
Output-Sensitive Pattern Extraction in Sequences
Roberto Grossi1, Giulia Menconi1, Nadia Pisanti1, Roberto Trani1,
and Søren Vind∗2

1 Università di Pisa, Dipartimento di Informatica
grossi@di.unipi.it, menconigiulia@gmail.com, pisanti@di.unipi.it,
tranir@cli.di.unipi.it

2 Technical University of Denmark, DTU Compute
sovi@dtu.dk

Abstract
Genomic Analysis, Plagiarism Detection, Data Mining, Intrusion Detection, Spam Fighting and
Time Series Analysis are just some examples of applications where extraction of recurring patterns
in sequences of objects is one of the main computational challenges. Several notions of patterns
exist, and many share the common idea of strictly specifying some parts of the pattern and
to don’t care about the remaining parts. Since the number of patterns can be exponential in
the length of the sequences, pattern extraction focuses on statistically relevant patterns, where
any attempt to further refine or extend them causes a loss of significant information (where the
number of occurrences changes). Output-sensitive algorithms have been proposed to enumerate
and list these patterns, taking polynomial time O(nc) per pattern for constant c > 1, which is
impractical for massive sequences of very large length n.

We address the problem of extracting maximal patterns with at most k don’t care symbols
and at least q occurrences. Our contribution is to give the first algorithm that attains a stronger
notion of output-sensitivity, borrowed from the analysis of data structures: the cost is proportional
to the actual number of occurrences of each pattern, which is at most n and practically much
smaller than n in real applications, thus avoiding the aforementioned cost of O(nc) per pattern.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases Pattern Extraction, Motif Detection, Pattern Discovery, Motif Trie

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.303

1 Introduction

In pattern extraction, the task is to extract the “most important” and frequently occurring
patterns from sequences of “objects” such as log files, time series, text documents, datasets
or DNA sequences. Each individual object can be as simple as a character from {A, C, G, T}
or as complex as a json record from a log file. What is of interest to us is the potentially
very large set of all possible different objects, which we call the alphabet Σ, and sequence S

built with n objects drawn from Σ.
We define the occurrence of a pattern in S as in pattern matching but its importance

depends on its statistical relevance, namely, if the number of occurrences is above a certain
threshold. However, pattern extraction is not to be confused with pattern matching. The
problems may be considered inverse of each other: the former gets an input sequence S from
the user, and extracts patterns P and their occurrences from S, where both are unknown

∗ Supported by a grant from the Danish National Advanced Technology Foundation.

© Roberto Grossi, Giulia Menconi, Nadia Pisanti, Roberto Trani, and Søren Vind;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 303–314

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.303
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

304 Output-Sensitive Pattern Extraction in Sequences

to the user; the latter gets S and a given pattern P from the user, and searches for P ’s
occurrences in S, and thus only the pattern occurrences are unknown to the user.

Many notions of patterns exist, reflecting the diverse applications of the problem [11, 4,
19, 21]. We study a natural variation allowing the special don’t care character ? in a pattern
to mean that the position inside the pattern occurrences in S can be ignored (so ? matches
any single character in S). For example, TA ? C ? ACA ? GTG is a pattern for DNA sequences.

A motif is a pattern of any length with at most k don’t cares occurring at least q times
in S. In this paper, we consider the problem of determining the maximal motifs, where any
attempt to extend them or replace their ?’s with symbols from Σ causes a loss of significant
information (where the number of occurrences in S changes). We denote the family of all
motifs by Mqk, the set of maximal motifsM⊆Mqk (dropping the subscripts inM) and let
occ(m) denote the number of occurrences of a motif m inside S. It is well known that Mqk

can be exponentially larger thanM [16].

Our Results. We show how to efficiently build an index that we call a motif trie which is a
trie that contains all prefixes, suffixes and occurrences ofM, and we show how to extract
M from it. The motif trie is built in level-wise, using an oracle Generate(u) that reveals
the children of a node u efficiently using properties of the motif alphabet and a bijection
between new children of u and intervals in the ordered sequence of occurrences of u. We
are able to bound the resulting running time with a strong notion of output-sensitive cost,
borrowed from the analysis of data structures, where the cost is proportional to the actual
number occ(m) of occurrences of each maximal motif m.

I Theorem 1. Given a sequence S of n objects over an alphabet Σ, and two integers q > 1
and k ≥ 0, there is an algorithm for extracting the maximal motifs M ⊆ Mqk and their
occurrences from S in O

(
n(k + log Σ) + (k + 1)3 ×

∑
m∈M occ(m)

)
time.

Our result may be interesting for several reasons. First, observe that this is an optimal
listing bound when the maximal number of don’t cares is k = O(1), which is true in many
practical applications. The resulting bound is O(n log Σ +

∑
m∈M occ(m)) time, where the

first additive term accounts for building the motif trie and the second term for discovering
and reporting all the occurrences of each maximal motif.

Second, our bound provides a strong notion of output-sensitivity since it depends on
how many times each maximal motif occurs in S. In the literature for enumeration, an
output-sensitive cost traditionally means that there is polynomial cost of O(nc) per pattern,
for a constant c > 1. This is infeasible in the context of big data, as n can be very large,
whereas our cost of occ(m) ≤ n compares favorably with O(nc) per motif m, and occ(m)
can be actually much smaller than n in practice. This has also implications in what we
call “the CTRL-C argument,” which ensures that we can safely stop the computation for a
specific sequence S if it is taking too much time1. Indeed, if much time is spent with our
solution, too many results to be really useful may have been produced. Thus, one may stop
the computation and refine the query (change q and k) to get better results. On the contrary,
a non-output-sensitive algorithm may use long time without producing any output: It does
not indicate if it may be beneficial to interrupt and modify the query.

Third, our analysis improves significantly over the brute-force bound: Mqk contains
pattern candidates of lengths p from 1 to n with up to min{k, p} don’t cares, and so has size

1 Such an algorithm is also called an anytime algorithm in the literature.

R.Grossi, G.Menconi, N. Pisanti, R. Trani, and S. Vind 305

∑
p |Σ|p × (

∑min{k,p}
i=1

(
p
i

)
) = O(|Σ|nnk). Each candidate can be checked in O(nk) time (e. g.

string matching with k mismatches), or O(k) time if using a data structure such as the suffix
tree [19]. In our analysis we are able to remove both of the nasty exponential dependencies
on |Σ| and n in O(|Σ|nnk). In the current scenario where implementations are fast in practice
but skip worst-case analysis, or state the latter in pessimistic fashion equivalent to the
brute-force bound, our analysis could explain why several previous algorithms are fast in
practice. (We have implemented a variation of our algorithm that is very fast in practice.)

Related Work. Although the literature on pattern extraction is vast and spans many
different fields of applications with various notation, terminology and variations, we could
not find time bounds explicitly stated obeying our stronger notion of output-sensitivity,
even for pattern classes different from ours. Output-sensitive solutions with a polynomial
cost per pattern have been previously devised for slightly different notions of patterns. For
example, Parida et al. [15] describe an enumeration algorithm with O(n2) time per maximal
motif plus a bootstrap cost of O(n5 log n) time. 2 Arimura and Uno obtain a solution with
O(n3) delay per maximal motif where there is no limitations on the number of don’t cares
[4]. Similarly, the MadMX algorithm [11] reports dense motifs, where the ratio of don’t
cares and normal characters must exceed some threshold, in time O(n3) per maximal dense
motif. Our stronger notion of output-sensitivity is borrowed from the design and analysis
of data structures, where it is widely employed. For example, searching a pattern P in S

using the suffix tree [14] has cost proportional to P ’s length and its number of occurrences.
A one-dimensional query in a sorted array reports all the wanted keys belonging to a range
in time proportional to their number plus a logarithmic cost. Therefore it seemed natural to
us to extend this notion to enumeration algorithms also.

Applications. Although the pattern extraction problem has found immediate applications in
stringology and biological sequences, it is highly multidisciplinary and spans a vast number of
applications in different areas. This situation is similar to the one for the edit distance problem
and dynamic programming. We here give a short survey of some significant applications, but
others are no doubt left out due to the difference in terminology used (see [1] for further
references). In computational biology, motif discovery in biological sequences identifies areas
of interest[19, 21, 11, 1]. Computer security researches use patterns in log files to perform
intrusion detection and find attack signatures based on their frequencies [9], while commercial
anti-spam filtering systems use pattern extraction to detect and block SPAM [18]. In the
data mining community pattern extraction is used extensively [13] as a core method in web
page content extraction [7] and time series analysis [17, 20]. In plagiarism detection finding
recurring patterns across a (large) number of documents is a core primitive to detect if
significant parts of documents are plagiarized [6] or duplicated [5, 8]. And finally, in data
compression extraction of the common patterns enables a compression scheme that competes
in efficiency with well-established compression schemes [3].

As the motif trie is an index, we believe that it may be of independent interest for storing
similar patterns across similar strings. Our result easily extends to real-life applications
requiring a solution with two thresholds for motifs, namely, on the number of occurrences in
a sequence and across a minimum number of sequences.

2 The set intersection problem (SIP) in appendix A of [15] requires polynomial time O(n2): The recursion
tree of depth ≤ n can have unary nodes, and each recursive call requires O(n) to check if the current
subset has been already generated.

FSTTCS 2014

306 Output-Sensitive Pattern Extraction in Sequences

String TACTGACACTGCCGA

Quorum q = 2
Don’t cares k = 1

(a) Input and parameters for example.

Maximal Motif Occurrence List
A 2, 6, 8, 15
AC 2, 6, 8

ACTG?C 2, 8
C 3, 7, 9, 12, 13
G 5, 11, 14
GA 5, 14
G?C 5, 11
T 1, 4, 10

T?C 1, 10
(b) Output: Maximal motifs found (and their occur-
rence list) for the given input.

Figure 1 Example 1: Maximal Motifs found in string.

Reading Guide. Our solution has two natural parts. In Section 3 we define the motif trie,
which is an index storing all maximal motifs and their prefixes, suffixes and occurrences. We
show how to report only the maximal motifs in time linear in the size of the trie. That is, it
is easy to extract the maximal motifs from the motif trie – the difficulty is to build the motif
trie without knowing the motifs in advance. In Section 4 and 5 we give an efficient algorithm
for constructing the motif trie and bound its construction time by the number of occurrences
of the maximal motifs, thereby obtaining an output-sensitive algorithm.

2 Preliminaries

Strings. We let Σ be the alphabet of the input string S ∈ Σ∗ and n = |S| be its length. For
1 ≤ i ≤ j ≤ n, S[i, j] is the substring of S between index i and j, both included. S[i, j] is the
empty string ε if i > j, and S[i] = S[i, i] is a single character. Letting 1 ≤ i ≤ n, a prefix or
suffix of S is S[1, i] or S[i, n], respectively. The longest common prefix lcp(x, y) is the longest
string such that x[1, | lcp(x, y)|] = y[1, | lcp(x, y)|] for any two strings x, y ∈ Σ∗.

Tries. A trie T over an alphabet Π is a rooted, labeled tree, where each edge (u, v) is labeled
with a symbol from Π. All edges to children of node u ∈ T must be labeled with distinct
symbols from Π. We may consider node u ∈ T as a string generated over Π by spelling out
characters from the root on the path towards u. We will use u to refer to both the node and
the string it encodes, and |u| to denote its string length. A property of the trie T is that for
any string u ∈ T , it also stores all prefixes of u. A compacted trie is obtained by compacting
chains of unary nodes in a trie, so the edges are labeled with substrings: the suffix tree for a
string is special compacted trie that is built on all suffixes of the string [14].

Motifs. A motif m ∈ Σ (Σ ∪ {?})∗Σ consist of symbols from Σ and don’t care characters
? 6∈ Σ. We let the length |m| denote the number of symbols from Σ∪{?} in m, and let dc(m)
denote the number of ? characters in m. Motif m occurs at position p in S iff m[i] = S[p+i−1]
or m[i] = ? for all 1 ≤ i ≤ |m|. The number of occurrences of m in S is denoted occ(m).
Note that appending ? to either end of a motif m does not change occ(m), so we assume
that motifs starts and ends with symbols from Σ. A solid block is a maximal (possibly empty
ε) substring from Σ∗ inside m.

R.Grossi, G.Menconi, N. Pisanti, R. Trani, and S. Vind 307

We say that a motif m can be extended by adding don’t cares and characters from Σ to
either end of m. Similarly, a motif m can be specialized by replacing a don’t care ? in m with
a symbol c ∈ Σ. An example is shown in Figure 1.

Maximal Motifs. Given an integer quorum q > 1 and a maximum number of don’t cares
k ≥ 0, we define a family of motifs Mqk containing motifs m that have a limited number
of don’t cares dc(m) ≤ k, and occurs frequently occ(m) ≥ q. A maximal motif m ∈ Mqk

cannot be extended or specialized into another motif m′ ∈Mqk such that occ(m′) = occ(m).
Note that extending a maximal motif m into motif m′′ 6∈Mqk may maintain the occurrences
(but have more than k don’t cares). We letM⊆Mqk denote the set of maximal motifs.

Motifs m ∈Mqk that are left-maximal or right-maximal cannot be specialized or extended
on the left or right without decreasing the number of occurrences, respectively. They may,
however, be prefix or suffix of another (possibly maximal) m′ ∈Mqk, respectively.

I Fact 1. If motif m ∈Mqk is right-maximal then it is a suffix of a maximal motif.

3 Motif Tries and Pattern Extraction

This section introduces the motif trie. This trie is not used for searching but its properties are
exploited to orchestrate the search for maximal motifs inM to obtain a strong output-sensitive
cost. Due to space constraints, all proofs have been omitted in the present version.

3.1 Efficient Representation of Motifs
We first give a few simple observations that are key to our algorithms. Consider a suffix
tree built on S over the alphabet Σ, which can be done in O(n log |Σ|) time. It is shown in
[21, 10] that when a motif m is maximal, its solid blocks correspond to nodes in the suffix
tree for S, matching their substrings from the root3. For this reason, we introduce a new
alphabet, the solid block alphabet Π of size at most 2n, consisting of the strings stored in all
the suffix tree nodes.

We can write a maximal motif m ∈Mqk as an alternating sequence of ≤ k + 1 solid blocks
and ≤ k don’t cares, where the first and last solid block must be different from ε. Thus we
represent m as a sequence of ≤ k + 1 strings from Π since the don’t cares are implicit. By
traversing the suffix tree nodes in preorder we assign integers to the strings in Π, allowing
us to assume that Π ⊆ [1, . . . , 2n], and so each motif m ∈Mqk is actually represented as a
sequence of ≤ k + 1 integers from 1 to |Π| = O(n). Note that the order on the integers in Π
shares the following grouping property with the strings over Σ.

I Lemma 2. Let A be an array storing the sorted alphabet Π. For any string x ∈ Σ∗, the
solid blocks represented in Π and sharing x as a common prefix, if any, are grouped together
in A in a contiguous segment A[i, j] for some 1 ≤ i ≤ j ≤ |Π|.

When it is clear from its context, we will use the shorthand x ∈ Π to mean equivalently a
string x represented in Π or the integer x in Π that represents a string stored in a suffix tree
node. We observe that the set of strings represented in Π is closed under the longest common
prefix operation: for any x, y ∈ Π, lcp(x, y) ∈ Π and it may be computed in constant time
after augmenting the suffix tree for S with a lowest common ancestor data structure [12].

Summing up, the above relabeling from Σ to Π only requires the string S ∈ Σ∗ and its
suffix tree augmented with lowest common ancestor information.

3 The proofs in [21, 10] can be easily extended to our notion of maximality.

FSTTCS 2014

308 Output-Sensitive Pattern Extraction in Sequences

A AC AC
TG

C G GA T

C C C

Figure 2 Motif trie for Example 1. The black nodes are maximal motifs (with their occurrence
lists shown in Fig. 1(b)).

3.2 Motif Tries
We now exploit the machinery on alphabets described in Section 3.1. For the input sequence S,
consider the family Mqk defined in Section 2, where each m is seen as a string m = m[1, `] of
` ≤ k + 1 integers from 1 to |Π|. Although each m can contain O(n) symbols from Σ, we get
a benefit from treating m as a short string over Π: unless specified otherwise, the prefixes and
suffixes of m are respectively m[1, i] and m[i, `] for 1 ≤ i ≤ `, where ` = dc(m) + 1 ≤ k + 1.
This helps with the following definition as it does not depend on the O(n) symbols from Σ
in a maximal motif m but it solely depends on its ≤ k + 1 length over Π.

I Definition 3 (Motif Trie). A motif trie T is a trie over alphabet Π which stores all maximal
motifsM⊆Mqk and their suffixes.

As a consequence of being a trie, T implicitly stores all prefixes of all the maximal motifs
and edges in T are labeled using characters from Π. Hence, all sub-motifs of the maximal
motifs are stored in T , and the motif trie can be essentially seen as a generalized suffix trie4
storingM over the alphabet Π. From the definition, T has O((k + 1) · |M|) leaves, the total
number of nodes is O(|T |) = O((k + 1)2 · |M|), and the height is at most k + 1.

We may consider a node u in T as a string generated over Π by spelling out the ≤ k + 1
integers from the root on the path towards u. To decode the motif stored in u, we retrieve
these integers in Π and, using the suffix tree of S, we obtain the corresponding solid blocks
over Σ and insert a don’t care symbol between every pair of consecutive solid blocks. When it
is clear from the context, we will use u to refer to (1) the node u or (2) the string of integers
from Π stored in u, or (3) the corresponding motif from (Σ ∪ {?})∗. We reserve the notation
|u| to denote the length of motif u as the number of characters from Σ ∪ {?}. Each node
u ∈ T stores a list Lu of occurrences of motif u in S, i. e. u occurs at p in S for p ∈ Lu.

Since child edges for u ∈ T are labeled with solid blocks, the child edge labels may be
prefixes of each other, and one of the labels may be the empty string ε (which corresponds
to having two neighboring don’t cares in the decoded motif).

3.3 Reporting Maximal Motifs using Motif Tries
Suppose we are given a motif trie T but we do not know which nodes of T store the
maximal motifs in S. We can identify and report the maximal motifs in T in O(|T |) =
O((k + 1)2 · |M|) = O((k + 1)2 ·

∑
m∈M occ(m)) time as follows.

4 As it will be clear later, a compacted motif trie does not give any advantage in terms of the output-
sensitive bound compared to the motif trie.

R.Grossi, G.Menconi, N. Pisanti, R. Trani, and S. Vind 309

We first identify the set R of nodes u ∈ T that are right-maximal motifs. A characterization
of right-maximal motifs in T is relatively simple: we choose a node u ∈ T if (i) its parent
edge label is not ε, and (ii) u has no descendant v with a non-empty parent edge label such
that |Lu| = |Lv|. By performing a bottom-up traversal of nodes in T , computing for each
node the length of the longest list of occurrences for a node in its subtree with a non-empty
edge label, it is easy to find R in time O(|T |) and by Fact 1, |R| = O((k + 1) · |M|).

Next we perform a radix sort on the set of pairs 〈|Lu|, reverse(u)〉, where u ∈ R and
reverse(u) denotes the reverse of the string u, to select the motifs that are also left-maximal
(and thus are maximal). In this way, the suffixes of the maximal motifs become prefixes
of the reversed maximal motifs. By Lemma 2, those motifs sharing common prefixes are
grouped together consecutively. However, there is a caveat, as one maximal motif m′ could
be a suffix of another maximal motif m and we do not want to drop m′: in that case, we
have that |Lm| 6= |Lm′ | by the definition of maximality. Hence, after sorting, we consider
consecutive pairs 〈|Lu1 |, reverse(u1)〉 and 〈|Lu2 |, reverse(u2)〉 in the order, and eliminate u1
iff |Lu1 | = |Lu2 | and u1 is a suffix of u2 in time O(k + 1) per pair (i. e. prefix under reverse).
The remaining motifs are maximal.

4 Building Motif Tries

The goal of this section is to show how to efficiently build the motif trie T discussed in
Section 3.2. Suppose without loss of generality that enough new symbols are prepended and
appended to the sequence S to avoid border cases. We want to store the maximal motifs of S

in T as strings of length ≤ k + 1 over Π. Some difficulties arise as we do not know in advance
which are the maximal motifs. Actually, we plan to find them during the output-sensitive
construction of T , which means that we would like to obtain a construction bound close to
the term

∑
m∈Mocc(m) stated in Theorem 1.

We proceed in top-down and level-wise fashion by employing an oracle that is invoked
on each node u on the last level of the partially built trie, and which reveals the future
children of u. The oracle is executed many times to generate T level-wise starting from its
root u with Lu = {1, . . . , n}, and stopping at level k + 1 or earlier for each root-to-node path.
Interestingly, this sounds like the wrong way to do anything efficiently, e. g. it is a slow way
to build a suffix tree, however the oracle allows us to amortize the total cost to construct the
trie. In particular, we can bound the total cost by the total number of occurrences of the
maximal motifs stored in the motif trie.

The oracle is implemented by the Generate(u) procedure that generates the children
u1, . . . , ud of u. We ensure that (i) Generate(u) operates on the ≤ k + 1 length motifs from
Π, and (ii) Generate(u) avoids generating the motifs in Mqk \M that are not suffixes or
prefixes of maximal motifs. This is crucial, as otherwise we cannot guarantee output-sensitive
bounds because Mqk can be exponentially larger thanM.

In Section 5 we will show how to implement Generate(u) and prove:

I Lemma 4. Algorithm Generate(u) produces the children of u and can be implemented
in time O(sort(Lu) + (k + 1) · |Lu|+

∑d
i=1 |Lui

|).

By summing the cost to execute procedure Generate(u) for all nodes u ∈ T , we now
bound the construction time of T . Observe that when summing over T the formula stated in
Lemma 4, each node exists once in the first two terms and once in the third term, so the

FSTTCS 2014

310 Output-Sensitive Pattern Extraction in Sequences

latter can be ignored when summing over T (as it is dominated by the other terms)

∑
u∈T

(sort(Lu) + (k + 1) · |Lu|+
d∑

i=1
|Lui
|) = O

(∑
u∈T

(sort(Lu) + (k + 1) · |Lu|)
)

.

We bound

∑
u∈T

sort(Lu) = O

(
n(k + 1) +

∑
u∈T

|Lu|

)

by running a single cumulative radix sort for all the instances over the several nodes u at the
same level, allowing us to amortize the additive cost O(n) of the radix sorting among nodes
at the same level (and there are at most k + 1 such levels).

To bound
∑

u∈T |Lu|, we observe
∑

i |Lui | ≥ |Lu| (as trivially the ε extension always
maintains the number of occurrences of its parent). Consequently we can charge each leaf u

the cost of its ≤ k ancestors, so

∑
u∈T

|Lu| = O

(
(k + 1)×

∑
leaf u∈T

|Lu|

)
.

Finally, from Section 3.2 there cannot be more leaves than maximal motifs inM and their
suffixes, and the occurrence lists of maximal motifs dominate the size of the non-maximal
ones in T , which allows us to bound:

(k + 1)×
∑

leaf u∈T

|Lu| = O

(
(k + 1)2 ×

∑
m∈M

occ(m)
)

.

Adding the O(n log Σ) cost for the suffix tree and the LCA ancestor data structure of
Section 3.1, we obtain:

I Theorem 5. Given a sequence S of n objects over an alphabet Σ and two integers q > 1 and
k ≥ 0, a motif trie containing the maximal motifsM⊆Mqk and their occurrences occ(m)
in S for m ∈M can be built in time and space O

(
n(k + log Σ) + (k + 1)3×

∑
m∈M occ(m)

)
.

5 Implementing Generate(u)

We now show how to implement Generate(u) within the time bounds stated by Lemma 4.
The idea is as follows. We first obtain Eu, which is an array storing the occurrences in Lu,
sorted lexicographically according to the suffix associated with each occurrence. We can then
show that there is a bijection between the children of u and a set of maximal intervals in Eu.
By exploiting the properties of these intervals, we are able to find them efficiently through a
number of scans of Eu. The bijection implies that we thus efficiently obtain the new children
of u.

5.1 Nodes of the Motif Trie as Maximal Intervals
The key point in the efficient implementation of the oracle Generate(u) is to relate each
node u and its future children u1, . . . , ud labeled by solid blocks b1, . . . , bd, respectively, to
some suitable intervals that represent their occurrence lists Lu, Lu1 , . . . , Lud

. Though the
idea of using intervals for representing trie nodes is not new (e. g. in [2]), we use intervals to

R.Grossi, G.Menconi, N. Pisanti, R. Trani, and S. Vind 311

expand the trie rather than merely representing its nodes. Not all intervals generate children
as not all solid blocks that extend u necessarily generate a child. Also, some of the solid
blocks b1, . . . , bd can be prefixes of each other and one of the intervals can be the empty
string ε. To select them carefully, we need some definitions and properties.

Extensions. For a position p ∈ Lu, we define its extension as the suffix ext(p, u) = S[p +
|u|+ 1, n] that starts at the position after p with an offset equivalent to skipping the prefix
matching u plus one symbol (for the don’t care). We may write ext(p), omitting the motif u

if it is clear from the context. We also say that the skipped characters skip(p) at position
p ∈ Lu are the d = dc(u) + 2 characters in S that specialize u into its occurrence p: formally,
skip(p) = 〈c0, c1, . . . , cd−1〉 where c0 = S[p− 1], cd−1 = S[p + |u|], and ci = S[p + ji − 1], for
1 ≤ i ≤ d− 2, where u[ji] = ? is the ith don’t care in u.

We denote by Eu the list Lu sorted using as keys the integers for ext(p) where p ∈ Lu.
(We recall from Section 3.1 that the suffixes are represented in the alphabet Π, and thus ext(p)
can be seen as an integer in Π.) By Lemma 2 consecutive positions in Eu share common
prefixes of their extensions. Lemma 6 below states that these prefixes are the candidates for
being correct edge labels for expanding u in the trie.

I Lemma 6. Let ui be a child of node u, bi be the label of edge (u, ui), and p ∈ Lu be an
occurrence position. If position p ∈ Lui

then bi is a prefix of ext(p, u).

Intervals. Lemma 6 states a necessary condition, so we have to filter the candidate prefixes
of the extensions. We use the following notion of intervals to facilitate this task. We call
I ⊆ Eu an interval of Eu if I contains consecutive entries of Eu. We write I = [i, j] if I covers
the range of indices from i to j in Eu. The longest common prefix of an interval is defined
as LCP(I) = minp1,p2∈I lcp(ext(p1), ext(p2)), which is a solid block in Π as discussed at the
end of Section 3.1. By Lemma 2, LCP(I) = lcp(ext(Eu[i]), ext(Eu[j])) can be computed in
O(1) time, where Eu[i] is the first and Eu[j] the last element in I = [i, j].

Maximal Intervals. An interval I ⊆ Eu is maximal if (1) there are at least q positions in I

(i. e. |I| ≥ q), (2) motif u cannot be specialized with the skipped characters in skip(p) where
p ∈ I, and (3) any other interval I ′ ⊆ Eu that strictly contains I has a shorter common
prefix (i. e. |LCP(I ′)| < |LCP(I)| for I ′ ⊃ I) 5. We denote by Iu the set of all maximal
intervals of Eu, and show that Iu form a tree covering of Eu. A similar lemma for intervals
over the LCP array of a suffix tree was given in [2].

I Lemma 7. Let I1, I2 ∈ Iu be two maximal intervals, where I1 6= I2 and |I1| ≤ |I2|. Then
either I1 is contained in I2 with a longer common prefix (i. e. I1 ⊂ I2 and |LCP(I1)| >

|LCP(I2)|) or the intervals are disjoint (i. e. I1 ∩ I2 = ∅).

The next lemma establishes a useful bijection between maximal intervals Iu and children
of u, motivating why we use intervals to expand the motif trie.

I Lemma 8. Let ui be a child of a node u. Then the occurrence list Lui
is a permutation

of a maximal interval I ⊆ Iu, and vice versa. The label on edge (u, ui) is the solid block
bi = LCP(I). No other children or maximal intervals have this property with ui or I.

5 In the full version we show that condition (2) is needed to avoid the enumeration of either motifs from
Mqk \M or duplicates from M.

FSTTCS 2014

312 Output-Sensitive Pattern Extraction in Sequences

5.2 Exploiting the Properties of Maximal Intervals
We now use the properties shown above to implement the oracle Generate(u), resulting in
Lemma 4. Observe that the task of Generate(u) can be equivalently seen by Lemma 8 as
the task of finding all maximal intervals Iu in Eu, where each interval I ∈ Iu corresponds
exactly to a distinct child ui of u. We describe three main steps, where the first takes
O(sort(Lu) + (k + 1) · |Lu|) time, and the others require O(

∑d
i=1 |Lui |) time. The interval

I = Eu corresponding to the solid block ε is trivial to find, so we focus on the rest. We
assume dc(u) < k, as otherwise we are already done with u.

Step 1. Sort occurrences and find maximal runs of skipped characters. We perform a
radix-sort of Lu using the extensions as keys, seen as integers from Π, thus obtaining array Eu.
To facilitate the task of checking condition (2) for the maximality of intervals, we compute for
each index i ∈ Eu the smallest index R(i) > i in Eu such that motif u cannot be specialized
with the skipped characters in skip(Eu[j]) where j ∈ [i, R(i)]. That is, there are at least two
different characters from Σ hidden by each of the skipped characters in the interval. (If R(i)
does not exist, we do not create [i, R(i)].) We define |PI | as the minimum number of different
characters covered by each skipped character in interval I, and note that |P[i,R(i)]| ≥ 2 by
definition.

To do so we first find, for each skipped character position, all indices where a maximal run
of equal characters end: R(i) is the maximum indices for the given i. This helps us because
for any index i inside such a block of equal characters, R(i) must be on the right of where the
block ends (otherwise [i, R(i)] would cover only one character in that block). Using this to
calculate R(i) for all indices i ∈ Eu from left to right, we find each answer in time O(k + 1),
and O((k + 1) · |Eu|) total time. We denote by R the set of intervals [i, R(i)] for i ∈ Eu.

I Lemma 9. For any maximal interval I ≡ [i, j] ∈ Iu, there exists R(i) ≤ j, and thus
[i, R(i)] is an initial portion of I.

Step 2. Find maximal intervals with handles. We want to find all maximal intervals
covering each position of Eu. To this end, we introduce handles. For each p ∈ Eu, its interval
domain D(p) is the set of intervals I ′ ⊂ Eu such that p ∈ I ′ and |PI′ | ≥ 2. We let `p be the
length of the longest shared solid block prefix bi over D(p), namely, `p = maxI′∈D(p) |LCP(I ′)|.
For a maximal interval I ⊆ Iu, if |LCP(I)| = `p for some p ∈ I we call p a handle on I.
Handles are relevant for the following reason.

I Lemma 10. For each maximal interval I ⊆ Iu, either there is a handle p ∈ Eu on I, or I

is fully covered by ≥ 2 adjacent maximal intervals with handles.

Let Hu denote the set of maximal intervals with handles. We now show how to find the
set Hu among the intervals of Eu. Observe that for each occurrence p ∈ Eu, we must find
the interval I ′ with the largest LCP(I ′) value among all intervals containing p.

From the definition, a handle on a maximal interval I ′ requires |PI′ | ≥ 2, which is exactly
what the intervals in R satisfy. As the LCP value can only drop when extending an interval,
these are the only candidates for maximal intervals with handles. Note that from Lemma
9, R contains a prefix for all of the (not expanded) maximal intervals because it has all
intervals from left to right obeying the conditions on length and skipped character conditions.
Furthermore, |R| = O(|Eu|), since only one R(i) is calculated for each starting position.
Among the intervals [i, R(i)] ∈ R, we will now show how to find those with maximum LCP
(i. e. where the LCP value equals `p) for all p.

We use an idea similar to that used in Section 3.3 to filter maximal motifs from the
right-maximal motifs. We sort the intervals I ′ = [i, R(i)] ∈ R in decreasing lexicographic

R.Grossi, G.Menconi, N. Pisanti, R. Trani, and S. Vind 313

order according to the pairs 〈|LCP(I ′)|,−i〉 (i. e. decreasing LCP values but increasing indices
i), to obtain the sequence C. Thus, if considering the intervals left to right in C, we consider
intervals with larger LCP values from left to right in S before moving to smaller LCP values.

Consider an interval Ip = [i, R(i)] ∈ C. The idea is that we determine if Ip has already
been added to Hu by some previously processed handled maximal interval. If not, we expand
the interval (making it maximal) and add it to Hu, otherwise Ip is discarded. When C is
fully processed, all occurrences in Eu are covered by maximal intervals with handles.

First, since maximal intervals must be fully contained in each other (from Lemma 7), we
determine if Ip = [i, R(i)] ∈ C is already fully covered by previously expanded intervals (with
larger LCP values) – if not, we must expand Ip. Clearly, if either i or R(i) is not included
in any previous expansions, we must expand Ip. Otherwise, if both i and R(i) is part of a
single previous expansion Iq ∈ C, Ip should not be expanded. If i and R(i) is part of two
different expansions Iq and Ir we compare their extent values: Ip must be expanded if some
p ∈ Ip is not covered by either Iq or Ir. To enable these checks we mark each j ∈ Eu with
the longest processed interval that contains it (during the expansion procedure below).

Secondly, to expand Ip maximally to the left and right, we use pairwise lcp queries on
the border of the interval. Let a ∈ Ip be a border occurrence and b 6∈ Ip be its neighboring
occurrence in Eu (if any, otherwise it is trivial). When | lcp(a, b)| < |LCP(Ip)|, the interval
cannot be expanded to span b. When the expansion is completed, Ip is a maximal interval
and added to Hu. As previously stated, all elements in Ip are marked as being part of their
longest covering handled maximal interval by writing Ip on each of its occurrences.

Step 3. Find composite maximal intervals covered by maximal intervals with handles.
From Lemma 10, the only remaining type of intervals are composed of maximal intervals with
handles from the set Hu. A composite maximal interval must be the union of a sequence of
adjacent maximal intervals with handles. We find these as follows. We order Hu according to
the starting position and process it from left to right in a greedy fashion, letting Ih ∈ Hu be
one of the previously found maximal intervals with handles. Each interval Ih is responsible for
generating exactly the composite maximal intervals where the sequence of covering intervals
starts with Ih (and which contains a number of adjacent intervals on the right). Let I ′h ∈ Hu

be the interval adjacent on the right to Ih, and create the composed interval Ic = Ih + I ′h
(where + indicates the concatenation of consecutive intervals). To ensure that a composite
interval is new, we check as in Step 2 that there is no previously generated maximal interval
I with |LCP(I)| = |LCP(Ic)| such that Ic ⊆ I. This is correct since if there is such an
interval, it has already been fully expanded by a previous expansion (of composite intervals
or a handled interval). Furthermore, if there is such an interval, all intervals containing Ic

with shorter longest common prefixes have been taken care of, since from Lemma 7 maximal
intervals cannot straddle each other. If Ic is new, we know that we have a new maximal
composite interval and can continue expanding it with adjacent intervals. If the length of
the longest common prefix of the expanded interval changes, we must perform the previous
check again (and add the previously expanded composite interval to Iu).

By analyzing the algorithm described, one can prove the following two lemmas showing
that the motif trie is generated correctly. While Lemma 11 states that ε-extensions may
be generated (i. e. a sequence of ? symbols may be added to suffixes of maximal motifs), a
simple bottom-up cleanup traversal of T is enough to remove these.

I Lemma 11 (Soundness). Each motif stored in T is a prefix or an ε-extension of some
suffix of a maximal motif (encoded using alphabet Π and stored in T).

I Lemma 12 (Completeness). If m ∈M, T stores m and its suffixes.

FSTTCS 2014

314 Output-Sensitive Pattern Extraction in Sequences

References
1 Mohamed Ibrahim Abouelhoda and Moustafa Ghanem. String mining in bioinformatics.

In Scientific Data Mining and Knowledge Discovery, pages 207–247. Springer, 2010.
2 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees

with enhanced suffix arrays. JDA, 2(1):53–86, 2004.
3 Alberto Apostolico, Matteo Comin, and Laxmi Parida. Bridging lossy and lossless com-

pression by motif pattern discovery. In General Theory of Information Transfer and Com-
binatorics, pages 793–813. Springer, 2006.

4 Hiroki Arimura and Takeaki Uno. An efficient polynomial space and polynomial delay
algorithm for enumeration of maximal motifs in a sequence. JCO, 2007.

5 Brenda S Baker. On finding duplication and near-duplication in large software systems. In
Proc. 2nd WCRE, pages 86–95, 1995.

6 Sergey Brin, James Davis, and Héctor García-Molina. Copy detection mechanisms for
digital documents. SIGMOD Rec., 24(2):398–409, May 1995.

7 Chia-Hui Chang, Chun-Nan Hsu, and Shao-Cheng Lui. Automatic information extraction
from semi-structured web pages by pattern discovery. Decis Support Syst, 34(1):129–147,
2003.

8 Xin Chen, Brent Francia, Ming Li, Brian Mckinnon, and Amit Seker. Shared information
and program plagiarism detection. IEEE Trans Inf Theory, 50(7):1545–1551, 2004.

9 Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-detection
systems. Computer Networks, 31(8):805–822, 1999.

10 Maria Federico and Nadia Pisanti. Suffix tree characterization of maximal motifs in biolo-
gical sequences. Theor. Comput. Sci., 410(43):4391–4401, 2009.

11 Roberto Grossi, Andrea Pietracaprina, Nadia Pisanti, Geppino Pucci, Eli Upfal, and Fa-
bio Vandin. MADMX: A strategy for maximal dense motif extraction. J. Comp. Biol.,
18(4):535–545, 2011.

12 D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM
J. Comput., 13(2):338–355, 1984.

13 Nizar R. Mabroukeh and Christie I. Ezeife. A taxonomy of sequential pattern mining
algorithms. ACM CSUR, 43(1):3, 2010.

14 Edward M. McCreight. A space-economical suffix tree construction algorithm. Journal of
the ACM, 23(2):262–272, April 1976.

15 L. Parida, I. Rigoutsos, and D.E. Platt. An output-sensitive flexible pattern discovery
algorithm. In Proc. 12th CPM, pages 131–142, 2001.

16 Laxmi Parida, Isidore Rigoutsos, Aris Floratos, Daniel E. Platt, and Yuan Gao. Pattern
discovery on character sets and real-valued data: linear bound on irredundant motifs and
an efficient polynomial time algorithm. In Proc. 11th SODA, pages 297–308, 2000.

17 Lukáš Pichl, Takuya Yamano, and Taisei Kaizoji. On the symbolic analysis of market
indicators with the dynamic programming approach. In Advances in Neural Networks-
ISNN, pages 432–441. Springer, 2006.

18 Isidore Rigoutsos and Tien Huynh. Chung-Kwei: a Pattern-discovery-based System for the
Automatic Identification of Unsolicited E-mail Messages. In CEAS, 2004.

19 Marie-France Sagot. Spelling approximate repeated or common motifs using a suffix tree.
In Proc. 3rd LATIN, pages 374–390. Springer, 1998.

20 Reza Sherkat and Davood Rafiei. Efficiently evaluating order preserving similarity queries
over historical market-basket data. In Proc. 22nd ICDE, pages 19–19, 2006.

21 Esko Ukkonen. Maximal and minimal representations of gapped and non-gapped motifs of
a string. Theor. Comput. Sci., 410(43):4341–4349, 2009.

	Introduction
	Preliminaries
	Motif Tries and Pattern Extraction
	Efficient Representation of Motifs
	Motif Tries
	Reporting Maximal Motifs using Motif Tries

	Building Motif Tries
	Implementing Generate(u)
	Nodes of the Motif Trie as Maximal Intervals
	Exploiting the Properties of Maximal Intervals

