
New Developments in Iterated Rounding∗

Nikhil Bansal

Eindhoven University of Technology
Eindhoven, The Netherlands
n.bansal@tue.nl

Abstract
Iterated rounding is a relatively recent technique in algorithm design, that despite its simplicity
has led to several remarkable new results and also simpler proofs of many previous results. We
will briefly survey some applications of the method, including some recent developments and
giving a high level overview of the ideas.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Algorithms, Approximation, Rounding

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.1

Category Invited Talk

1 Introduction

A natural and very general approach to designing approximation algorithms for NP-Hard
problems is the following: Write an exact integer programming formulation for the problem,
and then relax the integer constraints to be continuous, giving rise to a convex optimization
problem such as a linear program or a semidefinite program that can be solved efficient
in polynomial time. The goal then is to design a good rounding procedure that converts
this fractional solution back to an integral solution without much loss in the value of the
objective.

In the last few decades various ingenious rounding techniques have been developed, with
several surprising connections to probability, geometry and so on. For an overview of these
methods and approximation algorithms in general, we refer the reader to [10]. In recent years,
a powerful new approach for rounding, referred to as iterated rounding has emerged. Here
the variables are rounded one by one, or in small steps over time, while crucially leveraging
the information gained from previous steps. While this idea is not new by itself, many
interesting and surprising applications have emerged recently. An excellent description of
iterated rounding and its applications can be found in [5].

Here we give a brief introduction to the method. We start with some classic results to
demonstrate its versatility and power, and then discuss some more recent developments and
incarnations based on techniques such as discrepancy and Lovász Local Lemma.

2 The Basic Approach

Consider a linear programming relaxation of the form

min cTx s. t. Ax ≤ c and x ∈ [0, 1]n,

∗ Supported by NWO grant 639.022.211 and ERC consolidator grant 617951.

© Nikhil Bansal;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 1–10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 New Developments in Iterated Rounding

with variables x1, . . . , xn. Here x denotes the vector (x1, . . . , xn) and A is some m×n matrix,
and c is a non-negative cost vector in Rn.

We will refer to the m constraints given by rows of Ax ≤ c as the non-trivial constraints,
and the remaining constraints given by x ∈ [0, 1]n as the trivial constraints.

Recall that for any linear program, there is always some optimum solution that lies at
the vertex of the polytope formed by the constraints. Such a solution is referred to as a
basic feasible solution. The key idea behind much of iterated rounding is the following easy
observation.

I Lemma 1. For any linear program of the form above with m < n non-trivial constraints,
there is an optimum solution with at least n−m variables set to 0 or 1.

Proof. Given a solution x, We say that a constraint is tight at x if it is satisfied by equality
by at x. As the polytope in n-dimensional, every vertex x of the polytope is determined
uniquely by some n linear independent constraints that are tight at x.

Consider some basic feasible optimal solution. As there are m non-trivial constraints, at
least n−m of the tight constraints at x must be trivial ones. If a trivial constraint involving
xi is tight, this means that xi = 0 or xi = 1. J

The algorithm proceeds as follows:
1. Start with the initial LP, and compute some basic feasible solution x∗.
2. Permanently fix the value of any variable that is set to 0 or 1, and then consider the

residual LP (obtained by drop this fixed variable and updating the right hand of each
constraint accordingly).

3. Find a linearly independent set of tight constraints at x∗, and choose one (or more) of
these constraints in some suitable problem specific manner (this is where the ingenuity
lies) and drop it from the residual LP. Recompute a basic feasible solution of this reduced
LP and iterate the process until an integer solution is obtained.

The key observation is that dropping one of the constraints that determines x∗ allows
the LP to get unstuck at x∗ and move to some another vertex solution. Note that since
we drop at least one constraint at each iteration, the procedure will eventually terminate.
Moreover, it is easy to verify that objective value of the LP can only go down during the
various iterations of the algorithm (as permanently fixing a variable that is already 0 or 1
does not affect the objective value, and dropping a constraint can only reduce the objective).

We begin with a simple example.

2.1 Makespan Minimization on Unrelated Machines

The unrelated machine setting is the following. There are m machines and n jobs. Each job
j must be processed on some machine, and it has arbitrary machine dependent processing
time pij on machine i. The goal is to assign jobs to the machines to minimize the makespan
(or the maximum load over all machines). In a classic result, Lenstra, Shmoys and Tardos
[6] gave a 2-approximation for the problem, and also show that no 1.5− ε approximation
exists unless P=NP. It is a major open question in approximation algorithms to improve the
approximation ratio of 2. Here we give a simple iterated rounding based proof of their result,
as described in [5].

N. Bansal 3

2.1.1 Algorithm
By doing a binary search we can assume that we know the value T of the optimum makespan.
We will write a LP with variables xij with the intended solution that xij = 1 if j is assigned
to machine i and 0 otherwise.

We do an initial preprocessing step where we set xij = 0 if pij > T (as j can never be
assigned to i in a solution with makespan T). Let us assume that we are given a feasible
solution to the following LP.∑

j

pijxij ≤ T ∀i ∈ [m] (1)

∑
i

xij = 1 ∀j ∈ [n] (2)

xij ≥ 0 ∀i, j (3)

Note that while the number of variables can be nm, the number of non-trivial constraints
(1) and (2) is n + m. Also note that we do not impose the constraint xij ≤ 1 as this is
implied by (2).

The algorithm proceeds via the iterated rounding framework. Recall that all we need to
do is to design a procedure that given a basic feasible solution as input, determines which
constraint to drop in the current round.

Consider some basic feasible solution to the LP in the current round. We fix the variables
that are already 0 or 1, and consider the residual solution on variables xij with 0 < xij < 1.
We say that j appears on i if xij > 0. We will show the following.

I Lemma 2. There exists a machine i such that (i) exactly one job j appears on i, or (ii)
exactly two jobs j and j′ appear on i and satisfy xij + xij′ ≥ 1.

Given Lemma 2, the dropping rule will be to drop the load constraint (1) corresponding to
this machine i. Lemma 2 ensures that no matter how the variables are rounded in subsequent
iterations the additional load assigned to machine i can be at most pmax. Indeed, in case (i)
either job j can be assigned to i, which can increase the load by at most (1− xij)pij ≤ pij ,
and in case (ii) both j and j′ can be assigned to i, and the load can increase by at most
pij(1− xij) + pij′(1− xij′) ≤ pmax(2− xij − xij′) ≤ pmax.

It remains to show Lemma 2. This is done by a counting argument (which is typical in
most iterated rounding proofs).

Proof. Let p (resp. f) denote the number of variables xij with 0 < xij (resp. 0 < xij < 1).
As the number of non-trivial constraints is at most n+m (and as the trivial constraints are
of the form xij ≥ 0), there is a basic feasible solution with p ≤ n+m. Note that each job
contributes 1 to p if it is assigned integrally to some machine, and least 2 if it is assigned
fractionally to two or more machines. So we obtain that

n ≤ (p− f) + (f/2) = p− f/2 ≤ (n+m)− f/2. (4)

The first inequality follows as p − f is the number of variables with xij = 1 and the last
inequality follows as p ≤ n+m. This gives that f ≤ 2m. If f ≤ 2m− 1, then we are already
done as there must exist some machine i with at most one fractional variable appearing on it.

On the other hand, if exactly two fractional variables appear on each machine, then
f = 2m, which implies that equality must hold throughout in (4), and hence p− f = n−m.
This implies that exactly m jobs are split fractionally, and each of them appears on exactly
two machines. Thus, there must be some machine i with two jobs j and j′ with xij +xij′ ≥ 1,
as claimed. J

FSTTCS 2014

4 New Developments in Iterated Rounding

2.2 Degree-bounded Spanning Trees
Our next example is one where on first glance it would seem that iterated rounding should
not work, as the number of non-trivial constraints m is substantially larger than the number
of variables n, and the conditions of Lemma 1 do not seem to apply.

The minimum cost degree bounded spanning tree problem is defined as follows. Given a
graph G = (V,E) with non-negative edge costs ce, and degree bounds bv on the vertices, find
a minimum cost spanning tree of G satisfying the degree bounds. Even though the minimum
spanning tree problem is efficiently solvable, adding the degree bounds makes the problem
NP-complete. In particular, if bv = 2 for all v, the problem reduces to Hamiltonian Path.

We will show the following result of Singh and Lau [9] which gives essentially the best
possible guarantee.

I Theorem 3. There is an efficient algorithm that finds a spanning tree with degree bounds
violated by at most +1, and with cost at most the cost of optimum spanning tree (that satisfies
the degree bounds exactly).

2.2.1 Algorithm
The starting point is the following natural LP relaxation for the problem with variables xe
that are supposed to indicate whether edge e is chosen or not.

min cexe (5)
s. t.

∑
e∈E[S]

xe ≤ |S| − 1 ∀S ⊂ V (6)

∑
e

xe = n− 1 (7)∑
e∈δ(v)

xe ≤ bv ∀v ∈ v (8)

0 ≤ xe ≤ 1 ∀e ∈ E (9)

Here E[S] is the set of edges in the subgraph induced by S ⊂ V , and δ(v) is the set of
edges incident to v. Recall that the constraints (6), (7) and (9) completely characterize the
spanning tree polytope.

Observe that the number of variables is O(n2) (one for each edge) while the number of
constraints (6) are exponentially many. Still it turns out that the iterated framework can be
applied very effectively.

The crucial observation is that even though exponentially many constraints (6) may be
tight at a given vertex of the polytope, all these tight constraints are spanned by a small
set of at most n− 1 linearly independently constraints. More precisely, the supermodularity
of the function χE[S] implies that the tight constraints given by (6) can be uncrossed, and
hence spanned by constraints corresponding to sets forming a laminar family. Thus the
fractional part of the basic feasible solution is completely determined by these (at most)
n− 1 constraints together with some other tight degree constraints. As the number of degree
constraints can be at most n, essentially the number of relevant constraints (and hence the
number of fractional variables) is at most (n− 1) + n. We remark later in later iterations, a
slightly more careful argument is needed.

A counting argument now allows one to show that there is some vertex v such that∑
e∈δ(v):xe>0(1 − xe) < 2. The details are quite simple, and we refer the reader to [5] for

details.

N. Bansal 5

This implies that if we drop the degree constraint on vertex v, then even if all the variables
are rounded to 1 is subsequent iterations, the degree violation can be at most strictly less
than 2. This specifies the dropping rule for the algorithm. The algorithm keeps iterating
until it has found an integral solution, or until all degree bounds have been dropped in which
case the LP reduces to the spanning tree LP which is integral. Finally, we observe that since
the degrees and integral, a violation of strictly less than 2 implies a violation of at most 1.

2.3 Bin Packing
Our next example gives an application of iterated rounding where we drop a constant fraction
of constraints at each iteration, and the algorithm terminates in a logarithmic number of
rounds.

The classical bin packing problem is the following. Given a collection of items with sizes
s1, . . . , sn where each 0 < si ≤ 1, pack these items feasibly into the fewest number of unit
size bins. The problem is NP-Complete, as the Partition problem implies that it is hard to
distinguish if the optimum packing requires 2 bins or 3 bins. In fact, this is the best known
hardness for the problem, and it is a major open question to determine whether there exists
a polynomial time algorithm achieving an Opt +O(1) or even Opt + 1 guarantee.

In 1981, Karmarkar and Karp [4] gave a remarkable algorithm that achieves a guarantee
of Opt +O(log2 Opt). This result is one of the first applications of iterated rounding.

2.3.1 Algorithm
The starting point is a very strong relaxation known as the configuration LP. Suppose we
have an instance that contains ni items of size si. Let k denote the number of distinct sizes.
By simple arguments, we can ignore items of size ≤ 1/Opt (as these items are easy to fill
in later). A valid configuration C is any multiset of sizes in the collection {s1, . . . , sk} with
total size at most 1. Let C denote the collection, possibly exponentially large, of all valid
configurations.

Consider the following LP formulation with a variable xC for each configuration C ∈ C,
that is supposed to indicate the number of bins packed using configuration C.

min
∑
C

xC s. t.
∑
C

ai,CxC ≥ ni ∀i = 1, . . . , k, and xC ≥ 0 ∀C ∈ C.

Here ai,C denotes the number of items of size si in C. Even though the number of
variables is exponential, this LP can be solved to any desired accuracy by considering the
dual (and moreover a basic feasible solution can be computed using standard techniques).
As this LP has only k ≤ n constraints, at most k configurations C have non-zero xC values.

The crucial observation of [4] was the following.

I Lemma 4. Given a bin packing instance I with total size of items s(I), there is a procedure
to round up the size of each item sizes to obtain another instance Ĩ with at most s(I)/2
distinct item sizes, and Opt(Ĩ) ≤ Opt(I) +O(log s(I)).

The proof of Lemma 4 is quite simple and we refer the reader to [5] for a proof.
Let us see how this gives the claimed algorithm. Consider an instance with k item sizes.

The algorithm solves the configuration LP to obtain a solution with at most k non-zero
configurations. For each C with xC > 0, pack bxCc bins with configuration C and remove
these items. Consider the instance consisting of the remaining unpacked items. As these fit
fractionally in at most k configurations, the total size of these items is at most k, and by

FSTTCS 2014

6 New Developments in Iterated Rounding

Lemma 4 we can round these to k/2 sizes, while losing at most O(log k) in the objective. We
now iterate the algorithm on this rounded instance.

Observe that at each iteration the number of distinct sizes decreases by at least half,
and thus there are logarithmically many iterations, each adding at most log(Opt) to the
objective. This implies the claimed result.

2.4 Flow Time Minimization
Usually when designing a LP based approximation, one tries to add as many valid constraints
as possible to make the relaxation tighter. However, sometimes it is beneficial to reduce the
number of constraints so that iterated rounding can be used. We next give an example of a
problem for which strong LP relaxations are known but they key is to consider a different
(weaker) formulation with much fewer constraints.

The problem is that of minimizing the total flow time on unrelated machines. Given a
collection on n jobs and m machines, where job j has size pij on machine i and release time
rj , find a feasible schedule to minimize the total flow time. Here the flow time of a job is the
amount of time it spends in the system; i. e., its completion time minus its arrival time. We
assume that the schedule is non-migratory and preemptive, i. e., a job can only be executed
on a single machine and can be preempted and resumed later without any penalty.

Recently, Bansal and Kulkarni [2] gave the first poly-logarithmic approximation for the
problem based on iterated rounding.

2.4.1 Standard LP formulation
We first describe the widely used standard time indexed LP relaxation for our problem.
There is a variable xijt for each machine i ∈ [m], each job j ∈ [n] and each unit time slot
t ≥ rj . The xijt variables indicate the amount to which a job j is processed on machine i
during the time slot t. The first set of constraints (10) says that every job must be completely
processed. The second set of constraints (11) says that a machine cannot process more than
one unit of job during any time slot. The objective function is referred to as the fractional
flow time and will be irrelevant to our discussion here.

min
∑
i,j,t

(
t− rj
pij

+ 1
2

)
· xijt

s. t.
∑
i

∑
t≥rj

xijt
pij

≥ 1 ∀j (10)

∑
j : t≥rj

xijt ≤ 1 ∀i, t (11)

xijt ≥ 0 ∀i, j, t ≥ 0

2.4.2 New LP formulation
We now describe a new LP relaxation for the problem, where we do not enforce the capacity
constraints (11) for each time slot, but instead only enforce these constraints over carefully
chosen intervals of time.

Let P = maxi,j pij/mini,j pij and assume that mini,j pij = 1. For k = 0, 1, . . . , logP , we
say that a job j belongs to class k on machine i if pij ∈ (2k−1, 2k]. Note that the class of a
job depends on the machine.

N. Bansal 7

There is a variable yijt (similar to xijt before) that denotes the total units of job j

processed on machine i at time t. However, unlike the time indexed relaxation, yijt is allowed
to take values greater than one.

For each class k and each machine i, we partition the time horizon [0, T] into intervals of
size 4 · 2k. For a = 1, 2, . . ., let I(i, a, k) = ((4 · 2k)(a− 1), (4 · 2k)a] denote the a-th interval
of class k on machine i. The new relaxation is the following.∑

i

∑
t≥rj

∑
k

∑
j∈(2k−1,2k]

(
t− rj
pij

+ 1
2

)
· yijt

s. t.
∑
i

∑
t≥rj

yijt
pij

≥ 1 ∀j (12)

∑
j : pij≤2k

∑
t∈I(i,a,k)

yijt ≤ Size(I(i, a, k)) ∀i, k, a (13)

yijt ≥ 0 ∀i, j, t : t ≥ rj

Here, Size(I(i, a, k)) denotes the size of the interval I(i, a, k) which is 4 · 2k (but would
change in later iterations of the LP when we apply iterated rounding). Observe that in
(13) only jobs of class ≤ k contribute to the left hand side of constraints corresponding to
intervals of class k.

The main idea why this LP is useful is the following. For simplicity assume that all jobs
belong to a single class k. Some some basic feasible solution and suppose that h constraints
given by (13) are tight. As there are n constraints 12, at most n+ h non-trivial constraints
can be tight and hence at most n+ h variables are non-zero. If h constraints (13) are tight,
this also means that the total size of jobs is at least h · (4 · 2k). As these are class k-jobs, this
means that n ≥ 4h, and hence the number of non-zero variables is at most n+ h ≤ 5/4n. So
a constant fraction of the jobs j must be assigned integrally to a single machine. Thus after
logarithmic iterations, this produces a reasonable pseudo-schedule, that can be converted to
a proper schedule without much additional loss. We refer the reader to [2] for details.

3 A Generalization based on Discrepancy

Recently a very powerful generalization of iterated rounding was developed, based on
discrepancy theory. The examples of iterated rounding that we have seen thus far are based
on Lemma 1 which requires that m < n, and to maintain this invariant, in each the algorithm
drops certain constraints in each iteration. Observe that when a constraint ajx ≤ bj is
dropped, we have no control on how much this constraint could be violated in future iterations.
In particular the violation could be as large as ‖aj‖1 (e. g. if all the variables xi are very
close to 0 when the constraint was dropped, and eventually they all get rounded to 1).

Recently, Lovett and Meka [7] gave the following rounding result.

I Theorem 5. Let x ∈ [0, 1]n be some fractional solution to a linear system Ax = b, where
A is an m× n matrix. For j = 1, . . . ,m, let λj be such that∑

j

exp(−λ2
j/16) ≤ n/16. (14)

Then there is an efficient algorithm to find a solution x̃ with the following properties:
(i) at most n/2 variables fractional (that is strictly between 0 and 1),
(ii) |aj x̃− ajx| ≤ λj

√
‖aj‖2 for each j = 1, . . . ,m, where aj denotes the j-th row of A.

FSTTCS 2014

8 New Developments in Iterated Rounding

Let us parse what theorem 5 gives us. First observe that if m ≤ n/16, then setting
each λj = 0 for j = 1, . . . ,m satisfies (14), and gives a solution x̃ that does not violate any
constraint and has n/2 variables integral.

In this setting Lemma 1 would give a solution with n − m = (15/16)n variables set
integrally and no constraint violated. Thus ignoring constants (which can be modified if
needed by the application at hand, see for example [1]) this can be viewed as an analog of
Lemma 1.

However, theorem 5 also holds when m � n provided the error parameters λj are
chosen to satisfy condition (14). The fact that one has complete flexibility in how to choose
λj (provided (14) holds) can make this variant extremely powerful. For example suppose
m = 10n. Then, standard iterated does not give anything until m− n = 9n more constraints
are dropped, potentially incurring ‖aj‖1 error on these dropped constraints . On the other
hand one can set each λj to be O(1) in theorem 5 to obtain error O(‖aj‖2) for each row j.
The crucial point is that the `2 norm ‖aj‖2 of a constraint can be substantially smaller than
its `1 norm ‖aj‖1 (e. g.

√
n vs n), and hence theorem 5 can give much less error. Moreover,

by setting λ′js non-uniformly one can enforce smaller error on more critical constraints.

3.1 Improvement for Bin Packing
Recently, based on these ideas, Rothvoss [8] improved the long-standing bound of Opt +
O(log2(Opt)) for bin packing that we saw in Section 2.3 to Opt + O(logOpt log logOpt).
The main observation was that if most of the configurations are “well-spread", that is, they
do not consist of only few item types that appear many times, then the `2 norm of the vector
corresponding to such a configuration (i. e. the vector indicating how many times each item
type appears) is much smaller than its `1 norm. However, there is no apriori reason why
such configurations should be used by a basic feasible solution to the LP. To get around this
problem, Rothvoss introduces the crucial idea of a creating new items by grouping together
various small items of the same size that appear in a configuration. These ideas together with
the framework of Karmarkar Karp then give the improved bound. The details are somewhat
technical and we refer the reader to [8] for details.

4 Iterated rounding via the Lovász Local Lemma

Our final example illustrates how other powerful tools such as the Lovász Local Lemma can
fit nicely into the iterative approach for rounding.

The problem we consider is that of minimizing makespan on unrelated machines in the
multi-dimensional setting. There are m machines and n jobs. Each machine has d resources
and each job needs some quantities of these resources. For example, the machines could
correspond to computers and the d = 2 resources could be CPU and memory. In the unrelated
machines setting, the load of job j on machine i is specified by an arbitrary non-negative
number pijk for each k ∈ [d]. In typical scenarios d is a fixed small constant, and n and m
are much larger.

As in Section 2.1, we can guess the optimum makespan T , and write an LP with variables
xij . We set xij = 0 if pijk > T for some k, and find a feasible solution to the following.∑

j

pijkxij ≤ T ∀i ∈ [m], k ∈ [d] (15)

∑
i

xij ≥ 1 ∀j ∈ [n] (16)

N. Bansal 9

Let us first observe what the natural approaches give. As the LP has n+md constraints,
each machine could potentially have Ω(d) jobs fractionally assigned to it in a basic feasible
solution. So applying the approach in Section 2.1 only gives an O(d) approximation.

On the other hand if we do randomized rounding (i. e. independently assign each job j to
machine i with probability xij), then by a standard balls in bins argument, the makespan
could be as high as Θ(T log dm/ log log dm), which has an undesirable dependence on m.

It turns out that one can show the following substantially stronger result.

I Theorem 6 ([3]). There is an O(log d/ log log d) approximation for the problem.

Before we sketch the idea behind theorem 6, we recall the Lovász Local Lemma.

I Lemma 7. Let B1, B2, . . . , Bk be a collection of (bad) events such that each Bi occurs
with probability at most p and is independent of all the other events except for at most d of
them. If epd < 1, then there is a nonzero probability that none of the events occurs.

The idea of the algorithm is to start with an arbitrary solution x, and gradually make
the variables xij closer to integral in each iteration, without substantially deteriorating the
quality of the solution. In particular, in iteration `, the values xij will be integral multiples
of ε`, where ε` increases exponentially with `, until ε` = Ω(log log d/ log d). At this point
that algorithm can arbitrarily assign a job j to any machine i where xij > 0.

Let ε0 = 1/(log dm). Given an initial solution x, we can assume that each xij is an
integral multiple of ε0 by rounding each xij independently to either ε0bxij/ε0c or ε0dxij/ε0e,
with the right probability such that its expectation remains the same. By standard Chernoff
bounds the makespan remains O(T) with high probability, and we can further scale the
solution by an O(1) factor to ensure that

∑
i xij ≥ 1 for each job j. Let us also assume here

(to avoid some technical details), that each job j is large on every machine i in the sense
that the `1 norm of its load vector satisfies

∑
k pijk ≥ 1/d.

Consider round `, where we round the values of x`−1
ij (as previously) at the end of iteration

`− 1, to multiples of some suitably chosen ε` � ε`−1. The following observation is crucial.

I Lemma 8. Consider round ` and apply the rounding to x`−1
ij mentioned above to obtain

x`ij. Let Bi be the event that the load on machine i increases by more than T for some
coordinate k, and let Aj denote the event that for a job

∑
i x

`
ij ≤ 1/2. Then each of these

events depends on at most poly(d, ε`−1) other events.

Proof. Two events Bi and Bi′ are dependent if and only if x`−1
ij > 0 and x`−1

i′j > 0 for some
job j. Similarly, two events Aj and Bi are dependent if and only if some x`−1

ij > 0. As each
x`−1
ij is an integral multiple of ε`−1 and each job is large, the total number of jobs assigned to

a machine can be at most O(d2 · (1/ε`−1)). Moreover, for a job j at most O(1/ε`) variables
x`−1
ij can be non-zero. Together this implies the claim. J

Thus by Lemma 7, we can choose ε` = Θ(log log(d/ε`−1)/ log(d/ε`)) and ensure that
none of the bad event happens. Thus crucial observation is that as we iterate the algorithm,
the dependence on m in ε` becomes like log(`) m (i. e. log iterated ` times) and eventually
disappears1, while the dependence on d converges to Ω(log log d/ log d).

1 Strictly speaking, this gives an exp(O(log∗ m)) guarantee. But a more gradual rounding with a slightly
more careful of parameters gives theorem 6. We refer to [3] for details.

FSTTCS 2014

10 New Developments in Iterated Rounding

References
1 Nikhil Bansal, Moses Charikar, Ravishankar Krishnaswamy, and Shi Li. Better algorithms

and hardness for broadcast scheduling via a discrepancy approach. In SODA, pages 55–71,
2014.

2 Nikhil Bansal and Janardhan Kulkarni. Minimizing flow-time on unrelated machines.
CoRR, abs/1401.7284, 2014.

3 David G. Harris and Aravind Srinivasan. The moser-tardos framework with partial res-
ampling. In FOCS, pages 469–478, 2013.

4 Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the
one-dimensional bin-packing problem. In FOCS, pages 312–320, 1982.

5 Lap-Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization.
Cambridge University Press, 2011.

6 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Math. Program., 46:259–271, 1990.

7 Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking on
the edges. In FOCS, pages 61–67, 2012.

8 Thomas Rothvoss. Approximating bin packing within o(log OPT * log log OPT) bins. In
FOCS, pages 20–29, 2013.

9 Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees
to within one of optimal. In STOC, pages 661–670, 2007.

10 David Williamson and David Shmoys. The design of Approximation Algorithms. Cambridge
University Press, 2011.

	Introduction
	The Basic Approach
	Makespan Minimization on Unrelated Machines
	Algorithm

	Degree-bounded Spanning Trees
	Algorithm

	Bin Packing
	Algorithm

	Flow Time Minimization
	Standard LP formulation
	New LP formulation

	A Generalization based on Discrepancy
	Improvement for Bin Packing

	Iterated rounding via the Lovász Local Lemma

