First-order Definable String Transformations

Emmanuel Filiot!, Shankara Narayanan Krishna?, and
Ashutosh Trivedi?

1 F.N.R.S. Research Associate, Université Libre de Bruxelles, Belgium
efiliot@ulb.ac.be

2 Department of Computer Science and Engineering, IIT Bombay, India
krishnas,trivedi@cse.iitb.ac.in

—— Abstract

The connection between languages defined by computational models and logic for languages is
well-studied. Monadic second-order logic and finite automata are shown to closely correspond to
each-other for the languages of strings, trees, and partial-orders. Similar connections are shown
for first-order logic and finite automata with certain aperiodicity restriction. Courcelle in 1994
proposed a way to use logic to define functions over structures where the output structure is
defined using logical formulas interpreted over the input structure. Engelfriet and Hoogeboom

discovered the corresponding “automata connection” by showing that two-way generalised se-
quential machines capture the class of monadic-second order definable transformations. Alur
and Cerny further refined the result by proposing a one-way deterministic transducer model with
string variables — called the streaming string transducers — to capture the same class of transform-
ations. In this paper we establish a transducer-logic correspondence for Courcelle’s first-order
definable string transformations. We propose a new notion of transition monoid for streaming
string transducers that involves structural properties of both underlying input automata and vari-
able dependencies. By putting an aperiodicity restriction on the transition monoids, we define
a class of streaming string transducers that captures exactly the class of first-order definable
transformations.

1998 ACM Subject Classification F.4 Mathematical Logic and Formal Languages
Keywords and phrases First-order logic, streaming string transducers

Digital Object Identifier 10.4230/LIPIcs. FSTTCS.2014.147

1 Introduction

The class of regular languages is among one of the most well-studied concept in the theory
of formal languages. Regular languages have been precisely characterized widely by differing
formalisms like monadic second-order logic (MSO), finite state automata, regular expressions,
and finite monoids. The connection [8] between finite state automata and monadic second-
order logic (MSO) is among the most celebrated results of formal language theory. Over the
years, there has been substantial research to establish similar connections for the languages
definable using first-order logic (FO) [11]. Aperiodic automata are restrictions of finite
automata with certain aperiodicity restrictions defined through aperiodicity of their transition
monoid. Recall that the transition monoid of an automaton A is the set of Boolean transition
matrices My, for all strings s, indexed by states of A: M;[p][q] =1 if and only if there exists
a run from p to g on s. The set of matrices My is a finite monoid. It is aperiodic if there
exists m > 0 such that for all s € ¥*) Mgm = Mym+1. Aperiodic automata define exactly
FO-definable languages [17, 11]. Other formalisms capturing FO-definable languages include
counter-free automata, star-free regular expressions, and very weak alternating automata.

© Emmanuel Filiot, Shankara Narayanan Krishna, and Ashutosh Trivedi;
37 licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).

Editors: Venkatesh Raman and S.P. Suresh; pp. 147-159

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.147
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

148 First-order Definable String Transformations

al X=X

—>.:> a| (X,Y) = (aY, X) _>

a|X:=aX
Figure 1 SSTs, Tp (shown left) and 71 (shown right), implement the transformation fhaive.

Beginning with the work of Courcelle [10], logic and automata connections have also
been explored in context of string transformations. The first result in this direction is by
Engelfriet and Hoogeboom [12], where MSO-definable transformations have been shown to
be equivalent to two-way finite transducers. This result has then been extended to trees and
macro-tree transducers [13]. Recently, Alur and Cerny [1, 2] introduced streaming string
transducers, a one-way finite transducer model extended with variables, and showed that
they precisely capture MSO-definable transformations not only in finite string-to-string case,
but also for infinite strings [6] and tree [3, 5] transformations.

Streaming string transducers (SSTs) manipulate a finite set of string variables to compute
their output as they read the input string in one left-to-right pass. Instead of appending
symbols to the output tape, SSTs concurrently update all string variables using a concatena-
tion of output symbols and string variables in a copyless fashion, i.e. no variable occurs more
than once in each concurrent variable update. The transformation of a string is then defined
using an output (partial) function F' that associates states with a copyless concatenation
of string variables. It has been shown that SSTs have good algorithmic properties (such as
decidable type-checking, equivalence) [1, 2] and naturally generalize to various settings like
trees and nested words [3, 5], infinite strings [6], and quantitative languages [4].

In this paper we study FO-definable string transformation and recover a logic and
transducer connection for such transformations. Such FO transformations, although weaker
than MSO transformations, still enjoy a lot of expressive power: for instance they can still
double, reverse, and swap strings, and are closed under FO look-ahead. We introduce a new
concept of transition monoid for SST, used to define the notion of aperiodic SST to capture
FO-definable transformations. To appreciate the challenges involved in finding the right
definition of aperiodicity for SSTs consider the transformation fy.ive defined as a™ — alz]
implemented by two SSTs shown in in Figure 1. Intuitively fhalve is not FO-definable since
it requires to distinguish based on the parity of the input. Consider, the SST 77 shown in
Figure 1 with 2 accepting states and 1 variable.

Readers familiar with aperiodic automata may notice that the automata corresponding
to 17 is not aperiodic, but indeed has period 2. It seems a valid conjecture that SSTs whose
transition monoid of underlying automaton is aperiodic characterize first-order definable
transformations. However, unfortunately this is not a sufficient condition as shown by
the SST Tp in Figure 1 which also implements fhave (its output is F(1) = X). In this
example, although the underlying automaton is aperiodic, variables contribute to certain
non aperiodicity.

We capture the notion of aperiodicity in SSTs by introducing the notion of variable flow.
We say that by reading letter a, variable X flows to Y (if the update of variable Y is based
on variable X'). The notion of transition monoid is extended to SSTs to take both state and
variable flow into account. We define transition matrices M; indexed by pairs (p, X) where
p is a state and X is a variable. Since in general, for copy-full SSTs, a variable X might
be copied in more than one variable, it could be that X flows into Y several times. Our
notion of transition monoid also takes into account, the number of times a variable flows into
another. In particular, M;[p, X|[q,Y] = i means that there exists a run from p to ¢ on s on

E. Filiot, S. N. Krishna, and A. Trivedi

which X flows to Y for ¢ number of times. Hence the transition monoid of an SST may not
be finite. A key contribution of this paper is that FO string transformations are exactly the
transformations definable by SSTs whose transition monoid is aperiodic with matrix values
ranging over {0,1} (called 1-bounded transition monoid). In contrast with [1] our proof is
not based on the intermediate model of two-way transducers and is more direct. We give a
logic-based proof that simplifies that of [5] by restricting it to string-to-string transformations.
We also show that checking aperiodicity of an SST is PSPACE-COMPLETE. Finally, simple
restrictions on SST transition monoids naturally capture restrictions on variable updates that
has been considered in other works. For instance, bounded copy of [6] correspond to finiteness
of the transition monoid, while restricted copy of [3] correspond to its 1-boundedness.

Related work. Diekert and Gastin [11] presented a detailed survey of several automata,
logical, and algebraic characterisations of first-order definable languages. As mentioned earlier
the connection between MSO and transducers have been investigated in [1, 12]. A connection
between two-way transducers and FO-transformations has been mentioned in [9] in an oral
communication, where authors left the SST connection as an open question. First-order
transformations are considered in [15], but not in the sense of [10]. In particular, they are
weaker, as they cannot double strings or mirror them, and are definable by one-way (variable-
free) finite state transducers. Finally, [7] considers first-order definable transformations with
origin information. The semantics is different from ours, because these transformations are
not just mapping from string to strings, but they also connect output symbols with input
symbols from where they originate. The first-order definability problem for regular languages
is known to be decidable. In particular, given a deterministic automaton A, deciding whether
A defines a first-order language can be decided in PSPACE. Although we make an important
and necessary step in answering this question in the context of regular string transformation,
the decidability remains an open problem.

For the lack of space proofs are either sketched or omitted; full proofs can be found
in [14].

2 Preliminaries

A string over a finite alphabet X is a finite sequence of letters from X. We write € for the
empty string and by X* for the set of strings over . A language over ¥ is a subset of ¥*. For
a string s € X* we write |s| for its length and dom(s) for the set {1,...,|s|} of its positions.
For all i € dom(s) we write s[i] for the i-th letter of the string s. For any j € dom(s), the
substring starting at position ¢ and ending at position j is defined as € if j < i and by the
sequence of letters s[i]s[¢ + 1] ... s[j] otherwise. We write s[i:j], s(i:5), s[i:j), and s(i:j], to
denote substrings of s respectively starting ¢ and ending at j, starting at i+1 and ending at
j—1, and so on.

We represent a string s € 3* by the relational structure Zs=(dom(s), <%, (L%)4ex), called
the string model of s, where <* is a binary relation over the positions in s characterizing the
natural order, i.e. (i,j) €=x®if i < j; L, for all a € ¥, are the unary predicates that hold
for the positions in s labeled with the alphabet a, i.e., L2 (i) iff s[i] = a, for all i € dom(s).
When it is clear form context we drop the superscript s from the relations <* and L;.

2.1 First-order logic for strings

Properties of strings over ¥ can be formalized by first-order logic denoted by FO(X). Formulas
of FO(X) are built up from variables x,y, ... ranging over positions of string models along

149

FSTTCS 2014

150

First-order Definable String Transformations

with atomic formulas of the form x=y, =y, and L,(z) for all a € ¥. Atomic formulas are
connected with propositional connectives —, A, V, —, and quantifiers V and 3 that range over
node variables. We say that a variable is free in a formula if it does not occur in the scope of
some quantifier. A sentence is a formula with no free variables. We write ¢(z1, 2, ..., zk)
to denote that at most the variables x4, ...,z occur free in ¢. For a string s € ¥* and for
positions ny,na,...,n; € dom(s) we say that s with valuation v = (ny,na,...,n;) satisfies
the formula ¢(x1, za, ..., x) and we write (s,v) | ¢(x1,z2,...,2) or 8 = p(n1,na, ..., nk)
if formula ¢ with n; as the interpretations of z; satisfies in string model =;. The language
defined by an FO sentence ¢ is L(¢) = {s € ©* : 2, = ¢}. We say that a language L is
FO-definable if there is an FO sentence ¢ such that L = L(¢).

2.2 Aperiodic Finite Automata

A finite automaton (FA)is a tuple A = (Q, qo, %, d, F') where @ is a finite set of states, ¢o € @
is the initial state, X is an input alphabet, 0 : Q X ¥ — @ is a transition function, and F' C @
is the set of accepting states. (g, a,q’) denotes a transition of the automaton 4 from ¢ to ¢’
on a; this is written as ¢ — ¢’. We write o ~+% @n to denote a run from gg to g, on string
s; (or go ~»* @y if the automaton is clear from the context) s is accepted if ¢, € F. The
language defined by a finite automaton A is L(A) = {s : qo ~*® ¢, and ¢, € F}.

Recall that a monoid is an algebraic structure (M, -, e) with a non-empty set M, a binary
operation -, and an identity element e € M such that for all z,y, 2 € M we have that
(x-(y-2)=((x-y) 2),and x-e =e-z for all z € M. We say that a monoid (M, -, e) is finite
if the set M is finite. We say that a monoid (M, .,e) is aperiodic [17] if there exists n € N
such that for all z € M, 2™ = z"!. Note that for finite monoids, it is equivalent to require
that for all z € M, there exists n € N such that 2™ = z"*!. The following monoids are of
special importance in this paper.

1. Free Monoid. The set of all strings over 3, denoted as (X*, ., ¢) and known as the free
monoid, has string concatenation as the operation and the empty string € as the identity.
2. Transition Monoid. The set of transition matrices of an automaton A = (Q, o, 2, 0, F)
forms a finite monoid with matrix multiplication as the operation and the unit matrix

1 as the identity element. This monoid is denoted as M 4 = (M4, x,1) and known as

transition monoid of A. Formally, the set M 4 is the set of |Q|-square Boolean matrices

My ={M, : s € £*} where for all strings s € £*, we have that M,[p][q] =1 iff p ~° q.

We say that a FA is aperiodic if its transition monoid is aperiodic. It is well-known [17]
that a language L C ¥* is FO-definable iff it is accepted by some aperiodic FA.

3 Aperiodic String Transducers

For sets A and B, we write [A — B] for the set of functions F': A — B, and [A — B] for the
set of partial functions F': A — B. A string-to-string transformation from an input alphabet
Y to an output alphabet I" is a partial function in [2* — I'*]. We have seen some examples of
string-to-string transformations in the introduction. For the examples of first-order definable
transformations we use the following representative example.

» Example 1. Let ¥={a,b}. For all strings s € ¥*, we denote by § its mirror image, and for
all 0 € X, by s\o the string obtained by removing all symbols o from s. The transformation
fi+ ¥* — X* maps any string s € X* to the output string (s\b)s(s\a). For example,
fi(abaa) = aaa.aaba.b.

E. Filiot, S. N. Krishna, and A. Trivedi

Positions 1 2 3 4 5 6 7 8 9
Input String: @ Q @ 0 o e Q Q 0
Copy#1 @ & () (0] 0

o)

Conytt2 @) o o o Y () o

Copy#3 (0] o o 0] 0]

Figure 2 First-Order Transduction w — (w\b)w(w\a).

3.1 First-order logic definable Transformations

Courcelle [10] initiated the study of structure transformations using monadic second-order
logic. In this paper, we restrict this logic-based transformation model to FO-definable string
transformations. The main idea of Courcelle’s transformations is to define a transformation
(w,w’) € R by defining the string model of w’ using a finite number of copies of positions of
the string model of w. The existence of positions, various edges, and position labels are then
given as FO(X) formulas.

An FO string transducer is a tuple T=(X,T", ¢dom, C, Ppos, ¢<) where: ¥ and I are (finite)
input and output alphabets; ¢qom is a closed FO(X) formula characterizing the domain of
the transformation; C={1,2,...,n} is a finite index set; Ppos= {qﬁ%(m) :ceCandnye F} is
a finite set of FO(X) formulas with a free position variable z; ¢p<= {gbi’d(x, y):e,de C} is
a finite set of FO(X) formulas with two free position variables x and y. The transformation
[T] defined by T is as follows. A string s with =5 = (dom(s), <, (L4)eex) is in the domain of
[T] if 5 = ddom and the output is the relational structure M = (D, <M, (L,]Y\/I)’Ye]_“) such that
D = {v¢ : cedom(s),c € C and ¢¢(v)} is the set of positions where ¢¢(v) = Vyerds (v);
<M CDxD is the ordering relation between positions and it is such that for v,u € dom(s)
and ¢, d € C we have that v¢ <M u? if w |= qﬁd(v,u); and for all v¢ € D we have that
LM (v°) iff ¢¢ (v). Observe that the output is unique and therefore FO transducers implement
functions. However, note that the output structure may not always be a string. We say that
an FO transducer is a string-to-string transducer if its domain is restricted to string graphs
and the output is also a string graph.

We say that a string-to-string transformation is FO-definable if there exists an FO
string-to-string transducer implementing the transformation and write FOT for the set of
FO-definable string-to-string transformations. We define the quantifier rank qr(T) of an
FOT T as the maximal quantifier rank of any formula in 7', plus 1. We add 1 for technical
reasons, mainly because defining the successor relation requires one quantifier.

» Example 2. Consider the transformation f; of Example 1. It can be defined using an FO
transducer that uses three copies of the input domain as shown in Fig. 2.

The domain formula ¢qem, an FO formula, simply characterizes valid string models. The
first copy corresponds to (w\b), therefore the label formula Qﬁ,ly(x) is defined by false if vy = b
in order to filter out the input positions labelled b, and by true otherwise. The second copy
corresponds to w, hence all positions of the input are kept and their labels preserved, but the
edge direction is complemented; hence the label formula is (;5?{ (x) = L,(x). The third copy
corresponds to (w\a) and hence qbi(x) is true if v = b and false otherwise. The transitive

closure of the output successor relation is defined by qbi’l(x, y)=x <y, ¢i’2 (z,y) =y <z,

Bxy) =z <y, qﬁgc/(m,y) = trueif ¢ < ¢, and qbicl(x,y) = false if ¢ < ¢. Note

that the transitive closure is not depicted on the ﬁgure,_but only the successor relation.

151

FSTTCS 2014

152

First-order Definable String Transformations

Using first-order logic we define the position successor relation the following way: for
all copies ¢, d, the existence of a direct edge from a position z°¢ to a position y¢ of the

output, also called the successor relation S(z¢,y?), is defined by the formula ¢&¢ (z,y) =

def

¢3d(x7y) A =3z, \/GGC d)ie(xaz) A ¢2d(27y) where ¢f<1702(x17x2) = ;1’02(1'171'2) N 1 7é)
for all ¢1,c0 € C.

3.2 Streaming String Transducers

Streaming string transducers [1, 2] are one-way finite-state transducers that manipulates a
finite set of string variables to compute its output. Instead of appending symbols to the
output tape, SSTs concurrently update all string variables using a concatenation of string
variables and output symbols. The transformation of a string is then defined using an output
(partial) function F' that associates states with a concatenation of string variables, s.t. if the
state ¢ is reached after reading the string and F'(q)=xy, then the output string is the final
valuation of x concatenated with that of y. In this section we formally introduce SSTs and
introduce restrictions on SSTs that capture FO-definable transformations.

Let X be a finite set of variables and I" be a finite alphabet. A substitution o is defined
as a mapping o : X — (T UX)*. A valuation is defined as a substitution o : X — I'*.
Let Sxr be the set of all substitutions [¥ — (I' U X)*]. Any substitution o can be
extended to 6 : (TUX)* — (T UX)* in a straightforward manner. The composition o109
of two substitutions o; and o3 is defined as the standard function composition o9, i.e.
F109(X) = d1(02(X)) for all X € X. We now introduce streaming string transducers.

» Definition 3. A streaming string transducer is a tuple (X,T', Q, g0, Qy, 9, X, p, F') where:
(1) ¥ and T are (finite) input and output alphabets; (2) @ is a finite set of states with initial
state qo; (3) § : @ x X — @ is a transition function; (4) X is a finite set of variables; (5)
p:(Q x X) — Sy r is a variable update function; (6) @y is a subset of final states; and (7)
F:Qf — X* is an output function.

The concept of a run of an SST is defined in an analogous manner to that of a finite state
automaton. The sequence (0, ;)o<i<|r Of substitutions induced by a run r = qo N
@2 Gno1 ~ g, is defined inductively as the following: Ori=0ri—10(¢i—1,0;) for 1 < i < |r|
and 0,1 = p(qo,a1). We denote o,.|,| by o,. If the run r is final, i.e. ¢, € Qy, we can extend
the output function F' to the run r by F(r) = 0.0,F(¢n), where o, substitutes all variables
by their initial value e. For all strings s € ¥*, the output of s by T is defined only if there
exists an accepting run 7 of T' on s, and in that case the output is denoted by T'(s) = F(r).
The transformation [7] defined by an SST T is the function {(s,T(s)) : T(s) is defined}.

» Example 4. Let us consider the SST T with one state gy and three variables X, Y, and
Z, shown below implementing the transformation f; introduced in Example 1. The variable
update is shown in the figure and the output function is s.t. F(gy) = XY Z.

|

b|(X,Y,Z) = (X,bY, Zb) a| (X,Y,Z) = (Xa,aY,Z)

Let 7 be the run of 75 on s = abaa. We have 0,1 : (X,Y,Z) — (Xa,aY,Z), 0,2 : (X,Y,Z) —
or1(X,0Y, Zb) = (Xa,baY, Zb), 0r3 : (X,Y,Z) — 0,2(Xa,aY,Z) = (Xaa,abaY, Zb) and
ora: (X,Y,Z) = 0,3(Xa,aY, Z) = (Xaaa, aaba, Zb). Therefore we have that

T(s) = F(r) = 0c0r4F(qo) = 00, 4(XY Z) = 0.(XaaaaabaY Zb) = aaaaabab.

E. Filiot, S. N. Krishna, and A. Trivedi

3.3 SSTs: Transition Monoid and Aperiodicity

We define the notion of aperiodic SSTs by introducing an appropriate notion of transition
monoid for transducers. The transition monoid of an SST T is based on the effect of a string
s on the states and variables. The effect on variables is characterized by, what we call, flow
information that is given as a relation that describes the number of copies of the content of
a given variable that contribute to another variable after reading a string s.

State and Variable Flow. Let T = (X,T,Q,qo,Qy,9, X, p, F) be an SST. Let s be a
string in ¥* and suppose that there exists a run 7 of T on s. Recall that this run induces a
substitution o, that maps each variable X € X to a string u € (I' U X)*. For string variables
XY € X, states p,q € Q, and n € N we say that n copies of Y flow to X from p to q if
there exists a run r on s from p to ¢, and Y occurs n times in 0,.(X). We denote the flow
with respect to a string s as (p,Y) ~2 (¢, X).

» Example 5. Consider the run 7 from gy to go over the string aaaa in the following SST. To
minimize clutter, while drawing SSTs we omit updates of variables that remain unchanged.

a| X :=aX
@ ;

a|W:=YZ al|lY :=bX
alY :=bY,Z:=aX

On the run r on aaaa, 0, 4(W) = 0, 3[W =Y Z] = 0, 3(Y)0,3(Z). However, 0,3(Y) =
bo,2(Y) =b.b.o,1(X) and 0, 3(Z) = a.0,2(X) = a.0,1(X), and 0,1(X) = a. Now for run
r we have (g, X) ~%%* (qo, W).

In order to define the transition monoid of an SST T, we first extend N with an extra
element 1, and let N = NU {L}. This new element behaves as 0, i.e. for all i € N,
i.l=14=_1,i+ 1L =144 =1 Moreover, we assume that L. < n for all n € N. We
assume that pairs (p, X) € Q x X are totally ordered.

» Definition 6 (Transition Monoid of SSTs). The transition monoid of a streaming string
transducer 7T is the set of square matrices over N indexed (in order) by elements of @ x X,
defined by My = {M; | s € £*} where for all strings s € ¥*, M,[p,Y][¢, X] =n € N if and
only if (p,Y) ~2 (¢, X), and Ms[p,Y][g, X] = L if and only if there is no run from p to ¢ on
s. By definition, there is atmost one run r from (p,Y’) to (¢, X) on any string s.

It is easy to see that (My, x,1) is a monoid, where x is defined as matrix multiplication
and the identity element is the unit matrix 1. The mapping M,, which maps any string s
to its transition matrix My, is a morphism from (X*, . €) to (Mp, x,1). We say that the
transition monoid M7 of an SST T is n-bounded if all the coefficients of the matrices of Mp
are bounded by n. Clearly, any n-bounded transition monoid is finite.

In the original definition [2] of SST, updates were copyless, i.e., the content of a variable
can never flow into two different variables, and cannot flow more than once into another
variable. In [3], this condition was slightly relaxed to the notion of restricted copy, where
a variable cannot flow more than once into another variable. This allows for a limited
form of copy: for instance, X can flow to Y and Z, but Y and Z cannot flow to the same
variable. Finally, bounded copy SSTs were introduced in [6] as a restriction on the variable
dependency graphs. This restriction requires that there exists a bound K such that any
variable flows at most K times in another variable. These three restrictions were shown
to be equivalent, in the sense that SSTs with copyless, restricted copy, and bounded copy

153

FSTTCS 2014

154

First-order Definable String Transformations

updates have the same expressive power. Due to our definition of transition monoid, and the
results of [6], Theorem 7 is immediate by observing that bounded copy restriction of [6] for
SSTs corresponds to finiteness of transition monoid. Also, notice that since the bounded
copy assumption generalizes the copyless [2] and restricted copy [3] assumptions, previous
definitions in the literature of SSTs correspond to finite transition monoids.

» Theorem 7 ([6]). [MSO-definable string transformations] A string transformation is
MSO-definable iff it is definable by an SST with finite transition monoid.

The main goal of this paper is to present a similar result for FO-definable transformations.
For this reason we define aperiodic and 1-bounded SSTs.

» Definition 8 (Aperiodic and 1-bounded SSTs). An SST is aperiodic if its transition monoid
is aperiodic. An SST is 1-bounded if its transition monoid is 1-bounded, i.e. for all strings s,
and all pairs (p,Y), (¢, X), Ms[p,Y][q, X] € {L,0,1}. See [14] for an example.

It can be shown (see [14]) that the domain of an aperiodic SST is FO-definable. We show
that an SST is non-aperiodic iff its transition monoid contains a non-trivial cycle. Checking
the existence of a non-trivial cycle is in PSPACE for deterministic automata [16].

» Lemma 9. Checking aperiodicity and 1-boundedness for SSTs is PSPACE-COMPLETE.

Now we are in a position to present the main result of this paper. We prove the following
key theorem using Lemma 15 (Section 5) and Lemma 11 (Section 4).

» Theorem 10 (FO-definable string transformations). A string transformation is FO-definable
iff it is definable by an aperiodic, 1-bounded SST.

4 From aperiodic 1-bounded SST to FOT

» Lemma 11. A string transformation is FO-definable if it is definable by an aperiodic,1-
bounded SST.

The idea closely follows the SST-to-MSOT construction of [1, 6]. The main challenge here
is to show that aperiodicity and 1-boundedness on the SST implies FO-definability of the
output string structure (in particular the predicate <). We first show that the variable flow
of any aperiodic,1-bounded SST is FO-definable. This will be crucial to show that the output
predicate < is FO-definable.

Let X € X, s € dom(T), i € dom(s), and let n = |s|. We say that the pair (X, 1) is useful
if the content of variable X before reading s[i] will be part of the output after reading the
whole string s. Formally, if 7 = qo ... ¢,, is the accepting run of T" on s, then (X, 1) is useful
for s if (gi—1, X) Wi[i:n] (gn,Y) for some variable Y € F(g,). Thanks to the FO-definability
of variable flow this property is FO-definable.

Next, we define the SST-output structure given an input string structure. It is an
intermediate representation of the output, and the transformation of any input string into
its SST-output structure will be shown to be FO-definable. For any SST T and string
s € dom(T), the SST-output structure of s is a relational structure Gr(s) obtained by
taking, for each variable X € X, two copies of dom(s), respectively denoted by X** and
X°“t, For notational convenience we assume that these structures are labeled on the edges.
This structure satisfies the following invariants: for all i € dom(s), (1) the nodes (X", 1)
and (X°%) exist only if (X,i) is useful, and (2) there is a directed path from (X", i) to
(X°¥t 4) whose sequence of labels is equal to the value of the variable X computed by T
after reading s[i]. The condition on usefulness of nodes implies that SST-output structures
consist of a single directed component, and therefore they are edge-labeled string structures.

E. Filiot, S. N. Krishna, and A. Trivedi

X = aXb X = c X = X =X X = XeYf
Y = aaa Y =Y Y = eYf Y = aYbZc Y = a
Z = Zc Z dzd zZ = Z Z = h zZ = Z
Tun q0 > 41 > 42 > g3 > 44 > 5
in &
X,, |< __________
el
Y b
Xauf, __________ >
. €) a
yin | e— 0« 0<«—————— 0
,; aaa
Y(mt .—6>.—>.
) € d 3
ZJn ee— @0 ¢—————— 0«0
‘ d
Zout o— > e 5o

Figure 3 SST-output structure.

» Example 12. An example of SST-output structure in shown in Figure 3. Here we show
only the variable updates. Dashed arrows represent variable updates for useless variables,
and do not belong to SST-output structure; solid edges belong to the SST-output structure.
Initially the variable content of Z is ¢, this is represented by the e-edge from (Z",0) to
(Z°*,0) in the first column. Then, variable Z is updated to Zc. Hence, the new content of Z
starts with e (represented by the e-edge from (Z", 1) to (Z™",0), which is concatenated with
the previous content of Z, and then concatenated with ¢ (it is represented by the c-edge from
(Z°"0) to (Z°4*,1)). The output is given by the path from (X, 5) to (X°% 5) and equals
ceaeaaa fbdedef. Also note that some edges are labelled by strings with several letters, but
there are finitely many possible such strings. In particular, we denote by O the set of all
strings that appear in right-hand side of variable updates.

What remains for us, is to adapt from [1, 6], the MSO-definability of the transformation
that maps a string s to its SST-output structure : we show that it is FO-definable as long as
the SST is aperiodic. The main challenge is to define the transitive closure of the edge relation
in first-order. Let T be (@, qo, X, I', X, 6, p, Q). The SST-output structures of T', as node-
labeled strings, can be seen as logical structures over the signature So, = {(Ey)ycor, =}
where the symbols £, are binary predicates interpreted as edges labeled by Or. We let E
denote the edge relation, disregarding the labels. To prove that transitive closure is FO[X]-
definable, we use the fact that variable flow is FO[X]-definable. The following property,
along with the FO-definability of variable flow, shows that transitive closure is FO-definable.

» Proposition 1. Let T be an aperiodic SST T. Let s € dom(T), Gr(s) its SST-output

structure and r = qq...q, the accepting run of 7" on s. For all variables XY € X, all

positions 4,5 € dom(s) U {0}, all d,d’ € {in, out}, there exists a path from node (X<,i) to

node (Y%,) in Gp(s) iff (X,4) and (Y,) are both useful and one of the following holds:

1. Y~ X and d = in,

2. X~y and d = out, or

3. there exists k > max(i, j) and two variables X', Y’ such X ~"li% X7y ~s7lk] Y7 and
X" and Y are concatenated in this order! by r when reading s[k + 1].

1 By “concatenated” we mean that there exists a variable update whose rhs is of the form ... X’...Y" ...

155

FSTTCS 2014

156 First-order Definable String Transformations

X = aXb X = c X = X X = X X = XeYf
Y = aaa Y =Y Y = eYf Y = aYbZc Y = a
Z = Zc Z = dZd Z = Z Z = h Z = Z
run 4o > 01 > (2 > 43 > 44 > (s
X'in
Xout
Yin <
A
Yout
. (1)
Zln e SEEEEEEE——T U §
(2 1)
Zout v

Figure 4 Conditions of Proposition 1.

» Example 13. We illustrate proposition 1 using example of Fig.4. We have for instance
(q2,Y) Wi[3;2]=e (g2,Y), therefore by conditions (1) (and (2)) by taking X =Y and i = j =2,
there exists a path from (Y 2) to (Y°%,2). Note that none of these conditions imply
the existence of an edge from (Y°%,2) to (Y",2), but self-loops on (Y",2) and (Y °%,2)
are implied by conditions (1) and (2) respectively. Now consider positions 0 and 1 and
variable Z. It is the case that (qo, Z) W‘;[M] (q1,2), therefore by condition (1) there is a
path from (Z",1) to (Z,0) and to (Z°%,0). Similarly, by condition (2) there is a path
from (Z™,0) to (Z°%,1) and from (Z°%,0) to (Z°*,1). For positions 3 and 5, note that
(g3,Y) ~3*%) (g5, X), hence there is a path from (Y4, 3) to (X°,5) for all d € {in,out}.
By condition (2) one also gets edges from (X, 5) to (Y4, 3). Finally consider nodes (Z°"*, 2)
and (X, 3). There is no flow relation between variable Z at position 2 and variable X at
position 3. However, (g3, X) Wi[ZM] (q4,X) and (g2, Z) ~*B4 (g4,Y). Then X and Y gets
concatenated at position 4 to define X at position 5. Hence, there is a path from (X, 3) to
(Z°%t 2) (condition (3)).

» Lemma 14. For an aperiodic SST T, variables X,Y € X and all d,d’ € {in,out}, there
exists an FO[S]-formula pathy y 4 4 (%, y) with two free variables s.t. for all s € dom(T') and
i,j € dom(s), s |= pathy y 4 4(i,7) iff there exists a path from (X%,i) to (Y%, j) in Gr(s).

We now sketch the proof of Lemma 11. Let I" be the output alphabet. We adapt the
MSO-definability of strings to SST-output structures from [6, 1] and use the FO-definability of
transitive closure (Lemma 14) to show that strings to SST-output structure transformations
are FO-definable whenever the SST is aperiodic. Since the usefulness of nodes is FO-definable,
we filter out useless nodes in the first FO-transformation, unlike [6, 1], where useless nodes
in the SST-output structures are later removed by composing with another MSO-definable
transformation. We can transform the SST-output structures which are edge-labeled strings
over Op C I'* to a node-labeled string over I'. This transformation is again FO-definable by
taking a suitable number of copies of the input domain (max{|s| | s € Or}). Now Lemma 11
follows from the closure of FO-transformations under composition [10].

E. Filiot, S. N. Krishna, and A. Trivedi

5 From FOT to aperiodic 1-bounded SST

The goal of this section is to prove the following lemma by showing a reduction from FO-
definable transformations to aperiodic, 1-bounded SSTs. Due to space limitations, we only
sketch the main ideas of the proof of this result.

» Lemma 15. A string transformation is FO-definable only if it is definable by an aperiodic,
1-bounded SST.

FO-types, heads and tails. The FO-K-type (K-type for short) of a string s is the set of
FO sentences of quantifier rank at most K that are true in s. The set of K-types is finite
(up to logical equivalence) [17]. We start with a key observation. Given an FO-transducer,
an input string s and a position ¢ in s, all the maximal paths of the output structure induced
by nodes of the form j¢, for all copies ¢ and input positions j < i define substrings of the
output of s. The starting (resp. ending) nodes of these substrings are respectively called
i-head and i-tails. Consider the FO-transduction shown in Figure 2 till position 3. Suppose
that we omit the positions and edges of the output graph post position 3. Upto position
3, the output graph consists of two strings: the first string is between the 3-head 1' and
the 3-tail 3! and stores aa, while the second string is between the 3-head 3% and the 3-tail
23 and stores the string abab. The key observation of [5] is that any i-head j¢ (resp. i-tail)
is uniquely identified by the K-type 7 of the string s[1:5), the label a of input position j,
the copy ¢, and the K-type 15 of the string s(j:i], for a bound K that depends only on the
FO-transducer.

SST construction. The main lines of the SST construction of [5] is to use as many SST
variables X, as tuples a = (71, a, ¢, 72). Since the sets of K-types, labels and copies are finite,
then so is the set of variables. At each position i in the input s, the content of X, computed
by the SST is exactly the substring in between the i-head and i-tail identified by the tuple a.
To define the variable update when incrementing position ¢, if the SST knows the K-types
of the current prefix and suffix respectively, it can determine how the (i + 1)-heads and
(i + 1)-tails are connected to the i-heads and i-tails, based on the FO-formulas that define
the output edge relation. Let us now explain how the SST can compute the K-types of
the prefix up to 7 and of the suffix from position 4. It is known that the K-type of a string
s182 only depends on the K-types of s; and s respectively [17]. Therefore, to compute the
K-type of the prefix up to 7 + 1, the SST only needs to know the K-type of the prefix up to
7 and the input label at position i + 1. Therefore, the states of the SST are K-types. To
compute the K-type of the suffix, we equip our SST with look-aheads, defined by aperiodic
finite state automata. We naturally extend the notion of aperiodic SST to aperiodic SST
with look-aheads, and, as an intermediate result, show that removing look-aheads can be
done while preserving aperiodicity (as well as 1-boundedness). From an FO-transducer, the
construction therefore produces an SST T, with look-ahead. The main difficulty is to show
that Ti, is aperiodic and 1-bounded.

Aperiodicity and 1-boundedness of 7j,. One of the technical difficulties in showing that
T, is aperiodic is to show that it computes the type informations and update the variables
in an aperiodic manner. A well-known property [17] we exploit is that for m > 2% for any
string s, the strings s™ and s™*! are indistinguishable by FO-sentences of rank at most K.

For the sake of understanding of this sketch and, in order to focus only on aperiodicity of
variable updates, we rather assume, in this sketch, that the positions 7 of the input strings

157

FSTTCS 2014

158

First-order Definable String Transformations

input string s
|

o o
I od o 1

output string graph

e

HD(s, 7, a)o/—\\dfﬂ
TL(s,4, a) e AL 75 0)

Figure 5 Variable flow is FO-definable.

s have been initially extended with type informations (71,72) where 7y is the K-type of
s[1:3] and 15 is the K-type of s(i:|s|]. Therefore, we can transform Tj, into a one-state SST
T (without look-ahead), assuming it gets as input only strings extended with valid type
information. The 1-boundedness of T is a simple consequence of the construction (and was
already shown in [5] through the notion of restricted copy). Let us now briefly explain why
T is aperiodic, or equivalently, that its variable flow is aperiodic. It is sufficient to show that
the variable flow is FO-definable. Given s € ¥*, a position 7 in s, and a tuple o = (11, a, ¢, T2)
as defined before, we denote by HD(s, i, «) the i-head (resp. TL(s, i, a) the i-tail) defined by
« in s. Given another tuple o’ and a position ¢/ > 7 in s, we relate the flow between variable
X, at position i to variable X, at position i’ to the existence of a path from HD(s,i’, &) to
HD(s, 4,) that do not go beyond position ¢’ in the output graph of s.

» Example 16. Consider the FO-transformation of Fig. 5. As a consequence of the invariant
of our construction, the substring s; that starts in position HD(s, i, &) and ends in TL(s, i, @),
at position i, is stored in variable X,. The substring s, from HD(s,#’,a’) to TL(s,4, a’) is
stored, at position ¢, in variable X,/. Since s; is a substring of sy, the content of variable
X, at position ¢ (i.e. s1) flows into the content of variable X, at position i’ (i.e. s2). Based
on the fact that the output transition closure of the edge relation is defined in FO, and the
fact that types are also FO-definable, we show that the existence of a path from HD(s, i, o)
to HD(s, i,) that do not cross position ¢ is FO-definable, and so is the variable flow.

As mentioned earlier, the complete proof starts directly with an SST with look-ahead
that computes the type information, therefore one has to study both state flow and variable
flow. An alternative proof could have been to compose two aperiodic SSTs (w/o lookaheads):
the first one annotates the string with type information, and the second one is the one-state
SST T'. Then, it would remain to prove that aperiodic SSTs are closed under composition
(which is a consequence of our result and the fact that FO-transducers are closed under
composition). However, it is not clear that directly proving that aperiodic SSTs are closed
under composition would have been simpler than our proof based on SSTs with look-aheads.

—— References

1 R. Alur and P. Cerny. Expressiveness of streaming string transducers. In Proc. FSTTCS
2010, pages 1-12, 2010.

E. Filiot, S. N. Krishna, and A. Trivedi

10

11

12

13

14
15

16

17

R. Alur and P. Cerny. Streaming transducers for algorithmic verification of single-pass
list-processing programs. In Proc. POPL 2011, pages 599-610, 2011.

R. Alur and L. D’Antoni. Streaming tree transducers. In Proc. ICALP 2012, pages 42-53,
2012.

R. Alur, L. D’Antoni, J. V. Deshmukh, M. Raghothaman, and Y. Yuan. Regular functions
and cost register automata. In Proc. LICS 2013, pages 13—22, 2013.

R. Alur, A. Durand-Gasselin, and A. Trivedi. From monadic second-order definable string
transformations to transducers. In Proc. LICS 2013, pages 458-467, 2013.

R. Alur, E. Filiot, and A. Trivedi. Regular transformations of infinite strings. In Proc.
LICS 2012, pages 65-74, 2012.

M. Bojanczyk. Transducers with origin information. In Proc. ICALP 201/, pages 26-37,
2014.

J. R. Biichi. Weak second-order arithmetic and finite automata. Zeitschrift fiir Mathemat-
ische Logik und Grundlagen der Mathematik, 6(1-6):66-92, 1960.

O. Carton and L. Dartois. Aperiodic two-way transducers. In Highlights of Logic, Auto-
matae and Games, 2013. Slides available at http://highlights-conference.org/pub/
3-1-Dartois.pdf.

B. Courcelle. Monadic second-order definable graph transductions: a survey. Theoretical
Computer Science, 126(1):53-75, 1994.

V. Diekert and P. Gastin. First-order definable languages. In Logic and Automata: History
and Perspectives, pages 261-306. Amsterdam University Press, 2008.

J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions and two-way finite-
state transducers. ACM Trans. Comput. Logic, 2:216-254, 2001.

J. Engelfriet and S. Maneth. Macro tree translations of linear size increase are MSO
definable. STAM Journal on Computing, 32:950-1006, 2003.

E. Filiot, S. N. Krishna, and A. Trivedi. First-order definable string transformations.

P. McKenzie, T. Schwentick, D. Therien, and H. Vollmer. The many faces of a translation.
JCSS, 72, 2006.

J. Stern. Complexity of some problems from the theory of automata. Information and
Control, 66:163-176, 1985.

H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser, 1994.

159

FSTTCS 2014

http://highlights-conference.org/pub/3-1-Dartois.pdf
http://highlights-conference.org/pub/3-1-Dartois.pdf

	Introduction
	Preliminaries
	First-order logic for strings
	Aperiodic Finite Automata

	Aperiodic String Transducers
	First-order logic definable Transformations
	Streaming String Transducers
	SSTs: Transition Monoid and Aperiodicity

	From aperiodic 1-bounded SST to FOT
	From FOT to aperiodic 1-bounded SST

