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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 14371 “Adjoint
Methods in Computational Science, Engineering, and Finance”.

The development of adjoint numerical methods yields a large number of theoretical, al-
gorithmic, and practical (implementation) challenges most of them to be addressed by state
of the art Computer Science and Applied Mathematics methodology including parallel high-
performance computing, domain-specific program analysis and compiler construction, combinat-
orial scientific computing, numerical linear algebra / analysis, and functional analysis. One aim
of this seminar was to tackle these challenges by setting the stage for accelerated development and
deployment of such methods based on in-depth discussions between computer scientists, math-
ematicians, and practitioners from various (potential) application areas. The number of relevant
issues is vast, thus asking for a series of meetings of this type to be initiated by this seminar.
It focused on fundamental theoretical issues arising in the context of “continuous vs. discrete
adjoints.” The relevant context was provided by presentations of various (potential) applications
of adjoint methods in CSEF.
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1 Executive Summary

Uwe Naumann
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The human desire for meaningful numerical simulation of physical, chemical, biological,
economical, financial (etc.) phenomena in CSEF has been increasing with the growing
performance of the continuously improving computer systems. As a result of this development
we are (and will always be) faced with a large (and growing) number of highly complex
numerical simulation codes that run at the limit of the available HPC resources. These codes
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often result from the discretization of systems of PDE. Their run time correlates with the
spatial and temporal resolution which often needs to be very high in order to capture the
real behavior of the underlying system. There is no doubt that the available hardware will
always be used to the extreme. Improvements in the run time of the simulations need to be
sought through research in numerical algorithms and their efficient implementation on HPC
architectures.

Problem sizes are often in the billions of unknowns; and with emerging large-scale
computing systems, this size is expected to increase by a factor of thousand over the
next five years. Moreover, simulations are increasingly used in design optimization and
parameter identification which is even more complex and requires the highest possible
computational performance and fundamental enabling algorithmic technology. Derivatives of
certain objectives of these numerical models with respect to a potentially very large number
of model parameters are crucial for the highly desirable transition from pure simulation to
optimization. Approximation of these derivatives via finite difference quotients often lacks
the required accuracy. More importantly, it may be infeasible for a large parameter space
in terms of its computational complexity. Adjoint numerical programs have until recently
been written by hand to overcome this problem. Such programs compute (large) gradients
with machine accuracy at a small constant multiple of the computational complexity of the
underlying primal simulation. Due to the enormous size of most numerical simulation codes
the manual procedure may take up to several man years. Moreover manual adjoint codes are
error-prone and hard to maintain as the primal simulation evolves. Computer scientists have
been developing special software tools based on the principles of algorithmic differentiation
(AD) to generate discrete adjoint code automatically. Consequently, this method has gained
considerable acceptance within the CSEF community as illustrated by numerous successful
case studies presented in the proceedings of so far six international conferences on AD. See
http://www.autodiff.org for details.

Illustrative Example: Classical applications of adjoint methods arise in the context of
large-scale inverse problems, such as the estimation of unknown or uncertain parameters
of implementations of mathematical models for real-world problems as computer programs.
Imagine the optimization of the shape of an aircraft with the objective to maximize its lift.
The continuous mathematical domain (the surface of the aircraft) is typically discretized
through the generation of a mesh with a potentially very large number of points spread
over the whole surface. Optimization aims to adapt the position of these points in 3D space
such that the objective is met while at the same time satisfying various constraints (e. g.
prescribed volume). A naive approach might run a potentially very large number of primal
numerical simulations with changing mesh configurations thus being able to identify an
optimum within this very limited search space.

Derivative-based approaches use information on the sensitivity of the objective at the
given mesh configuration with respect to changes in the positions of all mesh points (the
gradient) in order to make a deterministic decision about the next configuration to be
considered. The sensitivities can be approximated through local perturbations of the position
of each mesh point (finite difference quotients). A single optimization step would thus require
a number of primal simulations that is of the order of the number of degrees of freedom (three
spatial coordinates for each mesh point) induced by the mesh. This approach is practically
infeasible as a single simulation may easily run for several minutes (if not hours) on the latest
HPC architectures. The approximation of a single gradient would take months (if not years)
for a mesh with only one million points.

Adjoint methods deliver the gradient at the cost of only a few (between 2 and 10) primal

http://www.autodiff.org
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simulations. Continuous adjoint methods derive an adjoint version of the primal mathematical
model analytically followed by the numerical solution of the resulting adjoint model. While
this approach promises low computational cost (approx. 2 primal simulations) it can be
mathematically challenging and numerically inconsistent when compared with the primal
numerical simulation. To the best of our knowledge, the automation of the derivation of
continuous adjoint models is still outstanding.

Discrete adjoint methods rely on the algorithmic differentiation of the primal numerical
model, thus overcoming the potential numerical inconsistencies induced by the continuous
adjoint. Depending on the mode of implementation of AD, the level of maturity of the AD
tool, and the expertise of the user of the tool the computational cost can range between
2 and 20 primal simulations, sometimes even more. Still this cost is independent of the
number of mesh points (referring to the above example). Solutions to problems arising in
adjoint methods require expertise in both theoretical and applied Computer Science as well
as in Numerical Analysis. Robust methods for the data flow reversal within adjoint code
are built on special graph partitioning and coloring algorithms. Their implementation on
modern HPC architectures (e. g. using MPI and/or OpenMP) has impact on the simulation
software design and the data management. The use of accelerators has been considered
only recently with many open as of yet unsolved problems. Static and dynamic program
analysis and compiler construction techniques have been developed to facilitate the semi-
automatic generation of discrete adjoint code. The exploration of a potential extension of
these techniques to continuous adjoint code was one of the subjects of this seminar. Other
conceptual problems discussed included functional analytic aspects of adjoint methods and
their impact on practical implementation, combinatorial problems in adjoint code generation
and their computational complexities, and simulation software engineering guidelines in the
light of adjoint methods.

Adjoint methods borrow from a variety of subfields of Computer Science and Applied
Mathematics including high performance and combinatorial scientific computing, program
analysis and compiler construction, functional analysis, numerical analysis and linear algebra,
and with relevance to a wide range of potential areas of application. As such, the topic lends
itself to a series of seminars taking more detailed looks into the respective subjects. With
this seminar we intent to initiate a sequence of related events alternating in between the
Leibniz Center for Informatics at Schloss Dagstuhl and the Mathematisches Forschungsinsti-
tut Oberwolfach, thus, emphasizing the obvious synergies between Computer Science and
Mathematics in the given context.

14371
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3 Overview of Talks

3.1 OO-Lint for Operator Overloading in C++
Christian Bischof (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Christian Bischof

Automatic Differentiation Tools in C++ often employ operator overloading (OO), and in
particular almost all reverse mode tools employ this technology. This seemingly simple
approach just requires a type change in the numeric code, redeclaring the floating point type.
However, in practice, it is not so simple, as the operator overloading may lead to conflicts
with the C++ standard, such as, for example, multiple user defined conversions, unions
with complex types, or implicit conversions in conditions, and, as a result, to cryptic error
messages.

To alleviate this problem, we developed a tool based on LLVM/Clang, which recognizes
problematic coding constructs in the C++ code to be subjected to operator overloading.
This tool thus provides guidance to a potential user of OO-based semantic enhancements of
an existing code, in a fashion that is much more targeted and understandable than the usual
error messages produced by the compiler. In addition, we are working on automating the
changes necessary to make the code applicable to OO, thus further easing the transition for
potential users of OO-based AD tools.

3.2 An extension of the projected gradient method with application in
multi-material structural topology optimization

Luise Blank (Universität Regensburg, DE)

License Creative Commons BY 3.0 Unported license
© Luise Blank

Joint work of Blank, Luise; Rupprecht, Christoph

First we introduce the phase field approach for the optimal distribution of several elastic
isotropic homogeneous materials. This leads to a multi-material structural topology optimiz-
ation problem with linear elasticity equations, mass constraints and pointwise inequalities as
restrictions. The reduced problem formulation results into a nonlinear optimization problem
over a convex and closed set. While the reduced cost functional is Fréchet-differentiable in
H1 ∩ L∞ it is not differentiable in a Hilbert-space. Hence the classical theory for projected
gradient methods cannot be applied. Therefore, we extend the projected gradient method to
Banach spaces. The gradient is not required but only directional derivatives. Furthermore,
variable scaling and varying the metric is introduced. The last allows the use of second order
information in the method. We prove global convergence of the method. This method is
applied to the presented optimization problem. Here it turns out that the scaling of the
derivative with respect to the interface thickness is important to obtain a drastic speed up
of the method. With computational experiments we demonstrate the independence of the
discretization mesh size and of the interface thickness in the number of iterations as well
as its efficency in time. Moreover we present results for compliance mechanism and drag
minimization in Stokes flow.
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3.3 Algorithmic Differentiation for Geometry Processing
David Bommes (INRIA Sophia Antipolis – Méditerranée, FR)

License Creative Commons BY 3.0 Unported license
© David Bommes

Joint work of Bommes, David; Lotz, Johannes; Naumann, Uwe

Recent geometry processing approaches are often related to optimization of complicated
nonlinear functionals and constraints. The resulting problems are usually optimized with
interior point methods that require second order derivative information. The goal of this
project is to develop a framework for rapid prototyping of such applications with the
help of algorithmic differentiation, where based on a user-provided functional evaluation, all
derivatives should be generated automatically. To obtain a performance that is comparable to
the manual approach, it is crucial to exploit the sparsity structure that geometry processing
approaches provide due to partial separability [1] of the corresponding functionals. By
providing an intuitive interface where the partial separability becomes obvious, we develop
a fast an easy to use framework for geometry processing with AD, which integrates C++
overloading techniques like ADOL-C [2] and dco/c++ [3].

References
1 Bischof, C. H., Bouaricha, A., Khademi, P. M., Moré, J. J. (1997). Computing gradients in

large-scale optimization using automatic differentiation. INFORMS Journal on Computing,
9(2), 185–194.

2 Walther, A., Griewank, A. (2012). Getting started with ADOL-C. Combinatorial Scientific
Computing, 181–202.

3 Naumann, U. (2011). The art of differentiating computer programs: an introduction to
algorithmic differentiation (Vol. 24). SIAM.

3.4 An interface for conveying high-level user information to automatic
differentiation transformations: A working group proposal

Martin Bücker (Universität Jena, DE)

License Creative Commons BY 3.0 Unported license
© Martin Bücker

Program transformations that augment a given computer code with statements for the com-
putations of derivatives are commonly referred to as automatic or algorithmic differentiation
(AD). Software tools implementing the AD technology are available for various programming
languages; see the community web site www.autodiff.org. Today, there are robust AD tools
which are capable of correctly transforming large programs with minimal human intervention.
However, sometimes, AD is not “automatic.” In fact, a combined approach that applies AD
in a black-box fashion to large parts of the code and that also involves a moderate amount
of human intervention for certain parts of the code is often adequate. This Dagstuhl seminar
is a perfect opportunity to discuss the following questions: Where is human intervention
absolutely necessary? What can be handled mechanically by an AD tool? To what extent
can the level of abstraction be raised by user-specified directives?
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3.5 The Glorious Future of Automatic Differentiation: A Retrospective
View

Bruce Christianson (University of Hertfordshire, GB)

License Creative Commons BY 3.0 Unported license
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The adjoint mode of AD is both fast and accurate. We have had considerable success with
selling the advantage of speed to a variety of application communities. To a large extent this
is because AD tools have evolved so as to cope well with legacy code. There is still room for
improvement, but we should not become fixated on embracing the legacy agenda.

With regard to the second advantage, we have made little headway in selling accuracy as
a step-change benefit. This failure is largely due to the continued use of legacy approaches
to modeling, and to optimization.

At present, a smooth continuous model is typically discretized, not always consistently,
before being implemented (using loops with an epsilon-based stopping criterion) into a
program that is not continuous, let alone smooth. Finite difference approximations are used
to smooth these discontinuities over the scale of the anticipated step. The resulting values are
used by optimization algorithms (such as Quasi-Newton), to build internally a new smooth
local model, that is inconsistent with the original model. Finally, this new model is solved
exactly.

It is clear that simply differentiating the discontinuous program accurately does not
much help overall performance or convergence: users want secants not tangents; the primal
problem is seldom converged accurately until near the optimum; the raw models exhibit
chaotic behavior; and Newton is not stable.

Louis Rall often pointed out that Automatic Differentiation is not really a local operation.
What mileage can we gain by re-factoring AD to obtain accurate, and more importantly,
consistent solutions to systematic smooth perturbations of the original model, for example?

As a side-effect, the adjoint mode produces large numbers of potentially useful by-products,
such as Lagrange multipliers, for free. However, when solving equations, legacy modeling
software often does not explicitly identify, or even calculate, the corresponding equation
residuals.

We, the AD community, need urgently to clarify our thinking, and prepare our agenda
for changing the next generation of modeling and optimization tools.

3.6 Adjoint-Based Research and Applications at NASA Langley
Research Center

Boris Diskin (National Institute of Aerospace – Hampton, US)

License Creative Commons BY 3.0 Unported license
© Boris Diskin

Joint work of Diskin, Boris; Nielsen, Eric
Main reference E. Nielsen, B. Diskin, “Discrete Adjoint-Based Design for Unsteady Turbulent Flows on Dynamic

Overset Unstructured Grids,” AIAA Journal, 51(6):1355–1373, June 2013; available also from
NASA repository.

URL http://dx.doi.org/10.2514/1.J051859
URL http://fun3d.larc.nasa.gov/papers/overset_adjoint_aiaaj.pdf

An overview of the use of adjoint methods at NASA Langley Research Center has been
presented. Among major areas of large-scale adjoint-based applications are shape optimization,
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grid adaptation, and multidisciplinary optimization. In this talk, examples of unsteady adjoint-
based aerodynamic shape optimization have been presented such as active flow control for a
high-lift configuration, a helicopter in forward flight, a fighter jet with simulated aeroelastic
effects, and a biologically-inspired flapping wing configuration. Several examples of adjoint-
based mesh adaptation for various applications have included high-lift and nozzle plume
configurations, a sonic boom application, an example of shock-boundary layer interaction,
and several other aerospace applications. Multidisciplinary optimization capabilities have
been demonstrated for sonic boom mitigation. High-performance computing aspects have
also been discussed, such as scaling performance in the presence of frequent I/O for unsteady
adjoint simulations.

3.7 Automated adjoint finite element simulations within FEniCS
Patrick Farrell (University of Oxford, GB)

License Creative Commons BY 3.0 Unported license
© Patrick Farrell

Joint work of Farrell, Patrick; Funke, Simon; Ham, David; Rognes, Marie; Birkisson, Ásgeir
Main reference P.E. Farrell, D.A. Ham, S.W. Funke, M.E. Rognes, “Automated derivation of the adjoint of

high-level transient finite element programs,” SIAM Journal on Scientific Computing,
35(4):C369–C393, July 2013.

URL http://dx.doi.org/10.1137/120873558

In this work, we develop and advocate a high-level approach to automated adjoint derivation
for finite element simulators. By “high-level”, we mean that instead of breaking down a
program into a sequence of elementary machine instructions, we treat the program in terms
of much higher-level mathematical constructs: in the finite element case, the solution of
variational problems. By retaining as much mathematical structure as possible, this approach
offers several advantages: the derived tangent linear and adjoint solutions work naturally
in parallel; the adjoint solver can automatically use optimal checkpointing schemes with
minimal user intervention; and the tangent linear and adjoint models typically exhibit optimal
efficiency.

This high-level perspective permits optimizations and modifications that would be im-
practical in low-level code. For example, when computing Hessian actions, the equations
to be solved for each action (the tangent linear and second-order adjoint equations) share
the same matrices to be solved, up to transposition: a high-level AD tool can cache the
factorizations of these matrices and re-use them to dramatically speed up the per-action cost,
but such an optimization would be extremely difficult to implement in a low-level AD tool.

Several examples were presented, including nonlinear diffusion on a manifold; Hessian
eigendecomposition for the test case of Deckelnick and Hinze; and mesh independence in
solving the mother problem of PDE-constrained optimization.

In general, to attain optimal performance with algorithmic differentiation, the tool needs
to exploit all of the mathematical structure available in a given problem domain. This work
is specific to finite elements, but it would be entirely possible to apply the experience gained
to finite volume discretizations, or problem domains outside of PDEs.

In addition, I presented very recent results on deflation techniques for computing distinct
solutions of nonlinear systems and distinct local minima of nonconvex optimization problems.
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3.8 Physical Interpretations of Discrete and Continuous Adjoint
Boundary Conditions

Christian Frey (DLR – Köln, DE)

License Creative Commons BY 3.0 Unported license
© Christian Frey

Joint work of Frey, Christian; Engels-Putzka, Kügeler, Edmund
Main reference C. Frey, A. Engels-Putzka, E. Kügeler, “Adjoint boundary conditions for turbomachinery flows,” in

Proc. of the 2012 Europ. Congress on Computational Methods in Applied Sciences and
Engineering (ECCOMAS’12), pp. 9360–9379, 2012.

URL http://elib.dlr.de/81285/

In this talk I have discussed the treatment of boundary conditions in the context of a
discrete adjoint industrial turbomachinery RANS solver. Special emphasis is put on the non-
reflecting boundary conditions and the blade row coupling by mixing planes. These techniques
are widely used for the accurate approximation of time-averaged flows in turbomachinery
by steady simulations. In contrast to inviscid wall boundary conditions these boundary
conditions are applied at non-characteristic boundaries, i. e., the flux Jacobian through the
boundary is non-singular, unless the normal flow vanishes at some point of the blade row
entry or exit. On the other hand, these boundary conditions are more complicated in that
they are non-local. They involve, for instance, Fourier transformations, and special averaging
techniques.

We outline a general methodology to adjoin discretely numerical boundary conditions
and apply the techniques to the boundary conditions of an internal flow solver. This leads
to adjoint boundary update operators which are applied after each multiplication with the
adjoint residual Jacobian. This methodology carries over to the communication using domain
decomposition and ghost cells.

A further difficulty that one has to deal with is the fact that the boundary conditions in
the non-linear solver are implemented as fixed-point iterations, whereas the adjoint system is
solved by the GMRES method. This means that the application of AD seems to be rather
difficult and may require that one switches to a discrete adjoint iterative solver.

The second part of this talk is dedicated to the physical interpretation of the discrete
adjoint boundary update as discretizations of their continuous adjoint counterpart. For this
purpose we determine the continuous adjoint boundary conditions for the above-mentioned
turbomachinery boundary conditions. Finally we give a physical interpretation of the adjoint
non-reflecting condition and the adjoint mixing plane coupling condition. The former can be
viewed as a non-reflecting condition for the adjoint Euler equations. The adjoint blade row
coupling condition is satisfied if certain circumferential averages of the adjoint fields on both
sides of the interfaces agree up to a factor given by the blade count ratio.

3.9 Efficient Adjoint-based Techniques for Optimal Active Flow Control
Nicolas R. Gauger (TU Kaiserslautern, DE)

License Creative Commons BY 3.0 Unported license
© Nicolas R. Gauger

Joint work of Gauger, Nicolas R.; Wang, Qiqi; Kramer, Felix; Thiele, Frank; Günther, Stefanie; Sagebaum, Max

For efficient optimal active control of unsteady flows, the use of adjoint approaches is a first
essential ingredient. We compare continuous and discrete adjoint approaches in terms of
accuracy, efficiency and robustness. For the generation of discrete adjoint solvers, we discuss
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the use of Automatic Differentiation (AD) and its combination with checkpointing techniques.
Furthermore, we discuss so-called one-shot methods. Here, one achieves simultaneously
convergence of the primal state equation, the adjoint state equation as well as the design
equation. The direction and size of the one-shot optimization steps are determined by a
carefully selected design space preconditioner. The one-shot method has proven to be very
efficient in optimization with steady partial differential equations (PDEs). Applications of
the one-shot method in the field of aerodynamic shape optimization with steady Navier-
Stokes equations have shown, that the computational cost for an optimization, measured in
runtime as well as iteration counts, is only 2 to 8 times the cost of a single simulation of the
governing PDE. We present a framework for applying the one-shot approach also to optimal
control problems with unsteady Navier-Stokes equations. Straight forward applications of
the one-shot method to unsteady problems have shown, that its efficiency depends on the
resolution of the physical time domain. In order to dissolve this dependency, we consider
unsteady model problems and investigate an adaptive time scaling approach.

3.10 Integrating and Adjoining ODEs with Lipschitzian RHS
Andreas Griewank (HU Berlin, DE)

License Creative Commons BY 3.0 Unported license
© Andreas Griewank

Joint work of Griewank, Andreas; Lenser, Ben; Hasenfelder, Richard; Streubel,Tom; Boeck, Paul; Gompil, Battur
Main reference P. Boeck, B. Gompil, A. Griewank, R. Hasenfelder, N. Strogies, “Experiments with generalized

midpoint and trapezoidal rules on two nonsmooth ODE’s,” Mong. Math. J., 17:39–49, 2013.
URL http://iom.num.edu.mn/journal/2013/3.pdf

We consider initial value problems in ODEs where the right hand side has truly state-
dependent kinks or jumps and users may be hard pressed to provide suitable switching
functions for the customary event handling approaches. Instead kinks and jumps can
be detected and handled automatically, which is possible by an extension of algorithmic
differentiation that provides piecewise linear approximations with second order error to
piecewise smooth and Lipschitz continuous right hand sides [3]. Without continuity of the
underlying piecewise smooth function the resulting piecewise linear approximation will also
be discontinuous and the approximation error is no longer uniform but heavily direction
dependent. Nevertheless we expect to extend our approach later to ODEs where the RHS
has jumps but the exact solution trajectories satisfy a certain transversality condition. In
the Lipschitzian case we show how the piecewise linearizations of the RHS is generated by
Algorithmic Piecewise Differentiation abs-normal form and how it can be used to generalize
the midpoint and the trapezoidal rule such that local third order consistency and uniform
global convergence order two is recovered [1]. The inherent smoothness of the approximation
facilitates the gain of one or two extra orders by Richardson/Romberg extrapolation. The
two implicit discretizations of the ODEs produce non-smooth systems of algebraic equations
which have been solved by the methods discussed in [4]. The corresponding adjoint trajectory
is defined by a differential inclusion and thus not unique if there are valley tracing modes
as defined by P. Barton and K. Khan [2]. Nevertheless, usually one obtains a generalized
gradient that can be used for data assimilation and more general optimal control. We report
preliminary results on a shallow water equation in 1D where non smoothness arises through
slope limiters or no smooth norms in the error functional.
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3.11 Discrete versus Continuous Adjoints of Differential-Algebraic
Equation Systems: Similarities and Differences

Ralf Hannemann-Tamas (Univ. of Science & Technology – Trondheim, NO)
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This work is based on the PhD thesis [1]. In contrast to multi-step methods [2], one step-
methods applied to semi-explicit DAE systems of index 1, result in differential discrete
adjoints which are consistent with the differential continuous adjoints, while the discrete
adjoints for algebraic variables tend to zero along their trajectory.

We illustrate this fact by a small example. Let R denote the field of the real numbers
and let ψ : Rnx → R be a smooth function. We aim to compute the gradient of the scalar
functional J , where J(x, y, p) := ψ(x(t1)), with respect to the parameter vector p, where
x(t1) is characterized by the parametric initial value problem

ẋ = f(x, y),
0 = g(x, y),

x(t0) = p,

y(t0) = y0.

Here, x(t) ∈ Rnx , y(t) ∈ Rny , p ∈ Rnp denote the differential variables, algebraic variables
and the parameters, respectively. The initial and final times are t0 and t1, respectively and
the mappings f : Rnx ×Rny → Rnx and g : Rnx ×Rny → Rny are assumed to be sufficiently
smooth. Further, the initial value problem is assumed to have a unique solution.

For the moment we assume that initial values y0 are consistent, i. e., they are a solution
of the algebraic equation

g(p, y0) = 0.

Let x1, y1 approximate the differential and algebraic variables at time t1 as the solution of
the one-step method (in Henrici’s notation)(

x1
y1

)
=

(
p

y0

)
+ Φ(t0, x0, y0, h), with h = t1 − t0.
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Then, the discrete adjoints λx0 , λ
y
0 at time t0 can be interpreted as derivatives of the objective

with respect to the initial values

λx0 = ∂ψ(x1)
∂p

, λy0 = ∂ψ(x1)
∂y0

. (1)

Especially, the adjoints λy0, associated with the algebraic variables, describe the sensitivity
of the objective function with respect to perturbations δy0 of the then inconsistent initial
values λy0 = y0 + δy0. However, a good numerical method evens out small inconsistencies
of algebraic initial values. Hence, the values of the algebraic adjoints λy0 tend to zero, i. e.
λy0 ≈ 0. In particular, at t = t0, the discrete adjoints λy0 deviate from continuous algebraic
adjoints λy(t0), since they are usually different from zero (e. g. see [3]). In contrast, the
differential discrete adjoints λx0 usually converge with high order against the differential
continuous adjoints λx(t0), since these satisfy (e. g. see [3])

λx(t0) = ∂ψ(x(t1))
∂p

,

which is analogous to the first identity in eq. (1).
To summarize, the similarity is that differential discrete adjoints converge (for h→ 0) to

their continuous counterparts. The difference is, that the latter convergence result does not
hold for algebraic discrete adjoints.
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3.12 Bridges between OO-based and ST-based adjoint AD
Laurent Hascoet (INRIA Sophia Antipolis – Méditerranée, FR)
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Among AD tools, there is a clear opposition between those based on Operator Overloading
(OO) and those based on Source Transformation (ST). Competition between the two classes of
tools has brought huge improvements to both but obviously no class will ever show definitive
superiority. We claim that this competition, fruitful as it was, must give way to collaboration
between OO-based and ST-based AD models.

We believe that the difference between OO-based and ST-based adjoint AD is not as
deep as one may think at first sight. Indeed we think that the vocabulary and techniques
of Partial Evaluation can help us exhibit a close resemblance, not only at some conceptual
level, but also leading to fruitful exchange of techniques between OO-based and ST-based.
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In the framework of Partial Evaluation, we can view the tape, built by the tape-recording
phase of OO-based adjoint differentiation, as made of two parts, one part being static i. e.
depending only on the program to differentiate, the other being dynamic i. e. depending also
on the particular input. Obviously the static part could be extracted once and for all from
the program to differentiate. By Partial Evaluation of the Tape Interpreter with respect
to the static part of the tape, one obtains a Specialized Tape Interpreter that, when given
the dynamic part, will evaluate the adjoint derivatives more efficiently than the initial Tape
Interpreter. Also, the dynamic part of the Tape is smaller than the full tape, and can actually
be much smaller. We claim that the computation of the dynamic part of the tape on one
hand and the execution of the Specialized Tape Interpreter on the other hand, correspond
exactly to the two phases of a ST-based adjoint namely, the forward sweep on one hand and
the backward sweep on the other hand.

Practically, we think we tool developers should explore more ways to make OO-based and
ST-based AD tools collaborate. One key architectural choice being “who is in the driver’s
seat”. For instance black-box mechanisms in OO-based environments allow them to call
ST-based adjoints for computational kernels where the language constructs pose no difficulty
to static source analysis and transformation. Only this is still a tedious process. Conversely,
there must be ways for OO-based AD to take better advantage of the static data-flow analysis
(activity, liveness, TBR, . . . ) that ST-based AD computes and uses routinely. In particular
the activity analysis of an ST-based tool can be used to automate the type transformation
stage that an OO-based AD used must perform by hand.

3.13 Application of derivative code in climate modeling
Patrick Heimbach (MIT – Cambridge, US)
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Optimal state and parameter estimation, accompanied by rigorous uncertainty quantification,
is increasingly being recognized as a powerful tool in climate modeling. The need arises in
order to deal with the problem of sparse observations to optimally constrain model simulations
and infer dynamically consistent time-evolving state estimates (Heimbach and Wunsch 2012),
to provide quantitative estimates of the extent to which existing observations constrain
uncertain parameters or the optimal design of future observing networks (Heimbach et al.
2010), or to infer optimal initial conditions that are best suited for predictions or projections
(Zanna et al. 2012). The primary example given is that of estimating the global ocean
(and sea ice) circulation over the last few decades as undertaken by the “Estimating the
Circulation and Climate of the Ocean” (ecco-group.org) consortium (Stammer et al. 2002;
Wunsch and Heimbach 2007, 2013, 2014).

A number of regional efforts targeting higher spatial resolutions and shorter time scales
are also being pursued to synthesize the available data with the known dynamics, e. g., in the
North Atlantic (Ayoub 2006; Gebbie et al. 2006), the Southern Ocean (Mazloff et al. 2010),
the tropical Pacific (Hoteit et al. 2010), or the Labrador Sea and Baffin Bay (Fenty and
Heimbach 2013).
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Similar efforts by a number of groups are now targeting the polar ice sheets for the
purpose of developing predictive capabilities and uncertainty estimates of ice sheet mass loss
in the coming centuries (Heimbach and Bugnion 2009; Goldberg and Heimbach 2013; Larour
et al. 2014; Perego et al. 2014).

Increasingly, second derivative, i. e. Hessian information is being explored to provide
a posteriori uncertainty estimates on addition to the maximum a posteriori probability
estimate, and to propagate these uncertainties forward onto target quantities of interest, e. g.
climate indices (Kalmikov and Heimbach 2014; Petra et al. 2014).

In order to improve accessibility to algorithmic differentiation (AD) tools that support
flexible derivative code development, the ECCO group has been involved in the development,
at Argonne National Lab, of the open source AD tool OpenAD (Naumann et al. 2006; Utke
et al. 2008, 2009). Today, a number of configurations of the MIT general circulation model
(mitgcm.org) are available for AD-enhanced simulations.
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3.14 Adjoints in Solution Methods for PDE Constrained Inverse
Problems: Reduced versus all-at-once formulations
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Inverse problems for partial differential equation such as identification of coefficients, boundary
conditions or source terms appear in a wide range of applications. Due to their inherent
instability, regularization has to be applied. When computing regularized solutions, adjoints
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naturally appear: In minimization based regularization methods like Tikhonov within the first
order optimality conditions; for iterative (Newton type or gradient) regularization methods
directly in the definition of each step.
The system from which parameters are to be identified typically consist of two parts: The
model equation, e. g. a (system of) ordinary or partial differential equation(s), and the
observation equation. In the conventional reduced setting, the model equation is eliminated
via the parameter-to-state map. Alternatively, one might consider both sets of equations
(model and observations) as one large system, to which some regularization method is
applied. The choice of the formulation (reduced or all-at-once) can make a large difference
computationally, depending on which regularization method is used: Whereas almost the
same optimality system arises for the reduced and the all-at-once Tikhonov method, the
situation is different for Landweber (LW), i. e., gradient methods: A reduced LW iteration
requires solution of the PDE and the (linear) adjoint in each step, whereas in all-at-once LW,
only PDE residuals have to be evaluated, but no PDEs need to be solved. In between lie
Newton type methods, whose reduced versions again need PDE and adjoint PDE solutions
in each step, whereas all-at once versions work with linear PDE (and adjoint) solves only.
For the latter we refer to [1].
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3.15 Regularity of Model, Adjoint and its Relation to Optimization
(Data Assimilation)

Peter Korn (MPI für Meteorologie – Hamburg, DE)
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The problem of determining for a coupled set of nonlinear partial differential equations the
initial condition from which a model trajectory emerges in agreement with a given set of
time-distributed observations is studied by using a variational data assimilation approach.
The partial differential equations describe a simplified coupled Atmospheric-Ocean model
and consist of a coupled set of shallow-water equation in geophysical appropriate scaling. For
the coupled model the existence of optimal initial conditions in the sense of minimizers of a
specific cost functional and a first-order necessary condition involving the coupled adjoint
equations are proven. Instrumental for the results are derivative based norms in the data
assimilation cost functional such that Sobolev norms replace the standard Lebesgue norms.
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3.16 Constraint handling for gradient-based optimization of
compositional reservoir flow

Drosos Kourounis (University of Lugano, CH)
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The development of adjoint gradient-based optimization techniques for general compositional
flow problems is much more challenging than for oil-water problems due to the increased
complexity of the code and the underlying physics. An additional challenge is the treatment
of non smooth constraints, an example of which is a maximum gas rate specification in
injection or production wells, when the control variables are well bottom-hole pressures.
Constraint handling through lumping is a popular and efficient approach. It introduces
a smooth function that approximates the maximum of the specified constraints over the
entire model or on a well-by-well basis. However, it inevitably restricts the possible solution
paths the optimizer may follow preventing it to converge to feasible solutions exhibiting
higher optimal values. A simpler way to force feasibility, when the constraints are upper
and lower bounds on output quantities, is to satisfy these constraints in the forward model.
This heuristic treatment has been demonstrated to be more efficient than lumping and at
the same time it obtained better feasible optimal solutions for several models of increased
complexity. In this work a new formal constraint handling approach is presented. Necessary
modifications of the nonlinear solver used at every time step during the forward simulation
are also discussed. All these constrained handling approaches are applied in a gradient-based
optimization framework for exploring optimal CO2 injection strategies that enhance oil
recovery for a realistic offshore field, the Norne field. This alternative approach increases the
oil production twofold over even the best of its respective competitors.

3.17 Tool-Demo: Algorithmic Differentiation by Overloading in C++
using dco/c++

Johannes Lotz (RWTH Aachen University, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Lotz, Johannes; Leppkes, Klaus; Naumann, Uwe
URL https://www.stce.rwth-aachen.de/software/dco_cpp.html

Algorithmic Differentiation (AD) is a widespread technique for the automatic generation of
discrete adjoint codes.

AD can be applied by a compiler as a source-to-source transformation or by making use
of operator overloading techniques as a built-in language feature. The AD community agrees
on the fact that both ways come with advantages and disadvantages. The main advantage of
operator overloading is the out-of-the-box coverage of the complete programming language.
The efficiency of the generated code on the other hand is its disadvantage, and simultaneously
the advantage of a source-to-source compiler. The coupling of both techniques is apparent
and required. Nevertheless, no automatic technical solution is available.

In contrast to that, it has not yet become apparent, if the discrete or continuous adjoint
approach is preferable. The main difference between the two ways of deriving the adjoint
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(the dual) is that the discrete approach inherits all discretization methods from the original
problem (the primal). This results in a dual implementation, which is equivalent to a
line-by-line derivative of the primal implementation and can therefore be generated by AD
techniques. The continuous adjoint approach on the other hand assumes validity of the
mathematical equations and on that basis derives the sensitivity equations, which are then
to be solved. Discretization decision are to be made again.

Taking both observations into account, a valuable overloading tool should have a flexible
and extensible interface to couple not only compiler generated code with the overloading
tool, but also hand-written code, eventually being continuous adjoint solutions.

dco/c++ features multiple ways of teaching the tool adjoint knowledge on different levels
of abstraction to support the user in implementing the different couplings described above.

3.18 Adjoint Numerical Libraries
Viktor Mosenkis (RWTH Aachen University, DE)

License Creative Commons BY 3.0 Unported license
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Numerical libraries are often used by scientist while writing their codes. This allows them
to write the code faster and concentrate on their research rather than spend time on
implementing and testing numerical algorithms. Once it comes to adjoin the code the users
of these libraries have to solve the problem of providing adjoint version of the numerical
library routines. Using Algorithmic Differentiation (AD) may fail because the source code
of the routine is not available while writing a continuous adjoint version of the routine as
described in [1] is not an easy assignment and requires a deeper insight into the algorithms.
And there is still the problem of testing the code. In any case the library supplier is the
natural instance for providing adjoint version of his library routines.

The Numerical Algorithm Group delivers adjoint version of their Fortran and C Library
routines. AD tool dco/c++ is used to adjoin these routines. Two interfaces are offered.
One interface for direct and fast integration in dco/c++. The other one to be used without
dco/c++

References
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Differentiation of Numerical Methods: Tangent-Linear and Adjoint Solvers for Systems of
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3.19 Moans about discrete adjoints
Jens-Dominik Mueller (Queen Mary University of London, GB)
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Joint work of Mueller, Jens-Dominik; Shenren Xu; Marcus Meyer
Main reference S. Xu, D. Radford, M. Meyer, J.-D. Müller, “Stabilization of discrete steady adjoint solvers,”

submitted to JCP.

Discrete adjoints can very be produced very effectively with AD tools and promise to provide
exact derivatives of the primal code. The former is essential for code maintenance and
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evolution: e. g. continuous adjoints typically are much less developed than their primal
counterparts. The latter is relevant for advanced adjoint applications such as co-Kriging
or uncertainty analysis. However there are pitfalls for discrete adjoints, two of which are
highlighted.

For industrial CFD applications where the primal already is close to exhausting the
available hardware, the preferred approach is the steady-state adjoints of the steady-state
primals of industrial CFD applications. Quite frequently though an adjoint based on a
fixed-point paradigm diverges since the primal converges only to limit cycle oscillations,
as it is not contractive but its Jacobian possesses unstable eigenvalues. Using a stronger
preconditioner can achieve convergence for primal and adjoint in cases of mild instability if
used for both primal and adjoint.

On the other hand, counterexamples with continuous adjoints demonstrate that the added
stabilization can help to converge the steady-state adjoint even on time-averaged unsteady
primals. While a full unsteady approach with checkpointing of the primal will succeed for
moderately chaotic flows, adding stabilization to discrete adjoints and quantifying this error
should be considered as a robust and very cost-effective way to simulate highly turbulent
flows, which in turn also may avoid issues of blow-up related to chaotic behavior.

Issues also arise with the use of point values of the discrete adjoint. Consistent continuous
adjoint formulations converge to the analytic adjoint solution, simple examples of uniform
channel flows with either Dirichlet or Neumann conditions demonstrate that the discrete
adjoint based on a standard primal discretization does not. This in turn precludes the use
of point values (rather than integrals) of the adjoint solution, or e. g. the use of boundary
formulations of the sensitivity.

While finite-element discretizations naturally posses some dual consistency, for finite
volume methods the implications of dual inconsistency and the possible gains offered by
modified primals that provide dual-consistent discrete adjoints need more exploration.

3.20 Adjoint-Based Research and Applications at NASA Langley
Research Center

Eric Nielsen (NASA Langley ASDC – Hampton, US)
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Main reference E. Nielsen, B. Diskin, “Discrete Adjoint-Based Design for Unsteady Turbulent Flows on Dynamic

Overset Unstructured Grids,” AIAA Journal, 51(6):1355–1373, June 2013; available also from
NASA repository.

URL http://dx.doi.org/10.2514/1.J051859
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An overview of the use of adjoint methods at NASA Langley Research Center has been
presented. Among major areas of large-scale adjoint-based applications are shape optimization,
grid adaptation, and multidisciplinary optimization. In this talk, examples of unsteady adjoint-
based aerodynamic shape optimization have been presented such as active flow control for a
high-lift configuration, a helicopter in forward flight, a fighter jet with simulated aeroelastic
effects, and a biologically-inspired flapping wing configuration. Several examples of adjoint-
based mesh adaptation for various applications have included high-lift and nozzle plume
configurations, a sonic boom application, an example of shock-boundary layer interaction,
and several other aerospace applications. Multidisciplinary optimization capabilities have
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been demonstrated for sonic boom mitigation. High-performance computing aspects have
also been discussed, such as scaling performance in the presence of frequent I/O for unsteady
adjoint simulations.

3.21 Goal-oriented mesh adaptation based on total derivative of goal
with respect volume mesh coordinates

Jacques Peter (ONERA – Châtillon, FR)
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Main reference M. Nguyen-Dinh, J. Peter, R. Sauvage, M. Meaux, J.-A. Désidéri, “Mesh quality assessment based
on aerodynamic functional output total derivatives,” European Journal of Mechanics – B/Fluids,
45(May–June 2014):51–71, 2014.

URL http://dx.doi.org/10.1016/j.euromechflu.2013.12.004

In aeronautical CFD, engineers require accurate predictions of the forces and moments but
they are less concerned with flow-field accuracy. Hence, the so-called “goal oriented” mesh
adaptation strategies have been introduced to get satisfactory values of functional outputs at
an acceptable cost, using local node displacement and insertion of new points rather than
mesh refinement guided by uniform accuracy. Most often, such methods involve the adjoint
vector of the function of interest. Our purpose is to present a new goal oriented criterion of
mesh quality and a new local mesh adaptation strategy in the framework of finite-volume
schemes and a discrete adjoint vector method. They are based on the total derivative of
the goal with respect to mesh nodes coordinates. More precisely, a projection of the goal
derivative, removing all components corresponding to geometrical changes in the solid walls
or the support of the output is introduced. The norm of this vector field times the local
characteristic mesh size is the proposed mesh adaptation criterion. The methods is assessed
in the case of 2D and 3D Euler flow computations.

3.22 Numerical Algorithms for Mean-field type control Problems
Olivier Pironneau (UPMC – Paris, FR)
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Main reference M. Lauriere, O. Pironneau, “Dynamic programming for mean-field type control,” C.R.A.S Serie I,
1–7, Oct. 2014.

URL http://hal.archives-ouvertes.fr/hal-01018361

Mean-field type controls are stochastic optimization problems involving statistical functions
of the state and/or control such as their means and variance. This happens often in problems
modeling risk for banks and energy optimization because typically some variables of the
problem depend on the mean behavior of all actors, each optimizing the same cost function
at their individual level.

Stochastic control is best analyzed by Dynamic Programming (DP) leading to the
Hamilton-Jacobi-Belmann equation for the remaining cost V(t), i. e. the optimization
function from t to T, knowing that x=xt, the state at t.

But here (see [1]) to apply DP we need to know the PDF of xt not just its value at t and
so the HJB equation contains derivatives with respect to measures.
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We show in the conference that at the algorithmic level the extended DP is equivalent
to standard calculus of variation applied to the deterministic problem derived from the
stochastic one via the Fokker-Planck equation for the PDF of xt. Thus the problem of finding
the gradients and adjoints is solved.

We will illustrate the approach on 4 semi-academic mean-field type control problems
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3.23 The Edge Pushing Algorithm for Computing Sparse Hessians
Alex Pothen (Purdue University, US)
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We have revisited the Edge Pushing Algorithm for computing Hessians, proposed by Gower
and Mello in 2012. We derive the algorithm using the notion of live variables from data
flow analysis in compiler theory, showing that the algorithm maintains an invariant about
the adjoints and Hessian matrix elements it computes at each step. We have implemented
the algorithm to achieve correctness and efficiency in the context of computing Hessian
matrices with the ADOL-C library for Algorithmic Differentiation. We have incorporated
pre-accumulation in the computation to reduce the execution time. We provide rigorous
complexity bounds for the algorithms and report execution times for a collection of test
problems, including a mesh optimization problem. The results show that the Edge Pushing
algorithm can be faster than the currently used algorithms (that compute compressed Hessian
matrices via graph coloring) for some problems by one or two orders of magnitude, while
also using less memory. Our implementation is available as open-source software, and will be
included in a future release of ADOL-C.
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3.24 Hybrid Adjoint Approaches to Industrial Hydrodynamics
Thomas Rung (TU Hamburg-Harburg, DE)
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The contribution reports the recent progress of the development of an adjoint Navier-Stokes
method for incompressible flows [1] and its application to industrial hydrodynamics [2].

When attention is directed to gradient-based optimization, two approaches – the discrete
and the continuous approach – are conceivable. The present research is derived from the
continuous adjoint approach and aims at three crucial aspects for its industrial applicability,
i. e. (a) accuracy and consistency, (b) numerical robustness and stability, (c) numerical
efficiency and parallel performance.
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The last aspect is a frequently addressed concern in conjunction with large-scale industrial
applications and motivates the use of a continuous adjoint approach. As opposed to this, the
first aspect is often identified as the origin of numerical problems and accuracy issues of the
continuous adjoint methodology [3]. In order to support the duality between the discretised
versions of the primal and the dual problem, a consistent discretization is derived for the
building blocks of the adjoint system. The employed term-by-term strategy is based on the
utilized primal, unstructured finite-volume discretization and their discrete adjoints obtained
from the variation of the discrete Lagrangian. The strategy inheres continuous and discrete
elements and is thus labeled hybrid adjoint approach. The approach supports the robustness
of the algorithm and provides insight into an appropriate treatment of the adjoint coupling
terms. Moreover, it facilitates a unified, discrete formulation of the adjoint wall-boundary
condition and the related boundary-based sensitivity equation. Further details are found
in [4].
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ods. Journal of Computational Physics, 248:402–419, 2013.

3.25 Structure Exploitation, AD and the Continuous Problem
Stephan Schmidt (Universität Würzburg, DE)
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Hybridizing the discrete and continuous adjoint approach into a holistic, structure exploiting
process is discussed. The potential advantages of this approach are exemplified within
applications in the field of shape optimization as well as automatic code generation for
FEM-problems such as provided by FEniCS.

Building upon previous studies [1], a potential hybrid Shape-AD tool could exploit the
surface representation of the shape gradient, thereby automatically generating a primal/dual
solver that can assemble a shape derivative by evaluating boundary quantities only. This could
potentially lead to very fast and efficient code, automatically circumventing the necessity to
consider mesh- or metric derivatives altogether by exploitation of the continuous problem
structure.

Application examples where such a tool would be beneficial – starting by CFD problems
and concluding with inverse design in acoustics and electromagnetism – are considered. The
partial output of a preliminary semantic tool analyzing a shape optimization problem within
the continuous Euler equations is shown as well.
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3.26 Linking Adjoint Based Shape Optimization to Riemannian
Geometry in Shape Spaces

Volker Schulz (Universität Trier, DE)
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Shape optimization is a very active field of research with numerous applications of economic
importance. Several examples from aerodynamics, acoustics and thermoelastics are used
to illustrate this and to motivate the following more theoretical considerations. Although
parametric geometry description (like CAD) are widely used in industry, they lead to
high numerical costs for non-trivial geometry resolutions and pose severe limitations to
the set of reachable shapes. The alternative avoiding these problems is the nonparametric
approach which leaves all mesh nodes describing the geometry under investigation free for
optimization and is based on the shape calculus. The current numerical state of the art
in shape optimization based on the shape calculus is characterized by first order methods
of steepest descent type and a general lack of second order methods. However, ideas from
second order methods aiming a Newton-like strategies give rise to excellent preconditioners
as demonstrated.

In this talk, a general framework based on differential geometric investigations is presented,
which considers the set of admissible shapes as a Riemannian manifold and constructs Taylor
series expansion and Newton methods similar to optimization ideas for finite dimensional
matrix manifold. This novel approach, introduces a Riemannian shape Hessian as a Hessian
formulation for second shape derivatives which, in contrast to the second shape derivative
(which is so far historically but misleadingly named shape Hessian) possesses the properties
which are expected from a Hessian: symmetry and provision of a Taylor series expansion.
This approach is carried on to PDE constrained shape optimization and develops a novel
sequential quadratic programming framework for shape optimization based on the shape
calculus, where the linear-quadratic subproblems to be solved in each nonlinear iteration
have the structure of usual optimal control problems and are thus accessible to the wealth of
efficient methods developed for this problem class like, e. g., multigrid optimization methods.

3.27 Discrete Adjoint Optimization for OpenFOAM
Markus Towara (RWTH Aachen University, DE)

License Creative Commons BY 3.0 Unported license
© Markus Towara

Joint work of Towara, Markus; Sen, Arindam; Naumann, Uwe
Main reference M. Towara, U. Naumann, “A Discrete Adjoint Model for OpenFOAM,” in Proc. of the 2013 Int’l

Conf. on Computational Science, Procedia Computer Science, Vol. 18, pp. 429–438, 2013.
URL http://dx.doi.org/10.1016/j.procs.2013.05.206

OpenFOAM is an Open-Soure CFD Simulation Tool with a wide range of applications and
a strongly growing user base in both academia and industry. The source code is available
in C++. The application of the adjoint model is a common approach for high dimensional
optimization problems, however often a continuous approach instead of a discrete one is used.
Codes which generate adjoint sensitivity information using the discrete approach are usually
generated by Algorithmic Differentiation[1], either by source code transformation or operator
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overloading, thus differentiating the code on a per statement level instead of deriving and
discretizing a set of adjoint equations as with the continuous approach. We introduced a
discrete adjoint version of OpenFOAM using the operator overloading tool dco/c++ in order
to generate derivatives and to apply optimization (with a focus on topology optimization)[2].
A discrete adjoint implementation in general yields a significant overhead to the passive
evaluation in computation time and more importantly required memory. (Intermediate values
from the whole computational history have to be stored in order to evaluate the derivatives).
Our work focuses on how we managed to significantly reduce the memory requirements
of said discrete adjoint OpenFOAM version, i. e. by applying analytical knowledge about
the iterative linear solvers used to solve the underlying partial differential equations, thus
eliminating the need to store intermediate values generated during the solution process of
the linearized equations[3]. This treatment yields a significant improvement in both runtime
and memory usage and also eliminates the dependency of the memory usage on the number
of linear solver iterations.
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We analyze the convergence of discrete adjoint approximations for optimal control problems
governed by an unsteady one-dimensional hyperbolic conservation law with a convex flux
function. A simple modified Lax-Friedrichs discretization is used on a uniform grid that
has a numerical viscosity of O(hα), 2/3 < α < 1, and we consider a tracking type objective
function at the end time. The control are the initial data. It is known that such tracking
type objective functions are differentiable with respect to the initial control also in the case
of shocks and that an adjoint based representation of the reduced gradient of the objective
can be obtained [1, 4, 5]. We show that the discrete adjoint scheme converges pointwise
almost everywhere and uniformly outside of any neighborhood of the extreme backward
characteristics emanating from shocks, see [2, 3]. A key point is that the numerical smoothing
increases the number of points across the nonlinear discontinuity as the grid is refined. Hence,
the discrete adjoint leads to a convergent representation of the reduced objective gradient.
We sketch the proof idea of [2, 3] which is based on an asymptotic expansion with respect
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to the viscosity parameter in an inner region around the shock and an outer region. In
addition, we present numerical results illustrating the asymptotic behavior which is analyzed.
Finally, we illustrate that a numerical viscosity of O(hα), 2/3 < α < 1 is necessary to obtain
convergence of the discrete adjoint if a shock is present in the region, where the objective
function is evaluated.
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3.29 White box adjoining of a radiative transport model and its use for
ill-posed inverse problems

Joern Ungermann (Forschungszentrum Jülich, DE)
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The Gimballed Limb Radiance Imager of the Atmosphere (GLORIA) is a newly developed
unique atmospheric sounder that combines for the first time a classical Fourier transform
spectrometer (FTS) with a 2-D detector array. Imaging allows the spatial sampling to be
improved by up to an order of magnitude when compared to a conventional limb scanning
instrument. GLORIA is designed to operate on various high altitude aircrafts.

Its unique scanning scheme and data acquisition rate allows for the first time the tomo-
graphic measurement of large air volumes about a thousand kilometers across. Reconstructing
3-D volumes from the measured infrared spectra thus poses a large-scale inverse problem,
which requires a highly optimized forward model and inversion scheme.

Implementing an adjoint version using the dco tool suite of STCE, RWTH Aachen
University, was the first step towards that goal. Separating the forward model internally into
a linear map and a set of functions with one-dimensional output allowed to construct the
full Jacobian matrix of the forward model by just a single execution without checkpointing.
The performance could be further increased by a factor of two by manually computing the
Jacobians of often-called subroutines and directly inserting these values into the tape, thereby
drastically reducing tape-size.
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Solving the inverse problem requires the minimization of a cost function composed of a
term describing the agreement between measurements and simulated measurements for a
given atmospheric state on the one hand and a regularizing term on the other hand. Having
available the full Jacobian matrix of the forward model allows the efficient implementation
of Quasi-Newton methods to minimize the cost function. These methods approximate the
Hessian of the cost function by neglecting the Hessian of the forward model. The quadratic
convergence of these methods requires usually less than 10 iterations for sufficient results
and thereby only as many evaluations of the Jacobian matrix of the forward model. The
numerical properties of the minimizer were greatly increased by providing an approximate
Jacobian preconditioner for the Hessian of the cost function, which can be straightforwardly
approximated given the available matrices. Lastly, each Quasi-Newton iteration requires the
solution to a linear equation system, which can be produced matrix-free using conjugate-
gradients. The regularizing properties of the conjugate-gradient scheme are used to implement
a trust-region method, where intermediate solutions of increasing accuracy are stored along
the computation of the precise solution and used in a back-tracking fashion to prevent the
costly solving of additional linear equation systems.

3.30 Time-minimal Checkpointing
Andrea Walther (Universität Paderborn, DE)
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For adjoint calculations, parameter estimation, and similar purposes one may need to reverse
the execution of a computer program. The simplest option is to record a complete execution
log and to read it backwards as required. This approach may require massive amounts of
storage. Instead one may generate the execution log piecewise by restarting the “forward”
calculation repeatedly from suitably placed checkpoints.

The basic structure of the resulting reversal schedules is illustrated. Various strategies
are analyzed with respect to the resulting temporal and spatial complexity on serial and
parallel machines. For serial machines known optimal compromises between operations count
and memory requirement are explained.

For program execution reversal on multi-processors the new challenges and demands on
an optimal reversal schedule are described. We present parallel reversal schedules that are
provably optimal with regards to the number of concurrent processes and the total amount
of memory required. More details on this time-minimal checkpointing approach can be found
in [1, 2].
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3.31 Adjoining Chaos
Qiqi Wang (MIT – Cambridge, US)
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Main reference Q. Wang, R. Hu, P. Blonigan, “Least Squares Shadowing sensitivity analysis of chaotic limit cycle
oscillations,” Journal of Computational Physics, 267(June 2014):210–224, 2014; pre-print available
as arXiv:1204.0159v7 [physics.comp-ph].
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The adjoint method, among other sensitivity analysis methods, can fail in chaotic dynamical
systems. The result from these methods can be too large, often by orders of magnitude,
when the result is the derivative of a long time averaged quantity. This failure is known to
be caused by ill-conditioned initial value problems. This paper overcomes this failure by
replacing the initial value problem with the well-conditioned least squares shadowing (LSS)
problem. The LSS problem is then linearized in our sensitivity analysis algorithm, which
computes a derivative that converges to the derivative of the infinitely long time average.
We demonstrate our algorithm in several dynamical systems exhibiting both periodic and
chaotic oscillations.
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