
Parameterized Communicating Automata:
Complementation and Model Checking∗

Benedikt Bollig1, Paul Gastin1, and Akshay Kumar2

1 LSV, ENS Cachan & CNRS, France
{bollig,gastin}@lsv.ens-cachan.fr

2 Indian Institute of Technology Kanpur, India
kakshay@iitk.ac.in

Abstract
We study the language-theoretical aspects of parameterized communicating automata (PCAs),
in which processes communicate via rendez-vous. A given PCA can be run on any topology of
bounded degree such as pipelines, rings, ranked trees, and grids. We show that, under a context
bound, which restricts the local behavior of each process, PCAs are effectively complementable.
Complementability is considered a key aspect of robust automata models and can, in particular,
be exploited for verification. In this paper, we use it to obtain a characterization of context-
bounded PCAs in terms of monadic second-order (MSO) logic. As the emptiness problem for
context-bounded PCAs is decidable for the classes of pipelines, rings, and trees, their model-
checking problem wrt. MSO properties also becomes decidable. While previous work on model
checking parameterized systems typically uses temporal logics without next operator, our MSO
logic allows one to express several natural next modalities.

1998 ACM Subject Classification F.1.1 [Computation by Abstract Devices]: Models of Compu-
tation, F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords and phrases parameterized verification, complementation, monadic second-order logic

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.625

1 Introduction

The “regularity” of an automata model is intrinsically tied to characterizations in algebraic
or logical formalisms, and to related properties such as closure under complementation and
decidability of the emptiness problem. Most notably, the robustness of finite automata is
witnessed by the Büchi-Elgot-Trakhtenbrot theorem, stating their expressive equivalence
to monadic second-order (MSO) logic. In the past few years, this fundamental result has
been extended to models of concurrent systems such as communicating finite-state machines
(see [10] for an overview) and multi-pushdown automata (e. g., [11, 12]). Hereby, the system
topology, which provides a set of processes and links between them, is usually supposed to be
static and fixed in advance. However, in areas such as mobile computing or ad-hoc networks,
it is more appropriate to design a program, and guarantee its correctness, independently of
the underlying topology, so that the latter becomes a parameter of the system.

There has been a large body of literature on parameterized concurrent systems [9, 8, 6, 2, 1],
with a focus on verification: Does the given system satisfy a specification independently of

∗ Supported by LIA InForMel.

© Benedikt Bollig, Paul Gastin, and Akshay Kumar;
licensed under Creative Commons License CC-BY

34th Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014).
Editors: Venkatesh Raman and S. P. Suresh; pp. 625–637

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.625
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

626 Parameterized Communicating Automata: Complementation and Model Checking

the number of processes? A variety of different models have been introduced, covering a
wide range of communication paradigms such as broadcasting, rendez-vous, token-passing,
etc. So far, however, it is fair to say that there is no such thing as a canonical or “robust”
model of parameterized concurrent systems.

This paper tries to take a step forward towards such a model. It is in line with a study
of a language theory of parameterized concurrent systems that has been initiated in [3, 4].
We resume the model of parameterized communicating automata (PCAs), a conservative
extension of classical communicating finite-state machines [5]. While the latter run a fixed
set of processes, a PCA can be run on any topology of bounded degree, such as pipelines,
rings, ranked trees, or grids. A topology is a graph, whose nodes represent processes that
are connected via interfaces. Every process will run a local automaton executing send and
receive actions, which allows it to communicate with an adjacent process in a rendez-vous
fashion. As we are interested in language-theoretical properties, we associate, with a given
PCA, the set of all possible executions. An execution includes the underlying topology, the
events that each process executes, and the causal dependencies that exist between events.
This language-theoretic view is different from most previous approaches to parameterized
concurrent systems, which rather consider the transition system of reachable configurations.
Yet, it will finally allow us to study such important concepts like complementation and MSO
logic. Note that logical characterizations of PCAs have been obtained in [3]. However, those
logics use negation in a restricted way, since PCAs are in general not complementable. This
asks for restrictions of PCAs that give rise to a robust automata model. In this paper, we
will therefore impose a bound on the number of contexts that each process traverses. We
explain this notion below.

The efficiency of distributed algorithms and protocols is usually measured in terms of
two parameters: the number n of processes, and the number k of contexts. Here, a context,
sometimes referred to as round, restricts communication of a process to patterns such as
“send a message to each neighbor and receive a message from each neighbor”. In this paper,
we consider more relaxed definitions where, in every context, a process may perform an
unbounded number of actions. In an interface-context, a process can send and receive an
arbitrary number of messages to/from a fixed neighbor. A second context-type definition
allows for arbitrarily many sends to all neighbors, or receptions from a fixed neighbor.

In general, basic questions such as reachability are undecidable for PCAs, even when we
restrict to simple classes of topologies such as pipelines. To get decidability, it is therefore
natural to bound one of the aforementioned parameters, n or k. Bounding the number n of
processes is known as cut-off. However, the trade-off between n and k is often in favor of an
up to exponentially smaller k. Moreover, many distributed protocols actually restrict to a
bounded number of contexts, such as P2P protocols and certain leader-election protocols.
Therefore, bounding the parameter k seems to be an appropriate way to overcome the
theoretical limitations of formally verifying parameterized concurrent systems.

The most basic verification question of context-bounded PCAs has been considered in
[4]: Is there a topology that allows for an accepting run of the given PCA? In the present
paper, we go beyond such nonemptiness/reachability issues and consider PCAs as language
acceptors. We will show that, under suitable context bounds, PCAs form a robust automata
model that is closed under complementation. Complementability relies on a disambiguation
construction, which is the key technical contribution of the paper.

Our complementation result has wider applications and implications. In particular, we
obtain a characterization of context-bounded PCAs in terms of MSO logic. Together with
the results from [4], this implies that context-bounded model checking of PCAs against MSO

B. Bollig, P. Gastin, and A. Kumar 627

logic is decidable for the classes of pipelines, rings, and trees. Note that MSO logic is quite
powerful and, unlike in [7, 2], we are not constrained to drop any (next) modality. Actually,
a variety of natural next modalities can be expressed in MSO logic, such as process successor,
message successor, next event on a neighboring process, etc.

Context-bounds were originally introduced for (sequential) multi-pushdown automata as
models of multi-threaded recursive programs [15]. Interestingly, determinization procedures
have been used to obtain complementability and MSO characterizations for context-bounded
multi-pushdown automata [11, 12]. A pattern that we share with these approaches is that of
computing summaries in a deterministic way. Overall, however, we have to use quite different
techniques, which is due to the fact that, in our model, processes evolve asynchronously.

In Section 2, we settle some basic notions such as topologies and message sequence
charts, which describe the behavior of a system. PCAs and their restrictions are introduced
in Section 3. Section 4 presents our main technical contribution: We show that context-
bounded PCAs are complementable. This result is exploited in Section 5 to obtain a
logical characterization of PCAs and decidability of the model-checking problem wrt. MSO
logic. Omitted proofs can be found in the full version of the paper, which is available at:
http://hal.archives-ouvertes.fr/hal-01030765/.

2 Preliminaries

For n ∈ N, we set [n] := {1, . . . , n}. Let A be an alphabet and I be an index set. Given a
tuple ā = (ai)i∈I ∈ AI and i ∈ I, we write āi to denote ai.

Topologies. We will model concurrent systems without any assumption on the number of
processes. However, we will have in mind that processes are arranged in a certain way, for
example as pipelines or rings. Once such a class and the number of processes are fixed, we
obtain a topology. Formally, a topology is a graph. Its nodes represent processes, which are
connected via interfaces. Let N = {a, b, c, . . .} be a fixed nonempty finite set of interface
names (or, simply, interfaces). When we consider pipelines or rings, then N = {a, b} where
a refers to the right neighbor and b to the left neighbor of a process, respectively. For grids,
we will need two more names, which refer to adjacent processes above and below. Ranked
trees require an interface for each of the (boundedly many) children of a process, as well as a
pointer to the father process. As N is fixed, topologies are structures of bounded degree.

I Definition 1. A topology over N is a pair T = (P,) where P is the nonempty finite
set of processes and ⊆ P × N × N × P is the edge relation. We write p a b q for
(p, a, b, q) ∈ , which signifies that the a-interface of p points to q, and the b-interface of q
points to p. We require that, whenever p a b q, the following hold:
(a) p 6= q (there are no self loops),
(b) q b a p (adjacent processes are mutually connected), and
(c) for all a′, b′ ∈ N and q′ ∈ P such that p a′ b′ q′, we have a = a′ iff q = q′ (an interface

points to at most one process, and two distinct interfaces point to distinct processes).

We do not distinguish isomorphic topologies.

I Example 2. Example topologies are depicted in Figures 1 and 2. In Figure 2, five
processes are arranged as a ring. Formally, a ring is a topology over N = {a, b} of the form
({1, . . . , n},) where n ≥ 3 and = { (i, a, b, (i mod n) + 1) | i ∈ [n]} ∪ {((i mod n) +
1, b, a, i) | i ∈ [n]}. A ring is uniquely given by its number of processes. Moreover, as we do
not distinguish isomorphic topologies, it does not have an “initial” process. A pipeline is of

FSTTCS 2014

http://hal.archives-ouvertes.fr/hal-01030765/

628 Parameterized Communicating Automata: Complementation and Model Checking

a

b

a

a

b

cd

a

aa

b b

c d

b

c c d

Figure 1 A topology over {a, b, c, d}.

a

b
a

a

b

a
b

bb

a

Figure 2 A ring topology.

the form ({1, . . . , n},) where n ≥ 2 and = { (i, a, b, i+1) | i ∈ [n−1]}∪{(i+1, b, a, i) |
i ∈ [n− 1]}. Similarly, one can define ranked trees and grids [3]. J

MSO Logic over Topologies. The acceptance condition of a parameterized communicating
automaton (PCA, as introduced in the next section) will be given in terms of a formula from
monadic second-order (MSO) logic, which scans the final configuration reached by a PCA:
the underlying topology together with the local final states in which the processes terminate.
If S is the finite set of such local states, the formula thus defines a set of S-labeled topologies,
i.e., structures (P, , λ) where (P,) is a topology and λ : P → S. The logic MSOt(S) is
given by the grammar F ::= u a b v | u = v | λ(u) = s | u ∈ U | ∃u.F | ∃U.F | ¬F | F ∨ F
where a, b ∈ N , s ∈ S, u and v are first-order variables (interpreted as processes), and U is a
second-order variable (ranging over sets of processes). Note that we assume an infinite supply
of variables. Given a sentence F ∈ MSOt(S) (i.e., a formula without free variables), we write
L(F) for the set of S-labeled topologies (P, , λ) that satisfy F . Hereby, satisfaction is
defined in the expected manner (cf. also Section 5, presenting an extended logic).

Message Sequence Charts. Recall that our primary concern is a language-theoretic view
of parameterized concurrent systems. To this aim, we associate with a system its language,
i.e., the set of those behaviors that are generated by an accepting run. One single behavior
is given by a message sequence chart (MSC). An MSC consists of a topology (over the given
set of interfaces) and a set of events, which represent the communication actions executed by
a system. Events are located on the processes and connected by process and message edges,
which reflect causal dependencies (as we consider rendez-vous communication, a message
edge has to be interpreted as “simultaneously”).

I Definition 3. A message sequence chart (MSC) over N is a tuple M = (P, , E,C, π)
where (P,) is a topology over N , E is the nonempty finite set of events, C ⊆ E×E is the
acyclic edge relation, which is partitioned into Cproc and Cmsg, and π : E → P determines
the location of an event in the topology; for p ∈ P , we let Ep := {e ∈ E | π(e) = p}. We
require that the following hold:

Cproc is a union
⋃
p∈P Cp where each Cp ⊆ Ep × Ep is the direct-successor relation of

some total order on Ep,
there is a partition E = E!] E? such that Cmsg ⊆ E! × E? defines a bijection from E! to
E?,
for all (e, f) ∈ Cmsg, we have π(e) a b π(f) for some a, b ∈ N , and
in the graph (E,C∪C−1

msg), there is no cycle that uses at least one Cproc-edge (this ensures
rendez-vous communication).

B. Bollig, P. Gastin, and A. Kumar 629

a b a b a b a b

M1

Cmsg

Cproc

8
>><
>>:

ab

a! b?

a!
b?

s3s2 s4s1 s3

M2

a b a b a b a b ab
s1 s4s4 s2s1

Figure 3 Two MSCs over a ring topology; local states labeling the topology in a PCA run.

Let Σ = {a! | a ∈ N} ∪ {a? | a ∈ N}. We define a mapping `M : E → Σ that associates
with each event the type of action that it executes: For (e, f) ∈ Cmsg and a, b ∈ N such that
π(e) a b π(f), we set `M (e) = a! and `M (f) = b?.

The set of MSCs (over the fixed set N) is denoted by MSC. Like for topologies, we do
not distinguish isomorphic MSCs.

I Example 4. Two example MSCs are depicted in Figure 3, both having the ring with five
processes as underlying topology (for the moment, we ignore the state labels si of processes).
The events are the endpoints of message arrows, which represent Cmsg. Process edges are
implicitly given; they connect successive events located on the same (top-down) process line.
Finally, the mapping `M1 is illustrated on a few events. J

3 Parameterized Communicating Automata

In this section, we introduce our model of a communicating system that can be run on
arbitrary topologies of bounded degree.

The idea is that each process of a given topology runs one and the same automaton,
whose transitions are labeled with an action of the form (a!,m), which emits a message m
through interface a, or (a?,m), which receives m from interface a.

I Definition 5. A parameterized communicating automaton (PCA) over N is a tuple
A = (S, ι,Msg,∆,F) where S is the finite set of states, ι ∈ S is the initial state, Msg is
a nonempty finite set of messages, ∆ ⊆ S × (Σ ×Msg) × S is the transition relation, and
F ∈ MSOt(S) is a sentence, representing the acceptance condition.

Let M = (P, , E,C, π) be an MSC. A run of A on M will be a mapping ρ : E → S

satisfying some requirements. Intuitively, ρ(e) is the local state of π(e) after executing e. To
determine when ρ is a run, we define another mapping, ρ− : E → S, denoting the source
states of a transition: whenever fCproc e, we let ρ−(e) = ρ(f); moreover, if e is Cproc-minimal,
we let ρ−(e) = ι. With this, we say that ρ is a run of A on M if, for all (e, f) ∈ Cmsg, there
are a, b ∈ N and a message m ∈ Msg such that π(e) a b π(f), (ρ−(e), (a!,m), ρ(e)) ∈ ∆,
and (ρ−(f), (b?,m), ρ(f)) ∈ ∆. To determine when ρ is accepting, we collect the last states
of all processes and define a mapping λ : P → S as follows. Let p ∈ P . If Ep = ∅, then
λ(p) = ι; otherwise, λ(p) is set to ρ(e) where e is the unique Cproc-maximal event of p. Now,
run ρ is accepting if (P, , λ) ∈ L(F). The set of MSCs that allow for an accepting run is
denoted by L(A).

While a run of a PCA is purely operational, it is actually natural to define the acceptance
condition in terms of MSOt(S), which allows for a global, declarative view of the final
configuration. Note that, when we restrict to pipelines, rings, or ranked trees, the acceptance
condition could be defined as a finite (tree, respectively) automaton over the alphabet S.

FSTTCS 2014

630 Parameterized Communicating Automata: Complementation and Model Checking

(a!, 1)

(a!, 0)

(a!, 0)

(b?, 1)

(b?, 0)

(a!, 1)

◆

s1

s2

s3

s4

(b?, 1)

(b?, 0)

F ⌘ 8u.�(u) 2 {s1, . . . , s4}
F 0 ⌘ F ^ 9=1u.�(u) = s1

Figure 4 The PCA A′
token.

I Example 6. The PCA from Figure 4 describes a simplified version of the IEEE 802.5
token-ring protocol. For illustration, we consider two different acceptance conditions, F and
F ′, giving rise to PCAs Atoken and A′token, respectively. In both cases, a single binary token,
which can carry a value from m ∈ {0, 1}, circulates in a ring. Recall that, in a ring topology,
every process has an a-neighbor and a b-neighbor (cf. Figure 2). Initially, the token has
value 1. A process that has the token may emit a message and pass it along with the token
to its a-neighbor. We will abstract the concrete message away and only consider the token
value. Whenever a process receives the token from its b-neighbor, it will forward it to its
a-neighbor, while (i) leaving the token value unchanged (the process then ends in state s2 or
s3), or (ii) changing the token value from 1 to 0, to signal that the message has been received
(the process then ends in s4). Once the process that initially launched the token receives the
token with value 0, it goes to state s1.

Note that the acceptance condition F of Atoken permits those configurations where all
processes terminate in one of the states s1, . . . , s4. MSC M1 from Figure 3 depicts an
execution of the protocol described above, and we have M1 ∈ L(Atoken). The state labelings
of processes indicate the final local states that are reached in an accepting run. However,
one easily verifies that we also have M2 ∈ L(Atoken), though M2 should not be considered as
an execution of a token-ring protocol: there are two processes that, independently of each
other, emit a message/token and end up in s1. To model the protocol faithfully and rule
out such pathological executions, we change the acceptance condition to F ′, which adds the
requirement that exactly one process terminates in s1. We actually have M1 ∈ L(A′token)
and M2 6∈ L(A′token). J

Note that [3, 4] used weaker acceptance conditions, which cannot access the topology.
However, Example 6 shows that an acceptance condition given as an MSOt-formula offers
some flexibility in modeling parameterized systems. For example, it can be used to simulate
several process types [4], the idea being that each process runs a local automaton according
to its type. All our results go through in this extended setting. Also note that messages
(such as the token value in Example 6) could be made apparent in the MSCs. However, we
will always need some “hidden” messages, which are common in communicating automata
with fixed topology [10] and significantly extend their expressive power.

Context-Bounded PCAs. Our main results will rely on a restricted version of PCAs, where
every process is constrained to execute a bounded number of contexts. As discussed in the
introduction, contexts come very naturally when modeling distributed protocols. Actually,

B. Bollig, P. Gastin, and A. Kumar 631

the behavior of a single process is often divided into a small, or even bounded, number of
rounds, each describing some restricted communication pattern. Usually, one considers that
a round consists of sending a message to each neighbor followed by receiving a message from
each neighbor [13]. In this paper, we consider contexts, which are somewhat more general
than rounds: in a context, one may potentially execute an unbounded number of actions.
Moreover, a round can be simulated by a bounded number of contexts. Actually, there exist
several natural definitions. A word w ∈ Σ∗ is called an

(s⊕r)-context if w ∈ {a! | a ∈ N}∗ or w ∈ {a? | a ∈ N}∗,
(s1+r1)-context if w ∈ {a! , b?}∗ for some a, b ∈ N ,
(s⊕r1)-context if w ∈ {a! | a ∈ N}∗ or w ∈ {b?}∗ for some b ∈ N ,
intf-context if w ∈ {a! , a?}∗ for some a ∈ N .

The context type s1⊕r (w ∈ {a!}∗ for some a ∈ N or w ∈ {b? | b ∈ N}∗) is dual to s⊕r1, and
we only consider the latter case. All results for s⊕r1 in this paper easily transfer to s1⊕r.

Let k ≥ 1 be a natural number and ct ∈ {s⊕r, s1+r1, s⊕r1, intf} be a context type. We
say that w ∈ Σ∗ is (k, ct)-bounded if there are w1, . . . , wk ∈ Σ∗ such that w = w1 · · ·wk and
wi is a ct-context, for all i ∈ [k]. To lift this definition to MSCs M = (P, , E,C, π), we
define the projection M |p ∈ Σ∗ of M to a process p ∈ P . Let e1 Cproc e2 Cproc . . . Cproc en
be the unique process-order preserving enumeration of all events of Ep. We let M |p =
`M (e1)`M (e2) . . . `M (en). In particular, Ep = ∅ implies M |p = ε. Now, we say that M
is (k, ct)-bounded if M |p is (k, ct)-bounded, for all p ∈ P . Let MSC(k,ct) denote the set
of all (k, ct)-bounded MSCs. Given two sets L and L′ of MSCs, we write L ≡(k,ct) L

′ if
L ∩MSC(k,ct) = L′ ∩MSC(k,ct).

I Example 7. Consider the PCAs Atoken and A′token from Figure 4. Every process executes
at most two events so that we have L(A′token) ⊆ L(Atoken) ⊆ MSC(2,ct) for all context
types ct ∈ {s⊕r, s1+r1, s⊕r1, intf}. In particular, the MSCs M1 and M2 from Figure 3 are
(2, ct)-bounded.

4 Context-Bounded PCAs are Complementable

Let ct ∈ {s⊕r, s1+r1, s⊕r1, intf}. We say that PCAs are ct-complementable if, for every PCA
A and k ≥ 1, we can effectively construct a PCA A′ such that L(A′) ≡(k,ct) MSC \L(A). In
general, PCAs are not complementable, and this even holds under certain context bounds.

I Theorem 8. Suppose N = {a, b}. For all context types ct ∈ {s⊕r, s1+r1}, PCAs are not
ct-complementable.

The proof uses results from [16, 14]. However, the situation changes when we move to
context types s⊕r1 and intf. We now present the main result of our paper:

I Theorem 9. For all ct ∈ {s⊕r1, intf}, PCAs are ct-complementable.

The theorem follows directly from a disambiguation construction, which we present as
Theorem 10. We call a PCA A unambiguous if, for every MSC M , there is exactly one
run (accepting or not) of A on M . An unambiguous PCA can be easily complemented by
negating the acceptance condition.

I Theorem 10. Given a PCA A, a natural number k ≥ 1, and ct ∈ {s⊕r1, intf}, we can
effectively construct an unambiguous PCA A′ such that L(A) ≡(k,ct) L(A′).

FSTTCS 2014

632 Parameterized Communicating Automata: Complementation and Model Checking

The PCA from Figure 4 is not unambiguous, since there are runs of Atoken (or A′token) on
the MSC M1 from Figure 3 ending, for example, in configurations s1s2s4s3s3 or s1s2s2s4s3.
Unfortunately, a simple power-set construction is not applicable to PCAs, due to the hidden
message contents. Note that, in the fixed-topology setting, there is a commonly accepted
notion of deterministic communicating automata [10], which is different from unambiguous.
We do not know if Theorem 10 holds for deterministic PCAs.

Proof of Theorem 10
In the remainder of this section, we prove Theorem 10. The proof outline is as follows:
We first define an intermediate model of complete deterministic asynchronous automata
(CDAAs). We will then show that any context-bounded PCA can be converted into a CDAA
(Lemma 13) which, in turn, can be converted into an unambiguous PCA (Lemma 12).

I Definition 11. A complete deterministic asynchronous automaton (CDAA) over the set
N is a tuple B = (S, ι, (δ(a,b))(a,b)∈N×N ,F) where S, ι, and F are like in PCAs and, for
each (a, b) ∈ N ×N , we have a (total) function δ(a,b) : (S × S)→ (S × S).

The main motivation behind introducing CDAAs is that, for a given process p, the
functions (δ(a,b))(a,b)∈N×N can effectively encode the transitions at each of the neighbors
of p. Similarly to PCAs, a run of B on an MSC M = (P, , E,C, π) is a mapping
ρ : E → S such that, for all (e, f) ∈ Cmsg, there are a, b ∈ N satisfying π(e) a b π(f) and
δ(a,b)(ρ−(e), ρ−(f)) = (ρ(e), ρ(f)). Whether a run is accepting or not depends on F and is
defined exactly like in PCAs. The set of MSCs that are accepted by B is denoted by L(B).

I Lemma 12. For every CDAA B, there is an unambiguous PCA A such that L(B) = L(A).

Proof. The idea is that the messages of a PCA “guess” the current state of the receiving
process. A message can only be received if the guess is correct, so that the resulting
PCA is unambiguous. Let B = (S, ι, (δ(a,b))(a,b)∈N×N ,F) be the given CDAA. We let
A = (S, ι,Msg,∆,F) where Msg = N × N × S × S and ∆ contains, for every transition
δ(a,b)(s1, s2) = (s′1, s′2), the tuples (s1, a!(a, b, s1, s2), s′1) and (s2, b?(a, b, s1, s2), s′2). Note
that A is indeed unambiguous. Let M = (P, , E,C, π) be an MSC and ρ : E → S. From
the run definitions, we obtain that ρ is an (accepting) run of B on M iff it is an (accepting,
respectively) run of A on M . It follows that L(B) = L(A). J

Next, we will describe how an arbitrary context-bounded PCA can be transformed into
an equivalent CDAA. This construction is our key technical contribution.

I Lemma 13. Let ct ∈ {s⊕r1, intf}. For every PCA A and k ≥ 1, we can effectively
construct a CDAA B such that L(A) ≡(k,ct) L(B).

The remainder of this section is dedicated to the proof of Lemma 13. We do the proof
for the more involved case ct = s⊕r1. Let A = (S, ι,Msg,∆,F) be a PCA and k ≥ 1. In the
following, we will construct the required CDAA B = (S′, ι′, (δ(a,b))(a,b)∈N×N ,F ′).

The idea behind our construction is that the current sending process simulates the
behavior of all its neighboring receiving processes, storing all possible combinations of global
source and target states. In Figure 5, in the beginning, p2 starts sending to p3 and p1. Hence,
p2 keeps track of the local states at p1 and p3 as well. This computation spans over what
we call a zone (the gray-shaded areas in Figure 5). Whenever a sending (receiving) process
changes into a receiving (sending, respectively) process, the role of keeping track of the
behavior of neighboring processes gets passed on to the new sending process, which results

B. Bollig, P. Gastin, and A. Kumar 633

(2, {a},
a 7! 3
b 7! 1

)

(1, {a, b},
a 7! 1
b 7! 1

)

(1, a,
a 7! 1
b 7! 0

)

(2, a,
a 7! 2
b 7! 0

)

(2, {a, b},
a 7! 3
b 7! 2

)

(3, b,
a 7! 1
b 7! 2

)

a b a b a b
p1 p2 p3 p4

(i)
(ii)

(iii)

(2, {a},
a 7! 1
b 7! 1

)

Figure 5 Computing zones in a CDAA B.

◆ ◆ ◆

s1
1

s1
2

s2
1

s2
2

s3
2

s3
3

(1, {a, b},
a 7! 1
b 7! 1

, R2
1)

(2, {a, b},
a 7! 3
b 7! 2

, R2
2)

(1, a,
a 7! 1
b 7! 0

, ;)

(2, a,
a 7! 2
b 7! 0

, ;)

(1, b,
a 7! 0
b 7! 1

, ;)

(3, b,
a 7! 1
b 7! 2

, ;)

(2, {a},
a 7! 1
b 7! 1

, R3
2)

2R2
1

2R2
2

(1, b,
a 7! 0
b 7! 2

, ;)

a b a b a b

p1 p2 p3 p4

s3
1

◆

2R3
2

s4
1

Figure 6 Illustration of F ′ ∈ MSOt(S′).

in a zone switch. We will see that a bounded number of such changes suffice (Lemma 14).
Finally, the acceptance condition F ′ checks whether the information stored at each of the
processes can be coalesced to get a global run of the given PCA A.

Zones. Let M = (P, , E,C, π) be an MSC. An interval of M is a (possibly empty)
subset of E of the form {e1, e2, . . . , en} such that e1 Cproc e2 Cproc . . .Cproc en. A send context
of M is an interval that consists only of send events. A receive context of M is an interval
I ⊆ E such that there is a ∈ N satisfying `M (e) = a? for all e ∈ I.

A set Z ⊆ E is called a zone of M if there is a nonempty send context I such that the
corresponding receive contexts Ia = {f ∈ E | eCmsg f for some e ∈ I such that `M (e) = a!}
are intervals for all a ∈ N , and Z = I ∪

⋃
a∈N Ia.

Zones help us to maintain the summary of a possibly unbounded number of messages in
a finite space. By Lemma 14 below, since there is a bound on the number of different zones
for each process, the behavior of a PCA can be described succinctly by describing its action
on each of the zones.

I Lemma 14. [cf. [4]] Let M = (P, , E,C, π) be a (k, s⊕r1)-bounded MSC. There is a
partitioning of the events of M into zones such that, for each process p ∈ P , the events of
Ep belong to at most K := k · (|N |2 + 2|N |+ 1) different zones.

A CDAA that Computes Zones. We now construct a CDAA that, when running on a
(k, s⊕r1)-bounded MSC, computes a “greedy” zone partitioning, for which the bound K

from Lemma 14 applies. We explain the intuition by means of Figure 5, which depicts an
MSC along with a partitioning of events into different zones. The crucial point for processes
is to recognize when to switch to a new zone. Towards this end, a summary of the zone
is maintained. Each process stores its zone number together with the zone number of its
neighboring receiving processes. A sending (receiving) process enters a new zone if the stored
zone number of a neighbor does not match the actual zone number of the corresponding
neighboring receiving (sending, respectively) process.

In Figure 5, the zone number of p3 in p2’s first zone is 1. However, at the time of sending
the second message from p2 to p3, the zone number of p3 is 2 which does not match the
information stored with p2. This prompts p2 to define a new zone and update the zone
number of p3.

FSTTCS 2014

634 Parameterized Communicating Automata: Complementation and Model Checking

A sending process enters a new zone when (a) it was a receiving process earlier, or (b)
the zone number of a receiving process does not match. Similarly, a receiving process enters
a new zone when (a) it was a sending process earlier, or (b) it was receiving previously from
a different process, or (c) the zone number of the sending process does not match. This is
formally defined in Equations (1) and (2) below.

We now formally describe the CDAA B. A zone state is a tuple (i, τ, κ,R) where
i ∈ {0, . . . ,K} is the current zone number, which indicates that a process traverses its
i-th zone (or, equivalently, has switched to a new zone i− 1 times),
τ ∈ 2N ∪ N denotes the role of a process in the current zone (if τ ⊆ N , it has been
sending through the interfaces in τ ; if τ ∈ N , it is receiving from τ),
κ : N → {0, . . . ,K} denotes the knowledge about each neighbor, and
R ⊆ (SN∪{self})2 is the set of possible global steps that the zone may induce; each step
involves a source and target state for the current process as well as its neighbors. As the
sending process simulates the receivers’ steps, we let R = ∅ whenever τ ∈ N .

Let Z be the set of zone states. For (a, b) ∈ N ×N , we define a partial “update” function
δzone(a,b) : (Z × Z) ⇀ (Z × Z) by

δzone(a,b)((i1, τ1, κ1, R1), (i2, τ2, κ2, R2)) = ((i′1, τ ′1, κ1[a 7→ i′2], R′1), (i′2, b, κ2[b 7→ i′1], ∅))

where

i′1 =
{
i1 + 1 if i1 = 0 or τ1 ∈ N or (a ∈ τ1 and κ1(a) 6= i2)
i1 otherwise

(1)

i′2 =
{
i2 + 1 if τ2 6= b or κ2(b) 6= i1

i2 otherwise
(2)

τ ′1 =
{
{a} if i′1 = i1 + 1
τ1 ∪ {a} otherwise

R′1 =
{
R if i′1 = i1 + 1
R1 ◦R otherwise

with R being the set of pairs (s̄, s̄′) ∈ (SN∪{self})2 such that there is m ∈ Msg with
(s̄self , (a!,m), s̄′self) ∈ ∆, (s̄a, (b?,m), s̄′a) ∈ ∆, and s̄c = s̄′c for all c ∈ N \ {a}.

The function δzone(a,b) is illustrated in Figure 5 (omitting the R-component) for the three
different cases that can occur: (i) both processes increase their zone number; (ii) only the
receiver increases its zone number; (iii) none of the processes increases its zone number.

A state of B is a sequence of zone states, so that a process can keep track of the
zones that it traverses. Formally, we let S′ be the set of words over Z of the form
(0, ∅, κ0, ∅)(1, τ1, κ1, R1) . . . (n, τn, κn, Rn) where n ∈ {0, . . . ,K} and κ0(a) = 0 for all a ∈ N .
The initial state is ι′ = (0, ∅, κ0, ∅). Actually, S′ will also contain a distinguished sink state,
as explained below. Note that the size of S′ is exponential in K (and, therefore, in k).

We are now ready to define the transition function δ(a,b) : (S′ × S′) → (S′ × S′).
Essentially, we take δzone(a,b), but we append a new zone state when the zone number is
increased. Let z1 = (i1, τ1, κ1, R1) ∈ Z and z2 = (i2, τ2, κ2, R2) ∈ Z. Moreover, suppose
δzone(a,b)(z1, z2) = (z′1, z′2) where z′1 = (i′1, τ ′1, κ′1, R′1) and z′2 = (i′2, τ ′2, κ′2, R′2). Then, we let

δ(a,b)(w1z1 , w2z2) =


(w1z

′
1 , w2z

′
2) if i′1 = i1 and i′2 = i2

(w1z
′
1 , w2z2z

′
2) if i′1 = i1 and i′2 = i2 + 1

(w1z1z
′
1 , w2z2z

′
2) if i′1 = i1 + 1 and i′2 = i2 + 1

Note that the case i′1 = i1 + 1 ∧ i′2 = i2 can actually never happen. Nonetheless, δ(a,b) is still
a partial function. However, adding a sink state, we easily obtain a function that is complete.

B. Bollig, P. Gastin, and A. Kumar 635

The Acceptance Condition. It remains to determine the acceptance condition of B. The
formula F ′ ∈ MSOt(S′) will check whether there is a concrete choice of local states that
is consistent with the zone abstraction and, in particular, with the relations R collected
during that run in the zone states. Let T be the set of sequences of the form ιs1 . . . sn where
n ∈ {0, . . . ,K} and si ∈ S for all i. The idea is that si is the local state that a process reaches
after traversing its i-th zone. The formula will now guess such a sequence for every process
and check if this choice matches the abstract run. To verify if the local states correspond to
the relation R stored in some constituent sending process p, it is sufficient to look at the
adjacent neighbors of p.

This is illustrated in Figure 6 for the zone abstraction from Figure 5. Process p2, for
example, stores both the relations R2

1 and R2
2, and we have to check if this corresponds to

the sequences from T that the formula had guessed for every process (the white circles).
To do so, it is indeed enough to look at the neighborhood of p2, which is highlighted
in gray. The guess is accepted only if the state at the beginning of a zone matches the
state at the end of the previous zone. For example, in Figure 6, the formula collects the
pair of tuples ((ι, ι, ι), (s1

1, s
2
1, s

3
1)) and verifies if it is contained in R2

1. Also, it collects the
pair ((s1

1, s
2
1, s

3
2), (s1

2, s
2
2, s

3
3)) and checks if it is contained in R2

2. Similarly, looking at the
neighborhood of p3, it verifies whether ((s2

1, s
3
1, ι), (s2

1, s
3
2, s

4
1)) ∈ R3

2.
Let us be more precise. Suppose the final configuration reached by B is (P, , λ′) with

λ′ : P → S′. By means of second-order variables Ut, with t ranging over T , the formula
F ′ guesses an assignment σ : P → T . It will then check that, for all p ∈ P with, say,
λ′(p) = ι′(1, τ1, κ1, R1) . . . (np, τnp

, κnp
, Rnp

) ∈ S′, the following hold:
the sequence σ(p) is of the form s0s1 . . . snp (in the following, we let σ(p)i refer to si),
for all i ∈ [np] with τi ⊆ N , there is (s̄, s̄′) ∈ Ri such that (i) s̄self = si−1 and s̄′self = si,
and (ii) for all p a b q such that a ∈ τi, we have s̄a = σ(q)κi(a)−1 and s̄′a = σ(q)κi(a).

These requirements can be expressed in MSOt(S′). Finally, to incorporate the acceptance
condition F ∈ MSOt(S), we simply replace an atomic formula λ(u) = s, where s ∈ S, by the
disjunction of all formulas u ∈ Ut such that t ∈ T ends in s. This concludes the construction
of the CDAA B.

5 Monadic Second-Order Logic

MSO logic over MSCs is two-sorted, as it shall reason about processes and events. By
u, v, w, . . . and U, V,W, . . ., we denote first-order and second-order variables, which range
over processes and sets of processes, respectively. Moreover, by x, y, z, . . . and X,Y, Z, . . .,
we denote variables ranging over (sets of, respectively) events. The logic MSOm is given by
the grammar ϕ ::= u a b v | u = v | u ∈ U | ∃u.ϕ | ∃U.ϕ | ¬ϕ | ϕ ∨ ϕ | xCproc y | xCmsg y |
x = y | x@u | x ∈ X | ∃x.ϕ | ∃X.ϕ where a, b ∈ N .

MSOm formulas are interpreted over MSCs M = (P, , E,C, π). Hereby, free variables
u and x are interpreted by a function I as a process I(u) ∈ P and an event I(x) ∈ E,
respectively. Similarly, U and X are interpreted as sets. We write M, I |= u a b v if
I(u) a b I(v) and M, I |= x@u if π(I(x)) = I(u). Thus, x@u says that “x is located at u”.
The semantics of other formulas is as expected. When ϕ is a sentence, i.e., a formula without
free variables, then its truth value is independent of an interpretation function so that we
can simply write M |= ϕ instead of M, I |= ϕ. The set of MSCs M such that M |= ϕ is
denoted by L(ϕ).

I Example 15. Let us resume the token-ring protocol from Example 6. We would like
to express that there is a process that emits a message and gets an acknowledgment that

FSTTCS 2014

636 Parameterized Communicating Automata: Complementation and Model Checking

results from a sequence of forwards through interface a. We first let fwd(x, y) ≡ x a b

y ∧ ∃z.(x Cproc z Cmsg y) where x a b y is a shorthand for ∃u.∃v.(x@u ∧ y@v ∧ u a b

v). It is well known that the transitive closure of the relation induced by fwd(x, y) is
definable in MSOm-logic, too. Let fwd+(x, y) be the corresponding formula. It expresses
that there is a sequence of events leading from x to y that alternatingly takes process
and message edges, hereby following the causal order. With this, the desired formula is
ϕ ≡ ∃x, y, z.(xCproc y ∧ xCmsg z ∧ x a b z ∧ fwd+(z, y)) ∈ MSOm. Consider Figures 3 and
4. We have M1 |= ϕ and M2 6|= ϕ, as well as L(A′token) ⊆ L(ϕ). J

I Theorem 16. Let ct ∈ {s⊕r1, intf}, k ≥ 1, and L ⊆ MSC. There is a PCA A such that
L(A) ≡(k,ct) L iff there is a sentence ϕ ∈ MSOm such that L(ϕ) ≡(k,ct) L.

The direction “=⇒” follows a standard pattern and is actually independent of a context
bound. For the direction “⇐=”, we proceed by induction, crucially relying on Theorem 9.
Note that there are some subtleties in the translation, which arise from the fact that MSOm
mixes event and process variables.

By the results from [4], we obtain decidability of MSOm model checking as a corollary.

I Theorem 17. Let T be one of the following: the class of rings, the class of pipelines, or
the class of ranked trees. The following problem is decidable, for all ct ∈ {s⊕r1, intf}:
Input: A PCA A, a sentence ϕ ∈ MSOm, and k ≥ 1.
Question: Do we have M |= ϕ for all MSCs M = (P, , E,C, π) ∈ L(A) ∩MSC(k,ct)

such that (P,) ∈ T ?

Note that MSOm is a powerful logic and it may actually be used for the verification of
extended models that involve registers to store process identities (pids). MSO logic is able
to trace back the origin of a pid so that an additional equality predicate on pids can be
reduced to an MSO formula over a finite alphabet. This would allow us to model and verify
leader-election protocols. It will be worthwhile to explore this in future work.

References
1 P.A. Abdulla, F. Haziza, and L. Holík. All for the price of few. In VMCAI’13, volume

7737 of LNCS, pages 476–495. Springer, 2013.
2 B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model checking of token-

passing systems. In VMCAI’14, volume 8318 of LNCS, pages 262–281. Springer, 2014.
3 B. Bollig. Logic for communicating automata with parameterized topology. In CSL-

LICS’14. ACM Press, 2014.
4 B. Bollig, P. Gastin, and J. Schubert. Parameterized Verification of Communicating Auto-

mata under Context Bounds. In RP’14, volume 8762 of LNCS, pages 45–57, 2014.
5 D. Brand and P. Zafiropulo. On communicating finite-state machines. J. ACM, 30(2), 1983.
6 G. Delzanno, A. Sangnier, and G. Zavattaro. On the power of cliques in the parameterized

verification of ad hoc networks. In FoSSaCS’11, volume 6604 of LNCS, pages 441–455.
Springer, 2011.

7 E.A. Emerson and K. S. Namjoshi. On reasoning about rings. Int. J. Found. Comput. Sci.,
14(4):527–550, 2003.

8 J. Esparza. Keeping a crowd safe: On the complexity of parameterized verification. In
STACS’14, volume 25 of LIPIcs, pages 1–10, 2014.

9 J. Esparza, P. Ganty, and R. Majumdar. Parameterized verification of asynchronous shared-
memory systems. In CAV’13, volume 8044 of LNCS, pages 124–140. Springer, 2013.

10 B. Genest, D. Kuske, and A. Muscholl. On communicating automata with bounded chan-
nels. Fundam. Inform., 80(1-3):147–167, 2007.

B. Bollig, P. Gastin, and A. Kumar 637

11 S. La Torre, P. Madhusudan, and G. Parlato. The language theory of bounded context-
switching. In LATIN’10, volume 6034 of LNCS, pages 96–107. Springer, 2010.

12 S. La Torre, M. Napoli, and G. Parlato. Scope-bounded pushdown languages. In DLT’14,
volume 8633 of LNCS, pages 116–128. Springer, 2014.

13 N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.
14 O. Matz, N. Schweikardt, and W. Thomas. The monadic quantifier alternation hierarchy

over grids and graphs. Information and Computation, 179(2):356–383, 2002.
15 S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software. In

TACAS’05, volume 3440 of LNCS, pages 93–107. Springer, 2005.
16 W. Thomas. Elements of an automata theory over partial orders. In POMIV’96, volume 29

of DIMACS. AMS, 1996.

FSTTCS 2014

	Introduction
	Preliminaries
	Parameterized Communicating Automata
	Context-Bounded PCAs are Complementable
	Monadic Second-Order Logic

