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Abstract
We consider computation in the presence of closed timelike curves (CTCs), as proposed by
Deutsch. We focus on the case in which the CTCs carry classical bits (as opposed to qubits).
Previously, Aaronson and Watrous showed that computation with polynomially many CTC bits
is equivalent in power to PSPACE. On the other hand, Say and Yakaryılmaz showed that com-
putation with just 1 classical CTC bit gives the power of “postselection”, thereby upgrading
classical randomized computation (BPP) to the complexity class BPPpath and standard quantum
computation (BQP) to the complexity class PP. It is natural to ask whether increasing the num-
ber of CTC bits from 1 to 2 (or 3, 4, etc.) leads to increased computational power. We show that
the answer is no: randomized computation with logarithmically many CTC bits (i.e., polynomi-
ally many CTC states) is equivalent to BPPpath. (Similarly, quantum computation augmented
with logarithmically many classical CTC bits is equivalent to PP.) Spoilsports with no interest
in time travel may view our results as concerning the robustness of the class BPPpath and the
computational complexity of sampling from an implicitly defined Markov chain.
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1 On time travel

We begin with a discussion of time travel. Readers not interested in this concept may
skip directly to Section 2, wherein we define the problem under consideration in a purely
complexity-theoretic manner, with no reference to time travel.

Kurt Gödel [20] was the first to point out that Einstein’s theory of general relativity
is consistent with the existence of closed timelike curves (CTCs), raising the theoretical
possibility of time travel. Any model of time travel must deal with the “Grandfather Paradox”,
wherein a trip to the past causes a chain of events that leads to a future in which that very
trip does not take place. Assume that a time-traveler changes the state of the universe at the
earlier end t0 of a time loop from state s to some different state s′. Then just what is the
state of the universe at time t0: is it s or s′? Seeing a logical inconsistency in this scenario,
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most thinkers of earlier generations concluded that time travel to the past must be impossible.
There is, however, a way out. In an influential paper [18], Friedman et al. suggested Nature
might allow CTCs as long as they do not “change the past”, an idea that has come to be
known as the Novikov self-consistency principle. The main two rivaling models of time travel
– the “Deutschian model” (which we study in this work), and the “postselected CTC model”
from [26] – both conform to the Novikov self-consistency principle.

In the model put forward by Deutsch [16], the universe need not be in a single deterministic
state at time t0. Rather, the state of the universe should be viewed as a probability distribution
over several states (possibly even quantum states) like s and s′ in the example above. The
requirement that the past should not change is fulfilled by stipulating that Nature sets the
state x of the portion of the universe affected by the CTC at time t0 to a fixed point of the
operator f describing the evolution in the CTC (meaning x = f(x)).

To take the traditional example, suppose a deranged scientist can access a CTC to the
past century, and he sends through it a bomb that is programmed to kill his grandfather
(who is only a child back then). We consider two (classical) states of the universe at the
time of the bomb’s arrival: state 1 is “grandfather dies” and state 2 is “grandfather lives”.
We assume the universe proceeds deterministically from that point on: if the grandfather is
killed, then in the future no bomb is sent through the CTC; conversely, if the grandfather
lives, then the deranged scientist is born and does send the bomb back in time. We can
model this evolution by a 2-state Markov chain with the following transition matrix (that

happens to be deterministic):
[
0 1
1 0

]
. In Deutsch’s model, Nature sets the state of the

universe to be the stationary distribution for this chain:
[ 1

2
1
2

]
. That is, the bomb arrives to

kill the grandfather with probability 1
2 .

1.1 Computation with CTCs
As the reader can see, Nature performs a kind of computation here, determining the stationary
distribution of the Markov chain that has been arranged within the CTC by the deranged
scientist. It is natural to wonder if Nature’s power can be effectively harnessed by a
computational device. Indeed, Deutsch [16] pointed out that in general his model involves
Nature solving an NP-hard problem; later, Brun [15] discussed the possibility of using
CTCs to solve the Factoring problem efficiently. The first clear model of computation with
Deutschian CTCs was proposed by Bacon [11]. Both Deutsch and Bacon consider sending
qubits through a CTC. However, as pointed out by Aaronson [3], it is also very interesting
(and simpler) to consider only classical bits passing through a CTC. Indeed, as far as we
aware, there are no results showing that time-traveling quantum bits confer a computational
advantage over time-traveling classical bits. Therefore, in the rest of this section we will
sketch the Deutschian model of computation with classical CTC bits, and mention prior
work. A formal complexity-theoretic definition of the model (with no reference to time travel)
is given in Section 2.

Suppose that a computational agent A has access to a CTC which is “wide” enough to
support the transmission of w bits. Thus the physical object being sent through the CTC
can be in one of S = 2w states. (We may also more generally consider values of S that
are not powers of 2.) Let us think of A as a classical polynomial-time randomized Turing
machine (though it might be of another type; e.g., a BQP-machine). Say that A is trying to
decide if a given input x ∈ {0, 1}n belongs to language L. The algorithm A can read the w
bits in the CTC, perform some computation, and then send a new string of w bits through
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the CTC. Since the incoming and outgoing bit strings can be in one of 2w = S states, and
since A is a randomized algorithm, the operation of A on the CTC constitutes an S-state
Markov chain Mx, which depends on the input x ∈ {0, 1}n to the L-decision problem.

In the Deutschian model, we assume that once the Markov chain Mx is defined, Nature
sets the distribution of the bits in the CTC to some stationary distribution of Mx. We
emphasize that it’s merely some stationary distribution (at least one of which always exists)
– we don’t assume that Mx must have a unique stationary distribution. (Now is a good time
to mention that if A is allowed to send qubits along the CTC, then its operation constitutes
a quantum channel. It is also known [16, 39] that every quantum channel has at least one
stationary mixed state, and we assume Nature selects one.) Finally, given that the incoming
CTC bits are now presumed to be in a stationary distribution for the Markov chain Mx, the
algorithm A effectively gets one sample from this stationary distribution. Using this sample,
the algorithm A can output its decision on whether or not x ∈ L. When thinking of A as
a BPP-type machine, this decision should be correct with probability at least 2

3 .

1.2 Prior work

Bacon [11] considered the case of a 1-qubit CTC, though his construction actually works
equally well with a CTC supporting just 1 classical bit. However, Bacon’s model was
also more generous in that he allowed 1-bit CTC computations as “subroutines” within
polynomial-time algorithms; in effect, he allowed the use of poly(n) many 1-(qu)bit CTCs.
Bacon showed that in this model one can efficiently solve any NP problem. Subsequently,
Aaronson and Watrous [3, 5] investigated the model in which the CTC supports poly(n) many
bits (i.e., S = 2poly(n) many states). They showed that this model is extremely powerful: if
A’s computational power is anywhere between AC0 and PSPACE (including the most usual
choices of BPP or BQP), the result is that the model becomes equivalent in power to PSPACE.
Actually, this result was not even the main one in their paper; their main result is that
if poly(n) many CTC qubits are allowed, then the power of the model is still only that
of PSPACE.

Regarding the difference between using a 1-bit CTC polynomially many times, and using
a poly(n)-bit CTC once, Aaronson [3] remarked, “It is difficult to say which model is the
more reasonable!” One can argue that both models are rather impractical in that they
require constructing new/wider CTCs as the input length increases.1 Indeed, the main
technical question left open at the end of Aaronson and Watrous’s work was to understand
the computational power of the more realistic “narrow” CTCs; e.g., one-time-use CTCs
that can only transmit a single bit, or a bounded number of bits. In this direction, Say
and Yakaryılmaz [31] showed that augmenting standard complexity models with access to a
1-bit CTC is exactly equal in power to augmenting them with “postselection” [4] (defined
in Section 3). In particular, this shows that classical randomized computation with a 1-bit
CTC is equivalent to the complexity class BPPpath, and quantum computation with a 1-bit
CTC is equivalent to the complexity class PP. We recall in further detail the class BPPpath
in Section 3. For now, suffice it to say that it contains NP and coNP, is likely equal to PNP

|| ,
and is very likely to be much smaller than PSPACE. In particular, randomized computation
with access to a 1-bit CTC can efficiently solve the SAT problem; this is discussed below in
Example 3.

1 Bearing in mind the comment concerning practical considerations in the final paragraph of Bacon’s
work [11].
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To summarize, the aforementioned results show that for classical polynomial-time random-
ized computation, adding a 1-bit CTC gives the power of BPPpath and adding a poly(n)-bit
CTC gives the power of PSPACE. What about in between (presuming of course that
BPPpath 6= PSPACE)? Sticking with the more “realistic” end of the spectrum, this is the
question motivating our work:

I Question. Are 2-bit (or 3-bit, 4-bit etc.) CTCs more powerful than 1-bit CTCs?

2 Formal computational complexity statements

In what follows we formally define the complexity model of computing with CTCs. Our
definitions are equivalent to those in [5, 31]; however we phrase them differently, in terms
of Markov chains. Informally and in brief, BPPCTC[w] is the class of languages decidable by
efficient randomized algorithms that are allowed to set up a 2w-state Markov chain and then
freely get one sample from the chain’s stationary distribution.

I Definition 1. Let M be an S-state Markov chain. A state-transition oracle M for M is
any algorithm that takes as input a state i ∈ [S] and outputs the state resulting from taking
one random step in M starting from state i. Most typically we think of S = 2w andM as
being implemented by a w-bit-input/output standard randomized circuit; i.e., one with AND,
OR, NOT, and “probability- 1

2 coin-flip” gates. We might also consider standard quantum
circuits M in which Hadamard and Toffoli gates (which are universal [33]) are also used.

I Definition 2. Let w = w(n) be a “width” parameter. Consider a deterministic polynomial-
time Turing Machine A that, on input x ∈ {0, 1}n, outputs the description of two standard
randomized circuits, Mx and Dx. The circuit Mx should have w input and output bits,
thereby defining a state-transition oracle for a Markov chain Mx on S = 2w states. The
“decision circuit” Dx should have w input bits and one output bit. We suppose computation
proceeds as follows: First, an arbitrary stationary distribution π for Mx is chosen. Next, a
sample i ∼ π is chosen from this distribution and is fed as input to Dx. Finally, Dx’s output
gate is considered to be the overall output of A’s computation. We define BPPCTC[w] to be
the class of all languages L such that there exists an A as above with the following property:
for every x (and every stationary distribution π for Mx),

Pr
i

[A outputs 1] ≥ 2
3 when x ∈ L, Pr

i
[A outputs 1] ≤ 2

3 when x /∈ L.

We may also analogously define BQPCTC[w] in caseMx and Dx are allowed to be standard
quantum circuits.

I Remark. We warn the reader that our notation CCTC[w] is different from that in [5, 31],
in that “CTC[w]” signifies a CTC carrying w classical bits. We suggest notation such
as BQPQCTC[w] for the case of CTCs carrying w qubits; however we neither define nor
consider CTC-qubits in this paper (except in a concluding open problem).
I Remark. There is nothing special about considering Markov chains with S states where S
is a power of 2. However we stick with the above notation for simplicity, and for consistency
with similar complexity class definitions such as that of PNP[w] (polynomial-time computation
with 2w − 1 parallel queries to an NP oracle).

I Example 3. Following [31], let us show that NP ⊆ BPPCTC[1]. Equivalently, we illustrate
how SAT can be solved by a “1-bit CTC algorithm” A, which can set up a 2-state Markov
chain and get a sample from its stationary distribution. On input an n-variable CNF
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formula φ, algorithm A constructs a state-transition circuitMφ for a certain 2-state Markov
chain Mφ. Think of state 0 of Mφ as meaning “no evidence that φ is satisfiable” and state 1
as meaning “evidence that φ is satisfiable”. The operation ofMφ is as follows: On input
state i,Mφ first chooses a uniformly random string y ∈ {0, 1}n and checks if it satisfies φ.
If y is satisfying,Mφ outputs state 1. If y is unsatisfying, thenMφ outputs state 0 with
probability ε := 2−n2 and outputs its input state i with probability 1− ε. It is clear that A
can write downMφ’s description in deterministic polynomial time. One can now check that
the resulting Markov chains Mφ are as follows:

if φ is satisfiable, Mφ =
[
1− 2−n 2−n

ε′ 1− ε′
]

(where ε′ := (1− 2−n)ε ≈ 2−n
2
);

if φ is unsatisfiable, Mφ =
[
1 0
ε 1− ε

]
.

Now if φ is unsatisfiable, state 0 is absorbing and it’s clear that the (unique) stationary
distribution π of Mφ is entirely concentrated on state 0. On the other hand, suppose φ is
satisfiable. Then since the 0 → 1 transition probability of Mφ is much higher (relatively
speaking) than the 1→ 0 transition probability, the long-term (i.e., stationary) distribution π
of Mφ will be almost entirely concentrated on state 1. (More precisely, π will put only
probability ε′

2−n+ε′ ≈ 2−n2+n on state 0.) We now stipulate that for every φ, algorithm A
outputs the same 1-bit decision circuit Dφ, which on input i ∼ π simply outputs i. From the
above discussion, we see that this correctly indicates whether φ ∈ SAT except with negligible
error probability.

The following theorems concerning BPPCTC[w] have previously been shown:

I Theorem 4. (Aaronson–Watrous [5].) BPPCTC[poly(n)] = PSPACE.
(Indeed PCTC[poly(n)] = BQPQCTC[poly(n)] = PSPACE.)

I Theorem 5. (Say–Yakaryılmaz [31].) BPPCTC[1] = BPPpath.
(Indeed, adding 1 CTC-bit generally confers the power of “postselection”, discussed in

Section 3. For example, it also holds that BQPCTC[1] = PostBQP = PP.)

As mentioned in Section 1.1 (and discussed further in Section 3), BPPpath is likely equal
to PNP

|| = PNP[O(logn)], and is very likely to be much smaller than PSPACE.

2.1 Our theorem
Paraphrasing the above two theorems, we have that Markov chains with 2 states (w = 1) give
the power of BPPpath, and Markov chains with exponentially many states (w = poly(n)) give
the power of PSPACE. What about in between? Are 3-state or 4-state (w = 2) Markov chains
more powerful than 2-state chains? To take an analogy from another family of complexity
classes, we remind the reader that it’s widely believed that PNP[1] ( PNP[2] ( PNP[3] ( · · ·
The main result of this paper is that in apparent contrast, “the hierarchy collapses” for
BPPCTC[w]; polynomially many states (w = O(logn)) confer no more advantage than 2 states.

I Main theorem. BPPCTC[O(logn)] ⊆ PostBPP = BPPpath; thus

BPPCTC[1] = BPPCTC[2] = BPPCTC[3] = · · · = BPPCTC[O(logn)] = BPPpath.

FSTTCS 2014
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It will be clear from our proof that more generally, O(logn) CTC bits still only confer
the power of postselection, and in particular BQPCTC[O(logn)] = PostBQP = PP. Our main
theorem may also be seen as further demonstration of the robustness and naturalness of the
class BPPpath.

2.2 Proof techniques
Here we briefly outline the proof of our theorem, with the actual proof being given in
Section 4. Let’s return to Example 3, which shows that SAT ∈ BPPCTC[1]. One might ask,
why doesn’t the proof show that SAT ∈ BPP? After all, the algorithm A simply constructs
a 2-state Markov chain M and then takes a sample from its stationary distribution. Why
doesn’t A simply exactly solve for M ’s stationary distribution? The trouble of course is
that even though A constructed M itself, in some sense M is still only “implicitly defined”
from A’s point of view. A cannot directly access the transition probabilities of M (doing
so requires A to solve an NP-complete problem); rather, A can only “simulate” M , by use
of the state-transition matrix M it constructed. Naively, this still might not seem like a
problem; given the ability to simulate M , couldn’t A find a (near-)stationary distribution π
for M simply by simulating it for a long time? The trouble here is that even though M

only has 2 states, it has some transition probabilities that are “exponentially small” (in n).
Furthermore, the stationary distribution of M can be extremely sensitive to the relative
exponential smallness of these transition probabilities – Example 3 illustrates exactly this.

Our proof that BPPCTC[w] ⊆ PostBPP = BPPpath for w ≤ O(logn) in some sense follows
Say and Yakaryılmaz’s proof [31] in the case of w = 1. They essentially observed that using
the power of postselection (discussed further in Section 3), a randomized algorithm can get an
exact sample from the stationary distribution of a Markov chain given only a state-transition
oracle for it. Their proof of this was greatly facilitated by the fact that 2-state Markov
chains are easy to analyze: If the 0→ 1 transition probability is p and the 1→ 0 transition

probability is q, then the stationary distribution is π =
[

q
p+q
p
p+q

]
. (This presumes we don’t

have p = q = 0, an important issue that we discuss later.) For our main theorem, we need a
similar postselecting algorithm for general poly(n)-state Markov chains. The key technical
tool for this will be the Markov Chain Tree Theorem, apparently first proved by Hill [23],
and called by Aldous [6] “the most often rediscovered result in probability theory”; see
also [36, 34, 24, 25, 7, 14, 28]. We state here the version for irreducible chains:

I Markov Chain Tree Theorem. Let M be an S-state irreducible Markov chain with transi-
tion matrix (pij)i,j∈[S]. Let GM be the underlying strongly connected digraph for M in which
(i, j) is a directed edge if and only if pij > 0. Recall that a rooted arborescence T in GM is
a collection of edges forming a rooted spanning tree in which all edges are directed toward the
root vertex. We write ‖T‖ =

∏
(i,j)∈T pij . Let Ti denote the set of all arborescences in GM

rooted at i ∈ [S], and write T = ∪iTi. Then if π denotes the (unique) stationary distribution
of M , we have the formula πi =

(∑
T∈Ti

‖T‖
) / (∑

T∈T ‖T‖
)
.

We add that this theorem plays an important role in the theory of exact sampling from
unknown Markov chains [8, 27, 29, 38]. That theory is concerned with a problem similar
to ours; however, there are two main differences: i) That theory involves only traditional
algorithms, and therefore by necessity the running time may be exponential if the chain’s
mixing time is exponential. By contrast, we are using postselecting algorithms and therefore
have the chance to run in polynomial time. ii) That theory is concerned with exact sampling
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from the stationary distribution. By contrast, we actually only need approximate sampling
from the stationary distribution.

Finally, we mention one challenge for our proof that at first seems like a technicality but
in fact proves to be quite a nuisance: There is no promise in the definition of BPPCTC[w] that
the Markov chains Mx be irreducible. This is precisely the “p = q = 0 issue” elided in the
discussion of 2-state stationary distributions above. We overcome this difficulty by proving a
somewhat technical lemma that allows us to perturb general Markov chains into irreducible
ones.

2.3 Outline of the remainder of the paper
The aforementioned technical lemma on Markov chain perturbations, which allows us to
work only with irreducible Markov chains, is omitted for reasons of space; it can be found
in the arXiv version of the paper. In Section 3 we recall BPPpath and postselection in more
detail, and we also describe the “restarting” view of postselection (from [40]) that will be
helpful in the proof of our main theorem. Finally, we give the proof of the main theorem in
Section 4, and then end with an open question.

3 BPPpath, postselection, and restarts

In this section we describe three different viewpoints on the class BPPpath.
The complexity class BPPpath was originally defined by Han, Hemaspaandra, and Thier-

auf [22, 21], in a paper also concerned with certain cryptographic problems. (It was also
independently defined much later in a paper by Aspnes, Fischer, Fischer, Kao, and Ku-
mar [9, 10] on the computational complexity of the stock market.) We quote Fortnow’s
explanation of the original definition when he named it “Complexity Class of the Week” [17]:

“Let us call a nondeterministic Turing machine M balanced if for every input x, all of its
computational paths have the same length. [We can define the] class BPP as follows: L is in
BPP if there is a balanced nondeterministic polynomial-time M such that:

If x is in L then there are at least twice as many accepting as rejecting paths of M(x).
If x is not in L then there are at least twice as many rejecting as accepting paths of
M(x).

Suppose we use the same definition without the “balanced” requirement. This gives us the
class BPPpath.”

Interestingly, the analogous class “PPpath” – for which x ∈ L iff M(x) has more accepting
than rejecting (unbalanced) paths – was defined much earlier in Simon’s 1975 thesis [35].
Simon showed that PPpath is equal to the class PP (which had recently been defined by
Gill [19]). By way of contrast, BPPpath is very unlikely to equal BPP, as it is known [22] that
BPPpath contains both MA and PNP

|| . BPPpath is also known [22] to be contained in BPPNP
|| .

Indeed, under the standard complexity assumptions used to derandomize AM, Shaltiel and
Umans [32] showed that BPPpath = PNP

|| . For a related class known as SBP, which sits
between MA and BPPpath, see [13, 12].

Another characterization of BPPpath was given by Aaronson, via the notion of adding
postselection (see [4]) to a complexity class. Suppose that you have a probabilistic algorithm
that can end in three kinds of final states: accepting, rejecting, and indecisive. We assume
the probability of ending in a decisive state is guaranteed to be nonzero. “Postselection”
refers to the (nonrealistic) ability to condition the computation on ending in a decisive
state. This yields probabilistic computation with just the usual two kinds of final states.
For example, one says that L ∈ PostBPP if there is a polynomial-time randomized Turing

FSTTCS 2014
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machine as described above which, for each input x, gives the correct answer about x ∈ L
with probability at least 2

3 , conditioned on not ending in an indecisive state. More generally,
if C is a probabilistic or quantum complexity class, PostC is the class of languages decided
by C-machines with the ability to postselect on ending in a decisive state. In [1], Aaronson
proved that PostBQP = PP; later [2], he observed that PostBPP = BPPpath.

In the derivation of our main theorem we will prefer a third perspective on BPPpath and
postselection, introduced by Yakaryılmaz and Say [40]: that of randomized algorithms with
restarts. For some probabilistic complexity class C, suppose again that we have C-machines
that can end in one of three states: accept, reject, or indecisive. We think of the third
state as the restart state, imagining that whenever the C-machine enters such a state, it
immediately restarts its computation from the initial configuration, using no information
that it may have gathered up to that point.2 As observed in [40], the class of languages
decided by such a machine is again PostC. In particular, BPPpath is the class of languages
that are decided by bounded-error probabilistic polynomial-time Turing machines with this
ability to restart. This perspective seems most useful for algorithm design. As an illustration,
we believe it is fairly “obvious” that the following restarting-algorithm decides SAT with
very high probability, thereby showing NP ⊆ BPPpath:

“On input formula φ with n variables, randomly choose an assignment y.
If y satisfies φ, accept.

Otherwise, restart with probability 1− 2−n
2
and reject with probability 2−n

2
.”

(1)

The reader may compare (1) with the 1-bit CTC algorithm for SAT from Example 3, which
also shows NP ⊆ BPPpath in light of Say and Yakaryılmaz’s Theorem 5, BPPCTC[1] = BPPpath.
I Remark. For all three definitions of BPPpath described above, it is easy to see that the
“ 2

3 cutoff” for success could equivalently be an “α cutoff” for any fixed constant 1
2 < α < 1,

just as is the case for the class BPP.

3.1 Remarks on random coins for BPPpath algorithms
In informal descriptions of randomized algorithms, it’s typical to make statements like, “Next,
with probability 1

3 the algorithm. . . ” Such statements sweep a well-known, minor detail
under the rug; namely, the traditional BPP model (based on nondeterministic branching)
only has “access” to probability- 1

2 coin flips. Of course, this is not an essential problem, since
one can simulate a 1

3 -biased coin flip to error δ in time O(log 1
δ ), and δ needn’t be smaller

than 1/poly(n). Here we remark that in the context of restarting algorithms, the problem is
not just inessential, it’s literally no problem at all:

I Lemma 6. A restarting randomized algorithm can simulate a p-biased coin flip exactly in
time O(〈p〉), and can simulate a uniformly random draw from [n] exactly in time O(logn).

Proof. We give the simplest example, leaving the general case for the reader. Suppose we
wish to draw r ∼ [3] uniformly at random. We toss two probability- 1

2 coins, forming a 2-bit
integer 0 ≤ r ≤ 3. Then if r = 0, we restart. J

On the other hand, it’s also important to remember that time Ω(〈p〉) is also required to flip
a p-biased coin; for example, in algorithm (1) the step “reject with probability 2−n2 else
restart” takes n2 time steps.

2 Note that the new algorithm obtained in this manner will in general have unbounded runtime, even if C
is a time-bounded class.
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4 Proof of the main theorem

We now give the proof of our main theorem, that BPPCTC[O(logn)] ⊆ BPPpath.

Proof. Let L ∈ BPPCTC[O(logn)]; say L is defined by algorithm A as in Definition 2. Thus
there are constants c1, c2, c3 ∈ N such that on inputs x ∈ {0, 1}n, algorithm A outputs
state-transition circuitsMx of size O(nc1) defining Markov chains Mx on S = O(nc2) states,
as well as decision circuits Dx of size O(nc3). Further, we have that for each x, if π is any
stationary distribution for Mx and i ∼ π, then

Pr[Dx(i) = 1{x∈L}] ≥ 2
3 . (2)

Our goal will be to define a polynomial-time randomized restarting algorithm R that has

Pr[R(x) = 1{x∈L}] ≥ 0.65 (3)

for all x. As discussed in Section 3, this will show that L ∈ BPPpath, as required.
On input x ∈ {0, 1}n, the first step of algorithm R involves invoking a technical lemma

to convert to an irreducible Markov chain. This lemma (whose proof is omitted from
this extended abstract) involves replacing the transition matrix K of the chain with K ′ =
(1− ε)K+ ε 1

SJ , where S is the number of states in the chain and J is the all-1’s matrix. Here
the exact value ε = 2−poly(n) will be described later. More precisely, R first simulates A to get
state-transition oracle circuitMx for Markov chain Mx. It then constructs a state-transition
oracle circuitM′x for the irreducible perturbed chain M ′x, using the description ofMx in a
black-box fashion. Let π′ denote the stationary distribution for M ′x and let K denote the
transition matrix forMx. By definition, K is square matrix of dimension S ≤ O(nc2) in which
each entry is an integer multiple of 2−size(Mx) = 2−O(nc1 ). It follows that 〈K〉 ≤ O(nc4) for
some constant c4 ∈ N. We will now specify that ε = 2−bnb for a sufficiently large constant b
depending on c1, c2, and a constant from the aforementioned technical lemma. Then that
lemma implies

‖π − π′‖1 ≤ .01 (4)

for some stationary distribution π of Mx. It is easy to see that with this choice of ε,
algorithm R can constructM′x fromMx in poly(n) time. (Here we use the fact that ε is
“only” exponentially small; cf. the last paragraph in Section 3.1.)

The remainder of the proof is devoted to showing thatR can obtain an exact sample r ∼ π′.
Having shown this, we only need to let R simulate A to get Dx, and then output Dx(r).
Then combining (4) with (2) shows that (3) holds for all x, as required.

We now exhibit the subroutine which the restarting-algorithm R will use to obtain an
exact sample r ∼ π′ (the unique stationary distribution of irreducible chain M ′x):

Choose a uniformly random labeled, rooted, undirected tree T on vertex set [S]. This can
be done exactly (i.e., with each T occurring with probability 1/SS−1) in poly(S) = poly(n)
time, by choosing a uniformly random Prüfer Code [30, 37] in [S]S−2, converting it to a
tree T , and then choosing a random vertex r of T to be the root.3
Make T into a rooted arborescence ~T by directing all edges toward the root r.
For each directed edge (i, j) ∈ ~T , simulateM′x(i) and “check” if the output is j. If the
check fails, restart.
If all S − 1 checks pass, halt with output r.

3 Here we may use restarting to get exactly random samples from [S]; see Lemma 6.
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The fact that this subroutine restarts with probability strictly less than 1 follows from the
fact that M ′x is irreducible; indeed, its underlying digraph G = GM ′x is the complete digraph.
The probability Pr that this subroutine outputs r = r without encountering any restarts is
precisely

Pr =
∑

r-rooted arborescences T

1
SS−1

∏
(i,j)∈T

pij ,

where pij denotes the transition probability from i to j in the Markov chain M ′x. It follows
that the probability of R finally outputting r (when restarts are taken into account) is

Pr∑
r∈[S] Pr

=
∑
r-rooted arborescences T

∏
(i,j)∈T pij∑

arborescences T
∏

(i,j)∈T pij
.

By the Markov Chain Tree Theorem, this is indeed precisely the probability π′(r) of r under
the stationary distribution of M ′x. J

We conclude this section by observing that besides the power of restarting, algorithm R
only really needed the power to simulate the state-transition circuitsMx and the decision
circuits Dx. For example, if these were standard quantum circuits, it would suffice for R to
be a quantum algorithm. Thus we may also conclude BQPCTC[O(logn)] ⊆ PostBQP = PP.

We also add that Say and Yakaryılmaz [31] studied various models of finite automata
augmented with 1-bit CTCs; they showed that this augmentation causes both probabilistic
and quantum finite automata to become as powerful as their respective postselected versions.
The technique used in the proof of our main result can be simplified easily to show that no
additional gain arises when these machines are augmented with larger constant-width CTCs.

5 Conclusion

A very interesting open question left by our work is one also raised at the end of [31]:

What is the computational power conferred by 1 time-traveling qubit?

Answering this question precisely would seem to require a good understanding of stationary
density matrices for 1-qubit quantum channels. As mentioned in Section 1.1, we are not
aware of any work showing that time-traveling qubits confer more computational power than
time-traveling bits.
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