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Abstract
The distributed synthesis problem is about constructing correct distributed systems, i.e., systems
that satisfy a given specification. We consider a slightly more general problem of distributed con-
trol, where the goal is to restrict the behavior of a given distributed system in order to satisfy the
specification. Our systems are finite state machines that communicate via rendez-vous (Zielonka
automata). We show decidability of the synthesis problem for all ω-regular local specifications,
under the restriction that the communication graph of the system is acyclic. This result extends
a previous decidability result for a restricted form of local reachability specifications.
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1 Introduction

Synthesizing distributed systems from specifications is an attractive objective, since distrib-
uted systems are notoriously difficult to get right. Unfortunately, there are very few known
decidable frameworks for distributed synthesis. We study a framework for synthesis of open
systems that is based on rendez-vous communication and causal memory. In particular,
causal memory implies that although the specification can say when a communication takes
place, it cannot limit the information that is transmitted during communication. This
choice is both realistic and avoids some pathological reasons for undecidability. We show a
decidability result for acyclic communication graphs and local ω-regular specifications.

Instead of synthesis we actually work in the more general framework of distributed control.
Our setting is a direct adaptation of the supervisory control framework of Ramadge and
Wonham [17]. In this framework we are given a plant (a finite automaton) where some of
the actions are uncontrollable, and a specification. The goal is to construct a controller
(another finite automaton) such that its product with the plant satisfies the specification.
The controller is not allowed to block uncontrollable actions, in other words, in every state
there is a transition on every uncontrollable action. The controlled plant has less behaviours,
resulting from restricting controllable actions of the plant. In our case the formulation is
exactly the same, but we consider Zielonka automata instead of finite automata, as plants
and controllers. Considering parallel devices, such as Zielonka automata, in the standard
definition of control gives an elegant formulation of the distributed control problem.

Zielonka automata [19, 14] are by now a well-established model of distributed computa-
tion. Such a device is an asynchronous product of finite-state processes synchronizing on
shared actions. Asynchronicity means that processes can progress at different speed. The
synchronization on shared actions allows the synchronizing processes to exchange information,
in particular the controllers can transfer control information with each synchronization. This
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model can encode some common synchronization primitives available in modern multi-core
processors for implementing concurrent data structures, like compare-and-swap.

We show decidability of the control problem for Zielonka automata where the commu-
nication graph is acyclic: a process can communicate (synchronize) with its parent and
its children. Our specifications are conjunctions of ω-regular specifications, one for each
of the component processes. We allow uncontrollable communication actions – the only
restriction is that all communication actions must be binary. Uncontrollable communications
add expressive power to the setting, for instance it is possible to model asymmetric situations
where communication can be refused by one partner, but not by the other one.

Our result extends [7] that showed decidability for a restricted form of local reachability
objectives (blocking final states). We still get the same complexity as in [7]: non-elementary in
general, and EXPTIME for architectures of depth 1. The extension to all ω-regular objectives
allows to express fairness constraints but at the same time introduces important technical
obstacles. Indeed, for our construction to work it is essential that we enrich the framework
by uncontrollable synchronization actions. This makes a separation into controllable and
uncontrollable states impossible. In consequence, we are led to abandon the game metaphor,
to invent new arguments, and to design a new proof structure.

Most research on distributed synthesis and control has been done in the setting proposed
by Pnueli and Rosner [16]. This setting is also based on shared-variable communication,
however the controllers there are not free to pass additional information between processes.
So the latter model leads to partial information games, and decidability of synthesis holds
only for variants of pipelines [10, 11, 4]. While specifications leading to undecidability are
very artificial, no elegant solution to eliminate them exists at present. The synthesis setting is
investigated in [11] for local specifications, meaning that each process has its own, linear-time
specification. More relaxed variants of synthesis have been proposed, where the specification
does not fully describe the communication of the synthesized system. One approach consists
in adding communication in order to combine local knowledge, as proposed for example in [8].
Another approach is to use specifications only for describing external communication, as
done in [6] on strongly connected architectures where processes communicate via signals.

Apart from [7], three related decidability results for synthesis with causal memory are
known. The first one [5] restricts the alphabet of actions: control with reachability condition
is decidable for co-graph alphabets. This restriction excludes client-server architectures,
which are captured by our setting. The second result [12] shows decidability by restricting
the plant: roughly speaking, the restriction says that every process can have only bounded
missing knowledge about the other processes, unless they diverge (see also [15] that shows a
doubly exponential upper bound). The proof of [12] goes beyond the controller synthesis
problem, by coding it into monadic second-order theory of event structures and showing that
this theory is decidable when the criterion on the plant holds. Unfortunately, very simple
plants have a decidable control problem and at the same time an undecidable MSO-theory.
Safety games on Petri nets are considered in [3], where decidability in Exptime is shown in
the case when there is a single environment player. Note that the same complexity is achieved
in our model with client-server architectures and no restriction on the environment. Game
semantics and asynchronous games played on event structures are introduced in [13]. Such
games are investigated in [9] from a game-theoretical viewpoint, showing a Borel determinacy
result under some restrictions.

Overview. In Section 2 we state and motivate our control problem. In Section 3 we give
the main lines of the proof. A complete version of the paper is available at hal-00946554.
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2 Control for Zielonka automata

In this section we introduce our control problem for Zielonka automata, adapting the
definition of supervisory control [17] to our model.

A Zielonka automaton [19, 14] is a simple distributed finite-state device. Such an
automaton is a parallel composition of several finite automata, called processes, synchronizing
on shared actions. There is no global clock, so between two synchronizations, two processes
can do a different number of actions. Because of this, Zielonka automata are also called
asynchronous automata.

A distributed action alphabet on a finite set P of processes is a pair (Σ, dom), where
Σ is a finite set of actions and dom : Σ → (2P \ ∅) is a location function. The location
dom(a) of action a ∈ Σ comprises all processes that need to synchronize in order to perform
this action. Actions from Σp = {a ∈ Σ | p ∈ dom(a)} are called p-actions. We write
Σlocp = {a | dom(a) = {p}} for the set of local actions of p.

A (deterministic) Zielonka automaton A = 〈{Sp}p∈P, sin, {δa}a∈Σ〉 is given by:
for every process p a finite set Sp of (local) states,
the initial state sin ∈

∏
p∈P Sp,

for every action a ∈ Σ a partial transition function δa :
∏
p∈dom(a) Sp

·→
∏
p∈dom(a) Sp on

tuples of states of processes in dom(a).

I Example 1. Boolean multi-threaded programs with shared variables can be modelled as
Zielonka automata. As an example we describe the translation for the compare-and-swap
(CAS) instruction. This instruction has 3 parameters: CAS(x: variable; old, new: int). Its
effect is to return the value of x and at the same time set the value of x to new, but only if
the previous value of x was equal to old. The compare-and-swap operation is a widely used
primitive in implementations of concurrent data structures, and has hardware support in
most contemporary multiprocessor architectures.

Suppose that we have a thread t, and a shared variable x that is accessed by a CAS
operation in t via y := CASx(i, k). So y is a local variable of t. In the Zielonka automaton
we will have one process modelling thread t, and one process for variable x. The states of
t will be valuations of local variables. The states of x will be the values x can take. The
CAS instruction above becomes a synchronization action. We have the following two types
of transitions on this action:

Notice that in state s′, we have y = i, whereas in s′′, we have y = j.

For convenience, we abbreviate a tuple (sp)p∈P of local states by sP , where P ⊆ P. We
also talk about Sp as the set of p-states.

A Zielonka automaton can be seen as a sequential automaton with the state set S =∏
p∈P Sp and transitions s a−→ s′ if (sdom(a), s

′
dom(a)) ∈ δa, and sP\dom(a) = s′P\dom(a). So the

states of this automaton are the tuples of states of the processes of the Zielonka automaton.
For a process p we will talk about the p-component of the state. A run of A is a finite
or infinite sequence of transitions starting in sin. Since the automaton is deterministic, a
run is determined by the sequence of labels of the transitions. We will write run(u) for the
run determined by the sequence u ∈ Σ∞. Observe that run(u) may be undefined since the
transition function of A is partial. We will also talk about the projection of the run on
component p, denoted runp(u), that is the projection on component p of the subsequence of
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the run containing the transitions involving p. We will assume that every local state of A
occurs in some run. By dom(u) we denote the union of dom(a), for all a ∈ Σ occurring in u.

We will be interested in maximal runs of Zielonka automata. For parallel devices the
notion of a maximal run is not that evident, as one may want to impose some fairness
conditions. We settle here for a minimal sensible fairness requirement. It says that a run
is maximal if processes who have only finitely many actions in the run cannot perform any
additional action.

I Definition 2 (Maximal run). For a word w ∈ Σ∞ such that run(w) is defined, we say that
run(w) is maximal if there is no decomposition w = uv, and no action a ∈ Σ such that
dom(v) ∩ dom(a) = ∅ and run(uav) is defined.

Automata can be equipped with a correctness condition. We prefer to talk about
correctness condition rather than acceptance condition since we will be interested in the set
of runs of an automaton rather than in the set of words it accepts. We will consider local
regular correctness conditions: every process has its own correctness condition Corrp. A run
of A is correct if for every process p, the projection of the run on the transitions of Ap is in
Corrp. Condition Corrp is specified by a set Tp ⊆ Sp of terminal states and an ω-regular set
Ωp ⊆ (Sp ×Σp × Sp)ω. A sequence (s0

p, a0, s
1
p)(s1

p, a1, s
2
p) . . . satisfies Corrp if either: (i) it is

finite and ends with a state from Tp, or (ii) it is infinite and belongs to Ωp. At this stage the
set of terminal states Tp may look unnecessary, but it will simplify our constructions later.

Finally, we will need the notion of synchronized product A × C of two Zielonka auto-
mata. For A = 〈{Sp}p∈P, sin, {δAa }a∈Σ〉 and C = 〈{Cp}p∈P, cin, {δCa }a∈Σ〉 let A × C =
〈{Sp × Cp}p∈P, (sin, cin), {δ×a )a∈Σ}〉 where there is a transition from (sdom(a), cdom(a)) to
(s′dom(a), c

′
dom(a)) in δ×a iff (sdom(a), s

′
dom(a)) ∈ δAa and (cdom(a), c

′
dom(a)) ∈ δCa .

To define the control problem for Zielonka automata we fix a distributed alphabet
〈P, dom : Σ→ (2P \ ∅)〉. We partition Σ into the set of system actions Σsys and environment
actions Σenv. Below we will introduce the notion of controller, and require that it does not
block environment actions. For this reason we speak about controllable/uncontrollable actions
when referring to system/environment actions. We impose three simplifying assumptions:
(1) All actions are at most binary (|dom(a)| ≤ 2 for every a ∈ Σ); (2) every process has some
controllable action; (3) all controllable actions are local. Among the three conditions only
the first one is indeed a restriction of our setting. The other two are not true limitations, in
particular controllable shared actions can be simulated by a local controllable choice, followed
by non-controllable local or shared actions (see full version of the paper)

I Definition 3 (Controller, Correct Controller). A controller is a Zielonka automaton that
cannot block environment (uncontrollable) actions. In other words, from every state every
environment action is possible: for every b ∈ Σenv, δb is a total function. We say that a
controller C is correct for a plant A if all maximal runs of A × C satisfy the correctness
condition of A.

Recall that an action is possible in A × C iff it is possible in both A and C. By the
above definition, environment actions are always possible in C. The major difference between
the controlled system A × C and and A is that the states of A × C carry the additional
information computed by C, and that A×C may have less behaviors, resulting from disallowing
controllable actions by C.

The correctness of C means that all the runs of A that are allowed by C are correct. In
particular, C does not have a correctness condition by itself. Considering only maximal runs
of A× C imposes some minimal fairness conditions: for example it implies that if a process
can do a local action almost always, then it will eventually do some action.
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I Definition 4 (Control problem). Given a distributed alphabet 〈P, dom : Σ → (2P \ ∅)〉
together with a partition of actions (Σsys,Σenv), and given a Zielonka automaton A over
this alphabet, find a controller C over the same alphabet such that C is correct for A.

The important point in our definition is that the controller has the same distributed
alphabet as the automaton it controls, in other words the controller is not allowed to introduce
additional synchronizations between processes.

I Example 5. We give an example showing how causal memory works and helps to construct
controllers. Consider an automaton A with 3 processes: p, q, r. We would like to control it
so that the only two possible runs of A are the following:

So p and q should synchronize on α when action a happened before b, otherwise q and r
should synchronize on β. Communication actions are uncontrollable, but the transitions of
A are such that there are local controllable actions c and d that enable communication on
α and β respectively. So the controller should block either c or d depending on the order
between a and b. The transitions of A are as follows:

δa(p0, q0) =(p1, q1) δa(p0, q1) =(p1, q2) δb(q0, r0) =(q1, r1) δb(q1, r0) =(q2, r1)
δc(p1) =p2 δα(p2, q2) =(p3, q3) δd(r1) =r2 δβ(q2, r2) =(q3, r3)

These transitions allow the two behaviors depicted above but also two unwanted ones, as say,
when a happens before b and then we see β. Note that the specification of desired behaviors
is a local condition on q. So by encoding some information in states of q this condition can
be expressed by a set of terminal states Tq. We will not do this for readability.

The controller C for A will mimic the structure of A: for every state of A there will be in
C a state with over-line. So, for example, the states of q in C will be q0, . . . , q3. Moreover C
will have two new states p1 and r1. The transitions will be

δa(p0, q0) =(p1, q1) δa(p0, q1) =(p1, q2) δb(q0, r0) =(q1, r1) δb(q1, r0) =(q2, r1)
δc(p1) =p2 δc(p1) =⊥ δd(r1) =r2 δd(r1) =⊥

δα(p2, q2) =(p3, q3) δβ(q2, r2) =(q3, r3)

Observe that c is blocked in p1, and so is d from r1. It is easy to verify that the runs of A×C
are as required, so C is a correct controller for A. (Actually the definition of a controller
forces us to make transitions of C total on uncontrollable actions. We can do it in arbitrary
way as this will not add new behaviors to A× C.)

This example shows several phenomena. The states of C are the states of A coupled with
some additional information. We formalize this later under a notion of covering controller.
We could also see above a case where a communication is decided by one of the parties.
Process p, thanks to a local action, can decide if it wants to communicate via α, but process
q has to accept α always. This shows the flexibility given by uncontrollable communication
actions. Finally, we could see information passing during communication. In C process q
passes to p and r information about its local state (cf. transitions on a and b).

FSTTCS 2014



644 Distributed Synthesis for Acyclic Architectures

Figure 1 Eliminating process r: r is glued with q.

3 Decidability for acyclic architectures

In this section we present the main result of the paper. We show the decidability of the control
problem for Zielonka automata with acyclic architecture. A communication architecture of a
distributed alphabet is a graph where nodes are processes and edges link processes that have
common actions. An acyclic architecture is one whose communication graph is acyclic. For
example, the communication graph of the alphabet from the example on page 643 is a tree
with root q and two successors, p and r.

I Theorem 6. The control problem for Zielonka automata over distributed alphabets with
acyclic architecture is decidable. If a controller exists, then it can be effectively constructed.

The remaining of this section is devoted to the outline of the proof of Theorem 6. This
proof works by induction on the number |P| of processes in the automaton. A Zielonka
automaton over a single process is just a finite automaton, and the control problem is then
just the standard control problem as considered by Ramadge and Wonham but extended to
all ω-regular conditions [1]. If there are several processes that do not communicate, then we
can solve the problem for each process separately.

Otherwise we choose a leaf process r and its parent q and construct a new plant AO over
P \ {r}. We will show that the control problem for A has a solution iff the one for AO does.
Moreover, for every solution for AO we will be able to construct a solution for A.

For the rest of this section let us fix the distributed alphabet 〈P, dom : Σ → (2P \ ∅)〉,
the leaf process r and its parent q, and a Zielonka automaton with a correctness condition
A = 〈{Sp}p∈P, sin, {δa}a∈Σ, {Corrp}p∈P〉.

The first step in proving Theorem 6 is to simplify the problem. First, we can restrict to
controllers of a special form called covering controllers. Next, we show that the component of
A to be eliminated, that is Ar, can be assumed to have a particular property (r-short). After
these preparatory results we will be able to present the reduction of A to AO (Theorem 13).

3.1 Covering controllers and r-short automata
In this subsection we introduce the notions of covering controllers and r-short automata. We
show that in the control problem we can restrict to covering controllers (Lemma 8), and
that we can always transform a plant to an r-short one without affecting controllability
(Theorem 10).

The notion of a covering controller will simplify the presentation because it will allow us
to focus on the runs of the controller instead of a product of the plant and the controller.
We have seen already a covering controller in Example 5.

I Definition 7 (Covering controller). Let C be a Zielonka automaton over the same alphabet
as A; let Cp be the set of states of process p in C. Automaton C is a covering controller
for A if there is a function π : {Cp}p∈P → {Sp}p∈P, mapping each Cp to Sp and satisfying
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two conditions: (i) if cdom(b)
b−→ c′dom(b) then π(cdom(b))

b−→ π(c′dom(b)); (ii) for every
uncontrollable action a: if a is enabled from π(cdom(a)) then it is also enabled from cdom(a).

I Remark. Strictly speaking, a covering controller C may not be a controller since we do
not require that every uncontrollable action is enabled in every state, but only those actions
that are enabled in A. From C one can get a controller Ĉ by adding self-loops for all missing
uncontrollable transitions.

Notice that thanks to the projection π, a covering controller can inherit the correctness
condition of A. Therefore it is enough to look at the runs of C instead of A× C:

I Lemma 8. There is a correct controller for A if and only if there is a covering controller
C for A such that all the maximal runs of C satisfy the inherited correctness condition.

We will refer to a covering controller with the property that all its maximal runs satisfy
the inherited correctness condition, as correct covering controller.

Now we will focus on making the automaton r-short.

I Definition 9 (r-short). An automaton A is r-short if there is a bound on the number of
actions that r can perform without doing a communication with q.

I Theorem 10. For every automaton A, we can construct an r-short automaton As such
that there is a correct controller for A iff there is one for As.

In the rest of this subsection we sketch the proof of this theorem (details are provided in the
appendix). This theorem bears some resemblance with the fact that every parity game can
be transformed into a finite game: when a loop is closed the winner is decided looking at the
ranks on the loop. In order to use a similar construction we must ensure that there is always
a controller that is in some sense memoryless on the component r (Lemma 12).

Observe that we can make two simplifying assumptions. First, we assume that the
correctness condition on r is a parity condition. That is, it is given by a rank function
Ωr : Sr → N and the set of terminal states Tr. We can assume this since every regular
language of infinite sequences can be recognized by a deterministic parity automaton. The
second simplification is to assume that the automaton A is r-aware with respect to the parity
condition on r. This means that from the state of r one can read the biggest rank that
process r has seen the last communication of r with q. It is easy to transform an automaton
to an r-aware one.

Given A we define an r-short automaton As. All its components will be the same but
for the component r. The states Ss

r of r will be sequences w ∈ S+
r of states of Ar without

repetitions, plus two new states >,⊥. For a local transition s′r
b−→ s′′r in Ar we have in As

r

transitions:

To the right we have displayed communication transitions between q and r. Notice that
w disappears in communication transitions. The parity condition for As is also rather
straightforward: it is the same for the components other than r, and for Ar we have
Ωs(wsr) = Ω(sr), and Ts

r = {>} ∪ {wsr | sr ∈ Tr}.
It is clear that the length of every sequence of local actions of process r in As is bounded

by the number of states of Ar.
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For the correctness of the reduction we first show how to construct a correct controller C
for A from a correct controller controller Cs for As. The idea is that C simulates Cs but
when the execution of the latter gets to >, then the execution detects a loop, so C can restart
Cs from the prefix of the sequence obtained by removing the loop (cf. the definition of Cs).

For the other direction, given a correct covering controller C for A we show that C is also
a correct controller for As provided that C is r-memoryless as defined below. Then we can
conclude by Lemma 12 below, allowing us to assume that C is memoryless.

Recall that if C is a covering controller for A (cf. Definition 7) then there is a function
π : {Cp}p∈P → {Sp}p∈P, mapping each Cp to Sp and respecting the transition relation: if
cdom(b)

b−→ c′dom(b) then π(cdom(b))
b−→ π(c′dom(b)).

I Definition 11 (r-memoryless controller). A covering controller C for A is r-memoryless
when for every pair of states cr 6= c′r of Cr: if there is a path on local r-actions from cr to c′r
then π(cr) 6= π(c′r).

Intuitively, a controller can be seen as a strategy, and r-memoryless means that it does not
allow the controlled automaton to go twice through the same r-state between two consecutive
communication actions of r and q.

I Lemma 12. Fix an r-aware automaton A with a parity correctness condition for process r.
If there is a correct controller for A then there is also one that is covering and r-memoryless.

The proof of Lemma 12 uses the notion of signatures [18, 2], that is classical in 2-
player parity games, for defining a r-memoryless controller Cm from C. The idea is to use
representative states of Cr, defined in each strongly connected component according to a
given signature and covering function π.

3.2 The reduced automaton AO

Equipped with the notions of covering controller and r-short strategy we can now present the
construction of the reduced automaton AO. We suppose that A = 〈{Sp}p∈PO , sin, {δa}a∈Σ〉
is r-short and we define the reduced automaton AO that results by eliminating process r
(cf. Figure 1). Let PO = P \ {r}. We construct AO = 〈{SO

p }p∈PO , sOin, {δOa }a∈ΣO〉 where the
components are defined below.

All the processes p 6= q of AO will be the same as in A. This means: SO
p = Sp, and

ΣO
p = Σp. Moreover, all transitions δa with dom(a) ∩ {q, r} = ∅ are as in A. Finally, in AO

the correctness condition of p 6= q is the same as in A.
Before defining process q in AO let us introduce the notion of r-local strategy. An r-local

strategy from a state sr ∈ Sr is a partial function f : (Σlocr )∗ → Σsysr mapping sequences from
Σloc
r to actions from Σsys

r , such that if f(v) = a then sr
va−→ in Ar. Observe that since the

automaton A is r-short, the domain of f is finite.
Given an r-local strategy f from sr, a local action a ∈ Σloc

r is allowed by f if f(ε) = a,
or a is uncontrollable. For a allowed by f we denote by f|a the r-local strategy defined by
f|a(v) = f(av); this is a strategy from s′r, where sr

a−→ s′r.
The states of process q in AO are of one of the following types:

〈sq, sr〉 , 〈sq, sr, f〉 , 〈sq, a, sr, f〉 ,

where sq ∈ Sq, sr ∈ Sr, f is a r-local strategy from sr, and a ∈ Σloc
q . The new initial state

for q is 〈(sin)q, (sin)r〉. Recall that that since A is r-short, any r-local strategy in Ar is
necessarily finite, so SO

q is a finite set. Recall also that controllable actions are local.
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Figure 2 Transitions of AO.

Figure 3 Simulation of Aq and Ar by AO
q .

The transitions of AO
q are presented in Figure 2. Transition 1 chooses an r-local strategy

f . It is followed by transition 2 that declares a controllable action a ∈ Σsysq that is enabled
from sq. Transition 3 executes the chosen action a; we require sq

a−→ s′q in Aq. Transition
4 executes an uncontrollable local action b4 ∈ Σenvq ; provided sq

b4−→ s′′q in Aq. Transition 5

executes a local action b5 ∈ Σlocr , provided that b5 is allowed by f and sr
b5−→ s′r. Transition

6 simulates a synchronization on b6 between q and r; provided (sq, sr)
b6−→ (s′q, s′r) in A.

Finally, transition 7 simulates a synchronization between q and p 6= r. An example of a
simulation of Aq and Ar by AO

q is presented in Figure 3. The numbers below transitions
refer to the corresponding cases from the definition.

To summarize, in ΣO
q we have all actions of Σr and Σq, but they become uncontrollable.

All the new actions of process q in plant AO are controllable:
action ch(f) ∈ Σsys, for every local r-strategy f ,
action ch(a), for every a ∈ Σsysq .

The correctness condition for process q in AO is:
1. The correct infinite runs of q in AO are those that have the projection on transitions of
Aq correct with respect to Corrq, and either: (i) the projection on transitions of Ar is
infinite and correct with respect to Corrr; or (ii) the projection on transitions of Ar is
finite and for f, sr appearing in almost all states of q of the run we have that from sr all
sequences respecting strategy f end in a state from Tr.

2. TO
q contains states 〈sq, sr, f〉 such that sq ∈ Tq, and sr ∈ Tr.

Item 1(ii) in the definition above captures the case where q progresses alone till infinity and
blocks r, even though r could reach a terminal state in a couple of moves. Clearly, item 1
can be expressed as an ω-regular condition. The definition of correctness condition is one
of the principal places where the r-short assumption is used. Without this assumption we
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would need to cope with the situation where we have an infinite execution of Aq, and at the
same time an infinite execution of Ar that do not communicate with each other. In this case
AO
q would need to fairly simulate both executions in some way.
The reduction is rather delicate since in concurrent systems there are many different

interactions that can happen. For example, we need to schedule actions of process q, using
ch(a) actions, before the actions of process r. The reason is the following. First, we need to
make all r-actions uncontrollable, so that the environment could choose any play respecting
the chosen r-local strategy. Now, if we allowed controllable q-actions to be eligible at the
same time as r-actions, then the control strategy for automaton AO would be to propose
nothing and force the environment to play the r-actions. This would allow the controller of
AO to force the advancement of the simulation of r and get information that is impossible to
obtain by the controller of A.

Together with Theorem 10, the theorem below implies our main Theorem 6.

I Theorem 13. For every r-short Zielonka automaton A and every local, ω-regular correct-
ness condition: there is a correct covering controller for A iff there is a correct covering
controller for AO. The size of AO

q is polynomial in the size of Aq and exponential in the size
of Ar.

3.3 Proof of Theorem 13
Given the space limit we can only give a sketch of one direction of the proof of Theorem 13.
We consider the right-to-left direction. Given a correct controller DO for AO, we show how
to construct a correct controller D for A. By Lemma 8 we can assume that DO is covering.

The components Dp for p 6= q, r are the same as in DO. So it remains to define Dq and
Dr. The states of Dq and Dr are obtained from states of DO

q . We need only certain states of
DO
q , namely those dq whose projection πO(dq) in AO

q has four components, we call them true
states of DO

q :

ts(DO
q ) = {dq ∈ DO

q | πO(dq) is of the form (sq, a, sr, f)}.

Figure 4 presents an execution of AO controlled by DO. We can see that d2 is a true state,
and d3 is not.

The set of states of Dq is just ts(DO
q ), while the states of Dr are pairs (dq, x) where dq is

a state from ts(DO
q ) and x ∈ (Σlocr )∗ is a sequence of local r-actions that is possible from dq

in DO, in symbols dq
x−→. We will argue later that such sequences are uniformly bounded.

The initial state of Dq is the state d1
q reached from the initial state of DO

q by the (unique)
transitions of the form ch(f0), ch(a0). The initial state of Dr is (d1

q, ε). The local transitions
for Dr are (dq, x) b−→ (dq, xb), for every b ∈ Σlocr and dq

xb−→.
Before defining the transitions of Dq let us observe that if dq ∈ DO

q is not in ts(DO
q ) then

only one controllable transition is possible from it. Indeed, as DO is a covering controller, if
πO(dq) is of the form (sq, sr) then there can be only an outgoing transition on a letter of
the form ch(f). Similarly, if πO(dq) is of the form (sq, sr, f) then only a ch(a) transition is
possible. Since both ch(f) and ch(a) are controllable, we can assume that in DO

q there is
no state with two outgoing transitions on a letter of this form. For a state dq ∈ DO

q not in
ts(DO

q ) we will denote by ts(dq) the unique state of ts(DO
q ) reachable from dq by one or two

transitions of the kind ch(f)−→ or ch(a)−→ , depending on the cases discussed above. For example,
going back to Figure 4, we have ts(d3) = d4.

We now describe the q-actions possible in D.
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Figure 4 Decomposing controller DO
q into Dq and Dr.

Local q-action b ∈ Σlocq : dq
b−→ ts(d′q) if dq

b−→ d′q in DO
q .

Communication b ∈ Σq ∩ Σp between q and p 6= r: (dp, dq)
b−→ (d′p, ts(d′q)) if (dp, dq)

b−→
(d′p, d′q) in DO.
Communication b ∈ Σq ∩ Σr of q and r: (d1

q, (d2
q, x)) b−→ (ts(d′′q ), (ts(d′′q ), ε)) if d1

q
x−→

d′q
b−→ d′′q in DO

q ; observe that x−→ is a sequence of transitions.
In Figure 4 transitions on b1 and b are examples of transitions of the first and the third
type, respectively. In the last item the transition does not depend on d2

q since, informally,
d1
q has been reached from d2

q by a sequence of actions independent of r. The condition
d1
q

x−→ d′q
b−→ d′′q simulates the order of actions where all local r-actions come after the other

actions of q, then we add a communication between q and r.
The next lemma says that D is a covering controller for A. Since A is assumed to be

r-short, the lemma also gives a bound on the length of sequences in the states of Dr.

I Lemma 14. If DO is a covering controller for AO then D is a covering controller for A.

As D is covering, to prove that D is correct we need to show that all its maximal runs
satisfy the correctness condition. For this we will construct for every run of D a corresponding
run of DO. The following definition and lemma tells us that it is enough to look at the runs
of D of a special form.

I Definition 15 (slow). We define slowr(D) as the set of all sequences labeling runs of D
of the form y0x0a1 · · · akykxkak+1 . . . or y0x0a1 · · · yk−1xk−1akxkyω, where ai ∈ Σq ∩ Σr,
xi ∈ (Σlocr )∗, yi ∈ (Σ \ Σr)∗, and yω ∈ (Σ \ Σr)ω

I Lemma 16. A covering controller D is correct for A iff for all w ∈ slowr(D), run(w)
satisfies the correctness condition inherited from A.

For every sequence w ∈ slowr(D) as in Definition 15 we define the sequence χ(w) ∈ (ΣO)∞,
and show that it is a run of DO. The definition is by induction on the length of w. Let
χ(ε) = ch(f0) ch(a0), where f0 and a0 are determined by the initial q-state of DO.

For w ∈ Σ∗, b ∈ Σ let χ(wb) =


χ(w)b if b 6∈ Σq
χ(w)b ch(a) if b ∈ Σq \ Σr
χ(w)b ch(f) ch(a) if b ∈ Σq ∩ Σr.

where a and f are determined by the state reached by DO on χ(w)b. The next lemma implies
the correctness of the construction, and at the same time confirms that the above definition
makes sense, that is, the needed runs of DO are defined.
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I Lemma 17. For every sequence w ∈ slowr(D) we have that DO has a run on χ(w). This
run is maximal in DO if run(w) is maximal in D. In consequence, if DO is a correct covering
controller for AO, then D is a correct covering controller for A.

4 Conclusion

We have considered a model obtained by instantiating Zielonka automata into the supervisory
control framework of Ramadge and Wonham [17]. The result is a distributed synthesis
framework that is both expressive and decidable in interesting cases. To substantiate we have
sketched how to encode threaded boolean programs with compare-and-swap instructions
into our model. Our main decidability result shows that the synthesis problem is decidable
for hierarchical architectures and for all local omega-regular specifications. Recall that in
the Pnueli and Rosner setting essentially only pipeline architectures are decidable, with
an additional restriction that only the first and the last process in the pipeline can handle
environment inputs. In our case all processes can interact with the environment.

The synthesis procedure presented here is in k-Exptime for architectures of depth k, in
particular it is Exptime for the case of a one server communicating with clients who do not
communicate between each other. From [7] we know that these bounds are tight.

This paper essentially closes the case of tree architectures introduced in [7]. The long
standing open question is the decidability of the synthesis problem for all architectures [5].
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