input of the open graph is always fixed to a mostly maximally
mixed state, in correspondence to the DQC1 model.

» Definition 4. A language in DQC1-MBQC complexity class is defined based on a universal
DQC1-MBQC resource pattern P, that takes as input an angle vector a of size n and is
applied on the quantum state |+)(+| ® I,,_1/2%~!, w € O(n). A word a belongs to the
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language depending of the probabilities of the measurement outcome (R, (c)) of the first
output qubit of pattern P, which are defined identically to Definition 3:

Va e L: Pr(Rn(a) =1) > % + 2761”) (4)
Va & L: Pr(Rn(a) =1) < % - 27“1”) (5)

for some polynomially bounded r(n).
» Corollary 5. BQIP C DQC1-M@BC.

Proof. Any circuit description using a fixed set of gates can be efficiently translated into a
measurement pattern applicable on the brickwork state. A specific example of translating each
gate from the universal set {Hadamard, 7/8, c-NOT} to a ‘brick’ element of the brickwork
state is given in [8]. The quantum input state in the resulting measurement pattern is in the
almost-maximally-mixed state, therefore the pattern is a valid DQC1-MBQC pattern. <«

» Definition 6. An MBQC pattern is a DQC1-MBQC pattern if there is a runnable sequence
of commands where for every elementary command and measurement outcome, there exists a
fixed constant value ¢ such that the overall quantum state of the system (p; with dimension
d;) after the i*" operation satisfies the following relation

m(pi) < m(pin) +c, (6)

where p;,, is the quantum input of the pattern with dimension d;,, which is fixed to be the
product of ¢;,, (constant) pure qubits and a maximally mixed state of d;;,, — ¢;, qubits.

The above definition captures the essence of DQCI in that it maintains a low purity, high
entropy state in MBQC, in contrast to DiVincenzo’s first criterion. We derive a sufficient
condition (that is also constructive) for the open graph state leading to DQC1-MBQC,
capturing the universal blind quantum computing protocol as a special case. However, a
general characterisation and further structural link with determinism in MBQC [10, 9, 24] is
left as an open question for future work.

» Theorem 7. Any measurement pattern on an open graph state (G, I,0) with flow (f, <)
(as defined in Definition 2) and measurement angles o where either |I| = |O] or the flow
function is surjective and all auziliary preparations are on the (X —Y') plane represents a
DQC1-MBQC pattern.

The full details and the proof of this theorem is provided in Section 2.

1.2.2 Blindness

A direct consequence of Theorem 7 is that the Universal Blind Computing Protocol (UBQC)
introduced in [8] can be easily adapted to fit within the DQCI-MBQC class, since it is based
on an MBQC pattern on a graph state with surjective flow.

In the blind cryptographic setting a client (Alice) wants to delegate the execution of an
MBQC pattern to a more powerful server (Bob) and hide the information at the same time.
The UBQC protocol is based on the separation of the classical and quantum operations when
running an MBQC pattern. The client prepares some randomly rotated quantum states and
sends them to the server and from this point on the server executes the quantum operations
on them (entangling according to the graph and measuring) and the client calculates the
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measurement angles for the server and corrects the measurement outcomes she receives (to
undo the randomness and get the correct result).

To define blindness formally we allow Bob to deviate from the normal execution in any
possible way, and this is captured by modelling his behaviour during the protocol by an
arbitrary CPTP map. The main requirement for blindness is that for any input and averaged
over all possible choices of parameters by Alice, Bob’s final state can always be written as a

fixed CPTP map applied on his initial state, thus not offering any new knowledge to him.

This definition of stand-alone blindness was presented first in [14] and takes into account the
issue of prior knowledge.

» Definition 8 (Blindness). Let P be a protocol for delegated computation: Alice’s input is
a description of a computation on a quantum input, which she needs to perform with the aid
of Bob and return the correct quantum output. Let pap express the joint initial state of
Alice and Bob and o 4p their joint final state, when Bob is allowed to do any deviation from
the correct operation during the execution of P, averaged over all possible choices of random
parameters by Alice. The protocol P is blind iff

Voap € L(Hap),3E: L(Hp) = L(Hp), st. Tra(ca) =E(Tra(pas)) (7)

To adapt the original UBQC protocol into the DQC1-MBQC setting we change the order
of the operations so that the client does not send all the qubits to the server at the beginning,
but during the execution of the pattern, following a rewriting of the pattern that is consistent
with the purity requirement. The details are described in Section 2.

» Theorem 9. There exists a blind protocol for any DQC1-MBQC computation where the
client is restricted to BPP and the ability to prepare single qubits and the server is within

DQC1-MBQC.

1.2.3 Verification

In the verification cryptographic setting a client (Alice) wants to delegate a quantum
computation to a more powerful server (Bob) and accept if the result is correct or reject if
the result is incorrect (server is behaving dishonestly). The main idea of the original protocol
of [18] is to test Bob’s honesty by hiding a trap qubit among the others in the resource state
sent to him by Alice. Blindness means that Bob cannot learn the position of the trap, nor
its state. During the execution of the pattern Bob is asked to measure this trap qubit and
report the result to Alice. If Bob is honest this measurement gives a deterministic result,
which can be verified by Alice. Bob being dishonest means that Alice will receive the wrong
result with no-zero probability. Depending on that result, Alice accepts or rejects the final
output received by Bob.

To define verifiability formally we need to establish an important difference with the
original protocol [18]: In a DQC1-MBQC pattern the quantum input is in a mixed state as
opposed to a pure state. Reverting to the original definition that derives from the quantum
authentication schemes in [3] we need to add an extra reference system R, that is used to
purify the mixed input that exists in Alice’s private system A. The assumption is that Bob
does not learn anything about the reference system (ex. Alice is provided with the quantum
input from a third trusted party which also holds the purification). Bob is allowed to choose
any possible cheating strategy and our goal is to minimise the probability of Alice accepting
the incorrect output of the computation at the end of the protocol.
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» Definition 10. A protocol for delegated computation is e-verifiable (0 < e < 1) if for any
choice of Bob’s strategy j, it holds that for any input of Alice:

TI'(Z p(y)P)i;correctBj(V)) § € (8)

where Bj(v) is the state of Alice’s system A together with the purification system R at
the end of the run of the protocol, for choice of Alice’s random parameters v and Bob’s
strategy j. If Bob is honest we denote this state by By(v). Let P, be the projection onto
the orthogonal complement of the the correct (purified) quantum output. Then,

ilrllcorrect = PJ— ® |n;’c><,’7th (9)
where |n;°) is a state that indicates if Alice accept or reject the result (see Section 3).

A verification protocol should also be correct, which means that in case Bob is honest
Alice’s state at the end of the run of the protocol is the correct output of the computation
and an extra qubit set in the accept state (this property is also referred to as completeness).

In VUBQC, in order to adjust the parameter € to any arbitrary value between 0 and 1 (a
technique called probability amplification), one needs to add polynomially many trap qubits
within the MBQC pattern. Specifically, adding polynomially many traps and incorporating
the pattern into a fault tolerance scheme that corrects d errors, gives parameter € exponentially
small on d. As we explain in Section 3, adding polynomially many traps, following the same
scheme as VUBQC, creates a pattern that is not a DQC1-MBQC pattern. Therefore to
achieve an amplification of the error probability we need to develop a modified trapping
scheme.

In Section 3 we give a verification protocol for DQC1-MBQC problems where, instead
of running the pattern once, s computations of the same size are run in series, one being
the actual computation and the others being trap computations. A similar approach is also
considered for the restricted setting of the photonic implementation of VUBQC [5] and a
verification protocol of the entanglement states [30]. In our setting each trap computation
contains an isolated trap injected in a random position between the qubits of the pattern.
We prove that in this verification protocol the server is within DQC1-MBQC complexity
class, while the client is within BPP together with single qubit preparations (as in the
original VUBQC). Moreover in this verification protocol we achieve the goal of probability
amplification by choosing the appropriate value for parameter s.

» Theorem 11. There exists a correct e-verifiable protocol where the client is restricted to

BPP and the ability to prepare single qubits and the server is within DQCI1-MBQC. Using

O(sm) qubits and O(sm) time steps, where m is the size of the input computation, we have:
_ 2m

€= (10)

2 DQC1-MBQC and Blindness

In this section we give a constructive proof of our main theorem for DQC1-MBQC and show
how to construct a blind protocol as a consequence. The first step for proving Theorem 7 is
the following rewriting scheme for patterns with flow.

» Lemma 12. Any measurement pattern on an open graph state (G, I,0) with flow (f, <)
(as defined in Definition 2) and measurement angles a where either |I| = |O| or the flow
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f(k,)

Figure 1 Qubit 4 gets an X correction from ks and Z corrections from f~'(k2) and f~'(k1).

Qubits on the left of the dashed line are in the past of i. Qubit ki is created at timestep f~* (k1)
which is before timestep 4 from flow condition (F2).

function is surjective can be rewritten as

=<
S?LSETT | 8714 rai15
P, = H X' Z, H [Mi ]S1 H E; Nf(i)(‘+>) (11)
icO icOe {k:k~i,k>=i}

where SP = syp-1¢;) for i € I¢, else SY =0 and S} = Z{k:kelc,kwi,i;éf—l(k)} Sp-1(k) mod 2.
The above pattern is runnable and implements the following unitary

Us.1.0a = 21012 ( 11 <+a,i|z-) EGNre (12)

1€0°
where Eg and Ny represent the global entangling operator and global preparation respectively.

Proof. First we need to prove that P, is runnable (cf. Definition 1). For condition (RO)
we make the following observations: At step i, for 7 € I, we need the result sy-1(;) which
is generated at step f~1(i), where f~1(i) < i from flow condition (F1). We also need the
results s -1 (g, for {k : k € I°,k ~i,i # f~*(k)}, which are generated at step f~!(k), where
f71(k) < i from flow condition (F2). Thus, condition (R0) is satisfied (see Figure 1 for a
particular example). For condition (R1) we make the following observations: At step i, for
i € O°, the entangling operator and measurement operator act on qubit ¢ which either belongs
in the set of inputs I or is created at step f~'(i), where f=1(i) < i from flow condition
(F1). Entangling operator acts also on qubits {k: k ~ i,k = i}. If k = f(i) then qubit % is
created at the same step (i) by operator Ny(;). If k& # f(i) then qubit k is either an input
or it is created at step f~1(k), and we have by flow condition (F2): i is a neighbour of k
and i # f~1(k), thus f~1(k) < i (Figure 1). Final correction operators act on qubits that
belong to the set of outputs O, which either belong also to the set of inputs I or are created
at steps {f (i) : i € O}, where Vi € O\ I, f~1(i) < i from flow condition (F1). Moreover
they have not yet been measured since i ¢ OC. Thus, condition (R1) is satisfied. It is easy
to see that condition (R2) is satisfied.

Next we prove that the pattern of Equation 11 is implementing the unitary operation
of Equation 12 when applied on an open graph with the properties described above. Since
condition (R1) is satisfied, all preparation operators trivially commute with all previous
operators

<
ST _S% T z L gm
P, = H Xi i Zz‘ i H S; [Mial]Sw H Ei,k: Niye .
i€O i€0e {k:k~i,k>i}
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Figure 2 Brickwork state.

Each entangling operator commutes with all previous measurements since it is applied on
qubits with indices = 1.

P, =[xz H( [M]5 )EgNIc

1€O0 i€0°

We can decompose the conditional measurements into simple measurements and corrections

=
Po =] x5 25 T] (M0 X7 2%7) BoNie.
€0 1€0°

By rearranging the order of correction operators we take

=
P, = H X5 H Z3M" | EgNie .
o {k:k~f (i), k#i}

The above equation implements the unitary operation presented in the lemma (Equation 12)
as proved in [10]. <

Next, we notice that there exist many universal families of open graph states satisfying the
requirements of the above lemma. One such example is the brickwork graph state originally
defined in [8]. In this graph state (Figure 2), the subset of vertices of the first column
correspond to the input qubits I and the subset of vertices of the final column correspond to
the output qubits O. This graph state has flow function f((7,7)) = (¢,7+1) and the following
partial order for measuring the qubits: {(1,1),(2,1),...,(w,1)} <{(1,2),(2,2),...,(w,2)} <

.<{1,d-1),(2,d-1),...,(w,d — 1)}, where w is the width and d is the depth of the
graph and hence from Lemma 12 we obtain the following corollary.

» Corollary 13. Any computation over the brickwork open graph state G with qubit index
(i <w,j <d) can be rewritten as follows.

i i, - - z a 1,7 SI .
a*Hdef)Z(z(dd HH [ ((j” i) II  Eopes | Nojen (13)
j=li=1 {k,l:(k,1)~(4,5),
k>i0>5}
where

Sé,j) = 5(i,j—1) forj>1, else Sé‘,n =0, and

S(Zi’j) = Z S(ki—1) mod 2 for j > 2, else S(ZM) =0.
{kal:(k»l)N(i7j)vl§j}
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We show that patterns defined in Lemma 12 are within the framework of Definition 6
hence obtaining a sufficient condition for DQC1-MBQC.

» Theorem 1. Any measurement pattern that can be rewritten in the form of Equation 11
represents a DQC1-MBQC pattern.

Proof. A first general observation about the purity parameter 7 is that adding a new pure
qubit ¢ to state p means that 7 increases by unity

Togo = logs Tr((p® 0)?) +d + 1 = log, Tr(p*)Tr(0?) +d + 1 =7, + 1.

Additionally, applying any unitary U does not change the purity parameter m of the system
since Tr((UpU")?) = Tr(p?) and dimension remains the same.

Returning to Equation 11, we notice that for every step i € O¢ of the product the total
computation performed corresponds mathematically to the following: On the qubit tagged
with position ¢, a J(a};) unitary gate is applied (where a; is an angle that depends on a; and
previous measurement results) up to a specific Pauli correction (depending on the known
measurement result) and some specific Pauli corrections on the its entangled neighbours
(again depending on the measurement result). At the end the qubit is tagged with position
f(@) (where f is the flow function). Since this mathematically equivalent computation is a
unitary and the dimension of the system remains the same (there is only a change of position
tags) we conclude that each step ¢ € O° does not increase the purity parameter of the system.
To finish the proof we need to ensure that the individual operations within each step ¢ € O°
and for ¢ € O do not increase the purity parameter by more than a constant (and since there
is only a constant number of operations within each step this does not increase the purity at
any point more than constant). This is true since all these operations apply on (or add or
trace over) a constant number of qubits. <

Building on this result, we can translate the UBQC protocol of [8] (and in fact many
other existing protocols) to allow the blind execution of any DQC1-MBQC computation,
where the server is restricted to DQC1-MBQC complexity class. The UBQC protocol is
based on the brickwork graph state described above. Alice prepares all the qubits of the
graph state, adding a random rotation around the (X,Y") plane to each one of them: |+,),
where 0; is chosen at random from the set A = {0,7/4,7/2,3n/4, 7,57 /5,37 /2, 7w /4} and
sends them to Bob, who entangles them according to the graph. The protocol then follows
the partial order given by the flow: Alice calculates the corrected measurement angle o for
each qubit using previous measurement results according to the flow dependences. She sends
to Bob measurement angle d; = o + 0; + r;m, using an extra random bit r;. Bob measures
according to d;, reports the result back to Alice who corrects it by XOR-ing with r;. In the
case of quantum output, the final layer is sent to Alice and is also corrected according to the
flow dependences by applying the corresponding Pauli operators.

Since the brickwork graph state satisfies the requirements of Theorem 7 we can adapt the
Universal Blind Quantum Computing protocol by making Alice and Bob follow the order of
Equation 13 and operate on input |[+)(+| ® L,_1/2%~1. A detailed description is given in
Protocol 1.

» Theorem 4. Protocol 1 is correct.

Proof. Correctness comes from the fact that what Alice and Bob jointly compute is mathe-
matically equivalent to performing the pattern of Equation 13 on input |+){+|® I,_1/2%~ L.
The argument is the same as in the original universal blind quantum computing protocol [8]
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Protocol 1 Blind BQ1P protocol

Alice’s input:
A vector of angles @ = (a11,...,0w,q), where a;; comes from the set A =
{0,7/4,27/4,...,7r/4}, that when plugged in the measurement pattern P, of Equa-
tion 13 applied on the brickwork state, implements the desired computation. This
computation is applied on a fixed input state |+){+| ® I,,_1/2¥ L.

Alice’s output:

The top output qubit (qubit in position (1,d)).

The protocol

1. Alice picks a random angle 0; ; € A, prepares one pure qubit in state R,(61,1)|+) and
sends it to Bob who tags it as qubit (1,1).
2. Bob prepares the rest of input state (qubits (2,1),...,(w,1)) in the maximally mixed
state I,,_1/2%~ %
3. Alice and Bob execute the rest of the computation in rounds. For j =1 to d — 1 and for
i1=1tow
a. Alice’s preparation
i. Alice picks a random angle 0; ;11 € A.
ii. Alice prepares one pure qubit in state R.(6; j11)|+)-
iii. Alice sends it to Bob. Bob tags it as qubit (¢,j + 1).
b. Entanglement and measurement

i. Bob performs the entangling operator(s):

I1 Ei gy, k.0

{k,l:(k, 1)~ (4,5),k>4,0>5}

ii. Bob performs the rest of the computation using classical help from Alice:
A. Alice computes the corrected measurement angle a; ; = (—1)5% a;j + S7,m.
B. Alice chooses a random bit 7; ; and computes 0; ; = a; ; + 0; j + 75 ;7.
C. Alice transmits 6; ; to Bob.
D. Bob performs operation Mf T which measures and traces over the qubit (4, 7)
and retrieves result b; ;.
E. Bob transmits b; ; to Alice.
F. Alice updates the result to s; ; = b; ; +r;; mod 2.
4. Bob sends to Alice the final layer of qubits, Alice performs the required corrections and

outputs the result.
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repeated here for completeness. Firstly, since entangling operators commute with R, oper-
ators, preparing the pure qubits in a rotated state does not change the underlying graph
state; only the phase of each qubit is locally changed, and it is as if Bob had performed the
R, rotation after the entanglement. Secondly, since a measurement in the |+,),|—,) basis
on a state |¢) is the same as a measurement in the |4+444),|—at0) basis on R.(6)|¢), and
since § = a’ + 6 + wr , if r = 0, Bob’s measurement has the same effect as Alice’s target
measurement; if » = 1, all Alice needs to do is flip the outcome. <

Note that Protocol 1 can be trivially simplified by omitting all the measurements that
are applied on maximally mixed states (i.e. all measurements applied on qubits in rows 2 to
w from the beginning of the computation until each one is entangled with a non-maximally
mixed qubit). However this does not give any substantial improvement in the complexity of
the protocol.

» Theorem 5. Protocol 1 is blind.

(Proof Sketch). A detailed proof is provided in Appendix A. Intuitively, rotation by angle
0;,; serves the purpose of hiding the actual measurement angle, while rotation by r; ;7
hides the result of measuring the quantum state. This proof is consistent with definition of
blindness based on the relation of Bob’s system to Alice’s system which takes into account
prior knowledge of the secret and is a good indicator that blindness can be composable
[14]. <

Regarding the complexity of the protocol, Alice needs to pick a polynomially large
number of random bits and perform polynomially large number of modulo additions that is
to say Alice classical computation is restricted to the class BPP. However Alice’s quantum
requirement is only to prepare single qubits, she has access to no quantum memory or
quantum operation. Therefore assuming BQ1P ¢ BPP suggests Alice’s quantum power is
more restricted than BQ1P and hence DQC1-MBQC. On the other hand, Bob performs a
pattern of the form given in Equation 13, with the difference that instead of preparing the
pure qubits himself, he receives the pure qubits through the quantum channel that connects
him with Alice. Also, the qubits are not prepared in state |+), but in some state on the
(X,Y) plane, but this doesn’t alter the reasoning in the complexity proofs. Thus, Bob has
computational power that is within the DQC1-MBQC complexity class according to the
Corollary 13 and Theorem 7.

3 Verification

VBQC protocol is based on the ability to hide a trap qubit inside the graph state while not
affecting the correct execution of the pattern. Both the trap qubit and the qubits which
participate in the actual computation are prepared in the (X,Y) plane of the Bloch sphere.
To keep them disentangled, some qubits (called dummy) prepared in the computational basis
{]0),]1)}, are injected between them. Being able to choose between the two states is essential
for blindness (Theorem 4 in [18]). In particular, if a dummy qubit is in state |0), applying
the entangling operator ¢Z between this qubit and a qubit prepared on the (X,Y) plane
has no effect. If a dummy qubit is in state |1) then applying ¢Z will introduce a Pauli Z
rotation on the qubit prepared on the (X,Y") plane. This effect can be cancelled by Alice in
advance, by introducing a Pauli Z rotation on all the neighbours of |1)’s when preparing the
initial state.

187

TQC’14



188

Blindness and Verification of Quantum Computation with One Pure Qubit

G"
[+><+ | @ . * .
2 =
/2 = .
G" G'a
2 @ : - . 2 = . .
o o L o3 ] O {a3 2 ¥ o
12 = - . & » o G < & o

Figure 3 Let G’ be the graph which consists of s isolated brickwork graphs (each denoted as
G?), each of the same dimensions required for the desired computation. An example construction
with s = 3 and one trap per graph together with a small brickwork state for computation is given
above. Black vertices correspond to auxiliary qubits prepared on the (X — Y') plane or mixed state
when they are inputs (inside square), star vertices correspond to trap qubits and white vertices to
auxiliary qubits prepared in the computational basis. Edges represent entangling operators, dashed
where entangling has no effect (except of local rotations).

In the simplest version of VUBQC, a single trap, prepared in state |+¢,), where 6 is
chosen at random from the angles set A (defined above) and placed at position ¢, chosen
at random between all the vertices of the open graph state (G, I,0). During the execution
of the pattern, if ¢ ¢ O, Bob is asked to measure qubit ¢ with angle 6; + r7 and return the
classical result b; to Alice. If by = ry Alice sets an indicator bit to state acc (which means
that this computation is accepted), otherwise she sets it to rej (computation is rejected). If
t € O, Alice herself measures the trap qubit and sets the indicator qubit accordingly. This
version of the protocol is proven to be correct and e-verifiable, with ¢ = (m — 1)/m, where m
is the size of the computation.

A generalisation of this technique which allows for arbitrary selection of parameter ¢ is
also presented in [18]. By allowing for a polynomial number of traps to be injected in the
graph state and adapting the computation inside a fault tolerant scheme with parameter d
one can have e inversely exponential to d. The question is whether this amplification method
can also be used to design a verification protocol for DQC1-MBQC with arbitrary small e.
Unfortunately the underlying graph state used by this protocol does not have flow and not
all qubits are prepared in the (X,Y’) plane, so that one can not apply Theorem 7 to get a
compatible rewriting of the pattern. Moreover, having the requirement that we should be
able to place every trap qubit (which is a pure qubit) at any position in the graph, means
that there exist patterns that will never be possible to be rewritten to satisfy the purity
requirement. This leads us to seek a different approach for probability amplification for
verification in the DQC1-MBQC model.

Instead of placing a polynomial number of isolated traps within the same graph, which
is also used to perform the actual computation, we utilise s isolated brickwork subgraphs,
one used for the computation and the rest being trap subgraphs (see Figure 3). Therefore
at the beginning of the protocol, Alice chooses random parameter t,, which denotes which
graph will be the computational subgraph, and for each of the remaining trap subgraphs ¢,
she chooses a random position ¢; to hide one isolated trap. The rest of each trap subgraph
will be a trivial computation (all measurement angles set to 0) on a totally mixed state,
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and a selected set of dummy qubits are placed to isolate this computation from the trap.

Computation subgraph and trap subgraphs are of the same size, and by taking advantage
of the blindness of the protocol, Bob cannot distinguish between them. Therefore, to be
able to cheat, he needs to deviate from the correct operation only during the execution on
the computational subgraph and never deviate while operating on any of the traps. This
gives the desirable ¢ parameter that will be proved later. The full description of protocol
is given in Protocol 2. Each isolated pattern k is executed separately and according to the

DCQ1-MBQC rewriting on the brickwork state given in Equation 13 in the blind setting.

Pre-rotations on the neighbours of dummy qubits guarantee that the computation is not
affected by the choice of dummies as described before. To prove the complexity of the
protocol we need to notice that although the graph used satisfies the conditions of Theorem 7,
the existence of the dummy qubits prepared in the computational basis creates the need of a
new proof.

» Theorem 6. The computational power of Bob in Protocol 2 is within DQC1-MBQC.

Proof. Note that the s patterns are executed in series and Bob does not keep any qubits
between executions. The inputs to these patterns are almost maximally mixed, in accordance
with the purity requirement and this ‘mixedness’ propagates through both computational
and trap subgraphs. For the computational subgraph (which is not entangled with the rest)
the reasoning of the proof of Theorem 7 applies, since this subgraph satisfies the sufficient
conditions and no dummy qubits are used. In the case of a trap subgraph k consider first
those operations that apply on the isolated trap and dummy subgraph only. Then for each
step (4, 7)x of the main iteration of the protocol (where (i, j) is a trap or a dummy) a new
pure qubit is sent to Bob, which increases the purity parameter by 1. Entangling will not
have any effect on the purity parameter. While the measurement does not increase the
purity of the qubit since it was already pure (dummy or trap remain always pure through the
computation), and tracing out the resulting qubit will decrease the purity by 1. Thus, the
whole step will not change the purity. On the other hand, for the remaining operations the
reasoning of the proof of Theorem 7 goes through, since this subgraph satisfies the sufficient
conditions. Also operations that apply on both subgraphs are all unitaries therefore they do
not affect purity. <

Using the definition of verifiability given in Definition 10 we prove the main theorem for
the existence of a correct and verifiable DQC1-MBQC protocol (Theorem 11). The full proof
is given in Appendix B, while here we describe the main steps.

Proof of Theorem 11 (Sketch). Correctness of Protocol 2 comes from the fact that the
computational subgraph is disentangled from the rest of the computation and if Bob performs
the predefined operations, from the correctness of the blind protocol Alice will receive the
correct output. Also, in this case, (and since the traps are corrected to cancel the effect of
their entanglement with their neighbouring dummies) the measurement of the traps will give
the expected result and Alice will accept the computation.

The proof of verifiability follows the same general methodology of the proof of the original
VUBQC protocol [18], except the last part which contains the counting arguments. For the
rest we use single indexing for the qubits, where subgraph G} consists of m qubits indexed
(i —1) + 1 to ém. Therefore the total number of qubits in the protocol is sm. Parameter n
represents the size of the input of each subgraph (parameter w in the protocol).

Based on Definition 10 we need to bound the probability of the (purified) output collapsing
onto the wrong subspace and accepting that result. To explicitly write the final state B;(v)
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Protocol 2 Verifiable DQC1-MBQC protocol with s — 1 trap computations

Alice’s input:
An angle vector @ = (a11,...,Quw,d-1), where a;; comes from the set A =
{0,7/4,27/4,..., 7 /4}, that, when plugged in the measurement pattern P, of Equa-
tion 13 on the brickwork open graph state G of dimension (w,d) and flow (f, <), it
implements the desired computation on fixed input |+)(+| ® I,,_1/2% L.

Alice’s output:

The top output qubit of G (qubit in position (1,d) in G) together with a 1-bit, named
acc, that indicates if the result is accepted or not.

The protocol

Preparation steps. Alice picks ¢, at random from {1,...,s}. Let G’ be the graph which
consists of s isolated brickwork graphs, each of the dimension the same as G. Then the
tg-th isolated graph (named G;g) will be the computational subgraph for this run of the
protocol.

Alice maps the measurement angles of the computational subgraph Ggg to angles of graph

G: a’th\th = a and appropriately set the dependency sets S* and S* for all the vertices

of G} (according to the standard flow), while for the rest of the vertices (graph G"\ G} )

the sets S* and S* are empty.

For k =1 to s except t4:

1. Alice chooses one random vertex tj, = (t5,t,)r among all vertices of G, for placing
the trap.

2. By GY,’s geometry, vertex (t,t,) may be connected by a vertical edge to vertex (,,t,),
where #/, represents either ¢, + 1 or t; — 1. We add in D (set of dummies) all vertices
of rows t,, t,, (if it exists) of G, except the trap itself.

3. All elements of a’Gk are mapped to 0.

Alice chooses random variables 8¢\ p, each uniformly at random from A.

Alice chooses random variables ¢ and dp, each uniformly at random from {0, 1}.

For k=1 to s:

1. Initial step. If k = ¢, then: Let (1,1); be the position of the top input qubit in Gj..
Alice prepares the following states and sends them to Bob:

(LD o, )
V(i, Dk ¢ {(1, 1)} 1/2

Otherwise: Alice prepares the following states and sends them to Bob:
V(i, 1)k eD ‘d(i,l)k>

y d'm
(@D =t impemne~( e mpeeny £ +e(i,1)k>

V(i, g ¢ {D,tr} 1/2




T. Kapourniotis, E. Kashefi, and A. Datta

Protocol 2 (cont’d)

2. Main lteration. For j=1tod—1, fori =1 to w:
a. Alice’s preparation

i. Alice prepares one pure qubit in one of the following states, depending on
(ij+ 1k €D | g+ 1))
. d(m
7+ Dk D Tl ime~(ijst)ymieeny 270
ii. Alice sends it to Bob. Bob labels it as qubit (i,j + 1)g.

b. Entanglement and measurement

+9(i,j+1)k>

i. Bob performs the entangling operator(s):

H E(i’j)k»(mvl)k

{m,l:(m,D) e~ (i), m=4,025}

ii. Bob performs the rest of the computation using classical help from Alice:

A. Alice computes the corrected measurement angle aZ’i = (_1)3'@,:')1« a’(i et

S% . m.

fice' 1 le 8¢y, = al; o +0
B. Alice computes actual measurement angle )k = Qi) + 03,5 T 76T
C. Alice transmits d(; ;), to Bob.
0i,j . .

D. Bob performs operation M, (l.( ];Z" which measures and traces over the qubit

(i,7)r and retrieves result b, ;), .
E. Bob transmits b, ;), to Alice.

F. Alice updates the result to s(; j), = b j), + 7 ), mod 2.

3. Bob sends the final layer to Alice and Alice applies the final corrections if needed (only
in round t4).

4. If the trap qubit is within the qubits received, Alice measures it with angle &;, =
O¢, + ¢, to obtain by, . Also, Alice discards all qubits received by Bob in this round
except qubit (1,d);, .

Alice outputs qubit in position (1,d);, and sets bit acc to 1 if bg, = ry, for all k.
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we need to define the following notations. Alice’s chosen random parameters are denoted
collectively by v, a subset of those are related to the traps: vy including t4, tx’s and 6;,’s
for k€ {1,...,s}\ t4. Also vc = {v \ vr}. The projection onto the correct state for each
trap ty is denoted by ’nfkT>, where ’nfkT> = ’+9tk> when ¢, € O, and |77£’,€T> = |ry, ) otherwise
(since the trap has been already measured). C,. denotes the Pauli operators that map the
output state of the computational subgraph to the correct one. ¢, is used to compactly deal
with the fact that in the protocol each measured qubit 7 is decrypted by XOR-ing them with
r;, except for the trap qubits which remain uncorrected: Vk : (¢.)t, = 0. pmy denotes the
density matrix representing the total quantum state received by Bob from Alice for each
round k of the protocol. A special case is the ¢xth round where ppsy represents the total state
received by Bob together with its purification (not known to Bob). The classical information
received by Bob at each elementary step ¢ (measurement angles) are represented by |d;)’s

We allow Bob to have an arbitrary deviation strategy j, at each elementary step ¢ which
is represented as CPTP map 55 , followed by a Pauli Z measurement of qubit ¢ (since Bob has
to produce a classical bit at each step and return it to Alice), which is represented by taking
the sum over projectors on the computational basis |b;), for b; € {0,1}. All measurement
operators can be commuted to the end of the computation and all CPTP maps can be
gathered to a single map &7 after Bob has received everything from Alice, so that the failure
probability can be written as:

Pincorrect = Zp(l/)TI‘(PJ_ ® |77ZCT><77Z¢T
b v k=1
Cb Vclb, +c"” b/|53 (® ® ‘(5 b1 m+l><6bk Vl)m+z

=1 i=1

®PM;’> |b,><b/+CT|CbI’VCT)

Our strategy will be to rewrite this probability by introducing the correct execution of the pro-
tocol before the attack, on each subgraph k: Py, = ®;1;n(H(kfl)eriZ(kfl)eri(6(k71)m+i))EG;
and at the same time decomposing the attack to the Pauli basis, using general Paulis o; j,
applying on qubits (k — 1)m 4+ 1 <~ < km for each k.

Pincorrect = Z avzav]p TI‘ PL ® |7]ZCT> ntk Cb Vc|bl +c ><bl|

b v,
@(Uz‘,k (Pk @ ‘5bk Ul)m+z><6?/€ Vl)m-l—z

This way we can characterise which Pauli attacks give non-zero failure probability when the

® ,ozuﬂ’li) 7.0 |b7) (b7 + 7| et

final state is projected on the correct one. For convenience we introduce the following sets
for an arbitrary Pauli o; j:

Aip ={yst. oy =Tand (k—1)m+1<vy < km}

Bip={yst oy =Xand (k—1)m+1<~y <km}

Cix={yst oy, =Y and (k —1)m+1 <~y < km}

D ={yst. o5y, =Zand (k—1)m+1 <y < km}
We use the superscript O to denote subsets subject to the constraint km > ~v > km —n + 1.

For an arbitrary ¢4, the only attacks that give the corresponding term of the sum not equal to
zero: are those that (i) produce an incorrect measurement result for qubits (t,—1)m+1 <~y <
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tym —n or (ii) operate non-trivially on qubits t;m —n < v < t;m. We denote this condition
byzeEM and j € Ej;: |Biy, |+ |Cig, |+|D ,/=1and |Bjt | +1Cj.e, \—|—|Djtg| > 1.

The next step will be to characterise which attacks of these subsets remain undetected
by the trap mechanism and try to find an upper bound on their contribution to the failure
probability. By applying blindness and observing that only the terms where o = 01
contribute we obtain the following upper bound (details in Appendix B):

Dincorrect < Z Z |avi |2p(tg) H Z p(tk, Ot )(<+9%
tg v,i€E;4, k={1,...,s}\ty \ km—n<tx<km,
tk

+ Z p(tkartk)(<rtk‘ai\tk|rtk>)2)

(k—1)m<tr<km-—n,
Tty

+9tk>

Tilty,

The rest is based on a counting argument using Vk, |A4; x| + |Bi k| + |Cik| + |Dik] =m

1
Pincorrect < Z Z |avz|2 H (2|Az k|+|B |+‘ k|+2|Dzk\DrL(,)k; )
tg vi€liq, :{1,...,5}\t9
1
< Z Z |0‘vz|2 H %(27” = |Bik| = |Cikl — |Dio,k )
tyg vi€E; ., k={1,...;s}\tg

We denote the product term [, 55 . 7= (2m — |B; k| — |Ci x| — |Di(?k ) as P; ..
We also denote each set {E}; N E},N...N Ef }, where each term Ef, is either E; ,, or its
complement, Ez s depending on whether the w-th value of a binary vector y (size s) is 1 or
0 respectively, as W; . Let the function #y give the number of positions ¢ such that y;=1.

0D YD SIS DY W)

k=1 {y:#y=k}i€W,; y,v {zy.=1}

The condition i € W;, means that the following conditions hold together: {|B; .|+
|C2w‘+|D wl =1y =1}, {|Bzw|+|Czw|+|D wl =01y =0}

SE Y () e ()

k=1 {y:#y=k}i€W; y,v k=1

_ 12
Where C = Z{y#y:k} ZiEWi,yyv |a'v’L‘ .
An upper bound on the above expression is:

2m
Pincorrect < ? (14)

4 Conclusion

In this paper we present the first study of the delegation of quantum computing in a restricted
model of computing and show that the general framework of the verification via blindness
could be adapted to the setting of one-pure qubit model. In order to improve the obtained
bound on the security parameter two open questions has to be addressed. The first one aims
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to expand the class of resource states for DQC1 model so that several techniques from the
MBQC domain could be applicable here. The second question will complement the first by
searching for fault-tolerant schemes based on any new resource state for DQC1 model. More
concretely we propose the study of following questions:

A sufficient condition for compatibility with DQC1 based on the step-wise determinism
criteria is presented in Theorem 7. Is this approach extendable to weaker notions of
determinism such as information preserving maps as defined in [24]? Which is a necessary
condition for a family of MBQC resource states to be universal for the DQC1 computation?
Theorem 11 presents a scheme for verification where by adjusting the number of rounds one
could obtain an e-verifiable delegated DQC1-MBQC computing with € being polynomially
small on computation size. How can we efficiently amplify this bound to any desired
exponentially small one? Is there a way to adapt the proposed probability amplification
method of [18] based on a quantum error correcting code, into the DQC1-MBQC model?
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A  Proof of Theorem 5

Proof. In this proof of blindness for Protocol 1 we use techniques developed in [16]. The
basic difference from the proof of [16] arises from the different order in which Bob receives
the states from Alice. Nevertheless, after commuting all CPTP maps into a single operator
at the end, the methodology for proving blindness is the same as in the original proof. We
give the full proof here for the sake of clarity.

To prove blindness we do not separate Alice’s system into a classical and a quantum part
but we consider the whole of Alice’s system as quantum. This is a reasonable assumption
since a classical system can be viewed as a special case of a quantum system. Therefore, by
proving blindness for the more general case we also prove blindness for the special case.

For the sake of clarity we use single indexing for all the qubits of the resource state. The
total number of qubits is denoted by m and the number of qubits in a single column of the
brickwork state is denoted by n.

Our goal will be to explicitly write the state cg = Tra(c4p) that Bob holds at the end
of the execution of the protocol. To achieve this we express Bob’s behaviour at each step i of
the protocol as a collection of completely-positive trace-preserving (CPTP) maps Ef . each
for every possible classical response b; from Bob to Alice.

At step 1 of the main loop of the protocol Bob has already been given the top input qubit
at position 1 (position (1, 1) in the protocol notation) and the qubit at position f(1) =14n
(position (1,2) in the protocol notation) together with the angle for measuring qubit 1 (angle
can be represented as a quantum state composed of 3 qubits). State Tra(pap) represents
Bob’s state before the protocol begins and can, in general, be dependent on Alice’s secret
measurement angles. The state of Bob averaged over all possible choices of Alice and possible
classical responses from Bob, after step 1 is:

> (e

b1,71,01,014n

® |+01+n><+91+n| ® ‘+91><+91| & TrA(pAB))

Note the all binary parameters in sums range over 0 and 1, ex. »_, stands for 2;:0
and all angles range over the 8 possible values in A.
We can write the state of Bob after step 2 of the main iteration as:

s,

b2,b1,72,71,024n,014n,02,01

oer )

Following this analysis, after the last step of the iteration Bob’s state will be:

_ bm—n b<mfn;7'§7n,711,79nzfn b<m7n;7'§m,—n797n7n
oB = E 5m—n 5m—n 5m—n

bam_n,
"'gnL—naggnL

®...@ (0872 )(687| @ [+ urn Y Hour]

oen )i

Notation b.,,_, stands for all the elements of b with index less than m — n.

® |+92+n ><+92+n ’

® ‘+01+n><+91+n Y ‘+‘91><+91| ® TrA(pAB)))

® | +o,.) {(+0,.|

® 0110 )(F010 | © [Fo,) (0, © TrA(pAB)>) )

Collecting all CPTP maps by commuting them with systems which they do not apply on
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into a single operator £ and rearranging the terms of the tensor product inside gives:

Y (@ ol @

bam_n, i=m-n i=n+

n
Q5 s
i=2
We introduce the controlled unitary:

U= H Zi(—6;)

n+1<i<m-—n—1,i=1

)

® |46, ) {+o,

6b<iy"'§i79i > <6b<i7"'§i70i

? K2

T<m—n,0<m

® |46, ) (+6,| ® TrA(PAB))

ol

and rewrite the state as:

m—n—1

> e (U0 Q) Hadltal & (

i=m-n i=n+1

- 0;,7 0i.ri
@( DEEIC)

After applying the innermost unitary and absorbing the outermost into the CPTP-map

sy s o

K2 ?

bm_n,
T<m-n »eg'm

@ [6,) (+0,[U'U @ Tra(pas))

ol s

we have:
Z glbﬁm—n( ® ‘_~_91><+01
bgmfna i=m-—n

T<m—n,0<m

m—n—1
® <5?<i,r<i79ri><5P<i7T<i791
K2 1
1=n+1
9

)

& |+—a’1—7"17'r><+—a/1—r17r| & TYA(PAB))

X |+ b ) —+ Iy .
—a, <z«"<1_7_m_ —a, <zv"<1_7_iﬂ_

) sl

It is essential for the proof that each term with index i in the tensor products depends
only on parameters with index < i. This allows to break the summations over r<,,_, and
0<,, and calculate them iteratively from left to right, given the following:

1
D Hedtal =5
0;

where I,, = Q),, 1. Also,

r<i,0; r<i0;
Za: §5T< ><5 <

K2 K3

RN+ ) + )
—a, 7‘<1—r7¢7'r —a, T<1—r,;7r

=S (S (e b )< nenal) oo, M e )
T 0; i @ i i
I3
=> 3O N
=5
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and

>

ri,0i

I3
23

iy

><5191r _

This procedure will produce the state:

Ly —an+1
op=2¢' (24m_4n1_1 b2 TI“A(PAB)) =E"(Tra(paB))
where £” is some CPTP map. Therefore Definition 8 is satisfied. <

B Proof of Theorem 11

Proof. The same notation is used as in Section 3. The first step is to write the state of
Alice’s system at the end of the execution of the protocol for fixed Bob’s behaviour j and
choices of Alice v. We have utilised the fact that all measurements can be moved to the end.
Also, we have commuted all Bob’s operations to the end (before the measurements) merging
them to a single CPTP map. The state of Alice is:

CoVe b+ ") (b]

Bj(y) = Z ®§:k‘+9tk+btkﬂ'><+9tk+btkﬂ'
b,v
<® ® ‘6 k— 1)m+2><5(k 1)m+i

where ‘+9tk+btkﬂ'><+atk+btkﬂ'
part of the output state of each round k (if they exist).

® PM;;) b) (b + c"|C> @i, ’+9tk+btkw><+etk+btkﬂ

are used to define Alice’s measurement of the traps which are

To bound the failure probability, observe that projectors orthogonal to |77,'5’kT>’s vanish,
thus we have (where b’ = {b;}i4¢,..+,):

DPincorrect = Zp TI' PJ- ® |77t k

S m—n

¥ ey’ + ey (b'|E7 <® & ‘% 1)m+z><5”k Yy

k=1 i=1

®PM}:> |b,><b/+cr|cb"VCT)

We introduce the following unitary, which characterises the correct operation on each
subgraph k: Pr = Q1" (H(k—1ym-+i Z(k—1)m+i(O(e— 1)m+z))EG"
We can rewrite the failure probability, introducing 73 Pr’s on both sides of the quantum

state of the system before the attack, and absorbing the outermost unitaries into the updated
CPTP map £":

Pincorrect = Zp TI‘ Pl ® ’WZCT> ntk |Cb e
k=1

b+ ) (b]e” <® e @ [0 Y
k=1 i=1

o oD ) W)+ ¥

We decompose €7 using the following facts: There exist some matrices {x,} of dimension
s(4m — 3n) x s(4m — 3n), with > xux!, = I such that for every density operator p:
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& (p) =X, xvpX). Also, each y, can be decomposed to the Pauli basis: x, = >, @i0i,
with }°, s awiag; = 1. Setting 0; 1 to be the part of o; that applies on the qubits (k—1)m+1 <
v < km.

Pincorrect = Z O"Ulavjp TI‘ Pl ® |T] ntk |Cb e

b v,

T T X = [

Without loss of generality we can assume that o;, 0; do not change the ¢’s.
For an arbitrary ¢4, the only attacks that give the corresponding term of the sum not
equal to zero:

® pM,:7’£> 71,0 |b) (b7 + TP et

J_(Cb/,uc|b/><b/ + cr|(7i,tg

P @ e

=1

@ pary P, )0, [0 (6 + €7 |CP0eT) 20

are those that (i) produce an incorrect measurement result for qubits (t; — 1)m+1 <~y <
tym —n or (ii) operate non-trivially on qubits t;m —n < v < t;m. We denote this condition
by 1€ Ei,tg and jeE Ejvtg'

We can rewrite the probability by eliminating P, (observing that it applies to a positive
operator) and b’ ve (by the cyclical property of the trace):

Pincorrect < Z avlavjp H TI' ‘nt kT|

Vi€ E; 1, € 1,

~ b, b’ v
B+ o (Pk |5 Y
=1

We extract a trace over R from p My - And extract the sums over vc ;’s from the general
sum, where v¢ j, is the subset of random parameters v that are used for the computation of
round 7:

_ 3 aviap(vr) [ Tr(|ni ) (ni |

vr V€ E; ¢ JEE; ¢, h=1

® pMﬁZ) jk)

|b,><bl + CT|Ui,k Pk Z VC k ® ‘5?k Vl)m+7><6?k Ul)m+1 ® TrR(pM:))P,I O'j,k)

Ve, k

To take advantage of the blindness property we use the following lemma where the proof
is given later.

® Trr(pmy)

» Lemma 7 (Blindness (excluding the traps)).
b’ v b’ v
vk, D p(ve) ® ‘% st {000
Vo, k
Ikk Oty 3Tty Oy .7t

- o’ k><5tkk | ‘+9fk><+9fk

If k # tg, I,tc’“ = Qum_sn_11 when km —n < t;, < km and I,i’“ = Qum_3n_a 1 when
(k—V)m<t,<km-n.Andifk=ty, I}" = @, 3,1
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Lemma 7 allows us to simplify the big sum above based on the position of the traps. We
also sum over b’ since there are no longer any dependencies on it in the sum, obtaining:

= Z avia:jp(tg) H Tr(
k=1

1g,0i€E; +4,0€E;

> (b, 000) | Fo, W oton ik (s ® [0, W 40, o
P\lk, Uy, 01, 04, [Tk Tr(Z) 01, 01, |)034.k
km—n<tr<km,
b,
A
+ Z p(tk7rtk)|rtk><rtk |O'i7k( ® |rtk><rtk|)0jak)
Tr(Z)
(k—1)m<tr<km—n,
Tty

where Z =@Q),,,,_3,_1 1 when k #t,. And Z =Q),,, 3, I when k =t,.
Note that thk Tr(‘+9tk><+gtk Ji,k(ﬁ@) ’-1-9% ><+9tk )o.k) is zero if 0; i # 0. The

same is true for an Tr(|re,, ) (7e, \aak(ﬁ ® |re, )(re, |)ojx). Therefore we can only keep
those terms where o, ;, = 0,1 and the failure probability becomes:

=300 ety IT €Y pkOa)(Fa,
tg vi€E; ¢+, k={1,...,s}\tg km—n;tkgkm,
tk

Tty

+9tk>)2

+ Z Pt ) (e |oifey [re)?)

(k—1)m<tr<km-—n,
’I”tk

The rest of the proof is based on a counting argument. For convenience we introduce the
following sets for an arbitrary Pauli o j:

Ai g = {7 s.t. o4y = I and (k—=1m+1<~y<km}
B ={yst. 05, =X and (k—1)m+1 <~y < km}
Cir={vst. o5, =Y and (k—1)m+1 <~ < km}
Diy={yst. oy =Zand (k—1)m+1 <y < km}

and use the superscript O to denote subsets subject to the constraint km > v > km —n + 1.
The failure probability is then:

1 1
=> > |0évi|2g 11 ((%(SIA?,;CI +4[BY| +4(COD+

tg vi€Biq, k={1,...,s}\tg4
1

2m

(24ix \ ADx| + 21Di s \ DY)

Merging the terms:

= Z Z |O[m‘|2§ H %(2|Az,k

tg v,i€E; ., k={1,...,s}\tq

+ [BOu| + 1C&| + 2D i \ D2, )

Using the fact that for every k, |A; x| + |Bi k| + |Cik| + |Dik| = m:

1 1
<Y dewlfs TI 5o @m—Bud = Cixl - 1IDG)

ty vi€E;,, E={1,...,s}\ty
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The conditions ¢ € E; ¢, that we obtained at the first part of the proof are translated to
|Bit,| +|Ci, | + |D¢O,tg| > 1. In order to be able to use these conditions we need to rewrite
the formula. First we expand it:

1 1
= (Y el JI 5o (@n— Bl - |Col - D)

v,i€E; 1 k={2,3,...,s}
1
Y ol TI 5o @m e 1Bul ~ Cusl - D%
v,i€E; 2 k={1,34,...,s}
1 O
Y el TI g @m 1Bl Gl ~ 1DXD)
v,i€E; 4 k={1,2,...,s—1}

We denote the product term [, _¢; 55 . 7=(2m — |Bi | — [Cik| — |ng ) as P; ..

We also denote each set {Ef; N Efy N...N B}, where each term E,, is either E;,, or its
complement, EZ v depending on whether the w-th value of a binary vector y (size s) is 1 or
0 respectively, as W; 5. Then we have:

Z Z (|avi|2 Z P;2))
y\(0...0) i€W; y,v {zy.=1}

Let the function #y give the number of positions ¢ such that y;=1.

SO 0D SEED I D DN )

k=1{y:#y=k} €W, y,v {z:y.=1}

We separately consider the following term for any arbitrary y with #y = r.
Z (lavi‘2 Z P;.)
1€EW; y {zy,=1}

The condition ¢ € W;, means that the following conditions hold together: {|B; .|+
|Ciwl + D2y 2 1y = 1}1{|Bi.w| + [Ciw| + D, | = 02 yo = 0} We expand:

Z (v |? Z H %(Qm —|Bikl = |Cix| — |Dzok|)

1EW; o {zy.=1} k={1,2,3,...,s}\z
1
= Z (loewsl? Z H %(27” — |[Bik| = |Cik| — |Dzok|)
1€EW; y {zy.=1} {kyr=1,k#z}
1
II 5 (2m = |Bi| = [Cil = IDE%)
m
{k:yx=0}

And by using the above conditions:

< Y lel XTI gm-n [ 5-Cm

IS {z:y.=1} {kyp=1,k#z} {k:yr=0}

> (el D (277;ml>r1

€W, 4 {zy.=1}

om—1\"""
2
> o] T( o )

iEWi,y

201

TQC’14



202 Blindness and Verification of Quantum Computation with One Pure Qubit

Therefore the bound of our failure probability will be:

_ LY 1oy (2m =1 kot
plncorrectfg(z Z Z |av7,‘ < 2m ) )

k=1 {y:#y=k} i€W; y,v

k(%) T S

k=1 {y:#y=k}i€W; y,v

S

e ()

k=1

where cx =300y iy Diew, |y [?

subject to conditions:

]

D k<1 (15)
k=1

and

Vk:cp >0 (16)

Proof of Lemma 7. First we define state |g;) as:

ieD |g:)
i¢D |g:)

|d;)
C JI 2%)+e)

{j:j~i,j€D}

By substituting ppsy’s and taking the trace over R:
If k # t4 the state becomes:

km km—n
Sore @ ladal @ (o) @lana)
[ZeR™ t=km—n+1 i=(k—1)m+n+1
2
b, b v v v 4(n—2
® ( 5pi,k ><5pi,k ® qpi,k:><qpi,k ) ® 14(”*2)/2 ( ))

where

. k> denote the first layer pure qubits (a maximum of two) of the k-th graph state,
used as padding (dummies) or trap and their positions are defined as: 1+ (kK — 1)m <

{p1k.p2k} <+ (k—1)m.
Otherwise, if k = t, the state becomes:

tgm tgm—n
Do @ el @ ()] @ ke ar)
[ ZeN ] i=tgm—n+1 i=(tg—1)m-+n+1

@ [a8emey (ot

® g ) (a0 | ® Lagw—1y/2" V)

where u = (t;—1)m+1 is the position of the single pure qubit of the input to the DQC1-MBQC
computation.
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An implicit assumption was that all §’s that are used to implement the measurements
of maximally mixed inputs are maximally mixed states themselves, without any loss of
generality.

We define a new controlled unitary:

Py = 1T ACHE | I  zy (17)

{i:i¢ D,(k—1)m+1<i<km—n} {i:i¢ Dy} {j:j~i,j€EDy}
where Dy, denotes the set of dummies of subgraph GJ,.
Using this unitary we rewrite the state. If k£ # ¢, it becomes:
SpwenP P Qe Q@

b ,v b v
(CRPIC
ve, i=km—n+1 i=(k—1)m+n+1

2
b, v,
i=1

km km—n

® lay)a 1)

®

) ® I4(n—2)/24(n72))lp/1'7)/

Otherwise:

ZP(VC,k)P/TP/ & lai)(al (129 (

v ,v v ,v
o7 ) (4!
Ve, k i=tgm—n+1 i=(tg—1)m+n+1

® |53u,m><§zu,ru| ® \qﬁ“><q2“\ ® I4(w_1)/24(w_1))73’T’P/

® la a1

After applying the innermost unitary, if k& # t4:

km km—n , ,
SorenP Q@ laivdl Q@ (jo ) (e el )(ar])
VoK i=km—n-+1 i=(k—1)m+n+1
Q (|5 ) (ar @ oy, ) (ar,|) @ Lanay /22 2)P
i=1
where state |g;) is defined as:
icD |4;) = |di)
i¢ DNk:km>i>km—n+1 |}y = |+o,)
i¢ D)Vk:km—n>i>(k—1)m+1 |q§)z‘+ e, >

Otherwise, if k = t,4:

> pver)P'( ® |g;) (4] ® (

v, b v
57 ) (o
[{eN" i=tgm—n+1 i=(tg—1)m+n+1

® [0 ) (00| @ [aif ) (il

®

q;”><q;” )

® 14(w71)/24(w—1))rpl

It is essential for the proof that each term with index ¢ in the tensor product depends
only on parameters with index < ¢ and the term with index (t; — 1)m + 1 (input qubit) and
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the trap qubit and its measurement angle (if it is not an output) depend only on their own
parameters. This allows to break the summations and calculate them iteratively from left to
right, given the following:

1
> p(d;)|di)(ds| = 3
d;
ZP )N+o.)(+o,| = !
‘ 2

oz
> p(bi,r)

bl,V><5b/,l/

(5, . X |+ "ot X + "oyt X

v v —a, < —a, <
0,7

=St (S0l # i) 7 s
T

I,
® |d;)(di] = o

S p(ti,ri dy)|o;

0i,mi,d;

)

(3 v [3 v

= 75 1"t . + "yt .
Zp i 23 ' b r<”—n‘7r>< LT

i

ot
where I, = @),, I. The last step was possible because each corrected computation angle a;

depends only on past r’s.
And finally (for v = (t; — 1)m + 1),

Z p(HTMTU)’52MT7L><6Z“,T“ ® ‘+7a;7ru7r><+fa;7ru7r

OusTu

S ) (zpwu)
T O
®‘+—a; —Tu7'(> <+—a;—7"u7f

U

a,'u + 0, + ruw><a; 4+ 0y + Ty

oot
For k # tg4, if km > ¢, > km —n + 1 the above procedure will eventually give:

t dam—3n—1
Pl (24m 3n—1 ‘+9tk><+9tk

I4m73n71
= Sim 1 % ’*fhk ><+9tk
If km —n >t > (k— 1)m+ 1 the above procedure will eventually give:

i L e\ /s
P (it @ 617 ) (34| © | Yoy

Lym—3n— v v
= Limsnct o oy ) (517 © [, (o,

)P’

)P’

And for k = t, the result will be: Q),,,,_s,, I, which concludes the proof. <
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—— Abstract

In this paper we design a protocol to extract random bits with an arbitrarily low bias from a
single arbitrarily weak min-entropy block source in a device independent setting. The protocol
employs Mermin devices that exhibit super-classical correlations. Number of devices used scales
polynomially in the length of the block n, containing entropy of at least two bits. Our protocol
is robust, it can tolerate devices that malfunction with a probability dropping polynomially in n
at the cost of constant increase of the number of devices used.
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1 Introduction

High quality randomness is a very useful resource in many computation and cryptographic
tasks. In fact it has been shown that many protocols, including quantum ones, vitally require
perfect randomness for their security [1, 2].

Unfortunately, even though we cannot fully predict certain processes it is very difficult to
argue that they produce perfect randomness — independent and unbiased bits. The problem
of imperfect randomness has a long history in classical computer science and long line of
research was devoted to randomness extraction — algorithms to transform imperfect sources
of randomness into (close to) perfect ones [3].

The drawback of randomness extractors are twofold. Firstly, extractors typically require
at least two independent sources of (imperfect) randomness. Worse still, even imperfect
randomness of classical processes has to be assumed, because in principle classical physics is
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deterministic. Quantum physics, with its intrinsic randomness allows us, in theory, to drop the
second assumption. Preparation of a pure state and measurement in its complementary basis
will yield a perfectly random result. In practice, however, we are replacing the assumption of
randomness by yet another assumption — perfect control of quantum devices. This assumption
is also very problematic, as we have learned in case of quantum key distribution [4].

Luckily enough, thanks to Bell-type experiments, it is possible to certify by classical
procedures that quantum processes are being observed and therefore intrinsic randomness is
being produced. This is the basic idea behind device independent randomness extraction.
Effectively, we are exchanging the assumption of independent randomness of the second
source by a much weaker assumption — validity of quantum mechanics. Alternatively, one
can view device-independent randomness extraction as quantum protocol for extracting
randomness from a single weak source — a task that is classically impossible.

In this paper we work with (n, k)block min-entropy random sources. These are sources
with n-bit blocks of output with guaranteed min-entropy k. Such a source can be modeled
as a sequence of n-bit random variables Xy, X5, ..., such that

V.’El, e, Tim1 € {0, 1}",Ve S I(E), (1)
Hoo(Xi|Xi—1 = J?i_l,...,Xl = xl,E = 6) > ]41,

where F is a random variable describing all adversary’s information about the source and
Z(E) is it’s image. Therefore, each new block has high min-entropy, even conditioned
on the previous ones and any information of the adversary. This is a generalization of
Santha-Vazirani sources [5], which can be viewed as block sources with n = 1.

Note that the task of transforming a single block source into a fully random bit is known
to be impossible [3]. Furthermore, it is impossible to turn a block source with n > 1 into
Santha-Vazirani source, therefore we cannot use existing randomness extraction protocols
[6, 7, 8, 9].

It is also worth to note that similar results were independently obtained by Chung, Shi
and Wu [10]. The main difference between the two results is that we work with min-entropy
block sources, while their results hold also for general min-entropy sources.

2 Device Independent Concept and Mermin Inequality

In this paper we use the three-partite Mermin inequality. Let’s consider three non—communicating
boxes, each of them having a single bit input and a single bit output. Let us denote the
input bits of the respective boxes by X, Y and Z and the corresponding output bits A, B
and C. Input bits are correlated and it holds that XY Z € {111,100,010,001}. The inputs
are simultaneously passed to all boxes, so each box only knows it’s input. The value v of the
Mermin term is a function of the 4 conditional probabilities defined by the behavior of the
device and of the probability distribution on inputs

v=P(AGB®C =1|XYZ=111)P(XYZ = 111)+
+P(A®B& C =0|XYZ = 100)P(XYZ = 100)+
+P(A®B@®C =0|XYZ =010)P(XYZ = 010)+
+P(A®B& C =0|XYZ =001)P(XYZ = 001). (2)

In particular, for the uniform input distribution we set P(XY Z = 111) = P(XY Z = 010) =
P(XYZ =001) = P(XYZ = 100) = 1 and denote the Mermin term by v,,.
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Figure 1 Depicted is the value of Mermin variable v = f(¢) needed to certify the bias of the
output bit to be at most ¢.

Assuming the uniform distribution on all four inputs, the maximal value of v, achievable
by a classical device [11] is % (thus the Mermin inequality reads v, < %) and there exists
a classical device that can make any 3 conditional probabilities simultaneously equal to
1. With the use of quantum mechanics we can achieve v, = 1 and satisfy perfectly all 4
conditional probabilities using the tripartite GHZ state %(|OOO) +|111)) and measuring ox
(oy) when receiving 0 (1) on input.

The beautiful property of the Mermin inequality is that the violation v gives us directly
the probability that the device passes a specific test

A+B+C=X'Y Z, (3)

where addition and product are both taken modulo 2. The probability of failing the test is
therefore 1 — v.

Mironowicz and Pawlowski [9] showed the following result: Take a linearly ordered
sequence of £ Mermin devices Dj ... Dy (£ being arbitrary) that have uniform distribution
on inputs, and each device knows inputs and outputs of its predecessors, but devices cannot
signal to its predecessors. Let us assume that the inputs of devices are described by random
variables XY Z1,..., XY Z,, and the outputs by ABCy,..., ABCy. Then there exists a
function f(e) such that if the value of the Mermin term (2) using uniform inputs is at least
vy > f(g), then the output bit A, has a bias at most € conditioned on the input and output
of all its predecessors and the adversarial knowledge. This function can be lower bounded by
a Semi-Definite Program (SDP) using any level of the hierarchy introduced in [12]. By using
the second level of the hierarchy one can obtain the bound on f(e) as a function of € shown
in Fig. 1.

We can set £ = 1 (having just a single device) and get the lower bound on the detection
probability of producing a bit biased by more than e, which is greater than 1 — f(¢). Our
protocol uses many devices, which are forbidden to communicate at all, therefore they can
be ordered arbitrarily and thus this limit holds for all of these devices simultaneously.
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3 Single-round protocol

In the rest of our analysis we will be working with (n, k) block sources for an arbitrary n
and k > 2. This is to simplify the explanation, since by taking [ 2] blocks of an arbitrary
(n', k') source with k' > 0 we get a (n, k) source with n = [Z]n’ and k = [Z]k > 2.

Let us start with a min-entropy (n,2) source (recall that (n, k) source with k& > 2 is also
an (n,2) source) and define N = 2". Let H = {hq,
dots, h,,} be a family of hash functions s.t. h; : {0,...,N — 1} — {0,1,2,3}. Each hash-
function h; is used to provide input for a Mermin-type device D;, where outputs of the
function 0, 1,2, 3 identify 111, 100,010,001 inputs for the device.

We want to construct H with the property that for every 4-element set S C {0,...,N—1}
there exist at least one hash function h € H such that h(S) = {0, 1,2,3}. This is trivially
satisfied for the set of all possible hashing functions Hy,; = {0,1, 2, 3}V, however, such a
class of functions with its 4" elements is impractically large. There exists a construction of
such class of hash functions with logarithmic number of functions in N (see [13]), thus the
number of devices needed scales polynomially with the length of the sequence n. We also
stress that for large n one hash function covers as many as 9% of all four-tuples, independently
on n. So the size of an optimal set of hash functions might not depend on n at all. Let us
denote m = |H|. The protocol works as follows:

1. Obtain a (weakly) random n bit string r from the (n, k) block source.

2. Into each device D; input the 3 bit string 7; chosen from set {111,100,010,001} — each
one corresponding to one of the possible outputs of h;(r) — and obtain the outputs A;,
B; and C;.

3. Verify whether for each device D; the condition X; +Y; + Z; = A, - B; - C; holds. If this
is not true, abort the protocol.

4. Output b= P;-, A;.

The protocol is depicted in the Fig. 2.

Let us now examine the properties of the bit b;. First consider only flat (n, 2) distributions.
Recall that these are exactly distributions that are uniform on 4-element subsets of the
sample space. Our construction of the class H of hash functions assures that for any flat
probability distribution there is a function h; € H and the corresponding device D; such
that inputs of D; (hashed by h;) are uniform. Although output bits A; are not independent
in general, as most of them can be produced by fully deterministic strategies, (1) together
with the arbitrary ordering we can impose on devices {D;}", we have that if the adversary
wants to bias (conditioned on the inputs and outputs of other devices) A; by amount greater
than e, she must risk getting caught with probability at least 1 — f(¢). Therefore A; is
partially independent of other {A4;|i # j}, and the output of the round b is biased by at most
¢ with probability at least 1 — f(¢).

The set of all (n,2) distributions is convex and flat distributions are exactly all extremal
points of this convex set [14]. Thus any (n,2) distribution d can be expressed as a convex
combination of at most N (n, 2) flat distributions d; (Caratheodory theorem) as d = vazl Did;
for some p; > 0, Zf\; p; = 1. The lower bound on probability that the adversary is
not detected is given by the successful cheating probabilities when using flat distribution
d; € {d;}Y| averaged through the probability distribution on these flat distributions

N
uw < ZpiP(not detected|d;) < f(e) Zivzlpi, (4)
i=1
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Figure 2 Depiction of a single round protocol. Bit string drawn from the flat random source
is hashed into m inputs into Mermin devices so that at least one device receives all four inputs
with non-zero probability. This guarantees at least one result almost perfectly random with high
probability, which holds also for the product of individual results.

Thus the upper bound v, < f(g) holds for non-flat distributions as well.
To summarize this part, having an (n, k) source with k& > 2, with a single round of a

protocol, we can produce a single bit that is biased at most by & with a certainty of 1 — f(¢).

4  Multiple-round protocol

Let us state the most general task: we have an (n,k) block source with arbitrary n and
k > 2. We would like to produce a bit that is biased by no more than € with certainty of at
least 1 — 4.

If the one-round version does not meet these parameters, we will repeat the whole protocol
[ times. By using new devices and new outputs of the block source, each of the runs j will
produce a bit b; that is biased by e from perfectly random bit conditioned on all the previous
bits {b;]¢ < j} up to a probability f(e). Thus, in order to achieve the bias of the output bit

b=EPo; (5)

of at least £, all bits b; has to have at least this bias. Therefore, after [ rounds, the probability
of the adversary not being detected will be upper bounded by f(¢)!. Note that the product
form does not come from the fact that the detection probabilities are independent (they
are not). This is a product of a chain of conditional probabilities. Recall that the bound
f(¢) holds conditioned on any inputs and outputs of the previous devices (in an arbitrarily
ordering that respects the causality). Thus choosing

o log 0
log f(¢)

will guarantee the fulfillment of the conditions for the parameters € and 4.

(6)
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Summing up, with an (n, k) block source and

o (s | |7]]) (7)

Mermin devices we can produce a single random bit with bias smaller than ¢ with probability

larger than 1 — d. For producing more bits we simply repeat the whole procedure: all the
bits produced will have bias smaller than £ conditioned on the bits produced so far, with
linear scaling of the resources.

5 Robustness

Aborting the protocol after even a single mistake of the devices is certainly highly impractical
from the implementation point of view. Therefore we expand our analysis to a situation
where we tolerate certain noise on the devices, which would manifest itself by occasional
failing of the test condition even for honest devices. More specifically, we shall tolerate a
certain fraction of the devices to malfunction without aborting the protocol.
In more technical version of this work [13] we show, that if we tolerate
2

devices to fail in the whole protocol and want to achieve security parameters e, we can do
so by increasing

8Ind
1> —-. 9)
FE -1 (
This translates into increasing the number of rounds of the protocol comparing to the case

of ideal devices by a factor of %. For small e the parameter f(e) approaches 1 and the

multiplication factor saturates by 8.

On the other hand we also show that for honest but faulty devices with individual failure
probability bounded by

(1—f(e)

_ 1

4m ’ (10)

the probability of aborting the protocol decreases exponentially with the number of protocol
rounds [.

6 Conclusion

In this paper we have introduced a protocol that extracts weak randomness obtained from
a min-entropy source in the device independent setting. The protocol works for arbitrarily
weak block min-entropy sources with a reasonable scaling of the number of devices. Our
protocol is also robust, as it allows tolerating some fraction of malfunctioning devices at the
cost of a constant increase of the number of devices used.
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—— Abstract

A homomorphism from a graph X to a graph Y is an adjacency preserving mapping f : V(X) —
V(Y). We consider a nonlocal game in which Alice and Bob are trying to convince a verifier
with certainty that a graph X admits a homomorphism to Y. This is a generalization of the
well-studied graph coloring game. Via systematic study of quantum homomorphisms we prove
new results for graph coloring. Most importantly, we show that the Lovasz theta number of
the complement lower bounds the quantum chromatic number, which itself is not known to

be computable. We also show that other quantum graph parameters, such as quantum inde-
pendence number, can differ from their classical counterparts. Finally, we show that quantum
homomorphisms closely relate to zero-error channel capacity. In particular, we use quantum
homomorphisms to construct graphs for which entanglement-assistance increases their one-shot
ZEero-error capacity.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases graph homomorphism, nonlocal game, Lovasz theta, quantum chromatic
number, entanglement
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1  Graph homomorphism game as a generalization of coloring game

In the (X, ¢)-coloring game, Alice and Bob are trying to convince a verifier with certainty
that the graph X = (V| E) is c-colorable [10, 6]. The verifier sends Alice and Bob vertices
a,b € V respectively and they respond with colors «, 8 € [¢] accordingly. To win Alice an
Bob need to respond with o = 8 for a = b and with a # 8 for ab € E. Classical Alice and
Bob can win with probability 1 if and only if X is c-colorable. In contrast, quantum Alice
and Bob using shared entanglement can sometimes win the (X, ¢)-coloring game even when
X is not c-colorable [6, 1, 5, 16].

We introduce a natural generalization of the graph coloring game: the graph homo-
morphism game. A graph homomorphism is a function ¢ : V(X) — V(Y) such that ¢(x)
and ¢(2’) are adjacent whenever x and 2’ are adjacent. When such a map exists we say
that X has a homomorphism to Y and write X — Y. A c-coloring of X can be viewed
as a homomorphism ¢ : X — K., where K, is the complete graph on ¢ vertices. Graph
homomorphisms have been used to prove results about different types of chromatic numbers,
graph products etc.; they have applications in areas like complexity theory, statistical physics
and others (see [12, 13] for a general reference).
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Our motivation for this work is that a systematic study of quantum homomorphisms can
yield

better understanding of and new results concerning quantum graph coloring (see Section 4);

new examples of nonlocal games with perfect quantum but not classical strategies (see

Section 2);

new results for zero-error capacity via the connections that we establish in Section 3.

In the (X,Y)-homomorphism game the verifier sends Alice and Bob vertices x, 2’ € V(X)
respectively and they respond with vertices y,y’ € V(Y') accordingly. To win players need to
respond with y = ¢’ to questions z = 2’ and with yy’ € E(Y) to questions zz’ € E(X). Like
the coloring game, the (X, Y)-homomorphism game can be won with certainty by classical
players if and only if X — Y. If quantum players using shared entanglement can win the
(X,Y)-homomorphism game with certainty we say that X has a quantum homomorphism to
Y and write X 5 Y. As we know from the case of coloring and will see from new examples
in the next section, sometimes X % Y even though X A Y (i.e., X does not admit a
homomorphism to Y).

It is known that whenever X is quantum c-colorable, the (X ¢)-coloring game can be won
using projective measurements on maximally entangled state [5]. Moreover, Bob’s projectors
are the complex conjugates of Alice’s. We have verified that the proof of [5] extends to the case
of the (X,Y)-homomorphism game. This allows the following combinatorial reformulation:

» Lemma 1. We have X %Y if and only if there exists an assignment of projectors P,y to
pairs of vertices (x,y) € V(X) x V(Y) such that 3, Pyy =1 for allz € V(X) and

PyyPyry =0 whenever (x=2" & y#y') or (x ~2" & yLy).

This reformulation is instrumental in proving many of the results in the coming sections.
The other proof technique that we employ only uses the players’ ability to win certain
homomorphism games to conclude that they can also win some other homomorphism game.
For example, this kind of reasoning easily shows that quantum homomorphisms are transitive,
ie, X 5V and Y % Z implies that X % Z.

Curiosly, if instead of entanglement Alice and Bob are given access to non-signalling
correlations, they can win the (X, K3)-homomorphism game with certainty for any graph X.
This implies that they can win any (X, Y)-homomorphism game for arbitrary graphs X,Y
as long as E(Y) # 0.

2  Quantum parameters

The quantum chromatic number, x,(X), is defined as the smallest ¢ for which quantum players
can win the (X ¢)-coloring game with certainty [10, 6]. This parameter has been relatively
well-studied [1, 5, 9, 17, 16]. In particular, it is known that for the family of graphs Qy,, there
is an exponential separation between x(€4,,) and x,(4,). Here, the so-called Hadamard
graph 2, is the graph with vertex set {+1}" and edge set {(v,w) : vTw = 0}. Also, a
complete characterization of graphs with x4(X) < x(X) has been given [16]. However, many
questions remain open. For example, it is not known whether x,(X) is computable, or whether
there exists a family of graphs X, such that lim,, . x(X,) = 0o but lim, 00 X¢(X,) < 0.
A systematic study of quantum homomorphisms could aid in answering these and other
questions

Using the framework of quantum homomorphisms, we can introduce a quantum analogue
for any graph parameter defined in terms of graph homomorphisms (e.g., clique number,
independence number, odd girth, etc.). Here we only consider the following:

213

TQC’14



214

Graph Homomorphisms for Quantum Players

quantum clique number, w,(X) = max{n : K,, 4, X}

quantum independence number, o, (X) = wy(X) where X denotes the complement of X.
Let us remark that by now, the quantum independence number has been further used by
many other authors exploring parallel repetition, zero-error communication, binary constraint
system games etc.

We are about to see that quantum clique and independence number can be different
from their classical counterparts. Moreover, we show how to construct a graph with such a
separation using any two graphs X and Y such that X % Y but X /4 Y.

For graphs X and Y, their homomorphic product, X x Y, is the graph with vertex
set V(X) x V(Y), and vertex (x,y) is adjacent to (z',y’) if either (x = 2’ and y # y’) or
(za’ € E(X) and yy' ¢ E(Y)). This definition is motivated by the fact that X — Y if and
only if a(X x Y) = [V(X)|. We have proved the quantum version of this fact, i.e., X % Y if
and only if oy (X xY) = |[V(X)|. Combining these two facts gives:

» Theorem 2. Let X,Y be graphs such that X % Y but X 4 Y. Then we have that
(X XY)<ag(X xY) andw(X xY) <wy(X xY).

This theorem allows to obtain separations for clique and independence numbers starting from
any graph X with x(X) < x(X). For example, the fact that €, 4 K, [1] but Qu, 4 Kun,
for n > 2 [11] implies that o(Qup X Kuy) < g(Qupn X Kap) for all n > 2.

3 Relationship to entanglement-assisted zero-error capacity

The one-shot zero-error capacity, co(X), of a graph X is the maximum number of different
messages that can be sent without error by one use of any classical noisy channel N” with
confusability graph X [18, 15]. In the scenario where the communicating parties can use
shared entanglement, we speak about entanglement-assisted zero-error capacity, ¢ (X) [7].

The separations between ¢j(X) and ¢o(X) and their asymptotic analogues have been
investigated in [7, 14, 16, 3]. It is an open question how large these separations can be. As
[16] shows, a separation between the one-shot zero-error capacities can be obtained starting
from any graph X with x4(X) < x(X).

A somewhat analogous relationship can be shown to hold for quantum homomorphisms
in general:

» Theorem 3. Let X,Y be graphs such that X Y but X 4 Y. Then we have that
(X XY) <cp(X xY).

It turns out that the quantum independence number, o, (X), is closely related to and
might equal the one-shot entanglement-assisted zero-error capacity:

» Theorem 4. For any graph X we have ay(X) < cf(X) with equality if and only if c{(X)
can be achieved using a strategy in which all of Alice’s measurements are projective and the
shared state is mazimally entangled.

By the above theorem, proving that a,(X) = ¢fj(X) for all graphs X would settle the open
question of whether projective measurements on maximally entangled state suffice to achieve
¢} (X). If this was the case, the results from [16] would imply a complete characterization of
graphs for which ¢o(X) < ¢f(X).

Finally, we show that quantum homomorphisms respect the order of both the one-shot
and asymptotic entanglement-assisted zero-error capacities.
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» Theorem 5. Let ©F denote the entanglement-assisted Shannon capacity. For any graphs
X.Y we have that X %Y implies both

co(X) < c(Y) and ©*(X) < 0*(Y).

The above theorem can be used to lower bound ©*(Y) in the case when X % Y and ©*(X)
is known for some graph X.

4 Relationship to Lovasz ¥

The Lovasz theta number of X, denoted ¥(X), was introduced in [15] as an efficiently
computable upper bound for the Shannon capacity ©(X). It has been shown that ¥(X)
upper bounds even the entaglement-assisted Shannon capacity ©*(X) [2, 8]. We have
established that quantum homomorphisms respect the order of Lovasz theta:

» Theorem 6. For any graphs X,Y we have that X %Y implies 9(X) < 9(Y).

Applying the above theorem with Y being the complete graph on x,(X) vertices gives the
following:

» Corollary 7. For any graph X we have 9(X) < x,(X).

Corollary 7 gives us an efficiently computable lower bound on the quantum chromatic
number x4(X), which itself is not even known to be computable (By now our lower bound on
Xq(X) has been strengthened by replacing ¢ with 9* [4]). The lower bound from Corollary 7
can also be used to conclude that the previously established [1] upper bound x4(Q,) < n is
actually tight for all Hadamard graphs €,, with 4|n. (The other cases are not interesting
since Q,, is either empty or bipartite.)
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—— Abstract

Network coding [1] is a technique to maximize communication rates within a network, in com-
munication protocols for simultaneous multi-party transmission of information. Linear network
codes are examples of such protocols in which the local computations performed at the nodes
in the network are limited to linear transformations of their input data (represented as elements
of a ring, such as the integers modulo 2). The quantum linear network coding protocols of
Kobayashi et al. [17, 18] coherently simulate classical linear network codes, using supplemental
classical communication. We demonstrate that these protocols correspond in a natural way to
measurement-based quantum computations with graph states over qudits [21, 4, 8] having a
structure directly related to the network.
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simulation
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1 Introduction

Network coding [1] is a technique to maximize the rate at which a set of source nodes can
simultaneously transmit a set of independent messages to certain target nodes through a
fixed network. For this purpose, it is sufficient to give each communication link enough
bandwidth to accommodate multiple messages to be transmitted at once: however, less
bandwidth may be required at each link if one allows nodes to distribute information about
the messages across the network. A classic example is the two-pair problem on the “butterfly
network” (illustrated in Figure 1): rather than halve the bandwidth between two messages
at an apparent bottleneck in the network, the internal nodes may perform simple local
computations on the messages, to allow the input data to be reconstructed at the targets.
Linear network coding is the special case in which the protocol only requires each node to
compute a linear transformation of its inputs to achieve this goal.

We consider quantum network coding, in which we perform similar tasks with quantum
states transmitted through noiseless quantum channels. It is immediately apparent that some
problems which can be sensibly posed for “classical” network coding are impossible in general
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Figure 1 The butterfly network, with source nodes S; and S2 and target nodes 71 and Tb.
The two-pair problem on this network is for S; to communicate their input to the target T, and
simultaneously for Sz to communicate their input to the target 71, assuming that each edge can
carry at most one message (represented e.g. by a single bit, 0 or 1). The classic solution is for Sy,
S2, and V2 to duplicate their inputs, and for Vi, T1, and T to compute the parity of their inputs, in
which case (t1,t2) = (s2,51).

for quantum network coding. For instance, while a classical network code allows for the
each of the source nodes to each send a copy of their inputs to both targets in the butterfly
network (see page 220), this is clearly not possible for quantum states due to the no-cloning
theorem [24]. Other problems which do not require multiple copies of the input states to be
re-created at the output (such as the two-pairs problem above) are still potentially unsolvable
with fixed-capacity quantum channels alone, even when the corresponding classical problem is
solvable [15, 19]. However, some of these problems become feasible for quantum states when
the network nodes share prior entanglement [14], or if the capacities of the communication
links scale as the logarithm of the number of target nodes [22].

Because classical information is easier to faithfully transmit and transform than quantum
information, it is common to consider quantum protocols which also allow classical com-
munication, and where fewer restrictions are imposed on the classical than the quantum
communication (see Ref. [20]). In a setting where no restrictions are imposed on classical
communication, Kobayashi et al. [17] describe a quantum protocol for the k-pairs problem:
the problem in which each of k£ source nodes wish to communicate their input message
to one of k distinct target nodes. Their protocol is in effect a coherent simulation of a
classical linear network code. More generally, for any classical linear network code which
performs some injective linear transformation t = Ms of the input data, Ref. [17] yields a
corresponding quantum procedure to coherently simulate that network over for arbitrary
superpositions of input data. We call such a protocol a (classically assisted) quantum linear
network code. For the k-pairs problem, the protocols of Ref. [17] were subsequently extended
in two different ways by Ref. [18]: to restrict the classical communication to the same network
as the quantum communication (albeit with multiple rounds of communication, and sending
a single message backwards as well as forwards along each communication link) and to
accommodate non-linear protocols as well.

In this article we show that classically assisted quantum linear network codes in the style
of Ref. [18] are in effect an instance of one-way measurement based quantum computation
(MBQC) [21, 4, 8, 9]: a model of quantum computation in which one may entangle an arbitrary
input state |1) with a graph state, which is then subjected to a sequence of measurements,
leaving a final residual state which contains a transformed state U |¢) for some unitary
transformation! U. Furthermore, the graph state used as a resource is closely related

! In general, the transformation which is performed on an input state |1} is not necessarily a unitary
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Figure 2 An illustration of the transformation of messages performed by a single network node
in a linear coding protocol.

structurally to the network used in the coding protocol. This demonstrates a link between
MBQC and linear network coding, construed as distributed models of computation, and
suggests novel ways of interpreting measurement-based procedures. At the same time, this
suggests MBQC as a unifying framework in which to consider multi-party quantum networking
protocols, including cryptographic applications formulated in the one-way model [3, 16] as
well as standard security proofs of BB84 [23].

2 Preliminaries

In this section, we present introductory remarks on classical linear network coding, and
summarize the development of Refs. [17, 18]. We assume familiarity with standard models
of quantum computation on qubits, as well as measurement-based quantum computation
(see e.g. Refs. [21, 4, 8, 9] for introductory references). We introduce the notation and the
definitions for the operators used over qudits of dimension d below.

2.1 Classical network coding

We model a communications network by a directed graph of communications links, each of
which can be used to transmit a single message from some message set M. In this article
we suppose that M consists of a cyclic ring? Zy = Z/dZ. The messages are sent between
co-operative agents (represented by nodes of the digraph) who may perform some non-trivial
transformation of the data they receive from ingoing links. In the context of linear network
codes, the transformations performed by each node are linear transformations, as represented
in Figure 2.

The result of this computation is then sent as output messages to other nodes. We restrict
ourselves to directed acyclic networks, and assume that each node waits for all inputs to
arrive before computing its outputs.

The canonical network coding problems involve distributing information from a collection
of source nodes S = {51, Sa, ...} to a collection of target nodes T = {T3,T5, ...}, such as the
multicast problem (in which each source S, must transmit their data to every one of the
targets T}), and the k-pairs problem (in which each source S, tries to send their message
to a single target T (), for some permutation m € &, of the indices). The source nodes

transformation, but rather some completely positive trace preserving map ® acting on po = |[9){¢|.
However, standard treatments of the one-way model describe how measurements on graph states may
be used to simulate the transformations performed by unitary circuits, which by construction would
transform the input state |t) unitarily.

In the setting where messages represent elements of a finite field GF(p") (see e.g. Ref. [13]), we may
replace each communication link with r parallel communications links, representing elements of GF(p")
as r-dimensional vectors over GF(p) = Z,. In the case of linear network codes, this leads to no loss of
generality, as every GF(p")-linear transformation of messages is also a GF(p)-linear transformation.
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Figure 3 The multicast problem on the butterfly network, formulated as a linear transformation
over the ring Zq4. A solution by linear network coding decomposes this transformation as a product
of block matrices according to the network structure. A typical solution to this problem is presented
in Eqn. (1).

S; each have some piece of information, usually represented as a single element s; € Zg or
vector s; € sz . To put the source and target nodes on an equal footing to the other network
nodes, we suppose that the inputs s; of the sources S; are messages received from elsewhere
(e.g. storage devices owned by the source nodes), and the outputs ¢; to be computed by the
targets T are also transmitted to somewhere, as depicted in Figure 1. A solution via linear
network codes simply assigns linear transformations to each node, in such a way that the
composite transformation performs the correct redistribution of input messages.

We regard linear network coding as a distributed model of computation, in which
linear transformations are decomposed into block matrices, where each non-trivial block is
represented by a single node. For any linear function f — of which the k-pairs and multicast
problems are special cases — we consider which transformations the nodes may perform (if
any) to compute f. Figure 3 presents the multicast problem on the butterfly network in
this form, to which one solution is the following assignment of matrices to each node in the
network:

Slzsgzxfzzm, vi=[1 1], Tl:[—i (1)] TQ:H _” (1)

2.2 Classically assisted quantum network coding

We now outline the constructions of Ref. [17], and also of Ref. [18] in the special case of
linear coding protocols over the ring Z; of integers modulo d, for protocols using message
qudits of dimension d.

Consider a node V performing some coding operation y = Vx for x € Zg and y € Z'
in a classical coding network. We may simulate this node by initializing an output register
y =0 € Z}, performing a bijective mapping (x,y) — (x, y + Vx) in the larger space Zﬁ“",
and then discarding the input x. The bijective mapping can be performed by elementary
row transformations on x, which in the quantum setting may be performed by controlled-X
operations,

d—1
AXjp =) le)el; ® Xy, (2)
c=0



N. de Beaudrap and M. Roetteler

where X |g) = |¢+ 1 mod d) is an analogue of the unitary Pauli operator o, on qubits.

Consider a generic node V' which accepts a collection of input qudits aq, ..., a, as input and
produces output qudits by, ..., by, coherently simulating the transformation |X)q,...q, —
|TX)b, b, - In the construction of Ref. [17] for quantum linear codes, V simulates this

transformation by preparing the qudits bq,...,b; in the |0) state, and performing the
transformations

AXY (Jo) @ 10)) = e ® Vi) )

on the qudits a; and b;, for every index 1 < j < £ and 1 < k£ < m in any order. For
standard basis states, the result is to transform |x)|0) — |x)|Vx). This characterizes a linear
transformation

m L
ov = | [1TI A%, (11a® |0>b> ; (4)
j=1k=1

which is a unitary embedding for any transformation V. (An example of such a circuit is
illustrated in Figure 4.) If the qudits ay,...,a; where originally in standard basis states,
we could simply discard them; but if they are initially not in standard basis states, they

will become entangled with b1, ...,b,,. To decouple them, we attempt to project each of the
qudits a; to the |+) state by measurement,
) = F (0104 +1d-1)). (5)

Successfully doing so on a generic input state 1)) = > ux [x) would lead to the sequence of
transformations

[9) Y ux [¥)a |0} > D ux [X)a V)b

¢
— = <®+>ak> &3 [V (6)
k=1 x

This mapping is of course non-unitary: projection onto |+) must be performed as part of
a measurement onto some basis. Ref. [17] considers a measurement of the qudits a; in the
Fourier basis,

d—1 d—1
1 , 1 .
lwr) = —= Z e2mier/d |y = Fr), where F = — Z e2mika/d |y () (7)
\/E =0 \/az,r:O
e operator F' is the quantum Fourier transform over Z;. We may attempt to simulate
Thi tor F' is th t Fourier t Zgq. W tt t to simulat
projection of each qudit a; onto |+) by Fourier basis measurements, where a result of
wp) is a success, as |wg) = . we obtain results |w,..) for r; instead o , the
i +). If btai 1t ) for r; # 0 instead of [+), th
post-measurement state is

J4
(® ‘Wr> ak) ® Z uxe—QTr'i(T'x)/d |VX>b (8)

k=1

up to normalization. If V is injective, the relative phase e 27/*X)/d can be undone by

a suitable application of Z operations on the qudits by,...,b,,, where Z is the unitary
generalization of o,:

d—1
Z =Y ™ g)(q]. 9)
q=0
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If V is not injective, then only certain vectors r of measurement outcomes can be immediately
corrected, resulting in a non-unitary CP map. However, regardless of whether some nodes
in coding network perform non-invertible operations, the relative phases which accumulate
on the entire state are linear functions. Then if the transformation performed by the whole
network is injective, the phases which have accumulated due to the measurements can be
undone if the target nodes have sufficient information about the measurement outcomes.

The protocol of Ref. [17] solves the k-pairs problem: thus the transformation it performs
is indeed injective. Each node simply transmits their measurement outcomes to each target
node, which performs a suitable combination of Z operations to correct the relative phases.
Ref. [18] presents an alternative protocol in which the measurements are deferred until after
all quantum messages have been sent, and in which the internal nodes of the network do the
majority of the phase corrections, as follows. Consider a node which attempts to coherently
simulate a transformation L : Zg — Z7' in the middle of a coding network which attempts
to coherently simulate a transformation M : Z$ — ZJ on an input state [¢) = Y ux [x).
Suppose that we perform the simulation procedure above, but omitting the Fourier basis
measurements. For some linear maps H and K, the state after the final quantum messages
is in general an entangled state of the form?

|\I]> = Zux ‘X>S ® ‘MX>T ® (|KX>U«1,-~-’0«£ ® |LKX>b1,...7bm> ® |Hx>rest7 (10)

where the factors in parentheses are the input and output qudits to the node L. If the qudits
bi,..., b, are measured in the Fourier basis by the nodes to which they are sent, they yield
some outcomes 71, ..., T,, and the remaining qudits are transformed to

|‘II/> = Zux Ix)s @ |Mx)T ® (e_QM(r.LKX)/d |Kx>a1,m7az) @ [HX)rest (11)

where r is the vector of the outcomes. Let 7 = LTr: we have 7- Kx = r- LKx by construction.
If the nodes which perform these measurements send the outcomes to the node L, then L
can undo the phases induced by measurement of the qudits by by performing the operation
Z7T =720 752 -+ - Z7t, which performs the mapping

agp’

TL7T2 ., 7Te
L o2 Lgt

(Kx)l (Kx)2 ‘e (KX)£> = eXp(% [T (Kx)p + -+ Tg(KX)g]) |Kx)
_ e27ri(‘r-Kx)/d |KX> ) (12)
Performing these corrections on |¥’) then yields the state

[U7) = D [x)s @ [M3)T ® |KX)ay,..iar @ [HX)rest (13)

which has fewer unmeasured qudits than |¥), and no relative phases. This simulates projecting
the qudits by,...,b,, to the |+) state. By induction, if each node aside from the source
nodes (but including the target nodes) measures their input qudits in the Fourier basis,
and communicates the outcomes backwards along their incoming links to the nodes which

3 The final tensor factor is on the remaining nodes entangled with the sources, whose components in
the standard basis are again some linear transformations of the standard basis on the source nodes’
inputs; by induction on the depth of the coding network, one may show that H and K are indeed linear
transformations.
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provided those qudits, those nodes can correct for the effect of the measurements. Eventually
one obtains the state

(W) =3 ux[x)s @ [Mx)r, (14)

which is an entangled state of the (collective) inputs to the source nodes and the outputs of
the target nodes. If the source nodes measure their qudits in the Fourier basis, it suffices for
them to communicate the outcomes to target nodes in such a way that the outcomes can be
corrected.

For arbitrary linear transformations M, direct communication among target nodes or
between the source and the target nodes may be required to undo the relative phases induced
by measurement. If the source nodes measure their qudits and collectively obtain a vector s
of outcomes, the resulting state on the remaining qudits is

‘\IJ(7L+1)> _ Zuxe—}mﬁ(s'x)/d ‘MX>T. (15)

If M has a left-inverse A, and we let B = AT, it suffices for the sources to somehow
communicate o; := ), Bjis; to the target node T' which is responsible for producing the
message t;. This would allow T' to perform a Z% correction and undo the relative phase on
the j*" output qudit. Specifically, if the sources collectively communicate o = Bs to the
targets, who collectively perform the phase operations Z7 = Z7'Z? - - - on the target qudits,
the resulting state is

|\I/(n+2)> — Zuxe}n—i [a'(Mx)—s-x] /d |MX>T — Zuer‘n’i[sT(AM—]l)x]/d |MX>T

Dty [Mx); (16)

There are special cases where the amount of communication required outside of the network
can be bounded. In particular, for the k-pairs problem where M is a permutation matrix
(so that (M~1)T = M), it suffices to perform the classical linear coding protocol on the
vector s to transmit o = Ms to the target nodes. In this case, all classical communications
may be restricted to the same network as the quantum communications — albeit using each
communication link once in reverse, for the measurements of the qudits involved in the
intermediate messages. More generally, if M is injective and there is a block-diagonal matrix
B (where the blocks act on collections of messages held by individual target nodes) such that
M TBM = 1, the sources may communicate Ms to the targets, allowing the target nodes to
compute o = B Ms and use this to govern phase corrections.

3 Classically assisted quantum linear coding is one-way MBQC

We now show how any coherent linear coding protocol, as described in Section 2.2, is
in essence a measurement computation in the one-way model. The graph states of the
MBQC procedures constructed in this way are easily derived from the coding network itself:
allocate two entangled qudits at either end of each communications link in the network
(one for the node on either side of the link), with further entangling operations between the
qudits corresponding to the incoming links and the outgoing links. The corrections are the
same as for the coherent coding network, albeit with some supplemental corrections arising
from the way that the AX operations are simulated. If we follow the protocol of Ref. [17],
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Figure 4 Equivalent ways to decompose a unitary transformation Uy which prepares a single
message qudit, for a single-row matrix V = v'. The left-hand circuit represents the decomposition
of Eqn. (4). Variables v; below operations denote the power to which the circuit operation is raised.
Multi-row coding transformations V may be simulated by several such circuits, acting on different
target qudits.

the corrections are all deferred to the end of the procedure, as in standard treatments of
measurement-based computation.

Again, we assume familiarity with the measurement based model: see Refs. [21, 7, 4, 9]
for references applicable to qubits (similar results and constructions apply over arbitrary
qudits).

3.1 MBQC simulation of a single coding node

The main element of the correspondence between quantum linear network coding and MBQC is
the observation that AX operations differ by only a Fourier transform from a controlled-phase
operation,

¥
L

AZ = (1@ F)AX(1®FY) =) o) ® 25 (17)

c

Il
o

which are the diagonal operations used to construct the entanglement structures in measurement-
based computation. This means that the injective maps Uy used to perform the coding at
each node may be straightforwardly represented in terms of preparing the state |[+) = F'|0)
for each output qudit b; to be sent, performing the entangling operation AZ ik between each
input qudit aj and each output qudit b;, and then acting on b; with a Fourier transform, as
represented in Figure 4.

Note that the inverse Fourier transform acting on the output-message qudit may be
simulated by a Fourier basis measurement by introducing another auxiliary qudit, using a
standard MBQC construction. Consider a qudit v in an arbitrary pure state |1)) = Zi;é Uy | ).
We may introduce a qudit w prepared in the state |[+), and entangle them using a AZ'
operation, obtaining the state

|\I’>vw = AZzT;w W>v |+>w : (18)

We then measure v in the Fourier basis, obtaining a state |w,), and perform the operation X "
on w. We may use the stabilizer formalism (see e.g. Ref. [10]) to succinctly verify how this
sequence of transformations, considered as CP maps, transform X and Z: as these generate
an operator basis for single-qudit states, this will suffice to show how it transforms |}, to
FT ). Specifically, we wish to see how the group of Pauli operators which stabilize the
state (i.e., at each point in time, those Pauli operators for which the state is a +1-eigenvector)
transforms, for states on v and/or w. We use the following facts:
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We write w = exp(%) € C as a minor abuse of notation: it is easy to verify that

X |wr) = w" |wy). In particular, |+) is the unique +1-eigenvector of X up to scalar factors.
Measuring v in the Fourier basis is equivalent to measuring the eigenstates of X,,, obtaining
some state |w,): the post-measurement state is then stabilized by w™"X,, as well as
by operators (but only those operators) which commute with X, and stabilized the
pre-measurement state.
Conjugating X, by AZ]  yields X,Z], and similarly conjugating X,, by AZ,,, yields
Z1X,. As they are diagonal, conjugating Z, or Z,, by AZ,,, has no effect. Conjugating
by X" transforms Z] to w™"Z', and leaves X,, unchanged.
We may then describe the sequence of transformations on |¢)), as follows: for any scalar
¢ € C, the operator ¢.X, transforms as follows:

(X, P ox X)) A (60X, 71, 21X
P (6X o Zy, WXy = (0T XY ® (gw'ZY)

X" corr.

(WX ® (9Z1) (19a)

so that these operations transform ¢X, — ¢Z] ;

1; and similarly,

(6Z0) PP o7 X)) D (67, ZEX) = (67, 6X)
X, meas. <UJ_T‘XU,¢XUJ>

X" corr.

e (wT X)) @ (¢ Xw) (19b)

so that we obtain ¢Z, — ¢X,,. Similarly, for any Weyl operator W, ; [10, Definition II],
the operator ¢W,; acting on v will be transformed to a Weyl operator ¢W_,; on w;
the calculation is straightforward. This implies (c.f. [10, Eqn. 17]) that aside from the
teleportation from v to w, the effect is an inverse Fourier transform of the state.

Thus, we may simulate the coding procedure of a node V as described in Section 2.2 as
follows. Provided a collection of incoming qudits a1, ..., ar, we may prepare output qudits
b1,...,by by:

1. preparing output message qudits by, ..., b,, and auxiliary qudits b],...,b!, in the state

[+);

2. entangling the qudits b; and b} by a AZ T operation, and performing AZ"i*

operations

between each pair of qudits a; and b;-;

3. measuring each qudit b;- in the Fourier basis, obtaining some outcome r;, and performing

an X"/ operation on the corresponding output qudit b;.

This describes a MBQC procedure with inputs and outputs which we may illustrate by a
geometry (in the terminology of Ref. [9, 7]) specifying the input and output qubits.

Figure 5 presents geometries for the partial coding operation performed by Uy as in
Figure 4, and for the entire operation of a single coding node (including the eventual
measurement of the input qubits): input qudits have arrows pointing inwards, and output
qudits have arrows pointing outwards.

3.2 MBQC geometries to simulate entire network coding protocols

In the diagrammatic convention of this article, composition of MBQC procedures may be
represented by contracting the arrows between the outputs of earlier procedures and the
inputs of later ones. For MBQC procedures to simulate the linear network codes, composing
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Figure 5 Geometries of MBQC procedures for a single node performing a transformation V :
75 — 27 of the standard basis. Incoming/outgoing message qudits are represented by blue circles;
auxiliary qudits by black squares. (a) The geometry associated to coding a single message qudit,
simulating the right-hand circuit of Figure 4. Edges are labeled by their “weights”, i.e. the necessary
power of AZ in the procedure. As the qudits ar remain unmeasured, these are depicted as being
outputs as well as inputs of this procedure. (b) The geometry associated to the entire operation of
a coding node, including measurement of the incoming message qudits. Edge weights between the
qudits ar and «; depend on the coding operation being simulated: if the coding operation being
performed is sparse, many of these edge weights will be zero (corresponding to edges which should
be omitted entirely). Only the qudits b; form the output of this procedure.

the geometries associated to each node yields a bipartite graph with a structure closely
related to that of the coding network itself. Specifically, one associates a qudit for the output
qudits of the coding network, as well as for each incoming and outgoing message qudit at
each node (with qudits at the outgoing links being the “auxiliary” qudits described above),
and connecting them by a bipartite graph corresponding to the non-zero coefficients Vjj, of
the coding node. The edges of the coding network are replaced by undirected edges with
weights —1, corresponding to the entangling operations between the outgoing message qudits
(which are either the inputs for some other node, or the outputs of the entire network). The
directionality of the communication links are represented by the order of the measurement
and correction operations, as well as the classical communication involved in the correction
subroutine.

As an example, we illustrate this construction in Figure 6 for procedure for the two-
pair problem performing a SWAP operation on two qudits (e.g. in which we use the coding
operations S; = So =V =[1 1 ]T and Vi =Ty =Ty, =[—-1—1]).

As every measurement involved is performed in the Fourier basis (equivalently: the
eigenbasis of the X operator), the only information which this graphical representation omits
are the order in which the measurements occur, and the correction procedures, which we
consider next.
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Figure 6 Construction of a MBQC geometry for a procedure simulating a coding protocol for the
2-pair problem on (a) the butterfly network, shown with message qudits for each communication link.
(b) The graph obtained by substituting each coding node, with the geometry for the corresponding
MBQC procedure. This is derived by adding vertices for “auxiliary” qudits (black squares) for each
output message qudit, and associating each “auxiliary—output” pair to an outbound network link.
Edges represent powers of AZ operations, which are used for single-qudit teleportation along the
network links. The input and output message qudits of the linear code become the source and target
subsystems of the MBQC procedure. (c¢) The same geometry, presented in grid formation. (d) The
geometry of a MBQC procedure (c.f. Ref. [5, Figure 7]) for the SWAP operation.

3.3 Measurement and communication of outcomes

The corrections required to use X measurements to simulate projection onto |+) may
be performed in two natural ways, corresponding to the protocols of Refs. [17] and [18]
respectively.

3.3.1 Free classical communication

In a setting as in Ref. [17] where classical communication is free, all corrections may be
deferred to the target nodes of the coding network, which prepare the output qudits. This is
a natural approach for simulating the network code as a MBQC procedure: in measurement-
based computation, it is conventional to simulate CP maps in such a way that the output
qudits are the only qudits on which unitary correction operations are performed. As in
Ref. [17], successful projection onto the |+) state (or a “0” outcome of a X measurement)
is the ideal case; it then suffices to determine how the errors (or byproduct operations in
the terminology of Ref. [21]) propagate to the output qudits, in order to correct them. We
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describe this in terms of communication directly to the targets, as well as some amount of
communication within the coding network.

When simulating the coding procedure at each node using auxiliary qudits, measuring
those auxiliary qudits introduces an additional source of error: if the correction is not
immediately performed on the outgoing message qudits, this induces additional phase errors.
Commuting an X, " operation past an entangling operation AZYi b, ,, where ¢} is an auxiliary
qudit for a subsequent node performmg a coding operation U, y1e1ds an error operation
X, TZ TU”. The operation X " does not affect the outcome of the measurement on b;,
as the States |w-) are elgenvectors of X. The Z error on ¢; induced by postponing the
correction on b; is significant, but we may account for this error by classical post-processing
of the measurement result r’ on ¢} itself. Let # = rU;; for the sake of brevity: because
X7 " x=w"Z~ "X, we may account for an uncorrected Z~" operation on c; by performing
an X measurement, obtaining some outcome r{,, and then subtracting 7 from that outcome
to obtain an adjusted outcome ' = r{, — 7 for future corrections.

More generally, ¢; will accumulate uncorrected Z errors arising from the uncorrected X
errors on each of the input messages on which it depends. If those input qubits b; have errors
X7 associated with them, these collectively induce an error

Z*(TlUi1+T2Ui2+'“) — Z*éi'UI‘ (20)

on ¢;,. We may simulate this correction after the Z measurement by subtracting # = &; - Ur
from the measurement outcome 1, yielding v’ = r{, — &, - Ur. By propagating the results of
the auxiliary qudit measurements forward through the coding network, subsequent coding
nodes may locally adapt the measurement outcomes in order to simulate the correction of
errors on their own auxiliary qudits, allowing the target nodes to perform the necessary X
corrections on the output qudits of the network. Alternatively, all of the results may be
transmitted directly to the target nodes, which can simulate this sequential adaptation of
measurement outcomes themselves.

For a coding network performing an injective transformation M : Zg — ZdT, the phase
errors induced by measurement of the message qudits may be corrected in the manner
described in Ref. [17]. Without loss of generality, we may suppose that the agents at each
network coding node prepare their auxiliary and message qudits, and all nodes except the
target nodes communicate their outgoing messages to their recipients. Afterwards, they
measure their auxiliary nodes in some order consistent with the topological ordering of the
network, and similarly communicate the outcomes forward, allowing subsequent nodes to
adjust their auxiliary measurement outcomes, and allowing target nodes to perform what X
corrections are necessary on the output qudits. The remaining measurement operations and
classical messages are identical to those of Ref. [17], in which it does not matter if nodes
transmit outgoing message qudits before they measure incoming message qudits.

For the sake of completeness, we sketch an inductive approach to the Z correction protocol
of the target nodes in this setting. Let A be a left-inverse of M, and consider an input state
|1} to the coding network, expressed as

W) = D uxlx) = > uayl|Ay). (21)

x€EZLS y€img(M)

The state obtained after performing the preparation and entanglement phases of the MBQC
procedure, and after performing the auxiliary qudit measurements and X corrections on the
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output qudits, is exactly a state of the form in Eqn. (10), of the form

|\P> = ZuAy |AY>S & |MAY>T ® ‘HAy>rest = ZuAy |AY>S 02y |Y>T & ‘HAy>rest (22)
y€img(M) y€img(M)
for some linear map H. (The latter equality holds because for any y = Mx, we have
MAy = MAMx =y.) Indeed, the distinction between the input qudits S and the other
non-target qudits is unimportant: we may subsume the linear map A on the standard basis
of 8§ and the map H A on the standard basis of the other qudits into a map

HA

K — (23)

where the upper rows correspond to indices in S, and the lower rows to the other non-output
qudits. We may then write

o) = Z uay |[y)T ® |Ky)oT - (24)
yE€img(M)

We may isolate any non-output qudit u € Q \T'. Let ' = Q \ {u}, and consider another
decomposition

w7
K = L{/] (25)

where the upper row corresponds to the index for the qudit v and contains a row-vector &, ,

and K’ corresponds to all of the other non-output qudits; we may then once more re-write

W) = Y uay [¥)7 [Ku Y)u ® [ K'y)or T (26)
y€img(M)
Measuring v in the Fourier basis and obtaining the outcome r, the resulting state on the
remaining qudits is

W) = " wayw " y)r [Ky)aT, (27)
y€img(M)

following Eqn. (11). If the outcome r is transmitted to the target nodes, and who know the
value of k,, they may simply compute o := rk, and collectively perform Z7 = Z7' Z72 - - -
on the qudits of T, thereby obtaining

|\IJN> = Z UAy |y>T ‘K/Y>Q’\T7 (28)
y€img(M)

which is again a state of the same form as in Eqn. (10), on one fewer qudits. By induction,
we may measure each of the qudits of Q \ T in any order (or simultaneously), and transmit
them to the target nodes, which then make the appropriate Z corrections to obtain the state

W) = 3" way ly)r = D ux [Mx)r . (29)

y€img(M) xezg

In summary, provided free classical communication to the targets and within the coding
network, all measurements may be performed simultaneously, with the results of the measure-
ment of incoming messages being transmitted directly to the targets to perform Z corrections
on the output qudits. Measurement results of the auxiliary qudits may be communicated
along the coding network, and used to adapt the outcomes of subsequent measurements,
culminating in measurement information useful to the target nodes to perform X corrections
on the output qudits.
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3.3.2 Constrained classical communication

In the setting of Ref. [18], we attempt to reduce the amount of classical communication which
takes place outside of the network (but allowing messages to pass in either direction). To
this end, we allow the source nodes and the intermediate nodes of the network to perform Z
corrections. The way in which these corrections are performed follows from (a) the description
of how X corrections may be simulated in the setting of “free” classical communication, as
this already can be performed only with communication within the coding network; and
(b) the phase correction procedure of Ref. [18] which was outlined in Section 2.2. These
corrections may be performed as follows:

All auxiliary qudits may be measured simultaneously, and their outcomes propagated
forward through the network, as in the previous section. Alternatively, one may instead
perform X correction operations for the auxiliary qudits at each node: this imposes an
order on the measurement of the auxiliary qudits which is consistent with the topological
order of the network, so that each node may use the measurement outcomes for preceding
auxiliary qudits when correcting its own auxiliary qudits.

The measurement of each node’s incoming message qudits must be performed in an order

opposite to the topological order of the coding network, in order to allow the node which

sent each message qudit to perform the necessary corrections involving its own incoming
message qudits.
From this, one may derive schedules for measuring each qudit in the network, and for
communicating classical messages forward or backward through the network to allow the
necessary X or Z corrections.

For the correction of phases induced by measurement of the input qubits of the source,
following As in Section 2.2, whether the corrections arising from the measurement of the
input qudits managed by the source nodes can be corrected without communicating outside
of the network, may depend on the transformation which the network performs. For any
linear transformation M for which M "TBM = 1 for some block-diagonal B acting on blocks
of qudits held by target nodes — e.g for permutation matrices M — classical network coding
of of the outcomes of measuring the inputs of the source nodes will suffice.

3.4 Overview of the MBQC construction

The above construction rests on the fact that the protocol of Ref. [17] is unaffected if the
measurements are deferred until each node sends its messages. (The protocol of Ref. [18] in
fact requires this modification.) The result of doing so causes these protocols to give rise to
large distributed entangled states, on which local measurements are performed to simulate
projection onto the |+) state. In this sense, these protocols are literally quantum computation
by measurements; the modifications described in this Section — namely, replacement of
AX operations by AZ operations, introduction and measurement of auxiliary qudits in
order to make the previous modification possible, and communication of the results of
measuring auxiliary qudits — are straightforward modifications which demonstrate that they
are effectively computations in the one-way MBQC model of Refs. [21, 7].

The MBQC procedures which result from these transformations have comparable complex-
ity to the original protocols of Refs. [17, 18], differing essentially only in the various operations
performed on the auxiliary qudits, as well as the communication and transformation of their
measurement outcomes. For a coding network with k input messages, ¢ output messages, and
m internal communication links, the total number of qudits involved in the MBQC procedure
is easily verified to be k+ 2+ 2m, following Section 3.2. The number of entangling operations
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involved for each node (disregarding exponents) is simply the same as the number of AX
operations involved in simulating Uy, plus twice the out-degree (involved in entangling the
auxiliary and outgoing message qudits for the node). Thus there are exactly 2(m + ¢) more
entangling operations, in the form of AZ operations, in the MBQC protocol than there are
AX operations in the original presentation of the protocols in Refs. [17, 18]. There are also
exactly 2(m + ¢) additional classical messages sent in the MBQC protocol, either directly to
the targets or entirely within the network, again as a result of measuring the auxiliary qudits.

4 Open questions

In this article, we have illustrated the way in which classically-assisted quantum linear network
coding over Z, as described by Kobayashi et al. [17, 18] is in effect an instance of measurement-
based computation in the one-way model [21, 7], in particular using measurements only in
the Fourier basis (the eigenbasis of the X cyclic shift operator on d-dimensional qudits).
While not explicitly presented as an instance of MBQC, the differences between the protocols
of Refs. [17, 18] and one-way measurement-based procedures are straightforward, and involve
no substantial differences in e.g. the amount of classical communication required. We may
ask to what extent these results (particularly the bounds on classical communication outside
of the network) hold for classically assisted non-linear quantum codes as well.

While the MBQC model is sometimes described as a distributed model of computation,
little emphasis has been placed on the communication cost of MBQC computation. A common
presentation (e.g. as in Refs. [3, 2]) is that measurement results are recorded by an effectively
delocalized classical control, which receives messages containing measurement outcomes from
one or more agents which manage individual qudits, and which responds with instructions of
how to perform subsequent measurements. Bounding the communication requirements of a
MBQC procedure, to eliminate the need of a delocalised control center, may be necessary to
realize the reduction in the computational depth of a MBQC procedure (one of the theoretical
selling points of the MBQC model [21]).

As network coding subsumes constant-depth distributed computation, we may interpret
these results as recommending measurement-based computation as a framework for analyzing
multiparty communication protocols, as we have suggested in the introduction. We may
also consider this as an alternative means of approaching the problem of assigning semantics
to measurement-based computations, a problem of some interest in models of quantum
computation [7, 9, 12, 6]. Specifically: rather than interpreting a measurement-based
procedure as a quantum circuit with some potentially exotic features (such as closed time-
like curves [6]), we may interpret pieces of measurement-based computations as coherently
simulating transformations of the standard basis on several qudits at once. Such simple
semantics is likely to prove useful to any programme to find novel ways of using measurement-
based computation as a medium in which to develop algorithms (see Ref. [11]).

As a final open question, we ask whether a converse to our results hold, the form of
a classical simulation algorithm for certain measurement-based computations by linear
network codes. This article shows that (a coherent quantum simulation of) a classical linear
network code is in effect a measurement-based procedure which performs only X-eigenbasis
measurements, on a graph state with similar structure to the coding network. This is a special
case of an efficiently simulatable class of computations: the unitary transformations realized
by MBQC procedures performing only Pauli-eigenbasis measurements are Clifford group
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operations,* which can be simulated e.g. on standard basis states by linear transformations
on a cyclic ring [10]. This raises the question: is there a sense in which a MBQC procedure
on a graph G, which implements unitary a transformation using only measurements in a
Pauli eigenbasis (or only the X-eigenbasis) and Pauli corrections, can be “locally” simulated
by a classical linear code — in such a way that the expectation value of any observable on
a single given qudit can be evaluated from information available at a corresponding target
node — on a network similar to G?
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