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—— Abstract

At its core, much of Computational Complexity is concerned with combinatorial objects and struc-
tures. But it has often proven true that the best way to prove things about these combinatorial
objects is by establishing a connection to a more well-behaved algebraic setting. Indeed, many
of the deepest and most powerful results in Computational Complexity rely on algebraic proof
techniques. The Razborov-Smolensky polynomial-approximation method for proving constant-
depth circuit lower bounds, the PCP characterization of NP, and the Agrawal-Kayal-Saxena
polynomial-time primality test are some of the most prominent examples.

The algebraic theme continues in some of the most exciting recent progress in computational
complexity. There have been significant recent advances in algebraic circuit lower bounds, and
the so-called “chasm at depth 4” suggests that the restricted models now being considered are
not so far from ones that would lead to a general result. There have been similar successes
concerning the related problems of polynomial identity testing and circuit reconstruction in the
algebraic model, and these are tied to central questions regarding the power of randomness in
computation. Representation theory has emerged as an important tool in three separate lines of
work: the “Geometric Complexity Theory” approach to P vs. NP and circuit lower bounds, the
effort to resolve the complexity of matrix multiplication, and a framework for constructing locally
testable codes. Coding theory has seen several algebraic innovations in recent years, including
multiplicity codes, and new lower bounds.

This seminar brought together researchers who are using a diverse array of algebraic methods
in a variety of settings. It plays an important role in educating a diverse community about the
latest new techniques, spurring further progress.
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1 Executive Summary

Manindra Agrawal
Valentine Kabanets
Thomas Thierauf
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The seminar brought together almost 50 researchers covering a wide spectrum of complexity
theory. The focus on algebraic methods showed the great importance of such techniques
for theoretical computer science. We had 25 talks, most of them lasting about 40 minutes,
leaving ample room for discussions. In the following we describe the major topics of discussion
in more detail.

Circuit Complexity

This is an area of fundamental importance to Complexity. Circuit Complexity was one of
the main topics in the seminar. Still it remains a big challenge to prove strong upper and
lower bounds. However, the speakers reported amazing progress in various directions.

Or Meir talked on one of the major open problems in complexity theory: proving super-
logarithmic lower bounds on the depth of circuits. That is, separating the log-depth circuit
class NC! from polynomial time, P. Karchmer, Raz, and Wigderson suggested an approach
to this problem. The KRW-conjecture states that the circuit depth of two functions f and g
adds up when we consider the composed function g o f. They showed that the conjecture
implies a separation of NC! from P. In his talk, Or Meir presented a natural step in this
direction, which lies between what is known and the original conjecture: he showed that an
analogue of the conjecture holds for the composition of a function with a universal relation.
The main technical tool is to use information complexity to analyze certain communication
problems.

A core theme in circuit complexity is depth-reduction: very roughly, these are techniques
to reduce the depth of a given circuit without increasing its size too much. The classic work
of Valiant, Skyum, Berkowitz and Rackoff shows that any polynomial size arithmetic circuit
has an equivalent circuit of polynomial size and log® n depth, where n is the number of input
variables. Further impedus was given by Agrawal and Vinay who pushed the depth reduction
to constant depth, thereby establishing the chasm at depth 4. It states that exponential
lower bounds for circuits of depth 4 already give such bounds for general circuits. This was
further improved by Koiran and by Tavenas.

Ramprasad Saptharishi gave a slightly different proof of the depth reduction of Tavenas in
his talk. Thereby he was able to apply the technique to homogeneous formulas and constant
depth formulas.

Chandan Saha presented a very strong result: an exponential lower bound for homogeneous
depth-4 circuits that comes close to the chasm-barrier. His techniques also yield exponential
lower bounds for certain nonhomogeneous depth-3 circuits. Having the parameters so close
to the bounds coming from depth reduction make these results really exciting.

Depth reduction is also an crucial ingredient in Pascal Koirans talk. He presented a new
version of the 7-conjecture for Newton polygons of bivariate polynomials. The 7-conjecture
was originally stated by Shub and Smale:
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the number of integer roots of a univariate polynomial should be polynomially bounded
in the size of the smallest straight-line program computing it.

Pascal Koiran proposed a new version of the 7-conjecture in his talk:

when a bivariate polynomial is expressed as a sum of products of sparse polynomials,
the number of edges of its Newton polygon is polynomially bounded in the size of such
an expression.

If this new conjecture is true, then the permanent polynomial cannot be computed by
polynomial-size arithmetic circuits.

Spurred by the depth reduction results, we have seen some great work on Polynomial
Identity Testing (PIT) recently, in particular on depth-3 and depth 4 circuits, and on
arithmetic branching programs. The most ambitious goal here is to come up with a hitting
set construction for a specific model. A hitting set is a set of instances such that every
non-zero polynomial in the model has a non-root in the set. This solves the PIT problem in
the black box model.

Rohit Gurjar and Arpita Korwar gave a joint talk on PIT for read-once arithmetic
branching programs. They presented a new technique called basis isolating weight assignment.
These weight assignments yield a hitting set in quasi-polynomial time.

Michael Forbes considered the question whether the hitting set constructions running in
quasi-polynomial time can be improved to polynomial time. He showed that in the case of
depth-3 powering circuits (sums of powers of linear polynomials) one can obtain a hitting set
of size poly(s)l°&loes for circuits of size s, which is pretty close to resolving the black-box
identity testing problem for this class in polynomial time.

Swastik Kopparty showed the computational equivalence of factoring multivariate poly-
nomials and PIT. For both problems we have efficient randomized algorithms. The question
whether these algorithms can be derandomized are central in arithmetic complexity. Swastik
established that they are equivalent.

Valiant introduced the arithmetic analogue of classes P and NP. Very roughly, the
class VP contains all multivariate polynomials that can be computed (non-uniformly) by
polynomial-size arithmetic circuits, and the class VNP contains all multivariate polynomials
that have coefficients computable by VP-circuits. The question whether VP is different from
VNP plays the role of the P-NP question in algebraic complexity theory. Valiant showed
that the permanent is complete for VNP. But for VP, only artificially constructed functions
were known to be complete. In her talk, Meena Mahajan described several natural complete
polynomials for VP, based on the notion of graph homomorphism polynomials.

Eric Allender defined a class called AP which is in some sense dual to VP. Over finite
fields, VP can be characterized by SAC!, the class of logarithmic depth, polynomial-size semi-
unbounded fan-in circuits (with bounded fan-in multiplication gates and unbounded fan-in
addition gates). Eric defined the dual class AP in the same way, but with unbounded fan-in
multiplication gates and bounded fan-in addition gates. He showed new characterizations of
the complexity classes ACC! and TC! based on AP.

Klaus-Joern Lange defined a completeness notion on families of languages, called densely
complete. He showed that the context-free languages are densely complete in SAC! via
many-one AC-reductions.

Complexity

Ryan Williams once again demonstrated a fruitful interplay between algorithms and complex-
ity. In his famous ACC-paper, he showed how to use fast algorithms for circuit satisfiability to
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prove lower bounds with respect to the class ACC. In his present talk, Ryan reversed the dir-
ection and showed how to exploit techniques from complexity to obtain faster algorithms for
the all-pairs shortest paths problem (APSP). He improved the running time from n3/ log®n
previously to n3/ 92(v/logn) e big question here is whether one can improve the running
time to n3~¢ for some € > 0. A crucial role in the new algorithm plays the polynomial method
of Razborov and Smolensky, originally conceived for proving low-depth circuit lower bounds.

Michal Koucky talked on a model of computation he calls catalytic computation. In this
model, a machine has only limited memory available, but has additionally access to almost
unlimited amount of disk space, the catalytic memory. This disk is however already full
of data. The machine has read-write access to the disk so that it can modify the content
of the disk. However, at the end of a computation, the content of the catalytic memory
has to be in its original state. The question now is whether the catalytic memory is of any
use. Michal showed that a logspace bounded machine with a catalytic memory can do all
of nondeterministic logspace. Hence, surprisingly, the catalytic memory really helps, unless
L = NL.

Amnon Ta-Shma talked on the problem of approzimating the eigenvalues of stochastic
Hermitian matrices. In an earlier paper he had shown that this is possible in probabilistic
logspace in the quantum model of computation, i.e. in BQL. In this talk, Amnon was asking
whether this is also possible in probabilistic logspace in the classic world, i.e. in BPL. He
showed that how to achieve approximations with constant accuracy. To bring the problem
into BPL, one would have to approximate the eigenvalues with polynomially small accuracy.
This remains open for now.

Venkatesan Guruswami condidered the following promise version of the satisfiability
problem: Given a k-SAT instance with the promise that there is an assignment satisfying
at least t out of k literals in each clause, can one efficiently find a satisfying assignment?
Because 3-SAT is NP-hard, the promise problem is NP-hard for ¢ < k/3. On the other
hand, 2-SAT is efficiently solvable. Extensions of the 2-SAT algorithm show that the promis
problem is efficiently solvable for ¢ > k/2. Venkatesan showed a sharp borderline for the
promise problem: it is NP-hard for ¢ < k/2. The proof uses part of the PCP-machinery.

Communication Complexity

Amir Yehudayoff talked on communication complexity in the number on the forehead model.
He considered the disjointness problem: there are k players, each having a set of numbers
from [n]. A player can see the numbers of all the other players, but not his own numbers.
The task of the payers is to determine, whether there is a number common to all sets. Amir
showed a lower bound for the deterministic communication complexity of order n/4. This
is quite amazing since it nearly matches the known upper bound, which is of order k?n /2.

Arkadev Chattopadhyay talked on a communication model, where the inputs are dis-
tributed among the vertices of an undirected graph. The vertices coorespond to processors,
each processor can send messages only to its neighbors in the graph. Arkadev showed lower
bounds on the communication cost for computing certain functions in this model.

Rahul Santhanam considered a communication model called compression game. There
are two players, Alice and Bob. Alice receives the whole input z and is computationally
bounded, by ACP[p] in this case, for some prime p. Bob has no information about x and is
computationally unbounded. The communication cost of some function f is the number of
bits Alice sent to Bob until they agree on the value f(z). Rahul showed a lower bound on
the communication complexity of the Mod,-function, for any prime ¢ # p.
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Coding Theory

Error-correcting codes, particularly those constructed from polynomials, lie at the heart of
many significant results in Computational Complexity. Usually, error correcting codes are
studied with respect to the Hamming distance. Another model is that of random errors.
Amir Shpilka in his talk considered the behaviour of Reed-Muller codes in the Shannon
model of random errors. He showed that the rate for Reed-Muller codes with either low- or
high-degree achieves (with high probability) the capacity for the Binary-Erasure-Channel

David Zuckerman talked on the relatively new concept of non-malleable codes which was
introduced by Dziembowski, Pietrzak, and Wichs in 2010. Informally, a code is non-malleable
if the message contained in a modified codeword is either the original message, or a completely
unrelated value. Non-malleable codes provide an elegant algorithmic solution to the task
of protecting hardware functionalities against “tampering attacks”. David showed how to
construct efficient non-malleable codes in the so-called C-split-state model that achieve
constant rate and exponentially small error.

Game Theory

Steve Fenner considered the following two-player game on a finite partially odered set
(poset) S: each player takes turns picking an element x of S and removes all y > = from S.
The first one to empty the poset wins. Daniel Grier showed that determining the winner of
a poset game is PSPACE-complete. Steve considered the black-white version of the game,
where each player and each element of S is assigned a color, black or white. Each player is
only allowed to remove elements of their own color. He showed that also this black-white
version of the poset game is PSPACE-complete. This is the first PSPACE-hardness result
known for a purely numerical game. Another interesting result was that the game NimG, a
generalization of both Nim and Geography, is polynomial-time solvable when restricted to
undirected, bipartite graphs, whereas NimG is known to be PSPACE-complete for general
graphs, both directed and undirected.

Bill Gasarch talked on a variant of classical NIM, where there is only one pile of stones
and and a given set {a1,aq,...,a;} of numbers. A move consists of choosing a number a;
from the set and then removing a; stones from the pile. The first player who cannot move
loses the game. This game has already been well studied. Bill considered an extension of the
game where each player starts out with a number of dollars. Now each player has to spend a
dollars to remove a stones. He presented some surprising results on the winning conditions
for the extended game.

Cryptography

Farid Ablayev generalized classical universal hashing to the quantum setting. He defined the
concept of a quantum hash generator and offer a design, which allows one to build a large
number of different quantum hash functions. One of the important points here is to use unly
few quantum bits. Farid proved that his construction is optimal with respect to the number
of qubits needed.

Matthias Krause talked on approaches for designing authentication protocols for ultra-
light weight devices as for example RFID chips. He proposed a new approach based on key
stream generators as the main building block.
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Conclusion

As is evident from the list above, the talks ranged over a broad assortment of subjects
with the underlying theme of using algebraic and combinatorial techniques. It was a very
fruitful meeting and has hopefully initiated new directions in research. Several participants
specifically mentioned that they appreciated the particular focus on a common class of
techniques (rather than end results) as a unifying theme of the workshop. We look forward
to our next meeting!
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3 Overview of Talks

3.1 Quantum hashing via classical e-universal hashing constructions
Farid Ablayev (Kazan State University, RU)

License ) Creative Commons BY 3.0 Unported license
© Farid Ablayev
Joint work of Farid Ablayev, Marat Ablayev

Quantum computing is inherently a very mathematical subject, and discussions of how
quantum computers can be more efficient than classical computers in breaking encryption
algorithms have started since Peter Shor invented his famous quantum algorithm. The
reaction of a cryptography community is a “Post-quantum cryptography”, which refers to the
research of problems (usually public-key cryptosystems) that are not efficiently breakable using
quantum computers. Currently post-quantum cryptography includes different approaches, in
particular, hash-based signature schemes such as Lamport signature and Merkle signature
scheme.

Hashing itself is an important basic concept of computer science. The concept known as
“universal hashing” was invented by Carter and Wegman in 1979.

In our research we define a quantum hashing as a quantum generalization of classical
hashing. We define the concept of a quantum hash generator and offer a design, which
allows one to build a large number of different quantum hash functions. The construction is
based on composition of a classical e-universal hash family and a given family of functions —
quantum hash generators.

The relationship between epsilon-universal hash families and error-correcting codes give
possibilities to build a large amount of different quantum hash functions. In particular,
we present quantum hash function based on Reed-Solomon code, and we proved, that this
construction is optimal in the sense of number of qubits needed.

Using the relationship between epsilon-universal hash families and Freivalds’ fingerprinting
schemas we present explicit quantum hash function and prove that this construction is optimal
with respect to the number of qubits needed for the construction.

3.2 Dual VP classes
Eric Allender (Rutgers University, US)

License ) Creative Commons BY 3.0 Unported license
© Eric Allender
Joint work of Eric Allender, Anna Gal, Ian Mertz
Main reference E. Allender, A. Gal, I. Mertz, “Dual VP Classes,” ECCC, TR14-122, 2014.
URL http://eccc.hpi-web.de/report/2014/122/

We consider arithmetic complexity classes that are in some sense dual to the classes VP that
were introduced by Valiant. This provides new characterizations of the complexity classes
ACC! and TC!, and also provides a compelling example of a class of high-degree polynomials
that can be simulated via arithmetic circuits of much lower degree.
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3.3 Asymptotic spectra of tensors
Markus Bliser (Universitit des Saarlandes, DE)

License ) Creative Commons BY 3.0 Unported license
© Markus Bléser
Joint work of Manuel Arora, Markus Blaser

Asymptotic spectra were studied by Strassen to understand the asymptotic complexity of
tensors, in particular of matrix multiplication. The (equivalence classes of) tensors are
embedded into an ordered ring and then results by Stone, Kadison, and Dubois are applied
to represent tensors by nonnegative continuous functions on some Hausdorff space.

In the first part of the talk, we give an introduction to asymptotic spectra and the work
by Strassen. In the second part of the talk, we introduce a new order on the equivalence
classes of tensors and study the resulting new spectra.

3.4 Topology matters in communication
Arkadev Chattopadhyay (TIFR, IN)

License ) Creative Commons BY 3.0 Unported license
© Arkadev Chattopadhyay
Joint work of Arkadev Chattopadhyay, Jaikumar Radhakrishnan, Atri Rudra

We consider the communication cost of computing functions when inputs are distributed
among the vertices of an undirected graph. The communication is assumed to be point-
to-point: a processor sends messages only to its neighbors. The processors in the graph
act according to a pre-determined protocol, which can be randomized and may err with
some small probability. The communication cost of the protocol is the total number of bits
exchanged in the worst case. Extending recent work that assumed that the graph was the
complete graph (with unit edge lengths), we develop a methodology for showing lower bounds
that are sensitive to the graph topology. In particular, for a broad class of graphs, we obtain
a lower bound of the form k%n, for computing a function of k inputs, each of which is n-bits
long and located at a different vertex. Previous works obtained lower bounds of the form kn.

This methodology yields a variety of other results including the following:

A tight lower bound (ignoring poly-log factors) for Element Distinctness, settling a

question of Phillips, Verbin and Zhang (SODA’12);

a distributed XOR lemma;

a lower bound for composed functions, settling a question of Phillips et al.;

new topology-dependent bounds for several natural graph problems considered by Wood-

ruff and Zhang (DISC’13).

To obtain these results we use tools from the theory of metric embeddings and represent
the topological constraints imposed by the graph as a collection of cuts, each cut providing a
setting where our understanding of two-party communication complexity can be effectively
deployed.
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3.5 Some new results on combinatorial game complexity
Stephen A. Fenner (University of South Carolina, US)

License ) Creative Commons BY 3.0 Unported license
© Stephen A. Fenner
Joint work of Daniel Grier, Stephen A. Fenner Daniel, Jochen Messner, Luke Schaeffer, Thomas Thierauf

We give new hardness and easiness results for determining the winner in certain two-player
games with perfect information. On the hardness side, we show that Black-White-Poset-
Games (BWPG) and a generalized version of the game Col are both PSPACE-complete
(via reductions from variants of TQBF). The BWPG result is the first PSPACE-hardness
result known for a purely numerical game. On the easiness side, we show that NimG (a
generalization of both Nim and Geography) is polynomial-time computable when restricted
to undirected, bipartite graphs. (NimG is known to be PSPACE-complete for general graphs,
both directed and undirected). We also show that Toads and Frogs is polynomial-time
computable when each row is restricted to one toad and one frog.

3.6 Hitting Sets for Depth-3 Powering Circuits
Michael Forbes (University of California — Berkeley, US)

License ) Creative Commons BY 3.0 Unported license
© Michael Forbes
Joint work of Michael Forbes, Ramprasad Saptharishi, Amir Shpilka

A recent line of research has constructed hitting sets for various read-once and set-multilinear
models of computation, as such hitting sets yield black-box polynomial identity testing
algorithms. Despite the fact that these models all have a “white-box” identity testing
algorithm that runs in polynomial-time (due to Raz and Shpilka), the black-box algorithms
all run in quasipolynomial time. Improving these algorithms seems challenging, especially as
these algorithms can be viewed as algebraic analogues of pseudorandom generators for RL
(which have been stuck at RL C L? for 25 years).

In this work, we identify a particularly simple subclass of the above models, known as
depth-3 powering circuits (sums of powers of linear polynomials). In fact, this is the simplest
complete algebraic circuit class for which we do not have explicit polynomial-size hitting sets.
We show how to combine two different hitting set constructions, each of size poly(s)!°8* for
size s circuits, to obtain a hitting set of size poly(s)'°8!°8*  which is tantalizingly close to
resolving the black-box identity testing problem for this class.

3.7 NIM with Cash
William Gasarch (University of Maryland — College Park, US)

License @@ Creative Commons BY 3.0 Unported license
© William Gasarch
Joint work of William Gasarch, John Purtilo, Doug Ulrich
Main reference W. Gasarch, J. Purtilo, “NIM with Cash,” University of Maryland Computer Science Department,
CS-TR-5015, 2012.
URL http://hdl.handle.net/1903/12908

NIM(aq,...,ax;n) is a 2-player game where initially there are n stones on the board and
the players alternate removing either a; or ... aj stones. The first player who cannot move
loses. This game has been well studied. For example, it is known that for NIM(1,2,3;n)
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Player II wins if and only if n is divisible by 4. This game is interesting because even small
sets {ai,...,ar} lead to interesting win conditions.

We investigate an extension of the game where Player I starts out with d; dollars and
Player II starts out with do dollars, and a player has to spend a dollars to remove a stones.
For several choices of aq,...,a; we determine for all (n,d;,ds) which player wins. The
win condition depend on both what n is congruent to mod some M and on how d; and ds
relate. This game is interesting because even small sets {a1, ..., a;} lead to interesting and
complicated win conditions.

Some of our results are surprising. For example, there are cases where both players are
poor, yet the one with less money wins.

3.8 Hitting Set for Read-Once Arithmetic Branching Programs
Rohit Gurjar and Arpita Korwar (IIT Kanpur, IN)

License ) Creative Commons BY 3.0 Unported license
© Rohit Gurjar, Arpita Korwar
Joint work of Manindra Agrawal, Rohit Gurjar, Arpita Korwar, Nitin Saxena
Main reference M. Agrawal, R. Gurjar, A. Korwar, N. Saxena, “Hitting-sets for ROABP and Sum of
Set-Multilinear circuits,” ECCC, TR14-085, 2014.
URL http://eccc.hpi-web.de/report,/2014/085/

In the march towards a deterministic solution for the polynomial identity testing problem,
recently there has been a considerable amount of work on depth-3 set-multilinear circuits and
read once arithmetic branching programs (ROABP). Continuing in this direction, we have
given a (nd)?1°8™)_time blackbox PIT algorithm for unknown-order, n-variate, individual
degree 6 ROABP, improving the previously known nO@log”n)

In this talk, we will look at a new idea “Basis Isolating Weight Assignment” for designing a
hitting set for depth-3 circuits. This idea has been applied to read-once arithmetic branching
programs (RO-ABPs) to get a n®(logn) time hitting set.

-time algorithm.

3.9 (2+eps)-SAT is NP-hard
Venkatesan Guruswami (Carnegie Mellon University , US)

License ) Creative Commons BY 3.0 Unported license
© Venkatesan Guruswami
Joint work of Per Austrin, Venkatesan Guruswami, Johan Héstad
Main reference P. Austrin, V. Guruswami, J. Hastad, “(2 4 ¢€)-SAT is NP-hard,” ECCC, TR13-159, 2013/2014;
peer-reviewed version to appear in Proc. of the 55th IEEE Symp. on Foundations of Computer
Science (FOCS’14).
URL http://eccc.hpi-web.de/report/2013/159/

Given a k-SAT instance with the promise that there is an assignment satisfying at least t out
of k literals in each clause, can one efficiently find a satisfying assignment (setting at least
one literal to true in every clause)? The NP-hardness of 3-SAT implies that this problem
is NP-hard when ¢ < k/3, and extensions of some 2-SAT algorithms give efficient solutions
when ¢t > k/2.

We prove that for ¢t < k/2, the problem is NP-hard. Thus, satisfiability becomes hard
when the promised density of true literals falls below 1/2. One might thus say that the
transition from easy to hard in 2-SAT vs. 3-SAT takes place just after two and not just
before three.
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The talk will sketch most of the proof, which is based on the fact that the only func-
tions passing a natural dictatorship test are “juntas” depending on few variables. We will
briefly mention the general “universal-algebraic” principle (based on the lack of certain
polymorphisms) that underlies hardness of constraint satisfaction.

A strengthening of the k-SAT result shows that given a (2¢ 4 1)-uniform hypergraph that
can be 2-colored such that each edge has near-perfect balance (at most ¢ + 1 vertices of each
color), it is NP-hard to even find a 2-coloring that avoids a monochromatic edge. This shows
extreme hardness of discrepancy minimization for systems of bounded-size sets.

(Subsequent work with Euiwoong Lee, available as ECCC TR14-043 and to appear at
SODA 2015, in fact rules out coloring with any constant number of colors for the case of
2k-uniform hypergraphs with discrepancy 2, and shows further extensions to hypergraphs
admitting a near-balanced rainbow coloring with more than two colors.)

3.10 A 7-conjecture for Newton polygons
Pascal Koiran (ENS — Lyon, FR)

License ) Creative Commons BY 3.0 Unported license
© Pascal Koiran
Joint work of Pascal Koiran, Natacha Portier, Sébastien Tavenas, Stéphan Thomassé
Main reference P. Koiran, N. Portier, S. Tavenas, S. Thomassé, “A tau-conjecture for Newton polygons,”
arXiv:1308.2286v2 [cs.CC], 2014.
URL http://arxiv.org/abs/1308.2286v2

One can associate to any bivariate polynomial P(X,Y") its Newton polygon. This is the convex
hull of the points (i, 5) such that the monomial X*Y”7 appears in P with a nonzero coefficient.
We conjecture that when P is expressed as a sum of products of sparse polynomials, the
number of edges of its Newton polygon is polynomially bounded in the size of such an
expression. We show that this “7r-conjecture for Newton polygons,”
implies that the permanent polynomial is not computable by polynomial size arithmetic
circuits. We make the same observation for a weak version of an earlier “real 7-conjecture.
Finally, we make some progress toward the 7-conjecture for Newton polygons using recent
results from combinatorial geometry.

even in a weak form,

)

3.11 Equivalence of polynomial identity testing and multivariate
polynomial factorization

Swastik Kopparty (Rutgers University, US)

License ) Creative Commons BY 3.0 Unported license
© Swastik Kopparty
Joint work of Swastik Kopparty, Shubhangi Saraf, Amir Shpilka
Main reference S. Kopparty, S. Saraf, A. Shpilka, “Equivalence of Polynomial Identity Testing and Deterministic
Multivariate Polynomial Factorization,” ECCC, TR14-001, 2014.
URL http://eccc.hpi-web.de/report,/2014/001/

In this work, we show that the problem of deterministically factoring multivariate polynomials
reduces to the problem of deterministic polynomial identity testing. Specifically, we show
that given an arithmetic circuit (either explicitly or via black-box access) that computes
a polynomial f(X7,...,X,), the task of computing arithmetic circuits for the factors of f
can be solved deterministically, given a deterministic algorithm for the polynomial identity
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testing problem (we require either a white-box or a black-box algorithm, depending on the
representation of f).

Together with the easy observation that deterministic factoring implies a deterministic
algorithm for polynomial identity testing, this establishes an equivalence between these two
central derandomization problems of arithmetic complexity. Previously, such an equivalence
was known only for multilinear circuits (Shpilka and Volkovich, ICALP 2010).

3.12 Catalytic computation
Michal Koucky (Charles University, CZ)

License @ Creative Commons BY 3.0 Unported license
© Michal Koucky
Joint work of Harry Buhrman, Richard Cleve, Michal Koucky, Bruno Loff, Florian Speelman
Main reference H. Buhrman, R. Cleve, M. Koucky, B. Loff, F. Speelman, “Computing with a full memory:
Catalytic space,” ECCC, TR14-053, 2014.
URL http://www.eccc.hpi-web.de/report/2014/053/

The known hierarchy theorems hold in a vacuum. However, our computation happens in a
wider context. Although we may have only limited memory to carry out our computation we
have access to almost unlimited amount of disk space provided at the end of the computation
the disk contains exactly the same content as at the beginning. This naturally leads to a
question: what can be computed in space s when we have access to read-write “catalytic”
memory that we can use provided at the end of the computation the content of the catalytic
memory is at its original, possibly incompressible, state. Is there any advantage in having
this extra catalytic memory?

We provide affirmative answer to this question (assuming NL differs from L). We show
that in space s with catalytic memory we can compute deterministically functions computable
in non-deterministic space s. We can extend the results even further. The main techniques
come from a special form of reversible computation that we call transparent computation.

3.13 Sharp Security Bounds for Authentication with Key Stream
Generators

Matthias Krause (Mannheim University, DE)

License ) Creative Commons BY 3.0 Unported license
© Matthias Krause

In the last years, various approaches for designing authentication protocols for ultralight
weight devices (e.g., RFIDs) have been intensively studied (HB-type protocols, Linear
protocols, block cipher based solutions etc.) We propose an new approach which uses a
key stream generators (KSG) as the main building block. The usage of KSGs appears
advantageous in this context, as several well analyzed ultralight weight practical designs are
available.

We propose a new mode of operation for KSGs which leads to an encryption function
E = E(z) of type E(x) = F(P(x + k1) + k2), where F denotes a pseudo-random function, P
a pseudo-random permutation and ki, ko secret keys of length n.

We show a sharp information theoretic bound of %n for the effective key length of this
construction w.r.t. to an attacker of unbounded computational power which has access to
E-, F- and P, P~ !-oracles.
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3.14 Dense Completeness
Klaus-Joern Lange (Universitit Tibingen, DE)

License ) Creative Commons BY 3.0 Unported license
© Klaus-Joern Lange

A family of formal languages F is said to be densely complete in a complexity class C, iff F
is contained in C and for each L € C there exists some L’ € F such that both L is reducible
to L’ and L' is reducible to L, i.e., L and L’ have the same complexity modulo the chosen
notion of reducibility.

Using many-one reductions computable in AC?, it can be shown that the context-free
languages are densely complete in SAC!, the one-counter languages in Nspace(logn), and
the indexed languages in NP. On the other, hand the regular languages are not densely
complete in NC!. This result is now extended to the nonregular family of visibly one-counter
languages.

3.15 Homomorphism polynomials complete for VP
Meena Mahajan (The Institute of Mathematical Sciences — Chennai, IN)

License ) Creative Commons BY 3.0 Unported license
© Meena Mahajan
Joint work of Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-Altherre, Nitin Saurabh

The VP versus VNP question, introduced by Valiant, is probably the most important open
question in algebraic complexity theory. Thanks to completeness results, a variant of this
question, VBP versus VNP, can be succintly restated as asking whether the permanent of a

generic matrix can be written as a determinant of a matrix of polynomially bounded size.

Strikingly, this restatement does not mention any notion of computational model. To get
a similar restatement for the original and more fundamental question, and also to better
understand the class itself, we need a complete polynomial for VP. Ad hoc constructions
yielding complete polynomials were known, but not natural examples in the vein of the
determinant. This talk describes several variants of natural complete polynomials for VP,
based on the notion of graph homomorphism polynomials.

3.16 Toward Better Formula Lower Bounds: An Information
Complexity Approach to the KRW Composition Conjecture

Or Meir (Institute of Advanced Study — Princeton, US)

License @@ Creative Commons BY 3.0 Unported license
© Or Meir
Joint work of Dmitry Gavinsky, Or Meir, Omri Weinstein, Avi Wigderson
Main reference D. Gavinsky, O. Meir, O. Weinstein, A. Wigderson, “Toward Better Formula Lower Bounds: An
Information Complexity Approach to the KRW Composition Conjecture,” ECCC, TR13-190,
2013/2014.
URL http://www.eccc.hpi-web.de/report,/2013/190/

One of the major open problems in complexity theory is proving super-logarithmic lower
bounds on the depth of circuits (i.e., P £ NCI). This problem is interesting for two reasons:

99

14391


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.eccc.hpi-web.de/report/2013/190/
http://www.eccc.hpi-web.de/report/2013/190/
http://www.eccc.hpi-web.de/report/2013/190/
http://www.eccc.hpi-web.de/report/2013/190/

100

14391 — Algebra in Computational Complexity

first, it is tightly related to understanding the power of parallel computation and of small-
space computation; second, it is one of the first milestones toward proving super-polynomial
circuit lower bounds.

Karchmer, Raz, and Wigderson suggested to approach this problem by proving the
following conjecture: given two boolean functions f and g, the depth complexity of the
composed function g o f is roughly the sum of the depth complexities of f and g. They
showed that the validity of this conjecture would imply that P ¢ NC*.

As a starting point for studying the composition of functions, they introduced a relation
called 7the universal relation?, and suggested to study the composition of universal relations.
This suggestion proved fruitful, and an analogue of the KRW conjecture for the universal
relation was proved by Edmonds et. al. An alternative proof was given later by Héastad and
Wigderson. However, studying the composition of functions seems more difficult, and the
KRW conjecture is still wide open.

In this work, we make a natural step in this direction, which lies between what is known
and the original conjecture: we show that an analogue of the conjecture holds for the
composition of a function with a universal relation. We also suggest a candidate for the next
step and provide initial results toward it.

Our main technical contribution is developing an approach based on the notion of
information complexity for analyzing KW relations — communication problems that are
closely related to questions on circuit depth and formula complexity. Recently, information
complexity has proved to be a powerful tool, and underlined some major progress on several
long-standing open problems in communication complexity. In this work, we develop general
tools for analyzing the information complexity of KW relations, which may be of independent
interest.

3.17 A Geometric Resolution-based Framework for Joins
Atri Rudra (SUNY — Buffalo, US)

License ) Creative Commons BY 3.0 Unported license
© Atri Rudra
Joint work of Mahmoud Abo Khamis, Hung Ngo, Dung Nguyen, Chris Re, Atri Rudra

We present a simple geometric framework for the relational join. Using this framework, we
design an algorithm that achieves the fractional hypertree-width bound, which generalizes
classical and recent worst-case algorithmic results on computing joins. In addition, we use
our framework and the same algorithm to show a series of what are colloquially known
as beyond worst-case results. The framework allows us to prove results for data stored in
Btrees, multidimensional data structures, and even multiple indices per table. A key idea in
our framework is formalizing the inference one does with an index as a type of geometric
resolution; transforming the algorithmic problem of computing joins to a geometric problem.
Our notion of geometric resolution can be viewed as a geometric analog of logical resolution.

In this talk, I will focus on our geometric interpretation of joins and give a flavor of our
beyond worst-case results. In particular, I will present the main (very simple!) algorithmic
ideas behind our upper bounds and clarify the actual model of resolution that we use. I
will end with some open questions on lower bounds and some algebraic versions of the join
problem that we do not know much about.
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3.18 Lower bounds for (homogeneous) depth-4 and (nonhomogeneous)
depth-3 arithmetic circuits

Chandan Saha (Indian Institute of Science — Bangalore, IN)

License @ Creative Commons BY 3.0 Unported license
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Joint work of Neeraj Kayal, Chandan Saha, Srikanth Srinivasan, Nutan Limaye

An approach to proving a super-polynomial lower bound for arithmetic circuits reduces the
problem to proving “strong enough” lower bounds for small depth circuits, in particular
(nonhomogeneous) depth-3 circuits and (homogeneous) depth-4 circuits. Depth of a circuit is
the number of layers of gates in it.

In the talk, we plan to discuss an exponential lower bound for (homogeneous) depth-4
circuits that comes close to being ‘strong enough’ More precisely, we give an explicit family
of polynomials of degree d on N variables (with N = d3 in our case) with 0, 1-coefficients
such that for any representation of a polynomial f in this family of the form

f:ZHQij7

where the Q;;’s are homogeneous polynomials (recall that a polynomial is said to be homo-
geneous if all its monomials have the same degree), it must hold that

Z (Number of monomials of Q;;) > 2Vdlog N)
i.J
The above mentioned family, which we refer to as the Nisan-Wigderson design-based
family of polynomials, is in the complexity class VNP. Our work builds on several recent
lower bound results and the techniques also yield exponential lower bounds for certain
(nonhomogeneous) depth-3 circuits, in particular depth-3 circuits with low bottom fanin
which also answers a question posed by Shpilka and Wigderson (CCC’99).

3.19 Lower Bounds on AC°[p]-Compression Games
Rahul Santhanam (University of Edinburgh, GB)

License @@ Creative Commons BY 3.0 Unported license
© Rahul Santhanam
Joint work of Igor Carboni Oliveira, Rahul Santhanam

Given a class of circuits C, a C-compression game to compute a Boolean function f is a
2-player game played as follows. Alice is a computationally bounded player who receives the
input x, and whose next-message function is computable in C. Bob is a computationally
unbounded player who has no information about x before communication happens. Alice and
Bob communicate until they agree on the value of f(x). The cost of a compression protocol
is the number of bits communicated from Alice to Bob. Compression games hybridize
computational complexity and communication complexity. They generalize the notion of
instance compression due to Harnik & Naor and Bodlaender, Downey, Fellows & Hermelin,
and have applications in cryptography, parameterized complexity and circuit complexity.
We prove new lower bounds for C-compression games where C = ACO[p] for some prime p.
We show that the Mod, function requires deterministic compression cost Q(n/polylog(n)),
and randomised compression cost Q(y/n/polylog(n)), whenever ¢ is a prime different from p.
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We also define and study multi-player compression games, where Alice communicates in
parallel with several unbounded players Boby, Boba, ..., Boby (which cannot communicate
with each other), and the cost of the protocol is the maximum amount of communication from
Alice to any fixed Bob;. We show compression cost lower bound n®*(") for constant-round
multi-player AC° [p]-compression games computing the Mod, function when ¢ # p, even
when k = poly(n). As an application, we strengthen the known AC°[p] lower bounds of
Razborov and Smolensky to the setting of oracle circuits with arbitrary oracle gates, with
some mild restrictions on the number of layers and fan-in of the oracle gates.

Finally we obtain a stronger version of the round separation result of Chattopadhyay &
Santhanam for AC’-compression games.

3.20 Depth Reduction for Arithmetic Circuits
Ramprasad Saptharishi (Microsoft Research India — Bangalore, IN)

License ) Creative Commons BY 3.0 Unported license
© Ramprasad Saptharishi
Joint work of Saptharishi, Ramprasad; Vinay, V.

Almost all attempts to prove lower bounds for subclasses arithmetic circuits proceed by
addressing a “depth four analogue” of the subclass. This talk shall give a slightly different
proof of the depth reduction of Tavenas, and enable us to study this for homogeneous formulas
and constant depth formulas.

3.21 Reed-Muller codes with respect to random errors and erasures
Amir Shpilka (Technion — Haifa, IL)

License ) Creative Commons BY 3.0 Unported license
© Amir Shpilka
Joint work of Emmanuel Abbe, Amir Shpilka, Avi Wigderson

In TCS we usually study error correcting codes with respect to the Hamming metric, i.e.
we study their behaviour with respect to worst case errors. However, in coding theory a
more common model is that of random errors, where Shannon’s results show a much better
tradeoff between rate and decoding radius.

We consider the behaviour of Reed-Muller codes in the Shannon model of random errors.

In particular, we show that RM codes with either low- or high-degree (degree nl/? 172

orn—mn
respectively), with high probability, can decode from an 1 — R fraction of random erasures
(where R is the rate). In other words, for this range of parameters RM codes achieve
capacity for the Binary-Erasure-Channel. This result matches experimental observations
that RM codes can achieve capacity for the BEC, similarly to Polar codes. We also show that
RM-codes can handle many more random errors than the minimum distance, i.e. roughly
n"/? errors for codes of degree n — 7 (where the minimum distance is only 27).

We show that the questions regarding the behaviour of Reed-Muller codes wrt random
errors are tightly connected to the following question. Given a random set of vectors in
{0,1}™, what is the probability the their 7 tensor products are linearly independent? We
obtain our results by giving answer to this question for certain range of parameters.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Manindra Agrawal, Valentine Kabanets, Thomas Thierauf, and Christopher Umans 103

3.22 On the problem of approximating the eigenvalues of undirected
graphs in probabilistic logspace

Amnon Ta-Shma (Tel Aviv University, IL)

License @@ Creative Commons BY 3.0 Unported license
© Amnon Ta-Shma

We focus on the problem of approzimating the eigenvalues of stochastic Hermitian operators
in small space, which is a natural and important problem. The ultimate goal is solving the
problem in full in BPL, i.e., with polynomially-small accuracy. In this paper, however, we
only achieve approximations with constant accuracy. Our technique is new. We also show
that going beyond constant accuracy requires a new idea.

3.23 Faster All-Pairs Shortest Paths Via Circuit Complexity
Ryan Williams (Stanford University, US)

License ) Creative Commons BY 3.0 Unported license
© Ryan Williams

I presented an algorithm for solving the all-pairs shortest paths problem on n-node graphs
with edge weights in [0,7*] (for arbitrary k) running in n3/2(°8 ™’ time for an unspecified
0 > 0. In the full paper, I give an algorithm for solving the all-pairs shortest paths problem
on n-node real-weighted graphs in the “real RAM” model, running in n?/ 29(\/@) time.
Both algorithms apply the polynomial method of Razborov and Smolensky, originally
conceived for proving low-depth circuit lower bounds. We show how low-depth circuits can
compute a so-called “min-plus inner product” of two vectors, then show how to evaluate such
low-depth circuits efficiently on many pairs of vectors by randomly reducing the circuit to a
low-degree polynomial over Fy and using fast rectangular matrix multiplication.

3.24 Lower bounds on the multiparty communication complexity of
disjointness

Amir Yehudayoff (Technion — Haifa, IL)

License ) Creative Commons BY 3.0 Unported license
© Amir Yehudayoff

We give a proof of order n/4% lower bound for the deterministic communication complexity
of set disjointness with k players in the number on the forehead model. This is the first
lower bound that is linear in n, and it nearly matches the known upper bound. We discuss
Sherstov’s proof of an order n'/2/(k2¥) lower bound on the randomized complexity.
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3.25 Non-Malleable Codes Against Constant Split-State Tampering
David Zuckerman (University of Texas at Austin, US)

License ) Creative Commons BY 3.0 Unported license
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Joint work of Eshan Chattopadhyay, David Zuckerman
Main reference E. Chattopadhyay, D. Zuckerman, “Non-Malleable Codes Against Constant Split-State
Tampering,” ECCC, TR14-102, 2014.
URL http://eccc.hpi-web.de/report,/2014/102/

Non-malleable codes were introduced by Dziembowski, Pietrzak and Wichs as an elegant
generalization of the classical notion of error detection, where the corruption of a codeword
is viewed as a tampering function acting on it. Informally, a non-malleable code with respect
to a family of tampering functions F consists of a randomized encoding function Enc and a
deterministic decoding function Dec such that for any m, Dec(Enc(m)) = m. Further, for
any tampering function f € F and any message m, Dec(f(Enc(m))) is either m or is e-close
to a distribution Dy independent of m, where € is called the error.

Of particular importance are non-malleable codes in the C-split-state model. In this
model, the codeword is partitioned into C' equal sized blocks and the tampering function
family consists of functions (f1,..., fc) such that f; acts on the i*" block. For C' = 1 there
cannot exist non-malleable codes. For C = 2, the best known explicit construction is by
Aggarwal, Dodis and Lovett who achieve rate = Q(n*6/7) and error = 2*9(”_1/7), where n
is the block length of the code.

In our main result, we construct efficient non-malleable codes in the C-split-state model
for C' = 10 that achieve constant rate and error = 2~"), These are the first explicit codes of
constant rate in the C-split-state model for any C' = o(n), that do not rely on any unproven
assumptions. We also improve the error in the explicit non-malleable codes constructed in
the bit tampering model by Cheraghchi and Guruswami.

Our constructions use an elegant connection found between seedless non-malleable ex-
tractors and non-malleable codes by Cheraghchi and Guruswami. We explicitly construct
such seedless non-malleable extractors for 10 independent sources and deduce our results on
non-malleable codes based on this connection. Our constructions of extractors use encodings
and a new variant of the sum-product theorem.
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