
On Bounded Reachability Analysis of Shared
Memory Systems∗

Mohamed Faouzi Atig1, Ahmed Bouajjani2, K. Narayan Kumar3,
and Prakash Saivasan3

1 Uppsala University, Sweden
mohamed_faouzi.atig@it.uu.se

2 LIAFA, Université Paris Diderot, France
abou@liafa.univ-paris-diderot.fr

3 Chennai Mathematical Institute, India
{kumar,saivasan}@cmi.ac.in

Abstract
This paper addresses the reachability problem for pushdown systems communicating via shared
memory. It is already known that this problem is undecidable. It turns out that undecidability
holds even if the shared memory consists of a single boolean variable. We propose a restriction
on the behaviours of such systems, called stage bound, towards decidability. A k stage bounded
run can be split into a k stages, such that in each stage there is at most one process writing to the
shared memory while any number of processes may read from it. We consider several versions of
stage-bounded systems and establish decidability and complexity results.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Reachability problem, Pushdown systems, Counter systems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.611

1 Introduction

Shared memory concurrent programs are present at different levels of the software stack, from
high level applications to low level software implementing system services on multicores. These
programs are notoriously complex and hard to get right, which makes extremely important
developing verification methods for checking their correctness. However, the design of
automatic verification for these programs remains a highly challenging problem. First, it is
well known that when threads can perform recursive procedure calls, the state reachability
problem (which is relevant for checking safety properties) for these programs is undecidable,
even when the manipulated data are finite. In the case where recursion is not allowed (or
bounded), the problem is PSPACE-complete and the complexity grows exponentially in terms
of the number of threads. Therefore, important issues are investigating the decidability of
the state reachability problem under various assumptions on the behaviors of these programs,
exploring how far the limits of decidability can be pushed, and understanding the trade-
offs between behavior coverage, decidability, and complexity. This paper is a contribution
addressing these issues.

To carry out our study, we adopt a formal model that is a network of processes with a
shared store ranging over a finite domain, and we consider that processes can be pushdown

∗ This work was partially supported by the CNRS LIA Informel, the Infosys Foundation, TCS PhD
Fellowship and the Uppsala Programming for Multicore Architectures Research Center (UPMARC).

© Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 611–623

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.611
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

612 On Bounded Reachability Analysis of Shared Memory Systems

systems, or 1-counter systems (seen as pushdown systems with a single element stack
alphabet), or simply finite-state systems. Each of these processes may perform reads and
writes on the shared store.

First, we prove that in order to get decidability of the state reachability, restricting only
the data domain of the shared store is not sufficient. Indeed, we show that two parallel
1-counter systems sharing only one bit are able to encode any 2-counter machine. This result
implies that, to get decidability, it is necessary to restrict the way information flows through
the shared memory.

Then, the idea we consider is the following: For each computation, consider a decomposi-
tion into what we call stages, where in each stage only one process is unrestricted while all
the others are only allowed to read. Then, we only consider computations up to some fixed
bound on the number of stages. Notice that this notion of bounding, called stage-bounding,
does not restrict the way stacks and counters are accessed. It is rather imposing that writes
by different processes to the memory cannot interleave in an unbounded manner (while
reads are allowed to interleave unboundedly with any kind of operations from any process).

The notion of stage-bounding is somehow inspired by the notion of context-bounding
introduced by Qadeer and Rehof in [13]. However, it is clear that stage-bounding is strictly
more general than context-bounding in term of behavior coverage. This is due to the fact
that operations (reads and writes) by different processes can alternate unboundedly within
one single stage.

Interestingly, for networks of finite-state systems, the stage-bounded analysis is NP-
complete (while the unbounded analysis is PSPACE-complete as mentioned earlier). So,
stage-bounded analysis in this case has the same complexity as context-bounded analysis,
while it allows for significantly more coverage. However, considering networks with two
pushdown systems makes stage-bounded analysis much harder. We show that for systems
with precisely two pushdown systems the complexity of stage-bounded analysis is (at least)
non-primitive recursive. The decidability in this case is actually still an open problem, but
we can prove that for two pushdown systems and one 1-counter system the state reachability
problem under stage-bounding is undecidable.

On the other hand, we prove, and this is our main result, that for networks with at
most one pushdown system and any number of 1-counter systems, stage-bounded analysis is
decidable, and we show that it is in NEXPTIME while it is PSPACE-hard. We establish this
decidability result by a non-trivial reduction to the state reachability problem for pushdown
systems with reversal-bounded counters (i.e., counters where the number of ascending and
descending phases is bounded) [11], which is quite surprising since the use of the counters is
unrestricted in the original system. Detailed proofs are omitted here for want of space and
may be found in the full version of this paper.

Related work: Several bounding concepts have been considered in the literature in the last
few years such as context-bounding and phase-bounding [12]. Stage-bounded analysis strictly
generalizes context-bounded analysis, while it is incomparable with phase-bounding which is
based on restricting accesses to stacks (i.e., push and pop operations by different processes in
each phase) rather than restricting accesses to the shared memory. Another work based on
restricting the access to stacks is for instance [1]. Again, the results there are incomparable
with those we present here.

In [2], acyclic networks of communicating pushdown systems are considered. While such an
acyclic network can encode computations within one stage (since in a stage information flows
unidirectionally from the writer to all other processes), it has been shown that switching once

M.F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 613

between acyclic communication topologies in a network is enough to get undecidability [3].
In contrast, our main result show a case where information flow can be redirected any finite
number of times.

In [8], a context-bounded analysis is proposed for a model of multithreaded programs
with counters based on multi-pushdown systems with reversal bounded counters. The
results of that paper are incomparable with ours since they concern different models and
different analyses, and they are established using different techniques, though both works
show reductions to reachability in pushdown systems with reversal bounded counters.

In [7, 6], networks of pushdown systems with non-atomic writes are considered. Atomic
read-writes cannot be implemented in that model, which means that only a weak form of
synchronization is possible. It is shown that for a fixed number of processes the reachability
problem is undecidable, while in the parametrized case the problem becomes decidable [7]
and is PSPACE-complete [6]. In contrast, our results hold even for the case where atomic
read-writes are allowed and show a decidable case for a fixed number of processes. The
parametrized case in the context of our stage-bounded analysis is still open and cannot be
reduced to the problem considered in [7, 6].

2 Preliminaries

Let Σ be a finite alphabet. We use Σ∗ and Σ+ to denote the set of all finite words and
non-empty finite words respectively over Σ; and use ε to denote the empty word. We also
write Σε for Σ ∪ {ε}. We let |w| denote the length of the word w. A language is a (possibly
infinite) set of words. Consider a word w = a1 · · · an over Σ. We define the reverse word of
w as wR := an · · · a1. We write w(i) for ai and w[1..j] for w(1) · · ·w(j). We use w1 · w2 or
simply w1w2 to denote the concatenation of two given words w1 and w2.

We define � Σ∗ × Σ∗ to be the sub-word relation: For every u = a1 · · · an ∈ Σ∗ and
v = b1 · · · bm ∈ Σ∗, u � v if and only if there are i1, . . . , in ∈ {1, . . . ,m} such that i1 < i2 <

· · · < in and for every j : 1 ≤ j ≤ n, aj = bij . For w ∈ Σ∗, Γ ⊆ Σ, we define w|Γ ∈ Γ∗ for
the projection of w on the Γ. Given a language L ⊆ Σ∗, the upward closure (resp. downward
closure) of L (w.r.t. �) is the set L↑ (resp. L ↓) containing all the words w ∈ Σ∗ such that
there is a word u ∈ L and u � w (resp. w � u). Given a word w = a1a2 · · · an, we define
stuttering St(w) = a+

1 a
+
2 · · · a+

n .

3 Shared-memory Concurrent Pushdown Systems

In this section we describe the SCPS model which consists of a set of pushdown systems that
communicate through shared memory.

3.1 Pushdown Systems and Counter Systems
A pushdown system (PDS) is a tuple (Q,Γ,Σ, δ, s) where Q is the set of states, Γ is the stack
alphabet, Σ is the tape alphabet, s ∈ Q is the initial state and δ is the transition relation.
We assume that Γ contains the special bottom of stack element ⊥. The transition set δ is a
subset of Q× Γε × Σ× Γε ×Q with the restriction that if τ = (q, α,m, β, q′) ∈ δ then either
α = β = ⊥ (emptiness test) or α, β ∈ Γε \ {⊥} and |αβ| ≤ 1. When β 6= ε and α = ε (α 6= ε

and β = ε) we say τ is a push (resp. pop) transition.
The configuration of a PDS A = (Q,Γ,Σ, δ, s) is a pair (q, γ) with q ∈ Q and γ ∈

(Γ \ {⊥})∗⊥. The initial configuration is the pair (s,⊥). The transition relation a→A, a ∈ Σ,
on the set of configurations is defined as follows:

FSTTCS 2014

614 On Bounded Reachability Analysis of Shared Memory Systems

1. (q, αγ) a→A (q′, γ) if (q, α, a, ε, q′) ∈ δ. Pop move.
2. (q, γ) a→A (q′, βγ) if (q, ε, a, β, q′) ∈ δ. Push move.
3. (q, γ) a→A (q′, γ) if (q, ε, a, ε, q′) ∈ δ. Internal move.
4. (q,⊥) a→A (q′,⊥) if (q,⊥, a,⊥, q′) ∈ δ. Emptiness test.

We omit the A and write a→ when A is clear from the context. We write (q, γ) w−→ (q′, γ′)
for w = a1 . . . an ∈ Σ∗ to mean that there is a sequence of transitions of the form (q, γ) =
(q0, γ0) a1→ (q1, γ1) a2→ . . .

an−1→ (qn−1, γn−1) an→ (qn, γn) = (q′, γ′). Given a configuration c, we
use L(A, c) to denote the set of words w such that (s,⊥) w−→ c. Given two configurations
c1, c2, we use L(A, c1, c2) to denote the set of words w such that c1

w−→ c2.
A counter system (CS) is a pushdown system where Γ = {α,⊥}. In this case we refer to

the push and pop moves as increment and decrement and the emptiness test as zero test.
Finally, if the stack alphabet Γ = {⊥} the PDS is just a finite state system (FSS).

3.2 Concurrent Pushdown System with Shared Memory
We consider a set of pushdown systems communicating with each other via a shared memory.
The contents of this memory is drawn from a finite set M and in each move one of the
pushdown systems from the collection either writes a value from M into the shared memory
or reads the current value in the shared memory.

Let OM = {!m, ?m |m ∈M} denote the tape alphabet, where !m denotes writing the
value m to the shared memory while ?m refers to reading the value m from the shared
memory. The value m0 ∈M is the initial memory value. We shall write RM (WM) for
the set {?m |m ∈M} ({!m |m ∈M}). A Shared-memory Concurrent Pushdown System
(SCPS) over a set of memory values M is a tuple (I,P,m0) where I is a finite set of indices
and P = {Pi | i ∈ I} is an I-indexed collection of pushdown systems Pi = (Qi,Γi,OM , δi, si).

A configuration of a SCPS (I,P,m0) over M is a triple (q,γ,m) where q assigns an
element of Qi to each i ∈ I, m ∈M is the contents of the shared memory and γ assigns an
element of ((Γi \ {⊥})∗ · {⊥}) to each i ∈ I such that (q(i),γ(i)) is a configuration of Pi.
The initial configuration of the system is the triple (s,⊥,m0) where for each i, (s(i),⊥(i))
is the initial configuration of Pi.

The transition relation op→i, op ∈ OM , i ∈ I, relating configurations of the SCPS is
defined as follows: (q,γ,m) op→i (q′,γ′,m′) iff (q(i),γ(i)) op→ (q′(i),γ′(i)), (q(j),γ(j)) =
(q′(j),γ′(j)) for j 6= i and further one of the following holds
1. op = ?m and m′ = m (a read operation)
2. op = !m′ (a write operation)
We write op→ for

⊎
i∈I

op→i. This naturally extends to a relation w−→ for w ∈ O∗M . We write
(q,γ,m) −→ (q′,γ′,m′) if there is some w ∈ O∗M such that (q,γ,m) w−→ (q′,γ′,m′)

I Remark 1. Communication via shared memory is unreliable. This is because, the reader
may skip some of the values (lossiness) while reading some values multiple times (stut-
tering). It is easy to eliminate stuttering errors, unidirectionally, using a protocol that
writes a delimiter between every adjacent pair of values. Eliminating lossiness would require
acknowledgements from the reader, arranged using some a protocol (for eg. see Theorem 3).

I Remark 2. It is easy to extend the set of operations to include τ , indicating that the
memory is not accessed, and ?m1!m2 indicating an atomic operation that reads the value
m1 from the memory and replaces it with m2. None of the undecidability or lower-bounds
proved in this paper require these instructions and the stage-bounded decidability arguments
extend easily if they are included. Hence, they have been omitted here.

M.F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 615

4 The Reachability Problem for SCPS

A natural and important problem in verification is the control state reachability problem,
which asks whether a particular (bad) control state can be reached via some execution of the
system. Formally, given a SCPS (I,P,m0) and a configuration (q,γ,m) determine whether
(s,⊥,m0) −→ (q,γ,m). Unfortunately, this problem is undecidable.

I Theorem 3. The reachability problem for SCPS is undecidable even when |M | = 2, |I| = 2
and both the pushdown systems in P are counter systems.

Proof. (sketch) Fix a 2-counter machine A with two counters named 1 and 2. We construct
a SCPS with two components, and we refer to them as the master and the slave. The
master simulates the control state of A as well as the values of the counter 1. The job of the
slave is to maintain the value of the counter 2. We show that it is possible for the master
to communicate, unambiguously, a value from the set {1, 2, 3} to the slave, standing for
increment, decrement and test for zero respectively and also obtain a confirmation from the
slave if it is able to complete the operation successfully. First we show how the master may
communicate a single value from {1, 2, 3} and then extend it to sequences of such values.

Assume that the memory contains the value 0. To communicate the value i ∈ {1, 2, 3}
the master carries out the sequence of operations (!1?0)i.(?1!0)i on the memory. The slave
guesses the value j being sent and executes a sequence of the form (?1!0)j .(!1?0)j . There
are three possibilities and we analyze each of them:
1. i = j. In this case there is exactly one successful interleaving of the two sequences and

it is of the form (!1m?1s!0s?0m)i.(!1s?1m!0m?0s)i (where, the component involved in
the memory operation is marked as a subscript). Further it leaves the memory with the
value 0.

2. i < j. In this case, the interleaved runs reaches a deadlock after a sequence of the form
(!1m?1s!0s?0m)i where both components wait for the other one to write the value 1 to
proceed further.

3. i > j. In this case, the interleaved runs reaches a deadlock after a sequence of the form
(!1m?1s!0s?0m)i(!1m!1s + !1s!1m) and both components wait for the other one to write
the value 0 to proceed further.

Since all unsuccessful runs deadlock, it follows that the protocol can be repeated for any
sequence of values and the system will either deadlock or succeed in communicating the
sequence correctly to the slave. Finally, handling the confirmation from the slave to the
master is also easy. After guessing the next operation the slave attempts to carry out the
operation and only on success does it enter the protocol described above. The details are
easy to formalize. J

5 Stage-bounded Computations

We introduce hereafter the concept of stage-bounding. We divide a run into segments,
called stages, where in each stage at most one component is allowed to write on the shared
memory while there is no restriction on the number of readers. We emphasize that there is
no restriction placed on the number of writes or the number of context switches between the
different components nor is there any restriction on the accesses to stacks during a stage.
We then place an a priori bound on the number of stages in the run. Formally

I Definition 4. Let ρ = c0
op1→p1 c1

op2→p2 . . . cn−1
opn→ pn

cn be a run of the SCPS (I,P,m).
We say that ρ is a p-run if for all 1 ≤ i ≤ n, pi = p whenever opi ∈ WM . That is, all the
write transitions are contributed by the same process p.

FSTTCS 2014

616 On Bounded Reachability Analysis of Shared Memory Systems

We say that ρ is a 1-stage run if it is a p-run for some p ∈ I and a run ρ is a k-stage run
if we may write ρ = c0

w1−→ c1
w2−→ . . . ck−1

wk−→ ck such that each ci−1
wi−→ ci is a 1-stage

run for each 1 ≤ i ≤ n.

Stage-bounded Reachability Problem: Given a SCPS (I,P,m0), an integer k and a configura-
tion (q,γ,m) determine whether there is a k-stage run (s,⊥,m0) −→ (q,γ,m).

I Remark 5. Stage-bounding restricts the ability to eliminate lossiness in shared-memory
communication via acknowledgements (see Remark 1). This makes the undecidability of
stage-bounded reachability non-trivial, in particular the proof of Theorem 7, and it is also
crucial for Theorem 8.

5.1 Stage bounded reachability for Communicating FSS
We next show that stage-bounding is relevant even when all components of the SCPS
are finite-state. In this case stage bounded reachability problem is indeed easier than the
unrestricted reachability problem.

I Theorem 6. The reachability problem for an SCPS where every component is a FSS
is Pspace-complete while the stage bounded reachability problem for SCPS where every
component is a FSS is NP-complete.

Proof. (sketch) When there is no bound on the number of stages, it is easy to see that an
SCPS with n FSS components is equivalent to the product (intersection) of n FSS and hence
the reachability problem is Pspace-complete.

To solve the stage bounded reachability problem, we show that it suffices to consider
runs where in each stage every one of the readers participates in at most |Ai| transitions,
where Ai is the ith automaton. We then use this to show that in addition we may restrict to
runs where in each stage the writer participates in at most O((

∑
i |Ai|)2) transitions. This

immediately yields a polynomial bound on the length of stage-bounded computations to be
explored to solve the reachability problem and hence a decision procedure in NP. J

5.2 Undecidability of Bounded-Stage Reachability
Unfortunately, stage bounding does not lead to decidability in the general case. We can
indeed prove that SCPS with two pushdown systems and one 1-counter system are able to
encode the computation of any Turing machine.

I Theorem 7. The 3-stage reachability problem for SCPS consisting of two pushdown systems
and one counter system is undecidable.

Proof. We will reduce the halting problem for Turing machines to the stage-bounded
reachability problem in a SCPS with two pushdown systems and one counter. We refer to
the two pushdowns as the generator and the replayer. If somehow a writer and a reader
could follow a protocol that ensures that every letter that is written is read exactly once
then the undecidability would follow quite easily without the counter. However, doing this
using shared memory in a stage bounded manner is tricky and details are as follows. In
what follows we assume that stuttering errors are eliminated using a suitable delimiter (see
Remark 1).

The simulation of a (potential) accepting run of the TM is carried out in 4 steps which
use 3 stages in all. We fix a suitable encoding of the configurations as a word over some
alphabet Γ and assume that this alphabet does not contain the symbol #. In the first step,

M.F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 617

the generator writes down a (initial) configuration C1 of the TM in its stack followed by the
symbol. While doing so, it uses the shared memory to send a value, say $, to the counter
for each letter in C1. The counter counts the number of such values. Since stuttering has
been eliminated, the value of the counter c1 is ≤ |C1| at the end of this step.

In step 2, the generator guesses a sequence of configurations C2,C3,. . . Cn ending in an
accepting configuration, writes them down, separated by #s, in its stack. It also writes
the same sequence to the memory, as it is generated, which in turn is read by the replayer
and copied on to its stack. At the end of step 2, the contents of the generator’s stack is
CRn #CRn−1# . . . CR1 while that of the replayer is y = DR

m#DR
n−1# . . . DR

1 , m ≤ n− 1 and y is
a subword of CRn #CRn−1# . . . CR2 . It indicates the end of this stage by writing some suitable
value to the memory which signals the end of this stage to the replayer and the counter. In
all we have used one stage so far.

In step 3, the counter sends its value c1 to the generator using the shared memory by
writing c1 copies of some fixed value ending with some special value to indicate the completion
of this sequence. The generator removes one non-# symbol from his stack for each such
value. At the end of this sequence of operations if the top of stack is not a # the generator
will reject this run. Thus, a successful completion of this step will mean that |Cn| ≤ c1
and thus, |Cn| ≤ |C1|. At the end of this step, the contents of the generator’s stack is
CRn−1#CRn−2# . . . CR1 and the counter is empty. This constitutes the second stage.

In the last step, the replayer removes the contents of its stack one element at a time and
writes the removed value to the shared memory for the generator to read. It writes a special
end marker at the end of the sequence and enters an accepting state. The sequence read by
the generator would therefore be of the form z = ERp #ERp−1# . . . ER1 (followed by the end
marker) where p ≤ m ≤ n− 1. Clearly z is a subword of y. The generator, as it reads ERp
removes symbols from its stack verifying that Cn−1 may be reached in one step from the
configuration Ep (we write Ep ⇒ Cn−1 to indicate this), entering a reject state if either this
is false or if they are not of the same length. It then repeats this procedure for Ep−1 and
Cn−2 and so on. It enters an accepting state only if it empties its stack at the end of the
entire sequence.

Observe that if the generator reaches its accepting state then p has to be n− 1, |En−1| =
|Cn−1|, . . ., |E1| = |C1| and En−1 ⇒ Cn−1, . . ., E1 ⇒ C1. Further, since z is a subword
of y, y is a subword of CRn #CRn−1# . . . CR2 and p = n− 1, we have Ei � Di � Ci+1 for all
1 ≤ i ≤ n− 1. Thus,

|C1| = |E1| ≤ |C2| = |E2| ≤ . . . ≤ |Cn−1| = En−1 ≤ |Cn| .

But |Cn| ≤ |C1| and thus,

|C1| = |E1| = |C2| = |E2| . . . = |Cn−1| = |En−1| = |Cn| .

Therefore E1 = C2, E2 = C3, . . ., En−1 = Cn and the result follows. J

6 Decidability for single pushdown plus counters

We present in this section our main result:

I Theorem 8. The stage bounded reachability problem for SCPS with at most one pushdown
system is in NExptime.

FSTTCS 2014

618 On Bounded Reachability Analysis of Shared Memory Systems

Basically, we show that each counter system can be simulated by an exponential sized
bounded-reversal counter system thus reducing the problem to reachability in a pushdown
automaton1 (PDA) with reversal bounded counters (which is known to be in NP).

The proof proceeds in three steps. The first step is applicable to any SCPS. In this step,
we eliminate the shared memory, decouple the different pushdown systems as a collection
of pushdown automata (PDA) and reduce the reachability problem for the SCPS to the
emptiness of the intersection of these PDAs. (This problem, in general, is undecidable, but
we will be able to restrict ourselves to the case where the PDAs are of a restricted variety.)
In a shared memory system, the sequence of values written by the writer in a stage is not
transmitted with precision to the reader as the reader may miss some values while reading
others multiple times and this is what permits the decoupling.

We fix an SCPS S = (I,P,m0) over the set of memory valuesM where P = {Pi | i ∈ I}
is an I indexed collection of pushdown systems Pi = (Qi,Γi,OM , δi, si), for the rest of
this section. For the moment, consider one stage runs where p ∈ I identifies the writer.
Suppose we are interested in the existence of one stage runs starting at the configuration
((si)i∈I , (ρi)i∈I ,m) and ending at some configuration ((qi)i∈I , (γi)i∈I ,m′). Now, consider
the languages Li, i ∈ I, i 6= p, defined as

Li = {m1m2 . . .mn | ?m1?m2 . . . ?mn ∈ L(Pi, (si, ρi), (qi, γi))}

and Lp given by

{m.m1 . . .mn.m
′ | ?m∗!m1?m1

∗!m2 . . . !mn?mn
∗!m′?m′∗ ∈ L(Pp, (sp, ρp), (qp, γp))} .

Then, the existence of a one stage run from ((si)i∈I , (ρi)i∈I ,m) to ((qi)i∈I , (γi)i∈I ,m′)
(with p as the writer) is equivalent to the non-emptiness of

St(Lp) ↓ ∩
⋂
i 6=p

Li ↑ .

Moreover, the languages St(Lp) ↓ and Li ↑ are easily realized as the languages of PDAs
Ap and Ai constructed from the PDSs Pp and Pi respectively. These automata maintain
the stack and control state of the PDS they simulate as well. Observe that the language
accepted by these PDAs are either upward or downward closed.

We are however interested in k stage runs where the identity of the writer (and hence
the closures to be applied) changes with the stage. Further, across the stage boundaries, we
have to preserve the control state and stacks of each component as well as the content of the
shared memory.

It is useful to work with a fixed sequence τ of length k over I identifying the writers in
the k stages. Let τ := p1, p2, . . . , pk, pi ∈ I be such a sequence. Let (s,⊥,m0) and (q,γ,m)
be the initial and target configurations of the SCPS and we wish to determine if there is a k
stage run consistent with τ that goes from the initial to the target configuration. In this case,
the pushdown automaton Aτi plays the role played by the automaton Ai in the one stage
setting. It simulates Pi and its runs break up into k parts, where in the jth part it applies
either a stuttering downward closure or upward closure to the behaviour of Pi depending on
whether j = τ(j) or not. Notice that Aτi maintains the control state and stack of Pi. Aτi
also makes explicit the boundary points between stage i and stage i+ 1 by using a letter of

1 We plan to use "automata" instead of systems when they are used as language generators and to avoid
ambiguity with the components of the SCPS.

M.F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 619

the form (m, i) (instead of just m). These marker letters allow us to synchronize the stage
boundaries of the different Aτi ’s. Further, these markers are also used to ensure that the
contents are of the memory are correctly transferred across stages. We formalize these ideas
below.

We useMi (resp. Mτ) to denoteM∗ ·(M×{i}) for all i ∈ [1..k] (resp.
⋃
i∈[1..k]Mi∪M).

I Lemma 9. For every p ∈ I, we can construct, in polynomial time in |S|, a PDA Aτp over
the stack alphabet Γp, with a target configuration cp such that

if w ∈ L(Aτp , cp) then w ∈M1 ·M2 · · ·Mk. (unambiguous breakup)
if w ∈ L(Aτp , cp) and w = w1w2 . . . wk with wi ∈Mi for all 1 ≤ i ≤ k then w′1.w′2. . . . w′k ∈
L(Aτp , cp) for all w′1, . . . w′k such that, for all i, w′i ∈ Mi and either p = τ(i) and
w′i ∈ St(wi) ↓ or p 6= τ(i) and w′i ∈ (wi ↑ ∩Mi). (closure)
There is a k stage run from (s,⊥,m0) to (q,γ,m) with τ(i) as the writer in the ith
stage iff

⋂
p∈I L(Aτp , cp) 6= ∅. (decoupling)

In the second step we exploit the fact that the language of each Aτp is a finite unambiguous
concatenation of languages that are upward or downward closed. Towards this we first state
two propositions which explain the importance of closures.
I Proposition 10 (Downward closure of CFLs [5]). Given a pushdown automaton P and two
configurations ci, cf , we can construct, in time and space at most exponential in size of P , ci
and cf , a FSA A with two configurations c′i and c′f such that L(A, c′i, c′f) = L(P, ci, cf)↓.
I Proposition 11 (Upward closure of CFLs). Given a pushdown automaton P and two
configurations ci, cf , we can construct, in time and space at most exponential in size of P , ci
and cf , a FSA A with two configurations c′i and c′f such that L(A, c′i, c′f) = L(P, ci, cf)↑.

This means that, if we are dealing with a single stage then we may replace the PDA Ai,
i ∈ I, described earlier, by exponential sized finite automata Bi, i ∈ I (for all i, including
the writer p). Thus we have reduced the problem to the emptiness of the intersection for
FAs. However the k stage case is somewhat more complex. This is because, as Aτi switches
from one stage to the next, it has to preserve the configuration of Pi (i.e. the contents of the
stack) as well as the contents of the memory. While this is trivial when Aτi is a pushdown, it
is not possible to do this using finite number of states. However, all is not lost as we may
convert Aτi into a 2k-turn PDA Bτi . A run of pushdown automaton is said to be 1-turn if
the stack height of the sequence of configurations is either uniformly non-increasing (does
not involve a push move) or non-decreasing (does not involve a pop move). A k-turn run is
concatenation of k sequences of 1-turn runs. A k-turn PDA is one which only allows at most
k-turn runs (see [9]).

We explain the ideas behind the construction of Bτi now. Let us fix a pushdown automaton
A. For any γ ∈ Γ∗⊥ we say that a run χ from (q, ρ) to (q′, ρ′) is a γ-run if γ is the longest
suffix of ρ that appears as a suffix of the contents of the stack in every configuration along
the run χ. Observe that, this implies that γ must be a suffix of ρ and ρ′ and further there is
a configuration in χ whose stack content is exactly γ. (Observe that every run from (q, ρ) to
(q′, ρ′) is a γ-run for some (unique) suffix γ of ρ). We write Lγ(c, c′) to refer to the set of
words accepted on γ-runs from c to c′. Let c = (q, ρ) to c′ = (q′, ρ′). Then, L(c, c′), the set
of words accepted on runs from c to c′ is

{x.y | x ∈ Lγ(c, (q′′, γ)), y ∈ Lγ((q′′, γ), c′), γ a suffix of ρ, q′′ ∈ Q} .

We write Cl(L) to refer to the upward or downward closure of L when the identity of the
closure does not matter. Thus Cl(L(c, c′)) is

{x.y | x ∈ Cl(Lγ(c, (q′′, γ))), y ∈ Cl(Lγ((q′′, γ), c′)), γ a suffix of ρ, q′′ ∈ Q} .

FSTTCS 2014

620 On Bounded Reachability Analysis of Shared Memory Systems

For each α ∈ Γ and q1, q2 ∈ Q, we let:

L−α (q1, q2) = {w | (q1, α⊥) w−→ (q2,⊥) without using emptiness tests }

L+
α (q1, q2) = {w | (q1,⊥) w−→ (q2, α⊥) without using emptiness tests }

L⊥(q1, q2) = {w | (q1,⊥) w−→ (q2,⊥)}

We can see that the language Lγ(c, (q′′, γ)) (resp. Lγ((q′′, γ), c′)) can be rewritten as
a concatenation of the following languages L−α1

(q, q1) · L−α2
(q1, q2) · · ·L−α`

(q`−1, q
′′) · L with

ρ = α1α2 · · ·α`γ (resp. L · L+
α1

(q′′, q1) · L+
α2

(q1, q2) · · ·L+
α`

(q`−1, q
′) with ρ′ = α`α`−1 · · ·α1γ)

and L = {ε} if γ 6= ⊥ and L = L⊥(q′′, q′′) otherwise.
Hence, any word w∈Cl(L(c, c′)) can be rewritten as the concatenation of three words (i.e.,

w = w1w2w3). The first word w1 is in Cl(L−α1
(q, q1)) ·Cl(L−α2

(q1, q2)) · · ·Cl(L−α`
(q`−1, q

′′))
for some letters α1α2 · · ·α` and stack content γ such that ρ = α1α2 · · ·α`γ. The second
word w2 is in Cl(L⊥(q′′, q′′)) if γ = ⊥, and in {ε} otherwise. The last word w3 is in
Cl(L+

α′1
(q′′, q′1)) ·Cl(L+

α′2
(q′1, q′2)) · · ·Cl(L+

α′m
(q′m−1, q

′)) for some letters α′1α′2 · · ·α′m such that
ρ′ = α′mα

′
m−1 · · ·α′1γ.

Furthermore, the languages L−α (q1, q2), L+
α (q1, q2) and L⊥(q1, q2) are context-free and

their upward and downward closures are effectively regular (see Propositions above) and
so let B−α (q1, q2), B+

α (q1, q2) and B⊥(q1, q2) be finite automata recognizing Cl(L−α (q1, q2)),
Cl(L+

α (q1, q2)) and Cl(L⊥(q1, q2)) respectively.
Now, we describe the PDA B: It uses the same stack alphabet as A and maintains the

current state of A as part of its local state. Its run consists of 3 phases. The first phase
consists in generating the first word w1 by repeating the following a number of times: it
guesses a triple (q1, α, q2), verifies that q1 is the current state of A, pops the top of stack and
verifies that it is indeed α, simulates a run of B−α (q1, q2) and then changes the current state
of A to q2. In the optional second phase, it will generate the second word w2 by verifying
that the stack is empty, guessing a pair (q1, q2), checking that q1 is the current state of A,
simulating a run of B⊥(q1, q2) and then changing the current state of A to q2. The third
stage consists of generating the word w3 by repeating the following a number of times: it
guesses triples of the form (q1, α, q2), verifies that q1 is the current state of A, pushes α on to
the stack, simulates a run of B+

α (q1, q2) and then changes current state of A to q2. Observe
that these runs involve only two turns one during the pop phase and one during the push
phase. The language of B while starting at the stack configuration γ with q as the current
state of P and ending with stack configuration γ′ and q′ as the current state of P is the
language Cl(L(c, c′)). But, if L(c, c′) is already closed then Cl(L(c, c′)) = L(c, c′). Thus, in
this case B simulates a (arbitrary) run of A from c to c′ using a single turn run and further
maintains the configuration reached by A at the end of this run.

Since the language of Aτp in each stage is either upward or downward closed, by concate-
nating k appropriately chosen copies of the automata B (with correct closures in each stage
depending on the sequence τ) we construct a 2k-turn PDA Bτp that has the same language
as Aτp as stated by the following Lemma

I Lemma 12. For every p ∈ I, it is possible to construct, in exponential time in the size of
Aτp, a 2k turn PDA Bτp and a configuration c′p, such that L(Bτp , c′p) = L(Aτp , cp).

Unfortunately, the emptiness of the intersection of even two 2-turn PDAs is undecidable,
as can be seen from an easy reduction from the Post’s correspondence problem (PCP). The
situation is quite different when the PDAs are counters. In fact, we can show:

M.F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 621

I Lemma 13. Let k be a natural number. Let A1 be a 2k turn PDA and A2, . . . , An a
sequence of 2k-turn counter automata. Let ci be a configurations of Ai for all i : 1 ≤ i ≤ n.
Then, the problem of checking whether L(A1, c1)∩ · · · ∩L(An, cn) is not empty can be decided
in nondeterministic time that is polynomial in the size of Ai and k, and exponential in n.

The proof of Lemma 13 is done by a reduction to the state reachability problem for
pushdown systems with reversal-bounded counters where each counter is allowed a bounded
number of alternation between modes. (The latter problem is known to be NP-complete
[10].) A counter mode is a run of the system where the performed sequence of transitions
on this counter consists, apart from internal transitions, only of increment transitions or
only of decrement transitions or only of zero test transitions. A pushdown system with
k reversal-bounded counters is pushdown system augmented with counters where any run
decomposes into at most k modes for each counter. Then, the reduction consists simply in
constructing a pushdown system S augmented with counters that simulates the synchronous
product of A1, . . . , An while observing that any run of a 2k-turn counter automaton performs
at most 3k modes in S (Note that zero tests are counted as a reversal (mode) but are not
counted as a turn). These arguments can be formalized to obtain a complete proof.

Thus we have reduced the k stage bounded reachability problem of an SCPS consisting
of one PDS and (n− 1) counter systems to exponentially2 many instances of the emptiness
problem for the intersection of a polynomial sized 2k-turn PDA and (n− 1) 2k-turn counter
automata of exponential size (Lemma 9 and Lemma 12). We have also shown that each
instance of the latter problem can be decided in Nexptime (Lemma 13). Combining these
results yields to a Nexptime upper-bound and a proof of Theorem 8.

7 Lower Bounds for the Stage-bounded Reachability Problem

We have so far shown that the stage bounded reachability problem for systems with at least
two pushdowns and one counter is undecidable while it can be decided in NExptime for
systems containing at most one pushdown. This problem remains open for SCPS with exactly
two pushdowns. In the following, we show that even if it is decidable its complexity cannot
be primitive recursive.

The regular post embedding problem is the following: Let Σ and Γ be two alphabets.
Given two functions f : Σ→ Γ+ and g : Σ→ Γ+, extended homomorphically to Σ+, and a
regular language R ⊆ Σ+, does there exist a w ∈ R such that f(w) � g(w)? As shown in [4],
this problem is decidable but cannot be solved by any algorithm with primitive recursive
complexity. We reduce the regular post embedding problem to the stage-bounded reachability
problem for SCPS with two pushdowns to obtain the following theorem

I Theorem 14. The 2-stage bounded reachability problem for SCPS with two pushdowns
cannot be solved by any algorithm whose complexity is primitive recursive.

The emptiness problem for the intersection of a collection of n finite automata is known
to be Pspace complete and we reduce this problem to the n-stage bounded reachability
problem for SCPS with n counters to obtain the following theorem

I Theorem 15. The stage-bounded reachability problem for SCPS consisting only of counter
systems is Pspace-Hard.

2 The exponential blow-up comes from the guess of the sequence of writers.

FSTTCS 2014

622 On Bounded Reachability Analysis of Shared Memory Systems

8 Conclusion

We have introduced a new concept for bounding the analysis of shared memory concurrent
systems. This concept is based on bounding the number of switches between writes by
different processes to the shared memory, without restricting the way reads can be performed
by any of the processes in the system.

Stage-bounding allows to improve significantly the behaviors coverage w.r.t. context-
bounding. We have shown that for networks of finite-state systems, the complexity of
stage-bounded analysis is NP-complete, as for context-bounding. In practice, this implies
that this analysis can be implemented using a complete bounded model-checking with a
polynomial bound. In the case of networks of infinite-state systems, we have mainly shown
that the state reachability problem in networks of counter systems with a shared store
is decidable under stage-bounding, and that the same still holds for networks with one
additional pushdown.

Several questions remain open. One of them is closing the gap between the known
upper and lower bounds on the complexity. Also, the case two pushdown systems is open,
although we know that even if it is decidable, it would be with a high complexity. Finally,
an interesting open question is whether it is possible to generalize our decidability result to
dynamic or parametrized networks of counter systems, by considering that each component
in the network is allowed to be the single writer in a bounded number of stages.

References
1 Mohamed Faouzi Atig. Model-checking of ordered multi-pushdown automata. Logical

Methods in Computer Science, 8(3), 2012.
2 Mohamed Faouzi Atig, Ahmed Bouajjani, and Tayssir Touili. On the reachability analysis

of acyclic networks of pushdown systems. In CONCUR, volume 5201 of Lecture Notes in
Computer Science, pages 356–371. Springer, 2008.

3 Mohamed Faouzi Atig and Tayssir Touili. Verifying parallel programs with dynamic com-
munication structures. In CIAA, volume 5642 of Lecture Notes in Computer Science, pages
145–154. Springer, 2009.

4 Pierre Chambart and Ph. Schnoebelen. Post embedding problem is not primitive recur-
sive, with applications to channel systems. In FSTTCS, volume 4855 of Lecture Notes in
Computer Science, pages 265–276. Springer, 2007.

5 Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS,
44:178–186, 1991.

6 Javier Esparza, Pierre Ganty, and Rupak Majumdar. Parameterized verification of asyn-
chronous shared-memory systems. In CAV, volume 8044 of Lecture Notes in Computer
Science, pages 124–140. Springer, 2013.

7 Matthew Hague. Parameterised pushdown systems with non-atomic writes. In FSTTCS,
volume 13 of LIPIcs, pages 457–468. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2011.

8 Matthew Hague and Anthony Widjaja Lin. Synchronisation- and reversal-bounded anal-
ysis of multithreaded programs with counters. In CAV, volume 7358 of Lecture Notes in
Computer Science, pages 260–276. Springer, 2012.

9 J. E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley series in computer science. Addison-Wesley, 1979.

10 Rodney R. Howell and Louis E. Rosier. An analysis of the nonemptiness problem for classes
of reversal-bounded multicounter machines. J. Comput. Syst. Sci., 34(1):55–74, 1987.

M.F. Atig, A. Bouajjani, K. Narayan Kumar, and P. Saivasan 623

11 Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems. J.
ACM, 25(1):116–133, 1978.

12 Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. A robust class of
context-sensitive languages. In LICS, pages 161–170. IEEE Computer Society, 2007.

13 Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent software.
In TACAS, volume 3440 of Lecture Notes in Computer Science, pages 93–107. Springer,
2005.

FSTTCS 2014

	Introduction
	Preliminaries
	Shared-memory Concurrent Pushdown Systems
	Pushdown Systems and Counter Systems
	Concurrent Pushdown System with Shared Memory

	The Reachability Problem for SCPS
	Stage-bounded Computations
	Stage bounded reachability for Communicating FSS
	Undecidability of Bounded-Stage Reachability

	Decidability for single pushdown plus counters
	Lower Bounds for the Stage-bounded Reachability Problem
	Conclusion

